National Library of Energy BETA

Sample records for making cellulosic ethanol

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This...

  2. Cellulosic ethanol | Open Energy Information

    Open Energy Info (EERE)

    Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural...

  3. Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 PDF icon b2blowres63006.pdf More Documents & Publications Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Review of Recent Pilot Scale Cellulosic Ethanol Demonstration Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and

  4. Bioenergy Impacts … Cellulosic Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for its cellulosic ethanol biorefinery. Farmers earned additional revenue from selling their leftover corn husks, stalks, and leaves to the POET-DSM biorefinery for production of ...

  5. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Energy Savers [EERE]

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  6. DuPont Danisco Cellulosic Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Danisco Cellulosic Ethanol Jump to: navigation, search Name: DuPont Danisco Cellulosic Ethanol Place: Itasca, Illinois Zip: 60143 Product: DuPont Danisco Cellulosic Ethanol is a...

  7. Four Cellulosic Ethanol Breakthroughs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Four Cellulosic Ethanol Breakthroughs Four Cellulosic Ethanol Breakthroughs September 3, 2014 - 1:11pm Addthis Cellulosic ethanol biorefinery 1 of 10 Cellulosic ethanol biorefinery The mechanical building (front), solid/liquid separation building (left), and anaerobic digestion building (back) at POET-DSM's Project LIBERTY biorefinery in Emmetsburg, Iowa. Image: Courtesy of POET-DSM Stacking up biomass 2 of 10 Stacking up biomass The biomass stackyard, where corn waste is stored at POET-DSM's

  8. Fulton Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Sumait, Necy; Cuzens, John; Klann, Richard

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  9. Breaking the Biological Barriers to Cellulosic Ethanol, June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic Ethanol, June 2006 Breaking the Biological Barriers to Cellulosic...

  10. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This infographic was created by students from Williamsburg HS for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a broad and complex topic. The ideas

  11. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery...

  12. Belize-OAS Cellulosic Ethanol Market Assessment | Open Energy...

    Open Energy Info (EERE)

    OAS Cellulosic Ethanol Market Assessment Jump to: navigation, search Name Belize-OAS Cellulosic Ethanol Market Assessment AgencyCompany Organization Organization of American...

  13. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production

    Broader source: Energy.gov [DOE]

    Project LIBERTY, the nation’s first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons of cellulosic ethanol per year - enough to avoid approximately 210,000 tons of CO2 emissions annually.

  14. DuPont Cellulosic Ethanol Biorefinery Opening

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy Bioenergy Technologies Office Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  15. Largest Cellulosic Ethanol Plant in the World Opened in October

    Broader source: Energy.gov [DOE]

    TheDuPont cellulosic ethanol facility openedin Nevada, Iowa, last month and isthe largest cellulosic ethanol plant in the world. The U.S. Department of Energy (DOE) Bioenergy Technologies Office...

  16. Research Advances Cellulosic Ethanol, NREL Leads the Way (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    This brochure highlights NREL's recent advances in cellulosic ethanol production. Research at NREL addresses both biochemical and thermochemical processes.

  17. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect (OSTI)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  18. Cellulosic Ethanol Technology on Track to Being Competitive With Other Transportation Fuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been driving down the cost of cellulosic ethanol and overcoming the technical challenges that surround it-major milestones toward the Department of Energy (DOE) goal of making cellulosic ethanol cost-competitive by 2012.

  19. The Current State of Technology for Cellulosic Ethanol | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Current State of Technology for Cellulosic Ethanol The Current State of Technology for Cellulosic Ethanol At the February 12, 2009 joint Web conference of DOE's Biomass and Clean Cities programs, Andy Aden (National Renewable Energy Laboratory) discussed the current state of technology for cellulosic ethanol - How close are we? PDF icon aden_20090212.pdf More Documents & Publications Integrated Biorefinery Process Process Design and Economics for Biochemical Conversion of

  20. Florida Project Produces Nation's First Cellulosic Ethanol at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial-Scale | Department of Energy Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between

  1. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility | Department of Energy Louisiana: Verenium Cellulosic Ethanol Demonstration Facility EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium Corporation received EERE funds to operate a 1.4 million gallon per year demonstration plant in Jennings, Louisiana, to convert agricultural residues and energy crops to cellulosic ethanol. The project's goal was to implement a technology that had been demonstrated in a

  2. Largest Cellulosic Ethanol Plant in the World Opened in October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... representative from biofuels company POET-DSM stand between square and round bales of corn stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  3. Appendix D: 2012 Cellulosic Ethanol Success, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    produce cellulosic ethanol at commercial-scale costs that are competitive with gasoline production at 110barrel of crude oil. Many industry partners are also demonstrating...

  4. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

  5. Largest Cellulosic Ethanol Plant in the World Opens October 30

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  6. Production of ethanol from cellulose using Clostridum thermocellum

    SciTech Connect (OSTI)

    Zertuche, L.; Zall, R.R.

    1982-01-01

    Clostridium thermocellum was used to produce ethanol from cellulose in a continuous system. Batch fermentations were first performed to observe the effects of buffers and agitation on generation time and ethanol production. Continuous fermentations were carried out at 60/sup 0/C and pH 7 using pure cellulose as the limiting substrate. The maximum ethanol concentrations produced with 1.5 and 3% cellulose fermenting liquid were 0.3 and 0.9% respectively. The yield of ethanol was about 0.3 grams per gram of cellulose consumed. While the continuous fermentaion of cellulose with Clostridium thermocellum appears to be feasible, it may not be economically promising due to the slow growth of the organism.

  7. NREL Industry Partners Move Cellulosic Ethanol Technology Forward...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NREL) and DuPont will be put to use to develop and commercialize technology to produce cellulosic ethanol from non-food sources. DuPont and its partner Genencor, ...

  8. Conversion of bagasse cellulose into ethanol

    SciTech Connect (OSTI)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  9. EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in October | Department of Energy Largest Cellulosic Ethanol Plant in the World Opened in October EERE Success Story-Largest Cellulosic Ethanol Plant in the World Opened in October November 30, 2015 - 2:07pm Addthis The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year.

  10. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    SciTech Connect (OSTI)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  11. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol...

  12. Department of Energy Delivers on R&D Targets around Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    Scientists at DOE national laboratories successfully demonstrated technical advances required to produce cellulosic ethanol that is cost competitive with petroleum.

  13. EA-1694: Department of Energy Loan Guarantee to Highlands Ethanol, LLC, for the Cellulosic Ethanol Facility in Highlands County, Florida

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Highlands Ethanol, LLC, for a cellulosic ethanol facility in Highlands County, Florida. This EA is on hold.

  14. Method for producing ethanol and co-products from cellulosic biomass

    DOE Patents [OSTI]

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  15. DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Biofuels Industry | Department of Energy DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the Advanced Biofuels Industry DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for the Advanced Biofuels Industry November 20, 2015 - 12:49pm Addthis DuPont’s cellulosic ethanol biorefinery in Nevada, Iowa, opened on October 30, 2015. | Photo courtesy of DuPont DuPont's cellulosic ethanol biorefinery in Nevada, Iowa, opened on October 30, 2015. | Photo courtesy

  16. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    SciTech Connect (OSTI)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  17. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect (OSTI)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 3550% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  18. At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuum Magazine | NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive In NREL's new Energy Systems Integration Facility, the Insight Collaboration Laboratory shows a 3D model of cellulose microfibrils. Photo by Dennis Schroeder, NREL At $2.15 a Gallon, Cellulosic Ethanol Could Be Cost Competitive DOE challenge met-research advances cut costs to produce fuel from non-food plant sources. Imagine a near perfect transportation fuel-it's clean, domestic, abundant, and

  19. Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum

    SciTech Connect (OSTI)

    Tailliez, P.; Girard, H.; Millet, J.; Beguin, P. )

    1989-01-01

    A mutant of Clostridium thermocellum isolated after UV mutagenesis and selection for resistance to fluoropyruvate was found to be asporogenous and ethanol tolerant. The mutant was also an ethanol hyperproducer, able to ferment 63 g of cellulose into 14.5 g of ethanol per liter of medium. The ratio of ethanol to total organic acids produced by the mutant was increased, and H{sub 2} production was decreased. Culture conditions were optimized for ethanol production by the new strain.

  20. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking

    Broader source: Energy.gov [DOE]

    SOPERTON, GA - U.S. Secretary of Energy Samuel W. Bodman today attended a groundbreaking ceremony for Range Fuels' biorefinery - one of the nation's first commercial-scale cellulosic ethanol...

  1. Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biorefineries - Energy Innovation Portal Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol Biorefineries Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA method was invented at ORNL for removing inhibitor compounds from process water in biomass-to-ethanol production. This invention can also be used to produce power for other industrial processes. DescriptionLarge amounts of water are used in the processing of cellulosic

  2. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenuemore » from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.« less

  3. Long-run effects of falling cellulosic ethanol production costs on the US agricultural economy

    SciTech Connect (OSTI)

    Bryant, Henry L.; Campiche, Jody L.; Richardson, James W.

    2010-03-09

    Renewable energy production has been expanding at a rapid pace. New advances in cellulosic ethanol technologies have the potential to displace the use of petroleum as a transportation fuel, and could have significant effects on both the agricultural economy and the environment. In this letter, the effects of falling cellulosic ethanol production costs on the mix of ethanol feedstocks employed and on the US agricultural economy are examined. Results indicate that, as expected, cellulosic ethanol production increases by a substantial amount as conversion technology improves. Corn production increases initially following the introduction of cellulosic technology, because producers enjoy new revenue from sales of corn stover. After cellulosic ethanol production becomes substantially cheaper, however, acres are shifted from corn production to all other agricultural commodities. Essentially, this new technology could facilitate the exploitation of a previously under-employed resource (corn stover), resulting in an improvement in overall welfare. Thus in the most optimistic scenario considered, 68% of US ethanol is derived from cellulosic sources, coarse grain production is reduced by about 2%, and the prices of all food commodities are reduced modestly.

  4. ZeaChem Pilot Project: High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact Feedstock for Commercialization

    Broader source: Energy.gov [DOE]

    This pilot-scale integrated biorefinery will produce 250,000 gallons per year of cellulosic ethanol when running at full operational status.

  5. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

  6. Cellulose fermentation by an asporogenous mutant and an ethanol-tolerant mutant of Clostridium thermocellum

    SciTech Connect (OSTI)

    Tailliez, P.; Girard, H.; Longin, R.; Beguin, P.; Millet, J. )

    1989-01-01

    Two mutants of Clostridium thermocellum were isolated after UV light mutagenesis. Mutant A1, selected as asporogenous, exhibited a fermentation pattern similar to that of the wild type. However, at pH 6.5, the mutant degraded 12% more cellulose than did the wild type, leading to enhanced ethanol production. Mutant 647, selected as ethanol tolerant, was able to grow in medium containing 4% ethanol. During the early stage of the exponential growth phase, ethanol was produced as the main product, up to a concentration of about 9 g/liter. After 3 days of culture, 48.3 g (89% of the initial amount) of degraded cellulose per liter was fermented into 12.7 g of ethanol per liter.

  7. Breaking the Biological Barriers to Cellulosic Ethanol, June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .........104 Harvesting the Biochemical ... of Sc&24;ence and Office of Energy Effic&24;ency and Renewable ... cellulose chain is a linear collection of thousands of ...

  8. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration

    Broader source: Energy.gov [DOE]

    Opening Plenary Session: Celebrating Successes—The Foundation of an Advanced Bioindustry Cellulosic Technology Advances—Thomas Foust, Director, National Bioenergy Center, National Renewable Energy Laboratory

  9. Review of Recent Pilot Scale Cellulosic Ethanol Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opening Plenary Session: Celebrating Successes-The Foundation of an Advanced Bioindustry Cellulosic Technology Advances-Thomas Foust, Director, National Bioenergy Center, National ...

  10. Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Genes and Mechanisms for Improving Cellulosic Ethanol Production in E. Coli University of Colorado Contact CU About This Technology Publications: PDF Document Publication CU2104B (Engineered Microbe Tolerance) Marketing Summary_2.pdf (194 KB) Technology Marketing Summary Cellulosic biomass accounts for roughly 75% of all plant material, and can be used to produce biofuels. Sources of

  11. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    SciTech Connect (OSTI)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  12. Pathway engineering and organism development for ethanol production from cellulosic biomass using thermophilic bacteria

    SciTech Connect (OSTI)

    Hogsett, D.A.L.; Klapatch, T.A.; Lynd, L.R.

    1995-12-01

    Thermophilic bacteria collectively exemplify organisms that produce both cellulose and ethanol while fermenting both the cellulose and hemicellulose components of biomass. As a result, thermophiles could be the basis for highly streamlined and cost-effective processes for production of renewable fuels and chemicals. Recent research results involving ethanol production from thermophilic bacteria will be presented, with a primary focus on work pursuant to molecularly-based pathway engineering to increase ethanol selectivity. Specifically, we will describe the restriction endonuclease systems operative in Clostridium thermocellum and C. thermosaccharolyticum, as well as efforts to document and improve transformation of these organisms and to clone key catabolic enzymes. In addition, selected results from fermentation studies will be presented as necessary in order to present a perspective on the status of thermophilic ethanol production.

  13. Conversion of cellulose to ethanol by mesophilic bacteria. Progress report, July 15, 1983-February 15, 1985

    SciTech Connect (OSTI)

    Canale-Parola, E.

    1985-03-15

    Highlights of accomplishments during the period from July 1983 to February 1985 are summarized. Research has dealt primarily with strains of obligately anaerobic, mesophilic cellulolytic bacteria that we isolated from various natural environments. Eight strains (referred to as C strains) were isolated from mud of freshwater environments. As described in the previous progress report, the C strains represented a species of Clostridium that was different from other described species. The C strains fermented cellulose with formation of ethanol. They differed from thermophilic cellulolytic clostridia (e.g. Clostridium thermocellum) not only in growth temperature range, but also because they fermented xylan and pentoses with formation of ethanol. This result indicated that these mesophilic clostridia can convert to ethanol both cellulosic and hemicellulosic components of biomass. In contrast, monocultures of Clostridium thermocellum ferment only the cellulosic component of biomass. Furthermore, cellulose was degraded by the C strains at a rate comparable to that of thermophilic cellulolytic clostridia. These observations indicated that the mesophilic cellulolytic isolates constituted potentially useful microorganisms for ethanol production from biomass.

  14. Understanding the Growth of the Cellulosic Ethanol Industry

    SciTech Connect (OSTI)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  15. Life Cycle Assessment of Switchgrass Cellulosic Ethanol Production in the Wisconsin and Michigan Agricultural Contexts

    SciTech Connect (OSTI)

    Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.; Cronin, Keith R.; Meier, Paul J.; Runge, Troy M.; Zhang, Xuesong

    2015-04-25

    Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combined with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.

  16. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda

    SciTech Connect (OSTI)

    Houghton, John; Weatherwax, Sharlene; Ferrell, John

    2006-06-07

    The Biomass to Biofuels Workshop, held December 7–9, 2005, was convened by the Department of Energy’s Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical roles in any deployment scheme.

  17. Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum

    SciTech Connect (OSTI)

    Ng, T.K.; Ben-Bassat, A.; Zeikus, J.G.

    1981-06-01

    The fermentation of various saccharides derived from cellulosic biomass to ethanol was examined in mono- and cocultures of Clostridium thermocellum strain LQRI and C. thermohydrosulfuricum strain 39E. C. thermohydrosulfuricum fermented glucose, cellobiose, and xylose, but not cellulose or xylan, and yielded ethanol/acetate ratios of >7.0 C. thermocellum fermented a variety of cellulosic substrates, glucose, and cellobiose, but not xylan or xylose, and yielded ethanol/acetate ratios of approx. 1.0. A stable coculture that contained nearly equal numbers of C. thermocellum and C. thermohydrosulfuricum was established that fermented a variety of cellulosic substrates, and the ethanol yield observed was twofold higher than in C. thermocellum monoculture fermentations. The metabolic basis for the enhanced fermentation effectiveness of the coculture on Solka Floc cellulose included: the ability of C. thermocellum cellulase to hydrolyze ..cap alpha..-cellulose and hemicellulose; the enhanced utilization of mono- and disaccharides by C. thermohydrosulfuricum; increased cellulose consumption; threefold increase in the ethanol production rate; and twofold decrease in the acetate production rate.

  18. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  19. Making Better Use of Ethanol as a Transportation Fuel With "Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout ...

  20. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet), Innovation Impact: Bioenergy, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-60663 * November 2013 NREL prints on paper that contains recycled content. NREL Proves Cellulosic Ethanol Can Be Cost Competitive Ethanol from non-food sources-known as "cellulosic ethanol"-is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can poten- tially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory

  1. Bioconversion of cellulose into ethanol by Clostridium thermocellum--product inhibition

    SciTech Connect (OSTI)

    Kundu, S.; Ghose, T.K.; Mukhopadhyay, S.N.

    1983-04-01

    Direct anaerobic bioconversion of cellulosic substances into ethanol by Clostridium thermocellum ATCC 27405 has been carried out at 60/sup 0/C and pH 7.0 (initial for 100 L under continuous sparging of oxygen free nitrogen in a culture vessel. Raw bagasse, mild alkali-treated bagasse, and solka floc were used as substrates. The extent of conversion of raw bagasse (cellulose, 50%; hemicellulose, 25%; lignin, 19%) was observed as 52% (w/w) and 79% (w/w) in the case of mild alkali and steam-treated bagasse (cellulose, 72%; hemicellulose, 11%; lignin, 12%), respectively. Use of bagasse concentration above 10 g/L showed a decreased rate in ethanol production. An inoculum age between 28-30 h and cell mass content of 0.027-0.036 g/L (dry basis) were used. The results obtained with raw and pretreated bagasse have been compared with those of highly pure Solka Floc (hemicellulose, 10%). Studies on the product inhibition indicated a linear fall of the percent of survivors with time. An Arrhenius type correlation between the cell decay rate constant and the product concentration was predicted. Even at low levels, the inhibitory effects of products on cell viability, the specific growth rate, and extracellular enzyme were observed.

  2. BETO Project Improves Production of Renewable Chemical from Cellulosic...

    Energy Savers [EERE]

    The process could also be applied to biofuel production to make a cellulosic ethanol facility more commercially viable. Learn more from the Genomatica press release....

  3. Method of making a cellulose acetate low density microcellular foam

    DOE Patents [OSTI]

    Rinde, James A.

    1978-01-01

    Low-density microcellular foam having a cell size of not greater than 2 .mu.m and method of making by dissolving cellulose acetate in an acetone-based solvent, gelling the solution in a water bath maintained at 0-10.degree. C for a selected period of time to allow impurities to diffuse out, freezing the gel, and then freeze-drying wherein water and solvents sublime and the gel structure solidifies into low-density microcellular foam. The foam has a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3 and cell size of about 0.3 to 2 .mu.m. The small cell size foam is particularly adaptable for encapsulation of laser targets.

  4. Construction of a bacterium to convert cellulose to ethanol. Final report

    SciTech Connect (OSTI)

    Bellamy, W.D.

    1984-03-01

    In the strains of thermophilic actinomycetes examined, cellobiase (CBase) and Beta-glucosidase (BGSase) were determined to be separate enzymes. Both enzymes are induced by cellulose, cellobiose and lactose. A number of strains do not utilize lactose. Lactose does not induce endocellulase (CMCase) in any of the strains examined. In all the strains examined, the CBase and BGSase were far more heat labile than the extracellular CMCase. The 50% survival time at 60/sup 0/C is as follows: CMCase, 24 hrs; CBase, 10 to 11 hrs; BGSase, 2 to 5 hrs. The BGSase and CBase of Clostridium thermocellum are more heat resistant with 50% survival times: BGSase, 14 hrs; CBase, 41 hrs. Whey permeate is an adequate substrate for a number of strains if supplemented with 0.1% yeast extract or biotin and thiamine. It is speculated that whey permeate could be used for commercial production of CBase and BGSase. All attempts to produce a thermophilic bacillus that was ethanol-tolerant and produced high yields of ethanol by induced mutation using ultraviolet radiation and N-methyl-N'-nitrosogunidine as mutagens were unsuccessful. No evidence was observed that the Acetyl-S-CoA metabolic pathway was deleted or suppressed. Some of the mutants appeared to have decreased yields of lactic acid. A satisfactory screening procedure for selection of high ethanol producing colonies was not found. The screening for low acid production was tedious and time consuming. Because of the failure to find or produce a thermophile with high yields of ethanol, and because all previous work as reported in the literature also yielded poor results, it may be impossible to produce an ethanol-tolerant high yielding thermophilic microorganism. The essential proteins may be unstable at greater than 7% ethanol at 55 to 66/sup 0/C. 48 references, 6 figures, 16 tables.

  5. A pilot plant scale reactor/separator for ethanol from cellulosics. ERIP/DOE quarterly report no. 3 and 4

    SciTech Connect (OSTI)

    Dale, M.C.; Moelhman, M.; Butters, R.

    1998-12-01

    The objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive simultaneous saccharification/fermentation (SSF) of cellulose (glucans) followed by hemi-cellulose (pentosans) in a multi-stage continuous stirred reactor separator (CSRS). During quarters 3 and 4, we have completed a literature survey on cellulase production, activated one strain of Trichoderma reesei. We continued developing our proprietary Steep Delignification (SD) process for biomass pretreatment. Some problems with fermentations were traces to bad cellulase enzyme. Using commercial cellulase enzymes from Solvay & Genecor, SSF experiments with wheat straw showed 41 g/L ethanol and free xylose of 20 g/L after completion of the fermentation. From corn stover, we noted 36 g/L ethanol production from the cellulose fraction of the biomass, and 4 g/L free xylose at the completion of the SSF. We also began some work with paper mill sludge as a cellulose source, and in some preliminary experiments obtained 23 g/L ethanol during SSF of the sludge. During year 2, a 130 L process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation.

  6. Develop and Demonstrate the Cellulose to Ethanol Process: Executive Summary of the Final Technical Report, 17 September 1980 - 17 March 1982

    SciTech Connect (OSTI)

    Emert, George H.; Becker, Dana K.; Bevernitz, Kurt J.; Gracheck, Stephen J.; Kienholz, Eldon W.; Rivers, Dougals B.; Zoldak, Bernadette R.; Woodford, Lindley C.

    1982-01-01

    The Biomass Research Center at the University of Arkansas was contracted by the Solar Energy Research Institute to 'Develop and Demonstrate the Cellulose to Ethanol Process.' The purpose of the contract was to accelerate site selection, site specific engineering, and research and development leading to the determination of the feasibility of economically operating a cellulose to ethanol commercial scale plant.

  7. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  8. Combined enzyme mediated fermentation of cellulose and xylose to ethanol by Schizosaccharomyces pombe, cellulase, [beta]-glucosidase, and xylose isomerase

    DOE Patents [OSTI]

    Lastick, S.M.; Mohagheghi, A.; Tucker, M.P.; Grohmann, K.

    1994-12-13

    A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35 C to about 40 C until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol. 2 figures.

  9. Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

    SciTech Connect (OSTI)

    Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

    2010-06-01

    A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

  10. Effect of yeast extract and vitamin B sub 12 on ethanol production from cellulose by Clostridium thermocellum I-1-B

    SciTech Connect (OSTI)

    Sato, Kanji; Goto, Shingo; Yonemura, Sotaro; Sekine, Kenji; Okuma, Emiko; Takagi, Yoshio; Honnami, Koyu; Saiki, Takashi )

    1992-02-01

    Addition to media of yeast extract, a vitamin mixture containing vitamin B{sub 12}, biotin, pyridoxamine, and p-aminobenzoic acid, or vitamin B{sub 12} alone enhanced formation of ethanol but decreased lactate production in the fermentation of cellulose by Clostridium thermocellum I-1-B. A similar effect was not observed with C. thermocellum ATCC 27405 and JW20.

  11. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations

    SciTech Connect (OSTI)

    Li, Yongchao; Tschaplinski, Timothy J; Engle, Nancy L; Hamilton, Choo Yieng; Rodriguez, Jr., Miguel; Liao, James C; Schadt, Christopher Warren; Guss, Adam M; Yang, Yunfeng; Graham, David E

    2012-01-01

    Background: The model bacterium Clostridium cellulolyticum efficiently hydrolyzes crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels. Therefore genetic engineering will likely be required to improve the ethanol yield. Random mutagenesis, plasmid transformation, and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism. Results: The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products (by molarity), corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four-times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant s TCA pathway. Conclusions: The efficient intron-based gene inactivation system produced the first gene-targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from complex biomass substrates.

  12. A Pilot Plant Scale Reactor/Separator for Ethanol from Cellulosics. ERIP/DOE Quarterly Reports 5 and 6, October 1, 1998 through March 30, 1999

    SciTech Connect (OSTI)

    Dale, M. Clark; Moelhman, Mark

    1999-09-30

    The objective of this project was to develop and demonstrate a continuous low energy process for the conversion of cellulosics to ethanol. BPI's process involves a proprietary low temperature pretreatment step which allows recycle of the pretreatment chemicals and recovery of a lignin stream. The pretreated biomass is then converted to glucans and xylans enzymatically and these sugars simultaneously fermented to ethanol (SSF) in BPI's Continuous Stirred Reactor Separator (CSRS). The CSRS is a multi stage bio-reactor where the glucans are first converted to ethanol using a high temperature tolerant yeast, followed by xylan SSF on the lower stages using a second xylose fermenting yeast strain. Ethanol is simultaneously removed from the bio-reactor stages, speeding the fermentation, and allowing the complete utilization of the biomass.

  13. A Pilot Plant Scale Reactor/Separator for Ethanol from Cellulosics. ERIP/DOE Quarterly Reports 7, 8 and Final report

    SciTech Connect (OSTI)

    Cale, M. Clark; Moelhman, Mark

    1999-09-30

    The objective of this project was to develop and demonstrate a continuous low energy process for the conversion of cellulosics to ethanol. BPI's process involves a proprietary low temperature pretreatment step which allows recycle of the pretreatment chemicals and recovery of a lignin stream. The pretreated biomass is then converted to glucans and xylans enzymatically and these sugars simultaneously fermented to ethanol (SSF) in BPI's Continuous Stirred Reactor Separator (CSRS). The CSRS is a multi stage bio-reactor where the glucans are first converted to ethanol using a high temperature tolerant yeast stran, followed by xylan SSF on the lower stages using a second xylose fermenting yeast strain. Ethanol is simultaneously removed from the bio-reactor stages, speeding the fermentation, and allowing the complete utilization of the biomass.

  14. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Ethanol, Inc Pacific Ethanol, Inc Design and build a demonstration cellulosic ethanol plant in Boardman. PDF icon pacificethanolfactsheet040308.pdf More Documents & ...

  15. A pilot plant scale reactor/separator for ethanol from cellulosics. Quarterly report No. 1 & 2, October 1, 1997--March 30, 1998

    SciTech Connect (OSTI)

    Dale, M.C.

    1998-06-01

    The basic objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive saccharification/fermentation of cellulose (glucans) followed by hemi-cellulose (glucans) in a multi-stage continuous stirred reactor separator (CSRS). During year 1, pretreatment and bench scale fermentation trials will be performed to demonstrate and develop the process, and during year 2, a 130 L or larger process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation, Xylan Inc as a possible provider of pretreated biomass.

  16. Making Better Use of Ethanol as a Transportation Fuel With "Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Super Premium" | Department of Energy Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Brian West, Deputy Director for the Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory PDF icon b13_west_2-b.pdf More Documents & Publications

  17. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    SciTech Connect (OSTI)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  18. Pacific Ethanol, Inc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corporate HQ: Sacramento, CA Proposed Facility Location: Boardman, OR Description: The team will design and build a demonstration cellulosic ethanol plant in Boardman, Oregon, ...

  19. Pacific Ethanol, Inc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    per year of cellulosic ethanol biofuel Technology and Feedstocks: * Pretreatment, ... energy crops, agricultural waste, and wood product residues State of Readiness: * The ...

  20. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A.

    2011-05-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  1. Compositions and methods relating to transgenic plants and cellulosic...

    Office of Scientific and Technical Information (OSTI)

    to transgenic plants and cellulosic ethanol production Citation Details In-Document Search Title: Compositions and methods relating to transgenic plants and cellulosic ...

  2. Acid softening and hydrolysis of cellulose. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The report describes the experimental and analytic work to develop a process to reduce the cost of producing ethanol from cellulose. Ethanol is a renewable liquid fuel with applications in transportation, including oxygenation of fuel to reduce carbon monoxide emissions. If produced from cellulose contained in New York State's abundant low-grade wood resources or waste paper, significant quantities of petroleum could be displaced while creating new economic opportunity. The focus of the project was evaluating acid softening and hydrolysis technology to make cellulose responsive to conversion to fermentable sugar, from which production of ethanol would then be conventional and economical. The procedure is competitive with other cellulose-to-ethanol approaches such as enzyme hydrolysis; however, overall economic feasibility is problematic. To produce ethanol at $1.00 per gallon, a cost that would be competitive with producing ethanol from corn, and at the same time earn a 15 percent return for the owners of the plant, one of the major coproducts, lignin, would have to sell for $0.21 to $0.24 per pound. Identification of a suitable lignin market, a rise in petroleum prices, or restricting fossil-based carbon dioxide emissions will affect the economic feasibility of this particular type of lignin.

  3. Making Biofuel From Corncobs and Switchgrass in Rural America | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biofuel From Corncobs and Switchgrass in Rural America Making Biofuel From Corncobs and Switchgrass in Rural America June 11, 2010 - 4:48pm Addthis DuPont Danisco Cellulosic Ethanol (DDCE) opened a new biorefinery in Vonore, Tenn., last year. | Photo courtesy of DDCE DuPont Danisco Cellulosic Ethanol (DDCE) opened a new biorefinery in Vonore, Tenn., last year. | Photo courtesy of DDCE Lindsay Gsell Energy crops and agricultural residue, like corncobs and stover, are becoming part

  4. A case study of agricultural residue availability and cost for a cellulosic ethanol conversion facility in the Henan province of China

    SciTech Connect (OSTI)

    Webb, Erin [ORNL; Wu, Yun [ORNL

    2012-05-01

    A preliminary analysis of the availability and cost of corn stover and wheat straw for the area surrounding a demonstration biorefinery in the Henan Province of China was performed as a case study of potential cooperative analyses of bioenergy feedstocks between researchers and industry in the US and China. Though limited in scope, the purpose of this analysis is to provide insight into some of the issues and challenges of estimating feedstock availability in China and how this relates to analyses of feedstocks in the U.S. Completing this analysis also highlighted the importance of improving communication between U.S. researchers and Chinese collaborators. Understanding the units and terms used in the data provided by Tianguan proved to be a significant challenge. This was further complicated by language barriers between collaborators in the U.S. and China. The Tianguan demonstration biorefinery has a current capacity of 3k tons (1 million gallons) of cellulosic ethanol per year with plans to scale up to 10k tons (3.34 million gallons) per year. Using data provided by Tianguan staff in summer of 2011, the costs and availability of corn stover and wheat straw were estimated. Currently, there are sufficient volumes of wheat straw and corn stover that are considered 'waste' and would likely be available for bioenergy in the 20-km (12-mile) region surrounding the demonstration biorefinery at a low cost. However, as the industry grows, competition for feedstock will grow and prices are likely to rise as producers demand additional compensation to fully recover costs.

  5. The Journey to Commercializing Cellulosic Biofuels in the United...

    Broader source: Energy.gov (indexed) [DOE]

    ... representative from biofuels company POET-DSM stand between square and round bales of corn stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  6. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shipment The DuPont cellulosic ethanol facility in Nevada, Iowa, will produce about 30 million gallons of cellulosic ethanol per year. Photo courtesy of DuPont. EERE Success ...

  7. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St....

  8. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum.

  9. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, Daniel I. C.; Avgerinos, George C.

    1983-01-01

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  10. Selective solvent extraction of cellulosic material

    DOE Patents [OSTI]

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  11. Compositions and methods relating to transgenic plants and cellulosic

    Office of Scientific and Technical Information (OSTI)

    ethanol production (Patent) | SciTech Connect Patent: Compositions and methods relating to transgenic plants and cellulosic ethanol production Citation Details In-Document Search Title: Compositions and methods relating to transgenic plants and cellulosic ethanol production Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which

  12. Compositions and methods relating to transgenic plants and cellulosic

    Office of Scientific and Technical Information (OSTI)

    ethanol production (Patent) | SciTech Connect Patent: Compositions and methods relating to transgenic plants and cellulosic ethanol production Citation Details In-Document Search Title: Compositions and methods relating to transgenic plants and cellulosic ethanol production Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which

  13. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda. A Research Roadmap Resulting from the Biomass to Biofuels Workshop

    SciTech Connect (OSTI)

    2006-06-30

    A robust fusion of the agricultural, industrial biotechnology, and energy industries can create a new strategic national capability for energy independence and climate protection. In his State of the Union Address (*Bush 2006), President George W. Bush outlined the Advanced Energy Initiative, which seeks to reduce our national dependence on imported oil by accelerating the development of domestic,renewable alternatives to gasoline and diesel fuels. The president has set a national goal of developing cleaner, cheaper, and more reliable alternative energy sources to substantially replace oil imports in the coming years.Fuels derived from cellulosic biomass—the fibrous, woody, and generally inedible portions of plant matter—offer one such alternative to conventional energy sources that can dramatically impact national economic growth, national energy security, and environmental goals. Cellulosic biomass is an attractive energy feedstock because it is an abundant, domestic, renewable source that can be converted to liquid transportation fuels.These fuels can be used readily by current-generation vehicles and distributed through the existing transportation-fuel infrastructure.

  14. Department of Energy to Make Available up to $33.8 Million to Support Commercial Production of Cellulosic Biofuels

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a Funding Opportunity Announcement (FOA) that will make available up to $33.8 million to support the development of commercially...

  15. Department of Energy Delivers on R&D Targets around Cellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Facility, where scientists led pilot-scale projects for two cellulosic ... Biochemical Waterfall Chart of Minimum Ethanol Selling Price (in 2007 dollars per gallon). ...

  16. Method and apparatus for treating a cellulosic feedstock

    DOE Patents [OSTI]

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  17. Land-use change and greenhouse gas emissions from corn and cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, ... Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing ...

  18. Ethanol Tolerant Yeast for Improved Production of Ethanol from Biomass -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol Basics Ethanol is a widely used, domesti- cally produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Fuel ethanol contains the same chemical compound as beverage alcohol, but it is denatured with a small amount of gasoline or other chemicals during the production process, making it unsafe for human consumption. Ethanol's primary market drivers are the Federal Renewable Fuel Standard requiring its use and

  19. Outlook for Biomass Ethanol Production and Demand

    Reports and Publications (EIA)

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  20. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This is an important step toward the commercialization of cellulosic ethanol from ... de-risk bioenergy production technologies and reduce or remove commercialization barriers. ...

  1. Ternary Electrocatalysts for Oxidizing Ethanol to Carbon Dioxide: Making Ir Capable of Splitting C-C bond

    SciTech Connect (OSTI)

    Li, Meng; Cullen, David A; Sasaki, Kotaro; Marinkovic, N.; More, Karren Leslie; Adzic, Radoslav R.

    2013-01-01

    Splitting the C-C bond is the main obstacle to electroxidation of ethanol (EOR) to CO2. We recently demonstrated that the ternary PtRhSnO2 electrocatalyst can accomplish that reaction at room temperature with Rh having a unique capability to split the C-C bond. In this article we report the finding that Ir can be induced to split the C-C bond as a component of the ternary catalyst. We synthesized, characterized and compared the properties of several ternary electrocatalysts. Carbon-supported nanoparticle (NP) electrocatalysts comprising a SnO2 NP core decorated with multi-metallic nanoislands (MM = PtIr, PtRh, IrRh, PtIrRh) were prepared using a seeded growth approach. An array of characterization techniques were employed to establish the composition and architecture of the synthesized MM /SnO2 NPs, while electrochemical and in situ infrared reflection absorption spectroscopy studies elucidated trends in activity and the nature of the reaction intermediates and products. Both EOR reactivity and selectivity towards CO2 formation of several of these MM /SnO2/C electrocatalysts are significantly higher compared to conventional Pt/C and Pt/SnO2/C catalysts. We demonstrate that the PtIr/SnO2/C catalyst with high Ir content shows outstanding catalytic property with the most negative EOR onset potential and reasonably good selectivity towards ethanol complete oxidation to CO2. PtRh/SnO2/C catalysts with a moderate Rh content exhibit the highest EOR selectivity, as deduced from infrared studies.

  2. Thermophilic microbes in ethanol production

    SciTech Connect (OSTI)

    Slapack, G.E.; Russell, I.; Stewart, G.G.

    1987-01-01

    General and specific properties of thermophilic ethanol-producing bacteria are reviewed and their relative merits in ethanol production assessed. The studies examine the use of bacteria in mono- and co-culture fermentations for ethanol production from cellulosics; in particular, the cellulase system of Clostridium thermocellum is considered. Thermotolerant yeasts and physiological factors influencing their growth and fermentation at high temperatures are discussed. Emphasis is placed on multidisciplinary approaches to develop economical processes for ethanol production at high temperatures. Relevant topics considered include: adaptation, nutrition, heat shock, ethanol tolerance, metabolic control, genetic improvement, and fermentation/process design. General aspects of thermophily for both bacteria and yeasts (definitions, ecological aspects, merits and limitations, other industrial uses, thermostability of cellular components, and consequences of thermophilic fermentation) are discussed and the volume references over 1100 relevant articles.

  3. 2016 Bioenergizeme Infographic Challenge: Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  4. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect (OSTI)

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.

  5. Ethanol Basics

    SciTech Connect (OSTI)

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  6. Bioconversion of plant biomass to ethanol. Final report, December 1, 1979-December 31, 1980

    SciTech Connect (OSTI)

    Su, T.M.; Lamed, R.J.; Lobos, J.; Brennan, M. Jr.; Smith, J.F.; Tabor, D.; Brooks, R.

    1980-01-01

    This final report describes research performed on a process for the direct fermentation of pretreated hardwood and corn stover to ethanol. Experimental investigations were conducted on the technical problem areas that limit the utilization of lignocellulose for ethanol production, i.e., wood pretreatment, culture development, and fermentation. Considerable technical progress has been demonstrated in each area. The experimental findings have led to process design improvements that can reduce the capital cost for ethanol production. Studies on wood pretreatment to enhance carbohydrate recovery and susceptibility to enzymatic hydrolysis continued to show progress. Rapid decompression of treated fibers to atmospheric pressure was found to make little or no contribution to enhancing the rate of enzymatic hydrolysis. Acid extraction of the hemicellulose component prior to sulfur dioxide augmented wood steaming increased the overall fermentable carbohydrate recovery and, therefore, the attainable yield of ethanol. Only modest improvements in fiber digestibility are now required to meet the pretreatment goals. A new and highly cellulolytic strain of C. thermocellum, designated as strain YS, was isolated from hot springs soil samples and tested. A previously unreported effect of stirring and hydrogen on the fermentation product pattern of several strains of C. thermocellum was discovered. Mono- and co-culture fermentations were performed to understand the factors that affect the yield of ethanol. Co-culturing C. thermocellum strain YS with efficient ethanol-producing non-cellulolytic strains resulted in higher ethanol yields than that observed in strain YS mono-culture cellulose fermentation. The feasibility of ethanol production at high substrate concentrations was investigated in serum bottle experiments. The amount of ethanol produced declined as the substrate concentration increased.

  7. Ethanol annual report FY 1990

    SciTech Connect (OSTI)

    Texeira, R.H.; Goodman, B.J.

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  8. Cellulosic Fiber Composites Using Protein Hydrolysates and Methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same Battelle Memorial Institute Contact BMI About This Technology Technology Marketing Summary This...

  9. Cellulosic Fiber Composites Using Protein Hydrolysates and Methods...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Find More Like This Return to Search Cellulosic Fiber Composites Using Protein Hydrolysates and Methods of Making Same Battelle Memorial Institute Contact BMI About...

  10. EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

    Broader source: Energy.gov [DOE]

    The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

  11. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum

    SciTech Connect (OSTI)

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.; Guss, Adam M.

    2015-02-01

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.

  12. Elimination of hydrogenase post-translational modification blocks H2 production and increases ethanol yield in Clostridium thermocellum

    SciTech Connect (OSTI)

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R; Guss, Adam M

    2015-01-01

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.

  13. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.; Guss, Adam M.

    2015-02-01

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe]more » hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.« less

  14. High pressure HC1 conversion of cellulose to glucose

    SciTech Connect (OSTI)

    Antonoplis, Robert Alexander; Blanch, Harvey W.; Wilke, Charles R.

    1981-08-01

    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound. This would correspond to $2.54 per gallon of ethanol if the glucose were fermented. Key factors contributing to the cost of glucose production were unrecovered HCl, which contributed 5.70 cents per pound of glucose, and the cost of wood, which at $25 per ton contribute 4.17 cents per pound.

  15. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  16. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Runs | Department of Energy Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs January 22, 2016 - 11:01am Addthis ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of

  17. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis

    SciTech Connect (OSTI)

    Zhao, Hua; Jones, Cecil L; Baker, Gary A; Xia, Shuqian; Olubajo, Olarongbe; Person, Vernecia

    2009-01-01

    The efficient conversion of lignocellulosic materials into fuel ethanol has become a research priority in producing affordable and renewable energy. The pretreatment of lignocelluloses is known to be key to the fast enzymatic hydrolysis of cellulose. Recently, certain ionic liquids (ILs)were found capable of dissolving more than 10 wt% cellulose. Preliminary investigations [Dadi, A.P., Varanasi, S., Schall, C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng. 95, 904 910; Liu, L., Chen, H., 2006. Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51, 2432 2436; Dadi, A.P., Schall, C.A., Varanasi, S., 2007. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl. Biochem. Biotechnol. 137 140, 407 421] suggest that celluloses regenerated from IL solutions are subject to faster saccharification than untreated substrates. These encouraging results offer the possibility of using ILs as alternative and nonvolatile solvents for cellulose pretreatment. However, these studies are limited to two chloride-based ILs: (a) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), which is a corrosive, toxic and extremely hygroscopic solid (m.p. 70 C), and (b) 1-allyl-3-methylimidazolium chloride ([AMIM]Cl), which is viscous and has a reactive side-chain. Therefore, more in-depth research involving other ILs is much needed to explore this promising pretreatment route. For this reason, we studied a number of chloride- and acetate-based ILs for cellulose regeneration, including several ILs newly developed in our laboratory. This will enable us to select inexpensive, efficient and environmentally benign solvents for processing cellulosic biomass. Our data confirm that all regenerated celluloses are less crystalline (58 75% lower) and more accessible to cellulase (>2 times) than untreated substrates. As a result, regenerated Avicel cellulose, filter paper and cottonwere hydrolyzed 2 10 times faster than the respective untreated celluloses. A complete hydrolysis of Avicel cellulose could be achieved in 6 h given the Trichoderma reesei cellulase/substrate ratio (w/w) of 3:20 at 50 C. In addition,we observed that cellulase is more thermally stable (up to 60 C) in the presence of regenerated cellulose. Furthermore, our systematic studies suggest that the presence of various ILs during the hydrolysis induced different degrees of cellulase inactivation. Therefore, a thorough removal of IL residues after cellulose regeneration is highly recommended, and a systematic investigation on this subject is much needed.

  18. Technical Support to SBIR Phase II Project: Improved Conversion of Cellulose Waste to Ethanol Using a Dual Bioreactor System: Cooperative Research and Development Final Report, CRADA Number CRD-08-310

    SciTech Connect (OSTI)

    Zhang, M.

    2013-04-01

    Over-dependence on fossil fuel has spurred research on alternative energy. Inedible plant materials such as grass and corn stover represent abundant renewable natural resources that can be transformed into biofuel. Problems in enzymatic conversion of biomass to sugars include the use of incomplete synergistic enzymes, end-product inhibition, and adsorption and loss of enzymes necessitating their use in large quantities. Technova Corporation will develop a defined consortium of natural microorganisms that will efficiently break down biomass to energy-rich soluble sugars, and convert them to cleaner-burning ethanol fuel. The project will also develop a novel biocatalytic hybrid reactor system dedicated to this bioprocess, which embodies recent advances in nanotechnology. NREL will participate to develop a continuous fermentation process.

  19. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Ethanol, Inc

  20. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    SciTech Connect (OSTI)

    Stipanovic, Arthur J

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  1. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  3. Greater Ohio Ethanol LLC GO Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ohio Ethanol LLC GO Ethanol Jump to: navigation, search Name: Greater Ohio Ethanol, LLC (GO Ethanol) Place: Lima, Ohio Zip: OH 45804 Product: GO Ethanol is a pure play ethanol...

  4. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOE Patents [OSTI]

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1996-04-16

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  5. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOE Patents [OSTI]

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1997-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  6. Enhanced attrition bioreactor for enzyme hydrolysis of cellulosic materials

    DOE Patents [OSTI]

    Scott, T.C.; Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1997-06-10

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified. 1 fig.

  7. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials

    DOE Patents [OSTI]

    Scott, Timothy C.; Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1996-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals, such as sugars and ethanol, utilizing enzymatic hydrolysis of the major carbohydrate of paper: cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. Additionally, microfiltration, ultrafiltration and reverse osmosis steps are included to further increase reaction efficiency. The resulting sugars are converted to a dilute product in a fluidized-bed bioreactor utilizing a biocatalyst, such as microorganisms. The dilute product is then concentrated and purified.

  8. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect (OSTI)

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.

  9. High Octane Fuels Can Make Better Use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Blend Ethanol Fuels - Implementation Perspectives Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" The Impact of Low Octane Hydrocarbon ...

  10. Experiences from Introduction of Ethanol Buses and Ethanol Fuel...

    Open Energy Info (EERE)

    of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency...

  11. Method of saccharifying cellulose

    DOE Patents [OSTI]

    Johnson, E.A.; Demain, A.L.; Madia, A.

    1983-05-13

    A method is disclosed of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of thiol reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  12. Method of saccharifying cellulose

    DOE Patents [OSTI]

    Johnson, Eric A.; Demain, Arnold L.; Madia, Ashwin

    1985-09-10

    A method of saccharifying cellulose by incubation with the cellulase of Clostridium thermocellum in a broth containing an efficacious amount of a reducing agent. Other incubation parameters which may be advantageously controlled to stimulate saccharification include the concentration of alkaline earth salts, pH, temperature, and duration. By the method of the invention, even native crystalline cellulose such as that found in cotton may be completely saccharified.

  13. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called “dedicated bioenergy crops” including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

  14. Sorghum to Ethanol Research

    SciTech Connect (OSTI)

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

  15. Kinder Morgan Central Florida Pipeline Ethanol Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol

  16. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  17. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate that the chitinase and cellulase systems of this bacterium are distinct in terms of the proteins involved and the regulation of their production. 4. Characterization of the chitinase system of C. uda. A 70,000-Mr endochitinase, designated ChiA, was purified from C. uda culture supernatant fluids and characterized. 5. Analysis of chiA, which codes for the major enzymatic component of the chitinase system of C. uda. The gene encoding the endochitinase ChiA in C. uda was cloned, its complete nucleotide sequence was determined and its implications were investigated. 6. Formation of biofilms by C. uda on cellulose and chitin. Microscopic observations indicated that, under conditions of nitrogen limitation, C. uda cells grew as a biofilm attached tightly to the surface of cellulose or chitin. 7. Development of tools for a genetic approach to studies of cellulose fermentation by cellulolytic clostridia. We have explored the potential of various techniques, and obtained evidence indicating that Tn916 mutagenesis may be particularly effective in this regard. As part of this research, we identified the presence of a plasmid in one strain, which was cloned, sequenced, and analyzed for its utility in the development of vectors for genetic studies. 8. Effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes. We determined that humic substances play an important role in the anaerobic cellulose decomposition and in the physiology of cellulose-fermenting soil bacteria. 9. Nitrogenases of cellulolytic clostridia. We described a nitrogenase gene from a cellulolytic clostridium and presented evidence, based on sequence analyses and conserved gene order, for lateral gene transfer between this bacterium and a methanogenic archaeon. 10. Characterization of Clostridium hungatei, a new N2-fixing cellulolytic species isolated from a methanogenic consortium from soil. 11. Understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. We discovered that C. papyrosolvens produces a multiprotein, multicomplex cellulase-xylanase enzyme system that hydrolyzes crystalline cellulose, and we have described this system in detail.

  18. Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Add description and move this content to a more appropriate page name (like "List of ethanol incentives") List of Ethanol Incentives E85 Standards Retrieved from "http:...

  19. Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS and Derived Cellulose Adhesion-Defective Mutant Strain AD2

    SciTech Connect (OSTI)

    Brown, Steven D; Lamed, Raphael; Morag, Ely; Borovok, Ilya; Shoham, Yuval; Klingeman, Dawn Marie; Johnson, Courtney M; Yang, Zamin; Land, Miriam L; Utturkar, Sagar M; Keller, Martin; Bayer, Edward A

    2012-01-01

    Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain AD2 played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.

  20. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    SciTech Connect (OSTI)

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn Marie; Bhandiwad, Ashwini; Rodriguez, Jr., Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  1. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office(BETO) IBR Project Peer Review * 2015 ICM, Inc. All Rights Reserved. *1 Recovery ... All Rights Reserved. Project Relevance and Outcomes Demonstrate Fully Integrated ...

  2. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    spectrum of industrial, academic, agricultural, and nonprofit partners across the United States to develop and deploy commercially viable, high-performance biofuels, bioproducts, ...

  3. Florida Project Produces Nation's First Cellulosic Ethanol at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Committee, Energy Department Green Racing Series Revs Engines with Renewable Fuel from INEOS Bio Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste as a ...

  4. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as Range Fuels, are blending science and technology to advance the President's ... will lead to the wide-scale use of non-food based biomass, such as agricultural waste, ...

  5. 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives: Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  6. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    DOE Patents [OSTI]

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  7. Process for producing ethanol from plant biomass using the fungus paecilomyces sp.

    DOE Patents [OSTI]

    Wu, Jung Fu

    1989-01-01

    A process for producing ethanol from plant biomass is disclosed. The process in cludes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces, which has the ability to ferment both cellobiose and xylose to ethanol, is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate.

  8. Enabling High Efficiency Ethanol Engines

    SciTech Connect (OSTI)

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  9. Department of Energy to Make Available up to $33.8 Million to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up to 33.8 million to support the development of commercially viable enzymes - a key step to enabling bio-based production of clean, renewable biofuels such as cellulosic ethanol. ...

  10. Southridge Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Southridge Ethanol Place: Dallas, Texas Zip: 75219 Sector: Renewable Energy Product: Southridge Ethanol is a renewable energy company...

  11. Diversified Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Diversified Ethanol Place: Northbrook, Illinois Zip: 60062 Product: A division of OTCBB-traded ONYI that is building an ethanol plant in...

  12. Ace Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Ace Ethanol Place: Stanley, Wisconsin Zip: 54768 Product: Producer of corn-based ethanol in Wisconsin. Coordinates: 44.958844,...

  13. Dakota Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Dakota Ethanol Place: Wentworth, South Dakota Zip: 57075 Product: Farmer Coop owner of a 189m litres per year ethanol plant Coordinates:...

  14. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum

    SciTech Connect (OSTI)

    Biswas, Ranjita; Prabhu, Sandeep; Lynd, Lee R; Guss, Adam M

    2014-01-01

    Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previously developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA) ldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA) ldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.

  15. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    SciTech Connect (OSTI)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

  16. Byone Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Byone Ethanol Jump to: navigation, search Name: Byone Ethanol Place: Brazil Product: Ethanol Producer References: Byone Ethanol1 This article is a stub. You can help OpenEI by...

  17. Highwater Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Highwater Ethanol Jump to: navigation, search Name: Highwater Ethanol Place: Lamberton, Minnesota Zip: MN 56152 Product: Highwater Ethanol LLC is the SPV behind the 195mLpa ethanol...

  18. Alternative Fuels Data Center: Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More

  19. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect (OSTI)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.

  20. Acid hydrolysis of cellulose to yield glucose

    DOE Patents [OSTI]

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  1. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  2. Microbial fuel cell treatment of ethanol fermentation process water

    DOE Patents [OSTI]

    Borole, Abhijeet P.

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  3. Ethanol Basics (Fact Sheet), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Basics Ethanol is a widely used, domesti- cally produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Fuel ethanol contains the same chemical compound as beverage alcohol, but it is denatured with a small amount of gasoline or other chemicals during the production process, making it unsafe for human consumption. Ethanol's primary market drivers are the Federal Renewable Fuel Standard requiring its use and

  4. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  5. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  6. Evaluation of nanoparticle-immobilized cellulase for improved ethanol yield in simultaneous saccharification and fermentation reactions

    SciTech Connect (OSTI)

    Lupoi, Jason; Smith, Emily

    2011-12-01

    Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification products and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 C. There was no significant accumulation (<250 {mu}g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.

  7. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect (OSTI)

    Lynd, Lee R; Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Zhu, Mingjun

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  8. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum

    SciTech Connect (OSTI)

    Shao, Xiongjun; Raman, Babu; Zhu, Mingjun; Mielenz, Jonathan R; Brown, Steven D; Guss, Adam M; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

  9. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect (OSTI)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  10. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    SciTech Connect (OSTI)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

  11. Chapter 18: Understanding the Developing Cellulosic Biofuels Industry through Dynamic Modeling

    SciTech Connect (OSTI)

    Newes, E.; Inman, D.; Bush, B.

    2011-01-01

    The purpose of this chapter is to discuss a system dynamics model called the Biomass Scenario Model (BSM), which is being developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the burgeoning cellulosic biofuels industry in the United States. The model has also recently been expanded to include advanced conversion technologies and biofuels (i.e., conversion pathways that yield biomass-based gasoline, diesel, jet fuel, and butanol), but we focus on cellulosic ethanol conversion pathways here. The BSM uses a system dynamics modeling approach (Bush et al., 2008) built on the STELLA software platform.

  12. Compositions and methods for increasing cellulose production

    DOE Patents [OSTI]

    Yang, Zhenbiao; Karr, Stephen

    2012-05-01

    This disclosure relates to methods and compositions for genetically altering cellulose biosynthesis.

  13. Advanced Cellulosic Biofuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Biofuels Advanced Cellulosic Biofuels Breakout Session 2-B: New/Emerging Pathways Advanced Cellulosic Biofuels Dr. Robert Graham, Chief Executive Officer and Chairman, Ensyn Corporation PDF icon graham_bioenergy_2015.pdf More Documents & Publications Cellulosic Liquid Fuels Commercial Production Today Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  14. Sioux River Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol is...

  15. Cardinal Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Cardinal Ethanol LLC Place: Winchester, Indiana Zip: 47394 Product: Cardinal Ethanol is in the process of building an ethanol plant in...

  16. Phelps County Ethanol | Open Energy Information

    Open Energy Info (EERE)

    County Ethanol Jump to: navigation, search Name: Phelps County Ethanol Place: Nebraska Product: Focused on ethanol production. References: Phelps County Ethanol1 This article is...

  17. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  18. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, Myles A. (Falmouth, MA); Morris, Robert S. (Fairhaven, MA)

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  19. Fermentation method producing ethanol

    DOE Patents [OSTI]

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  20. Fuel Ethanol Oxygenate Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels ...

  1. Cellulose Pyrolysis A Literature, Review.

    Office of Scientific and Technical Information (OSTI)

    ... Polymer. Symp. 28, John Wiley and Sons, pp. 153-174, Syracuse, N.Y., May 19-23, 1975. J. K. Hamilton and R. L. Mitchell, "Cellulose," Encyclopedia of Chem. Tech., - 4, 593-616, ...

  2. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOE Patents [OSTI]

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  3. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect (OSTI)

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  4. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S.; Jennings, Edward W.

    2016-04-01

    This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less

  5. Bushmills Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Bushmills Ethanol Jump to: navigation, search Name: Bushmills Ethanol Place: Atwater, Minnesota Zip: 56209 Product: A group of local agricultural producers and investors working to...

  6. Northstar Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Northstar Ethanol Jump to: navigation, search Name: Northstar Ethanol Place: Lake Crystal, Minnesota Zip: 56055 Product: Corn-base bioethanol producer in Minnesotta References:...

  7. Sunnyside Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Sunnyside Ethanol Place: Pittsburgh, Pennsylvania Zip: PA 15237 Product: Pennsylvania based company created for the specific purpose of...

  8. Ethanol India | Open Energy Information

    Open Energy Info (EERE)

    India Jump to: navigation, search Name: Ethanol India Place: Kolhapur, Maharashtra, India Sector: Biofuels Product: Maharashtra-based biofuels consultancy firm. References: Ethanol...

  9. Pacific Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Pacific Ethanol Address: 400 Capitol Mall, Suite 2060 Place: Sacramento, California Zip: 95814 Region: Bay Area Sector: Biofuels Product: Ethanol production Website:...

  10. Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.

    2000-08-01

    The Energy Policy Act of 1992 (the Act) outlined a national energy strategy that called for reducing the nation's dependency on petroleum imports. The Act directed the Secretary of Energy to establish a program to promote and expand the use of renewable fuels. The Office of Transportation Technologies (OTT) within the U.S. Department of Energy (DOE) has evaluated a wide range of potential fuels and has concluded that cellulosic ethanol is one of the most promising near-term prospects. Ethanol is widely recognized as a clean fuel that helps reduce emissions of toxic air pollutants. Furthermore, cellulosic ethanol produces less greenhouse gas emissions than gasoline or any of the other alternative transportation fuels being considered by DOE.

  11. Pacific Ethanol, Inc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major DOE Biofuels Project Locations Pacific Ethanol, Inc Pacific Ethanol, Inc

  12. Combined enzyme mediated fermentation of cellulous and xylose to ethanol by Schizosaccharoyces pombe, cellulase, .beta.-glucosidase, and xylose isomerase

    DOE Patents [OSTI]

    Lastick, Stanley M.; Mohagheghi, Ali; Tucker, Melvin P.; Grohmann, Karel

    1994-01-01

    A process for producing ethanol from mixed sugar streams from pretreated biomass comprising xylose and cellulose using enzymes to convert these substrates to fermentable sugars; selecting and isolating a yeast Schizosaccharomyces pombe ATCC No. 2476, having the ability to ferment these sugars as they are being formed to produce ethanol; loading the substrates with the fermentation mix composed of yeast, enzymes and substrates; fermenting the loaded substrates and enzymes under anaerobic conditions at a pH range of between about 5.0 to about 6.0 and at a temperature range of between about 35.degree. C. to about 40.degree. C. until the fermentation is completed, the xylose being isomerized to xylulose, the cellulose being converted to glucose, and these sugars being concurrently converted to ethanol by yeast through means of the anaerobic fermentation; and recovering the ethanol.

  13. NOx Aftertreatment Using Ethanol as Reductant

    Broader source: Energy.gov [DOE]

    The hydrocarbon-SCR that was developed using ethanol and E85 as the reductant showed high NOx reduction, no need for thawing, use of existing infrastructure, and reduced system cost making it a viable alternative to urea-based SCR

  14. Compositions for saccharification of cellulosic material

    SciTech Connect (OSTI)

    McBrayer, Brett; Shaghasi, Tarana; Vlasenko, Elena

    2015-11-04

    The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.

  15. Compositions for saccharification of cellulosic material

    SciTech Connect (OSTI)

    McBrayer, Brett; Shaghasi, Tarana; Vlasenko, Elena

    2013-11-12

    The present invention relates to enzyme compositions for high temperature saccharification of cellulosic material and to uses thereof.

  16. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress

    SciTech Connect (OSTI)

    Yang, Shihui; Giannone, Richard J; Dice, Lezlee T; Yang, Zamin Koo; Engle, Nancy L; Tschaplinski, Timothy J; Hettich, Robert {Bob} L; Brown, Steven D

    2012-01-01

    Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol. However, C. thermocellum is relatively sensitive to ethanol compared to ethanologenic microorganisms such as yeast and Zymomonas mobilis that are used in industrial fermentations but do not possess native enzymes for industrial cellulose hydrolysis. In this study, C. thermocellum was grown to mid-exponential phase and then treated with ethanol to a final concentration of 3.9 g/L to investigate its physiological and regulatory responses to ethanol stress. Samples were taken pre-shock and 2, 12, 30, 60, 120, and 240 min post-shock, and from untreated control fermentations for systems biology analyses. Cell growth was arrested by ethanol supplementation with intracellular accumulation of carbon sources such as cellobiose, and sugar phosphates, including fructose-6-phosphate and glucose-6-phosphate. The largest response of C. thermocellum to ethanol shock treatment was in genes and proteins related to nitrogen uptake and metabolism, which is likely important for redirecting the cells physiology to overcome inhibition and allow growth to resume. This study suggests possible avenues for metabolic engineering and provides comprehensive, integrated systems biology datasets that will be useful for future metabolic modeling and strain development endeavors.

  17. Method of producing thin cellulose nitrate film

    DOE Patents [OSTI]

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  18. Ethanol production from lignocellulose

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  19. Millennium Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Millennium Ethanol, LLC Place: Marion, South Dakota Zip: 57043 Product: Millennium Ethanol is a group of more than 900 South Dakotan...

  20. East Coast Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: East Coast Ethanol Place: Columbia, South Carolina Zip: 29202 Product: East Coast Ethanol was formed in August 2007 through a merger...

  1. Marysville Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Marysville Ethanol LLC Jump to: navigation, search Name: Marysville Ethanol LLC Place: Marysville, Michigan Zip: 48040 Product: Developing a 50m gallon ethanol plant in Marysville,...

  2. Great Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Valley Ethanol LLC Jump to: navigation, search Name: Great Valley Ethanol LLC Place: Bakersfield, California Product: Developing a 63m gallon ethanol plant in Hanford, CA...

  3. Central Indiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in Marion,...

  4. SRSL Ethanol Limited | Open Energy Information

    Open Energy Info (EERE)

    SRSL Ethanol Limited Jump to: navigation, search Name: SRSL Ethanol Limited Place: Mumbai, Maharashtra, India Product: Mumbai-based ethanol subsidiary of Shree Renuka Sugars...

  5. Kansas Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Kansas Ethanol LLC Place: Lyons, Kansas Zip: 67554 Product: Constructing a 55m gallon ethanol plant in Rice County, Kansas...

  6. Chief Ethanol Fuels Inc | Open Energy Information

    Open Energy Info (EERE)

    Fuels Inc Jump to: navigation, search Name: Chief Ethanol Fuels Inc Place: Hastings, Nebraska Product: Ethanol producer and supplier References: Chief Ethanol Fuels Inc1 This...

  7. Heartland Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Heartland Ethanol LLC Place: Knoxville, Tennessee Zip: 37929 Product: Knoxville, TN based ethanol developer. Coordinates: 35.960495,...

  8. Standard Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Standard Ethanol LLC Place: Nebraska Product: Nebraska based ethanol producer that operates two plants References: Standard Ethanol LLC1 This article is a stub. You can help...

  9. Ethanol Capital Funding | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Capital Funding Jump to: navigation, search Name: Ethanol Capital Funding Place: Atlanta, Georgia Zip: 30328 Product: Provides funding for ethanol and biodiesel plants....

  10. Michigan Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Michigan Ethanol LLC Place: Caro, Michigan Zip: 48723-8804 Product: Ethanol productor in Caro, Michigan. Coordinates: 43.488705,...

  11. Siouxland Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Siouxland Ethanol LLC Place: Jackson, Nebraska Zip: 68743 Product: Startup hoping to build a USD 80m ethanol manufacturing plant near...

  12. Platinum Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Platinum Ethanol LLC Jump to: navigation, search Name: Platinum Ethanol LLC Place: Arthut, Iowa Product: Developed a 110m gallon (416m litre) ethanol plant in Arthur, IA....

  13. Nedak Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Nedak Ethanol LLC Jump to: navigation, search Name: Nedak Ethanol LLC Place: Atkinson, Nebraska Zip: 68713 Product: NEDAK Ethanol, LLC is a Nebraska limited liability company,...

  14. North Country Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Country Ethanol LLC Jump to: navigation, search Name: North Country Ethanol LLC Place: Rosholt, South Dakota Zip: 57260 Product: 20mmgy (75.7m litresy) ethanol producer....

  15. South Louisiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    South Louisiana Ethanol LLC Place: Louisiana Product: Ethanol production equipment provider. References: South Louisiana Ethanol LLC1 This article is a stub. You can help OpenEI...

  16. Show Me Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Show Me Ethanol LLC Jump to: navigation, search Name: Show Me Ethanol, LLC Place: Carrollton, Missouri Zip: 64633 Product: Developing an ethanol project in Carrollton, Missouri....

  17. Western Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Company LLC Jump to: navigation, search Name: Western Ethanol Company LLC Place: Placentia, California Zip: 92871 Product: California-based fuel ethanol distribution and...

  18. Making Cellulose More Accessible for Bioconversion | U.S. DOE...

    Office of Science (SC) Website

    Biological and Environmental Research U.S. Department of Energy SC-23Germantown Building ... trunks, stems, and leaves) holds great promise as a renewable alternative fuel source. ...

  19. Ethanol 2000 | Open Energy Information

    Open Energy Info (EERE)

    Ethanol 2000 Place: Bingham lake, Minnesota Zip: 56118 Product: Farmer-owned bioethanol producer References: Ethanol 20001 This article is a stub. You can help OpenEI by...

  20. Orion Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Orion Ethanol Place: Pratt, Kansas Zip: 67124 Product: A Kansas-based ethanol producer. Coordinates: 38.209925, -81.383804 Show Map Loading map... "minzoom":false,"mappingserv...

  1. Ozark Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ozark Ethanol Place: Missouri Zip: 64762 Product: Missouri-based bioethanol producer planning to develop a 204m-litre per year ethanol plant in Vernon County. References: Ozark...

  2. Alternative Fuels Data Center: Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15

  3. Ethanol Myths Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  4. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Paul Machiele, Center Director for Fuel Programs, Office of Transportation & Air Quality, U.S. Environmental Protection Agency PDF icon b13_machiele_2-b.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels The

  5. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    SciTech Connect (OSTI)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  6. Bacterial Cellulose Composites Opportunities and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Vol. 205. Springer Berlin Heidelberg, 2006. 49-96. Peng, B L et al. "Chemistry and Applications of Nanocrystalline Cellulose and Its Derivatives: a Nanotechnology Perspective." Ed. ...

  7. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    liquid fuel from wood and other non-food biomass Our key product is Renewable ... petroleum replacement from cellulosic non- food biomass Powerful unit economics - cash ...

  8. F.O. Licht's 17th Annual World Ethanol & Biofuels Conference

    Broader source: Energy.gov [DOE]

    The F.O. Licht's 17th Annual World Ethanol & Biofuels Conference will be held on November 3–6, 2014, in Budapest, Hungary. Valerie Reed, Deputy Director of the Bioenergy Technolgies Office will be serving on two panels: "Maintaining Next Generation Investments in the Years Ahead" on November 4 and "Putting Together a Constant Supply of Feedstocks for Advanced and Cellulosic Biofuels, Biochemicals and Aviation Fuels" on November 5.

  9. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    SciTech Connect (OSTI)

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  10. Recovery and utilization of cellulosic feedstock from steam classified municipal solid wastes

    SciTech Connect (OSTI)

    Eley, M.H.; Guinn, G.R.; Bagchi, J.

    1994-12-31

    Steam classification is a process for treatment of commingled municipal solid wastes that transforms the pulp and paper materials and most food and soft yard wastes into a fairly uniform product. After processing and partial drying, most of the transformed cellulosic material can be easily separated from the non-biomass materials by conventional screening and air classification to yield a biomass feedstock. The focus of this report is the enzymatic hydrolysis of the cellulosic component of this feedstock to produce glucose for fermentation to ethanol. Several commercially available cellulases were tested on the feedstock, and optimum conditions were found for glucose production, including enzyme loading, feedstock concentration, hydrolysis rate, conversion efficiency, and glucose yield.

  11. Catalytic Mechanism of Cellulose Degradation by a Cellobiohydrolase, CelS

    SciTech Connect (OSTI)

    Saharay, Moumita; Guo, Hong; Smith, Jeremy C

    2010-08-01

    The hydrolysis of cellulose is the bottleneck in cellulosic ethanol production. The cellobiohydrolase CelS from Clostridium thermocellum catalyzes the hydrolysis of cello-oligosaccharides via inversion of the anomeric carbon. Here, to examine key features of the CelS-catalyzed reaction, QM/MM (SCCDFTB/MM) simulations are performed. The calculated free energy profile for the reaction possesses a 19 kcal/mol barrier. The results confirm the role of active site residue Glu87 as the general acid catalyst in the cleavage reaction and show that Asp255 may act as the general base. A feasible position in the reactant state of the water molecule responsible for nucleophilic attack is identified. Sugar ring distortion as the reaction progresses is quantified. The results provide a computational approach that may complement the experimental design of more efficient enzymes for biofuel production.

  12. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking...

  13. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul; Rey, Michael; Ding, Hanshu

    2012-04-03

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  14. Methods for enhancing the degradation or conversion of cellulosic material

    DOE Patents [OSTI]

    Harris, Paul Rey, Michael; Ding, Hanshu

    2009-10-27

    The present invention relates to methods for degrading or converting a cellulosic material and for producing a substance from a cellulosic material.

  15. Alternative Fuels Data Center: Ethanol Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find

  16. Recombinant host cells and media for ethanol production

    DOE Patents [OSTI]

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  17. National Ethanol Conference

    Broader source: Energy.gov [DOE]

    The National Ethanol Conference was held Feb. 15—17 in New Orleans, Louisiana. Bioenergy Technologies Office Technology Manager Alicia Lindauer was in attendance to help communicate the goals of the Energy Department’s Co-Optimization of Fuels & Engines (Co-Optima) initiative. She participated in a panel titled "A Conversation About the Future of U.S. Biofuels Policy," where she discussed the environmental and economic benefits of the initiative.

  18. Nucleic acids encoding a cellulose binding domain

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  19. Nucleic acids encoding a cellulose binding domain

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Improvement of cellulose catabolism in Clostridium cellulolyticum by sporulation abolishment and carbon alleviation

    SciTech Connect (OSTI)

    Li, Yongchao; Xu, Tao; Tschaplinski, Timothy J; Engle, Nancy L; Graham, David E; He, Zhili; Zhou, Jizhong

    2014-01-01

    Background Clostridium cellulolyticum can degrade lignocellulosic biomass, and ferment the soluble sugars to produce valuable chemicals such as lactate, acetate, ethanol and hydrogen. However, the cellulose utilization efficiency of C. cellulolyticum still remains very low, impeding its application in consolidated bioprocessing for biofuels production. In this study, two metabolic engineering strategies were exploited to improve cellulose utilization efficiency, including sporulation abolishment and carbon overload alleviation. Results The spo0A gene at locus Ccel_1894, which encodes a master sporulation regulator was inactivated. The spo0A mutant abolished the sporulation ability. In a high concentration of cellulose (50 g/l), the performance of the spo0A mutant increased dramatically in terms of maximum growth, final concentrations of three major metabolic products, and cellulose catabolism. The microarray and gas chromatography mass spectrometry (GC-MS) analyses showed that the valine, leucine and isoleucine biosynthesis pathways were up-regulated in the spo0A mutant. Based on this information, a partial isobutanol producing pathway modified from valine biosynthesis was introduced into C. cellulolyticum strains to further increase cellulose consumption by alleviating excessive carbon load. The introduction of this synthetic pathway to the wild-type strain improved cellulose consumption from 17.6 g/l to 28.7 g/l with a production of 0.42 g/l isobutanol in the 50 g/l cellulose medium. However, the spo0A mutant strain did not appreciably benefit from introduction of this synthetic pathway and the cellulose utilization efficiency did not further increase. A technical highlight in this study was that an in vivo promoter strength evaluation protocol was developed using anaerobic fluorescent protein and flow cytometry for C. cellulolyticum. Conclusions In this study, we inactivated the spo0A gene and introduced a heterologous synthetic pathway to manipulate the stress response to heavy carbon load and accumulation of metabolic products. These findings provide new perspectives to enhance the ability of cellulolytic bacteria to produce biofuels and biocommodities with high efficiency and at low cost directly from lignocellulosic biomass.

  1. Simulations of Cellulose Translocation in the Bacterial Cellulose Synthase Suggest a Regulatory Mechanism for the Dimeric Structure of Cellulose

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; Zimmer, Jochen; Beckham, Gregg T.

    2016-05-01

    The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations tomore » the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs processive cycle and may be widely relevant to polysaccharide synthesizing or degrading enzymes that couple catalysis with chain translocation.« less

  2. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    SciTech Connect (OSTI)

    Shih, Chien-Ju

    2010-05-16

    This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially bioethanol from biomass, has grown significantly in the past decade due to the high demand and rising costs of fossil fuels. More than 3 percent of the energy consumption in the U.S. is derived from renewable biomass, mostly through industrial heat and steam production by the pulp and paper industry, and electricity generation from municipal solid waste (MSW) and forest industry residues. The utilization of food-based biomass to make fuels has been widely criticized because it may increase food shortages throughout the world and raise the cost of food. Thus, nonfood-based and plentiful lignocellulosic feedstocks, such as corn stover, perennial grass, bagasse, sorghum, wheat/rice straw, herbaceous and woody crops, have great potential to be new bio-renewable sources for energy production. Given that many varieties of biomass are available, there is need for a rapid, simple, high-throughput method to screen the conversion of many plant varieties. The most suitable species for each geographic region must be determined, as well as the optimal stage of harvest, impacts of environmental conditions (temperature, soil, pH, etc.). Various genetically modified plants should be studied in order to establish the desired biomass in bioethanol production. The main screening challenge, however, is the complexity of plant cell wall structures that make reliable and sensitive analysis difficult. To date, one of the most popular methods to produce lignocellulosic ethanol is to perform enzymatic hydrolysis followed by fermentation of the hydrolysate with yeast. There are several vital needs related to the field of chemistry that have been suggested as primary research foci needed to effectively improve lignocellulosic ethanol production. These topics include overcoming the recalcitrance of cellulosic biomass, the pervasiveness of pretreatment, advanced biological processing and better feedstocks. In this thesis, a novel approach using Raman spectroscopy has been developed to address important issues related to bioethanol generation, which will aid the research aimed to solve the topics mentioned above.

  3. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, Bruce M.

    1986-01-01

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  4. Production of permeable cellulose triacetate membranes

    DOE Patents [OSTI]

    Johnson, B.M.

    1986-12-23

    A phase inversion process for the preparation of cellulose triacetate (CTA) and regenerated cellulose membranes is disclosed. Such membranes are useful as supports for liquid membranes in facilitated transport processes, as microfiltration membranes, as dialysis or ultrafiltration membranes, and for the preparation of ion-selective electrodes. The process comprises the steps of preparing a casting solution of CTA in a solvent comprising a mixture of cyclohexanone and methylene chloride, casting a film from the casting solution, and immersing the cast film in a methanol bath. The resulting CTA membrane may then be hydrolyzed to regenerated cellulose using conventional techniques.

  5. Corn Ethanol Industry Process Data: September 27, 2007 - January 27, 2008

    SciTech Connect (OSTI)

    BBI International

    2009-02-01

    This subcontract report supplies timely data on the historical make-up of the corn ethanol industry and a current estimate of where the industry stands. The subcontractor has also reported on the expected future trends of the corn ethanol dry grind industry.

  6. Northern Lights Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Lights Ethanol LLC Jump to: navigation, search Name: Northern Lights Ethanol LLC Place: Big Stone City, South Dakota Zip: 57216 Product: 75mmgy (283.9m litresy) ethanol producer....

  7. Prairie Creek Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Prairie Creek Ethanol LLC Place: Goldfield, Iowa Zip: 50542 Product: Prairie Creek Ethanol, LLC had planned to build a 55m gallon...

  8. Tharaldson Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Tharaldson Ethanol LLC Jump to: navigation, search Name: Tharaldson Ethanol LLC Place: Casselton, North Dakota Zip: 58012 Product: Owner of a USD 200m 120m-gallon ethanol plant in...

  9. United Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    United Ethanol LLC Place: Wisconsin Product: Developed a 43m gallon ethanol plant in Milton, Wisconsin. References: United Ethanol LLC1 This article is a stub. You can help...

  10. Horizon Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Horizon Ethanol LLC Place: Jewell, Iowa Zip: 50130 Product: 60mmgy (227.1m litrey) ethanol producers in Jewell, Iowa. Coordinates:...

  11. First United Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: First United Ethanol LLC Place: Camilla, Georgia Zip: 31730 Product: First United Ethanol LLC (FUEL) was formed to construct a 100 MGY...

  12. Vehicle Technologies Office: Intermediate Ethanol Blends

    Broader source: Energy.gov [DOE]

    Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

  13. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  14. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  15. Alternative Fuels Data Center: Ethanol Feedstocks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Feedstocks to someone by E-mail Share Alternative Fuels Data Center: Ethanol Feedstocks on Facebook Tweet about Alternative Fuels Data Center: Ethanol Feedstocks on Twitter Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Google Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Delicious Rank Alternative Fuels Data Center: Ethanol Feedstocks on Digg Find More places to share Alternative Fuels Data Center: Ethanol Feedstocks on AddThis.com... More in this section...

  16. Alternative Fuels Data Center: Ethanol Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section...

  17. Center Ethanol Company LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Center Ethanol Company LLC Place: Illinois Product: Illinois based company building a 54m gallon ethanol plant in Sauget, IL. References:...

  18. US Ethanol Vehicle Coalition | Open Energy Information

    Open Energy Info (EERE)

    Vehicle Coalition Jump to: navigation, search Name: US Ethanol Vehicle Coalition Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol Vehicle Coalition is the...

  19. Ethanol Capital Management | Open Energy Information

    Open Energy Info (EERE)

    Management Jump to: navigation, search Name: Ethanol Capital Management Place: Tucson, Arizona Zip: 85711 Product: Manages funds investing in Ethanol plants in the US Coordinates:...

  20. Blue Flint Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Flint Ethanol Jump to: navigation, search Name: Blue Flint Ethanol Place: Underwood, North Dakota Zip: ND 58576 Product: Joint Venture bentween Great River Energy and Headwaters...

  1. Prairie Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Prairie Ethanol LLC Place: Loomis, South Dakota Product: Farmer owned bioethanol project development and managment team. Coordinates:...

  2. Great Plains Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Great Plains Ethanol Place: Chancellor, South Dakota Zip: 57015 Product: Limited liability company owned by its 500 members which owns and...

  3. Chief Ethanol Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: Chief Ethanol Fuels Place: Hastings, NE Website: www.chiefethanolfuels.com References: Chief Ethanol Fuels1 Information About Partnership...

  4. Evergreen Securities formerly Ethanol Investments | Open Energy...

    Open Energy Info (EERE)

    Securities formerly Ethanol Investments Jump to: navigation, search Name: Evergreen Securities (formerly Ethanol Investments) Place: London, England, United Kingdom Zip: EC2V 5DE...

  5. Missouri Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Missouri Ethanol LLC Place: Laddonia, Missouri Product: 45mmgy (170.3m litresy) ethanol producer. Coordinates: 39.24073, -91.645599 Show Map Loading map......

  6. BlueFire Ethanol | Open Energy Information

    Open Energy Info (EERE)

    BlueFire Ethanol Jump to: navigation, search Name: BlueFire Ethanol Place: Irvine, California Zip: 92618 Sector: Hydro Product: US biofuel producer that utilises a patented...

  7. Badger State Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    State Ethanol LLC Jump to: navigation, search Name: Badger State Ethanol LLC Place: Monroe, Wisconsin Zip: 53566 Product: Dry-mill bioethanol producer References: Badger State...

  8. Iowa Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Iowa Ethanol LLC Place: Hanlontown, Iowa Zip: 50451 Product: Corn-base bioethanol producer in Iowa Coordinates: 43.28456,...

  9. James Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    James Valley Ethanol LLC Place: Gronton, South Dakota Zip: 57445 Product: Farmers owned cooperative that built and operates an ethanol production facility. Coordinates: 29.72369,...

  10. Algodyne Ethanol Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Algodyne Ethanol Energy Inc Jump to: navigation, search Name: Algodyne Ethanol Energy Inc Place: Las Vegas, Nevada Zip: 89145 Sector: Biofuels Product: Holds proprietary...

  11. Tall Corn Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Tall Corn Ethanol LLC Jump to: navigation, search Name: Tall Corn Ethanol LLC Place: Coon Rapids, Iowa Zip: 50058 Product: Farmer owned bioethanol production company which owns a...

  12. Frontier Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Frontier Ethanol LLC Place: Gowrie, Iowa Product: Owner and operator of a bioethanol plant near Gowrie, Iowa. Coordinates: 42.28227,...

  13. Ethanol Management Company | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Management Company Place: Colorado Product: Biofuel blender located in Denver, Colorado. References: Ethanol Management Company1 This article is a stub. You can help...

  14. Ethanol Grain Processors LLC | Open Energy Information

    Open Energy Info (EERE)

    Processors LLC Jump to: navigation, search Name: Ethanol Grain Processors, LLC Place: Obion, Tennessee Zip: TN 38240 Product: Tennessee-based ethanol producer. Coordinates:...

  15. Kaapa Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Kaapa Ethanol LLC Jump to: navigation, search Name: Kaapa Ethanol LLC Place: Minden, Nebraska Zip: 68959 Product: Bioethanol producer using corn as feedstock Coordinates:...

  16. Gulf Ethanol Corp | Open Energy Information

    Open Energy Info (EERE)

    Gulf Ethanol Corp Jump to: navigation, search Name: Gulf Ethanol Corp Place: Houston, Texas Zip: 77055 Sector: Biomass Product: Focused on developing biomass preprocessing...

  17. Didion Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Didion Ethanol LLC Jump to: navigation, search Name: Didion Ethanol LLC Place: Cambria, Wisconsin Zip: 53923 Product: Also Didion Milling LLC, Grand River Distribution LLC....

  18. Atlantic Ethanol Capital | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Capital Jump to: navigation, search Name: Atlantic Ethanol Capital Place: Washington, Washington, DC Product: Biofuel Investor in Caribbean and Central American region....

  19. Platte Valley Fuel Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Valley Fuel Ethanol Jump to: navigation, search Name: Platte Valley Fuel Ethanol Place: Central City, Nebraska Product: Bioethanol producer using corn as feedstock References:...

  20. Ethanol production in non-recombinant hosts

    SciTech Connect (OSTI)

    Kim, Youngnyun; Shanmugam, Keelnatham; Ingram, Lonnie O.

    2013-06-18

    Non-recombinant bacteria that produce ethanol as the primary fermentation product, associated nucleic acids and polypeptides, methods for producing ethanol using the bacteria, and kits are disclosed.

  1. Oxygenates du`jour...MTBE? Ethanol? ETBE?

    SciTech Connect (OSTI)

    Wolfe, R.

    1995-12-31

    There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

  2. Conversion of cellulosic materials to sugar

    DOE Patents [OSTI]

    Wilke, Charles R.; Mitra, Gautam

    1976-08-03

    A process for the production of sugar, mainly glucose, by the enzymatic degradation of cellulosic materials, particularly cellulosic wastes, which comprises hydrolyzing the cellulosic material in the presence of cellulase enzyme to produce a sugar solution and recovering from the hydrolysis products a major proportion of the cellulase enzyme used in the hydrolysis reaction for re-use. At least a portion of the required makeup cellulase enzyme is produced in a two-stage operation wherein, in the first stage, a portion of the output sugar solution is utilized to grow a cellulase-secreting microorganism, and, in the second stage, cellulase enzyme formation is induced in the microorganism-containing culture medium by the addition of an appropriate inducer, such as a cellulosic material. Cellulase enzyme is precipitated from the culture liquid by the addition of an organic solvent material, such as a low molecular weight alkyl ketone or alcohol, and the cellulase precipitate is then fed to the hydrolysis reaction.

  3. Comparing alternative cellulosic biomass biorefining systems: Centralized

    Office of Scientific and Technical Information (OSTI)

    versus distributed processing systems (Journal Article) | SciTech Connect Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems Citation Details In-Document Search This content will become publicly available on May 5, 2017 Title: Comparing alternative cellulosic biomass biorefining systems: Centralized versus distributed processing systems Authors: Kim, Seungdo ; Dale, Bruce E. Publication Date: 2015-03-01 OSTI Identifier: 1250566

  4. BlueFire Ethanol | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol BlueFire Ethanol Construct and operate a facility that converts green waste and lignocellulosic fractions diverted from landfills or Southern California Materials Recovery Facilities to ethanol and other products. PDF icon bluefire_fact_sheet_12_9_08.pdf More Documents & Publications BlueFire Ethanol, Inc. Applicant Organization: EA-1704: Mitigation Action Plan

  5. Pacific Ethanol, Inc | Department of Energy

    Office of Environmental Management (EM)

    Verenium Biofuels Fact Sheet Pacific Ethanol, Inc Verenium Pilot- and Demonstration-Scale Biorefinery

  6. Isolation and characterization of two cellulose morphology mutants of Gluconacetobacter hansenii ATCC23769 producing cellulose with lower crystallinity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Ying; Nagachar, Nivedita; Fang, Lin; Luan, Xin; Catchmark, Jeffrey M.; Tien, Ming; Kao, Teh -hui; Lai, Hsin -Chih

    2015-03-19

    Gluconacetobacter hansenii, a Gram-negative bacterium, produces and secrets highly crystalline cellulose into growth medium, and has long been used as a model system for studying cellulose synthesis in higher plants. Cellulose synthesis involves the formation of β-1,4 glucan chains via the polymerization of glucose units by a multi-enzyme cellulose synthase complex (CSC). These glucan chains assemble into ordered structures including crystalline microfibrils. AcsA is the catalytic subunit of the cellulose synthase enzymes in the CSC, and AcsC is required for the secretion of cellulose. However, little is known about other proteins required for the assembly of crystalline cellulose. To addressmore » this question, we visually examined cellulose pellicles formed in growth media of 763 individual colonies of G. hansenii generated via Tn5 transposon insertion mutagenesis, and identified 85 that produced cellulose with altered morphologies. X-ray diffraction analysis of these 85 mutants identified two that produced cellulose with significantly lower crystallinity than wild type. The gene disrupted in one of these two mutants encoded a lysine decarboxylase and that in the other encoded an alanine racemase. Solid-state NMR analysis revealed that cellulose produced by these two mutants contained increased amounts of non-crystalline cellulose and monosaccharides associated with non-cellulosic polysaccharides as compared to the wild type. Monosaccharide analysis detected higher percentages of galactose and mannose in cellulose produced by both mutants. Field emission scanning electron microscopy showed that cellulose produced by the mutants was unevenly distributed, with some regions appearing to contain deposition of non-cellulosic polysaccharides; however, the width of the ribbon was comparable to that of normal cellulose. As both lysine decarboxylase and alanine racemase are required for the integrity of peptidoglycan, we propose a model for the role of peptidoglycan in the assembly of crystalline cellulose.« less

  7. Ethanol Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Ventures Place: London, England, United Kingdom Zip: W1D 3SQ Product: Company aims to deliver at least 378 million litres a year of bioethanol from two Facilities in...

  8. California Ethanol Power CE P | Open Energy Information

    Open Energy Info (EERE)

    Power CE P Jump to: navigation, search Name: California Ethanol & Power (CE+P) Place: Florida Product: US ethanol project developer. References: California Ethanol & Power...

  9. Conesul Sugar and Ethanol Plant | Open Energy Information

    Open Energy Info (EERE)

    Conesul Sugar and Ethanol Plant Jump to: navigation, search Name: Conesul Sugar and Ethanol Plant Place: Brazil Product: Brazilian ethanol producer References: Conesul Sugar and...

  10. Agri Ethanol Products LLC AEPNC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Products LLC AEPNC Jump to: navigation, search Name: Agri-Ethanol Products LLC (AEPNC) Place: Raleigh, North Carolina Zip: 27615 Product: Ethanol producer and project...

  11. Grupo Maris Capital ethanol refinery | Open Energy Information

    Open Energy Info (EERE)

    Maris Capital ethanol refinery Jump to: navigation, search Name: Grupo Maris (Capital ethanol refinery) Place: Nuporanga, Brazil Product: 32,000 m3 ethanol refinery owner...

  12. Midwest Ethanol Producers Inc MEPI | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Producers Inc MEPI Jump to: navigation, search Name: Midwest Ethanol Producers Inc (MEPI) Place: O'Neill, Nebraska Zip: 68763 Product: Focused on ethanol production....

  13. Baicheng Tingfeng Ethanol Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tingfeng Ethanol Co Ltd Jump to: navigation, search Name: Baicheng Tingfeng Ethanol Co Ltd Place: Baicheng, Jilin Province, China Zip: 137000 Product: The company is a ethanol...

  14. Tampa Bay Area Ethanol Consortium | Open Energy Information

    Open Energy Info (EERE)

    Bay Area Ethanol Consortium Jump to: navigation, search Name: Tampa Bay Area Ethanol Consortium Place: Tampa, Florida Sector: Biomass Product: Consortium researching ethanol from...

  15. National Ethanol Vehicle Coalition NEVC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Vehicle Coalition NEVC Jump to: navigation, search Name: National Ethanol Vehicle Coalition (NEVC) Place: Jefferson City, Missouri Zip: 65109 Product: The National Ethanol...

  16. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today Cellulosic Liquid Fuels Commercial Production Today Keynote Success Story Robert Graham, Chairman and CEO, Ensyn Corporation PDF icon b13_graham_ensyn.pdf More Documents & Publications Advanced Cellulosic Biofuels Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  17. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  18. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, Jonathan

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  19. High-Yield Hybrid Cellulosic Ethanol Process Using High-Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Biomass Conversion Technologies * Feedstock: GreenWood Resources * EPCM: Burns & McDonnell * Key Vendors: Andritz, BASF * Start-up, Commissioning & Operations: ...

  20. Compositions and methods relating to transgenic plants and cellulosic ethanol production

    DOE Patents [OSTI]

    Tien, Ming; Carlson, John; Liang, Haiying

    2012-04-24

    Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine. Methods of increasing lignin-protein bonds in a lignocellulosic plant are provided according to embodiments of the present invention which include expressing a recombinant nucleic acid in a lignocellulosic plant, the recombinant nucleic acid encoding a protein operably linked to a signal peptide which targets the protein to the cell wall of a plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine.

  1. Compositions and methods relating to transgenic plants and cellulosic ethanol production

    DOE Patents [OSTI]

    Tien, Ming; Carlson, John; Liang, Haiying

    2015-06-02

    Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine. Methods of increasing lignin-protein bonds in a lignocellulosic plant are provided according to embodiments of the present invention which include expressing a recombinant nucleic acid in a lignocellulosic plant, the recombinant nucleic acid encoding a protein operably linked to a signal peptide which targets the protein to the cell wall of a plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine.

  2. DuPont's Cellulosic Ethanol Grand Opening Marks a Milestone for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The U.S. Department of Energy's Bioenergy Technologies Office played a part by ... The U.S. Department of Energy's Bioenergy Technologies Office has, over the years, ...

  3. EERE Success Story-Largest Cellulosic Ethanol Plant in the World...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... revenue stream for many farmers, including Bruce. Watch a video segment about Bruce's story ...

  4. Ethanol Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials collectively known as "biomass." Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. More than 95% of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that

  5. Does the Cellulose-Binding Module Move on the Cellulose Surface?

    SciTech Connect (OSTI)

    Liu, Y. S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M. E.; Smith, S. J.; Ding, S. Y.

    2009-01-01

    Exoglucanases are key enzymes required for the efficient hydrolysis of crystalline cellulose. It has been proposed that exoglucanases hydrolyze cellulose chains in a processive manner to produce primarily cellobiose. Usually, two functional modules are involved in the processive mechanism: a catalytic module and a carbohydrate-binding module (CBM). In this report, single molecule tracking techniques were used to analyze the molecular motion of CBMs labeled with quantum dots (QDs) and bound to cellulose crystals. By tracking the single QD, we observed that the family 2 CBM from Acidothermus cellulolyticus (AcCBM2) exhibited linear motion along the long axis of the cellulose fiber. This apparent movement was observed consistently when different concentrations (25 {micro}M to 25 nM) of AcCBM2 were used. Although the mechanism of AcCBM2 motion remains unknown, single-molecule spectroscopy has been demonstrated to be a promising tool for acquiring new fundamental understanding of cellulase action.

  6. High-Temperature Behavior of Cellulose I

    SciTech Connect (OSTI)

    Matthews, James F.; Bergenstråhle, Malin; Beckham, Gregg T.; Himmel, Michael E.; Nimlos, Mark R.; Brady, John W.; Crowley, Michael F.

    2011-03-17

    We use molecular simulation to elucidate the structural behavior of small hydrated cellulose Iβ microfibrils heated to 227 °C (500 K) with two carbohydrate force fields. In contrast to the characteristic two-dimensional hydrogen-bonded layer sheets present in the cellulose Iβ crystal structure, we show that at high temperature a three-dimensional hydrogen bond network forms, made possible by hydroxymethyl groups changing conformation from trans–gauche (TG) to gauche–gauche (GG) in every second layer corresponding to “center” chains in cellulose Iβ and from TG to gauche–trans (GT) in the “origin” layer. The presence of a regular three-dimensional hydrogen bond network between neighboring sheets eliminates the possibility of twist, whereas two-dimensional hydrogen bonding allows for microfibril twist to occur. Structural features of this high-temperature phase as determined by molecular simulation may explain several experimental observations for which no detailed structural basis has been offered. This includes an explanation for the observed temperature and crystal size dependence for the extent of hydrogen/deuterium exchange, and diffraction patterns of cellulose at high temperature.

  7. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  8. Ethanol production method and system

    DOE Patents [OSTI]

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  9. Ethanol: farm and fuel issues

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The current U.S. and world grain situations are described as well as adjustments which would be likely for fuel production of 1, 2 and 4 billion gallons of ethanol annually in the 1985-86 period. Predicted acreage shifts in corn, soybeans, wheat and the total of seven major crops are shown. The most likely effects on the feed grains markets both here and abroad are discussed. The value of corn for fuel both with and without the gasoline tax exemption is compared to the actual farm price expected if in the base case (1 billion gallons) real corn prices do not rise. In the higher 2 and 4 billion gallon cases, increases in the real cost of corn and its impact on food prices and the CPI are estimated. A theoretical maximum level of ethanol production recognizing market factors is discussed in terms of acreage, yield, corn production and the fuel ethanol available. Agricultural and other policy frameworks are discussed.

  10. Method of forming an electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  11. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    SciTech Connect (OSTI)

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  12. US Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Vancouver, Washington State Zip: 98660 Product: Ethanol producer in the north-west. References: US Ethanol LLC1 This article is a stub. You can help OpenEI by...

  13. Elkhorn Valley Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Elkhorn Valley Ethanol LLC Place: Norfolk, Nebraska Zip: 68701 Product: Operates a 40m gallon ethanol plant in Norfolk, Nebraska. Coordinates: 36.846825, -76.285069 Show Map...

  14. Brazil Ethanol Inc | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Inc Jump to: navigation, search Name: Brazil Ethanol Inc. Place: New York, New York Zip: 10021 Product: A New York City-based firm that had raised USD 10.4m as of 1 May...

  15. JH Kelly LLC Ethanol | Open Energy Information

    Open Energy Info (EERE)

    JH Kelly LLC Ethanol Jump to: navigation, search Name: JH Kelly LLC Ethanol Place: Longview, Washington State Zip: 98632 Product: A joint venture company between JH Kelly and and...

  16. Farmers Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Jump to: navigation, search Name: Farmers' Ethanol LLC Place: Adamsville, Ohio Zip: OH 43802 Product: An association of farmers registered on July 12,2002 with a goal...

  17. Re-engineering bacteria for ethanol production

    DOE Patents [OSTI]

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  18. Ethanol's Effect on Grain Supply and Prices

    SciTech Connect (OSTI)

    2008-01-01

    This document provides graphical information about ethanol's effect on grain supply and prices, uses of corn, and grain price trends.

  19. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect (OSTI)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  20. BlueFire Ethanol, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BlueFire Ethanol, Inc. BlueFire Ethanol, Inc. A proposal issued by BlueFire Ethanol Inc,describing a project that will give DOE understanding of a new biological fermentation process not using enzymes. PDF icon BlueFire Ethanol, Inc. More Documents & Publications Applicant Organization: BlueFire Ethanol Pacific Ethanol, Inc

  1. Ethanol production by recombinant hosts

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  2. Ethanol production by recombinant hosts

    DOE Patents [OSTI]

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  3. Ethanol production in recombinant hosts

    DOE Patents [OSTI]

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D.

    2005-02-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  4. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated

    SciTech Connect (OSTI)

    Knoll, K.; West, B.; Clark, W.; Graves, R.; Orban, J.; Przesmitzki, S.; Theiss, T.

    2009-02-01

    Intended for policymakers and others who make decisions about, and set guidelines for, the proper use of intermediate ethanol blends such as E20 in both vehicle engines and other engine types.

  5. Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks

    SciTech Connect (OSTI)

    McAloon, Andrew; Taylor, Frank; Yee, Winnie; Ibsen, Kelly; Wooley, Robert

    2000-10-01

    This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood.

  6. Economics of ethanol fuel for crop production

    SciTech Connect (OSTI)

    Fontana, C.; Rotz, C.A.

    1982-07-01

    A computer model was developed to simulate conventional and ethanol fuel consumption for crop production. The model was validated by obtaining a close comparison between simulated and actual diesel requirements for farms in Michigan. Parameters for ethanol consumption were obtained from laboratory tests using total fueling of spark-ignition engines and dual-fueling of diesel engines with ethanol. Ethanol fuel will always be more economically used in spark-ignition engines than in dual-fueled diesel engines. The price of gasoline must inflate at least 14 percent/year greater than that of ethanol and diesel must inflate at least 23 percent/year more than ethanol to allow economic use of ethanol as tractor fuel within the next 5 years. (Refs. 13).

  7. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  8. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R. [Oak Ridge, TN; O'Neill, Hugh M. [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  9. America Makes

    Broader source: Energy.gov [DOE]

    America Makes advances additive manufacturing technology and products, and serves as a nationally recognized additive manufacturing center of innovation excellence, working to transform the U.S. manufacturing sector and yield significant advancements throughout industry. America Makes was formerly called the National Additive Manufacturing Innovation Institute (NAMII).

  10. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    SciTech Connect (OSTI)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate/fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.

  11. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  12. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzymatic deconstruction; however, the recent observation that cellulose III increased sugar yields with reduced levels of bound enzyme was unexpected. To explain this finding,...

  13. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer...

    Office of Scientific and Technical Information (OSTI)

    Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry Citation Details In-Document Search Title: The Arabidopsis Cellulose Synthase Complex: A ...

  14. Less is more: Novel cellulose structure requires fewer enzymes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in...

  15. Cellulosic emissions (kg of pollutant per km2 county area) -...

    Open Energy Info (EERE)

    Cellulosic emissions (kg of pollutant per km2 county area) Data reflects projected air emissions of nitrogen oxides (NOX), ammonia (NH3), carbon monoxide (CO), sulfur oxide (SOX),...

  16. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO PDF icon ...

  17. Cost-Effective Enzyme for Producing Biofuels from Cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The mixture is half as expensive as conventional inducers such as lactose and cellulose, significantly reducing the cost of cellulase and subsequently reducing the cost of ...

  18. Modeling of Carbohydrate Binding Modules Complexed to Cellulose

    SciTech Connect (OSTI)

    Nimlos, M. R.; Beckham, G. T.; Bu, L.; Himmel, M. E.; Crowley, M. F.; Bomble, Y. J.

    2012-01-01

    Modeling results are presented for the interaction of two carbohydrate binding modules (CBMs) with cellulose. The family 1 CBM from Trichoderma reesei's Cel7A cellulase was modeled using molecular dynamics to confirm that this protein selectively binds to the hydrophobic (100) surface of cellulose fibrils and to determine the energetics and mechanisms for locating this surface. Modeling was also conducted of binding of the family 4 CBM from the CbhA complex from Clostridium thermocellum. There is a cleft in this protein, which may accommodate a cellulose chain that is detached from crystalline cellulose. This possibility is explored using molecular dynamics.

  19. Final Report on Development of Thermoanaerobacterium saccharolyticum for the conversion of lignocellulose to ethanol

    SciTech Connect (OSTI)

    Herring, Christopher D.; Kenealy, William R.; Shaw, A. Joe; Raman, Babu; Tschaplinski, Timothy J.; Brown, Steven D.; Davison, Brian H.; Covalla, Sean F.; Sillers, W. Ryan; Xu, Haowen; Tsakraklides, Vasiliki; Hogsett, David A.

    2012-01-24

    This project addressed the need for economical technology for the conversion of lignocellulosic biomass to fuels, specifically the conversion of pretreated hardwood to ethanol. The technology developed is a set of strains of the bacterium Thermoanaerobacterium saccharolyticum and an associated fermentation process for pretreated hardwood. Tools for genetic engineering and analysis of the organism were developed, including a markerless mutation method, a complete genome sequence and a set of gene expression profiles that show the activity of its genes under a variety of conditions relevant to lignocellulose conversion. Improved strains were generated by selection and genetic engineering to be able to produce higher amounts of ethanol (up to 70 g/L) and to be able to better tolerate inhibitory compounds from pretreated hardwood. Analysis of these strains has generated useful insight into the genetic basis for desired properties of biofuel producing organisms. Fermentation conditions were tested and optimized to achieve ethanol production targets established in the original project proposal. The approach proposed was to add cellulase enzymes to the fermentation, a method called Simultaneous Saccharification and Fermentation (SSF). We had reason to think SSF would be an efficient approach because the optimal temperature and pH for the enzymes and bacterium are very close. Unfortunately, we discovered that commercially available cellulases are inactivated in thermophilic SSF by a combination of low redox potential and ethanol. Despite this, progress was made against the fermentation targets using bacterial cellulases. Thermoanaerobacterium saccharolyticum may still prove to be a commercially viable technology should cellulase enzyme issues be addressed. Moreover, the organism was demonstrated to produce ethanol at approximately theoretical yield from oligomeric hemicellulose extracts, an ability that may prove to be uniquely valuable in pretreatment configurations in which cellulose and hemicellulose are separated.

  20. Making History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YGG 05-0181 Making History It's hard to imagine . . . . . . an entire city existing in secret. . . . 60,000 acres set aside for one, top-secret purpose. . . . a discovery so huge...

  1. Process for producing ethanol from syngas

    DOE Patents [OSTI]

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  2. Evaluating models of cellulose degradation by Fibrobacter succinogenes S85

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burnet, Meagan C.; Dohnalkova, Alice C.; Neumann, Anthony P.; Lipton, Mary S.; Smith, Richard D.; Suen, Garret; Callister, Stephen J.

    2015-12-02

    Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve a combination of cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further elucidate the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding Type II and III secretion systems, fibro-slime proteins,more » and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular media, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. Furthermore, these results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.« less

  3. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  4. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  5. Neutron Reflectometry and QCM-D Study of the Interaction of Cellulase Enzymes with Films of Amorphous Cellulose

    SciTech Connect (OSTI)

    Halbert, Candice E; Ankner, John Francis; Kent, Michael S; Jaclyn, Murton K; Browning, Jim; Cheng, Gang; Liu, Zelin; Majewski, Jaroslaw; Supratim, Datta; Michael, Jablin; Bulent, Akgun; Alan, Esker; Simmons, Blake

    2011-01-01

    Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D) of the interaction of a commercial fungal enzyme extract (T. viride), two purified endoglucanses from thermophilic bacteria (Cel9A from A. acidocaldarius and Cel5A from T. maritima), and a mesophilic fungal endoglucanase (Cel45A from H. insolens) with amorphous cellulose films. The use of amorphous cellulose is motivated by the promise of ionic liquid pretreatment as a second generation technology that disrupts the native crystalline structure of cellulose. NR reveals the profile of water through the film at nm resolution, while QCM-D provides changes in mass and film stiffness. At 20 oC and 0.3 mg/ml, the T. viride cocktail rapidly digested the entire film, beginning from the surface followed by activity throughout the bulk of the film. For similar conditions, Cel9A and Cel5A were active for only a short period of time and only at the surface of the film, with Cel9A releasing 40 from the ~ 700 film and Cel5A resulting in only a slight roughening/swelling effect at the surface. Subsequent elevation of the temperature to the Topt in each case resulted in a very limited increase in activity, corresponding to the loss of an additional 60 from the film for Cel9A and 20 from the film for Cel5A, and very weak penetration into and digestion within the bulk of the film, before the activity again ceased. The results for Cel9A and Cel5A contrast sharply with results for Cel45A where very rapid and extensive penetration and digestion within the bulk of the film was observed at 20 C. We speculate that the large differences are due to the use of the thermophilic enzymes far below their optimal temperatures and also the presence of a cellulose binding module (CBM) on Cel45A while the thermophilic enzymes lack a CBM.

  6. Methods for enhancing the degradation of cellulosic material with chitin binding proteins

    DOE Patents [OSTI]

    Xu, Feng

    2015-03-31

    The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.

  7. Methods for enhancing the degradation of cellulosic material with chitin binding proteins

    DOE Patents [OSTI]

    Xu, Feng

    2015-08-25

    The present invention relates to methods for degrading or converting a cellulosic material and for producing substances from the cellulosic material.

  8. Ethanol as a fuel: design and construction of an ethanol production facility for a farm

    SciTech Connect (OSTI)

    Pelger, E.C. III

    1981-01-01

    This dissertation describes the production of ethanol from biomass. It includes descriptions of photosynthesis, feedstock preparation, fermentation, distillation and end use. Technical problems and limitations as well as social, political, and economic aspects of producing ethanol are addressed. The potential of small-scale ethanol production and specific case studies are reviewed. A low-cost efficient design for a single farm ethanol facility is included. (DMC)

  9. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  10. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOE Patents [OSTI]

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  11. US Ethanol Holdings | Open Energy Information

    Open Energy Info (EERE)

    Holdings Jump to: navigation, search Name: US Ethanol Holdings Place: New York, New York Zip: 10022 Product: Subsidiary of boutique investment bank and advisory firm, Geneva...

  12. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  13. Mixed waste paper to ethanol fuel

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  14. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  15. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  16. Low-Level Ethanol Fuel Blends

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

  17. Dissociative electron attachments to ethanol and acetaldehyde...

    Office of Scientific and Technical Information (OSTI)

    3sup - are recorded, indicating the low kinetic energies of Osup -OHsup - for ethanol while the low and high kinetic energy distributions of Osup - ions for acetaldehyde. ...

  18. Methods of use of cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  19. Methods of use of cellulose binding domain proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  20. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  1. Methods of detection using a cellulose binding domain fusion product

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose

    SciTech Connect (OSTI)

    Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

    2009-12-01

    This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

  3. Vehicle Technologies Office: Intermediate Ethanol Blends | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Intermediate Ethanol Blends Vehicle Technologies Office: Intermediate Ethanol Blends Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy Policy Act of 2005 and the Energy Security and Independence Act of 2007) requires the country use as much as 36 billion gallons of renewable fuels annually by 2022, most of which will be ethanol. However,

  4. Alternative Fuels Data Center: Ethanol Benefits and Considerations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Ethanol Benefits and Considerations on Digg Find More

  5. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  6. Ethanol production using engineered mutant E. coli

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  7. Lignocellulosic Biomass to Ethanol Process Design and Economics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current ... Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current ...

  8. Experiences from Ethanol Buses and Fuel Station Report - Nanyang...

    Open Energy Info (EERE)

    Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang AgencyCompany Organization: BioEthanol for...

  9. Henan Tianguan Fuel Ethanol Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianguan Fuel Ethanol Co Ltd Jump to: navigation, search Name: Henan Tianguan Fuel Ethanol Co Ltd Place: Nanyang, Henan Province, China Product: Project developer of a bioethanol...

  10. Utica Energy LLC formerly Algoma Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Utica Energy LLC formerly Algoma Ethanol Jump to: navigation, search Name: Utica Energy LLC (formerly Algoma Ethanol) Place: Oshkosh, Wisconsin Product: Utica Energy, founded by 5...

  11. Levelland Hockley County Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Levelland Hockley County Ethanol LLC Jump to: navigation, search Name: LevellandHockley County Ethanol LLC Place: Levelland, Texas Zip: 79336 Product: LevellandHockley County...

  12. Ethanol Oil Recovery Systems EORS | Open Energy Information

    Open Energy Info (EERE)

    Systems EORS Jump to: navigation, search Name: Ethanol Oil Recovery Systems (EORS) Place: Clayton, Georgia Product: Ethanol Oil Recovery Systems (EORS), a green technology...

  13. AE Biofuels Inc formerly American Ethanol Inc | Open Energy Informatio...

    Open Energy Info (EERE)

    AE Biofuels Inc formerly American Ethanol Inc Jump to: navigation, search Name: AE Biofuels Inc. (formerly American Ethanol Inc.) Place: Cupertino, California Zip: CA 95014...

  14. Central Minnesota Ethanol Cooperative CMEC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Cooperative CMEC Jump to: navigation, search Name: Central Minnesota Ethanol Cooperative (CMEC) Place: Minnesota Zip: 56345 Sector: Hydro Product: CMEC produces 200 proof...

  15. Experiences from Ethanol Buses and Fuel Station Report - La Spezia...

    Open Energy Info (EERE)

    Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report...

  16. Green Renewable Energy Ethanol and Nutrition Holding LLC | Open...

    Open Energy Info (EERE)

    Ethanol and Nutrition Holding LLC Jump to: navigation, search Name: Green Renewable Energy Ethanol and Nutrition-Holding, LLC Place: Palm, Pennsylvania Zip: 18070 Product: A local...

  17. Pacific Ethanol Inc formerly Accessity Corporation | Open Energy...

    Open Energy Info (EERE)

    Ethanol Inc formerly Accessity Corporation Jump to: navigation, search Name: Pacific Ethanol Inc (formerly Accessity Corporation) Place: Fresno, California Zip: 93711 Product:...

  18. Gateway Ethanol LLC formerly Wildcat Bio Energy LLC | Open Energy...

    Open Energy Info (EERE)

    Ethanol LLC formerly Wildcat Bio Energy LLC Jump to: navigation, search Name: Gateway Ethanol LLC (formerly Wildcat Bio-Energy LLC) Place: Pratt, Kansas Zip: 67124 Product:...

  19. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: ...

  20. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy ...

  1. Reaction Rates and Catalysts in Ethanol Production (1 Activity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reaction Rates and Catalysts in Ethanol Production (1 Activity) Reaction Rates and Catalysts in Ethanol Production (1 Activity) Below is information about the student activity...

  2. Detailed chemical kinetic model for ethanol oxidation (Technical...

    Office of Scientific and Technical Information (OSTI)

    Detailed chemical kinetic model for ethanol oxidation Citation Details In-Document Search Title: Detailed chemical kinetic model for ethanol oxidation You are accessing a ...

  3. Ethanol and the Environment - Energy Explained, Your Guide To...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Unlike gasoline, pure ethanol is nontoxic and biodegradable, and it quickly breaks down into harmless substances if spilled. Chemical denaturants are added to fuel ethanol (about ...

  4. Enabling High Efficiency Ethanol Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enabling High Efficiency Ethanol Engines Enabling High Efficiency Ethanol Engines 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  5. Biochemical Production of Ethanol from Corn Stover: 2007 State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model An update to ...

  6. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly increased public interest in ethanol use, ...

  7. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect (OSTI)

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  8. Novel Vertimass Catalyst for Conversion of Ethanol and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Vertimass Catalyst for Conversion of Ethanol and Other Alcohols into Fungible Gasoline, Jet, and Diesel Fuel Blend Stocks Novel Vertimass Catalyst for Conversion of Ethanol ...

  9. Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization Ethanol-to-Hydrocarbon Technology Moves Closer to Commercialization December 16, 2015 - 2:23pm Addthis Dr. ...

  10. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  11. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Effects of Intermediate Ethanol Blends on Legacy Vehicles and ...

  12. EffectsIntermediateEthanolBlends.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 Updated Feb 2009 Mid-Level Ethanol Blends Test ...

  13. Microbial fuel cell treatment of ethanol fermentation process...

    Office of Scientific and Technical Information (OSTI)

    Microbial fuel cell treatment of ethanol fermentation process water Title: Microbial fuel cell treatment of ethanol fermentation process water The present invention relates to a ...

  14. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis ...

  15. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress...

    Office of Scientific and Technical Information (OSTI)

    However, the molecular mechanisms of ethanol stress response have not been elucidated fully. In this study, ethanol stress responses were investigated using systems biology tools. ...

  16. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

  17. Dual-fueling turbocharged diesels with ethanol

    SciTech Connect (OSTI)

    Cruz, J.M.; Rotz, C.A.; Watson, D.H.

    1982-09-01

    Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

  18. Transgenic Plants Lower the Costs of Cellulosic Biofuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity requirements to achieve comparable levels of conversion. Expression of a single gene derived from bacteria in plants has resulted in transgenic plants that are easier and cheaper to convert into biofuels. Part of the high production cost of cellulosic biofuels is the relatively poor accessibility of substrates to enzymes due to the strong associations between plant cell wall components. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National Renewable Energy Laboratory (NREL) have created transgenic maize expressing an active glycosyl hydrolase enzyme, E1 endoglucanase, originally isolated from a thermophilic bacterium, Acidothermus cellulolyticus. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced severity pretreatments and post-pretreatment enzymatic hydrolysis. This reduction in recalcitrance was manifested through lower severity requirements to achieve comparable levels of conversion of wild-type biomass. The improvements observed are significant enough to positively affect the economics of the conversion process through decreased capital construction costs and decreased degradation products and inhibitor formation.

  19. Running Line-Haul Trucks on Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our

  20. Environmental analysis of biomass-ethanol facilities

    SciTech Connect (OSTI)

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  1. Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Safety Testing Underwriters Laboratories Ethanol Dispenser Safety Testing to someone by E-mail Share Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Facebook Tweet about Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Twitter Bookmark Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Google Bookmark Alternative Fuels Data Center: Underwriters Laboratories

  2. Ethanol Production, Distribution, and Use: Discussions on Key Issues (Presentation)

    SciTech Connect (OSTI)

    Harrow, G.

    2008-05-14

    From production to the environment, presentation discusses issues surrounding ethanol as a transportation fuel.

  3. Ethanol Pathways in the 2050 North American Transportation Futures Study

    SciTech Connect (OSTI)

    2009-01-18

    A paper discussing the various ethanol pathways in the 2050 North American Transportation Futures Study

  4. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics Citation Details In-Document Search This content will become publicly available on April 21, 2017 Title: Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics Authors: Trendewicz, Anna ; Evans, Robert ; Dutta, Abhijit ; Sykes, Robert ; Carpenter, Daniel ; Braun, Robert Publication Date: 2015-03-01 OSTI Identifier: 1250597 Grant/Contract

  5. Identification and Characterization of Non-Cellulose-Producing Mutants of

    Office of Scientific and Technical Information (OSTI)

    Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis (Journal Article) | SciTech Connect Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis Citation Details In-Document Search Title: Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis Authors: Deng, Ying ; Nagachar, Nivedita ; Xiao, Chaowen ; Tien,

  6. BETO Project Improves Production of Renewable Chemical from Cellulosic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedstocks | Department of Energy Project Improves Production of Renewable Chemical from Cellulosic Feedstocks BETO Project Improves Production of Renewable Chemical from Cellulosic Feedstocks October 13, 2015 - 1:43pm Addthis Renewable chemical company Genomatica made significant progress toward increasing the range of feedstocks that can be used to commercially produce high-quality bio-based chemicals, in a project funded by the Energy Department's Bioenergy Technologies Office (BETO).

  7. The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA

    Office of Scientific and Technical Information (OSTI)

    Trimers in an Equimolar Stoichiometry (Journal Article) | SciTech Connect Journal Article: The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry Citation Details In-Document Search Title: The Arabidopsis Cellulose Synthase Complex: A Proposed Hexamer of CESA Trimers in an Equimolar Stoichiometry In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This

  8. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Politics | Department of Energy and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO PDF icon b13_erickson_day2-apintro.pdf More Documents & Publications Biomass 2013 Agenda Biomass 2012 Agenda U.S. Biofuels Industry: Mind the Gap

  9. Fuel from farms: A guide to small-scale ethanol production: Second edition

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    This guide presents the current status of on-farm fermentation ethanol production as well as an overview of some of the technical and economic factors. Tools such as decision and planning worksheets and a sample business plan for use in exploring whether or not to go into ethanol production are given. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Recommendation of any particular process is deliberately avoided because the choice must be tailored to the needs and resources of each individual producer. The emphasis is on providing the facts necessary to make informed judgments. 98 refs., 14 figs., 9 tabs.

  10. Fuel from farms: a guide to small-scale ethanol production

    SciTech Connect (OSTI)

    1980-02-01

    A guide on fermentation processes with emphasis on small-scale production of ethanol using farm crops as a source of raw material is published. The current status of on-farm ethanol production as well as an overview of some of the technical and economic factors is presented. Decision and planning worksheets and a sample business plan for use in decision making are included. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Diagrams of fermentors and distilling apparatus are included. (DC)

  11. Sterling Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol LLC Place: Colorado Product: Owned by local investors including farmers, ranchers and business people that primarily reside in north-west Colorado, and set up to build and...

  12. Algenol Announces Commercial Algal Ethanol Fuel Partnership

    Broader source: Energy.gov [DOE]

    U.S. Department of Energys Bioenergy Technologies Office (BETO) partner Algenol signed an agreement with Protec Fuel to market and distribute commercial ethanol produced from algae for fleets and...

  13. QER- Comment of ND Ethanol Council

    Broader source: Energy.gov [DOE]

    To whom it may concern, Attached please find comments from the North Dakota Ethanol Council regarding infrastructure constraints in preparation for the OER Public Meeting, which will be held in Bismarck, N.D., on August 8. Sincerely, Deana Wies

  14. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  15. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  16. Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for

  17. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect (OSTI)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol beers in 6 to 12 hours using either a consecutive batch or continuous cascade implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The consecutive batch technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  18. Role of water activity in ethanol fermentations

    SciTech Connect (OSTI)

    Jones, R.P.; Greenfield, P.F.

    1986-01-01

    A separate role for water activity in the conversion of sugars to ethanol by two strains of yeast is identified. During fermentation of both single and mixed sugar substrates, the water activity was shown to remain constant during the logarithmic growth phase. This is despite the changes in concentration of substrates and production, the constancy reflecting the fact that the greater influence of ethanol on the solution activity is counterbalanced, in the early stages of the fermentation, by its low yield. The end of the log phase of growth coincides with the start of a period of gradually decreasing water activity. For the more ethanol-tolerant strain UQM66Y, growth was found to cease at a constant value of water activity while that for the less tolerant strain UQM70Y depended on both ethanol concentration and water activity. It is argued that water activity is a more appropriate variable than ethanol concentration for describing some of the nonspecific inhibitory effects apparent in ethanol fermentations. A straightforward method for the calculation of water activity during such fermentations based on the use of solution osmolarity is presented.

  19. Conversion of cellulosic wastes to liquid fuels

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  20. Comparison of Cellulose Ib Simulations with Three Carbohydrate Force Fields

    SciTech Connect (OSTI)

    Matthews, J. F.; Beckham, G. T.; Bergenstrahle, M.; Brady, J. W.; Himmel, M. E.; Crowley, M. F.

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose I{beta} microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose I{beta} crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  1. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slide 1 The Current State of Technology for Cellulosic Ethanol

  2. Lignin-Derived Carbon Fiber as a Co-Product of Refining Cellulosic Biomass

    SciTech Connect (OSTI)

    Langholtz, Matthew H.; Downing, Mark; Graham, Robin Lambert; Baker, Fred S.; Compere, Alicia L.; William L. Griffith; Boeman, Raymond G.; Keller, Martin

    2014-01-15

    Lignin by-products from biorefineries has the potential to provide a low-cost alternative to petroleum-based precursors to manufacture carbon fiber, which can be combined with a binding matrix to produce a structural material with much greater specific strength and specific stiffness than conventional materials such as steel and aluminum. The market for carbon fiber is universally projected to grow exponentially to fill the needs of clean energy technologies such as wind turbines and to improve the fuel economies in vehicles through lightweighting. In addition to cellulosic biofuel production, lignin-based carbon fiber production coupled with biorefineries may provide $2,400 to $3,600 added value dry Mg-1 of biomass for vehicle applications. Compared to producing ethanol alone, the addition of lignin-derived carbon fiber could increase biorefinery gross revenue by 30% to 300%. Using lignin-derived carbon fiber in 15 million vehicles per year in the US could reduce fossil fuel consumption by 2-5 billion liters year-1, reduce CO2 emissions by about 6.7 million Mg year-1, and realize fuel savings through vehicle lightweighting of $700 to $1,600 per Mg biomass processed. The value of fuel savings from vehicle lightweighting becomes economical at carbon fiber price of $6.60 kg-1 under current fuel prices, or $13.20 kg-1 under fuel prices of about $1.16 l-1.

  3. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOE Patents [OSTI]

    Oulman, C.S.; Chriswell, C.D.

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

  4. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOE Patents [OSTI]

    Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

  5. Introduction to 'Make'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Make' Introduction to 'Make' Introduction The UNIX make utility facilitates the creation and maintenance of executable programs from source code. make keeps track of the commands...

  6. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect (OSTI)

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  7. Department of Energy Offers Abengoa Bioenergy a Conditional Commitment for a $133.9 Million Loan Guarantee

    Broader source: Energy.gov [DOE]

    Groundbreaking Cellulosic Ethanol Project Expected to Create Over 300 Jobs and Build Nation’s Capacity for Cellulosic Ethanol Production

  8. Comparative Study of Corn Stover Pretreated by Dilute Acid and Cellulose Solvent-Based Lignocellulose Fractionation: Enzymatic Hydrolysis, Supramolecular Structure, and Substrate Accessibility

    SciTech Connect (OSTI)

    Zhu, Z.; Sathitsuksanoh, N.; Vinzant, T.; Schell, D. J.; McMillian, J. D.; Zhang, Y. H. P.

    2009-07-01

    Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only {approx}60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m{sup 2}/g, nearly twice that of the DA-pretreated biomass (5.89 m{sup 2}/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

  9. An Indirect Route for Ethanol Production

    SciTech Connect (OSTI)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  10. Enzymatic degradation of plutonium-contaminated cellulose products

    SciTech Connect (OSTI)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M.; Barnes, D.L.; Worl, L.A.

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  11. Production of ethanol from lignocellulosic materials using thermophilic bacteria

    SciTech Connect (OSTI)

    Lynd, L.R.

    1987-01-01

    The production of ethanol from lignocellulosic materials, e.g. wood, agricultural residues, and municipal solid wastes, is considered. The conversion of these materials to ethanol in the US could annually yield approximately 430 million tons ethanol, or about 9.8 quads, within the next 20 years. Thermophilic bacteria have advantages over yeasts for ethanol production because various species produce an active cellulase enzyme and utilize pentose sugars. However thermophiles have lower ethanol tolerance and usually lower ethanol yields. The potential of thermophilic ethanol production from hardwood chips is examined in detail. It is concluded that if high ethanol yield can be achieved this process could have economics competitive with either ethanol production from corn via yeast or synthetic production from ethylene. Low ethanol tolerance is not a major problem provided concentrations {ge} 1.5% are produced, ethanol is continuously removed from the fermentor, and IHOSR/extractive distillation is employed. Research was undertaken aimed at closing the gap between the attractive potential of thermophiles for ethanol production, and that which is possible based on present knowledge, which is not practical. Major topics were the activity of Clostridium thermocellum cellulase on pretreated mixed hardwood and Avicel in vivo, continuous culture of C. thermocellum on pretreated mixed hardwood and Avicel, and the continuous culture of Clostridium thermosaccharolyticum at high xylose concentrations in the presence and absence of ethanol removal.

  12. Ethanol from biomass: A status report

    SciTech Connect (OSTI)

    Walker, R.

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  13. Engineered microbes and methods for microbial oil overproduction from cellulosic materials

    DOE Patents [OSTI]

    Stephanopoulos, Gregory; Tai, Mitchell

    2015-08-04

    The invention relates to engineering microbial cells for utilization of cellulosic materials as a carbon source, including xylose.

  14. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  15. Less is more: Novel cellulose structure requires fewer enzymes to process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass to fuel Cellulose requires fewer enzymes to process biomass to fuel Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production. June 19, 2013 An enzyme (shown in blue) pulls out individual cellulose chains (pink) from the pretreated nanofiber surface (green) and then breaks them apart into simple sugars. Image credit, Shishir Chundawat, Great Lakes

  16. Thermostable cellulases, and mutants thereof, capable of hydrolyzing cellulose in ionic liquid

    DOE Patents [OSTI]

    Sapra, Rajat; Datta, Supratim; Chen, Zhiwei; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2016-04-26

    The present invention provides for a composition comprising an ionic liquid and a thermostable cellulose, and a method of hydrolyzing a cellulose, comprising: (a) providing a composition comprising a solution comprising an ionic liquid and a cellulose, and (b) introducing a thermostable cellulase to the solution, such that the cellulose is hydrolyzed by the cellulase. The present invention also provides for a Thermatoga maritima thermostable cellulase mutant with increased cellulase activity.

  17. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  18. Method and system for ethanol production

    DOE Patents [OSTI]

    Feder, H.M.; Chen, M.J.

    1980-05-21

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by-product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  19. Method and system for ethanol production

    DOE Patents [OSTI]

    Feder, H.M.; Chen, M.J.

    1981-09-24

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium, ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

  20. Method and system for ethanol production

    DOE Patents [OSTI]

    Feder, Harold M.; Chen, Michael J.

    1981-01-01

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

  1. Method and system for ethanol production

    DOE Patents [OSTI]

    Feder, Harold M.; Chen, Michael J.

    1983-01-01

    A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

  2. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  3. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-04

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  4. Chippewa Valley Ethanol Company CVEC | Open Energy Information

    Open Energy Info (EERE)

    CVEC Jump to: navigation, search Name: Chippewa Valley Ethanol Company (CVEC) Place: NW Benson, Minnesota Zip: 56215 Product: Owns 57.0m litres a year dry mill ethanol plant....

  5. Evolved strains of Scheffersomyces stipitis achieving high ethanol...

    Office of Scientific and Technical Information (OSTI)

    useful for the production of fuel-grade ethanol via the processing steps of ... ability to accumulate >40 gL ethanol in <167 h when fermenting hydrolyzate at low ...

  6. Simple, Ethanol-Driven Synthesis of Core-Shell Nanoparticles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Simple, Ethanol-Driven Synthesis of Core-Shell ... This "green" synthesis method uses ethanol - a simple solvent for metal precursors "as the ...

  7. Ask a scientist: Ethanol & car performance | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ask a scientist: Ethanol & car performance September 13, 2013 Tweet EmailPrint Does ethanol extend or decrease your gas mileage? -Tommy Holly, via Facebook JEHLIK: In a one-to-one ...

  8. State-level workshops on ethanol for transportaton

    SciTech Connect (OSTI)

    Graf, Angela

    2004-01-01

    The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources.

  9. Alternative Fuels Data Center: Status Update: Ethanol Blender Pump

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dispenser Certified (August 2010) Ethanol Blender Pump Dispenser Certified (August 2010) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Twitter Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Google Bookmark Alternative

  10. Mid-Level Ethanol Blends | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mid-Level Ethanol Blends Mid-Level Ethanol Blends 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ft_05_knoll.pdf More Documents & Publications Mid-Level Ethanol Blends Test Program Biofuels Quality Surveys Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009

  11. Ethanol Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. ethanol vehicle and infrastructure projects.

  12. Renewable Fuels Association’s National Ethanol Conference

    Broader source: Energy.gov [DOE]

    Mark Elless, a BETO technology manager, will be representing BETO at the 20th anniversary of the National Ethanol Conference.

  13. Improving Ethanol-Gasoline Blends by Addition of Higher Alcohols |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Mixtures of ethanol, gasoline, and higher alcohols were evaluated to determine if they offer superior performance to ethanol/gasoline blends in meeting the Renewal Fuels Standard II. PDF icon deer12_ickes.pdf More Documents & Publications Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Impact of ethanol and butanol as oxygenates on SIDI engine efficiency and emissions using steady-state and transient test procedures Drop In Fuels: Where the Road Leads

  14. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthesis of Lignocellulosic Biomass | Department of Energy Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012. PDF icon Thermochemical Ethanol via

  15. Clean Cities: Ethanol Basics, Fact Sheet, October 2008

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    Document answers frequently asked questions about ethanol as a transportation fuel, including those on production, environmental effects, and vehicles.

  16. Autothermal Partial Oxidation of Ethanol and Alcohols - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Autothermal Partial Oxidation of Ethanol and Alcohols Syngas from Autothermal Reforming of Ethanol DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology Technology Marketing Summary Autothermal Reforming of Ethanol and Alcohols into Syngas Ethanol and alcohols can be converted into syngas using a robust autothermal reforming process. Syngas is a mixture of carbon

  17. Ethanol production in Gram-positive microbes

    DOE Patents [OSTI]

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  18. Ethanol production in gram-positive microbes

    DOE Patents [OSTI]

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  19. Ethanol production in Gram-positive microbes

    DOE Patents [OSTI]

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  20. Ethanol production in Gram-positive microbes

    DOE Patents [OSTI]

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  1. Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?

    SciTech Connect (OSTI)

    Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

    2009-01-01

    It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

  2. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOE Patents [OSTI]

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  3. NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2012-01-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  4. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect (OSTI)

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

  5. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  6. Assessment of the Electrohol process to manufacture acetaldehyde from ethanol electrogeneratively. Final report

    SciTech Connect (OSTI)

    Trevino, A.A.

    1985-04-10

    Preliminary process economics data for the electrogenerative process to manufacture acetaldehyde from ethanol were generated based on patent information. The technology was assessed in four alternative processing options. The Electrohol process is viable in the US only if integrated to the production of 190 pf ethanol from corn in a large scale unit. To be competitive, the Electrohol process must show yields in excess of 93%. Its attractiveness depends on corn prices remaining under $2.90/bu and DDG selling for more than $132/T. A corn price of $2.00/bu is needed to make a farm-size corn-based processing alternative competitive. A plant based on the fermentation of molasses proved too expensive under the US economic assumptions. The Electrohol technology based on purchased ethanol cannot compete with the existing ethylene-based process under current conditions. To become attractive, the Electrohol process must have access to cheap ethanol ($1.43/gal). The zero electricity generation mode is the most attractive mode of operation for the Electrohol technology in the US. The penalty for low levels of generation (0.130 kwh/kg AcH) is, however, negligible. The optimum operating mode in W. Europe is the generation of 0.312 kwh/kg AcH. In Japan, the low generation level is perferred (0.130 kwh/kg AcH). In general, higher energy prices improve the competitiveness of the Electrohol processing alternatives.

  7. Simulating Cellulose Structure, Properties, Thermodynamics, Synthesis, and Deconstruction with Atomistic and Coarse-Grain Models

    SciTech Connect (OSTI)

    Crowley, M. F.; Matthews, J.; Beckham, G.; Bomble, Y.; Hynninen, A. P.; Ciesielski, P. F.

    2012-01-01

    Cellulose is still a mysterious polymer in many ways: structure of microfibrils, thermodynamics of synthesis and degradation, and interactions with other plant cell wall components. Our aim is to uncover the details and mechanisms of cellulose digestion and synthesis. We report the details of the structure of cellulose 1-beta under several temperature conditions and report here the results of these studies and connections to experimental measurements and the measurement in-silico the free energy of decrystallization of several morphologies of cellulose. In spatially large modeling, we show the most recent work of mapping atomistic and coarse-grain models into tomographic images of cellulose and extreme coarse-grain modeling of interactions of large cellulase complexes with microfibrils. We discuss the difficulties of modeling cellulose and suggest future work both experimental and theoretical to increase our understanding of cellulose and our ability to use it as a raw material for fuels and materials.

  8. Ethanol extraction of phytosterols from corn fiber

    DOE Patents [OSTI]

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  9. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect (OSTI)

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  10. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect (OSTI)

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.

  11. Process for converting cellulosic materials into fuels and chemicals

    DOE Patents [OSTI]

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  12. NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL, Chevron Establish Research Alliance to Advance Cellulosic Biofuels Collaboration to focus on next-generation production technologies for renewable fuels October 4, 2006 Chevron Corporation (NYSE: CVX) and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), headquartered in Golden, Colo., today announced a strategic research alliance to advance the development of renewable transportation fuels. Chevron Technology Ventures LLC (CTV), a

  13. Development of Cellulosic Biofuels (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Somerville, Chris [Director, Energy Biosciences Institute

    2011-04-28

    Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.

  14. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report

    SciTech Connect (OSTI)

    Peck, H.D. Jr.; Ljungdahl, L.G.; Mortenson, L.E.; Wiegel, J.K.W.

    1994-11-01

    This project studies the biochemistry and physiology of four major groups (primary, secondary, ancillary and methane bacteria) of anaerobic bacteria, that are involved in the conversion of cellulose to methane or chemical feedstocks. The primary bacterium, Clostridium thermocellum, has a cellulolytic enzyme system capable of hydrolyzing crystalline cellulose and consists of polypeptide complexes attached to the substrate cellulose with the aid of a low molecular yellow affinity substance (YAS) produced by the bacterium in the presence of cellulose. Properties of the complexes and YAS are studied. Aspects of metabolism are being studied which appear to be relevant for the interactions on consortia and their bioenergetics, particularly related to hydrogen, formate, CO, and CO{sub 2}. The roles of metals in the activation of H{sub 2} are being investigated, and genes for the hydrogenases cloned and sequenced to established structural relationships among the hydrogenases. The goals are to understand the roles and regulation of hydrogenases in interspecies H{sub 2} transfer, H{sub 2} cycling and the generation of a proton gradient. The structures of the metal clusters and their role in the metabolism of formate will be investigated with the goal of understanding the function of formate in the total synthesis of acetate from CO{sub 2} and its role in the bioenergetics of these microorganisms. Additionally, the enzyme studies will be performed using thermophiles and also the isolation of some new pertinent species. The project will also include research on the mechanism of extreme thermophily (growth over 70{degrees}) in bacteria that grow over a temperature span of 40{degrees}C or more. These bacteria exhibit a biphasic growth response to temperature and preliminary evidence suggests that the phenomenon is due to the expression of a new set of enzymes. These initial observations will be extended employing techniques of molecular biology.

  15. Development of effective modified cellulase for cellulose hydrolysis process

    SciTech Connect (OSTI)

    Park, J.W.; Kajiuchi, Toshio . Dept. of Chemical Engineering)

    1995-02-20

    Cellulase was modified with amphilic copolymers made of [alpha]-allyl-[omega]-methoxy polyoxyalkylene (POA) and maleic acid anhydride (MAA) to improve the cellulose hydrolytic reactivity and cellulase separation. Amino groups of the cellulase molecule are covalently coupled with the MAA functional groups of the copolymer. At the maximum degree of modification (DM) of 55%, the modified cellulase activity retained more than 80% of the unmodified native cellulase activity. The modified cellulase shows greater stability against temperature, pH, and organic solvents, and demonstrated greater conversion of substrate than native cellulase does. Cellulase modification is also useful for controlling strong adsorption of cellulase onto substrate. Moreover, cellulase modified with the amphiphilic copolymer displays different separation characteristics which are new. One is a reactive two-phase partition and another is solubility in organic solvents. It appears that these characteristics of modified cellulase work very effectively in the hydrolysis of cellulose as a total system, which constitutes the purification of cellulase from culture broth, hydrolysis of cellulose, and recovery of cellulase from the reaction mixture.

  16. Introduction to 'Make'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Make' Introduction to 'Make' Introduction The UNIX make utility facilitates the creation and maintenance of executable programs from source code. make keeps track of the commands needed to build the code and when changes are made to a source file, recompiles only the necessary files. make creates and updates programs with a minimum of effort. A small initial investment of time is needed to set up make for a given software project, but afterward, recompiling and linking is done consistently and

  17. Pathway engineering to improve ethanol production by thermophilic bacteria

    SciTech Connect (OSTI)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  18. Alternative Fuels Data Center: Status Update: Clarification of Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Certification Limits for Legacy Equipment (December 2008) Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Twitter Bookmark Alternative Fuels Data

  19. Lipid-enhanced ethanol production from xylose by Pachysolen tannophilus

    SciTech Connect (OSTI)

    Dekker, R.F.H.

    1986-04-01

    A number of different yeasts are now recognized as being capable of fermenting the pentose sugar, D-xylose, into ethanol. The most prominent among these are Pachysolen tannophilus and several Candida species. D-Xylose is found principally in lignocellulosic materials where it occurs as the main constitutent of the hemicellulosic xylans (1,4-..beta..-D-heteroxylans). With the exception of Candida XF-217, the conversion yields of xylose into ethanol for most yeasts were generally low (less than 70% of theoretical when grown on at least 50 g/l xylose). The low ethanol yields are attributable to a number of factors: 1) fermentation was not performed under conditions that maximize ethanol formation; 2) ethanol was not the major fermentation end-product, (e.g., acetic acid xylitol, and arabinitol are also known products, 3) ethanol toxicity; 4) ethanol is assimilated when the substrate becomes limiting; 4.8 and 5) osmotic sensitivity to high substrate levels, i.e. substrate inhibition. Attempts to increase ethanol yields of yeasts by adding exogenous lipids (e.g., oleic and linoleic acids, or ergosterol or its ester, lipid mixtures, or protein-lipid mixtures) to nutrient medium have succeeded in improving ethanol yields and also in reducing fermentation times. These lipids, when added to the nutrient medium, were incorporated into the yeast's cellular membrane. The protective action of these lipids was to alleviate the inhibitory effect of ethanol which then allowed the cells to tolerate higher ethanol levels. This communication reports on improved ethanol yields arising from the fermentation of xylose by a Pachysolen tannophilus strain when grown semi-aerobically in the presence of exogenous-added lipids. 17 references.

  20. Lipid-enhanced ethanol production from xylose by Pachysolen tannophilus

    SciTech Connect (OSTI)

    Dekker, R.F.H.

    1986-01-01

    This paper reports improved ethanol yields following the fermentation of xylose by a Pachysolen tannophilus strain when grown semi-aerobically in the presence of exogenous-added lipids. Profiles for ethanol production from 45 g/L xylose when grown on a medium containing ergosterol, linoleic acid, Tween-80, a mixture of the three lipids and no lipids (control) are presented. The enhancement in the amount of ethanol produced was most pronounced after 72 h fermentation.

  1. Dissociative electron attachments to ethanol and acetaldehyde: A combined

    Office of Scientific and Technical Information (OSTI)

    experimental and simulation study (Journal Article) | SciTech Connect Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study Citation Details In-Document Search Title: Dissociative electron attachments to ethanol and acetaldehyde: A combined experimental and simulation study Dissociation dynamics of the temporary negative ions of ethanol and acetaldehyde formed by the low-energy electron attachments is investigated by using the anion

  2. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect (OSTI)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  3. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reachingmore » its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  4. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect (OSTI)

    Tsao, G.T.

    1992-12-31

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  5. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect (OSTI)

    Tsao, G.T.

    1992-01-01

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  6. More Efficient Ethanol Production from Mixed Sugars Using Spathaspora...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Efficient Ethanol Production from Mixed Sugars Using Spathaspora Yeast Great Lakes ... Cofermentation of mixed sugars Better rate and yield compared to other yeasts Efficient ...

  7. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    This is the fifth release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA ... Detailed nameplate and maximum sustainable capacities of fuel ...

  8. Effects of Intermediate Ethanol Blends on Legacy Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    117 Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 - Updated February 2009 Prepared by Keith Knoll Brian West Wendy Clark...

  9. Fact Sheet: Effects of Intermediate Ethanol Blends | Department...

    Broader source: Energy.gov (indexed) [DOE]

    initiated a test program to assess the potential impacts of higher intermediate ethanol blends on conventional vehicles and other engines that rely on gasoline. The test program ...

  10. Issues and Methods for Estimating the Percentage Share of Ethanol...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Information Administration 1 Issues and Methods for Estimating the Share of Ethanol in the Motor Gasoline Supply U.S. Energy Information Administration October 6, 2011...

  11. Ethanol Usage in Urban Public Transportation - Presentation of...

    Open Energy Info (EERE)

    - Presentation of Results Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ethanol Usage in Urban Public Transportation - Presentation of Results AgencyCompany...

  12. Ethanol Extraction Technologies Inc EETI | Open Energy Information

    Open Energy Info (EERE)

    Extraction Technologies Inc EETI Jump to: navigation, search Name: Ethanol Extraction Technologies Inc (EETI) Place: New York, New York Zip: 10036-2601 Product: New York-based...

  13. International Ethanol Trade Association IETHA | Open Energy Informatio...

    Open Energy Info (EERE)

    Trade Association IETHA Jump to: navigation, search Name: International Ethanol Trade Association (IETHA) Place: Sao Paulo, Sao Paulo, Brazil Product: Association of 48 globally...

  14. Pacific Ethanol Inc the former | Open Energy Information

    Open Energy Info (EERE)

    Inc the former Jump to: navigation, search Name: Pacific Ethanol Inc (the former) Place: Fresno, California Zip: 93711 Product: California-based developer of bioethanol plants....

  15. Integrated Biorefinery for conversion of Biomass to Ethanol,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - St. Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New Mexico, Illinois, Indiana, Spain, France, Netherlands and Brazil 2 Goal Statement ...

  16. Preliminary evaluation of alternative ethanol/water separation processes

    SciTech Connect (OSTI)

    Eakin, D.E.; Donovan, J.M.; Cysewski, G.R.; Petty, S.E.; Maxham, J.V.

    1981-05-01

    Preliminary evaluation indicates that separation of ethanol and water can be accomplished with less energy than is now needed in conventional distillation processes. The state of development for these methods varies from laboratory investigation to commercially available processes. The processes investigated were categorized by type of separation depending on their ability to achieve varying degrees of ethanol/water separation. The following methods were investigated: ethanol extraction with CO/sub 2/ (the A.D. Little process); solvent extraction of ethanol; vacuum distillation; vapor recompression distillation; dehydration with fermentable grains; low temperature blending with gasoline; molecular sieve adsorption; and reverse osmosis.

  17. Lignocellulosic Biomass to Ethanol Process Design and Economics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover Lignocellulosic Biomass to Ethanol Process Design and ...

  18. Wet Gasification of Ethanol Residue: A Preliminary Assessment

    SciTech Connect (OSTI)

    Brown, Michael D.; Elliott, Douglas C.

    2008-09-22

    A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

  19. Report to Congress: Dedicated Ethanol Pipeline Feasability Study...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independence and Security Act of 2007 (EISA). Section 243 directs DOE to study the feasibility of constructing and using pipelines dedicated to the transportation of ethanol. ...

  20. Emissions from ethanol- and LPG-fueled vehicles

    SciTech Connect (OSTI)

    Pitstick, M.E.

    1995-06-01

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.