Powered by Deep Web Technologies
Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

2

Electric Resistance Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

3

Electric Resistance Heating Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Basics Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric furnaces, or electric thermal storage systems. Electric Furnaces With electric furnaces, heated air is delivered throughout the home through supply ducts and returned to the furnace through return ducts. Blowers (large fans) in electric furnaces move air over a group of three to seven

4

Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

None

2011-11-21T23:59:59.000Z

5

Sodium heat engine electrical feedthrough  

DOE Patents [OSTI]

A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.

Weber, N.

1985-03-19T23:59:59.000Z

6

Rate making for Electric Utilities  

E-Print Network [OSTI]

Water Works Company 5 f. R. C, E, 215, 281, May 14, 1910 Arkadelphia Electric Light Company v City of Arkadelphia 137 S, W. 1093, 96 Ark, May 1, 1911 Beloit v, Beloit Water, Gas and Electric Company 7 f , B, C. R. 187,239, July 19, 1911. Columbus... Railway and Light Company v. City of Columbus No, 1206 in Equity U. S. Cir. Ct. Southern District of Ohio Eastern Division. Report of Special Master T. P. Lynn January 8, 1906 Consolidated Gas Company v. City of New York Circuit Court of U. S...

Hanson, Carl Falster

1911-01-01T23:59:59.000Z

7

Electric Resistance Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Resistance Heating Electric Resistance Heating Electric Resistance Heating June 24, 2012 - 4:51pm Addthis Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating converts nearly 100% of the energy in the electricity to heat. However, most electricity is produced from coal, gas, or oil generators that convert only about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in the home or business using combustion appliances, such as natural gas, propane, and oil furnaces. If electricity is the only choice, heat pumps are preferable in most

8

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The...

9

Making Use of Low-Level Heat  

E-Print Network [OSTI]

to discuss today ~s This method is based on the organic Rankine c~cle power, either electrical or mechanical power. using a suitable working fluid in a closed loop. . 11 t pressure, adds heat ito To refresh your memory, the Rankine cycle pumps liquid... electric power, by the organic Rankine cycle mechanism. A~I I Energy Systems is a company set up by Allied Chemical and Ishikawajima-Harima Heavy Industri~s i Co. of Japan to design and sell the IHI System, operating mainly with freon fluids. i i f I...

Plaster, W. E.

1979-01-01T23:59:59.000Z

10

Mid-South Metallurgical Makes Electrical and Natural Gas System...  

Broader source: Energy.gov (indexed) [DOE]

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas...

11

Tool Improves Electricity Demand Predictions to Make More Room...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 -...

12

Electric System Decision Making in Other Regions: A Preliminary...  

Broader source: Energy.gov (indexed) [DOE]

Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation Electric System Decision Making in Other Regions: A Preliminary...

13

Zone heated diesel particulate filter electrical connection  

DOE Patents [OSTI]

An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

2010-03-30T23:59:59.000Z

14

Making the most of Responsive Electricity Customer. Energy Efficiency and  

Broader source: Energy.gov (indexed) [DOE]

Making the most of Responsive Electricity Customer. Energy Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? More Documents & Publications 2012 Advanced Applications Research & Development Peer Review - Day 2 Presentations Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2

15

Making the most of Responsive Electricity Customer. Energy Efficiency and  

Broader source: Energy.gov (indexed) [DOE]

Making the most of Responsive Electricity Customer. Energy Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? More Documents & Publications 2012 Advanced Applications Research & Development Peer Review - Day 2 Presentations Demand Response National Trends: Implications for the West? Energy Storage Systems 2010 Update Conference Presentations - Day 2,

16

Edmond Electric- Residential Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

17

Coal ban could heat up electricity prices  

Science Journals Connector (OSTI)

Coal ban could heat up electricity prices ... The U.S. EPAs new report on the economic impact of the bill suggests it would cost households $100?140 per year by 2030. ...

Janet Pelley

2009-05-13T23:59:59.000Z

18

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Broader source: Energy.gov (indexed) [DOE]

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

19

Harvesting Electricity From Wasted Heat  

ScienceCinema (OSTI)

Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

Schwede, Jared

2014-07-16T23:59:59.000Z

20

Harvesting Electricity From Wasted Heat  

SciTech Connect (OSTI)

Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

Schwede, Jared

2014-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Indoor unit for electric heat pump  

DOE Patents [OSTI]

An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

1984-05-22T23:59:59.000Z

22

Electrical Space-heating Methods  

Science Journals Connector (OSTI)

... when the electricity supply is interrupted during peak periods or by bomb damage to cables, substations, etc. It provides maximum safety against burns and shock due to inadvertent contact with ...

1942-04-04T23:59:59.000Z

23

Buying & Making Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and advice we shared on Earth Day. Tips and Advice Tips: Renewable Energy Use solar power to heat water and more Today's solar power is highly efficient. You can buy systems to...

24

Buying & Making Electricity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tips and advice we shared on Earth Day. Tips and Advice Tips: Renewable Energy Use solar power to heat water and more Today's solar power is highly efficient. You can buy systems...

25

Electric System Decision Making in Other Regions: A Preliminary Analysis  

Broader source: Energy.gov (indexed) [DOE]

Decision Making in Other Regions: A Preliminary Decision Making in Other Regions: A Preliminary Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation Electric System Decision Making in Other Regions: A Preliminary Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation The nation's electricity system is regional in nature, because of the operation of the interconnected grids and the markets defined by them. Over the years, many regional organizations of utilities and governments have formed to manage and oversee these markets. Electric System Decision Making in Other Regions: A Preliminary Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation More Documents & Publications

26

Electric generating or transmission facility: determination of rate-making  

Broader source: Energy.gov (indexed) [DOE]

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

27

EV-Everywhere: Making Electric Vehicles More Affordable | Department of  

Broader source: Energy.gov (indexed) [DOE]

EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable November 8, 2012 - 3:05pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs EV-Everywhere: Making Electric Vehicles More Affordable As part of the EV-Everywhere Grand Challenge, we are working with America's best and brightest scientists, engineers and businesses to make electric vehicles as affordable and convenient as today's gasoline-powered vehicles. But we can't do it without you. Storified by Energy Department · Thu, Nov 08 2012 12:04:07 In March 2012, President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time.

28

EV-Everywhere: Making Electric Vehicles More Affordable | Department of  

Broader source: Energy.gov (indexed) [DOE]

EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable EV-Everywhere: Making Electric Vehicles More Affordable November 8, 2012 - 3:05pm Addthis Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs EV-Everywhere: Making Electric Vehicles More Affordable As part of the EV-Everywhere Grand Challenge, we are working with America's best and brightest scientists, engineers and businesses to make electric vehicles as affordable and convenient as today's gasoline-powered vehicles. But we can't do it without you. Storified by Energy Department · Thu, Nov 08 2012 12:04:07 In March 2012, President Obama launched EV-Everywhere, the second in a series of Energy Department "Clean Energy Grand Challenges" aimed at addressing the most pressing energy challenges of our time.

29

Combined heat recovery and make-up water heating system  

SciTech Connect (OSTI)

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

30

Value of electrical heat boilers and heat pumps for wind power integration  

E-Print Network [OSTI]

Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link between the heat and power production in combined heat and power plants. Each of these measures has

31

Automotive Waste Heat Conversion to Electric Power using Skutterudites...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3...

32

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

33

Thermoelectrici Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005...

34

Thermoelectric Conversion of Wate Heat to Electricity in an IC...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

35

Implications for decision making: The electric utilities` perspective  

SciTech Connect (OSTI)

Implications for decision making in three areas related to policy towards greenhouse gas emissions are discussed from the perspective of the electric industry. The first area addresses economic factors in the electric industry. The second concerns the interrelationship of energy, electricity and the environment, and the global climate change issue. The third addresses the global context of the issue. It is concluded that a comprehensive examination of international implications of governmental policy should be made before implementation of carbon emissions limitations, and that limiting electricity demand could negatively affect economic growth and the environment.

Fang, W.L. [Edison Electric Inst., Washington, DC (United States)

1992-12-31T23:59:59.000Z

36

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network [OSTI]

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

Oak Ridge National Laboratory

37

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

38

Portland General Electric - Heat Pump Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Portland General Electric - Heat Pump Rebate Program Portland General Electric - Heat Pump Rebate Program Portland General Electric - Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $200 Provider Portland General Electric Portland General Electric's (PGE) Heat Pump Rebate Program offers residential customers a $200 rebate for an energy-efficient heat pump installed to PGE's standards by a PGE-approved contractor. The rebate is also available for replacing older, inefficient heat pump units. See the program web site or contact the utility for additional information on program incentives and guidelines. Other Information Heat pumps: 7.7 HSPF and 13 SEER minimum

39

Dixie Electric Cooperative - Residential Heat Pump Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Dixie Electric Cooperative - Residential Heat Pump Loan Program Dixie Electric Cooperative - Residential Heat Pump Loan Program Dixie Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Home Weatherization Windows, Doors, & Skylights Maximum Rebate $5,000 Program Info State Alabama Program Type Utility Loan Program Rebate Amount up to $5,000 Provider Dixie Electric Cooperative Dixie Electric Cooperative, a Touchstone Electric Cooperative, offers the Energy Resources Conservation (ERC) loan to residential customers pursue energy efficiency measures. The program allows a maximum loan of $5,000 at a 5% interest rate. Funds can be used for improvements, upgrades, gas to electric conversions, or installation of a heat pump system. The payments

40

Electrically heated particulate filter embedded heater design  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

Gonze, Eugene V.; Chapman, Mark R.

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Electrically heated particulate filter using catalyst striping  

DOE Patents [OSTI]

An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

2013-07-16T23:59:59.000Z

42

Lakeland Electric - Solar Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program Lakeland Electric - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date June 2010 State Florida Program Type Other Incentive Provider Lakeland Electric Lakeland Electric, a municipal utility in Florida, is the nation's first utility to offer solar-heated domestic hot water on a "pay-for-energy" basis. The utility has contracted with a solar equipment vendor, Regenesis Lakeland, LLC, to install solar water heaters on participating customers' homes. Lakeland Electric bills the customer $34.95 per month regardless of use. Each solar heater is metered and equipped with a heating element timer as a demand management feature. The $34.95 monthly charge is a bulk energy

43

Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump  

Broader source: Energy.gov (indexed) [DOE]

Bangor Hydro Electric Company - Residential and Small Commercial Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Maine Program Type Utility Rebate Program Rebate Amount Mini-Split Heat Pumps: $600; plus 7.75% financing if necessary Provider Bangor Hydro Electric Company Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover the initial cost of the heat pump purchase. Financing is offered at 7.75% APR, for up to

44

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 systems per household Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $400/system Provider York Electric Cooperative, Inc York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and industrial locations. The incentive is for the property owner only, meaning that renters/tenants are not

45

Frostbite Theater - Static Electricity Experiments - How to Make Your Own  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Does a Van de Graaff Generator Work? How Does a Van de Graaff Generator Work? Previous Video (How Does a Van de Graaff Generator Work?) Frostbite Theater Main Index Next Video (Should a Person Touch 200,000 Volts?) Should a Person Touch 200,000 Volts? How to Make Your Own Electroscope! An electroscope is a simple device that you can use to do static electricity experiments. They are easy to make. Would you like to know how to build your own? We'll show you how! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: An electroscope is a simple device that you can use to do static electricity experiments. Today, Steve and I are going to show you how to make one! Steve: The electroscope is fairly simple. Ours is just made from a binder

46

Do Heat Pump Clothes Dryers Make Sense for the U.S. Market  

E-Print Network [OSTI]

N ATIONAL L ABORATORY Do Heat Pump Clothes Dryers Make SenseUniversity of California. Do Heat Pump Clothes Dryers MakeCalifornia ABSTRACT Heat pump clothes dryers (HPCDs) can be

Meyers, Steve

2011-01-01T23:59:59.000Z

47

Do Heat Pump Clothes Dryers Make Sense for the U.S. Market  

E-Print Network [OSTI]

N ATIONAL L ABORATORY Do Heat Pump Clothes Dryers Make SenseUniversity of California. Do Heat Pump Clothes Dryers MakeBerkeley, California ABSTRACT Heat pump clothes dryers (

Meyers, Steve

2011-01-01T23:59:59.000Z

48

Blue Ridge Electric Cooperative - Heat Pump Loan Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Blue Ridge Electric Cooperative - Heat Pump Loan Program Blue Ridge Electric Cooperative - Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 12,000 Program Info State South Carolina Program Type Utility Loan Program Rebate Amount $500 - $12,000 Provider Blue Ridge Electric Cooperative Blue Ridge Electric Cooperative (BREC) offers low interest loans to help members finance the purchase of energy efficient heat pumps. Loans under $1,500 can be financed for up to 42 months, and loans above $1,500 can be financed for up to 60 months for houses and 48 months for mobile homes. Homeowners planning to install one heat pump, electric or geothermal can

49

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

50

Valley Electric Association - Solar Water Heating Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program Valley Electric Association - Solar Water Heating Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info State Nevada Program Type Utility Loan Program Provider Valley Electric Association Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA partnered with Great Basin College to train and certify installers, creating jobs in the community, and also with Rheem Manufacturing and a local licensed contractor to install the units. A site visit is performed to determine the best installation and system design for each member. Members have the option of

51

Mohave Electric Cooperative- Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Mohave Electric Cooperative is a non-profit that serves the communities of Bullhead City, Fort Mohave, Mohave Valley, Wikieup, Hackberry and Peach Springs. Mohave Electric Cooperative offers...

52

From Heat to Electricity: How "nano" Saved Thermoelectrics  

E-Print Network [OSTI]

, reliable #12;Thermoelectric applications Waste heat recovery · Automobiles · Over the road trucks% of energy becomes waste heat, even a 10% capture and conversion to useful forms can have huge impactFrom Heat to Electricity: How "nano" Saved Thermoelectrics Sponsored by Mercouri Kanatzidis

Kanatzidis, Mercouri G

53

Electric heating units in pollination bags avoid damage  

E-Print Network [OSTI]

Electric heating units in pollination bags avoid damage to flowers by spring frost J. CH. FERRAND n'Orlgans Ardon, F 45160 Olivet Summary An effective, cheap and simple heating device was designed by INRA heating, Larix. Controlled crosses are essential for forest tree breeding, but spring frost can destroy

Paris-Sud XI, Université de

54

Technologies for Production of Heat and Electricity  

SciTech Connect (OSTI)

Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

Jacob J. Jacobson; Kara G. Cafferty

2014-04-01T23:59:59.000Z

55

Numerical investigation of electric heating impacts on solid/liquid glass flow patterns.  

SciTech Connect (OSTI)

A typical glass furnace consists of a combustion space and a melter. Intense heat is generated from the combustion of fuel and air/oxygen in the combustion space. This heat is transferred mainly by radiation to the melter in order to melt sand and cullet (scrap glass) eventually creating glass products. Many furnaces use electric boosters to enhance glass melting and increase productivity. The coupled electric/combustion heat transfer patterns are key to the glass making processes. The understanding of the processes can lead to the improvement of glass quality and furnace efficiency. The effects of electrical boosting on the flow patterns and heat transfer in a glass melter are investigated using a multiphase Computational Fluid Dynamics (CFD) code with addition of an electrical boosting model. The results indicate that the locations and spacing of the electrodes have large impacts on the velocity and temperature distributions in the glass melter. With the same total heat input, the batch shape (which is determined by the overall heat transfer and the batch melting rate) is kept almost the same. This indicates that electric boosting can be used to replace part of heat by combustion. Therefore, temperature is lower in the combustion space and the life of the furnace can be prolonged. The electric booster can also be used to increase productivity without increasing the furnace size.

Chang, S. L.; Zhou, C. Q.; Golchert, B.

2002-07-02T23:59:59.000Z

56

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

DOE Patents [OSTI]

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

1995-09-12T23:59:59.000Z

57

Bandera Electric Cooperative- Residential Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

The Bandera Electric Cooperative offers a $200 rebate for the installation of a 15 SEER or higher heat pumps in existing homes. This program is designed to promote energy efficiency in existing...

58

Innovative Control of Electric Heat in Multifamily Buildings  

E-Print Network [OSTI]

This paper describes the application of web-based wireless technology for control of electric heating in a large multifamily housing complex. The control system architecture and components are described. A web-based application enables remote...

Lempereur, D.; Bobker, M.

2004-01-01T23:59:59.000Z

59

Electrically Heated High Temperature Incineration of Air Toxics  

E-Print Network [OSTI]

In-Process Technology has placed a prototype of its patented, electrically heated, packed-bed air toxics oxidizer at a northern California chemical plant. This thermal oxidizer is capable of handling a wide range of chlorinated and non...

Agardy, F. J.; Wilcox, J. B.

60

THE STORAGE OF HEAT AND ELECTRICITY  

Science Journals Connector (OSTI)

...repressurized gas fields, or gas-filled underground cavities. Natural gas can even be transported...gravel in connection with solar heating of dwellings...dry ice, and liquefied gases. The durations of time...steam on its way to a turbine. Sensible heat in recuperators...

Bertrand A. Landry

1961-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gas and Electricity as Heating Agents1  

Science Journals Connector (OSTI)

... This is a misconception, which was very general also as regards the combustion of solid fuel in furnaces, until it was disproved by Stirling, by Neilson, and by the ... be largely employed, however, for heating purposes, it will have to come down in price; and considering that heating gas need not be highly putified, or possessed of high ...

1881-02-10T23:59:59.000Z

62

Oil production response to in situ electrical resistance heating  

E-Print Network [OSTI]

OIL PRODUCTION RESPONSE TO I? SITU ELECTRICAL RESISTANCE HEATING A Thesis by FRED WILLIAM MCDOUGAL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1987 Major Subject: Petroleum Engineering OIL PRODUCTION RESPONSE TO IN SITV ELECTRICAL RESISTANCE HEATING A Thesis by FRED WILLIAM MCDOUGAL Approved to style and content by: R. A. Wattenbar (Chair of Commi ee) L. D. Piper (Member) D. D. Van...

McDougal, Fred William

1987-01-01T23:59:59.000Z

63

AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo, Manager, Heat Exchange Systems Research  

E-Print Network [OSTI]

#12;AN OPTIMIZED TWO-CAPACITY ADVANCED ELECTRIC HEAT PUMP S. E. Veyo S. E. Veyo, Manager, Heat Exchange Systems Research Westinghouse Electric Corporation, R&D Center 1310 Beulah Road Pittsburgh, PA 15235 KEYWORDS: heat pump, air conditioner, electric, residential, energy, compressor, fan, blower, heat

Oak Ridge National Laboratory

64

Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Air- Analysis of Air- Source Variable Speed Heat Pumps and Various Electric Water Heating Options Jeffrey Munk Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Acknowledgements * Tennessee Valley Authority - David Dinse * U.S. Department of Energy * Roderick Jackson * Tony Gehl * Philip Boudreaux * ZEBRAlliance 3 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable Speed Heat Pumps - Energy Use Analysis - Measured Performance - Operational Characteristics 4 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Water Heating Options

65

Effect of Heat and Electricity Storage and Reliability on Microgrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effect of Heat and Electricity Storage and Reliability on Microgrid Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Title Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Publication Type Report Year of Publication 2009 Authors Stadler, Michael, Chris Marnay, Afzal S. Siddiqui, Judy Lai, Brian Coffey, and Hirohisa Aki Pagination 106 Date Published 03/2006 Publisher LBNL City Berkeley Keywords consortium for electric reliability technology solutions (certs), energy analysis and environmental impacts department Abstract Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals:

66

Heat Insulation in Electric Power Stations  

Science Journals Connector (OSTI)

... HEAT insulation of pipes, boilers and generating sets, which used to be indicated by the general ... in steam generating plants, it is common experience to find that cracks develop in the insulation on water-cooled furnace walls as the result of: (a) expansion and contraction ...

1940-12-28T23:59:59.000Z

67

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Journals Connector (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

68

Effectiveness of heating patterns for electrical resistance heating  

E-Print Network [OSTI]

BLOCKS APPENDIX B: COMPUTER CODE, r-z ERH RESERVOIR SIMULATOR 39 41 43 45 50 54 VITA 147 LIST OF TABLES PAGE TABLE I: ACCURACY OF POWER CALCULATION TABLE 2: RESULTS OF PARAMETER STUDY TABLE 3: ELECTRODE DESIGN RESULTS TABLE 4: GENERAL TEST... Model 0. 6 0. 4 Radial Power Model 0. 2 0 1 10 r/rw 100 1000 Figure 6; Comparison of power dissipation profiles for radial power model and r-z power model. 14 The power dissipated as heat in this volume, P(r), is normalized by the total...

Maggard, James Bryan

2012-06-07T23:59:59.000Z

69

Electricity Consumption of Pumps in Heat Exchanging Stations of DH Systems in China  

Science Journals Connector (OSTI)

This study analyzed the current electricity consumption of heating exchanging stations in China. By...

Lei Dong; JianJun Xia; Yi Jiang

2014-01-01T23:59:59.000Z

70

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

71

Electrolyte injection with electrical resistance heating  

E-Print Network [OSTI]

Colombiano del Petroleo (ICp), for making it possible for him to participate in the project. The author thanks Dr. R. A. Wattenbarger for his advice and assistance, and Drs. L. D. Piper and J. E. Russell for their suggestions in the preparation...

Jaimes Gomez, Olmedo

1992-01-01T23:59:59.000Z

72

Using Exergy Analysis Methodology to Assess the Heating Efficiency of an Electric Heat Pump  

E-Print Network [OSTI]

The authors, using exergy analysis methodology, propose that it should consider not only the COP (coefficient of Performance) value of the electric power heat pump set (EPHPS/or HP set), but also the exergy loss at the heating exchanger of the HP...

Ao, Y.; Duanmu, L.; Shen, S.

2006-01-01T23:59:59.000Z

73

ILD 9: Name: ____________________ Tutorial section _______ Making a model: Thinking about electric force  

E-Print Network [OSTI]

ILD 9: Name: ____________________ Tutorial section _______ Making a model: Thinking about electric force © University of Maryland Physics Education Research Group, Spring 2003 Directions: This sheet: Personal Experiences: What experiences have you had that you attribute to static electricity? Considering

Maryland at College Park, University of

74

Iron aluminide useful as electrical resistance heating elements  

DOE Patents [OSTI]

The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

1999-01-01T23:59:59.000Z

75

Iron aluminide useful as electrical resistance heating elements  

DOE Patents [OSTI]

The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

Sikka, Vinod K. (Oak Ridge, TN); Deevi, Seetharama C. (Oak Ridge, TN); Fleischhauer, Grier S. (Midlothian, VA); Hajaligol, Mohammad R. (Richmond, VA); Lilly, Jr., A. Clifton (Chesterfield, VA)

1997-01-01T23:59:59.000Z

76

Climate, extreme heat, and electricity demand in California  

SciTech Connect (OSTI)

Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

2008-04-01T23:59:59.000Z

77

Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion. Final report  

SciTech Connect (OSTI)

NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

Moriarty, M.P.

1993-11-01T23:59:59.000Z

78

Heat Resistance of Electric Arc Coatings Made of FeCrBAl Powder Wire  

Science Journals Connector (OSTI)

Electric metallized coatings made of FeCrBAl powder wire possess a high heat resistance at 700800C at the level ... the base material. To obtain heat-resistant electric metallized coatings of powder wire, it...

V. Pokhmurs'kyi; M. Student; B. Formanek; V. Serivka; Yu. Dz'oba

2003-11-01T23:59:59.000Z

79

Hybrid-Electric Porsche GT3R to Make North American Debut | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hybrid-Electric Porsche GT3R to Make North American Debut Hybrid-Electric Porsche GT3R to Make North American Debut Hybrid-Electric Porsche GT3R to Make North American Debut September 24, 2010 - 4:10pm Addthis The Porsche 911 GT3R will make its North American debut at the Petit Le Mans in Georgia next Saturday. | Department of Energy Image | Photo by Erin Pierce The Porsche 911 GT3R will make its North American debut at the Petit Le Mans in Georgia next Saturday. | Department of Energy Image | Photo by Erin Pierce Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this mean for me? Petit Le Mans race in Georgia to feature five green vehicles Green Racing Initiative seeks to encourage development of energy efficient vehicles Two 60 kW electric motors part of GT3R's propulsion system

80

Hybrid-Electric Porsche GT3R to Make North American Debut | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hybrid-Electric Porsche GT3R to Make North American Debut Hybrid-Electric Porsche GT3R to Make North American Debut Hybrid-Electric Porsche GT3R to Make North American Debut September 24, 2010 - 4:10pm Addthis The Porsche 911 GT3R will make its North American debut at the Petit Le Mans in Georgia next Saturday. | Department of Energy Image | Photo by Erin Pierce The Porsche 911 GT3R will make its North American debut at the Petit Le Mans in Georgia next Saturday. | Department of Energy Image | Photo by Erin Pierce Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this mean for me? Petit Le Mans race in Georgia to feature five green vehicles Green Racing Initiative seeks to encourage development of energy efficient vehicles Two 60 kW electric motors part of GT3R's propulsion system

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electrode wells for powerline-frequency electrical heating of soils  

DOE Patents [OSTI]

An electrode well is described for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichloroethylene (TCE) as it is heated. 4 figs.

Buettner, H.M.; Daily, W.D.; Aines, R.D.; Newmark, R.L.; Ramirez, A.L.; Siegel, W.H.

1999-05-25T23:59:59.000Z

82

Design of a core-length thermionic fuel element for electrical heating  

SciTech Connect (OSTI)

This paper describes the design of an electrically heated version of a core-length Thermionic Fuel Element (TFE) with advanced features, as is suggested by the designation Advanced Thermionic Inititative (ATI). The advanced features include a high-strength emitter structure to be fabricated by Space Power, Incorporated. This structure consists of a cylindrical emitter, 15 mm diameter and 254 mm long of Chemically Vapor Deposited (CVD) tungsten, reinforced with tungsten-hafnium carbide wire wound over a CVD tungsten core with additional CVD tungsten incorporating and bonding the wire into the emitter. The emitter surface is CVD tungsten, deposited from tungsten chloride resulting in the desirable crystal orientation of [l angle]110[r angle]. It is possible to design a reactor with core-length TFEs so that it can be electrically tested prior to fueling. The program is focussed on the design and fabrication of a single core-length TFE with current collection at both ends which will be tested in a reactor. In parallel with this effort is the design, fabrication, and testing of an unfueled, electrically heated prototype. The intent is to make the electrically heated converter as similar as possible to the fueled one, while providing for accurate emitter and collector temperature measurement.

Miskolczy, G. (ThermoTrex Coporation, 85 First Avenue, P.O. Box 8995, Waltham, MA 02254-8995 (United States)); Horner, H. (General Atomics, 3550 General Atomics Court, P.O. Box 85608, San Diego, CA 92186-9784 (United States)); Lamp, T. (Wright Laboratories, WL/POOC-2, Wright Patternson Air Force Base, Ohio 45433-6563 (United States))

1993-01-20T23:59:59.000Z

83

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network [OSTI]

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

Oak Ridge National Laboratory

84

Volumetric In Situ Electrical Heating: An Unexploited Electrotechnology  

E-Print Network [OSTI]

of the product or combustion of the more volatile products of the process. '17 In the mid-1970s, we at lIT Research Institute (IITRI) became interested in heating warehouse-size blocks of oil shale with electrical energy principally in the shortwave radio...-frequency (RF) band. A thermally efficient method to do this was demonstrated in a series of small-scale field tests in the late 1970s and early 1980s, but most of the activity with respect to oil shale was shelved because of the drop in oil prices...

Bridges, J. E.

85

Outdoor unit construction for an electric heat pump  

DOE Patents [OSTI]

The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

Draper, R.; Lackey, R.S.

1984-09-11T23:59:59.000Z

86

When Life Gives You Onion Scraps, Make Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

When Life Gives You Onion Scraps, Make Electricity When Life Gives You Onion Scraps, Make Electricity When Life Gives You Onion Scraps, Make Electricity June 9, 2010 - 4:46pm Addthis Gills Onions had a problem: Too much onion waste. As one of the largest US onion processors, the Oxnard, Calif. company produces chopped and sliced onions for retail, bulk and foodservice sale. This creates up to 1.5 million pounds of onion trimmings a week. Until last year, the company simply spread the onion byproduct on fields. Unfortunately, this waste disposal system cost a lot of money, required storage and created odors, pests and potential groundwater contamination. At the same time, Gills Onions anticipated growing electricity costs. "It was becoming really expensive and unmanageable to dispose of the waste by land application," says Nikki Rodoni, Director of Sustainability

87

Ashland Electric Utility - Bright Way to Heat Water Rebate | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate Ashland Electric Utility - Bright Way to Heat Water Rebate < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount $0.40/annual kWh saved (on average $800 to $1,000) Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may choose either the cash rebate or a zero-interest loan. Cash rebates of up to $1,000 are available for approved systems. The rebate

88

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Broader source: Energy.gov (indexed) [DOE]

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

89

Effect of Joule heating on orientation of spheroidal particle in alternating electric field  

E-Print Network [OSTI]

Effect of Joule heating on orientation of spheroidal particle in alternating electric field Yu electric conductivities. We show that the rate of Joule heating of the particle depends on the orientation electric conductivity in the system. The frequen- cies 1 and 2 are determined by biquadratic equation see

Elperin, Tov

90

Electric Car Featuring High-Tech Material Made in the USA Makes Its Debut |  

Broader source: Energy.gov (indexed) [DOE]

Electric Car Featuring High-Tech Material Made in the USA Makes Its Electric Car Featuring High-Tech Material Made in the USA Makes Its Debut Electric Car Featuring High-Tech Material Made in the USA Makes Its Debut September 24, 2013 - 3:01pm Addthis Carbon fiber material produced at SGL Automotive Carbon Fibers in Moses Lake, Wash. (Photo courtesy of SGL Automotive Carbon Fibers) Carbon fiber material produced at SGL Automotive Carbon Fibers in Moses Lake, Wash. (Photo courtesy of SGL Automotive Carbon Fibers) Carbon fiber under production at SGL Automotive Carbon Fibers. The facility's construction resulted in 200 jobs. (Photo courtesy of SGL Automotive Carbon Fibers) Carbon fiber under production at SGL Automotive Carbon Fibers. The facility's construction resulted in 200 jobs. (Photo courtesy of SGL Automotive Carbon Fibers)

91

Heat Transfer -2 A long copper wire is used to carry an electric current and has an electrical resistance of 0.4 ohm  

E-Print Network [OSTI]

Heat Transfer - 2 A long copper wire is used to carry an electric current and has an electrical the electrical heat generation per length of wire (W/m) when current is 170 A. c) (10 pts) Find the steady state temperature of the wire for b). d) (10 pts) Find the electrical heat generation per length of wire (W/m) when

Virginia Tech

92

Electric Blanket vs. Space Heater: #EnergyFaceoff Round 3 Heats...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blanket vs. Space Heater: EnergyFaceoff Round 3 Heats Up Electric Blanket vs. Space Heater: EnergyFaceoff Round 3 Heats Up November 17, 2014 - 9:49am Q&A Which appliance do you...

93

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network [OSTI]

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

94

U.S. Heat Content of Natural Gas Deliveries to Electric Power...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

95

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2004-05-10T23:59:59.000Z

96

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2004-07-30T23:59:59.000Z

97

Electric, Gas, Water, Heating, Refrigeration, and Street Railways Facilities and Service (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation contains provisions for facilities and service related to electricity, natural gas, water, heating, refrigeration, and street railways. The chapter addresses the construction and...

98

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion...

99

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2004-01-01T23:59:59.000Z

100

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes  

E-Print Network [OSTI]

A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes P. J. de nanotubes is described. With these contacts, current in the mA range can be routinely passed through individual multiwalled nanotubes without adverse consequences, thus allowing their resistance to be measured

102

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network [OSTI]

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

103

Multicriteria decision making in electricity demand management: the case of Kuwait  

Science Journals Connector (OSTI)

Electricity demand in Kuwait has substantially increased over the years and this increase is attributed to population growth, increase in the number of buildings, and the extensive use of air-conditioning system during the very hot weather in the summer. The amount of electrical energy generated reached 48 444 308 megawatt hour (MWH) in 2007. Such growth calls for extensive investment in the continuous expansion of the existing power plants and constructing new ones. To rationalise the consumption of electricity, several conservation policies have to be implemented. In this work, we have attempted to diagnose such problem and solicit expert opinions in order to provide the proper remedies. Because the problem comprises several criteria that are subjective in nature, multicriteria decision-making approaches were suggested. The Analytical Hierarchy Process (AHP) was used as a decision tool to assess the different policies that could be used to bring about electricity conservation.

Mohammed Hajeeh

2010-01-01T23:59:59.000Z

104

Methods for providing heat to electric operated LNG plant.  

E-Print Network [OSTI]

??Hammerfest LNG plant, located at Melkya outside Hammerfest, is supplied with heat and power from an on-site combined heat and power (CHP-) plant. This natural (more)

Tangs, Cecilie Magrethe

2010-01-01T23:59:59.000Z

105

Stirling engines in generating heat and electricity for micro: CHP systems  

Science Journals Connector (OSTI)

In this paper, an analysis of different generating heat and electricity systems with Stirling engine is made from the point of view of benefits and limitations, both operational and economic and environmental. Stirling engine has the ability to work ... Keywords: biomass, fossil fuels, generating heat and electricity system, m-CHP, stirling engine

Dan Scarpete; Krisztina Uzuneanu

2011-03-01T23:59:59.000Z

106

Intelligent decision-making system with green pervasive computing for renewable energy business in electricity markets on smart grid  

Science Journals Connector (OSTI)

This paper is about the intelligent decision-making system for the smart grid based electricity market which requires distributed decision making on the competitive environments composed of many players and components. It is very important to consider ...

Dong-Joo Kang; Jong Hyuk Park; Sang-Soo Yeo

2009-02-01T23:59:59.000Z

107

The Economics of Steam Vs. Electric Pipe Heating  

E-Print Network [OSTI]

To properly design a pipe heating system, the basic principles of heat transfer from an insulated pipe must be understood. The three methods of heat flow are conduction, convection (both forced and natural) and radiation. The total heat loss from a...

Schilling, R. E.

108

Integrated electricity and heating demand-side management for wind power integration in China  

Science Journals Connector (OSTI)

Abstract The wind power generation system will play a crucial role for developing the energy conservative, environmentally friendly, and sustainable electric power system in China. However, the intermittency and unpredictability of wind power has been an obstacle to the deployment of wind power generation, especially in the winter of northern China. In northern China, a combined heat and power (CHP) unit has been widely utilized as a heat and electricity source. Considering the flexible operation of CHP with introduction of electric heat pumps (EHPs), this paper proposes a new method of electricity and heating demand side management to facilitate the wind power integration with the purpose of energy conservation in a unit-commitment problem. The thermal characteristics of demand side such as the thermal inertia of buildings and thermal comfort of end users are taken into consideration. Moreover the distributed electric heat pumps (EHPs) widely used by city dwellers are introduced into the wind-thermal power system as the heating source and spinning reserve so as to increase the flexibility of heating and electricity supply. The simulation results show that the new method can integrate more wind power into power grid for electricity and heating demand to reduce the coal consumption.

Yulong Yang; Kai Wu; Hongyu Long; Jianchao Gao; Xu Yan; Takeyoshi Kato; Yasuo Suzuoki

2014-01-01T23:59:59.000Z

109

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network [OSTI]

electric load thermal storage solar thermal storage chargingcombustion solar thermal CHP heat storage charging generateof solar thermal collectors, 1100 kWh of electrical storage,

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

110

Solar energy for heat and electricity: the potential for mitigating climate change  

E-Print Network [OSTI]

Solar energy for heat and electricity: the potential for mitigating climate change Dr N.J. Eki that powers the Earth's climate and ecosystem. Harnessing this energy for hot water and electrical power could electricity. solar hot water systems could be used to supply up to 70% of household hot water in the UK

111

Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |  

Broader source: Energy.gov (indexed) [DOE]

5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight 5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight May 20, 2011 - 5:53pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? 50 percent of the energy generated annually from all sources is lost as waste heat. Scientists have developed a high-efficiency thermal waste heat energy converter that actively cools electronic devices, photovoltaic cells, computers and other large industrial systems while generating electricity. Scientists have linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen -- research that will help scientists harvest light with solar fuels. Thanks to scientists at Oak Ridge National Laboratory (ORNL), the billions

112

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Broader source: Energy.gov (indexed) [DOE]

Cooperative is uniquely positioned to provide marketing of ground source heat pump systems * 15' Static Water Level * Low Pumping Power * Reduced Installation Costs * Good...

113

Farming Out Heat and Electricity through Biopower | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy State Energy Program Maas' biodigester: Creates electricity from the biogas produced through anaerobic digestion. Recycles dried, fibrous solids from the process...

114

Evaluation of Heat Stress and Strain in Electric Utility Workers  

E-Print Network [OSTI]

exposures in electric utility line workers during work intwo broad classes: utility line workers/meter technicians3 different samples: utility line workers/meter technicians,

Brown, Eric Nicholas

2013-01-01T23:59:59.000Z

115

Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.  

SciTech Connect (OSTI)

This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

1996-07-01T23:59:59.000Z

116

Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies  

Broader source: Energy.gov [DOE]

This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

117

Heat transfer and thermal management of electric vehicle batteries with phase change materials  

Science Journals Connector (OSTI)

This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material ( ... process to absorb the heat generated by a battery. A new configuratio...

M. Y. Ramandi; I. Dincer; G. F. Naterer

2011-07-01T23:59:59.000Z

118

Effect of electric field on heat transfer performance of automobile radiator at low frontal air velocity  

Science Journals Connector (OSTI)

The effect of electric field on the performance of automobile radiator is investigated in this work. In this experiment, a louvered fin and flat tube automobile radiator was mounted in a wind tunnel and there was heat exchange between a hot water stream circulating inside the tube and a cold air stream flowing through the external surface. The electric field was supplied on the airside of the heat exchanger and its supply voltage was adjusted from 0kV to 12kV. From the experiment, it was found that the unit with electric field pronounced better heat transfer rate, especially at low frontal velocity of air. The correlations for predicting the air-side heat transfer coefficient of the automobile radiator, with and without electric field, at low frontal air velocity were also developed and the predicted results agreed very well with the experimental data.

S. Vithayasai; T. Kiatsiriroat; A. Nuntaphan

2006-01-01T23:59:59.000Z

119

Calculation of the emission of nitrogen oxides in electric resistance heating furnaces  

Science Journals Connector (OSTI)

The present paper is devoted to the least studied topic in the field of use of modern electric heating equipment, namely, pollution of the atmosphere by nitrogen oxides and reduction of the intensity of this e...

A. V. Aksenov; V. A. Belyakov; Z. G. Sadykova

1998-02-01T23:59:59.000Z

120

Heat Production of Free Fermions Subjected to Electric Fields in Disordered Media  

E-Print Network [OSTI]

Siqueira Pedra C. Kurig March 21, 2013 Abstract Electric resistance in conducting media is related to heat two species is modeled by perfectly elastic random collisions. This quite elementary model explains

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Climate, Extreme Heat, and Electricity Demand in California  

Science Journals Connector (OSTI)

Over the twenty-first century, the frequency of extreme-heat events for major cities in heavily air conditioned California is projected to increase rapidly. Extreme heat is defined here as the temperature threshold for the 90th-percentile ...

Norman L. Miller; Katharine Hayhoe; Jiming Jin; Maximilian Auffhammer

2008-06-01T23:59:59.000Z

122

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

123

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

124

Identification of Quantitative Trait Loci (QTLs) Associated with Maintenance of Bread Making Quality under Heat Stress in Wheat (Triticum aestivum)  

E-Print Network [OSTI]

IDENTIFICATION OF QUANTITATIVE TRAIT LOCI (QTLs) ASSOCIATED WITH MAINTENANCE OF BREAD MAKING QUALITY UNDER HEAT STRESS IN WHEAT (Triticum aestivum) A Thesis by FRANCIS WARD BEECHER Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2009 Major Subject: Molecular and Environmental Plan Sciences IDENTIFICATION OF QUANTITATIVE TRAIT LOCI (QTLs) ASSOCIATED WITH MAINTENANCE OF BREAD MAKING QUALITY UNDER HEAT...

Beecher, Francis Ward

2010-10-12T23:59:59.000Z

125

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect (OSTI)

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

126

Do Heat Pump Clothes Dryers Make Sense for the U.S. Market  

E-Print Network [OSTI]

than conventional electric resistance clothes dryers, andof HPCDs or baseline electric resistance clothes dryers tothan conventional electric resistance clothes dryers, the

Meyers, Steve

2011-01-01T23:59:59.000Z

127

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade  

SciTech Connect (OSTI)

High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

Liu, Xiaobing [Oak Ridge National Lab] [Oak Ridge National Lab

2014-06-01T23:59:59.000Z

128

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect (OSTI)

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

129

INTEGRATING WIND GENERATED ELECTRICITY WITH SPACE HEATING AND STORAGE BATTERIES.  

E-Print Network [OSTI]

??The world faces two major energy-related challenges: reducing greenhouse-gas emissions and improving energy security. Wind-electricity, a clean and environmentally sustainable energy source, appears promising. However, (more)

Muralidhar, Anirudh

2011-01-01T23:59:59.000Z

130

The stimulation of heavy oil reservoirs with electrical resistance heating  

E-Print Network [OSTI]

-307. Stuckey, W. D. : "A Study of the Pyrolysis of Oil Shale By Microwave Heating, " MS Thesis, University of Colorado, Boulder (1977). Bridges, J. E. , Taflove, A. , and Snow, R. H. : eNet Energy Recoveries for the In-Situ Dielectric Heating of Oil Shales..., w Proc. 1978 Oil Shale Symposium, Colorado School of Mines, Golden, Apr. 12-14. Solomon, B. : "Shale Oil Via Microwaves: Illinois Institute Says Yes, e Energy Daily (May 1978) 2-4; Energy Abstr. Policy Anal. (Nov. 1978) 831. Snowi R H i et. el...

Baylor, Blake Allen

2012-06-07T23:59:59.000Z

131

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

Stadler, Michael

2009-01-01T23:59:59.000Z

132

Electrically heated particulate filter with zoned exhaust flow control  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

Gonze, Eugene V [Pinckney, MI

2012-06-26T23:59:59.000Z

133

SEP Success Story: Farming Out Heat and Electricity through Biopower  

Broader source: Energy.gov [DOE]

Kevin Maas developed an anaerobic digester and then a company around a biodigester that heats and processes dairy manure and other organic wastes in an oxygen-free environment. The biodigester is designed to induce digestion by bacteria and then collect the methane-rich biogas output by the bacteria. Learn more.

134

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

135

Thermal characterization of submicron polyacrylonitrile fibers based on optical heating and electrical thermal sensing  

SciTech Connect (OSTI)

In this work, the thermal diffusivity of single submicron ({approx}800 nm) polyacrylonitrile (PAN) fibers is characterized using the recently developed optical heating and electrical thermal sensing technique. In the experiment, a thin Au film (approximately in the nanometer range) is coated on the surface of nonconductive PAN fibers. A periodically modulated laser beam is used to irradiate suspended individual fibers to achieve noncontact periodical heating. The periodical temperature response of the sample is monitored by measuring the electrical resistance variation of the thin Au coating. The experimental results for three different synthesized PAN fibers with varying Au coating thickness are presented and discussed.

Hou Jinbo; Wang Xinwei; Zhang Lijun [Department of Mechanical Engineering, N104 Walter Scott Engineering Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0656 (United States)

2006-10-09T23:59:59.000Z

136

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

137

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

138

Transition of the radial electric field by electron cyclotron heating in the CHS heliotron/torsatron  

Science Journals Connector (OSTI)

The transition of a radial electric field from a negative to a positive value is observed in the compact helical system when the electron loss is sufficiently enhanced by the superposition of the off-axis second harmonic electron cyclotron heating on the neutral beam heated plasmas. Existence of the threshold for the enhanced particle flux required to cause the transition is experimentally certified. The observed threshold is compared with a theoretical prediction.

H. Idei; K. Ida; H. Sanuki; H. Yamada; H. Iguchi; S. Kubo; R. Akiyama; H. Arimoto; M. Fujiwara; M. Hosokawa; K. Matsuoka; S. Morita; K. Nishimura; K. Ohkubo; S. Okamura; S. Sakakibara; C. Takahashi; Y. Takita; K. Tsumori; I. Yamada

1993-10-04T23:59:59.000Z

139

Electrical heating of soils using high efficiency electrode patterns and power phases  

DOE Patents [OSTI]

Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

Buettner, Harley M. (Livermore, CA)

1999-01-01T23:59:59.000Z

140

Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or  

E-Print Network [OSTI]

movers or technology types, which include: Reciprocating Engines Combustion or Gas Turbines Steam systems can provide the following products: Electricity Direct mechanical drive Steam or hot water, integrated systems that consist of various components ranging from prime mover (heat engine), generator

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Influence of the pulsating electric field on the ECR heating in a nonuniform magnetic field  

SciTech Connect (OSTI)

According to a computer simulation, the randomized pulsating electric field can strongly influence the ECR plasma heating in a nonuniform magnetic field. It has been found out that the electron energy spectrum is shifted to the high energy region. The obtained effect is intended to be used in the ECR sources for effective X-ray generation.

Balmashnov, A. A., E-mail: abalmashnov@sci.pfu.edu.ru; Umnov, A. M. [People's Friendship University of Russia (Russian Federation)

2011-12-15T23:59:59.000Z

142

Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle  

DOE Patents [OSTI]

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

1999-09-28T23:59:59.000Z

143

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Broader source: Energy.gov [DOE]

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

144

On the economic potential for electric load management in the German residential heating sector An optimising energy system model approach  

Science Journals Connector (OSTI)

Abstract Against the background of the ambitious German targets for renewable energy and energy efficiency, this paper investigates the economic potential for thermal load management with virtual power plants consisting of micro-cogeneration plants, heat pumps and thermal storage within the residential sector. An optimising energy system model of the electricity and residential heat supply in Germany is developed in the TIMES (The Integrated MARKAL EFOM System) modelling framework and used to determine capacity developments and dispatch of electricity and residential heat generation technologies until 2050. The analysed scenarios differ with respect to the rate of technological development of heat and power devices, fuel and CO2 prices as well as renewable electricity expansion. Results show that high fuel prices and a high renewable electricity expansion favour heat pumps and insulation measures over micro-cogeneration, whereas lower fuel prices and lower renewable electricity expansion relatively favour the expansion of micro-cogeneration. In the former case heat pump capacities increase to around 67GWel, whereas in the latter case the total capacity of micro-cogeneration reaches 8GWel. With the aid of thermal storage, this provides considerable flexibility for electrical load shifting through heat pumps and electricity generation from micro-cogeneration in residential applications, needed for the integration of fluctuating renewable electricity technologies.

Daniel Fehrenbach; Erik Merkel; Russell McKenna; Ute Karl; Wolf Fichtner

2014-01-01T23:59:59.000Z

145

Levelized costs of electricity and direct-use heat from Enhanced Geothermal Systems  

Science Journals Connector (OSTI)

GEOPHIRES (GEOthermal energy for the Production of Heat and Electricity (IR) Economically Simulated) is a software tool that combines reservoir wellbore and power plant models with capital and operating cost correlations and financial levelized cost models to assess the technical and economic performance of Enhanced Geothermal Systems (EGS). It is an upgrade and expansion of the MIT-EGS program used in the 2006 Future of Geothermal Energy study. GEOPHIRES includes updated cost correlations for well drilling and completion resource exploration and Organic Rankine Cycle (ORC) and flash power plants. It also has new power plant efficiency correlations based on AspenPlus and MATLAB simulations. The structure of GEOPHIRES enables feasibility studies of using geothermal resources not only for electricity generation but also for direct-use heating and combined heat and power (CHP) applications. Full documentation on GEOPHIRES is provided in the supplementary material. Using GEOPHIRES the levelized cost of electricity (LCOE) and the levelized cost of heat (LCOH) have been estimated for 3 cases of resource grade (low- medium- and high-grade resource corresponding to a geothermal gradient of 30 50 and 70?C/km) in combination with 3 levels of technological maturity (today's mid-term and commercially mature technology corresponding to a productivity of 30 50 and 70?kg/s per production well and thermal drawdown rate of 2% 1.5% and 1%). The results for the LCOE range from 4.6 to 57 /kWhe and for the LCOH from 3.5 to 14 $/MMBTU (1.2 to 4.8 /kWhth). The results for the base-case scenario (medium-grade resource and mid-term technology) are 11 /kWhe and 5 $/MMBTU (1.7 /kWhth) respectively. To account for parameter uncertainty a sensitivity analysis has been included. The results for the LCOE and LCOH have been compared with values found in literature for EGS as well as other energy technologies. The key findings suggest that given today's technology maturity electricity and direct-use heat from EGS are not economically competitive under current market conditions with other energy technologies. However with moderate technological improvements electricity from EGS is predicted to become cost-effective with respect to other renewable and non-renewable energy sources for medium- and high-grade geothermal resources. Direct-use heat from EGS is calculated to become cost-effective even for low-grade resources. This emphasizes that EGS for direct-use heat may not be neglected in future EGS development.

2014-01-01T23:59:59.000Z

146

Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products.

147

Electric field noise above surfaces: a model for heating rate scaling law in ion traps  

E-Print Network [OSTI]

We present a model for the scaling laws of the electric field noise spectral density as a function of the distance, $d$, above a conducting surface. Our analytical approach models the patch potentials by introducing a correlation length, $\\zeta$, of the electric potential on the surface. The predicted scaling laws are in excellent agreement with two different classes of experiments (cold trapped ions and cantilevers), that span at least four orders of magnitude of $d$. According to this model, heating rate in miniature ion traps could be greatly reduced by proper material engineering.

Romain Dubessy; Thomas Coudreau; Luca Guidoni

2008-12-17T23:59:59.000Z

148

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

149

Minority participation in new energy technologies: A case example of electric heat pumps  

SciTech Connect (OSTI)

Primarily because of technological improvements and sharp increases in energy prices after the energy crises of the 1970s, the sale of residential electric heat pumps rose ninefold from 1970 to 1983. However, growth has been uneven with respect to black, Hispanic, and white households, even after one controls for income and geography. This paper analyzes the growth in heat pump sales; estimates heat pump market share by key segments; and compares patterns of heat pump ownership by black, Hispanic, and white households. A discrete choice model was used to project the demand for heat pumps by black, Hispanic, and white households for new single-family and multifamily homes, which account for a major share of heat pump shipments to the residential sector. The study is based on several data sources, including the 1980 Census, the 1980 Annual Housing Survey, and the 1980 to 1981 Residential Energy Consumption Survey. Given the availability of consumer survey data, this model can easily be adapted to analyze the participation of different ethnic households in the growth of other new energy technologies.

Teotia, A.P.S.; Raju, P.S.; Karvelas, D.; Anderson, J.

1987-01-01T23:59:59.000Z

150

Reflux heat-pipe solar receiver for a Stirling dish-electric system  

SciTech Connect (OSTI)

The feasibility of competitive, modular bulk electric power from the sun is enhanced by the use of a reflux heat-pipe receiver to combine a Stirling engine with a paraboloidal dish concentrator. This combination represents a potential improvement over previous successful demonstrations of Stirling dish-electric technology in terms of enhanced performance, lower cost, and longer life. In the reflux (i.e. gravity assisted) heat-pipe receiver, concentrated solar radiation causes liquid sodium to evaporate, the vapor flows to the Stirling engine heaters where it condenses on the heater tubes. The condensate is returned to and distributed over the receiver by gravity (refluxing) and by capillary forces in a wick lining the receiver. It is essentially an adaptation of sodium heat pipe technology to the peculiar requirements of concentrated solar flux and provides many potential advantages over conventional tube receiver technology. This paper describes the preliminary design of a reflux heat-pipe solar receiver to match the STM4-120 variable swashplate Stirling engine to a Test Bed Concentrator at Sandia National Laboratories Distributed Receiver Test Facility. Performance analysis and other design considerations are presented and discussed.

Ziph, B.; Godett, T.M.; Diver, R.B.

1987-01-01T23:59:59.000Z

151

MAKING SENSE: WEAKLY ELECTRIC FISH MODULATE SENSORY FEEDBACK VIA SOCIAL BEHAVIOR AND MOVEMENT  

E-Print Network [OSTI]

that Eigenmannia will increase or decrease their electric organ discharge (EOD) frequency in response to social stimulus amplitudes resulted in the strongest EOD changes. As a consequence of #12;iii the EOD change

152

An air-to-air heat pump (COP-3.11 at 470 F (8.30C)) run alternately with an electric-resistance water  

E-Print Network [OSTI]

- ter than that of the system using electric resistance water heating. An analytical tinclel predicts of a high-efficiency heat pump'/electric-resistance .waterheater (IIP/IZR) system. TEST FACILITIES#12;/ ABSTRACT An air-to-air heat pump (COP-3.11 at 470 F (8.30C)) run alternately with an electric

Oak Ridge National Laboratory

153

Electric Power Generation Using Low Bandgap TPV Cells in a Gas?fired Heating Furnace  

Science Journals Connector (OSTI)

Low bandgap TPV cells are preferred for electric power generation in TPV cogeneration systems. Recently significant progress has been made in fabrication of low bandgap semiconductor TPV devices such as InGaAsSb and InGaAs cells. However it appears that only limited data are available in the literature with respect to the performance of these TPV cells in combustion?driven TPV systems. In the research presented in this paper power generation using recently?developed InGaAsSb TPV cells has been investigated in a gas?fired space heating appliance. The combustion performance of the gas burner associated with a broadband radiator was evaluated experimentally. The radiant power density and radiant efficiency of the gas?heated radiator were determined at different degrees of exhaust heat recuperation. Heat recuperation is shown to have a certain effect on the combustion operation and radiant power output. The electric output characteristics of the InGaAsSb TPV devices were investigated under various combustion conditions. It was found that the cell short circuit density was greater than 1 A/cm2 at a radiator temperature of 930C when an optical filter was used. An electric power density of 0.54 W/cm2 was produced at a radiator temperature of 1190C. Furthermore modeling calculations were carried out to reveal the influence of TPV cell bandgap and radiator temperature on power output and conversion efficiency. Finally the design aspects of combustion?driven TPV systems were analyzed showing that development of a special combustion device with high conversion level of fuel chemical energy to useful radiant energy is required to improve further the system efficiency.

K. Qiu; A. C. S. Hayden

2003-01-01T23:59:59.000Z

154

Analysis of combined cooling, heating, and power systems under a compromised electricthermal load strategy  

Science Journals Connector (OSTI)

Abstract Following the electric load (FE) and following the thermal load (FT) strategies both have advantages and disadvantages for combined cooling, heating and power (CCHP) systems. In this paper, the performance of different strategies is evaluated under operation cost (OC), carbon dioxide emission (CDE) and exergy efficiency (EE). Analysis of different loads in one hour is conducted under the assumption that the additional electricity is not allowed to be sold back to the grid. The results show that FE produces less OC, less CDE, and FT produces higher EE when the electric load is larger. However, FE produces less OC, less CDE and higher EE when the thermal load is larger. Based on a hybrid electricthermal load (HET) strategy, compromised electricthermal (CET) strategies are innovatively proposed using the efficacy coefficient method. Additional, the CCHP system of a hotel in Tianjin is analyzed for all of the strategies. The results for an entire year indicate the first CET strategy is the optimal one when dealing with OC, CDE and EE. And the second CET is the optimal one when dealing with OC and EE. Moreover, the laws are strictly correct for different buildings in qualitative terms.

Gang Han; Shijun You; Tianzhen Ye; Peng Sun; Huan Zhang

2014-01-01T23:59:59.000Z

155

Multi-Disciplinary Decision Making and Optimization for Hybrid Electric Propulsion Systems  

SciTech Connect (OSTI)

In this paper, we investigate the trade-offs among the subsystems of a hybrid electric vehicle (HEV), e.g., the engine, motor, and the battery, and discuss the related im- plications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences.

Shoultout, Mohamed L. [University of Texas at Austin; Malikopoulos, Andreas [ORNL; Pannala, Sreekanth [ORNL; Chen, Dongmei [University of Texas at Austin

2014-01-01T23:59:59.000Z

156

Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings  

Broader source: Energy.gov [DOE]

This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at Tennessee Technological University. This included installing new furnace insulation, implementing an electrical demand system, installing energy efficient equipment on its natural gas furnace burner tubes, and upgrading its lighting. Through these upgrades, the commercial heat treating business cut its overall energy use by 22%, reduced its peak demand by 21%, and decreased its total energy costs by 18%.

157

Techno-economic evaluation of a ventilation system assisted with exhaust air heat recovery, electrical heater and solar energy  

Science Journals Connector (OSTI)

Abstract The energy consumed to condition fresh air is considerable, particularly for the buildings such as cinema, theatre or gymnasium saloons. The aim of the present study is to design a ventilation system assisted with exhaust air heat recovery unit, electrical heater and stored solar energy, then to make an economical analysis based on life cycle cost (LCC) to find out its payback period. The system is able to recover thermal energy of exhaust air, store solar energy during the sunlight period and utilize it in the period between 17:00 and 24:00h. The transient behaviour of the system is simulated by the TRNSYS 16 software for winter period from 1st of November to 31st of March for Izmir city of Turkey. The obtained results show that the suggested ventilation system reduces energy consumption by 86% compared to the conventional ventilation system in which an electrical heater is used. The payback period of the suggested system is found to be 5 years and 8 months which is a promising result in favour of the solar energy usage in building ventilation systems.

Gamze Ozyogurtcu; Moghtada Mobedi; Baris Ozerdem

2014-01-01T23:59:59.000Z

158

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

159

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

160

Theoretical thermodynamic analysis of a closed-cycle process for the conversion of heat into electrical energy  

E-Print Network [OSTI]

) Abstract We analyse a device aimed at the conversion of heat into electrical energy, based on a closed Conversion and Management August 19, 2013 #12;1. Introduction The free energy contained in solutionsTheoretical thermodynamic analysis of a closed-cycle process for the conversion of heat

Carati, Andrea

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network [OSTI]

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

162

Multifunctional Composites: Optimizing Microstructures for Simultaneous Transport of Heat and Electricity  

Science Journals Connector (OSTI)

Composite materials are ideally suited to achieve multifunctionality since the best features of different materials can be combined to form a new material that has a broad spectrum of desired properties. Natures ultimate multifunctional composites are biological materials. There are presently no simple examples that rigorously demonstrate the effect of competing property demands on composite microstructures. To illustrate the fascinating types of microstructures that can arise in multifunctional optimization, we maximize the simultaneous transport of heat and electricity in three-dimensional, two-phase composites using rigorous optimization techniques. Interestingly, we discover that the optimal three-dimensional structures are bicontinuous triply periodic minimal surfaces.

S. Torquato; S. Hyun; A. Donev

2002-12-09T23:59:59.000Z

163

Midterm decision-making framework for an electricity retailer based on Information Gap Decision Theory  

Science Journals Connector (OSTI)

Abstract In midterm planning, the objective of an electricity retailer is to manage a portfolio of different contracts and to determine the selling price offered to its clients. This paper provides a novel technique based on Information Gap Decision Theory (IGDT) to assess different strategies for a retailer under unstructured pool price uncertainty. This method can be used as a tool for assessing the risk levels, considering whether a retailer is risk-taking or risk-averse regarding its midterm strategies. Supply sources include forward contracts, a limited self-generating facility, and the pool. It is shown that in robust strategy, procurement from sources with uncertain prices decreases. Also, the selling price offered to the consumers rises, decreasing the actual demand of the retailer, and consequently the expected profit is decreased. A case study is used to illustrate the proposed technique.

Mansour Charwand; Zeinab Moshavash

2014-01-01T23:59:59.000Z

164

Making Fischer?Tropsch Fuels and Electricity from Coal and Biomass: Performance and Cost Analysis  

Science Journals Connector (OSTI)

We employ a unified analytical framework to systematically analyze 16 separate process designs, simulating for each detailed mass/energy balances using Aspen Plus software, and calculating their full lifecycle greenhouse gas (GHG) emissions. ... In the plant designs with electricity as a major coproduct, designated as once-through (OT) configurations (Figure 1b), the syngas passes only once through the synthesis reactor, and all of the unconverted syngas plus light gases from FTL refining are compressed and supplied to the power island where a gas turbine/steam turbine combined cycle (GTCC) provides the power needed to operate the plant, as well as a substantial amount of export power (up to 37% of the total plant output of fuel (LHV) and powersee Table 3). ... (27) The gasifier is followed by a tar cracking unit, modeled as an ATR with a syngas exit temperature of 882 C that converts into syngas the heavy hydrocarbons that form at typical biomass gasification temperatures and that would otherwise condense and cause operating difficulties downstream. ...

Guangjian Liu; Eric D. Larson; Robert H. Williams; Thomas G. Kreutz; Xiangbo Guo

2010-12-06T23:59:59.000Z

165

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

166

1.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat pumps, heat pipes,  

E-Print Network [OSTI]

pumps, heat pipes, cold thermal energy storage Ron Zevenhoven ?bo Akademi University Thermal and Flow for heating is referred to as a heat pump (mostly based on a vapour-compression cycle) Heat pumps make use electricity!) for heating and air conditioning purposes Heat pumps became popular in the 1970s

Zevenhoven, Ron

167

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

168

Simulation and analysis of a solar assisted heat pump system with two different storage types for high levels of PV electricity self-consumption  

Science Journals Connector (OSTI)

Abstract The incentives for PV-systems in Europe is being gradually lowered or ended. This makes a higher level of self-consumption interesting for owners of PV-systems. Sweden has an incentive of 35% of the investment cost for PV-systems. Unfortunately not all consumers can get this incentive. Therefore a high level of self-consumption will be necessary if the PV-systems are to be profitable in Sweden. A reference system with two different energy storage technologies is investigated in this paper. One system with 48kWh of batteries and one system with a hot water storage tank where the electricity is stored as heat. The research questions in this paper are: Which storage system gives the highest level of PV electricity self-consumption? Are the storage systems profitable with the assumptions made in this paper? What are the levelized costs of electricity (LCOE) for the reference system with different storage system? The system with batteries has a self-consumption of 89% of the annual PV-electricity output and the system with a hot water storage tank has 88%. The system with batteries has a levelized cost of electricity two times higher than the system with a hot water storage tank.

Richard Thygesen; Bjrn Karlsson

2014-01-01T23:59:59.000Z

169

Continuous electric resistance heatingHot forming system for high-alloy metals with poor workability  

Science Journals Connector (OSTI)

A new hot forming system for high-alloy metals with poor workability is developed. This forming system is a direct combination of a forming machine and continuous electric resistance heating, and is capable of the high-speed forming of metals with flexible and precise control of elevated temperature. The prototype of the new forming system is applied to the forming of high-alloy metals with poor formability, such as a Ti6Al4V bar, and the basic characteristics of this forming system are clarified. Using this system, sound, high speed forming of high alloys becomes possible, and the Ti6Al4V bar is successfully formed without fracture.

Jun Yanagimoto; Ryo Izumi

2009-01-01T23:59:59.000Z

170

Heat Pump System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump System Basics Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless Mini-Split Heat Pump Ductless versions of air-source heat pumps. Absorption Heat Pump Uses heat as its energy source. Geothermal Heat Pumps Use the constant temperature of the earth as the exchange medium instead of the outside air temperature. Addthis Related Articles A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar.

171

Experimental study of heat transfer in an electric arc gas heater with vortex stabilization of the discharge  

Science Journals Connector (OSTI)

The results of an experimental investigation into heat transfer in the discharge chamber of an electric-arc gas heater are presented. For the anode...an=f(I, d), St=f(l/d, Re, N/GH0). The energy losses in the bas...

V. L. Sergeev

1971-01-01T23:59:59.000Z

172

Cullman Electric Cooperative - Energy Efficient Homes Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Cullman Electric Cooperative - Energy Efficient Homes Program Cullman Electric Cooperative - Energy Efficient Homes Program Cullman Electric Cooperative - Energy Efficient Homes Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Water Heating Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Energy Efficient Home: $200 Energy Efficient Water Heater: $100 Cullman Electric Cooperative offers rebates to residential customers that make certain energy efficiency improvements to newly constructed, all electric homes. Up to $200 is available per home. Qualifying homes must have electric water heatng, clothes drying, cooking, and a heat pump. A

173

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams .  

E-Print Network [OSTI]

??An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue (more)

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

174

Delaware Electric Cooperative - Green Energy Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Rural Electric Cooperative Savings Category Appliances & Electronics Commercial Lighting Lighting Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Delaware Program Type Public Benefits Fund Provider Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and Climate

175

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity  

Broader source: Energy.gov [DOE]

Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

176

Heat Pump Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pump Systems Pump Systems Heat Pump Systems May 16, 2013 - 5:33pm Addthis A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar. A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar. What does this mean for me? Heat pumps can supply heat, cooling, and hot water. Your climate and site will determine the type of heat pump most appropriate for your home. For climates with moderate heating and cooling needs, heat pumps offer an energy-efficient alternative to furnaces and air conditioners. Like your refrigerator, heat pumps use electricity to move heat from a cool space to a warm space, making the cool space cooler and the warm space warmer. During the heating season, heat pumps move heat from the cool outdoors into

177

Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System  

Broader source: Energy.gov [DOE]

Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

178

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

Wilson, V.C. [General Electric RDC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico871059 (United States)

1997-01-01T23:59:59.000Z

179

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

Wilson, Volney C. [General Electric R and DC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico 87105 (United States)

1997-01-10T23:59:59.000Z

180

Novel Latent Heat Storage Devices for Thermal Management of Electric Vehicle Battery Systems  

Science Journals Connector (OSTI)

A major aspect for safe and efficient operation of battery electric vehicles (BEV) is the thermal management of their battery systems. As temperature uniformity and level highly ... performance and the lifetime, ...

Ch. Huber; A. Jossen; R. Kuhn

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","Breeze)","Other(e)","Factors" ,...

182

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row"...

183

Community Power Works Uses Housing Data to Make the Emerald City...  

Energy Savers [EERE]

Housing Data to Make the Emerald City Even "Greener" In Seattle, Washington, owners of oil-heated homes are ineligible for city-sponsored electric and gas utility rebates. But...

184

On the impact of urban heat island and global warming on the power demand and electricity consumption of buildingsA review  

Science Journals Connector (OSTI)

Abstract Urban heat island and global warming increase significantly the ambient temperature. Higher temperatures have a serious impact on the electricity consumption of the building sector increasing considerably the peak and the total electricity demand. The present paper aims to collect, analyze and present in a comparative way existing studies investigating the impact of ambient temperature increase on electricity consumption. Analysis of eleven studies dealing with the impact of the ambient temperature on the peak electricity demand showed that for each degree of temperature increase, the increase of the peak electricity load varies between 0.45% and 4.6%. This corresponds to an additional electricity penalty of about 21 (10.4)W per degree of temperature increase and per person. In parallel, analysis of fifteen studies examining the impact of ambient temperature on the total electricity consumption, showed that the actual increase of the electricity demand per degree of temperature increase varies between 0.5% and 8.5%.

M. Santamouris; C. Cartalis; A. Synnefa; D. Kolokotsa

2014-01-01T23:59:59.000Z

185

Does Electricity (and Heat) Network Regulation have anything to learn from Fixed Line Telecoms?  

E-Print Network [OSTI]

customers.Itisinthiscontextthatfixedline telecomsderegulationbecomesofinterest.Indeedenergynetworkderegulationandtelecoms deregulationmayindeedbetechnologicallyrelatedbythefactthatmicro?gridorislandpowerand heatsystemsmightrely... usually(butnotalways)differentfromthesortof energyservicedriveninvestmentsthatthispaperenvisages,whereindependentnetworksmayarise aspartoftheoptimalassetconfigurationofanewentrantsupplycompany(e.g.alocalenergy servicecompanybasedonalocalcombinedheatandpower...

Pollitt, Michael G.

186

Simplified Heat Generation Model for Lithium ion battery used in Electric Vehicle  

Science Journals Connector (OSTI)

It is known that temperature variations inside a battery may greatly affect its performance, life, and reliability. In an effort to gain a better understanding of the heat generation in Lithium ion batteries, a simple heat generation models were constructed in order to predict the thermal behaviour of a battery pack. The Lithium ion battery presents in this paper is Lithium Iron Phosphate (LiFePO4). The results show that the model can be viewed as an acceptable approximation for the variation of the battery pack temperature at a continuous discharge current from data provided by the manufacturer and literature.

Nur Hazima Faezaa Ismail; Siti Fauziah Toha; Nor Aziah Mohd Azubir; Nizam Hanis Md Ishak; Mohd Khair Hassan; Babul Salam Ksm Ibrahim

2013-01-01T23:59:59.000Z

187

A Comparison of Domestic Water Heating Options in the Austin Electric Service Area  

E-Print Network [OSTI]

controlled and actual opera tinp, situations. The larye DOE/ORNL/EUS field test of HPVHs was probably the most co~nprehensive (3). The Florida Public Service Colmi~ission sporlsored saveral field tests of all four water heating systems to evaluate.... Thesis, The University of Texas at ----- Austin, Dec.. 1982. 2. Askey, Jay L., The Effect of Residential 3. R. P. Blevins, B. D. Sloan, and G. E. Malli. "Demonstration of a Heat Pump Water Heater, Volume 2: Final Report." ORNL/Sub-7321-4, Oak Ridge...

Vliet, G. C.; Hood, D. B.

1985-01-01T23:59:59.000Z

188

Variable power distribution for zoned regeneration of an electrically heated particulate filter  

DOE Patents [OSTI]

A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.

Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI

2012-04-03T23:59:59.000Z

189

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

190

Delaware Electric Cooperative - Green Energy Program Incentives |  

Broader source: Energy.gov (indexed) [DOE]

Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate PV: $7,500 for Class A, $10,000 for Class B or non-profits Solar Thermal (domestic water): $3,000 for residential, $7,500 for non-residential Solar Thermal (radiant space heating): $5,000 for residential, $7,500 for non-residential Wind: $2,500 Fuel Cells: $7,500 for residential, $10,000 for non-residential Geothermal Heat Pumps: $5,000 for residential, $10,000 for non-residential

191

Not a Babe in the Woods: Using MotorMaster Software to Make Sophisticated Electric Motor Purchase Decisions  

E-Print Network [OSTI]

, with funding from the Bonneville Power Administration and the U.S. Department of Energy. For ordering information caJI the Washington State Energy Office at (206)956-2215, or write MotorMaster, WSEO, P.O. 43165, Olympia, WA 98504-3165. Motor... by the American Council for an Energy Efficient Economy: 1001 Connecticut Ave. NW #535, Washington, DC 20036, (202) 429-8873; $24.95. Energy-Efficient Electric Motor Selection HBonneville Power...

Litman, T.

192

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

193

Dynamic Guiding of Motor-Driven Microtubules on Electrically Heated, Smart Polymer Tracks  

Science Journals Connector (OSTI)

In the past, spatial control over cytoskeletal filaments on a surface coated with motor proteins(9) has been demonstrated by using topographical channels,(10) by patterning motor proteins without topographical guiding walls,(11, 12) and by a combination of patterned motors and channels. ... (16, 17) Electric fields have been used to direct filaments left or right at a topographical junction. ...

Viktor Schroeder; Till Korten; Heiner Linke; Stefan Diez; Ivan Maximov

2013-06-10T23:59:59.000Z

194

HeatProbe: A Thermal-based Power Meter for Accounting Disaggregated Electricity Usage  

E-Print Network [OSTI]

on promoting energy consumption awareness [2, 3, 4]. Since utility bills aggregate electricity usage, it is diffi- cult to determine disaggregated energy consumption. If individuals can be made aware}@citi.sinica.edu.tw ABSTRACT To promote energy-saving behavior, disaggregating elec- tricity usage is critical for increasing

Ouhyoung, Ming

195

Thermoelectric energy converter for generation of electricity from low-grade heat  

DOE Patents [OSTI]

A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

Jayadev, T.S.; Benson, D.K.

1980-05-27T23:59:59.000Z

196

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

197

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

198

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

199

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

200

Innovative Energy Conservation Through Scrao Pre-heating in an Electric Arc Furnace  

E-Print Network [OSTI]

and tons of steel throughput of the base case. It was found that 260,000 tls was produced during 2011. Analysis of the heat data for 2011 determined an overall energy intensity of 343 kWh/tls. The Consteel system allows the batch processing time... not quantified. Table 1 - Proposed vs. Case Studies (1,6) Ivaco (Proposed), ON Ameristeel NC Co-Steel Sayreville, NJ Year Consteel Installed TBD 1990 1994 Year Data Reported 2012 1995 1998 Capacity, MW 35.7 24 35 Capacity, Mt/hour 82.6 54 82...

Dicion, A.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

202

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

203

ELECTRIC  

Office of Legacy Management (LM)

ELECTRIC ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A quantity of at lezst 5 grams would probably be sufficient for our purpose, and this was included in our 3@icntion for license to the Atonic Energy Coskqission.. This license has been approved, 2nd rre would Llp!Jreciate informztion as to how to ?r*oceed to obtain thit: m2teria.l.

204

Roseville Electric - Residential New Construction Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

New Construction Rebate Program New Construction Rebate Program Roseville Electric - Residential New Construction Rebate Program < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Solar Buying & Making Electricity Program Info State California Program Type Utility Rebate Program Rebate Amount Energy Efficiency: $500/unit Solar PV: $2/watt Shade Trees: $30/tree Provider Roseville Electric Roseville Electric provides financial incentives to encourage local builders to construct energy efficient homes which incorporate solar resources. Participating builders can choose to build Preferred Homes or

205

Florida Keys Electric Cooperative - Residential Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Florida Keys Electric Cooperative - Residential Rebate Program Florida Keys Electric Cooperative - Residential Rebate Program Florida Keys Electric Cooperative - Residential Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Florida Program Type Utility Rebate Program Rebate Amount Rebates $25 - $500, max $1000 per member Florida Keys Electric Cooperative offers residential members rebates for installing energy efficient measures. To qualify for rebates, members must first call FKEC and make an appointment for a free home energy audit. An FKEC trained auditor will assess the home and make recommendations for

206

Tampa Electric - Solar Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tampa Electric - Solar Rebate Program Tampa Electric - Solar Rebate Program Tampa Electric - Solar Rebate Program < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $20,000 Solar water heating: $1,000 per system Program Info Start Date 4/18/2011 Expiration Date 12/31/2015 State Florida Program Type Utility Rebate Program Rebate Amount PV: $2.00 per watt Solar water heating: $1,000 per system Provider Tampa Electric '''''Note: Of the $1.5 million budgeted for this program annually, $500,000 is reserved for solar water heating, and $1 million is reserved for PV systems. All funds have been committed for Solar PV systems at this time. Tampa Electric is scheduled to reopen the rebate program to new application

207

El Paso Electric Company - Small Business and Commercial Program |  

Broader source: Energy.gov (indexed) [DOE]

Small Business and Commercial Program Small Business and Commercial Program El Paso Electric Company - Small Business and Commercial Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Solar Buying & Making Electricity Program Info State Texas Program Type Utility Rebate Program Rebate Amount Large Commercial Solutions: $240/peak kW demand reduction Small Commercial Solutions: $400/kW demand reduction Provider El Paso Electric Company El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

208

Design concept and testing of an in-bundle gamma densitometer for subchannel void fraction measurements in the THTF electrically heated rod bundle. [PWR  

SciTech Connect (OSTI)

A design concept is presented for an in-bundle gamma densitometer system for measurement of subchannel average fluid density and void fraction in rod or tube bundles. This report describes (1) the application of the design concept to the Thermal-Hydraulic Test Facility (THTF) electrically heated rod bundle; and (2) results from tests conducted in the THTF.

Felde, D. K.

1982-04-01T23:59:59.000Z

209

Bubble dynamics and boiling heat transfer : a study in the absence and in the presence of electric fields.  

E-Print Network [OSTI]

??Since boiling heat transfer affords a very effective means to transfer heat, it is implemented in numerous technologies and industries ranging from large power generation (more)

Siedel, Samuel

2012-01-01T23:59:59.000Z

210

National Lab Technology Transfer Making a Difference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent that has now been licensed commercially. Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United

211

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

battery Utility electricity consumption Electricity providedis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

Stadler, Michael

2009-01-01T23:59:59.000Z

212

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates |  

Broader source: Energy.gov (indexed) [DOE]

Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates Guadalupe Valley Electric Cooperative - Renewable Energy Rebates < Back Eligibility Agricultural Commercial Fed. Government Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate PV: $8,000 Solar Water Heaters: $1,000 Solar Water Wells: $750 Wind-electric: $6,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount PV: $2.00/watt Solar Water Heaters: $1,000/unit Solar Water Wells: $750/unit Wind-electric: $1.00/watt Provider Guadalupe Valley Electric Cooperative '''''The $1.5 million budget cap for PV rebates in 2013 has been met. No additional applications for PV rebates will be accepted. '''''

213

Process for making boron nitride using sodium cyanide and boron  

DOE Patents [OSTI]

This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

Bamberger, Carlos E. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

214

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

solar thermal utilization photovoltaic solar thermal electric storage heatDER technologies as PV, solar thermal, electric and heat

Stadler, Michael

2014-01-01T23:59:59.000Z

215

Characterizations of 21-4N to 4Cr9Si2 stainless steel dissimilar joint bonded by electric-resistance-heat-aided friction welding  

Science Journals Connector (OSTI)

A new welding process, electric-resistance-heat-aided friction welding (ERHAFW), was introduced in this study. To further improve the joint quality and energy-saving, electric resistance welding was combined with the conventional continuous-drive friction welding. 21-4N (austenitic stainless steel) and 4Cr9Si2 (martensitic stainless steel) valve steel rods of 4mm diameter were used as base metals. The results show that electric-resistance-heat-aided friction welding can be applied to join thin rods within a relatively short time, which is very difficult for conventional friction welding (FW). The microstructure of ERHAFW bonded 21-4N to 4Cr9Si2 presents non-uniform across the joint. Different structure zones are observed from the weld line to both sides, which are the weld center, thermo-mechanically affected zone (TMAZ) and heat affected zone (HAZ). These regions exhibit different structures owing to the difference in the thermophysical and mechanical properties of these two steels under the fast heating and cooling during welding. The variation of microhardness in the joint is attributed to the microstructure change. The higher microhardness is obtained in the weld center and TMAZ of 4Cr9Si2 corresponding to the presence of fine tempered martensite and carbides.

Wen-Ya Li; Min Yu; Jinglong Li; Guifeng Zhang; Shiyuan Wang

2009-01-01T23:59:59.000Z

216

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

217

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

218

Electric power production using new GaSb photovoltaic cells with extended infrared response  

Science Journals Connector (OSTI)

New GaSb photovoltaic cells with infrared response extended out to 1.8 microns are well matched to hydrocarbon combustion heated silicon carbide infrared emitters operating at 1600 C. Power densities of up to 10 Watts/cm2 promise to make thermophotovoltaic generation of electricity economical. These continuous combustion thermophotovoltaic units run quietly and cleanly. Applications include small scale distributed cogeneration of heat and electricity and power units for clean electric vehicles.

Lewis Fraas; Russell Ballantyne; John Samaras; Michael Seal

1995-01-01T23:59:59.000Z

219

Clay Electric Cooperative, Inc - Energy Conservation Loans | Department of  

Broader source: Energy.gov (indexed) [DOE]

Conservation Loans Conservation Loans Clay Electric Cooperative, Inc - Energy Conservation Loans < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Heating Appliances & Electronics Water Heating Solar Swimming Pool Heaters Buying & Making Electricity Maximum Rebate $5,000 ($7,500 for metal roofs) Program Info State Florida Program Type Utility Loan Program Rebate Amount $1,000 - $7,500 Provider Clay Electric Co-op Clay Electric Cooperative (CEC), a Touchstone Energy Cooperative, covers 14 North Florida counties, including Gainesville, Keystone Heights, Lake City, Orange Park, Palatka, and Salt Springs. It offers loans to help customers

220

Electron cyclotron resonance plasma heating in the CERA-RX facility under a randomly pulsating electric field  

Science Journals Connector (OSTI)

The results of the numerical simulation of the electron cyclotron resonance (ECR) heating of plasma particles in the CERA-RX...

A. A. Balmashnov; S. P. Stepina; A. M. Umnov

2012-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan  

Broader source: Energy.gov (indexed) [DOE]

Butler Rural Electric Cooperative - Energy Efficiency Improvement Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program Butler Rural Electric Cooperative - Energy Efficiency Improvement Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $25,000 Program Info State Ohio Program Type Utility Loan Program Rebate Amount up to $25,000 Provider Butler Rural Electric Cooperative, Inc. Butler Rural Electric Cooperative, Inc. provides low interest loans (3%) for members to make energy efficiency improvements in eligible homes. There is a $15 application fee for all loans plus additional closing costs

222

#AskEnergySaver: Home Water Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electric systems, like solar electric and onsite wind power, have substantial energy loss when converting electricity to heat. With solar thermal water heating, there are a...

223

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network [OSTI]

1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time. Combined heat and power genera%on plants are also called co-genera%on plants. #12. #12;Facing the challenge of variability, the power grid is in transi

Grossmann, Ignacio E.

224

Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Central Hudson Gas and Electric (Electric) - Residential Energy Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency Rebate Program Central Hudson Gas and Electric (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Manufacturing Appliances & Electronics Water Heating Maximum Rebate Air Sealing: $600 Program Info State New York Program Type Utility Rebate Program Rebate Amount Central AC: $400 - $600, depending on efficiency Air-source Heat Pumps: $400 - $600, depending on efficiency Electronically Commutated Motor (ECM) Furnace Fans: $200 Electric Heat Pump Water Heaters: $400 Programmable Thermostats: $25

225

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

allows high temperature waste heat utilization. Phosphoricnatural gas chillers, waste heat or solar heat; hot wateris limited by generated waste heat Regulatory constraints: -

Stadler, Michael

2009-01-01T23:59:59.000Z

226

Electricity Markets  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Markets Electricity Markets Researchers in the electricity markets area conduct technical, economic, and policy analysis of energy topics centered on the U.S. electricity sector. Current research seeks to inform public and private decision-making on public-interest issues related to energy efficiency and demand response, renewable energy, electricity resource and transmission planning, electricity reliability and distributed generation resources. Research is conducted in the following areas: Energy efficiency research focused on portfolio planning and market assessment, design and implementation of a portfolio of energy efficiency programs that achieve various policy objectives, utility sector energy efficiency business models, options for administering energy efficiency

227

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1334E-2009 1334E-2009 Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States Michael Stadler, Chris Marnay, Afzal Siddiqui, Judy Lai, Brian Coffey, and Hirohisa Aki Environmental Energy Technologies Division Revised March 2009 http://eetd.lbl.gov/EA/EMP/emp-pubs.html The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability, Renewable and Distributed Systems Integration Program in the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct

228

The use of geothermal energy: A reliable, cheap, and environmentally friendly method for generating electricity and heat  

Science Journals Connector (OSTI)

The economical and environmental aspects of generating electricity at traditional thermal power stations and at geothermal power stations are considered. The dynamics of prices for fossil fuel and results from...

O. A. Povarov; O. M. Dubnov; A. I. Nikolskii

2007-08-01T23:59:59.000Z

229

Reduction of Ion Thermal Diffusivity Associated with the Transition of the Radial Electric Field in Neutral-Beam-Heated Plasmas in the Large Helical Device  

Science Journals Connector (OSTI)

Recent large helical device experiments revealed that the transition from ion root to electron root occurred for the first time in neutral-beam-heated discharges, where no nonthermal electrons exist. The measured values of the radial electric field were found to be in qualitative agreement with those estimated by neoclassical theory. A clear reduction of ion thermal diffusivity was observed after the mode transition from ion root to electron root as predicted by neoclassical theory when the neoclassical ion loss is more dominant than the anomalous ion loss.

K. Ida et al.

2001-06-04T23:59:59.000Z

230

Southeastern Electric - Electric Equipment Loan Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Southeastern Electric - Electric Equipment Loan Program Southeastern Electric - Electric Equipment Loan Program Southeastern Electric - Electric Equipment Loan Program < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Heat Pumps/Electric Heat: up to $10,000 Weatherization/Insulation: $3,000 Program Info State South Dakota Program Type Utility Loan Program Rebate Amount Heat Pumps/Electric Heat: up to $10,000 Weatherization/Insulation loans: up to $3,000 Provider Southeastern Electric Cooperative Southeastern Electric Cooperative is a member-owned electric cooperative that serves customers in the southeastern part of South Dakota.

231

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

232

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

charging kW Utility electricity consumption Electricityis expressed in electricity consumption of the electricis expressed in electricity consumption of the electric

Stadler, Michael

2009-01-01T23:59:59.000Z

233

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

234

Electric, Street Railway, and Gas Corporations (South Dakota) | Department  

Broader source: Energy.gov (indexed) [DOE]

Electric, Street Railway, and Gas Corporations (South Dakota) Electric, Street Railway, and Gas Corporations (South Dakota) Electric, Street Railway, and Gas Corporations (South Dakota) < Back Eligibility Commercial Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Line Extension Analysis Provider South Dakota Public Utilities Commission This legislation contains provisions pertaining to a corporation formed for the purpose of constructing, maintaining and operating a street railway or railways; generating, transmitting or distributing electricity to be sold to or used by the public for heat, light or power manufacturing; or producing, supplying, or transporting natural or artificial gas. The

235

Sixth Northwest Conservation and Electric Power Plan Appendix F: Model Conservation Standards  

E-Print Network [OSTI]

................................................ 8 Buildings Converting to Electric Space Conditioning or Water Heating Systems......................................................................................................................................... 1 New Site Built Electrically Heated Residential Buildings and New Electrically Heated Manufactured model conservation standards. These include the standard for new electrically heated residential

236

Redding Electric - Earth Advantage Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Earth Advantage Rebate Program Earth Advantage Rebate Program Redding Electric - Earth Advantage Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Geothermal: 5,000 Program Info Start Date 1/1/2002 State California Program Type Utility Rebate Program Rebate Amount PV: Funding is exhausted through 2015 Geothermal (Residential): $1,000/ton Solar Water Heating: 50% of cost up to $1,000 for 1st panel, $500 for 2nd panel, $250 for 3rd panel Provider Redding Electric Utility The Earth Advantage Rebate Program was designed to offer rebates to residential and business customers of Redding Electric Utility (REU) for solar PV, solar thermal, and geothermal heat pump systems. As required by

237

Oncor Electric Delivery - Large Commercial and Industrial Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Oncor Electric Delivery - Large Commercial and Industrial Rebate Oncor Electric Delivery - Large Commercial and Industrial Rebate Program Oncor Electric Delivery - Large Commercial and Industrial Rebate Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Windows, Doors, & Skylights Solar Buying & Making Electricity Water Heating Wind Maximum Rebate General: 20% of the incentive budget in a given budget year Contact Oncor for additional details Program Info State Texas Program Type Utility Rebate Program Rebate Amount DX Air Conditioning: $285.30/kW; $0.09/kWh

238

Firelands Electric Cooperative - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Firelands Electric Cooperative - Residential Energy Efficiency Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $800 Air Source Heat Pump: $500 Dual Fuel Heat Pump: $250 Electric Water Heater: $100-$300 HVAC Controls: $100 Provider Firelands Electric Cooperative Firelands Electric Cooperative (FEC) is offering rebates on energy efficient equipment to residential customers receiving electric service from FEC. Eligible equipment includes new Geothermal Heat Pumps, Air-Source

239

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

240

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A molecule of fulvalene diruthenium, seen in diagram, changes its configuration when it absorbs heat, and later releases heat when it snaps back to its original shape. Image: Jeffrey Grossman Broadly speaking, there have been two approaches to capturing the sun's energy: photovoltaics, which turn the sunlight into electricity, or solar-thermal systems, which concentrate the sun's heat and use it to boil water to turn a turbine, or use the heat directly for hot water or home

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

242

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications,End-Use Survey combined heat and power Consolidated Edisonengine genset with combined heat and power (CHP) and power

Stadler, Michael

2009-01-01T23:59:59.000Z

243

Portland General Electric Co. Pilot Evaluation and  

E-Print Network [OSTI]

capability to support the utility's control of residential customers' central electric space heating systems DIRECT LOAD CONTROL PILOT FOR ELECTRIC SPACE HEAT #12;Direct Load Control Pilot for Electric Space Heat) an evaluation report of its direct load control pilot for electric space heat, called "Direct Load control Pilot

244

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

245

Trico Electric Cooperative - SunWatts Incentive Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program Trico Electric Cooperative - SunWatts Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV systems 10 kW or smaller: 30% of the total system cost Program Info State Arizona Program Type Utility Rebate Program Rebate Amount PV systems 10 kW or smaller: $0.10/watt DC PV greater than 10 kW up to 1 MW: Performance-Based Incentive (competitive bid process) Solar water heaters: $0.40 per expected first year kWh savings Provider Trico Electric Cooperative, Inc. Through the SunWatts Program, Trico Electric Cooperative offers residential and business customers a rebate for installing photovoltaic (PV) systems

246

Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)  

SciTech Connect (OSTI)

Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

Not Available

2014-05-01T23:59:59.000Z

247

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

natural gas chillers, waste heat or solar heat; hot wateris limited by generated waste heat Regulatory constraints: -might favor the use of waste heat from DG units or from

Stadler, Michael

2009-01-01T23:59:59.000Z

248

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

249

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

250

An Improved Procedure for Developing a Calibrated Hourly Simulation Model of an Electrically Heated and Cooled Commercial Buildling  

E-Print Network [OSTI]

, this thesis presents new calibration methods including temperature binned box-whisker-mean analysis to improve x-y scatter plots, 24-hour weather-daytype box-whisker-mean graphs to show IV hourly temperature-dependent energy use profiles, and 52-week box... using a case study building located in Washington, D.C. In the case study building, nine months of hourly whole-building electricity data and site-specific weather data were measured and used with the D0E-2.1D building simulation program to test the new...

Bou-Saada, Tarek Edmond

251

Effect of {gamma}-ray radiation on electrical properties of heat-treated Tb{sub x}Sn{sub 1-x}Se single crystals  

SciTech Connect (OSTI)

The effect of {gamma}-ray radiation on the electrical properties of heat-treated Tb{sub 0.01}Sn{sub 0.99}Se (sample 1) and Tb{sub 0.05}Sn{sub 0.95}Se (sample 2) samples is studied. It is found that, as a result of irradiation with {gamma}-ray 1.25-MeV photons, the charge-carrier concentration decreases in the temperature range T = 77-200 K by 17 and 6.3% for samples 1 and 2, respectively. It is assumed that, in the course of irradiation with {gamma}-ray photons, terbium impurity atoms are located between sites of the crystal lattice; in addition, Frenkel defects are formed.

Huseynov, J. I., E-mail: cih_58@mail.ru; Jafarov, T. A. [Azerbaijan State Pedagogical University (Azerbaijan)

2012-04-15T23:59:59.000Z

252

Xcel Energy (Electric) - Commercial Energy Efficiency Rebate Program (New  

Broader source: Energy.gov (indexed) [DOE]

Xcel Energy (Electric) - Commercial Energy Efficiency Rebate Xcel Energy (Electric) - Commercial Energy Efficiency Rebate Program (New Mexico) Xcel Energy (Electric) - Commercial Energy Efficiency Rebate Program (New Mexico) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Buying & Making Electricity Program Info State New Mexico Program Type Utility Rebate Program Rebate Amount Air Cooled Chillers: $6/ton; plus $1 per FLV+ $0.25 per IPLV 0.1 EER above base Water Cooled Chillers (Centrifugal): $12/ton; plus $2 per FLV+ $1.50 per IPLV 0.01 kW/ton above base Water Cooled Chillers (Rotary Screw or Scroll): $12/ton; plus $2 per FLV+

253

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

254

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Broader source: Energy.gov (indexed) [DOE]

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

255

Tips: Heat Pumps | Department of Energy  

Energy Savers [EERE]

Tips: Heat Pumps Tips: Heat Pumps July 20, 2014 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity....

256

America Makes  

Broader source: Energy.gov [DOE]

America Makes advances additive manufacturing technology and products, and serves as a nationally recognized additive manufacturing center of innovation excellence, working to transform the U.S. manufacturing sector and yield significant advancements throughout industry. America Makes was formerly called the National Additive Manufacturing Innovation Institute (NAMII).

257

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

258

Minnesota Valley Electric Cooperative -Residential Energy Resource  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Valley Electric Cooperative -Residential Energy Resource Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Minnesota Program Type Utility Loan Program Rebate Amount Heat Pump Installation: up to $5,000 Electric Water Heater and Installation: up to $5,000 Electric Heating Equipment: up to $5,000 Heat Pump Installation: up to $5,000 Weatherization: up to $1,500 Provider Minnesota Valley Electric Cooperative

259

Baltimore Gas and Electric Company (Electric) - Residential Energy  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Gas and Electric Company (Electric) - Residential Energy Baltimore Gas and Electric Company (Electric) - Residential Energy Efficiency Rebate Program Baltimore Gas and Electric Company (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Contact BGE Program Info State Maryland Program Type Utility Rebate Program Rebate Amount Central A/C: $150 - $500 Air Source Heat Pump: $200 - $500 Ductless Mini-Split Heat Pump: $300 Geothermal Heat Pump (Closed Loop): $500 Duct Sealing: $250 Tune-ups: $100 Heat Pump Water Heater: $350 Room A/C: $25

260

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

E-Print Network 3.0 - air source heat pumps Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat pumps, heat pipes,Heat pumps, heat pipes, Summary: vcmfiles electricity) for heating and air conditioning purposes Heat pumps became popular in :www.bge.c Heat pumps......

262

Tips: Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pumps Heat Pumps Tips: Heat Pumps June 24, 2013 - 5:48pm Addthis Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps can be a cost-effective choice in moderate climates, especially if you heat your home with electricity. Heat pumps are the most efficient form of electric heating in moderate climates. Because they move heat rather than generate heat, heat pumps can provide equivalent space conditioning at as little as one quarter of the cost of operating conventional heating or cooling appliances. A heat pump does double duty as a central air conditioner by collecting the heat inside your house and pumping it outside. There are three types of heat pumps: air-to-air, water source, and geothermal. They collect heat from the air, water, or ground outside your

263

Demonstration and Performance Monitoring of Foundation Heat Exchangers...  

Energy Savers [EERE]

for New and Existing Homes: Foundation Heat Exchanger, Oak Ridge, Tennessee Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options...

264

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

photovoltaic solar thermal electric storage heat storageamount of PV, solar thermal, and electric storage needs toamount of PV, solar thermal, and electric storage needs to

Stadler, Michael

2014-01-01T23:59:59.000Z

265

Heat Pump Water Heaters and American Homes: A Good Fit?  

E-Print Network [OSTI]

as conventional electric resistance water heaters, with thetwo technologies: (1) an electric resistance storage watertransfers heat from the electric resistance element to the

Franco, Victor

2011-01-01T23:59:59.000Z

266

Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Farmers Electric Cooperative (Kalona) - Residential Energy Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency Rebate Program Farmers Electric Cooperative (Kalona) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Geothermal Heat Pumps: 5 ton CFL Bulbs: 12 bulbs per year Program Info State Iowa Program Type Utility Rebate Program Rebate Amount CFL Bulbs: $2/bulb Geothermal Heat Pumps (New Construction): $350/ton Geothermal Heat Pumps (Upgrade): $700/ton Air Source Heat Pumps (New Construction): $800 Air Source Heat Pumps (Upgrade): $400 Central Air Conditioners: $100 - $200 Heat Pump Water Heaters: $400

267

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

268

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

269

Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study  

SciTech Connect (OSTI)

Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

Dentz, J.; Podorson, D.; Varshney, K.

2014-05-01T23:59:59.000Z

270

Intercounty Electric Cooperative - Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Intercounty Electric Cooperative - Energy Efficiency Rebate Program Intercounty Electric Cooperative - Energy Efficiency Rebate Program Intercounty Electric Cooperative - Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Geothermal Heat Pump: $3,000 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $400 - 750/ton Air-to-Air or Duel Fuel Heat Pump: $150/ton Water Heater: $50 Room AC: $50/unit Provider Intercounty Electric Cooperative Intercounty Electric Cooperative provides rebates to its customers for the purchase of a variety of energy efficient equipment and appliances.

271

Heat pumps and energy storage The challenges of implementation  

Science Journals Connector (OSTI)

The wider implementation of variable renewable energy sources such as wind across the UK and Ireland will demand interconnection, energy storage and more dynamic energy systems to maintain a stable energy system that makes full use of one of our best renewable energy resources. However large scale energy storage e.g. pumped storage may be economically challenging. Therefore can thermal energy storage deployed domestically fulfil an element of such an energy storage role? Current electricity pricing is based on a hourly timeframe which will be demonstrated to have some benefits for hot water heating from electrical water heaters in the first instance. However heat pumps linked to energy storage can displace fossil fuel heating systems and therefore the question is whether a renewable tariff based on excess wind for example is sufficient to operate heat pumps. An initial analysis of this scenario will be presented and its potential role in challenging aspects of fuel poverty.

Neil J Hewitt

2012-01-01T23:59:59.000Z

272

Optimal Design of Electrical Machines: Mathematical Programming ...  

E-Print Network [OSTI]

global heating up of the winding is rather roughly modeled by Ech (function of current electric ...... Electric Machines and Power Systems, pages. 7192, 1992.

2012-06-06T23:59:59.000Z

273

Electricity in Horticulture  

Science Journals Connector (OSTI)

... ELECTRO-CULTURE has to take into account the effects of electric heating, electric lighting and the voltage stress on the life of plants. The first applica-tion of ... and increases up to forty per cent have been obtained. Electricity in the form of light was the next application in the aid of ...

1936-07-11T23:59:59.000Z

274

Method of making carbon-carbon composites  

DOE Patents [OSTI]

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

275

association of companies and the Edison Electric Institute (1953). Their final report cites investigations from 1945 through 1953 and includes correlated information on coil data, heat  

E-Print Network [OSTI]

. The house has passive solar features consisting of south-facing glass with manually operable insulated to determine the heat pump capacity. The heating capacity of the heat pump in use is 34,100 Btu/hr (10 kw) at TEVAP = 35.6 F (2'C) and TCOND = 86.0 F (30°C). The cooling capacity of the heat pump was determined

Oak Ridge National Laboratory

276

Sales and Use Tax Exemption for Electrical Generating Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible personal property that is used for constructing or expanding the facility. In order to qualify, the facility must have at least one electrical generation unity

277

Energy Efficient Integration of Heat Pumps into Solar District Heating Systems with Seasonal Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Solar district heating (SDH) with seasonal thermal energy storage (STES) is a technology to provide heat for space heating and domestic hot water preparation with a high fraction of renewable energy. In order to improve the efficiency of such systems heat pumps can be integrated. By preliminary studies it was discovered, that the integration of a heat pump does not always lead to improvements from an overall energy perspective, although the operation of the heat pump increases the efficiency of other components of the system e. g. the STES or the solar collectors. Thus the integration of heat pumps in SDH systems was investigated in detail. Usually, the heat pumps are integrated in such a way, that the STES is used as low temperature heat source. No other heat sources from the ambience are used and only that amount of energy consumed by the heat pump is additionally fed into the system. In the case of an electric driven heat pump, this is highly questionable concerning economic and CO2-emission aspects. Despite that fact the operation of the heat pump influences positively the performance of other components in the system e. g. the STES and makes them more efficient. If the primary energy consumption of the heat pump is lower than the energetic benefits of all other components, the integration makes sense from an energetic point of view. A detailed assessment has been carried out to evaluate the most promising system configurations for the integration of a heat pump. Based on this approach a system concept was developed in which the integration of the heat pump is energetically further improved compared to realised systems. By means of transient system simulations this concept was optimised with regard to the primary energy consumption. A parameter study of this new concept has been performed to identify the most sensitive parameters of the system. The main result and conclusion are that higher solar fractions and also higher primary energy savings can be achieved by SDH systems using heat pumps compared systems without heat pumps.

Roman Marx; Dan Bauer; Harald Drueck

2014-01-01T23:59:59.000Z

278

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

efficiency requirements - Maximum emission limits Investment constraints: - Payback period is constrained Storage constraints: - Electricity stored is limited by battery

Stadler, Michael

2009-01-01T23:59:59.000Z

279

Research on Heating Scope of Combined Heat and Power (CHP) Plant  

Science Journals Connector (OSTI)

Compilation Stipulation on heat-electricity cogeneration program (trial implementation) published recently says, Under the condition of reasonable technical economy, heat resource shall be concentrated as far as...

Tai L; Zheng Wang; Hui Kang

2007-01-01T23:59:59.000Z

280

Heat Pumps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhotoYinYang. If you live in a...

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pearl River Valley Electric Power Association - Residential Energy  

Broader source: Energy.gov (indexed) [DOE]

Pearl River Valley Electric Power Association - Residential Energy Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program Pearl River Valley Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount New Homes Heat Pump: $150 - $500 Geothermal Heat Pump: $500 Electric Water Heater: $150 Existing Homes Heat Pump: $200 Gas to Electric Water Heater Conversion: $150 Provider Pearl River Valley Electric Power Association Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the

282

Minnesota Valley Electric Cooperative - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Valley Electric Cooperative - Residential Energy Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Maximum Rebate Ground-Source Heat Pump: 5 ton maximum Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $25 Freezer/Refrigerator: $25 Dishwasher: $25 Air-Source Heat Pump: $500 Ground-Source Heat Pump: $200 per ton Electric Resistant Heating Products: $10 per kW Mini-Split Heat Pumps: $75 Central A/C or Heat Pump Tune-Up: $25 Provider Minnesota Valley Electric Cooperative Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to

283

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents [OSTI]

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

284

Oklahoma Electric Cooperative - Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Electric Cooperative - Energy Efficiency Rebate Program Electric Cooperative - Energy Efficiency Rebate Program Oklahoma Electric Cooperative - Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Air-source Heat Pumps: $200 - $325/ton Geothermal Heat Pumps (with de-superheater): $600 - $700/ton Geothermal Heat Pumps (without de-superheater): $400 - $500/ton Electric Water Heaters: $180 Provider Oklahoma Electric Cooperative Oklahoma Energy Cooperative (OEC) offers rebates to residential customers for the purchase of air-source heat pumps, dual-fuel heat pumps, geothermal heat pumps and water heaters. Air-source heat pumps are eligible for a $200

285

Heating System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

286

Heating System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

287

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Broader source: Energy.gov (indexed) [DOE]

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

288

Advances in induction heating  

SciTech Connect (OSTI)

Electric induction heating, in situ, can distill (underground) high-heat-value (HHV) gas, coal tar, bitumen, and shale oil. This technique permits potentially lower cost exploitation of the solid fossil fuels: coal, oil shale, tar sand, and heavy oil. The products, when brought to the surface in gaseous form and processed, yield chemical feedstocks, natural gas, and petroleum. Residual coke can be converted, in situ, to low-heat-value (LHV) gas by a conventional water-gas process. LHV can be burned at the surface to generate electricity at low cost. The major cost of the installation will have been paid for by the HHV gas and tar distilled from the coal. There are 2 mechanisms of heating by electric induction. One uses displacement currents induced from an electric field. The other uses eddy currents induced by a magnetic field.

Not Available

1980-06-16T23:59:59.000Z

289

Peltier Junction heats and cools car seat  

SciTech Connect (OSTI)

Electrically heated seats may soon become heated and cooled seats. The design called the CCS module exploits the heat-pump capability of a class of semiconductor thermoelectric devices (TEDs) known as Peltier Junction. Every CCS module contain two TEDs. Heating and cooling occurs through convection and conduction. The heart of the system is the thermoelectric heat pump. This is originally conceived as the sole heating/cooling options for a prototype electric vehicle.

Gottschalk, M.A.

1994-10-10T23:59:59.000Z

290

Gas-bubble disease in three fish species inhabiting the heated discharge of a steam-electric station using hypolimnetic cooling water  

Science Journals Connector (OSTI)

White bass (Morone chrysops), bluegill (Lepomis macrochirus), and largemouth bass (Micropterus salmoides...) inhabiting the heated discharge canal of Duke Power Company's Marshall Steam Station, Lake Norman, Nort...

M. C. McINERNY

1990-01-01T23:59:59.000Z

291

Making Histograms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Histograms: Construction, Analysis and Understanding Histograms: Construction, Analysis and Understanding Conservation Laws - Data Analysis Using Graphs - Histograms - Units or Vectors in Particle Physics What is a Histogram? A histogram is "a representation of a frequency distribution by means of rectangles whose widths represent class intervals and whose areas are proportional to the corresponding frequencies." Online Webster's Dictionary Sounds complicated . . . but the concept really is pretty simple. We graph groups of numbers according to how often they appear. Thus if we have the set {1,2,2,3,3,3,3,4,4,5,6}, we can graph them like this: This graph is pretty easy to make and gives us some useful data about the set. For example, the graph peaks at 3, which is also the median and the mode of the set. The mean of the set is 3.27— not far from the peak. The shape of the graph gives us an idea of how the numbers in the set are distributed about the mean: the distribution of this graph is wide compared to size of the peak, indicating that values in the set are only loosely bunched round the mean.

292

Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production  

SciTech Connect (OSTI)

A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the unique characteristics of high-temperature reactors (T>700 C) to produce electricity for premium electric markets whose demands can not be met by other types of nuclear reactors. It may also make the use of nuclear reactors economically feasible in smaller electrical grids, such as those found in many developing countries. The ability to rapidly vary power output can be used to stabilize electric grid performance-a particularly important need in small electrical grids.

Forsberg, Charles W [ORNL; Conklin, Jim [ORNL

2007-09-01T23:59:59.000Z

293

Comfort-constrained distributed heat pump management  

E-Print Network [OSTI]

This paper introduces the design of a demand response network control strategy aimed at thermostatically controlled electric heating and cooling systems in buildings. The method relies on the use of programmable communicating thermostats, which are able to provide important component-level state variables to a system-level central controller. This information can be used to build power density distribution functions for the aggregate heat pump load. These functions lay out the fundamental basis for the methodology by allowing for consideration of customer-level constraints within the system-level decision making process. The proposed strategy is then implemented in a computational model to simulate a distribution of buildings, where the aggregate heat pump load is managed to provide the regulation services needed to successfully integrate wind power generators. Increased exploitation of wind resources will place similarly themed ancillary services in high-demand, traditionally provided by dispatchable energy ...

Parkinson, Simon; Crawford, Curran; Djilali, Ned

2011-01-01T23:59:59.000Z

294

Project W-320, 241-C-106 sluicing electrical calculations, Volume 2  

SciTech Connect (OSTI)

This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. These calculations are required: To determine the power requirements needed to power electrical heat tracing segments contained within three manufactured insulated tubing assemblies; To verify thermal adequacy of tubing assembly selection by others; To size the heat tracing feeder and branch circuit conductors and conduits; To size protective circuit breaker and fuses; and To accomplish thermal design for two electrical heat tracing segments: One at C-106 tank riser 7 (CCTV) and one at the exhaust hatchway (condensate drain). Contents include: C-Farm electrical heat tracing; Cable ampacity, lighting, conduit fill and voltage drop; and Control circuit sizing and voltage drop analysis for the seismic shutdown system.

Bailey, J.W.

1998-08-07T23:59:59.000Z

295

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

296

Residential Multi-Function Gas Heat Pump: Efficient Engine-Driven...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

operate a conventional electric heat pump system, fuel is first converted to energy at a power plant where the waste heat is typically discharged to the environment. Electrical...

297

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector ( kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

298

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

299

Request an Inspection of User Electrical Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Request for an Electrical Equipment Inspection All APS User electronic and electrical equipment must be inspected before use in an experiment. Please ask your beamline to make...

300

Rate-Making Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rate-Making Policy Rate-Making Policy Rate-Making Policy < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 2005 State Wisconsin Program Type Generating Facility Rate-Making Provider Public Service Commission of Wisconsin WI Act 7 states that, when proposing the purchase or construction of an electric generating facility, a utility may "apply to the [WI Public Service Commission] for an order specifying in advance the rate-making principles" that the Public Service Commission will use for "future rate-making proceedings." The Nuclear Energy Institute highlights that "There is no restriction on

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cookeville Electric Department - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Cookeville Electric Department - Residential Energy Efficiency Cookeville Electric Department - Residential Energy Efficiency Rebate Program Cookeville Electric Department - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Utility Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Energy Audit Suggested Measures: $500 Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $100 Energy Audit Suggested Measures: 50% of cost Provider Cookeville Electric Department Cookeville Electric Department, in collaboration with the Tennessee Valley Authority, offers an incentive for residential customers to install energy efficient equipment through the ''energy right'' rebate program. Rebates

302

Cullman Electric Cooperative - Energy Conservation Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Cullman Electric Cooperative - Energy Conservation Loan Program Cullman Electric Cooperative - Energy Conservation Loan Program Cullman Electric Cooperative - Energy Conservation Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Windows, Doors, & Skylights Maximum Rebate Heat Pump Rate: not specified Energy Conservation Rate: $2,000 Program Info State Alabama Program Type Utility Loan Program Provider Cullman Electric Cooperative Cullman Electric Cooperative, a Touchstone Electric Cooperative, has two loan programs. One is the [http://www.cullmanec.com/default.aspx?id=144 Energy Conservation Loan Program], which provides members a loan for insulation or storm windows. Maximum loan is $2,000, payable up to 60

303

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation  

Broader source: Energy.gov [DOE]

Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

304

Heat storage with CREDA  

SciTech Connect (OSTI)

The principle of operation of ETS or Electric Thermal Storage is discussed in this book. As can be seen by the diagram presented, heating elements buried deep within the core are energized during off-peak periods or periods of lower cost energy. These elements charge the core to a per-determined level, then during the on-peak periods when the cost of electricity is higher or demand is higher, the heat is extracted from the core. The author discusses how this technology has progressed to the ETS equipment of today; this being the finer control of charging rates and extraction of heat from the core.

Beal, T. (Fostoria Industries, Fostoria, OH (US))

1987-01-01T23:59:59.000Z

305

Influence of the lanthanum deficit on electrical resistivity and heat capacity of silver-doped lanthanum manganites La{sub 1-x}Ag{sub y}MnO{sub 3}  

SciTech Connect (OSTI)

The electrical resistivity and heat capacity of the silver-doped lanthanum manganites La{sub 0.80}Ag{sub 0.15}MnO{sub 3} and La{sub 0.85}Ag{sub 0.15}MnO{sub 3} have been investigated. Despite the nonstoichiometry of the composition, the La{sub 0.80}Ag{sub 0.15}MnO{sub 3} manganite exhibits a bulk homogeneity and better physical properties from the applied point of view as compared to the La{sub 0.85}Ag{sub 0.15}MnO{sub 3} manganite, viz., the former compound has a higher spontaneous magnetoresistance and a larger jump of the heat capacity with a small width of the phase transition, and the anomalies of the heat capacity and electrical resistivity in the vicinity of the Curie point of this compound agree with the fluctuation nature of the second-order phase transition. The behavior of the properties of lanthanum-deficient manganites under investigation in the region of the phase transition is consistent with the classical theory of indirect exchange interaction. The behavior of the temperature dependence of the electrical resistivity has been analyzed in terms of two models. One of these models is based on the tunneling of charge carriers between ferrons or polarons, and the other model is based on the polaron hopping conduction. Both approaches lead to consistent results, and their combination has made it possible to estimate the tunneling distance of charge carriers. The origin of the influence of technological parameters characterizing the synthesis of La{sub 1-x}Ag{sub y}MnO{sub 3} ceramic materials on their physical properties has been elucidated.

Abdulvagidov, Sh. B., E-mail: abdulvagidov@iwt.ru; Gamzatov, A. G. [Russian Academy of Sciences, Amirkhanov Institute of Physics, Dagestan Scientific Center (Russian Federation); Mel'nikov, O. V.; Gorbenko, O. Yu. [Moscow State University (Russian Federation)

2009-12-15T23:59:59.000Z

306

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

307

Electric Currents Electric Current  

E-Print Network [OSTI]

coefficient of resistivity Electric Power: = = = Also, = . So, = = 2 = 2 Unit of Power(P): Watt (WChapter 18 Electric Currents #12;Electric Current: Flow of electric charge Current is flow of positive charge. In reality it's the electron moves in solids- Electron current. #12;Ohm's Law : Resistance

Yu, Jaehoon

308

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

309

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

acid batteries flow battery thermal n/a n/a xiv The Effectscapacity electrical flow battery thermal n/a n/a source:lead/acid battery) and thermal storage, capabilities, with

Stadler, Michael

2009-01-01T23:59:59.000Z

310

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

capitalcost.htm). EPRI-DOE Handbook of Energy Storage foret al. 1996, 2003, EPRI-DOE Handbook 2003, Goldstein, L. etet al. 2003, EPRI-DOE Handbook 2003 and at the Electricity

Stadler, Michael

2009-01-01T23:59:59.000Z

311

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

312

KEM Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

KEM Electric Coop Inc KEM Electric Coop Inc Jump to: navigation, search Name KEM Electric Coop Inc Place North Dakota Utility Id 10153 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png DH-4M Commercial Dual Heat (DH)-3M Dual Heat Service - 3M Commercial Dual Heat Service Sub-metering RC-1 Residential Dual Heat Service Sub-metering GS-1 Commercial Dual Heat Service Sub-metering SE-1 Residential Electric Heat Service -4M Residential Electric Heat Service -6M Industrial Electric Heat Service -7 M Residential

313

Combined Heat and Power Pilot Loan Program (Connecticut) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Loan Program (Connecticut) Loan Program (Connecticut) Combined Heat and Power Pilot Loan Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority Start Date 06/18/2012 State Connecticut Program Type State Loan Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

314

Combined Heat and Power Pilot Grant Program (Connecticut ) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Grant Program (Connecticut ) Grant Program (Connecticut ) Combined Heat and Power Pilot Grant Program (Connecticut ) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority State Connecticut Program Type State Grant Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The initial application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

315

Wood Heating Fuel Exemption  

Broader source: Energy.gov [DOE]

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

316

Absorption Heat Pump Developments  

Science Journals Connector (OSTI)

The implementation of both new thermodynamic cycles and new suitable fluids makes it possible to considerably widen the capacity to recover and upgrade low level heat contained particularly in industrial therm...

G. Cohen; A. Rojey

1983-01-01T23:59:59.000Z

317

Absorption Heat Pump Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pump Basics Absorption Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and cannot serve as a heat source. These are also called gas-fired coolers. How Absorption Heat Pumps Work Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

318

Absorption Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

319

Absorption Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Absorption Heat Pumps Absorption Heat Pumps Absorption Heat Pumps June 24, 2012 - 2:11pm Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat pumps, however, these are not reversible and cannot serve as a heat source. Residential absorption heat pumps use an ammonia-water absorption cycle to provide heating and cooling. As in a standard heat pump, the refrigerant (in this case, ammonia) is condensed in one coil to release its heat; its

320

Saving Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Saving Electricity Saving Electricity Saving Electricity Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. Reducing energy use in your home saves you money, increases our energy security and reduces the pollution that is emitted from non-renewable sources of energy. Learn more about reducing your electricity use. We rely on electricity to power our lights, appliances, and electronics in our homes. Many of us also use electricity to provide our homes with hot water, heat, and air conditioning. As we use more electricity in our homes,

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

E-Print Network 3.0 - absorption-sorption heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

322

E-Print Network 3.0 - absorption-type heat pumps Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Corporation Auxiliary - Heat pump water heater 50... -gal tank, electric auxiliary heating Multiple operating modes: heat pump, hybrid and standard... and Ventilation Systems...

323

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

limits potential use of waste heat for space conditioning.the attractive uses for waste heat in many circumstancesprovide electricity and use the waste heat for cleaning, the

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

324

Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the suns not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MITs heat storage materials are designed to melt at high temperatures and conduct heat wellthis makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MITs low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

None

2011-11-21T23:59:59.000Z

325

5 Questions for an Expert: Bob Gemmer on Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Combined heat and power (CHP), also known as co-generation, provides both electricity and heat from a single source all while saving energy and slashing carbon pollution. CHP systems capture energy that is normally lost in centralized power generation and convert that energy to heat and cool manufacturing facilities and businesses. Unlike central power generation, CHP systems are distributed energy generation systems and that means that they are located close to where energy is consumed. The proximity of power generation to its use makes CHP a reliable source of power for hospitals, schools, office buildings, apartment complexes, and other large buildings that require around-the-clock electricity. Bob Gemmer of EEREs Advanced Manufacturing Office is one of the Energy Departments primary experts on CHP technologies with more than 40 years of related expertise. We sat down with Bob to learn more about him and what makes him such a passionate advocate for CHP.

326

IEA Heat Pump Conference 2011, 16 -19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR SOURCE HEAT PUMP WATER  

E-Print Network [OSTI]

. Compared to those water heaters, heat pump water heating systems can supply much more heat just with the same amount of electric input used for electric water heaters. The ASHPWH absorbs heat from the ambient- 1 - 10th IEA Heat Pump Conference 2011, 16 - 19 May 2011, Tokyo, Japan DYNAMIC MODELING OF AN AIR

Paris-Sud XI, Université de

327

Heat and Mass Transfer of the New LiBr-Based Working Fluids for Absorption Heat Pump  

Science Journals Connector (OSTI)

Heat and Mass Transfer of the New LiBr-Based Working Fluids for Absorption Heat Pump ... The electrical heating inside the evaporator was provided to treat the heat of vaporization during vapor generation. ... To provide the proper heat to the strong solution, an electrical heater equipped with a power supply was inserted indirectly in the solution chamber. ...

Sung-Bum Park; Huen Lee

2002-02-02T23:59:59.000Z

328

Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids  

SciTech Connect (OSTI)

Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

2013-07-22T23:59:59.000Z

329

Liquid metal thermal electric converter  

DOE Patents [OSTI]

A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

Abbin, Joseph P. (Albuquerque, NM); Andraka, Charles E. (Albuquerque, NM); Lukens, Laurance L. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

330

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Broader source: Energy.gov (indexed) [DOE]

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

331

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway  

Broader source: Energy.gov (indexed) [DOE]

Gas, Heat, Water, Sewerage Collection and Disposal, and Street Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) Gas, Heat, Water, Sewerage Collection and Disposal, and Street Railway Companies (South Carolina) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to public utilities and entities furnishing natural gas, heat, water, sewerage, and street railway services to the public. The legislation addresses rates and services, exemptions, investigations, and records. Article 4 (58-5-400 et seq.) of this

332

Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Central Alabama Electric Cooperative - Residential Energy Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $1,200 Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Touchstone Energy Homes with Geothermal/Dual-Fuel Heat Pumps: $200 for whole home, plus $200 per ton of heat pump Provider Central Alabama Electric Cooperative Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a

333

Thermionic electric converter  

SciTech Connect (OSTI)

A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The emf generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.

Davis, E.D.

1981-12-01T23:59:59.000Z

334

FEMP--Geothermal Heat Pumps  

Broader source: Energy.gov (indexed) [DOE]

heat pump-like an air conditioner or refrigera- heat pump-like an air conditioner or refrigera- tor-moves heat from one place to another. In the summer, a geothermal heat pump (GHP) operating in a cooling mode lowers indoor temperatures by transferring heat from inside a building to the ground outside or below it. Unlike an air condition- er, though, a heat pump's process can be reversed. In the winter, a GHP extracts heat from the ground and transfers it inside. Also, the GHP can use waste heat from summer air-conditioning to provide virtually free hot-water heating. The energy value of the heat moved is typically more than three times the electricity used in the transfer process. GHPs are efficient and require no backup heat because the earth stays at a relatively moderate temperature throughout the year.

335

Southern Pine Electric Power Association - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Southern Pine Electric Power Association - Residential Energy Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program Southern Pine Electric Power Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Comfort Advantage Plus Homes with Heat Pumps: $500 Comfort Advantage Homes with Heat Pumps: $300 Additional Heat Pump: $150 Provider Southern Pine Electric Power Association Southern Pine Electric Power Association offers the Comfort Advantage Home Program which provides rebates on heat pumps to new homes which meet certain Comfort Advantage weatherization standards. To qualify for this rebate the home must have:

336

Pedernales Electric Cooperative - HVAC Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Pedernales Electric Cooperative - HVAC Rebate Program Pedernales Electric Cooperative - HVAC Rebate Program Pedernales Electric Cooperative - HVAC Rebate Program < Back Eligibility Commercial Residential Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Texas Program Type Utility Rebate Program Utility Rebate Program Rebate Amount Central AC with Gas Furnace: $300 - $400/unit Heat Pump: $400 - $500/unit Dual-Fuel Heat Pump: $400 - $500/unit Geothermal Heat Pump: $1,000/unit Water-Source Heat Pump: $1,000/unit Provider Pedernales Electric Cooperative Pedernales Electric Cooperative offers equipment rebates to members who install energy efficient HVAC equipment. Eligible equipment includes:

337

Induction heaters used to heat subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

Nguyen, Scott Vinh (Houston, TX); Bass, Ronald M. (Houston, TX)

2012-04-24T23:59:59.000Z

338

NSTX Electrical Power Systems  

SciTech Connect (OSTI)

The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

1999-12-16T23:59:59.000Z

339

Lesson 6 - Atoms to Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6 - Atoms to Electricity Lesson 6 - Atoms to Electricity Most power plants make electricity by boiling water to make steam that turns a turbine. A nuclear power plant works this...

340

Vehicle Technologies Office: Electric Drive Technologies  

Broader source: Energy.gov [DOE]

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Saving Electricity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Electronics Buying & Making Electricity Tips and Advice Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes...

342

Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

Shahabeddin K. Mohammadian; Yuwen Zhang

2015-01-01T23:59:59.000Z

343

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

344

Murfreesboro Electric Department - Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Murfreesboro Electric Department - Energy Efficiency Rebate Program Murfreesboro Electric Department - Energy Efficiency Rebate Program Murfreesboro Electric Department - Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Single-Family Homes: $1,500 Multi-Family Homes: Up to $100 per unit Water Heater: $25 - $100 Provider Murfreesboro Electric Department Murfreesboro Electric Department, in collaboration with the Tennessee Valley Authority, offers incentives to home builders and homeowners for the

345

Electric Efficiency Standard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Efficiency Standard Electric Efficiency Standard Electric Efficiency Standard < Back Eligibility Investor-Owned Utility Retail Supplier Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Program Info State Indiana Program Type Energy Efficiency Resource Standard Provider Indiana Utility Regulatory Commission In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sales by the year 2019. Utilities under IURC jurisdiction must file three-year DSM plans, beginning in July of 2010, which indicate progress and plans for reaching

346

Gibson Electric Membership Corporation - Energy Efficiency Rebates |  

Broader source: Energy.gov (indexed) [DOE]

Gibson Electric Membership Corporation - Energy Efficiency Rebates Gibson Electric Membership Corporation - Energy Efficiency Rebates Gibson Electric Membership Corporation - Energy Efficiency Rebates < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Energy Right New Home: $300 - $400 Water Heater: $100 - $250 Provider Gibson Electric Membership Corporation Gibson Electric Membership Corporation, in collaboration with the Tennessee Valley Authority, promotes energy efficient building design through its [http://www.energyright.com/ ''energy right''] New Homes Program. Rebates

347

Demonstration of Combined Zero-Valent Iron and Electrical Resistance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation. Demonstration of Combined Zero-Valent Iron and Electrical...

348

Southwest Electric Cooperative - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Southwest Electric Cooperative - Residential Energy Efficiency Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Cooling Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Energy Audit Repairs: $500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump (New Units): $750/ton Geothermal Heat Pump (Replacement Units): $200/ton Dual Fuel Heat Pump: $150/ton Room AC: $50 Energy Audit Repairs: 50% of cost Provider Southwest Electric Cooperative Southwest Electric Cooperative offers rebates to its customers that purchase energy efficient heating and air conditioning equipment . This

349

Pool heating system on island brings year-round enjoyment  

SciTech Connect (OSTI)

The Bahamas is not generally thought of as a place in need of pool heating. However, the remote Bahamian island of Treasure Cay is actually situated north of Ft. Lauderdale, Florida. Pool temperatures drop during the winter, thus shortening the swimming season. The Beach Villas Homeowners Association of Treasure Cay investigated pool-heating options some time ago. Energy on Treasure Cay is expensive - about 25 cents/kWh - making cost a major concern for the association as they evaluated their choices. An electric heat pump was rule out as it would place too great a burden on the electricity load of the remote island. Heating the pool with propane gas was deemed far too costly. After evaluating each of these heating methods on the basis of economics, energy efficiency, and comfort, the association concluded that solar would be the best method. They selected a solar pool heating system manufactured by FAFCO, Inc. and installed by SUNWORKS in Ft. Lauderdale. The system requires virtually no daily maintenance, and there have been no problems with the system since its installation. In addition to being trouble-free, the FAFCO solar pool heater has saved Treasure Cay a great deal of money. The equipment cost about $9,500; lumber, PVC, and labor brought the total cost to $13,000. By comparison, a propane-gas system would have cost $4,000 but would have generated a yearly gas bill of $12,000. Therefore, payback on the system began immediately upon installation.

Not Available

1993-01-01T23:59:59.000Z

350

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect (OSTI)

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

351

INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER  

E-Print Network [OSTI]

INVESTIGATING THE EFFECT OF HEATING METHOD ON POOL BOILING HEAT TRANSFER Satish G. Kandlikar surfaces in laboratories to obtain the heat transfer coefficient data. In many process applications however, a fluid stream is employed as the heating medium. The heat transfer data generated with the electrically

Kandlikar, Satish

352

Electrical initiation of an energetic nanolaminate film  

DOE Patents [OSTI]

A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

Tringe, Joseph W. (Walnut Creek, CA); Gash, Alexander E. (Brentwood, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

2010-03-30T23:59:59.000Z

353

Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules  

E-Print Network [OSTI]

and gas-turbines, fuel cells, heat exchangers, absorption chillers, stationary electricity storage, photovoltaic panels, solar

Cardoso, Goncalo

2014-01-01T23:59:59.000Z

354

Heat transfer dynamics  

SciTech Connect (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

355

A FINITE ELEMENT MODEL FOR THE TIME-DEPENDENT JOULE HEATING PROBLEM*  

E-Print Network [OSTI]

.3) 0 system models the electric heating* *ial differential equation describing the electric heating of a conducting body. We prove err* *or A FINITE ELEMENT MODEL FOR THE TIME-DEPENDENT JOULE HEATING PROBLEM

Larsson, Stig

356

Heat-Traced Fluid Transfer Lines  

E-Print Network [OSTI]

This paper discusses basic considerations in designing a heat tracing system using either team or electrical tracing. Four basic reasons to heat trace are dealt with: water freeze protection, chemical freeze protection, viscosity maintenance...

Schilling, R. E.

1984-01-01T23:59:59.000Z

357

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Broader source: Energy.gov (indexed) [DOE]

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

358

Heat pumps in industrial cleaning applications  

E-Print Network [OSTI]

Heat pumps in industrial cleaning applications Achema 2012 - Frankfurt Bjarke Paaske, bjpa consuming n Plants are often heated by electricity n No standard heat pump units available Project to promote heat pumps in industrial cleaning apps. #12;Cleaning plant, drum type Items enter here #12;Washing

Oak Ridge National Laboratory

359

Dakota Electric Association - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Dakota Electric Association - Residential Energy Efficiency Rebate Dakota Electric Association - Residential Energy Efficiency Rebate Program Dakota Electric Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount CFL's: $1/bulb LED's: $3/bulb AC/Heat Pump Tune-Up: $25 Central AC/Heat Pump: $30 - $330 depending on SEER rating Air-Source Heat Pump: $330 for off peak control Ductless Air-Source Heat Pump: $300 Furnace Motor: $100 Geothermal Heat Pump: $400/ton Storage Electric Heating: $25 per kW Electric/Heat Pump Water Heater: $100 - $200 Refrigerator: $75 Freezer: $75 Provider Dakota Electric Service

360

Baltimore Gas and Electric Company (Electric) - Commercial Energy  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Gas and Electric Company (Electric) - Commercial Energy Baltimore Gas and Electric Company (Electric) - Commercial Energy Efficiency Program Baltimore Gas and Electric Company (Electric) - Commercial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $1,000,000/corporate tax ID/year Commercial Rebates: Contact BGE Retro-Commissioning, Operations, and Maintenance: $15,000 Program Info State Maryland Program Type Utility Rebate Program Rebate Amount New Construction Performance Lighting: $0.40 - $0.80/watt reduced New Construction Green Building Incentive: $0.25 - $0.40/kWh saved first

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

362

Ultra-Efficient and Power-Dense Electric Motors  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

food, aggregates, mining, material handling, heating, ventilating, air conditioning, wastewater, air handling, and beverage industries. Project Partners Baldor Electric Company...

363

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network [OSTI]

Making: Transportation and Electricity GHG Tradeoffs 5.1generation . . . . . . . . . . . . . . . GHG emissions of aresults for SolFocus . . . SolFocus GHG breakdown using CEDA

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

364

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

365

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

366

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

367

Steady response to heating: Gaussian heat source  

E-Print Network [OSTI]

+ prescribed latent heating => "Matsuno-Gill model" Moisture equation for precipitation term ¡ Can make. of Equatorial Waves Filter out "background spectrum": ¡ Can see all different wave types! Especially Kelvin #12;Equatorial Waves Alternative theory for wave speed: ¡ Higher vertical mode structure causes phase

Frierson, Dargan

368

Process Integration of Industrial Heat Pumps  

E-Print Network [OSTI]

, COP Carnot T W---i Figure 6. Grand composite curve with electric drive system The COP for a prime heat system assumes the exhaust heat from the driver is used in the process. The COP is then the ratio of total heat delivered (Q4 + QZ.... Nomenclature is as given in Figures 6-8. The electric drive heat pump is the most widely understood system. It has the advantage of simplic ity and requires little disruption of the process. However, an electric drive may upset the utility power/heat...

Priebe, S. J.; Chappell, R. N.

369

Energy Efficient Design of a Waste Heat Rejection System  

E-Print Network [OSTI]

, and oil preheaters. The heating requirements for these heat sinks are generally met by burning fossil fuels or even by using electric heaters while available waste heat is rejected to the surrounding environment using devices such as cooling towers...

Mehta, P.

370

East Central Electric Cooperative - Residential Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program East Central Electric Cooperative - Residential Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Cooling Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Replacement ground source heat pump - $150 per ton Complete system (unit and ground loop) - $750 per ton Electric water heater - $150 Energy Star Room AC - $50 Energy Star clothes washer - varies depending on cost Energy Star dishwasher - varies depending on cost Provider East Central Electric Cooperative East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water

371

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and  

Broader source: Energy.gov (indexed) [DOE]

Memphis Light, Gas and Water (Electric) - Commercial Efficiency Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program Memphis Light, Gas and Water (Electric) - Commercial Efficiency Advice and Incentives Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Commercial Weatherization Maximum Rebate 70% of project cost Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Commercial Dishwashers: $400 - $1500 Commercial Refrigerator: $60 - $100 Ice Machines: $100 - $400 Insulated Holding Cabinets: $250 - $600 Electric Steam Cookers: $400 Electric Convection Ovens: $200 Electric Griddles: $200 Electric Combination Ovens: $2,000

372

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

373

Heat treatment furnace  

DOE Patents [OSTI]

A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

2014-10-21T23:59:59.000Z

374

Electrohydrodynamically enhanced condensation heat transfer  

E-Print Network [OSTI]

In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non uniform electric field in the vicinity of the condensation surface the extraction of liquid...

Wawzyniak, Markus

2012-06-07T23:59:59.000Z

375

Salem Electric- Solar Water Heater Rebate  

Broader source: Energy.gov [DOE]

Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

376

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

377

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

378

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

379

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

380

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

382

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

383

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

384

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

385

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

386

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

387

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

388

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

389

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

390

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

391

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

392

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

393

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

394

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

395

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

396

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

397

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

398

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

399

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

400

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

402

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

403

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

404

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

405

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

406

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

407

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

408

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

409

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

410

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

411

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

412

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

413

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

414

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

415

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

416

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

417

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

418

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

419

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

420

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

422

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

423

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

424

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

425

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

426

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

427

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

428

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

429

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

430

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

431

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

432

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

433

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

434

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

435

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

436

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

437

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

438

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

439

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

440

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

442

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

443

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

444

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

445

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

446

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

447

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

448

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

449

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

450

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

451

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

452

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

453

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

454

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

455

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

456

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

457

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

458

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

459

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

460

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

462

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

463

A functional analysis of electrical load curve modelling for some households specific electricity end-uses  

E-Print Network [OSTI]

domestic end-uses, the development of plug-in hybrid and electric vehicles, the increase of heat pumps heating systems such as heat pumps in new building or which will replace old installed fossil fuels based systems; · integration of new end-uses such as Plug-in Electric Vehicles and an always growing number

Paris-Sud XI, Université de

464

Electrically-Assisted Diesel Particulate Filter Regeneration  

Broader source: Energy.gov (indexed) [DOE]

partner for this project, has developed a DPF technology that utilizes electrical power to heat the DPF for regeneration, thereby greatly reducing the "fuel penalty". D P F...

465

Burlington Electric Department - Commercial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Burlington Electric Department - Commercial Energy Efficiency Burlington Electric Department - Commercial Energy Efficiency Rebate Program Burlington Electric Department - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Savings Category Manufacturing Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Commercial Lighting Lighting Maximum Rebate Rebates exceeding $5,000 require pre-approval by BED prior to purchase Buildings exceeding 10,000 square feet must consult BED regarding rebates prior to purchase Program Info State Vermont Program Type Utility Rebate Program Rebate Amount Lighting: See Program Website HVAC Air Conditioners/Heat Pumps: $50 - $100/ton Integrated Dual Enthalpy Economizer Controls: $250/controlled unit Ventilation Fans: $35 - $60

466

Consumers Energy (Electric) - Residential Energy Efficiency Program |  

Broader source: Energy.gov (indexed) [DOE]

Electric) - Residential Energy Efficiency Program Electric) - Residential Energy Efficiency Program Consumers Energy (Electric) - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Home Performance Comprehensive Assessment and Installations: $3500 Insulation: $1,025 Windows: $250 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFL Lighting: Retailer Instant Discount Programmable Thermostat: $10 Central A/C and Heat Pumps: $150 - $250 Central A/C Tune up: $50 Ground Source Heat Pump: $200-$300

467

Making the Right Substitution for Better Thermoelectrics | U.S. DOE Office  

Office of Science (SC) Website

Making the Right Substitution for Better Thermoelectrics Making the Right Substitution for Better Thermoelectrics Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » February 2013 Making the Right Substitution for Better Thermoelectrics Exploiting the self-organizing nature of atoms to block heat transfer and improve thermal-to-electrical energy conversion. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Ctirad Uher

468

The impacts of solar water heating in low-income households on the distribution utilitys active, reactive and apparent power demands  

Science Journals Connector (OSTI)

In Brazilian low-income households, water-heating requirements are typically met by electrical showerheads. On average, 73.1% of all residential units in the country are equipped with these resistance-heating devices, with nominal powers ranging from 3 to 8kW. This situation imposes a considerable burden on the electricity utility companies, since electrical showerheads typically represent the highest load but the lowest utilization (load factor) in a residential consumer unit. Furthermore, typical utilization times coincide with, and contribute to, the electrical power demand peaks in Brazil, rendering these low-cost, high-power electrical devices a high-cost consumer for the electrical system to cater for. For low-income residential consumers, electricity tariffs are subsidized, and utilities must therefore make a considerable investment in infrastructure for a limited return. In this paper we analyze the impacts of solar water heating in low-income households on the distribution utility active, reactive and apparent power demands. We have monitored a statistically representative group of low-income residences equipped with a compact domestic solar water heater in Florianopolis Brazil for 1year. We show that in comparison with identical residential units using electrical showerheads, with the adoption of solar water heating the reductions in the active, reactive and apparent power demands on the distribution utility were 49%, 29% and 49% respectively.

Helena F. Naspolini; Ricardo Rther

2011-01-01T23:59:59.000Z

469

Empire District Electric - Residential Energy Efficiency Rebate |  

Broader source: Energy.gov (indexed) [DOE]

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

470

Chapter 17 - Nuclear heat energy  

Science Journals Connector (OSTI)

Abstract This chapter delves into the important heating processes within a nuclear power plant. Applying Fouriers law of heat conduction permits determining temperature distributions within the nuclear fuel rods. In contrast, convective cooling occurs on the rod surface. The coolant, cladding and fuel temperature distributions through a reactor are determined. Besides heat transfer in the reactor core, some power plants employ heat exchangers to generate steam that is fed to a turbine-generator to produce electricity. As a consequence of the second law of thermodynamics, thermal power plants reject condenser heat to the environment through mechanisms such as cooling towers.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

471

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Broader source: Energy.gov (indexed) [DOE]

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

472

Influence of Damp Heat on the Electrical, Optical, and Morphological Properties of Encapsulated CuInGaSe2 Devices: Preprint  

SciTech Connect (OSTI)

CuInGaSe2 (CIGS) devices, encapsulated with different backsheets having different water vapor transmission rates (WVTR), were exposed to damp heat (DH) at 85C and 85% relative humidity (RH) and characterized periodically to understand junction degradation induced by moisture ingress. Performance degradation of the devices was primarily driven by an increase in series resistance within first 50 h of exposure, resulting in a decrease in fill factor and, accompanied loss in carrier concentration and widening of depletion width. Surface analysis of the devices after 700-h DH exposure showed the formation of Zn(OH)2 from hydrolysis of the Al-doped ZnO (AZO) window layer by the moisture, which was detrimental to the collection of minority carriers. Minority carrier lifetimes observed for the CIGS devices using time resolved photoluminescence (TRPL) remained relatively long after DH exposure. By etching the DH-exposed devices and re-fabricating with new component layers, the performance of reworked devices improved significantly, further indicating that DH-induced degradation of the AZO layer and/or the CdS buffer was the primary performance-degrading factor.

Sundaramoorthy, R.; Pern, F. J.; Teeter, G.; Li, J. V.; Young, M.; Kuciauskas, D.; Call, N.; Yan, F.; To, B.; Johnston, S.; Noufi, R.; Gessert, T. A.

2011-08-01T23:59:59.000Z

473

Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems  

E-Print Network [OSTI]

Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems David Erickson microfluidic/biochip systems must have the ability to rapidly reject this heat to the surroundings. Generally it is the ability to dissipate this heat that limits the strength of the applied electric field and thus the maximum

Erickson, David

474

Molecular heat pump  

E-Print Network [OSTI]

We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

Dvira Segal; Abraham Nitzan

2005-10-11T23:59:59.000Z

475

Columbia Rural Electric Association - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Columbia Rural Electric Association - Residential Energy Efficiency Columbia Rural Electric Association - Residential Energy Efficiency Rebate Program Columbia Rural Electric Association - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info Expiration Date 9/31/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Dish Washer: $20 Refrigerator: $35 Freezer: $20 Electric Water Heater: $25 Marathon Electric Water Heater: $150 - $200 Heat Pump Water Heater: $150 CFLs: $1 - $10/fixture PTCS Duct Sealing: $300 PTCS Commissioning/Controls: $200

476

Douglas Electric Cooperative - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Douglas Electric Cooperative - Residential Energy Efficiency Rebate Douglas Electric Cooperative - Residential Energy Efficiency Rebate Program Douglas Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Clothes Washers: $50 PTCS Heat Pumps: $1000 Ductless Heat Pumps: $1000 Energystar Manufactured Homes: $500 Weatherization: 25% - Up To $350 Provider Central Electric Cooperative Douglas Electric Cooperative offers rebates to its members for the purchase of energy efficient products and measures. Rebates include clothes washers,

477

Investment appraisal of technology innovations on dairy farm electricity consumption  

Science Journals Connector (OSTI)

ABSTRACT The aim of this study was to conduct an investment appraisal for milk-cooling, water-heating, and milk-harvesting technologies on a range of farm sizes in 2 different electricity-pricing environments. This was achieved by using a model for electricity consumption on dairy farms. The model simulated the effect of 6 technology investment scenarios on the electricity consumption and electricity costs of the 3 largest electricity-consuming systems within the dairy farm (i.e., milk-cooling, water-heating, and milking machine systems). The technology investment scenarios were direct expansion milk-cooling, ice bank milk-cooling, milk precooling, solar water-heating, and variable speed drive vacuum pump-milking systems. A dairy farm profitability calculator was combined with the electricity consumption model to assess the effect of each investment scenario on the total discounted net income over a 10-yr period subsequent to the investment taking place. Included in the calculation were the initial investments, which were depreciated to zero over the 10-yr period. The return on additional investment for 5 investment scenarios compared with a base scenario was computed as the investment appraisal metric. The results of this study showed that the highest return on investment figures were realized by using a direct expansion milk-cooling system with precooling of milk to 15C with water before milk entry to the storage tank, heating water with an electrical water-heating system, and using standard vacuum pump control on the milking system. Return on investment figures did not exceed the suggested hurdle rate of 10% for any of the ice bank scenarios, making the ice bank system reliant on a grant aid framework to reduce the initial capital investment and improve the return on investment. The solar water-heating and variable speed drive vacuum pump scenarios failed to produce positive return on investment figures on any of the 3 farm sizes considered on either the day and night tariff or the flat tariff, even when the technology costs were reduced by 40% in a sensitivity analysis of technology costs.

J. Upton; M. Murphy; I.J.M. De Boer; P. W. G. Groot Koerkamp; P.B.M. Berensten; L. Shalloo

2014-01-01T23:59:59.000Z

478

Gunnison County Electric - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Gunnison County Electric - Residential Energy Efficiency Rebate Gunnison County Electric - Residential Energy Efficiency Rebate Program Gunnison County Electric - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Dishwashers: $45/unit Clothes Washers: $60/unit Refrigerators: $60/unit Freezers: $60/unit Refrigerator Recycling: $40/unit Freezer Recycling: $40/unit Electric Water Heaters (30-gal capacity, 6-year warranty, mandated EF rating): $70/unit Super Efficient Water Heater: $120/unit (primary heating must be from geothermal heat pump) Water Heaters (lifetime warranty): Additional $25/unit

479

Ameren Missouri (Electric) - Residential Energy Efficiency Rebate Programs  

Broader source: Energy.gov (indexed) [DOE]

Ameren Missouri (Electric) - Residential Energy Efficiency Rebate Ameren Missouri (Electric) - Residential Energy Efficiency Rebate Programs Ameren Missouri (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Refrigerator/Freezer Recycling: 3 units Program Info State Missouri Program Type Utility Rebate Program Rebate Amount CFL's: In-store discounts, Online Store Refrigerator/Freezer Recycling: $50 Air Source Heat Pump: $300 - $650 Central AC: $150 - $425 Electronically Commutated Blower Motor: $50 - $100 Geothermal Heat Pump: $600 Diagnostic Tune-Up: $75 Programmable Thermostat: $25 Electric Storage Water Heater: $25

480

Singing River Electric Power Association - Comfort Advantage Home Program |  

Broader source: Energy.gov (indexed) [DOE]

Singing River Electric Power Association - Comfort Advantage Home Singing River Electric Power Association - Comfort Advantage Home Program Singing River Electric Power Association - Comfort Advantage Home Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Program Info State Mississippi Program Type Utility Rebate Program Rebate Amount Contact Singing River Electric Power Association Provider Singing River Electric Power Association Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet [http://www.comfortadvantage.com/Comfort%20Advantage%20brochure.pdf Comfort Advantage] weatherization standards. To qualify for this rebate the home

Note: This page contains sample records for the topic "making electricity heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geothermal Heat Pumps- Heating Mode  

Broader source: Energy.gov [DOE]

In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

482

Floating insulated conductors for heating subsurface formations  

DOE Patents [OSTI]

A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

Burns, David; Goodwin, Charles R.

2014-07-29T23:59:59.000Z

483

Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov (indexed) [DOE]

Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Dual Fuel Heat Pumps: two systems per house Geothermal Heat Pumps: $1,000 Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $500 Geothermal Heat Pumps: $200/ton Electric Water Heaters: $200 - $250, depending on size Provider Pee Dee Electric Cooperative Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for

484

Cuivre River Electric - Residential Energy Efficiency Rebate Programs |  

Broader source: Energy.gov (indexed) [DOE]

Cuivre River Electric - Residential Energy Efficiency Rebate Cuivre River Electric - Residential Energy Efficiency Rebate Programs Cuivre River Electric - Residential Energy Efficiency Rebate Programs < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pumps: Maximum of 10 tons for residential systems and 50 tons for commercial systems Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Water Heater: $50 Geothermal Heat Pumps: $750/ton Dual Fuel Air-source Heat Pumps: $150/ton Provider Cuivre River Electric Cuivre River Electric Cooperative, through the Take Control and Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water heaters. Water

485

Lamb County Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Lamb County Electric Coop, Inc Lamb County Electric Coop, Inc Place Texas Utility Id 10625 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Add On Heat Pump Residential Add On Heat Pump (Commercial) Commercial Add On Heat Pump\Water Heater Residential Add On Heat Pump\Water Heater (Commercial) Commercial All Electric Space Heating Residential All Electric Space Heating (Commercial) Commercial All Electric Space Heating\Water Heater Residential All Electric Space Heating\Water Heater (Commercial) Commercial

486

Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Norwich Public Utilities (Electric) - Residential Energy Efficiency Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Energy Star rebate: one rebate per appliance per residential utility customer Program Info Expiration Date 12/31/12 State Connecticut Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers: $60 Washing Machines: $60 Room AC: $60 Heat Pump Water Heater: $500 Central AC: $200 - $300/ton Dual Enthalpy Economizer Controls: $250 Air Source Heat Pump: $200 - $300/ton Geothermal Heat Pump: $150/ton

487

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facilitys electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

488

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Highlights: August 2011 Highlights: August 2011 Extreme heat in Texas, New Mexico, Colorado and Arizona drove significant increases in the retail sales of electricity in the Southwest. Wind generation increased in much of the United States, except the middle of the country where total generation declined. Bituminous coal stocks dropped 14% from August 2010. Key indicators Same Month 2010 Year to date Total Net Generation -1% 11% Residential Retail Price -6% 11% Cooling Degree-Days -3% 2% Natural Gas Price, Henry Hub -6% -9% Bituminous Coal Stocks -14% -14% Subbituminous Coal Stocks -10% -17% Heat wave drives record demand and wholesale prices in Texas A prolonged August heat wave in Texas stressed available generating capacity and produced very high wholesale prices in the Electric

489

Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Cooling Maximum Rebate Geothermal Heat Pumps: 10 ton maximum for Residential, 50 ton maximum for Commercial Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Room AC: $50 Water Heater: $50 Air Source Heat Pumps: $150 per ton Dual Fuel Air Source Heat Pumps: $300 per ton Geothermal Heat Pumps (Closed Loop): up to $850 per ton Geothermal Heat Pumps (Open Loop or Replacement): $150 per ton Provider Co-Mo Electric Cooperative Co-Mo Electric Cooperative provides rebates to residential and commercial

490

Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) |  

Broader source: Energy.gov (indexed) [DOE]

Butler Rural Electric Cooperative - Residential Rebate Program Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Geothermal Systems (New Installations): $1,200 Geothermal Systems (Replacement Systems): $600 Dual Fuel Heating Systems (New Installations): $600 Dual Fuel Heating Systems (Replacements): $300 Air Source Heat Pump Systems (New and Replacements): $300 Marathon Water Heaters: $350 - $550 Provider Butler Rural Electric Cooperative, Inc. Butler Rural Electric Cooperative provides rebates for geothermal heat pumps, dual fuel heating systems, and water heaters. A $1,200 rebate is

491

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

492

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

493

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Soli