National Library of Energy BETA

Sample records for making electricity heating

  1. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  2. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  3. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, Neill

    1985-01-01

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure.

  4. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of iStockphotodrewhadley...

  5. Electric Resistance Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in homes or...

  6. Electric Resistance Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Heating Systems » Electric Resistance Heating Electric Resistance Heating Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Baseboard heaters are one type of electric resistance heaters. | Photo courtesy of ©iStockphoto/drewhadley Electric resistance heating is 100% energy efficient in the sense that all the incoming electric energy is converted to heat. However, most electricity is produced from coal, gas, or

  7. Buying and Making Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver » Buying and Making Electricity Buying and Making Electricity You can make your own electricity by installing a small solar electric (photovoltaic) system at your home. | Photo courtesy of Susan Bilo/NREL. You can make your own electricity by installing a small solar electric (photovoltaic) system at your home. | Photo courtesy of Susan Bilo/NREL. You can take advantage of clean, renewable energy by buying "green power" or by making your own electricity with a small home

  8. Electric Adsorption Heat Pump for Electric Vehicles: Electric-Powered Adsorption Heat Pump for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: PNNL is developing a new class of advanced nanomaterial called an electrical metal organic framework (EMOF) for EV heating and cooling systems. The EMOF would function similar to a conventional heat pump, which circulates heat or cold to the cabin as needed. However, by directly controlling the EMOF's properties with electricity, the PNNL design is expected to use much less energy than traditional heating and cooling systems. The EMOF-based heat pumps would be light, compact, efficient, and run using virtually no moving parts.

  9. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, N.

    1985-03-19

    A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.

  10. Buying & Making Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Buying & Making Electricity Buying Clean Electricity Buying Clean Electricity You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. Read more Planning for a Small Renewable Energy System Planning for a Small Renewable Energy System Planning for a home renewable energy system is a process that includes analyzing your existing

  11. Buying and Making Electricity | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home. | Photo courtesy of Susan BiloNREL. You can take advantage of clean, renewable energy by buying "green power" or by making your own electricity with a small home...

  12. Buying and Making Electricity | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    You can take advantage of clean, renewable energy by buying "green power" or by making your own electricity with a small home renewable energy system. Learn the purchasing options ...

  13. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  14. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound ...

  15. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound ...

  16. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy ...

  17. Portland General Electric- Heat Pump Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Portland General Electric's (PGE) Heat Pump Rebate Program offers residential customers a $200 rebate for an energy-efficient heat pump installed to PGE’s standards by a PGE-approved contractor....

  18. Valley Electric Association- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Valley Electric Association (VEA), a nonprofit member owned cooperative, developed the domestic solar water heating program to encourage energy efficiency at the request of the membership. VEA...

  19. Zone heated diesel particulate filter electrical connection

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-03-30

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  20. Electrical assembly having heat sink protrusions

    SciTech Connect (OSTI)

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2009-04-21

    An electrical assembly, comprising a heat producing semiconductor device supported on a first major surface of a direct bond metal substrate that has a set of heat sink protrusions supported by its second major surface. In one preferred embodiment the heat sink protrusions are made of the same metal as is used in the direct bond copper.

  1. Making the most of Responsive Electricity Customer. Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive ...

  2. Electrically heated DPF start-up strategy

    SciTech Connect (OSTI)

    Gonze, Eugene V; Ament, Frank

    2012-04-10

    An exhaust system that processes exhaust generated by an engine has a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates in the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates. Heat generated by combustion of particulates in the heater induces combustion of particulates within the DPF. A control module selectively enables current flow to the electrical heater for an initial period of a DPF regeneration cycle, and limits exhaust flow while the electrical heater is heating to a predetermined soot combustion temperature.

  3. Edmond Electric- Residential Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Edmond Electric offers rebates to residential customers who install energy-efficient heat pumps. This program applies to installations in both new and existing residential homes and complexes. Air...

  4. Lakeland Electric- Solar Water Heating Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Lakeland Electric, a municipal utility in Florida, offers solar-heated domestic hot water on a "pay-for-energy" basis. The utility bills the customer $34.95 per month regardless of use. The $34.95...

  5. Electrically heated particulate filter with zoned exhaust flow...

    Office of Scientific and Technical Information (OSTI)

    Electrically heated particulate filter with zoned exhaust flow control Title: Electrically heated particulate filter with zoned exhaust flow control A system includes a particulate ...

  6. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity ...

  7. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  8. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC ...

  9. Harvesting Electricity From Wasted Heat

    SciTech Connect (OSTI)

    Schwede, Jared

    2014-06-30

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  10. Harvesting Electricity From Wasted Heat

    ScienceCinema (OSTI)

    Schwede, Jared

    2014-07-16

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  11. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  12. Power supply system for heat and electricity

    SciTech Connect (OSTI)

    Hafner, G.; Finger, H.; Lenz, H.

    1985-03-05

    A power supply system for generating at least one of heat and electricity which includes a number of statically and functionally independent units adapted to generate at least one of heat and electricity which enable a maximum utilization of primary energy. For decentralized power supply over short and low loss supply lines the individual units are constructed as stackable modules. By exchanging or adding one or more modules, it is possible to adapt the flexibility of the power supply system to changes in demand for the energy thereby providing a practical approach to the utilization of waste heat for energy conservation purposes.

  13. Buying and Making Electricity | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Planning renewable systems Solar electric systems Wind electric systems Hybrid wind and solar Microhydropower systems. Follow Us followontwitter.png...

  14. Indoor unit for electric heat pump

    DOE Patents [OSTI]

    Draper, Robert; Lackey, Robert S.; Fagan, Jr., Thomas J.; Veyo, Stephen E.; Humphrey, Joseph R.

    1984-01-01

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

  15. Electric System Decision Making in Other Regions: A Preliminary Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation | Department of Energy System Decision Making in Other Regions: A Preliminary Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation Electric System Decision Making in Other Regions: A Preliminary Analysis Prepared for Western Interstate Energy Board Committee on Regional Electric Power Cooperation The nation's electricity system is regional in nature,

  16. Making the most of Responsive Electricity Customer. Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response: How do we make the most out of using less energy? | Department of Energy Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of using less energy? Making the most of Responsive Electricity Customer. Energy Efficiency and Demand Response: How do we make the most out of

  17. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003_deer_algrain.pdf (5.77 MB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  18. Green Button Initiative Makes Headway with Electric Industry and Consumers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Button Initiative Makes Headway with Electric Industry and Consumers Green Button Initiative Makes Headway with Electric Industry and Consumers July 22, 2015 - 3:01pm Addthis Photo courtesy of San Diego Gas & Electric Photo courtesy of San Diego Gas & Electric Kristen Honey Science and Technology Policy Fellow, Office of Energy Efficiency and Renewable Energy David Wollman Deputy Director of the Smart Grid and Cyber-Physical Systems Program at the National

  19. The Swiss Competence Center for Energy Research Heat and Electricity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on buildings and processes by exploring advanced adiabatic compressed air storage (AA-CAES), pumped heat electric storage (PHES) and high-temperature process heat. iii) Hydrogen...

  20. Thermoelectric Conversion of Wate Heat to Electricity in an IC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate ... MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to ...

  1. Ashland Electric Utility - Bright Way to Heat Water Loan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type Loan Program Summary The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric...

  2. EV-Everywhere: Making Electric Vehicles More Affordable

    Broader source: Energy.gov [DOE]

    Highlighting your ideas on ways to make electric vehicles as affordable and convenient as today’s gasoline-powered vehicles.

  3. APPARATUS FOR CONVERTING HEAT INTO ELECTRICITY

    DOE Patents [OSTI]

    Crouthamel, C.E.; Foster, M.S.

    1964-01-28

    This patent shows an apparatus for converting heat to electricity. It includes a galvanic cell having an anodic metal anode, a fused salt electrolyte, and a hydrogen cathode having a diffusible metal barrier of silver-- palladium alloy covered with sputtered iron on the side next to the fused electrolyte. Also shown is a regenerator for regenerating metal hydride produced by the galvanic cell into hydrogen gas and anodic metal, both of which are recycled. (AEC)

  4. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts | Department of Energy Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy Technologies Office works with industry to develop pathways that use heat, pressure, and catalysis to convert domestic, non-food biomass into gasoline, jet fuel, and other products. thermochemical_four_pager.pdf (4.64 MB) More Documents & Publications 2013 Peer Review

  5. Combined heat recovery and make-up water heating system

    SciTech Connect (OSTI)

    Kim, S.Y.

    1988-05-24

    A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

  6. Electrically heated particulate filter using catalyst striping

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J; Ament, Frank

    2013-07-16

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating is applied to the PF that increases a temperature of the combustion of the particulates within the PF.

  7. Electrically heated particulate filter enhanced ignition strategy

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2012-10-23

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material is applied to an exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF. A catalyst coating applied to at least one of the PF and the grid. A control module estimates a temperature of the grid and controls the engine to produce a desired exhaust product to increase the temperature of the grid.

  8. Electrically heated particulate filter embedded heater design

    DOE Patents [OSTI]

    Gonze, Eugene V.; Chapman, Mark R.

    2014-07-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine and wherein an upstream surface of the particulate filter includes machined grooves. A grid of electrically resistive material is inserted into the machined grooves of the exterior upstream surface of the PF and selectively heats exhaust passing through the grid to initiate combustion of particulates within the PF.

  9. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 2 DEER Conference Presentation: Caterpillar Inc. 2002_deer_hopmann.pdf (828.29 KB) More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology An Engine System Approach to Exhaust Waste Heat Recovery

  10. Thermoelectrici Conversion of Waste Heat to Electricity in an IC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Powered Vehicle | Department of Energy Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_schock.pdf (615.66 KB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste

  11. Ashland Electric Utility - Bright Way to Heat Water Rebate |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    average 800 to 1,000) Summary The City of Ashland Conservation Division offers a solar water heating program to its residential electric customers who currently use an electric...

  12. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  13. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation PDF icon ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  14. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermoelectrics on a OTR truck PDF icon schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  15. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Describes TEG systems built at MSU to mitigate couple failures and a cost-benefit analysis ... More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an ...

  16. An Assessment of Heating Fuels And Electricity Markets During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013... Before the House Subcommittee on Energy and Power - Committee on Energy and Commerce

  17. Mohave Electric Cooperative- Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Mohave Electric Cooperative is a non-profit that serves the communities of Bullhead City, Fort Mohave, Mohave Valley, Wikieup, Hackberry and Peach Springs. Mohave Electric Cooperative offers...

  18. Electric heat tracing designed to prevent icing

    SciTech Connect (OSTI)

    Lonsdale, J.T.; Norrby, T.

    1985-11-01

    Mobile offshore rigs designed for warmer climates are not capable of operating year-round in the arctic or near-arctic regions. Icing is but one major operational problem in these waters. The danger of instability due to ice loading exists on an oil rig as well as on a ship. From a safety standpoint, ice must be prevented from forming on the helideck, escape passages, escape doors and hatches and handrails. Norsk Hydro A/S, as one of the major operators in the harsh environment outside northern Norway, recognized at an early stage the need for special considerations for the drilling rigs intended for year-round drilling in these regions. In 1982 Norsk Hydro awarded a contract for an engineering study leading to the design of a harsh environment semisubmersible drilling rig. The basic requirement was to develop a unit for safe and efficient year-round drilling operation in the waters of northern Norway. The study was completed in 1983 and resulted in a comprehensive report including a building specification. The electric heat tracing system designed to prevent icing on the unit is described.

  19. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance deer11_meisner.pdf (1.17 MB) More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric

  20. Predicts the Steady-State Heating and Cooling Performance of Electric Heat Pump

    Energy Science and Technology Software Center (OSTI)

    1993-01-13

    Oak Ridge National Laboratory (ORNL) is a leader in the development of analytical tools for the design of electrically driven, air-to-air heat pumps. Foremost among these tools is the ORNL Heat Pump Design Model, which can be used to predict the steady-state heating and cooling performance of an electrically driven, air-source heat pump. This version is three to five times faster than the earlier version, easier to use and more versatile.

  1. Technologies for Production of Heat and Electricity

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Kara G. Cafferty

    2014-04-01

    Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

  2. Blue Ridge Electric Cooperative- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    Blue Ridge Electric Cooperative (BREC) offers low interest loans to help members finance the purchase of energy efficient heat pumps. Loans under $1,500 can be financed for up to 42 months, and...

  3. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  4. Geothermal Energy for Production of Heat and Electricity Economically Simulated

    Energy Science and Technology Software Center (OSTI)

    2015-02-28

    GEOPHIRES is a software tool to investigate technical and economic performance of a geothermal system. Possible end-use options are electricity, direct-use heat and co-generation.

  5. Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated...

    Energy Savers [EERE]

    Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Information flow ...

  6. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  7. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    DOE Patents [OSTI]

    Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

    1995-09-12

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

  8. Heavy ion fusion--Using heavy ions to make electricity

    SciTech Connect (OSTI)

    Celata, C.M.

    2004-03-15

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring {approx}100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris.

  9. SEP Success Story: Farming Out Heat and Electricity through Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Farming Out Heat and Electricity through Biopower SEP Success Story: Farming Out Heat and Electricity through Biopower December 16, 2011 - 11:46am Addthis Cows like these in Skagit County, Washington, supply the biodigester developed by Kevin Maas of Farm Power up to 70,000 gallons of manure per day. The newest Farm Power facility in Washington generates enough electricity to power 500 homes. Photo courtesy of sea_turtle. Cows like these in Skagit County, Washington,

  10. Waste heat from kitchen cuts hot water electricity 23%

    SciTech Connect (OSTI)

    Barber, J.

    1984-05-21

    Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.

  11. Generator powered electrically heated diesel particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V; Paratore, Jr., Michael J

    2014-03-18

    A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

  12. Usage possibilities of diesel aggregate for room heating and electric energy production

    SciTech Connect (OSTI)

    Kegl, K.; Vor Ic, J.

    1998-07-01

    Article shows reasons for introduction of cogeneration generally. The present manner of heating and electricity connection at the Faculty of electrical engineering and computer science in Maribor is described. The idea is to build in the cogeneration complex in heating room next to the existent boilers. Gathered data of electricity and heat demand are presented. Paper deals with question of electrical, heat and fuel connections. Comparison between two types of cogeneration (motor and turbine) helps to make a decision: cogeneration with motor. Depending to the daily electricity demands diagram and arranged heating diagram the authors focused to the small cogeneration (around 200 kWe). Availability of natural gas at the placement of the cogeneration leads us to the gas motor but leaves the diesel engine possibility opened. A brief economical estimation includes common investment costs regarding to the savings of energy and fuel expenses. Payback time calculation gives precedence to the gas motor if diesel is used with motor instead of fuel oil. Except the energy savings there are greater benefits of the cogeneration: it can be good study case for students of electrotechnics as well as future mechanical engineers.

  13. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    2001-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  14. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, V.K.; Deevi, S.C.; Fleischhauer, G.S.; Hajaligol, M.R.; Lilly, A.C. Jr.

    1997-04-15

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, {<=}1% Cr and either {>=}0.05% Zr or ZrO{sub 2} stringers extending perpendicular to an exposed surface of the heating element or {>=}0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, {<=}2% Ti, {<=}2% Mo, {<=}1% Zr, {<=}1% C, {<=}0.1% B, {<=}30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, {<=}1% rare earth metal, {<=}1% oxygen, {<=}3% Cu, balance Fe. 64 figs.

  15. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1999-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  16. Iron aluminide useful as electrical resistance heating elements

    DOE Patents [OSTI]

    Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier S.; Hajaligol, Mohammad R.; Lilly, Jr., A. Clifton

    1997-01-01

    The invention relates generally to aluminum containing iron-base alloys useful as electrical resistance heating elements. The aluminum containing iron-base alloys have improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The alloy has an entirely ferritic microstructure which is free of austenite and includes, in weight %, over 4% Al, .ltoreq.1% Cr and either .gtoreq.0.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element or .gtoreq.0.1% oxide dispersoid particles. The alloy can contain 14-32% Al, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, .ltoreq.1% oxygen, .ltoreq.3% Cu, balance Fe.

  17. Climate, extreme heat, and electricity demand in California

    SciTech Connect (OSTI)

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such

  18. Making a Difference: Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GHP is a highly efficient technology gaining wide acceptance for both residential and commercial buildings. GHPs are used for space heating and cooling, as well as water heating. ...

  19. An Assessment of Heating Fuels And Electricity Markets During the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 October 2015 This page intentionally blank For Further Information This report was prepared under the auspices of the Energy Infrastructure Modeling and Analysis (EIMA) division of the Office of Electricity Delivery and Energy Reliability (OE). OE's vision is a U.S. energy delivery system that is reliable in the face of all hazards and resilient to disruptions, supports U.S. economic

  20. Electrically heated particulate filter diagnostic systems and methods

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  1. Electric System Decision Making in Other Regions: A Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Regional Electric Power Cooperation The nation's electricity system is regional in nature, because of the operation of the interconnected grids and the markets defined by them. ...

  2. Integrated exhaust and electrically heated particulate filter regeneration systems

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  3. Heat exchanger for concentrating solar collectors and method for making the heat exchanger

    SciTech Connect (OSTI)

    Stultz, R.A.

    1983-08-09

    nment of the flow passages with the A heat exchanger assembly is disclosed for use with concentrating solar collectors of the type employing an elongated conduit for transporting a heat exchange fluid, the heat exchanger being positioned within an opening in the upper surface of the conduit and operating to transfer heat to the heat exchange fluid. The heat exchanger includes a plurality of stacked heat conducting heat exchanger plates having grooves oriented to form flow passage extending in the direction of fluid flow. The heat direction of heat exchange fluid flow. The grooved heat exchange plates may be fabricated by stamp from a sheet of heat conducting material to facilitate manufacturing of the heat exchanger. In another embodiment, the plates are positioned normal to the fluid flow direction with openings in the plates serving to form flow channels. The heat exchanger is usuable with collectors employing either photovoltaic cells or a solar radiation absorbing flat plate collector.

  4. Electrode wells for powerline-frequency electrical heating of soils

    DOE Patents [OSTI]

    Buettner, Harley M.; Daily, William D.; Aines, Roger D.; Newmark, Robin L.; Ramirez, Abelardo L.; Siegel, William H.

    1999-01-01

    An electrode well for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichioroethylene (TCE) as it is heated.

  5. Electrode wells for powerline-frequency electrical heating of soils

    DOE Patents [OSTI]

    Buettner, H.M.; Daily, W.D.; Aines, R.D.; Newmark, R.L.; Ramirez, A.L.; Siegel, W.H.

    1999-05-25

    An electrode well is described for use in powerline-frequency heating of soils for decontamination of the soil. Heating of soils enables the removal of volatile organic compounds from soil when utilized in combination with vacuum extraction. A preferred embodiment of the electrode well utilizes a mild steel pipe as the current-carrying conductor to at least one stainless steel electrode surrounded by a conductive backfill material, preferably graphite or steel shot. A covering is also provided for electrically insulating the current-carrying pipe. One of the electrode wells is utilized with an extraction well which is under subatmospheric pressure to withdraw the volatile material, such as gasoline and trichloroethylene (TCE) as it is heated. 4 figs.

  6. Heat pump water heater and method of making the same

    DOE Patents [OSTI]

    Mei, Viung C.; Tomlinson, John J.; Chen, Fang C.

    2001-01-01

    An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.

  7. -South Metallurgical Makes Electrical and Natural Gas System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... this relatively low power factor and improve its operational level above the desired 87%. ... Additionally, the design of the tubes resulted in ineffcient heat transfer and excessive ...

  8. Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project to demonstrate and evaluate hydrogen fuel cell electric vehicles (FCEVs) and hydrogen ... and help the industry bring these technologies into the marketplace at lower cost. ...

  9. Heat to electricity conversion by cold carrier emissive energy harvesters

    SciTech Connect (OSTI)

    Strandberg, Rune

    2015-12-07

    This paper suggests a method to convert heat to electricity by the use of devices called cold carrier emissive energy harvesters (cold carrier EEHs). The working principle of such converters is explained and theoretical power densities and efficiencies are calculated for ideal devices. Cold carrier EEHs are based on the same device structure as hot carrier solar cells, but works in an opposite way. Whereas a hot carrier solar cell receives net radiation from the sun and converts some of this radiative heat flow into electricity, a cold carrier EEH sustains a net outflux of radiation to the surroundings while converting some of the energy supplied to it into electricity. It is shown that the most basic type of cold carrier EEHs have the same theoretical efficiency as the ideal emissive energy harvesters described earlier by Byrnes et al. In the present work, it is also shown that if the emission from the cold carrier EEH originates from electron transitions across an energy gap where a difference in the chemical potential of the electrons above and below the energy gap is sustained, power densities slightly higher than those given by Byrnes et al. can be achieved.

  10. Mid-South Metallurgical Makes Electrical and Natural Gas System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through these upgrades, the commercial heat treating business cut its overall energy use by 22%, reduced its peak demand by 21%, and decreased its total energy costs by 18%. ...

  11. Tool Improves Electricity Demand Predictions to Make More Room...

    Broader source: Energy.gov (indexed) [DOE]

    Third Quarter 2011 edition of the Wind Program R&D Newsletter. A new tool is available to help integrate wind and solar power into the electric grid by predicting the ranges in ...

  12. Outdoor unit construction for an electric heat pump

    DOE Patents [OSTI]

    Draper, R.; Lackey, R.S.

    1984-09-11

    The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

  13. Outdoor unit construction for an electric heat pump

    DOE Patents [OSTI]

    Draper, Robert; Lackey, Robert S.

    1984-01-01

    The outdoor unit for an electric heat pump is provided with an upper portion 10 containing propeller fan means 14 for drawing air through the lower portion 12 containing refrigerant coil means 16 in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs 64 which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed.

  14. Electrically heated particulate filter regeneration using hydrocarbon adsorbents

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-02-01

    An exhaust system that processes exhaust generated by an engine is provided. The system generally includes a particulate filter (PF) that filters particulates from the exhaust wherein an upstream end of the PF receives exhaust from the engine. A grid of electrically resistive material selectively heats exhaust passing through the upstream end to initiate combustion of particulates within the PF. A hydrocarbon adsorbent coating applied to the PF releases hydrocarbons into the exhaust to increase a temperature of the combustion of the particulates within the PF.

  15. What makes an electric welding arc perform its required function

    SciTech Connect (OSTI)

    Correy, T.B.

    1982-09-01

    The physics of direct current and alternating current welding arcs, the heat transfer of direct current welding arcs, the characteristics of dc welding and ac welding power supplies and recommendations for the procurement and maintenance of precision power supplies are discussed. (LCL)

  16. Electrical connector composite housing and method of making same

    DOE Patents [OSTI]

    Silva, Frank A.

    1979-01-01

    A sleeve-like insert of conductive elastomeric material of a type which serves as an internal shield in electrical connectors for connecting high voltage cables has an end portion folded upon itself, the enfolded portion being substantially permanently retained in its desired position by allowing insulative elastomeric material to fill apertures in the end portion and become bonded thereto in a void free manner, during molding of an insulating outer sleeve-like jacket about the insert.

  17. U.S. Heat Content of Natural Gas Deliveries to Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  18. Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refrigerant | Department of Energy Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Max Tech Electric Heat Pump Water Heater with Lower GWP Halogenated Refrigerant Information flow schematic for an integrated heat pump design model and wrapped tank model. Image credit: Oak Ridge National Laboratory. Information flow schematic for an integrated heat pump design model and wrapped tank model. Image credit: Oak Ridge National Laboratory. Information flow schematic

  19. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect (OSTI)

    Saeid Ghamaty

    2006-02-01

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  20. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect (OSTI)

    Saeid Ghamaty

    2006-03-31

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  1. Making a One-Way Street for Electricity | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making a One-Way Street for Electricity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 08.04.16 Making a One-Way Street for Electricity Scientists

  2. Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Energy Use and Achieve Cost Savings | Department of Energy Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings This case study describes how Mid-South Metallurgical implemented several recommendations resulting from a plant-wide energy assessment from DOE's Industrial Assessment Center (IAC) at

  3. Thermo-electric modular structure and method of making same

    DOE Patents [OSTI]

    Freedman, N.S.; Horsting, C.W.; Lawrence, W.F.; Carrona, J.J.

    1974-01-29

    A method is presented for making a thermoelectric module wtth the aid of an insulating wafer having opposite metallized surfaces, a pair of similar equalizing sheets of metal, a hot-junction strap of metal, a thermoelectric element having hot- and cold-junction surfaces, and a radiator sheet of metal. The method comprises the following steps: brazing said equalizer sheets to said opposite metallized surfaces, respectively, of said insulating wafer with pure copper in a non-oxidizing ambient; brazing one surface of said hot-junction strap to one of the surfaces of said equalizing sheet with a nickel-gold alloy in a non- oxidizing ambient; and diffusion bonding said hot-junction surface of said thermoelectric element to the other surface of said hot-junction strap and said radiator sheet to said cold-junction surface of said thermoelectric element, said diffusion bonding being carried out in a non-oxidizing ambient, under compressive loading, at a temperature of about 550 deg C., and for about one-half hour. (Official Gazette)

  4. Fact #901: November 30, 2015 States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue

  5. Toughened Graphite Electrode for High Heat Electric Arc Furnaces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL to melt steel, titanium, and other scrap metal in industrial electric arc furnaces. ... Applications and Industries Electric arc furnace steel manufacturing Steel refinement and ...

  6. Multiwalled carbon nanotube/polydimethylsiloxane composite films as high performance flexible electric heating elements

    SciTech Connect (OSTI)

    Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr [Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2014-08-04

    High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ?0.27?wt.?%, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3?wt.?% exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films, which were thermally stable up to 250?C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.

  7. Nanofluids and a method of making nanofluids for ground source heat pumps and other applications

    DOE Patents [OSTI]

    Olson, John Melvin

    2013-11-12

    This invention covers nanofluids. Nanofluids are a combination of particles between 1 and 100 nanometers, a surfactant and the base fluid. The nanoparticles for this invention are either pyrogenic nanoparticles or carbon nanotubes. These nanofluids improve the heat transfer of the base fluids. The base fluid can be ethylene glycol, or propylene glycol, or an aliphatic-hydrocarbon based heat transfer fluid. This invention also includes a method of making nanofluids. No surfactant is used to suspend the pyrogenic nanoparticles in glycols.

  8. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  9. An Assessment of Heating Fuels And Electricity Markets During the Winters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 2013-2014 and 2014-2015 | Department of Energy Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different - but related - challenges across heating fuels and electricity markets. In an effort to understand the impacts of

  10. Low exhaust temperature electrically heated particulate matter filter system

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  11. Automotive Waste Heat Conversion to Electric Power using Skutterudites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of a Scalable 10% Efficient Thermoelectric Generator Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicular ...

  12. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

  13. Ameren Missouri (Electric)- Residential Heating and Cooling Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ameren Missouri offers rebates to its residential electric customers for the installation of new energy-efficient heating and cooling equipment. Rebates are available for single-family residences,...

  14. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  15. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powered Vehicle | Department of Energy MSU has developed and demonstrated a 5-couple module which produced 5.4 watts at an average ∆T estimated to be ~500 oC deer09_schock.pdf (1.89 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  16. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powered Vehicle | Department of Energy DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_schock.pdf (104.66 KB) More Documents & Publications Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  17. Commercial CO2 Electric Heat Pump Water Heater | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 Electric Heat Pump Water Heater Commercial CO2 Electric Heat Pump Water Heater Planned enhanced modeling approach to facilitate analyses of wrapped-tank options for the project. Image credit: Oak Ridge National Laboratory. Planned enhanced modeling approach to facilitate analyses of wrapped-tank options for the project. Image credit: Oak Ridge National Laboratory. Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN FY16 DOE Funding: $150,000 Project Term: October 1, 2015 - TBD

  18. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect (OSTI)

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  19. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  1. Project Title: Small Scale Electrical Power Generation from Heat...

    Office of Scientific and Technical Information (OSTI)

    Subject: 15 GEOTHERMAL ENERGY Geothermal, ORC, 75kW, Green Machine, ElectraTherm, co-produced, Waste heat to power, Green energy, low temperature Word Cloud More Like This Full ...

  2. Electrical Energy and Demand Savings from a Geothermal Heat Pump...

    Office of Scientific and Technical Information (OSTI)

    space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. ...

  3. Decision-Making for High Renewable Electricity Futures in the United States

    Broader source: Energy.gov [DOE]

    This short Report Review highlights aspects of policy, regulation, finance, markets and operations that can help enable high penetration renewable energy electricity generation futures. It uses analytical results from the NREL Renewable Electricity Futures (REF) Study as a basis for discussion. As technical issues have been shown not to be key impediments for this pathway at the hourly level for the bulk system, we focus on other aspects of public and private decision-making. We conclude by describing how the REF might inform future research and development by the scientific community.

  4. Heat wave contributes to higher summer electricity demand in the Northeast

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat wave contributes to higher summer electricity demand in the Northeast In its new energy forecast, the U.S. Energy Information Administration expects summer retail electricity prices in the Northeast to be 2.7 percent higher than last summer...mainly due to rising costs for the fuels used to generate electricity. Many households ran their air conditioners more than usual last month to try to beat the East Coast heat wave. While customers in New England are expected to use 1 percent more

  5. Electrically heated particulate filter with zoned exhaust flow control

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2012-06-26

    A system includes a particulate matter (PM) filter that includes X zones. An electrical heater includes Y heater segments that are associated with respective ones of the X zones. The electrical heater is arranged upstream from and proximate with the PM filter. A valve assembly includes Z sections that are associated with respective ones of the X zones. A control module adjusts flow through each of the Z sections during regeneration of the PM filter via control of the valve assembly. X, Y and Z are integers.

  6. Thermal Storage System for Electric Vehicle Cabin Heating Component and System Analysis

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar; Wang, Mingyu; WolfeIV, Edward; Craig, Timothy

    2016-01-01

    Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The present paper focuses on the modeling and analysis of this electrical PCM-Assisted Thermal Heating System (ePATHS) and is a companion to the paper Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating. A detailed heat transfer model was developed to simulate the PCM heat exchanger that is at the heart of the ePATHS and was subsequently used to analyze and optimize its design. The results from this analysis were integrated into a MATLAB Simulink system model to simulate the fluid flow, pressure drop and heat transfer in all components of the ePATHS. The system model was then used to predict the performance of the climate control system in the vehicle and to evaluate control strategies needed to achieve the desired temperature control in the cabin. The analysis performed to design the ePATHS is described in detail and the system s predicted performance in a vehicle HVAC system is presented.

  7. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  8. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    SciTech Connect (OSTI)

    Wang, Mingyu; WolfeIV, Edward; Craig, Timothy; LaClair, Tim J; Gao, Zhiming; Abdelaziz, Omar

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  9. Do Heat Pump Clothes Dryers Make Sense for the U.S. Market

    SciTech Connect (OSTI)

    Meyers, Steve; Franco, Victor; Lekov, Alex; Thompson, Lisa; Sturges, Andy

    2010-05-14

    Heat pump clothes dryers (HPCDs) can be as much as 50percent more energy-efficient than conventional electric resistance clothes dryers, and therefore have the potential to save substantial amounts of electricity. While not currently available in the U.S., there are manufacturers in Europe and Japan that produce units for those markets. Drawing on analysis conducted for the U.S. Department of Energy's (DOE) current rulemaking on amended standards for clothes dryers, this paper evaluates the cost-effectiveness of HPCDs in American homes, as well as the national impact analysis for different market share scenarios. In order to get an accurate measurement of real energy savings potential, the paper offers a new energy use calculation methodology that takes into account the most current data on clothes washer cycles, clothes dryer usage frequency, remaining moisture content, and load weight per cycle, which is very different from current test procedure values. Using the above methodology along with product cost estimates developed by DOE, the paper presents the results of a life-cycle cost analysis of the adoption of HPCDs in a representative sample of American homes. The results show that HPCDs have positive economic benefits only for households with high clothes dryer usage or for households with high electricity prices and moderately high utilization.

  10. Electrically isolated, high melting point, metal wire arrays and method of making same

    DOE Patents [OSTI]

    Simpson, John T.; Cunningham, Joseph P.; D'Urso, Brian R.; Hendricks, Troy R.; Schaeffer, Daniel A.

    2016-01-26

    A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rod with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.

  11. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings

    DOE Patents [OSTI]

    Williamson, Weldon S.; Gonze, Eugene V.

    2008-12-30

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  12. Electrical heating of soils using high efficiency electrode patterns and power phases

    DOE Patents [OSTI]

    Buettner, Harley M.

    1999-01-01

    Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

  13. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Broader source: Energy.gov (indexed) [DOE]

    Powered Vehicle | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_46_schock.pdf (1.94 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste

  14. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Broader source: Energy.gov (indexed) [DOE]

    Powered Vehicle | Department of Energy Determining if a 10% fuel economy improvement is possible using thermoelectrics on a OTR truck schock.pdf (2.38 MB) More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate

  15. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  16. High-temperature electrically conductive ceramic composite and method for making same

    DOE Patents [OSTI]

    Beck, David E.; Gooch, Jack G.; Holcombe, Jr., Cressie E.; Masters, David R.

    1983-01-01

    The present invention relates to a metal-oxide ceramic composition useful in induction heating applications for treating uranium and uranium alloys. The ceramic composition is electrically conductive at room temperature and is nonreactive with molten uranium. The composition is prepared from a particulate admixture of 20 to 50 vol. % niobium and zirconium oxide which may be stabilized with an addition of a further oxide such as magnesium oxide, calcium oxide, or yttria. The composition is prepared by blending the powders, pressing or casting the blend into the desired product configuration, and then sintering the casting or compact in an inert atmosphere. In the casting operation, calcium aluminate is preferably added to the admixture in place of a like quantity of zirconia for providing a cement to help maintain the integrity of the sintered product.

  17. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  18. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent

  19. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  20. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  1. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under

  2. Making evolution work for us: Structural adaptation in the electric industry

    SciTech Connect (OSTI)

    Howe, J.

    1994-09-01

    Adoption of a thoughtful model of reform with the unbundling of generation as its keystone could make the evolutionary process work for the industry and its stakeholders alike. Integration of transition cost recovery into this approach would defuse utilities` concerns that exposure to competition could lead to financial meltdown. Evolution, biologists now theorize, takes place not in glacial, steady progression but in volatile spasms. Surely this principle of dynamis and stasis is illustrated by the sudden wave of reform activity underway in electricity markets - a startling departure after decades in which the utility industry was the very symbol of stability in American business. The change agent has been the onset of effective competition in bulk power generation, beginning with the thin wedge of the Public Utility Regulatory Policies Act. As competition in the power supply area grew, spurred by low natural gas prices and advances in the cost effectiveness of smaller generating units, Congress enacted the Energy Policy Act of 1992, embracing competition in bulk power markets as the cornerstone of federal electricity policy. Passage of EPAct alone will not, in and of itself, restructure bulk power markets, of course. Rather, it will result in the opening of transmission systems over time and the establishment of truly competitive power markets, with private initiative and actions by federal and state regulators. Even more recently, before the industry could catch its breath and accommodate to the substantial changes set in motion by EPAct, the ripening of retail wheeling proposals in California and Michigan has spurred a further quantum leap in the nature of the debate over the industry`s future.

  3. Using Heat and Chemistry to Make Products, Fuels, and Power: Thermochemical Conversion

    SciTech Connect (OSTI)

    2010-09-01

    Information about the Biomass Program's collaborative projects exploring thermochemical conversion processes that use heat and chemistry to convert biomass into a liquid or gaseous intermediate.

  4. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries

    Broader source: Energy.gov [DOE]

    Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

  5. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, James C.; Forsberg, Charles W.

    2007-07-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

  6. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    SciTech Connect (OSTI)

    Conklin, Jim; Forsberg, Charles W

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

  7. Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry

  8. Table A34. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Employment Size Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,"1,000","Row"

  9. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  10. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion Btu)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"Coal Coke",,"Row" "Code(a)","End-Use

  11. Battery Electric Vehicles can reduce greenhouse has emissions and make renewable energy cheaper in India

    SciTech Connect (OSTI)

    Gopal, Anand R; Witt, Maggie; Sheppard, Colin; Harris, Andrew

    2015-07-01

    India's National Mission on Electric Mobility (NMEM) sets a countrywide goal of deploying 6 to 7 million hybrid and electric vehicles (EVs) by 2020. There are widespread concerns, both within and outside the government, that the Indian grid is not equipped to accommodate additional power demand from battery electric vehicles (BEVs). Such concerns are justified on the grounds of India's notorious power sector problems pertaining to grid instability and chronic blackouts. Studies have claimed that deploying BEVs in India will only

  12. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  13. Bacteria Hairs Make Excellent Electrical Wires | U.S. DOE Office...

    Office of Science (SC) Website

    They found that the electronic arrangement and the small molecular separation distances (0.3 nanometers) give the pili an electrical conductivity comparable to that of copper. The ...

  14. Risk perception & strategic decision making :general insights, a framework, and specific application to electricity generation using nuclear energy.

    SciTech Connect (OSTI)

    Brewer, Jeffrey D.

    2005-11-01

    The objective of this report is to promote increased understanding of decision making processes and hopefully to enable improved decision making regarding high-consequence, highly sophisticated technological systems. This report brings together insights regarding risk perception and decision making across domains ranging from nuclear power technology safety, cognitive psychology, economics, science education, public policy, and neural science (to name a few). It forms them into a unique, coherent, concise framework, and list of strategies to aid in decision making. It is suggested that all decision makers, whether ordinary citizens, academics, or political leaders, ought to cultivate their abilities to separate the wheat from the chaff in these types of decision making instances. The wheat includes proper data sources and helpful human decision making heuristics; these should be sought. The chaff includes ''unhelpful biases'' that hinder proper interpretation of available data and lead people unwittingly toward inappropriate decision making ''strategies''; obviously, these should be avoided. It is further proposed that successfully accomplishing the wheat vs. chaff separation is very difficult, yet tenable. This report hopes to expose and facilitate navigation away from decision-making traps which often ensnare the unwary. Furthermore, it is emphasized that one's personal decision making biases can be examined, and tools can be provided allowing better means to generate, evaluate, and select among decision options. Many examples in this report are tailored to the energy domain (esp. nuclear power for electricity generation). The decision making framework and approach presented here are applicable to any high-consequence, highly sophisticated technological system.

  15. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    SciTech Connect (OSTI)

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  16. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability:A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2008-12-01

    In past work, Berkeley Lab has developed the Distributed Energy Resources Customer Adoption Model (DER-CAM). Given end-use energy details for a facility, a description of its economic environment and a menu of available equipment, DER-CAM finds the optimal investment portfolio and its operating schedule which together minimize the cost of meeting site service, e.g., cooling, heating, requirements. Past studies have considered combined heat and power (CHP) technologies. Methods and software have been developed to solve this problem, finding optimal solutions which take simultaneity into account. This project aims to extend on those prior capabilities in two key dimensions. In this research storage technologies have been added as well as power quality and reliability (PQR) features that provide the ability to value the additional indirect reliability benefit derived from Consortium for Electricity Reliability Technology Solutions (CERTS) Microgrid capability. This project is intended to determine how attractive on-site generation becomes to a medium-sized commercial site if economical storage (both electrical and thermal), CHP opportunities, and PQR benefits are provided in addition to avoiding electricity purchases. On-site electrical storage, generators, and the ability to seamlessly connect and disconnect from utility service would provide the facility with ride-through capability for minor grid disturbances. Three building types in both California and New York are assumed to have a share of their sensitive electrical load separable. Providing enhanced service to this load fraction has an unknown value to the facility, which is estimated analytically. In summary, this project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York; (2) to extend the analysis capability of DER-CAM to include both heat and

  17. Microscopic model of electric-field-noise heating in ion traps

    SciTech Connect (OSTI)

    Safavi-Naini, A.; Rabl, P.; Weck, P. F.; Sadeghpour, H. R.

    2011-08-15

    Motional heating of ions in microfabricated traps is one of the open challenges hindering experimental realizations of large-scale quantum processing devices. Recently, a series of measurements of the heating rates in surface-electrode ion traps characterized their frequency, distance, and temperature dependencies, but our understanding of the microscopic origin of this noise remains incomplete. In this work we develop a theoretical model for the electric field noise which is associated with a random distribution of adsorbed atoms on the trap electrode surface. By using first-principles calculations of the fluctuating dipole moments of the adsorbed atoms we evaluate the distance, frequency, and temperature dependence of the resulting electric field fluctuation spectrum. Our theory reproduces correctly the d{sup -4} dependence with distance of the ion from the electrode surface and calculates the noise spectrum beyond the standard scenario of two-level fluctuators by incorporating all the relevant vibrational states. Our model predicts a regime of 1/f noise which commences at roughly the frequency of the fundamental phonon transition rate and a thermally activated noise spectrum which for higher temperatures exhibits a crossover as a function of frequency.

  18. Hybrid-Electric Porsche GT3R to Make North American Debut | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Petit Le Mans race in Georgia to feature five green vehicles Green Racing Initiative seeks to encourage development of energy efficient vehicles Two 60 kW electric motors part of ...

  19. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    SciTech Connect (OSTI)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the U.S. steel industry. The

  20. Lesson 6 - Atoms to Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 - Atoms to Electricity Lesson 6 - Atoms to Electricity Most power plants make electricity by boiling water to make steam that turns a turbine. A nuclear power plant works this way, too. At a nuclear power plant, splitting atoms produce the heat to boil the water. This lesson covers Inside the Reactor Heat Pressure Water Fission Control Fuel assemblies Control rods Coolant Pressure vessel Electricity Generation Generator Condenser Cooling tower Lesson 6 - Atoms to Electricity.pptx (9.7 MB) More

  1. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding. [PWR

    SciTech Connect (OSTI)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed.

  2. Multi-Disciplinary Decision Making and Optimization for Hybrid Electric Propulsion Systems

    SciTech Connect (OSTI)

    Shoultout, Mohamed L.; Malikopoulos, Andreas; Pannala, Sreekanth; Chen, Dongmei

    2014-01-01

    In this paper, we investigate the trade-offs among the subsystems of a hybrid electric vehicle (HEV), e.g., the engine, motor, and the battery, and discuss the related im- plications for fuel consumption and battery capacity and lifetime. Addressing this problem can provide insights on how to prioritize these objectives based on consumers needs and preferences.

  3. TRITIUM IN-BED ACCOUNTABILITY FOR A PASSIVELY COOLED, ELECTRICALLY HEATED HYDRIDE BED

    SciTech Connect (OSTI)

    Klein, J.; Foster, P.

    2011-01-21

    A PAssively Cooled, Electrically heated hydride (PACE) Bed has been deployed into tritium service in the Savannah River Site (SRS) Tritium Facilities. The bed design, absorption and desorption performance, and cold (non-radioactive) in-bed accountability (IBA) results have been reported previously. Six PACE Beds were fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory method. An IBA inventory calibration curve, flowing gas temperature rise ({Delta}T) versus simulated or actual tritium loading, was generated for each bed. Results for non-radioactive ('cold') tests using the internal electric heaters and tritium calibration results are presented. Changes in vacuum jacket pressure significantly impact measured IBA {Delta}T values. Higher jacket pressures produce lower IBA {Delta}T values which underestimate bed tritium inventories. The exhaust pressure of the IBA gas flow through the bed's U-tube has little influence on measured IBA {Delta}T values, but larger gas flows reduce the time to reach steady-state conditions and produce smaller tritium measurement uncertainties.

  4. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    SciTech Connect (OSTI)

    Klein, J.E.

    2005-07-15

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains on internal 'U-tube' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds.IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95% confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory.Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM.Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.

  5. In-Bed Accountability Development for a Passively Cooled, Electrically Heated Hydride (PACE) Bed

    SciTech Connect (OSTI)

    KLEIN, JAMES

    2004-10-12

    A nominal 1500 STP-L PAssively Cooled, Electrically heated hydride (PACE) Bed has been developed for implementation into a new Savannah River Site tritium project. The 1.2 meter (four-foot) long process vessel contains an internal ''U-tube'' for tritium In-Bed Accountability (IBA) measurements. IBA will be performed on six, 12.6 kg production metal hydride storage beds. IBA tests were done on a prototype bed using electric heaters to simulate the radiolytic decay of tritium. Tests had gas flows from 10 to 100 SLPM through the U-tube or 100 SLPM through the bed's vacuum jacket. IBA inventory measurement errors at the 95 percent confidence level were calculated using the correlation of IBA gas temperature rise, or (hydride) bed temperature rise above ambient temperature, versus simulated tritium inventory. Prototype bed IBA inventory errors at 100 SLPM were the largest for gas flows through the vacuum jacket: 15.2 grams for the bed temperature rise and 11.5 grams for the gas temperature rise. For a 100 SLPM U-tube flow, the inventory error was 2.5 grams using bed temperature rise and 1.6 grams using gas temperature rise. For 50 to 100 SLPM U-tube flows, the IBA gas temperature rise inventory errors were nominally one to two grams that increased above four grams for flows less than 50 SLPM. For 50 to 100 SLPM U-tube flows, the IBA bed temperature rise inventory errors were greater than the gas temperature rise errors, but similar errors were found for both methods at gas flows of 20, 30, and 40 SLPM. Electric heater IBA tests were done for six production hydride beds using a 45 SLPM U-tube gas flow. Of the duplicate runs performed on these beds, five of the six beds produced IBA inventory errors of approximately three grams: consistent with results obtained in the laboratory prototype tests.

  6. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  7. An update on the development of heat-pipe solar receivers for Stirling/dish-electric systems

    SciTech Connect (OSTI)

    Adkins, D.R. ); Godett, T.M. )

    1991-01-01

    The Department of Energy is sponsoring the development of a 75-kW (thermal) heat-pipe solar receiver to drive a 25-kW (electric) Stirling engine/generator system. A heat pipe solar receiver transfers energy from the focus of a parabolic-dish solar concentrator to the heater tubes of a Stirling engine through the evaporation and condensation of a liquid metal. With a heat pipe receiver, it is possible to transform irregular flux profiles from solar concentrators into a more uniform thermal input at the engine's heater tubes. Recent work in the heat-pipe receiver development program is reviewed in this paper. Techniques for constructing the heat-pipe receiver's wick structure are discussed and findings from recent bench-scale tests are presented. This paper also addresses several problem areas that have been discovered in the course of this program. 9 refs., 10 figs., 1 tab.

  8. Heat Pump System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating & Cooling » Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless

  9. How a Small Business is Transforming the Cold Climate Heating...

    Energy Savers [EERE]

    ... Those cold climate residents who choose heat pumps typically also use a second source for heating, like a plug-in electrical heater or propane boiler. These additions make things ...

  10. Minnesota Valley Electric Cooperative -Residential Energy Resource...

    Broader source: Energy.gov (indexed) [DOE]

    installation Heat pump installation Heat pump with high efficient gas furnace Electric heating solutions to supplement propane heat Electric heat product installations (i.e....

  11. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect (OSTI)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  12. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect (OSTI)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  13. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect (OSTI)

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  14. Heat wave contributes to higher summer electricity demand in the Northeast

    U.S. Energy Information Administration (EIA) Indexed Site

    Drop in residential electricity use to continue through 2015 Improvements in energy efficiency in lighting and home appliances are expected to continue to push residential electricity use lower over the next two years. Electricity use by the average residential customer has been trending downward since 2006 and is expected to fall to the lowest level in more than a decade, according to the U.S. Energy Information Administration EIA's new forecast shows household electricity use is expected to

  15. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity

    Broader source: Energy.gov [DOE]

    Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

  16. Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

  17. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  18. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, V.C.

    1997-01-01

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

  19. Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat

    SciTech Connect (OSTI)

    Wilson, Volney C.

    1997-01-10

    A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

  20. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...117,52,8,117,43,"Q","Q" "District Chilled Water ......",50,50,50,21,3,43,50,"Q","Q" ...

  1. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...,1839,5891,2354,"Q","Q" "District Chilled Water ......",2750,2750,2750,1316,749,2354,2750...

  2. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight

    Broader source: Energy.gov [DOE]

    Did you know 50 percent of the energy generated annually from all sources is lost as waste heat? What scientists are doing to take advantage of this opportunity to save money and new developments in harvesting fuel through photosynthesis.

  3. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Presents successful incorporation of one of the most promising classes of the new materials, the skutterudites, into a working automotive TEG prototype and test results on its performance deer11_meisner.pdf (1.17 MB) More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery Development of Cost-Competitive Advanced Thermoelectric Generators for Direct

  4. Vehicle Technologies Office Merit Review 2015: ePATHS- electrical PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ePATHS - electrical PCM...

  5. Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas

    SciTech Connect (OSTI)

    Liu Yongxin; Zhang Quanzhi; Liu Jia; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bogaerts, Annemie [Department of Chemistry, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, BE-2610 Wilrijk-Antwerp (Belgium)

    2012-09-10

    The electron bounce resonance heating (BRH) in dual-frequency capacitively coupled plasmas operated in oxygen and argon has been studied by different experimental methods. In comparison with the electropositive argon discharge, the BRH in an electronegative discharge occurs at larger electrode gaps. Kinetic particle simulations reveal that in the oxygen discharge, the bulk electric field becomes quite strong and is out of phase with the sheath field. Therefore, it retards the resonant electrons when traversing the bulk, resulting in a suppressed BRH. This effect becomes more pronounced at lower high-frequency power, when the discharge mode changes from electropositive to electronegative.

  6. Emergency cooling simulation tests on an electrically heated channel typical of SRP (Savannah River Laboratory) reactor fuel channels - RIG B

    SciTech Connect (OSTI)

    Guerrero, H.N.

    1990-01-01

    Emergency cooling simulation tests were conducted on a single electrically heated test channel representative of Savannah River Plant fuel assembly flow channels. The primary objective was to investigate downflow, air-water hydraulic flow conditions that lead to the onset of a runaway thermal excursion in the range of superficial liquid and gas velocities, 1.4 m/sec and 1 m/sec, respectively. The thermal excursion power normalized by the power to reach fluid outlet saturation conditions, or R-factor, was found to decrease from values close to 2, at annular flow conditions to approximately 0.8 at low to zero void fractions. 3 refs., 9 figs.

  7. Induction heating apparatus and methods for selectively energizing an inductor in response to a measured electrical characteristic that is at least partially a function of a temperature of a material being heated

    DOE Patents [OSTI]

    Richardson, John G.; Morrison, John L.; Hawkes, Grant L.

    2006-07-04

    An induction heating apparatus includes a measurement device for indicating an electrical resistance of a material to be heated. A controller is configured for energizing an inductor in response to the indicated resistance. An inductor may be energized with an alternating current, a characteristic of which may be selected in response to an indicated electrical resistance. Alternatively, a temperature of the material may be indicated via measuring the electrical resistance thereof and a characteristic of an alternating current for energizing the inductor may be selected in response to the temperature. Energizing the inductor may minimize the difference between a desired and indicated resistance or the difference between a desired and indicated temperature. A method of determining a temperature of at least one region of at least one material to be induction heated includes correlating a measured electrical resistance thereof to an average temperature thereof.

  8. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Coffey, Brian; Aki, Hirohisa

    2009-03-10

    Berkeley Lab has for several years been developing methods for selection of optimal microgrid systems, especially for commercial building applications, and applying these methods in the Distributed Energy Resources Customer Adoption Model (DER-CAM). This project began with 3 major goals: (1) to conduct detailed analysis to find the optimal equipment combination for microgrids at a few promising commercial building hosts in the two favorable markets of California and New York, (2) to extend the analysis capability of DER-CAM to include both heat and electricity storage, and (3) to make an initial effort towards adding consideration of power quality and reliability (PQR) to the capabilities of DER-CAM. All of these objectives have been pursued via analysis of the attractiveness of a Consortium for Electric Reliability Technology Solutions (CERTS) Microgrid consisting of multiple nameplate 100 kW Tecogen Premium Power Modules (CM-100). This unit consists of an asynchronous inverter-based variable speed internal combustion engine genset with combined heat and power (CHP) and power surge capability. The essence of CERTS Microgrid technology is that smarts added to the on-board power electronics of any microgrid device enables stable and safe islanded operation without the need for complex fast supervisory controls. This approach allows plug and play development of a microgrid that can potentially provide high PQR with a minimum of specialized site-specific engineering. A notable feature of the CM-100 is its time-limited surge rating of 125 kW, and DER-CAM capability to model this feature was also a necessary model enhancement.

  9. Effect of heat treatment time on microstructure and electrical conductivity in LATP glass ceramics

    SciTech Connect (OSTI)

    Sonigra, Dhiren E-mail: ajit.kulkarni@iitb.ac.in; Soman, Swati E-mail: ajit.kulkarni@iitb.ac.in; Kulkarni, Ajit R. E-mail: ajit.kulkarni@iitb.ac.in

    2014-04-24

    Glass-ceramic is prepared by heat treatment of melt quenched 14Li{sub 2}O?9Al{sub 2}O{sub 3}?38TiO{sub 2}?39P{sub 2}O{sub 5} glass in the vicinity of crystallization temperature. Growth of ceramic phase is controlled by tuning heat treatment time at fixed temperature. Ceramic phase was identified to be LiTi{sub 2}(PO{sub 4}){sub 3} from X Ray Diffraction analysis. Microstructural evolution of this phase with hold time was observed under high resolution Scanning Electron Microscope. DC conductivity is observed to increase by 4-5 orders of magnitude in this glass-ceramic compared to parent glass. However, formation of pores and cracks with very large heat treatment time seem to hinder further increase of conductivity.

  10. HTR-100 industrial nuclear power plant for generation of heat and electricity

    SciTech Connect (OSTI)

    Brandes, S.; Kohl, W.

    1987-11-01

    Based on their proven high-temperature reactor (HTR) with pebble-bed core, Brown, Boveri and Cie/Hochtemperatur-Reaktorbau have developed an HTR-100 plant that combines favorable capital costs and high availability. Due to the high HTR-specific standards and passive safety features, this plant is especially well suited for siting near the end user. The safety concept permits further operation of the plant or decay heat removal via the operational heat sinks in the event of maloperation and design basis accidents having a higher probability of occurrence. In the event of hypothetical accidents, the decay heat is removed from the reactor pressure vessel by radiation, conduction, and convection to a concrete cooling system operating in natural convection. As an example of the new HTR-100 plant concept, a twin-block plant design for extraction of industrial steam is presented.

  11. Variable power distribution for zoned regeneration of an electrically heated particulate filter

    DOE Patents [OSTI]

    Bhatia, Garima [Bangalore, IN; Gonze, Eugene V [Pinckney, MI

    2012-04-03

    A system includes a particulate matter (PM) filter with multiple zones, an electric heater and a control module. The electrical heater includes heater segments, which each correspond with a respective one of the zones. The electrical heater is arranged upstream from and is proximate with the PM filter. The control module selectively applies a first energy level to a first one of the zones via a first one of the heater segments to initiate regeneration in the first zone. The control module also selectively applies a second energy level that is less than the first energy level to a second one of the zones via a second one of the heater segments to initiate regeneration in the second zone.

  12. Heat

    U.S. Energy Information Administration (EIA) Indexed Site

    Release date: April 2015 Revised date: May 2016 Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 87,093 80,078 11,846 8,654 20,766 5,925 22,443 49,188 1,574 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 868 1,091 1,747 Q 400 3,809 Q 5,001 to 10,000 8,900 7,590 1,038 1,416 2,025 Q 734 4,622 Q 10,001 to 25,000 14,105 12,744 1,477 2,233 3,115 Q 2,008 8,246 Q 25,001 to 50,000 11,917 10,911 1,642 1,439 3,021 213 2,707

  13. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOE Patents [OSTI]

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  14. Integrated electric power and heat planning in Russia: The fossil-nuclear tradeoff

    SciTech Connect (OSTI)

    Shavel, I.H.; Blaney, J.C.

    1996-08-01

    For the Joint Energy Alternatives Study (JEAS), ICF Kaiser International was tasked to use its Integrated Planning Model (IPM{copyright}) to estimate the investment requirements for the Russian power sector. The IPM is a least-cost planning model that uses a linear programming algorithm to select investment options and to dispatch generating and load management resources to meet overall electricity demand. For the purpose, ICF was provided with input data by the five Working Groups established under the JEAS. Methodological approaches for processing and adjusting this data were specified by Working Group 5. In addition to the two Reference Cases, ICF used IPM to analyze over forty different Change Cases. For each of these cases, ICF generated summary reports on capacity additions, electric generation, and investment and system costs. These results, along with the parallel work undertaken by the Russian Energy Research Institute formed the analytical basis for the Joint Energy Alternatives Study.

  15. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  16. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  17. Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding" ,,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural Gas(d)","LPG","and Breeze)","Other(e)","Row" "Code(a)","End-Use

  18. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion

  19. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000

  20. Table A36. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    " Part 2" " (Estimates in Trillion Btu)",,,,,,,,"Coal" ,,,,,"Distillate",,,"(excluding" ,,,,,"Fuel Oil",,,"Coal Coke",,"RSE" "SIC",,,"Net","Residual","and Diesel",,,"and",,"Row" "Code(a)","End-Use Categories","Total","Electricity(b)","Fuel Oil","Fuel(c)","Natural

  1. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000

  2. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  3. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOE Patents [OSTI]

    Ray, Siba P.; Rapp, Robert A.

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  4. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOE Patents [OSTI]

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  5. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  6. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  7. Small Solar Electric Systems | Department of Energy

    Energy Savers [EERE]

    Electricity & Fuel Buying & Making Electricity Small Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and ...

  8. Tips: Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric heating, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  9. Opportunities for Combined Heat and Power in Data Centers, March 2009 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Combined Heat and Power in Data Centers, March 2009 Opportunities for Combined Heat and Power in Data Centers, March 2009 This report analyzes the opportunities for combined heat and power (CHP) technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure.

  10. The utilization of excess wind-electric power from stock water pumping systems to heat a sector of the stock tank

    SciTech Connect (OSTI)

    Nydahl, J.E.; Carlson, B.O.

    1996-12-31

    On the high plains, a wind-electric stock water pumping system produces a significant amount of excess power over the winter months due to intense winds and the decreased water consumption by cattle. The University of Wyoming is developing a multi-tasking system to utilize this excess energy to resistively heat a small sector of the stock tank at its demonstration/experimental site. This paper outlines the detailed heat transfer analysis that predicted drinking water temperature and icing conditions. It also outlines the optimization criteria and the power produced by the Bergey 1500 wind electric system. Results show that heating a smaller insulated tank inserted into the larger tank would raise the drinking water temperature by a maximum of 6.7 {degrees}C and eliminate icing conditions. The returns associated with the additional cattle weight gain, as a result of the consumption of warmer water, showed that system modification costs would be recovered the first year. 12 refs., 11 figs., 2 tabs.

  11. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  12. Assessment of Heating Fuels and Electricity Markets During the Winters of 2013-2014 and 2014-2015 Now Available

    Broader source: Energy.gov [DOE]

    Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different — but related — challenges across heating fuels and...

  13. Process for making boron nitride using sodium cyanide and boron

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  14. Process for making boron nitride using sodium cyanide and boron

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1990-02-06

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  15. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  16. METHOD OF MAKING FUEL BODIES

    DOE Patents [OSTI]

    Goeddel, W.V.; Simnad, M.T.

    1962-04-24

    An improved method of making a fuel body containing carbon for reactors is described. Carbides of uranium and thorium having a particle size of from 100 to 500 microns are mixed with carbon having a particle size that will pass a 200 mesh screen but be retained by a 325 mesh screen, and 10 per cent by weight pitch. The mixture is heated to a temperature of about 700 to 900 deg C, at which point bonding is effected while maintaining it under mechanical pressure of over 3,000 pounds per square inch. The entire compact is heated to a uniform temperature during the process, preferably by electrical resistance of the compact itself. (AEC)

  17. METHOD OF MAKING FUEL BODIES

    DOE Patents [OSTI]

    Goeddel, W.V.; Simnad, M.T.

    1963-04-30

    This patent relates to a method of making a fuel compact having a matrix of carbon or graphite which carries the carbides of fissile material. A nuclear fuel material selected from the group including uranium and thorium carbides, silicides, and oxides is first mixed both with sufficient finely divided carbon to constitute a matrix in the final product and with a diffusional bonding material selected from the class consisting of zirconium, niobium, molybdenum, titanium, nickel, chromium, and silicon. The mixture is then heated at a temperature of 1500 to 1800 nif- C while maintaining it under a pressure of over about 2,000 pounds per square inch. Preferably, heating is accomplished by the electrical resistance of the compact itself. (AEC)

  18. Tips: Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    climates, providing up to three times more heat than the energy they use. Today's heat pump can reduce your electricity use for heating by approximately 50% compared to...

  19. Home Heating Systems | Department of Energy

    Office of Environmental Management (EM)

    separately, many homes use the following approaches: Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental heat source. Electric...

  20. Biomass Derivatives Competitive with Heating Oil Costs.

    Energy Savers [EERE]

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average * ...

  1. National Drive Electric Week

    Office of Energy Efficiency and Renewable Energy (EERE)

    Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener!

  2. List of Heat recovery Incentives | Open Energy Information

    Open Energy Info (EERE)

    Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Energy Storage Nuclear Wind Heat recovery Fuel Cells using Renewable Fuels No Agricultural Energy Efficiency...

  3. Minnesota Valley Electric Cooperative - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    heat pumps, ground-source heat pumps, Energy Star appliances, and electric resistance heating products. Equipment rebates are only available to those participating in the...

  4. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect (OSTI)

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  5. Promising Technology: Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    A heat pump water heater uses electricity to transfer heat from the ambient air to stored water, as opposed to an electric resistance water heater, which uses electricity to generate the heat directly. This enables the heat pump water heater to be 2 to 3 times as efficient as an electric resistance water heater.

  6. National Lab Technology Transfer Making a Difference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent

  7. Solar heating panel

    SciTech Connect (OSTI)

    Ellsworth, R.L.

    1983-01-18

    A solar heating panel for collecting solar heat energy and method for making same having a heat insulative substrate with a multiplicity of grooves and structural supporting ribs formed therein covered by a thin, flexible heat conductive film to form fluid conducting channels which in turn are connected to manifolds from which fluid is directed into the channels and heated fluid is removed therefrom.

  8. Total Space Heat-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12 1 18 (*) 2 1 Q 6 Buildings without Cooling ... 30 1 (*) 4 (*) 14 (*) 4 (*) 1 6 Water-Heating Energy Source Electricity ... 402 21 57 42...

  9. Ductless Heat Pumps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  10. Heat Pump Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  11. Making a Difference

    Broader source: Energy.gov [DOE]

    EERE's work makes a difference in the lives of America's people. By lowering energy costs and supporting new ways to generate electricity, EERE is bringing a better energy future closer every day.

  12. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  13. Electric Storage Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  14. Influence of Damp Heat on the Electrical, Optical, and Morphological Properties of Encapsulated CuInGaSe2 Devices

    SciTech Connect (OSTI)

    Sundaramoorthy, R.; Pern, F. J.; Teeter, G.; Li, Jian V.; Young, M.; Kuciauskas, D.; Call, N.; Yan, F.; To, B.; Johnston, S.; Noufi, R.; Gessert, T. A.

    2011-01-01

    CuInGaSe{sub 2} (CIGS) devices, encapsulated with different backsheets having different water vapor transmission rates (WVTR), were exposed to damp heat (DH) at 85 C and 85% relative humidity (RH) and characterized periodically to understand junction degradation induced by moisture ingress. Performance degradation of the devices was primarily driven by an increase in series resistance within first 50 h of exposure, resulting in a decrease in fill factor and, accompanied loss in carrier concentration and widening of depletion width. Surface analysis of the devices after 700-h DH exposure showed the formation of Zn(OH){sub 2} from hydrolysis of the Al-doped ZnO (AZO) window layer by the moisture, which was detrimental to the collection of minority carriers. Minority carrier lifetimes observed for the CIGS devices using time resolved photoluminescence (TRPL) remained relatively long after DH exposure. By etching the DH-exposed devices and re-fabricating with new component layers, the performance of reworked devices improved significantly, further indicating that DH-induced degradation of the AZO layer and/or the CdS buffer was the primary performance-degrading factor.

  15. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make ...

  16. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane ...

  17. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  18. Use of photovoltaics for waste heat recovery

    DOE Patents [OSTI]

    Polcyn, Adam D

    2013-04-16

    A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

  19. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: AVTA - Electric Vehicle Community and Fleet Readiness Data and Reports Making plug-in electric vehicles (PEVs, also known as electric cars) as ...

  20. Field Monitoring Protocol: Mini-Split Heat Pumps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Introduction The mini-split heat pump ... is termed a multi-split heat pump, and ... replacement system for electric resistance heating where natural gas is not available. ...

  1. Seven Ways to Optimize Your Process Heat System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transfer from heat source to process or Clean heat transfer surfaces frequently load in indirectly heated systems, such as stream coils, radiant tubes, and electrical elements. ...

  2. List of Geothermal Heat Pumps Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Hydrogen Landfill Gas Methanol Passive Solar Space Heat Photovoltaics Solar Space Heat...

  3. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful ...

  4. CO2 Heat Pump Water Heater

    Broader source: Energy.gov (indexed) [DOE]

    CO 2 Heat Pump Water Heater 2014 Building Technologies Office Peer Review Evaporator Kyle ... MarketAudience: Residential electric water heating Key Partners: GE Appliances CRADA ...

  5. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  6. Heat Pump Swimming Pool Heaters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from one place to another. They don't generate heat. As the pool...

  7. Heat Pump Swimming Pool Heaters | Department of Energy

    Energy Savers [EERE]

    Pump Swimming Pool Heaters Heat Pump Swimming Pool Heaters How a heat pump works. How a heat pump works. How They Work Heat pumps use electricity to capture heat and move it from ...

  8. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  9. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  10. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and air conditioners. To qualify for the...

  11. Cuivre River Electric- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cuivre River Electric Cooperative, through the Take Control & Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water...

  12. Lane Electric Cooperative- Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative provides rebates for duct sealing measures, heat pumps, and newly constructed Energy Star Homes. Lane Electric Cooperative must receive the necessary application forms in...

  13. EERE Success Story-Washington: When Life Gives You Solar, Make Syngas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy When Life Gives You Solar, Make Syngas EERE Success Story-Washington: When Life Gives You Solar, Make Syngas November 8, 2013 - 12:00am Addthis Pacific Northwest National Laboratory (PNNL) is developing a new method for combining solar energy with modified natural gas power plants. This concentrating solar power (CSP) system harnesses sunlight to produce syngas, which is a fuel capable of driving a standard heat engine to produce electricity. In addition to offsetting

  14. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    SciTech Connect (OSTI)

    Dentz, Jordan; Podorson, David; Varshney, Kapil

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  15. Northeastern Summer Electricity Market Alert

    Reports and Publications (EIA)

    2013-01-01

    The National Weather Service declared an excessive-heat warning for much of the Mid-Atlantic and northeastern United States, including major electric markets covering Philadelphia, Boston, Washington, D.C., and New York City. This report highlights the wholesale electricity market activity occurring in response to the higher-than-normal electricity demand caused by the heat wave.

  16. Heat Pump Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Water Heaters Heat Pump Water Heaters A diagram of a heat pump water heater. A diagram of a heat pump water heater. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore,

  17. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  18. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  19. Waste Heat Utilization System Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Waste heat utilization systems arefacilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elect...

  20. October 2012 Electrical Safety Occurrences

    Energy Savers [EERE]

    subcontractor removed parts on a heating, ventilation and cooling (HVAC) unit. The prime contractor removed electrical power to the work area with the exception of the...

  1. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  2. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  3. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  4. Absorption Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Systems » Absorption Heat Pumps Absorption Heat Pumps Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption (or gas-fired) coolers available that work on the same principle. Unlike some absorption heat

  5. Radioisotopic heat source

    DOE Patents [OSTI]

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  6. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  7. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect (OSTI)

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  8. America Makes

    Broader source: Energy.gov [DOE]

    America Makes advances additive manufacturing technology and products, and serves as a nationally recognized additive manufacturing center of innovation excellence, working to transform the U.S. manufacturing sector and yield significant advancements throughout industry. America Makes was formerly called the National Additive Manufacturing Innovation Institute (NAMII).

  9. Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation

    Broader source: Energy.gov [DOE]

    Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

  10. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  11. Making History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YGG 05-0181 Making History It's hard to imagine . . . . . . an entire city existing in secret. . . . 60,000 acres set aside for one, top-secret purpose. . . . a discovery so huge...

  12. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and solar systems occur at...

  13. Geothermal Electricity Production Basics

    Broader source: Energy.gov [DOE]

    Heat from the earth—geothermal energy—heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity.

  14. Making IGCC slag valuable

    SciTech Connect (OSTI)

    Wicker, K.

    2005-12-01

    All indications are that integrated gasification combined-cycle (IGCC) technology will play a major role in tomorrow's generation industry. But before it does, some by-products of the process must be dealt with, for example unburned carbon that can make IGCC slag worthless. Charah Inc.'s processing system, used at Tampa Electric's Polk Station for years, segregates the slag's constituents by size, producing fuel and building materials. 3 figs.

  15. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  16. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B.

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  17. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  18. Apparatus for making photovoltaic devices

    DOE Patents [OSTI]

    Foote, James B. (Toledo, OH); Kaake, Steven A. F. (Perrysburg, OH); Meyers, Peter V. (Bowling Green, OH); Nolan, James F. (Sylvania, OH)

    1994-12-13

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  19. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. Induction heaters used to heat subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh; Bass, Ronald M.

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  1. Combined Heat and Power (CHP) Plant fact sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat and Power (CHP) Plant fact sheet Argonne National Laboratory's Combined Heat and Power (CHP) plant, expected to be operational in June 2016, will provide electricity...

  2. Improving Process Heating System Performance: A Sourcebook for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This sourcebook introduces industry to process heating basics, performance opportunities for fuel and electric based systems, waste heat management and where they can find help on ...

  3. The Influence of Building Location on Combined Heat and Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combined Heat & Power Hydrogen Production Cost Model Allows ... Fuel Cell with CHP Electricity Natural Gas Power Heat Natural Gas or Biogas Hydrogen National Renewable Energy ...

  4. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Broader source: Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Development of Cost-Competitive ...

  6. Multi-function fuel-fired heat pump CRADA

    Energy Savers [EERE]

    date: 01-Oct-2010 Planned end date: 30-Sept-2015 Key ... heating 4) 1 to 2 kW electricity generation capability ... performance * electric consumption * gas consumption * ...

  7. Fluid cooled electrical assembly

    DOE Patents [OSTI]

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  8. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  9. Absorption Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and

  10. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  11. NSTX Electrical Power Systems

    SciTech Connect (OSTI)

    A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

    1999-12-16

    The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

  12. Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at nightwhen the suns not outto drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MITs heat storage materials are designed to melt at high temperatures and conduct heat wellthis makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MITs low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

  13. Table 2.11 Commercial Buildings Electricity Consumption by End...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office ...

  14. Yellowstone Valley Electric Cooperative- Residential/Commercial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Yellowstone Valley Electric Cooperative offers rebates to residential and commercial members for purchasing energy efficient add-on heat pumps, geothermal heat pumps, water heaters, dishwashers...

  15. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  16. Ozark Border Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ozark Border Electric Cooperative has made rebates available to residential members for the installation of energy efficient geothermal and air source heat pumps, electric water heaters, and room...

  17. Electrical initiation of an energetic nanolaminate film

    DOE Patents [OSTI]

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  18. Small Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buying & Making Electricity » Small Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV systems also provide a cost-effective power supply in locations where it is expensive or impossible to send electricity through

  19. Home Heating

    Broader source: Energy.gov [DOE]

    Your choice of heating technologies impacts your energy bill. Learn about the different options for heating your home.

  20. Reducing Your Electricity Use | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    If you are planning to install a small renewable energy system to make your own electricity, such as a solar electric system or small wind turbine, reducing your electricity...

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical ...

  2. Activity: Conserving Electric Energy

    Broader source: Energy.gov [DOE]

    Students participate in two experiments in which they (1) gain an appreciation for their dependency on electricity and (2) learn how regulating the rate of energy consumption makes the energy...

  3. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  4. Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumps Geothermal Heat Pumps Two commercial 36-ton geothermal heat pumps being used at the College of Southern Idaho. The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office. The geothermal heat pump, also known as the ground source heat pump, is a highly efficient renewable energy technology that is

  5. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  6. Washington: When Life Gives You Solar, Make Syngas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a standard heat engine to produce electricity. In addition to offsetting the need for fossil fuels in traditional power plants, PNNL's approach offers an affordable pathway to...

  7. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  8. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  9. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  10. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  11. Waste Heat Utilization System Income Tax Deduction (Personal)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  12. Waste Heat Utilization System Income Tax Deduction (Corporate)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  13. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  14. Palmetto Electric Cooperative- Buried Treasure Rebate Program

    Broader source: Energy.gov [DOE]

    Palmetto Electric Cooperative offers rebates for its members who install ground-source heat pumps (also known as geothermal heat pumps) through the Buried Treasure Rebate Program. Rebates are in...

  15. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  16. Kirkwood Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kirkwood Electric offers rebates to its residential customers who install energy-efficient heat pumps and electric hot water heaters in their new and existing homes. Customers will be given a...

  17. Salem Electric- Solar Water Heater Rebate

    Office of Energy Efficiency and Renewable Energy (EERE)

    Salem Electric residential customers with electric water heating are eligible for a $600 rebate through Salem's Bright Way program. A program brochure with details is available on the program...

  18. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  19. Influence of Damp Heat on the Electrical, Optical, and Morphological Properties of Encapsulated CuInGaSe2 Devices: Preprint

    SciTech Connect (OSTI)

    Sundaramoorthy, R.; Pern, F. J.; Teeter, G.; Li, J. V.; Young, M.; Kuciauskas, D.; Call, N.; Yan, F.; To, B.; Johnston, S.; Noufi, R.; Gessert, T. A.

    2011-08-01

    CuInGaSe2 (CIGS) devices, encapsulated with different backsheets having different water vapor transmission rates (WVTR), were exposed to damp heat (DH) at 85C and 85% relative humidity (RH) and characterized periodically to understand junction degradation induced by moisture ingress. Performance degradation of the devices was primarily driven by an increase in series resistance within first 50 h of exposure, resulting in a decrease in fill factor and, accompanied loss in carrier concentration and widening of depletion width. Surface analysis of the devices after 700-h DH exposure showed the formation of Zn(OH)2 from hydrolysis of the Al-doped ZnO (AZO) window layer by the moisture, which was detrimental to the collection of minority carriers. Minority carrier lifetimes observed for the CIGS devices using time resolved photoluminescence (TRPL) remained relatively long after DH exposure. By etching the DH-exposed devices and re-fabricating with new component layers, the performance of reworked devices improved significantly, further indicating that DH-induced degradation of the AZO layer and/or the CdS buffer was the primary performance-degrading factor.

  20. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    SciTech Connect (OSTI)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-12-01

    The U.S. Department of Energy selected the high temperature gas-cooled reactor as the basis for the Next Generation Nuclear Plant (NGNP). The NGNP will demonstrate the use of nuclear power for electricity, hydrogen production, and process heat applications. The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. An intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding. This report describes the preliminary results of a scoping study that evaluated the diffusion welding process parameters and the resultant mechanical properties of diffusion welded joints using Alloy 800H. The long-term goal of the program is to progress towards demonstration of small heat exchanger unit cells fabricated with diffusion welds. Demonstration through mechanical testing of the unit cells will support American Society of Mechanical Engineers rules and standards development, reduce technical risk, and provide proof of concept for heat exchanger fabrication methods needed to deploy heat exchangers in several potential NGNP configurations.1 Researchers also evaluated the usefulness of modern thermodynamic and diffusion computational tools (Thermo-Calc and Dictra) in optimizing the parameters for diffusion welding of Alloy 800H. The modeling efforts suggested a temperature of 1150 C for 1 hour with an applied pressure of 5 MPa using 15 {micro}m nickel foil as joint filler to reduce chromium oxidation on the welded surfaces. Good agreement between modeled and experimentally determined concentration gradients was achieved

  1. Air-Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Heat Pump Systems » Air-Source Heat Pumps Air-Source Heat Pumps An air-source heat pump can provide efficient heating and cooling for your home. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. This is possible because a heat pump moves heat rather than converting it from a fuel like combustion heating systems do. Air-source heat pumps have been used for many years in

  2. Heat Pump Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Systems Heat Pump Systems A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar. A heat pump can provide an alternative to using your air conditioner. | Photo courtesy of iStockPhoto/LordRunar. For climates with moderate heating and cooling needs, heat pumps offer an energy-efficient alternative to furnaces and air conditioners. Like your refrigerator, heat pumps use electricity to move heat from a cool space to a warm space,

  3. Tampa Electric- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Tampa Electric provides financial incentives to customers who install solar-energy systems on their homes and businesses. Customers who install eligible solar water heating systems may receive a ...

  4. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  5. Introduction to 'Make'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Make' Introduction to 'Make' Introduction The UNIX make utility facilitates the creation and maintenance of executable programs from source code. make keeps track of the commands...

  6. Floating insulated conductors for heating subsurface formations

    DOE Patents [OSTI]

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  7. Solar water heating: FEMP fact sheet

    SciTech Connect (OSTI)

    Clyne, R.

    1999-09-30

    Using the sun to heat domestic water makes sense in almost any climate. Solar water heaters typically provide 40 to 80{percent} of a building's annual water-heating needs. A solar water-heating system's performance depends primarily on the outdoor temperature, the temperature to which the water is heated, and the amount of sunlight striking the collector.

  8. THERMO-ELECTRIC GENERATOR

    DOE Patents [OSTI]

    Jordan, K.C.

    1958-07-22

    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  9. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect (OSTI)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  10. Efficient Engine-Driven Heat Pump for the Residential Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Engine-Driven Heat Pump for the Residential Sector Introduction Building on previous work on an 11-ton packaged natural gas heat pump, this project developed hardware and software for en- gine and system controls for a residential gas heat pump system that provides space cooling, heating, and hot water. Various electric heat pump systems are used to provide heating and cooling for a wide range of buildings, from commercial facilities to single family homes. The market for heat pumps is

  11. Process Heating Assessment and Survey Tool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Assessment and Survey Tool Process Heating Assessment and Survey Tool April 10, 2014 - 3:34pm Addthis Process Heating Assessment and Survey Tool The Process Heating Assessment and Survey Tool (PHAST) introduces methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity, and identifies the most energy-intensive equipment. The tool can be used to perform a heat balance that

  12. Buying Clean Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Buying & Making Electricity » Buying Clean Electricity Buying Clean Electricity You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy

  13. Carbothermic reduction with parallel heat sources

    DOE Patents [OSTI]

    Troup, Robert L.; Stevenson, David T.

    1984-12-04

    Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

  14. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A.; Arakaki, Lester H.; Varley, Eric S.

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  15. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  16. Heat and Cool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver » Heat and Cool Heat and Cool Programmable thermostats and apps make it easy to control the temperature of your home and save energy and money. Programmable thermostats and apps make it easy to control the temperature of your home and save energy and money. Space heating and cooling account for almost half of a home's energy use, while water heating accounts for 18%, making these some of the largest energy expenses in any home. Space Heating and Cooling A variety of technologies

  17. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  18. Heat exchanger

    DOE Patents [OSTI]

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  19. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    SciTech Connect (OSTI)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-07-01

    electric plant. Depending on the process heat temperature and power needs, up to 80 % of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: 1. Timely adapted licensing process and regulations, codes and standards for such application and design; 2. An industry oriented R and D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector; 3. Identification of an end user (or a consortium of) willing to fund a FOAK. (authors)

  20. EERE Success Story-Steel Mill Powered by Waste Heat Recovery System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Steel Mill Powered by Waste Heat Recovery System EERE Success Story-Steel Mill Powered by Waste Heat Recovery System May 16, 2013 - 12:00am Addthis EERE worked with ArcelorMittal USA, Inc. to install an efficient recovery boiler to burn blast furnace gases generated during iron-making operations to produce electricity and steam onsite at the company's Indiana Harbor Steel Mill in East Chicago, Indiana. The steam is being used to drive existing turbogenerators onsite,

  1. Heating & Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Homes » Heating & Cooling Heating & Cooling Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for most homes. <a href="/energysaver/principles-heating-and-cooling">Learn more about the principles of heating and cooling</a>. Heating and cooling account for about 48% of the energy use in a typical U.S. home, making it the largest energy expense for

  2. Mini-biomass electric generation

    SciTech Connect (OSTI)

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility of replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).

  3. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  4. President's 2015 Budget Proposal Makes Critical Investments in...

    Office of Environmental Management (EM)

    ... advance carbon capture and storage and natural gas technologies. 180 million for Electricity ... 2014 Budget Proposal Makes Critical Investments in Innovation, Clean Energy and ...

  5. Critical Question #3: What are the Best Options for All-Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles ...

  6. Electrically heated particulate filter regeneration methods and...

    Office of Scientific and Technical Information (OSTI)

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle ... An engine control module controls operation of an engine of the hybrid vehicle based on ...

  7. Electrically heated particulate filter restart strategy

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-07-12

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a propagation module that estimates a propagation status of combustion of particulate matter in the particulate filter. A regeneration module controls current to the particulate filter to re-initiate regeneration based on the propagation status.

  8. Heat capacity, magnetic susceptibility, and electric resistivity...

    Office of Scientific and Technical Information (OSTI)

    The Neel temperature of CePdSn is anomalously large compared with that expected on the basis of de Gennes scaling from the ital Tsub ital N of 14.5 K of isostructural GdPdSn, ...

  9. Overlap zoned electrically heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  10. Electrically heated particulate filter with reduced stress

    DOE Patents [OSTI]

    Gonze, Eugene V.

    2013-03-05

    A system comprises a particulate matter (PM) filter comprising an inlet for receiving exhaust gas. A zoned heater is arranged in the inlet and comprises a resistive heater comprising N zones, where N is an integer greater than one. Each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates others of the N zones.

  11. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  12. APPARATUS FOR HEATING IONS

    DOE Patents [OSTI]

    Chambers, E.S.; Garren, A.A.; Kippenhan, D.O.; Lamb, W.A.S.; Riddell, R.J. Jr.

    1960-01-01

    The heating of ions in a magnetically confined plasma is accomplished by the application of an azimuthal radiofrequency electric field to the plasma at ion cyclotron resonance. The principal novelty resides in the provision of an output tank coil of a radiofrequency driver to induce the radiofrequency field in the plasma and of electron current bridge means at the ends of the plasma for suppressing radial polarization whereby the radiofrequency energy is transferred to the ions with high efficiency.

  13. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  14. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  15. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  16. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  1. High thermal conductivity connector having high electrical isolation

    DOE Patents [OSTI]

    Nieman, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1995-01-01

    A method and article for providing a low-thermal-resistance, high-electrical-isolation heat intercept connection. The connection method involves clamping, by thermal interference fit, an electrically isolating cylinder between an outer metallic ring and an inner metallic disk. The connection provides durable coupling of a heat sink and a heat source.

  2. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  3. Supercharger for Heat Pumps in Cold Climates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercharger for Heat Pumps in Cold Climates Thomas J. Walter Mechanical Solutions, Inc. tjw@mechsol.com 518-320-8552 April 3, 2013 DOE SBIR Grant No. SC0006162 Concept is similar to superchargers for piston engine aircraft 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Electrically driven heat pumps are an effective method of extracting heat from ambient air. As air temperature falls, however, heat pump performance falls off, essentially limiting

  4. Optimal joule heating of the subsurface

    DOE Patents [OSTI]

    Berryman, J.G.; Daily, W.D.

    1994-07-05

    A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  5. Optimal joule heating of the subsurface

    DOE Patents [OSTI]

    Berryman, James G.; Daily, William D.

    1994-01-01

    A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  6. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    SciTech Connect (OSTI)

    Robert S. Cherry; Richard D. Boardman; Steven Aumeier

    2012-02-01

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  7. Passive heat transfer means for nuclear reactors

    DOE Patents [OSTI]

    Burelbach, James P.

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  8. Heat engine generator control system

    DOE Patents [OSTI]

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  9. Heat engine generator control system

    DOE Patents [OSTI]

    Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

    1998-01-01

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  10. NSF/DOE Thermoelectrics Partnership: Purdue … GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Reviews results in developing commercially viable thermoelectric generators for efficient conversion of automotive exhaust waste heat to electricity

  11. Minnesota Valley Electric Cooperative-Residential Energy Resource Conservation Loan Program

    Broader source: Energy.gov [DOE]

    ERC loans are available only for replacement items, not for new homes. Loans of up to $5,000 are available for heat pumps, electric water heaters, and other electric heating products.  Weatheriza...

  12. Electricity Data Browser

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Browser - Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade,

  13. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  14. Choosing and Installing Geothermal Heat Pumps | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    translates into a GHP using one unit of electricity to move three units of heat from the earth. According to the EPA, geothermal heat pumps can reduce energy consumption -- and...

  15. Air-Source Heat Pumps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of...

  16. Red River Valley REA- Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Red River Valley Rural Electric Association (RRVREA) offers a loan program to its members for air-source and geothermal heat pumps. Loans are available for geothermal heat pumps at a 5% fixed...

  17. 5 Cool Things about Solar Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar heating systems reduce the amount of air pollution and greenhouse gases that generally come from the use of fossil fuels for heating and electricity production. If you're ...

  18. Heat exchanger bypass test report

    SciTech Connect (OSTI)

    De Vries, M.L.

    1995-01-26

    This test report documents the results that were obtained while conducting the test procedure which bypassed the heat exchangers in the HC-21C sludge stabilization process. The test was performed on November 15, 1994 using WHC-SD-CP-TC-031, ``Heat Exchanger Bypass Test Procedure.`` The primary objective of the test procedure was to determine if the heat exchangers were contributing to condensation of moisture in the off-gas line. This condensation was observed in the rotameters. Also, a secondary objective was to determine if temperatures at the rotameters would be too high and damage them or make them inaccurate without the heat exchangers in place.

  19. Commercial Miscellaneous Electric Loads Report: Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization and Savings Potential in 2008 by Building Type | Department of Energy Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial miscellaneous electric loads (MELs) are generally defined as all electric loads except those related to main systems for heating,

  20. Electric Motor Thermal Management for Electric Traction Drives (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Cousineau, J.; Moreno, G.

    2014-09-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of material thermal properties and convective heat transfer coefficients. In this work, the thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. Also, convective heat transfer coefficients of automatic transmission fluid (ATF) jets were measured to better understand the heat transfer of ATF impinging on motor copper windings. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients.

  1. Analysis & Tools to Spur Increased Deployment of " Waste Heat...

    Open Energy Info (EERE)

    largest community-owned electric utility that has created the Nation's top performing renewable energy program, and ClimateMaster, a leading manufacturer of geothermal heat pumps,...

  2. AMO Industrial Distributed Energy: Combine Heat and Power: A...

    Broader source: Energy.gov (indexed) [DOE]

    ... That steam is fed to a steam turbine, generating mechanical power or electricity, before exiting the turbine at lower pressure and temperature and used for process or heating ...

  3. Project Profile: High-Temperature Particle Heat Exchanger for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a turbine to generate electricity. Industry experience with similar heat exchangers is limited to lower pressures, lower temperatures, or alternative fluids like steam or ...

  4. Localized heating of electrons in ionization zones: Going beyond...

    Office of Scientific and Technical Information (OSTI)

    Technol. 22, 045005, (2013)) used a global discharge model to show that electron heating in the electric field of the magnetic presheath is dominant. In this contribution, this ...

  5. Heat flow and microearthquake studies, Coso Geothermal Area,...

    Open Energy Info (EERE)

    The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling...

  6. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy ... Engineering and Materials for Automotive Thermoelectric Applications Electrical and ...

  7. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas ... More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste ...

  8. Combined Heat and Power Basics | Department of Energy

    Energy Savers [EERE]

    of electricity or mechanical power and useful thermal energy (heating andor cooling) from a single source of energy. A type of distributed generation, which, unlike central ...

  9. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  10. Ductless, Mini-Split Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Ductless, mini-split-system heat pumps (mini splits), as their name implies, do not have ducts. Therefore, they make good retrofit add-ons to houses or buildings with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane).

  11. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  12. City of Concord Electric Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Concord Electric Department offers an incentive program encouraging its residential customers to replace their existing HVAC system with a more energy efficient heat pump system.  Heat...

  13. Co-Mo Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Co-Mo Electric Cooperative provides rebates to its residential and commercial members who install air source, dual fuel, and/or geothermal heat pumps, and certain energy efficient appliances. Heat...

  14. Pee Dee Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for dual fuel heat pumps, geothermal heat pumps, and...

  15. Baltimore Gas & Electric Company (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Baltimore Gas & Electric Company (BGE) offers Natural Gas Connection program to residential customers to switch from electric to natural gas for heat. The program waives connection charge (...

  16. Method for localizing heating in tumor tissue

    DOE Patents [OSTI]

    Doss, James D.; McCabe, Charles W.

    1977-04-12

    A method for a localized tissue heating of tumors is disclosed. Localized radio frequency current fields are produced with specific electrode configurations. Several electrode configurations are disclosed, enabling variations in electrical and thermal properties of tissues to be exploited.

  17. STEO October 2012 - home heating supplies

    Gasoline and Diesel Fuel Update (EIA)

    Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home ... Inventories of propane, which heats about 5 percent of all U.S. households and is more ...

  18. EWEB- Residential Solar Water Heating Loan Program

    Broader source: Energy.gov [DOE]

    Eugene Water & Electric Board (EWEB) offers residential customers a loan and cash discount program called, "The Bright Way To Heat Water." The program is designed to promote the installation of...

  19. Introduction to 'Make'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Make' Introduction to 'Make' Introduction The UNIX make utility facilitates the creation and maintenance of executable programs from source code. make keeps track of the commands needed to build the code and when changes are made to a source file, recompiles only the necessary files. make creates and updates programs with a minimum of effort. A small initial investment of time is needed to set up make for a given software project, but afterward, recompiling and linking is done consistently and

  20. Miscellaneous electricity use in U.S. homes

    SciTech Connect (OSTI)

    Sanchez, Marla C.; Koomey, Jonathan G.; Moezzi, Mithra M.; Meier, Alan; Huber, Wolfgang

    1999-09-30

    Historically, residential energy and carbon saving efforts have targeted conventional end uses such as water heating, lighting and refrigeration. The emergence of new household appliances has transformed energy use from a few large and easily identifiable end uses into a broad array of ''miscellaneous'' energy services. This group of so called miscellaneous appliances has been a major contributor to growth in electricity demand in the past two decades. We use industry shipment data, lifetimes, and wattage and usage estimates of over 90 individual products to construct a bottom-up end use model (1976-2010). The model is then used to analyze historical and forecasted growth trends, and to identify the largest individual products within the miscellaneous end use. We also use the end use model to identify and analyze policy priorities. Our forecast projects that over the period 1996 to 2010, miscellaneous consumption will increase 115 TWh, accounting for over 90 percent of future residential electricity growth. A large portion of this growth will be due to halogen torchiere lamps and consumer electronics, making these two components of miscellaneous electricity a particularly fertile area for efficiency programs. Approximately 20 percent (40 TWh) of residential miscellaneous electricity is ''leaking electricity'' or energy consumed by appliances when they are not performing their principal function. If the standby power of all appliances with a standby mode is reduced to one watt, the potential energy savings equal 21 TWh/yr, saving roughly $1-2 billion annually.

  1. Coast Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Coast Electric Power Association (CEPA) provides rebates on heat pumps for new homes which meet certain weatherization standards. To qualify for this rebate the home must have:

  2. Coast Electric Power Association- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Coast Electric Power Association provides incentives for commercial customers to increase the energy efficiency of facilities. Rebates are provided for new or replacement energy efficient heat...

  3. Singing River Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Singing River Electric Power Association provides rebates on energy efficiency measures in new homes and heat pumps that meet Comfort Advantage weatherization standards. To qualify for this rebate...

  4. Cumberland Valley Electric Cooperative- Energy Efficiency and Renewable Energy Program

    Broader source: Energy.gov [DOE]

    Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps, building insulation (including windows and doors), and...

  5. Farmers Electric Cooperative (Kalona)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative (FEC) offers a variety of rebates for the purchase and proper installation of energy efficient equipment for the home. Incentives are available for geothermal heat...

  6. Southern Pine Electric Power Association- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Southern Pine Electric Power Association offers the Comfort Advantage Home Program which provides rebates on heat pumps to new homes which meet certain Comfort Advantage weatherization standards....

  7. Sangre De Cristo Electric Association- Energy Efficiency Credit Program

    Broader source: Energy.gov [DOE]

    The Sangre De Cristo Electric Association (SDCEA) offers the Energy Efficiency Credit Program, a rebate program which offers incentives for heat pumps, water heaters, appliances, and LED lighting.

  8. TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity...

    Office of Environmental Management (EM)

    ... could likely emerge for alternative energy vehicles and the ... heating, electric vehicle charging and other flexible loads. ... has been driven by a variety of conditions and trends. ...

  9. Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Louisville Gas & Electric's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  10. Effects of Feedback on Residential Electricity Consumption: A...

    Office of Scientific and Technical Information (OSTI)

    none of which were elec- trically heated; each had an electric stove, dryer, dishwasher, and water heater. The researchers installed 24-h chart recorders in each residence...

  11. Delta-Montrose Electric Association- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Delta-Montrose Electric Association (DMEA) offers a variety of rebates to commercial customers which upgrade to energy efficient equipment. Rebates are available for energy efficient heat pumps,...

  12. Douglas Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Douglas Electric Cooperative offers rebates to its members for the purchase of energy efficient products and measures.  Rebates include clothes washers, heat pumps, manufactured homes, and...

  13. Chicopee Electric Light Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Chicopee Electric Light Department (CELD) offers a variety of energy efficiency rebates for its residential customers. CELD provides rebates for heat pump water heaters, refrigerators, freezers,...

  14. Electric thermal storage demonstration program

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  15. Electric thermal storage demonstration program

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    In early 1989, MMWEC, a joint action agency comprised of 30 municipal light departments in Massachusetts and one affiliate in Rhode Island, responded to a Department of Energy request to proposal for the Least Cost Utility Planning program. The MMWEC submission was for the development of a program, focused on small rural electric utilities, to promote the use of electric thermal storage heating systems in residential applications. In this progress report, cost savings at Bolyston light department is discussed. (JL)

  16. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  18. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  19. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  20. Electrical Engineer

    Broader source: Energy.gov [DOE]

    Transmission Field Services is responsible for field switching operation and maintenance of Bonneville Power Administration's high-voltage electrical transmission system to provide safe, reliable,...

  1. Electrical Safety

    Office of Environmental Management (EM)

    Handbook that was originally issued in 1998, and revised in 2004. DOE handbooks are ... the National Fire Protection Association (NFPA) 70, the National Electrical Code (NEC), ...

  2. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  3. Electrocaloric devices based on thini-film heat switches

    SciTech Connect (OSTI)

    Epstein, Richard I; Malloy, Kevin J

    2009-01-01

    We describe a new approach to refrigeration and electrical generation that exploits the attractive properties of thin films of electrocaloric materials. Layers of electrocaloric material coupled with thin-film heat switches can work as either refrigerators or electrical generators, depending on the phasing of the applied voltages and heat switching. With heat switches based on thin layers of liquid crystals, the efficiency of these thin-film heat engines can be at least as high as that of current thermoelectric devices. Advanced heat switches would enable thin-film heat engines to outperform conventional vaporcompression devices.

  4. HEAT EXCHANGER

    DOE Patents [OSTI]

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  5. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  6. Market Potential for Non-electric Applications of Nuclear Energy

    SciTech Connect (OSTI)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-07-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  7. Douglas Electric Cooperative- Residential Energy Efficiency Loans

    Office of Energy Efficiency and Renewable Energy (EERE)

    Douglas Electric Cooperative offers financing for heat pumps and weatherization. Insulation levels for this climate zone should be a minimum of R-38 in the ceiling, R-30 in the floor and R-11 in...

  8. Redding Electric- Renewable Energy Rebate Program

    Broader source: Energy.gov [DOE]

    The Earth Advantage Rebate Program was designed to offer rebates to residential and business customers of Redding Electric Utility (REU) for solar PV, solar thermal, and geothermal heat pump...

  9. Lakeland Electric- Residential Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    Lakeland Electric offers a conservation program for residential customers to save energy in homes. Rebates are available for Heat Pumps, HVAC tune-ups, attic insulation upgrades, and Energy Star...

  10. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  11. Experimental research on heat transfer of natural convection in vertical rectangular channels with large aspect ratio

    SciTech Connect (OSTI)

    Lu, Qing; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Ye, Zhonghao

    2010-01-15

    This work presents the experimental research on the steady laminar natural convection heat transfer of air in three vertical thin rectangular channels with different gap clearance. The much higher ratio of width to gap clearance (60-24) and the ratio of length to gap clearance (800-320) make the rectangular channels similar with the coolant flow passage in plate type fuel reactors. The vertical rectangular channels were composed of two stainless steal plates and were heated by electrical heating rods. The wall temperatures were detected with the K-type thermocouples which were inserted into the blind holes drilled in the steal plates. Also the air temperatures at the inlet and outlet of the channel were detected. The wall heat fluxes added to the air flow were calculated by the Fourier heat conduction law. The heat transfer characteristics were analyzed, and the average Nusselt numbers in all the three channels could be well correlated with the Rayleigh number or the modified Rayleigh number in a uniform correlation. Furthermore, the maximum wall temperatures were investigated, which is a key parameter for the fuel's integrity during some accidents. It was found that even the wall heat flux was up to 1500 W/m{sup 2}, the maximum wall temperature was lower than 350 C. All this work is valuable for the plate type reactor's design and safety analysis. (author)

  12. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  13. Electric avenues

    SciTech Connect (OSTI)

    Stone, P.; Chang, A.

    1994-12-31

    Highly efficient electric drive technology developed originally for defense applications is being applied to the development of all electric shuttle buses for the San Jose International Airport. An innovative opportunity charging system using induction chargers will be incorporated to extend operation hours. The project, if successful, is expected to reduce pollution at the airport and generate jobs for displaced defense workers.

  14. Making Fuel with Solar Panels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Fuel with Solar Panels Making Fuel with Solar Panels Making Fuel with Solar Panels This photograph features the Sacramento Municipal Utility District (SMUD) solar-powered hydrogen vehicle fueling station that opened on April 1, 2008. As the solar panels make electricity, an electrolyzer at the station will use that energy to separate water into hydrogen to make fuel for hydrogen-powered vehicles. When not being used to produce hydrogen for vehicles, the power produced by the panels will

  15. Resistance after firing protected electric match

    DOE Patents [OSTI]

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  16. Resistance after firing protected electric match

    SciTech Connect (OSTI)

    Montoya, A.P.

    1981-11-10

    An electric match having electrical leads embedded in flameproducing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  17. Waste Heat to Power Market Assessment

    SciTech Connect (OSTI)

    Elson, Amelia; Tidball, Rick; Hampson, Anne

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  18. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    SciTech Connect (OSTI)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits

  19. Clad fiber capacitor and method of making same

    SciTech Connect (OSTI)

    Tuncer, Enis

    2012-12-11

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; and a ductile, electrically conductive sleeve positioned over the cladding. One or more preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  20. Clad fiber capacitor and method of making same

    DOE Patents [OSTI]

    Tuncer, Enis

    2013-11-26

    A clad capacitor and method of manufacture includes assembling a preform comprising a ductile, electrically conductive fiber; a ductile, electrically insulating cladding positioned on the fiber; a ductile, electrically conductive sleeve positioned over the cladding. One or more of the preforms are then bundled, heated and drawn along a longitudinal axis to decrease the diameter of the ductile components of the preform and fuse the preform into a unitized strand.

  1. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  2. Electrical resistivity probes

    DOE Patents [OSTI]

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  3. Cedarville School District Retrofit of Heating and Cooling Systems with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pumpsand Ground Source Water Loops | Department of Energy Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.;

  4. Osmotic Heat Engine for Energy Production from Low Temperature Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Project objective: to demonstrate the economic viability of an Osmotic Heat Engine for electricity production from extremely low-grade geothermal resources. low_mcginnis_osmotic_heat_engine.pdf (327.23 KB) More Documents & Publications Osmotic Heat Engine for Energy Production from Low

  5. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  6. National Electrical Manufacturers Association

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  7. Heating apparatus

    SciTech Connect (OSTI)

    Page, V. J.

    1981-02-10

    A solar energy heating apparatus is described comprising means for concentrating solar energy incident thereon at an absorption station, an absorber located at the said absorption station for absorbing solar energy concentrated thereat, a first passageway associated with the said energy concentrating means for directing fluid so as to be preheated by the proportion of the incident energy absorbed by the said means, a second passageway associated with the absorber for effecting principal heating of fluid directed therethrough. The second passageway is such that on directing fluid through the first passageway it is initially preheated by the proportion of the incident energy absorbed by the energy concentrating means, the preheated fluid thereafter being directed to the second passageway where the principal heating takes place.

  8. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  9. Method of making porous ceramic fluoride

    DOE Patents [OSTI]

    Reiner, Robert H. (Knoxville, TN); Holcombe, Cressie E. (Farragut, TN)

    1990-01-01

    A process for making a porous ceramic composite where fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  10. High temperature absorption heat pump for industrial usage

    SciTech Connect (OSTI)

    Bugarel, R.; Morillon, R.

    1982-01-01

    A theoretical and experimental study has demonstrated that an absorption heat pump with a water-lithium bromide thermodynamic couple has a practical coefficient of performance of 1.4-1.6 when providing a 280/sup 0/F heat source. The ability to serve as a high-temperature heat source makes this heat pump suitable for certain industrial processes such as drying.

  11. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  12. Generation of electrical power

    DOE Patents [OSTI]

    Hursen, Thomas F.; Kolenik, Steven A.; Purdy, David L.

    1976-01-01

    A heat-to-electricity converter is disclosed which includes a radioactive heat source and a thermoelectric element of relatively short overall length capable of delivering a low voltage of the order of a few tenths of a volt. Such a thermoelectric element operates at a higher efficiency than longer higher-voltage elements; for example, elements producing 6 volts. In the generation of required power, thermoelectric element drives a solid-state converter which is controlled by input current rather than input voltage and operates efficiently for a high signal-plus-noise to signal ratio of current. The solid-state converter has the voltage gain necessary to deliver the required voltage at the low input of the thermoelectric element.

  13. Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fig. 1-1. Flow down of Electrical AHJ and worker responsibility. 3 DOE-HDBK-1092-2013 2.0 ... When equipment contains storage batteries, workers should be protected from the various ...

  14. Heat exchanger

    DOE Patents [OSTI]

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  15. Making More Light with Less Energy

    SciTech Connect (OSTI)

    Kuritzky, Leah; Jewell, Jason

    2013-07-18

    Representing the Center for Energy Efficient Materials (CEEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CEEM is to discover and develop materials that control the interactions among light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.

  16. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  17. Rural Cooperative Geothermal Development Electric & Agriculture |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rural Cooperative Geothermal Development Electric & Agriculture Rural Cooperative Geothermal Development Electric & Agriculture DOE 2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects low_silveria_rural_electric_coop.pdf (557.69 KB) More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion Equipment for Low

  18. Cooling devices and methods for use with electric submersible pumps

    DOE Patents [OSTI]

    Jankowski, Todd A; Hill, Dallas D

    2014-12-02

    Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.

  19. Performance of Integrated Hydronic Heating Systems.

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    2007-12-20

    A variety of system configurations are used in North America to meet the heating and domestic hot water needs of single-family homes. This includes, for example: warm air furnaces with electric water heaters; boilers with integrated hot water coils; and boilers with 'indirect' hot water storage tanks. Integrated hydronic systems which provide both heat and hot water are more popular only in the Northeast and mid-Atlantic regions. For those making decisions about configurations of these integrated hydronic systems, including control options, little information is available concerning the annual energy cost implications of these decisions. This report presents results of a project to use a direct load emulation approach to measure the performance of hydronic systems, develop performance curves, and to provide decision tools to consumers. This is a laboratory measurement system involving direct energy input and output measurements under different load patterns. These results are then used to develop performance correlations for specific systems that can be used to predict energy use in specific applications. A wide range of system types have been tested under this project including conventional boilers with 'tankless' internal coils for domestic hot water production, boilers with indirect external storage tanks, tank type water heaters which may also be used for space heating, condensing oil- and gas-fired systems, and systems with custom control features. It is shown that low load and idle energy losses can have a very large impact on the total annual energy use and that the potential energy savings associated with replacing old equipment with newer, high efficiency equipment with low losses at idle or low load can be in the 25% range. These savings are larger than simple combustion efficiency measurements would indicate.

  20. What's New in Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What's New in Geothermal Heat Pumps What's New in Geothermal Heat Pumps This workshop was held on May 12, 2009, in Las Vegas, Nevada, at the Connect '09 Conference & Expo, the annual national conference for electric cooperative marketing, communication, and member service professionals. The workshop focused on how geothermal heat pump systems can meet the energy goals of electric cooperatives while building system load factor and revenue. The presentations included information about

  1. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Condensing the vapor mixture yields a liquid with bio-oil and aqueous layers (as oil and water do not mix). The bio-oil can be put through hydroprocessing, separation, and ...

  2. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Resistance is Futile | Department of Energy New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile This webinar will focus on the use of ductless heat pumps (DHP) as a hybrid "all-electric" heating system in new high-performance homes. In a DHP/hybrid heating system, the DHP fan coil is located in the main living area in combination with electric resistance zone

  3. Building America Webinar: New Construction Hybrid-Ductless Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Resistance is Futile | Department of Energy New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile Building America Webinar: New Construction Hybrid-Ductless Heat Pumps Study: Resistance is Futile This webinar on June 24, 2015, focused on the use of ductless heat pumps (DHP) as a hybrid "all-electric" heating system in new high-performance homes. In a DHP/hybrid heating system, the DHP fan coil is located in the main living area in combination with electric

  4. Monitoring and evaluating ground-source heat pump. Final report

    SciTech Connect (OSTI)

    Stoltz, S.V.; Cade, D.; Mason, G.

    1996-05-01

    This report presents the measured performance of four advanced residential ground-source heat pump (GSHP) systems. The GSHP systems were developed by WaterFurnace International to minimize the need for electric resistance backup heating and featured multiple speed compressors, supplemental water heating, and at most sites, multiple-speed fans. Detailed data collected for a complete year starting in June 1994 shows that the advanced design is capable of maintaining comfort without the use of electric resistance backup heating. In comparison with a conventional air-source heat pump, the advanced-design GSHP reduced peak heating demand by more than 12 kilowatts (kW) per residence and provided energy savings. The report describes the cooling and heating season operation of the systems, including estimated seasonal efficiency, hours of operation, and load profiles for average days and peak days. The electrical energy input, cooling output, and efficiency are presented as a function of return air temperature and ground loop temperature.

  5. Power systems utilizing the heat of produced formation fluid

    DOE Patents [OSTI]

    Lambirth, Gene Richard

    2011-01-11

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method includes treating a hydrocarbon containing formation. The method may include providing heat to the formation; producing heated fluid from the formation; and generating electricity from at least a portion of the heated fluid using a Kalina cycle.

  6. 3kW Stirling engine for power and heat production

    SciTech Connect (OSTI)

    Thorsen, J.E.; Bovin, J.; Carlsen, H.

    1996-12-31

    A new 3 kW Beta type Stirling engine has been developed. The engine uses Natural gas as fuel, and it is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism and the alternator are built into a pressurized crank casing. The engine produce 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW corresponding to a shaft efficiency of 30%, and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as working gas. The crank mechanism is a combination of an upper- and lower yoke, each forming the half of a Ross mechanism. The upper yoke is linked to the displacer piston and the lower yoke is linked to the working piston. The design gives an approximately linear couple point curve, which eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket, which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function of mean pressure and hot and cold temperature, and emissions and noise have been measured.

  7. Making Microgrids Work

    SciTech Connect (OSTI)

    Kroposki, B.; Lasseter, R.; Ise, T.; Morozumi, S.; Papathanassiou, S.; Hatziargyriou, N.

    2008-05-01

    Distributed energy resources including distributed generation and distributed storage are sources of energy located near local loads and can provide a variety of benefits including improved reliability if they are properly operated in the electrical distribution system. Microgrids are systems that have at least one distributed energy resource and associated loads and can form intentional islands in the electrical distribution systems. This paper gives an overview of the microgrid operation. Microgrid testing experiences from different counties was also provided.

  8. High specific heat superconducting composite

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  9. STEO October 2012 - home heating use

    U.S. Energy Information Administration (EIA) Indexed Site

    Last year's warm U.S. winter temperatures to give way to normal, increasing household heating fuel use U.S. households will likely burn more heating fuels to stay warm this winter compared with last year Average household demand for natural gas, the most common primary heating fuel, is expected to be up 14 percent this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. Demand for electricity will be up 8 percent. And demand for heating oil, used mainly

  10. Electrical Load Modeling and Simulation

    SciTech Connect (OSTI)

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  11. Turning off the heat. Why America must double energy efficiency to save money and reduce global warming

    SciTech Connect (OSTI)

    Casten, T.R.

    1998-12-31

    Turning Off the Heat targets a main source of overuse of fossil fuels--the energy producers themselves who, through their government-approved monopolies have led to energy inefficiency and needless pollution. A leading authority with 20 years of experience in the development and operation of energy conversions in the development and operation of energy conversions, Thomas R. Casten clearly explains that the US and other nations of the world can, and must, double the efficiency of energy utilities. This efficiency improvement will lead to a reduction of electric prices by 30 to 40% and cut carbon dioxide emissions (a greenhouse gas) in half. Two-thirds of the fuel used to make US Electricity is wasted, resulting in higher energy prices and excess pollution. If market forces are unleased and monopolies ended, competition will save money and fuel, Casten says. Turning Off the Heat is an essential volume for policy-makers, legislators, leaders in industry, environmentalists, and concerned citizens.

  12. Making a Solar Oven

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  13. Heat and Cool | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    apps make it easy to control the temperature of your home and save energy and money. Space heating and cooling account for almost half of a home's energy use, while water...

  14. Tool Improves Electricity Demand Predictions to Make More Room for

    Broader source: Energy.gov (indexed) [DOE]

    N O R T H A M E R I C A N E L E C T R I C R E L I A B I L I T Y C O U N C I L P r i n c e t o n F o r r e s t a l V i l l a g e , 1 1 6 - 3 9 0 V i l l a g e B o u l e v a r d , P r i n c e t o n , N e w J e r s e y 0 8 5 4 0 - 5 7 3 1 Phone 609-452-8060 Fax 609-452-9550 URL www.nerc.com FOR IMMEDIATE RELEASE Contact: Ellen P. Vancko evancko@nerc.com Preliminary Disturbance Report August 14, 2003 Sequence of Events The following information represents a partial sequence of events based upon

  15. Green Button Initiative Makes Headway with Electric Industry...

    Energy Savers [EERE]

    providing more than 60 million U.S. households (including altogether 100 million people) access to their own Green Button energy data in a consumer- and computer-friendly format. ...

  16. Save Energy Now in Your Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

  17. Reduce Natural Gas Use in Your Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  18. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  19. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  20. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  1. Method of making a modified ceramic-ceramic composite

    DOE Patents [OSTI]

    Weaver, Billy L.; McLaughlin, Jerry C.; Stinton, David P.

    1995-01-01

    The present invention provides a method of making a shaped ceramic-ceramic composite articles, such as gas-fired radiant heat burner tubes, heat exchangers, flame dispersers, and other furnace elements, having a formed-on ceramic-ceramic composite thereon.

  2. Electric heater for nuclear fuel rod simulators

    DOE Patents [OSTI]

    McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  3. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2004-03-16

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  4. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-08-05

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  5. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-10-14

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  6. Methods Of Making Pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-12-30

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  7. Why Onion-Like Carbons Make High-Energy Supercapacitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why Onion-Like Carbons Make High-Energy Supercapacitors Why Onion-Like Carbons Make High-Energy Supercapacitors Simulations explain experimental results for electrical storage devices June 1, 2012 JiangCummingsCoverLarge.gif Capacitance and geometry effects revealed by molecular dynamics simulations. The OLC and the ionic liquid that were the basis of the simulation are shown in the lower left. (Guang Feng, De-en Jiang, Peter T. Cummings, © ACS Publications) The two most important electrical

  8. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  9. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  10. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  11. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J.

    1986-01-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  12. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  13. Electrical Engineer

    Broader source: Energy.gov [DOE]

    If you are ready to begin your new career or are looking for a place to make an impact, what better place than a top 5 agency? We are looking for the best and brightest to join our team of...

  14. Temperature limited heater with a conduit substantially electrically isolated from the formation

    DOE Patents [OSTI]

    Vinegar, Harold J.; Sandberg, Chester Ledlie

    2009-07-14

    A system for heating a hydrocarbon containing formation is described. A conduit may be located in an opening in the formation. The conduit includes ferromagnetic material. An electrical conductor is positioned inside the conduit, and is electrically coupled to the conduit at or near an end portion of the conduit so that the electrical conductor and the conduit are electrically coupled in series. Electrical current flows in the electrical conductor in a substantially opposite direction to electrical current flow in the conduit during application of electrical current to the system. The flow of electrons is substantially confined to the inside of the conduit by the electromagnetic field generated from electrical current flow in the electrical conductor so that the outside surface of the conduit is at or near substantially zero potential at 25.degree. C. The conduit may generate heat and heat the formation during application of electrical current.

  15. Heating and Cooling System Support Equipment Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated

  16. Improving Process Heating System Performance: A Sourcebook for Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Third Edition | Department of Energy Third Edition Improving Process Heating System Performance: A Sourcebook for Industry, Third Edition This sourcebook introduces industry to process heating basics, performance opportunities for fuel and electric based systems, waste heat management and where they can find help on optimizing these important industrial systems. Over the years AMO has worked with the Industrial Heating Equipment Association (IHEA) in its development. IHEA's mission is to

  17. Liberalization of the Japanese electricity market

    SciTech Connect (OSTI)

    Shimazaki, Masaki

    1994-12-31

    The Japanese electricity industry is shackled by more regulations than other domestic industries. Electricity liberalization, however, is one of the few areas in which discussion of deregulation has been making steady progress although the outcome of deregulation has become uncertain due to the turbulence of politics and bureaucratic resistance. This study examines the liberalization of the Japanese electricity market focusing on the characteristics of (1) entering the electricity generation business, (2) access to power companies` transmission facilities, (3) beginning an electricity retail business, and (4) reforming the electricity rating system. The article follows three themes. First, the background of the Japanese electricity liberalization can be explained from economic, political, and bureaucratic points of view. Second, international electricity price comparison should not only depend on exchange rates but should also take other factors into account. Finally, liberalization will increase fossil fuel consumption, which could have unwelcome consequences.

  18. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable

  19. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  20. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, David J.; Nordholt, Jane E.

    1992-01-01

    A mass spectrometer and methods for mass spectrometry. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field.