National Library of Energy BETA

Sample records for making basic oxygen

  1. Petrochemical feedstock from basic oxygen steel furnace

    SciTech Connect (OSTI)

    Greenwood, C.W.; Hardwick, W.E.

    1983-10-01

    Iron bath gasification in which coal, lime, steam and oxygen are injected into a bath of molten iron for the production of a medium-Btu gas is described. The process has its origin in basic oxygen steelmaking. It operates at high temperatures and is thus not restrictive on the type of coal used. The ash is retained in the slag. The process is also very efficient. The authors suggest that in the present economic climate in the iron and steel industry, such a plant could be sited where existing coal-handling, oxygen and steelmaking equipment are available.

  2. Method for making oxygen-reducing catalyst layers

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; O'Neill, David G.

    2010-06-22

    Methods are provided for making oxygen-reducing catalyst layers, which include simultaneous or sequential stops of physical vapor depositing an oxygen-reducing catalytic material onto a substrate, the catalytic material comprising a transition metal that is substantially free of platinum; and thermally treating the catalytic material. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  3. Improving the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs, and Side Vents

    Broader source: Energy.gov [DOE]

    This factsheet describes the benefits of a high-performance aluminum bronze alloy to basic oxygen furnace and electric arc furnace components such as hoods, roofs, and side vents.

  4. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basics Basics ATLAS users belong to the "atlas" NERSC repository, and the Principal Investigator (PI) for ATLAS computing at NERSC is Ian Hinchliffe. ALICE users work in the sl53 chos environment. See the Chos page for more information. For more information about ATLAS computing at PDSF see the ATLAS twiki webpages which are maintained by ATLAS users. Last edited: 2016-04-29 11:34:26

  5. Real-time optical diagnostics for the basic oxygen steelmaking process

    SciTech Connect (OSTI)

    Ottesen, D.K.; Hurt, R.H.; Hardesty, D.R.

    1993-02-01

    This article deals with the development of real-time optical diagnostic techniques for process control in basic oxygen steelmaking. Results are presented of pilot-scale feasibility experiments conducted in the two-ton basic oxygen furnace (BOF) at Bethlehem Steel Corporation`s Homer Research Laboratories. Two line-of-sight optical techniques are being evaluated for determining the concentration and temperature of infrared-active gases in the BOF off-gas. The primary objective is to relate the concentration of these gas-phase species to the carbon content of the molten metal, and thereby provide a real-time indication of the process endpoint. Three cw lasers were used to measure the extent of beam attenuation at three different wavelengths in the particle-laden off-gas. The primary attenuation mechanism appears to be scattering by a dense, sub-micron diameter FeO fume. Initial infrared emission experiments with a Fourier transform infrared spectrometer at 1-cm{sup {minus}1} spectral resolution show partially resolved lines in the P-branch of the fundamental CO ground state and first hot-band transitions; CO{sub 2} bandheads are also clearly observed at 2384 and 2397 cm{sup {minus}1}. A second set of experiments was conducted to test the feasibility of oxygen-lance based fiber-optic imaging/pyrometric sensors for measurements of melt temperature and reaction zone properties. During bottom injection of nitrogen, clearly defined images of the melt/slag surface were obtained using both visible and near-infrared video systems. During oxygen blowing, optical emission from the hot spot was observed to fluctuate widely, with characteristic frequencies in the range of 3--10 Hz. Near the end of the process, the emission is characterized by periodic intensity bursts, interpreted as individual ignition events of duration 10--50 msec. Hot spot temperatures were calculated from the emission at 800 and 950 nm wavelengths using a grey-body assumption.

  6. Method for making photovoltaic devices using oxygenated semiconductor thin film layers

    SciTech Connect (OSTI)

    Johnson, James Neil; Albin, David Scott; Feldman-Peabody, Scott; Pavol, Mark Jeffrey; Gossman, Robert Dwayne

    2014-12-16

    A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.

  7. Aluminum Bronze Alloys to Improve the System Life of Basic Oxygen and Electric Arc Furnace Hoods, Roofs and Side Vents.

    SciTech Connect (OSTI)

    Lawrence C. Boyd Jr.; Dr. Vinod K. Sikka

    2006-12-29

    Energy Industries of Ohio was the lead organization for a consortium that examined the current situation involving the service life of electric arc and basic oxygen furnace hoods, roofs and side vents. Republic Engineered Products (REP), one of the project partners, installed a full-scale Al-Bronze “skirt” in their BOF at their Lorain OH facility, believed to be the first such installation of this alloy in this service. In 24 months of operation, the Al-Bronze skirt has processed a total of 4,563 heats, requiring only 2 shutdowns for maintenance, both related to physical damage to the skirt from operational mishaps. Yearly energy savings related to the REP facility are projected to be ~ 10 billion Btu's with significant additional environmental and productivity benefits. In recognition of the excellent results, this project was selected as the winner of the Ohio’s 2006 Governor’s Award for Excellence in Energy, the state’s award for outstanding achievements in energy efficiency.

  8. Oxygen-resistant hydrogenases and methods for designing and making same

    DOE Patents [OSTI]

    King, Paul; Ghirardi, Maria L; Seibert, Michael

    2009-03-10

    The invention provides oxygen- resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.

  9. Oxygen-resistant hydrogenases and methods for designing and making same

    DOE Patents [OSTI]

    King, Paul; Ghirardi, Maria Lucia; Seibert, Michael

    2014-03-04

    The invention provides oxygen-resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H.sub.2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.

  10. Bringing Order to Defects - Making Way for Oxygen to Move | U...

    Office of Science (SC) Website

    Biological and Environmental Research U.S. Department of Energy SC-23Germantown Building ... metal oxide crystal made of strontium (green), chromium (blue), oxygen (red) atoms; the ...

  11. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  12. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  13. NREL: Learning - Hydrogen Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen...

  14. Science as Knowledge, Practice, and Map Making: The Challenge of Defining Metrics for Evaluating and Improving DOE-Funded Basic Experimental Science

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1993-03-01

    Industrial R&D laboratories have been surprisingly successful in developing performance objectives and metrics that convincingly show that planning, management, and improvement techniques can be value-added to the actual output of R&D organizations. In this paper, I will discuss the more difficult case of developing analogous constructs for DOE-funded non-nuclear, non-weapons basic research, or as I will refer to it - basic experimental science. Unlike most industrial R&D or the bulk of applied science performed at the National Renewable Energy Laboratory (NREL), the purpose of basic experimental science is producing new knowledge (usually published in professional journals) that has no immediate application to the first link (the R) of a planned R&D chain. Consequently, performance objectives and metrics are far more difficult to define. My claim is that if one can successfully define metrics for evaluating and improving DOE-funded basic experimental science (which is the most difficult case), then defining such constructs for DOE-funded applied science should be much less problematic. With the publication of the DOE Standard - Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92) and the development of a conceptual framework for integrating all the DOE orders, we need to move aggressively toward the threefold next phase: (1) focusing the management elements found in DOE-ER-STD-6001-92 on the main output of national laboratories - the experimental science itself; (2) developing clearer definitions of basic experimental science as practice not just knowledge; and (3) understanding the relationship between the metrics that scientists use for evaluating the performance of DOE-funded basic experimental science, the management elements of DOE-ER-STD-6001-92, and the notion of continuous improvement.

  15. Energy Basics

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will complete a scavenger hunt worksheet in order to learn about the basics of energy and its sources.

  16. Ethanol Basics

    SciTech Connect (OSTI)

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  17. Hydrogen Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Basics Hydrogen is a clean-burning fuel, and when combined with oxygen in a fuel cell, it produces heat and electricity with only water vapor as a by-product. But hydrogen does not exist freely in nature: it is only produced from other sources of energy, so it is often referred to as an energy carrier, that is, an efficient way to store and transport energy. A photo of a Ford hydrogen-powered internal combustion engine (H2ICE) bus at NREL's National Wind Technology Center (NWTC). A

  18. LED Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics » LED Basics LED Basics Unlike incandescent lamps, LEDs are not inherently white light sources. Instead, LEDs emit nearly monochromatic light, making them highly efficient for colored light applications such as traffic lights and exit signs. However, to be used as a general light source, white light is needed. White light can be achieved with LEDs in three ways: Phosphor conversion, in which a phosphor is used on or near the LED to convert the colored light to white light RGB

  19. Biofuels Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Biofuels Basics Biofuels Basics Biofuels such as ethanol and biodiesel can make a big difference in improving our environment, helping our economy, and reducing our dependence on foreign oil. This page discusses biofuels research supported by the Bioenergy Technologies Office. Biofuels for Transportation Ethanol Biodiesel Renewable Diesel Biofuels for Transportation Most vehicles on the road today are fueled by gasoline and

  20. Recycling and Reuse of Basic Oxygen Furnace (BOF)/Basic Oxygen Process (BOP) Steelmaking Slags

    Broader source: Energy.gov [DOE]

    This factsheet describes a project to develop technologies and methodologies to allow value-added utilization of steelmaking slag, thus reducing waste and saving energy.

  1. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ... The DOE Office of Science's Basic Energy Sciences program equips scientists with a ...

  2. Biomass Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics Biomass Basics Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae, sewage, and other organic substances that may be used to make energy through chemical processes. Biomass currently supplies about 3% of total U.S. energy consumption in the form of electricity, process heat, and

  3. Bioproducts Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioproducts Basics Bioproducts Basics Today, petroleum is refined to make chemical feedstocks used in thousands of products. Many of these petroleum-based feedstocks could be replaced with value-added chemicals produced from biomass to manufacture clothing, plastics, lubricants, and other products. The emerging U.S. biobased products industry combines expertise and technology from the agriculture, forest products, and chemical industries to create plastics, chemicals, and composite materials

  4. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P.; Schmoeckel, Alison K.; Vernstrom, George D.; Atanasoski, Radoslav; Wood, Thomas E.; Yang, Ruizhi; Easton, E. Bradley; Dahn, Jeffrey R.; O'Neill, David G.

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  5. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century materials and energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the

  6. ORISE: Collaboration with the CDC yields Radiation Basics Made...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online training designed to help public health and emergency medical professionals learn fundamentals of radiation How ORISE is Making a Difference Radiation Basics Made Simple, ...

  7. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  8. Biofuels Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Basics Unlike other renewable energy sources, biomass can be converted directly into liquid fuels, called "biofuels," to help meet transportation fuel needs. The two most ...

  9. Method of making nanocrystalline alpha alumina

    DOE Patents [OSTI]

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  10. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. Hydrogen can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. These qualities make it an attractive fuel option for transportation and electricity generation applications. It can be used in cars, in houses,

  11. Solar Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Basics Solar is the Latin word for sun-a powerful source of energy that can be used to heat, cool, and light our homes and businesses. That's because more energy from ...

  12. Biomass Basics Webinar

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  13. Geothermal Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are reservoirs of hot water

  14. America Makes

    Broader source: Energy.gov [DOE]

    America Makes advances additive manufacturing technology and products, and serves as a nationally recognized additive manufacturing center of innovation excellence, working to transform the U.S. manufacturing sector and yield significant advancements throughout industry. America Makes was formerly called the National Additive Manufacturing Innovation Institute (NAMII).

  15. Oxygen Catalysis: The Other Half of the Equation

    SciTech Connect (OSTI)

    Turner, J.

    2008-10-01

    Artificial photosynthesis--splitting water with light--is an attractive way to make hydrogen, but what happens to the oxygen? A catalyst that aids in the efficient production of gaseous oxygen improves the viability of this approach.

  16. Making History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    YGG 05-0181 Making History It's hard to imagine . . . . . . an entire city existing in secret. . . . 60,000 acres set aside for one, top-secret purpose. . . . a discovery so huge...

  17. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  18. Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Energy Basics Energy Basics The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. The basics about renewable energy and energy efficiency technologies: learn how they work, what they're used for, and how they can improve our lives, homes, businesses, and industries. RENEWABLE ENERGY TECHNOLOGIES Biomass Technology Basics Geothermal Technology Basics

  19. Biomass Basics Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 27, 2015 Biomass Basics Alexis Martin Fellow, Bioenergy Technologies Office Department of Energy 2 | Bioenergy Technologies Office Agenda * Overview of Bioenergy * Biomass to Biofuels Life Cycle * Importance of Bioenergy * 2016 BioenergizeME Infographic Challenge 3 | Bioenergy Technologies Office Questions and Comments Please record any questions and comments you may have during the webinar and send them to BioenergizeME@ee.doe.gov As a follow-up to the webinar, the presenter(s) will

  20. Heat Pump System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating & Cooling » Heat Pump System Basics Heat Pump System Basics August 19, 2013 - 11:02am Addthis Like a refrigerator, heat pumps use electricity to move heat from a cool space into a warm space, making the cool space cooler and the warm space warmer. Because they move heat rather than generate heat, heat pumps can provide up to four times the amount of energy they consume. Air-Source Heat Pump Transfers heat between the inside of a building and the outside air. Ductless

  1. Wind Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Basics We have been harnessing the wind's energy for hundreds of years. From old Holland to farms in the United States, windmills have been used for pumping water or grinding grain. Today, the windmill's modern equivalent-a wind turbine-can use the wind's energy to generate electricity. Text Version Wind turbines, like windmills, are mounted on a tower to capture the most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and less turbulent

  2. Biomass Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived materials-since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal and industrial wastes. Even the fumes from landfills (which are

  3. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  4. BasicODT

    Energy Science and Technology Software Center (OSTI)

    2007-09-25

    BasicODT is a Monte Carlo simulation that numerically implements One-Dimensional Turbulence (ODT), a stochastic model of turbulent flow that was developed by the author of the code. This code is set up to simulate channel flow, which is the flow between two parallel flat walls driven by a fixed pressure gradient, with no-slip conditions at the walls. The code writes output files containing flow statistics gathered during the simulation. The code is accompanied by documentationmore » that explains how ODT modeling principles are numerically implemented within the code. The code and documentation are intended as an introduction to ODT for use as a learning tool for people who are unfamiliar with the model and its numerical implementation. ODT is fully described in published literature.« less

  5. Infrared Basics | Open Energy Information

    Open Energy Info (EERE)

    Infrared Basics Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Infrared Basics Author Protherm Published Publisher Not Provided, 2013 DOI Not Provided...

  6. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible. 1 figure

  7. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, Ian C. [Wilmington, DE; Baker, Richard W. [Palo Alto, CA

    1990-09-25

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  8. Absorption process for producing oxygen and nitrogen and solution therefor

    DOE Patents [OSTI]

    Roman, Ian C.

    1984-01-01

    Process for the separation and purification of oxygen and nitrogen is disclosed which utilizes solutions of oxygen carriers to selectively absorb oxygen from a gaseous stream, leaving nitrogen as a byproduct. In the process, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a solvent solution, which absorbs oxygen from an oxygen-containing gaseous feed stream such as atmospheric air and desorbs oxygen to a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form during desorption. In an alternate mode of operation, the carrier solution is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form during absorption, and at a sufficiently high temperature to keep the carrier in its deoxygenated form during desorption. Under such conditions, exceptionally high oxygen concentrations on the order of 95% to 99% are obtained, as well as a long carrier lifetime in excess of 3 months, making the process commercially feasible.

  9. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  10. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  11. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  12. Daylighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting & Daylighting » Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light

  13. Office of Basic Energy Sciences; ...

    Office of Scientific and Technical Information (OSTI)

    Final Technical Report submitted to the Department of Energy - Office of Basic Energy Sciences; Dr. Lane C. Wilson, Program Manager Period of performance for Sept 15, 2010 - Sept ...

  14. Solar Photovoltaic Technology Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process ...

  15. Solar Process Heat Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for ...

  16. NREL: Learning - Solar Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Basics Photo of a solar electric system in Colorado with snow-covered mountain ... & Renewable Energy Solar Energy Conversion Data U.S. Energy Information Administration

  17. Introduction to 'Make'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Make' Introduction to 'Make' Introduction The UNIX make utility facilitates the creation and maintenance of executable programs from source code. make keeps track of the commands...

  18. Method of making silicon on insalator material using oxygen implantation

    DOE Patents [OSTI]

    Hite, Larry R.; Houston, Ted; Matloubian, Mishel

    1989-01-01

    The described embodiments of the present invention provide a semiconductor on insulator structure providing a semiconductor layer less susceptible to single event upset errors (SEU) due to radiation. The semiconductor layer is formed by implanting ions which form an insulating layer beneath the surface of a crystalline semiconductor substrate. The remaining crystalline semiconductor layer above the insulating layer provides nucleation sites for forming a crystalline semiconductor layer above the insulating layer. The damage caused by implantation of the ions for forming an insulating layer is left unannealed before formation of the semiconductor layer by epitaxial growth. The epitaxial layer, thus formed, provides superior characteristics for prevention of SEU errors, in that the carrier lifetime within the epitaxial layer, thus formed, is less than the carrier lifetime in epitaxial layers formed on annealed material while providing adequate semiconductor characteristics.

  19. Hydropower Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Hydropower Hydropower Resource Basics Hydropower Resource Basics August 16, 2013 ... Energy Basics Home Renewable Energy Biomass Geothermal Hydrogen & Fuel Cells ...

  20. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  1. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  2. Institutional Change Basics for Sustainability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics for Sustainability Institutional Change Basics for Sustainability Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates. For example: Technology provides means to decrease energy and resource use. Policy provides directives to decrease energy and resource use. Institutional and individual behaviors provide avenues to ensure technologies and policies are used effectively in

  3. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy Biomass is any organic material that has stored sunlight in the form of chemical energy, such as plants, agricultural crops or residues, municipal wastes, and algae. DOE is focusing on new and better ways to make liquid transportation fuels, or "biofuels," like ethanol, biodiesel, and renewable gasoline. DOE is also investigating the potential of producing power and a range of products from biomass. Biomass

  4. Alternative Fuels Data Center: Hydrogen Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Basics on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Basics on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Basics on Google Bookmark Alternative Fuels Data Center: Hydrogen Basics on Delicious Rank Alternative Fuels Data Center: Hydrogen Basics on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Basics on AddThis.com... More in this section... Hydrogen Basics Production

  5. Alternative Fuels Data Center: Propane Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Basics to someone by E-mail Share Alternative Fuels Data Center: Propane Basics on Facebook Tweet about Alternative Fuels Data Center: Propane Basics on Twitter Bookmark Alternative Fuels Data Center: Propane Basics on Google Bookmark Alternative Fuels Data Center: Propane Basics on Delicious Rank Alternative Fuels Data Center: Propane Basics on Digg Find More places to share Alternative Fuels Data Center: Propane Basics on AddThis.com... More in this section... Propane Basics Production &

  6. OLED Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics » OLED Basics OLED Basics OLEDs are organic LEDs, which means that their key building blocks are organic (i.e., carbon-based) materials. Unlike LEDs, which are small-point light sources, OLEDs are made in sheets that are diffuse-area light sources. OLED technology is developing rapidly, and there are a handful of product offerings with efficacy, lifetime, and color quality specs that are comparable to their LED counterparts. However, OLEDs are still some years away from widespread

  7. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  8. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  9. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  10. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  11. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  12. Fuel Cell Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Researchers are developing fuel cells that can be used in vehicles to provide electricity for propulsion as well as for a car's electric and electronic ...

  13. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived...

  14. NREL: Learning - Geothermal Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada. Many technologies have been developed to take...

  15. SSL Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SSL Basics SSL Basics Solid-state lighting (SSL) differs from other kinds of lighting in that it's based on light-emitting diodes (LEDs) or organic LEDs (OLEDs) instead of filaments, plasma, or gases. In addition to having the potential to be more energy efficient than any other existing lighting technology, it also has a number of other advantages-including directionality, controllability, vibration resistance, long life, color tunability, and aesthetic appeal. But SSL is still at a relatively

  16. Biofuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Basics Biofuel Basics July 30, 2013 - 11:38am Addthis Text Version Photo of a woman in goggles handling a machine filled with biofuels. Most vehicles on the road today run on gasoline and diesel fuels, which are produced from oil-a non-renewable resource, meaning supplies are limited. Renewable resources, in contrast, are constantly replenished and are unlikely to run out. Biomass is one type of renewable resource that can be converted into liquid fuels (biofuels) for transportation.

  17. Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  18. Methods for separating oxygen from oxygen-containing gases

    DOE Patents [OSTI]

    Mackay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  19. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    repository and the Principal Investigator (PI) for ALICE computing at NERSC is Jeff Porter. ALICE users work in the sl53 chos environment. See the Chos page for more...

  20. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in HPSS. The Principal Investigator (PI) for STAR computing at NERSC is Jeff Porter. In general STAR users should work in the chos environment sl53. This means that upon...

  1. Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daya Bay has two "production accounts". The dayabay account is used for the automated software builds on common as well as for the diagnostic testing of the processed raw data...

  2. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  3. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  4. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  5. Basic research for environmental restoration

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    The Department of Energy (DOE) is in the midst of a major environmental restoration effort to reduce the health and environmental risks resulting from past waste management and disposal practices at DOE sites. This report describes research needs in environmental restoration and complements a previously published document, DOE/ER-0419, Evaluation of Mid-to-Long Term Basic Research for Environmental Restoration. Basic research needs have been grouped into five major categories patterned after those identified in DOE/ER-0419: (1) environmental transport and transformations; (2) advanced sampling, characterization, and monitoring methods; (3) new remediation technologies; (4) performance assessment; and (5) health and environmental effects. In addition to basic research, this document deals with education and training needs for environmental restoration. 2 figs., 6 tabs.

  6. Tool Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Analysis Tools » Energy Asset Score » Tool Basics Tool Basics Asset Score Scale The Asset Score uses a 10-point scale to evaluate the energy efficiency of a building's physical characteristics and major energy-related systems. The point value is assigned based on a building's predicted source energy use intensity (EUI) according to the energy simulation results. Scores are rounded to the nearest half-point increment (i.e., "6", "6.5", "7",

  7. Financing Basics for RE Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics for RE Projects 1 Agenda: * Overview & Summary Findings * Introduction to Project Finance * The Role of the Players * Structure and Negotiation of Key Documents * Conclusions 2 Overview & Summary Findings 3 Renewable Energy Options: * Wind * PV * Solar * Bio * The evaluative parameters used by financiers is different for each of these technologies - Example: DSC for Wind = 1.4 - 1.5; and DSC for Bio (due to fuel risk) = 1.5 - 1.6 4 Basic Elements #1: * Lots of money now available

  8. Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Hydropower Basics Hydropower Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Most people associate water power with the Hoover Dam-a huge facility harnessing the power of an entire river behind its walls-but hydropower facilities come in all sizes. Some may be very large, but they can be tiny too, taking advantage of water flows in municipal water facilities or irrigation ditches. They can even be "dam-less,"

  9. Composite material and method of making

    DOE Patents [OSTI]

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  10. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics DOE ... More Documents & Publications Basic Energy Sciences Overview Progress from DOE EF RC: ...

  11. Institutional Change Basics for Sustainability

    Office of Energy Efficiency and Renewable Energy (EERE)

    Institutional change integrates technology, policy, and behavior to make new sustainability practices and perspectives become a typical part of how an agency operates.

  12. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  13. Water Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Basics Water Heating Basics August 19, 2013 - 11:15am Addthis A variety of systems are available for water heating in homes and buildings. Learn about: Conventional Storage Water Heaters Demand (Tankless or Instantaneous) Water Heaters Heat Pump Water Heaters Solar Water Heaters Tankless Coil and Indirect Water Heaters Addthis Related Articles Tankless Demand Water Heater Basics Solar Water Heater Basics Heat Pump Water Heater Basics Energy Basics Home Renewable Energy Homes &

  14. Solar Photovoltaic Technology Basics | Department of Energy

    Energy Savers [EERE]

    Solar Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics August ... Photovoltaic (PV) materials and devices convert sunlight into electrical energy. A single ...

  15. Lesson 2 - Electricity Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there....

  16. Basic Matrix Library (bml), Version 0.x

    Energy Science and Technology Software Center (OSTI)

    2015-11-24

    The basic matrix library (bml) is a collection of various matrix data formats (in dense and sparse) and their associated algorithms for basic matrix operations.

  17. Basic energy properties of electrolytic solutions database. ...

    Office of Scientific and Technical Information (OSTI)

    Basic energy properties of electrolytic solutions database. Viscosity, thermal conductivity, density, enthalpy Citation Details In-Document Search Title: Basic energy properties ...

  18. Health Care Buildings : Basic Characteristics Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Basic Characteristics Tables Buildings and Size Data by Basic Characteristics for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million...

  19. Basic Research Needs: Catalysis for Energy

    SciTech Connect (OSTI)

    Bell, Alexis T.; Gates, Bruce C.; Ray, Douglas; Thompson, Michael R.

    2008-03-11

    The report presents results of a workshop held August 6-8, 2007, by DOE SC Basic Energy Sciences to determine the basic research needs for catalysis research.

  20. Solar Energy Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Solar Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a ...

  1. Biodiesel Basics (Fact Sheet), Vehicle Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Biodiesel Basics (Fact Sheet), Vehicle Technologies Program (VTP) Fact sheet providing questions and answers on ...

  2. Crystalline Silicon Photovolatic Cell Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics ... This lattice comprises the solid material that forms the photovoltaic (PV) cell's ...

  3. Photovoltaic Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles Quiz: Test Your Solar IQ Energy 101: Solar Photovoltaics Photovoltaic Cell Basics Energy Basics Home Renewable Energy Biomass Geothermal Hydrogen & Fuel ...

  4. Photovoltaic Crystalline Silicon Cell Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Cell Basics Photovoltaic Crystalline Silicon Cell Basics August 20, 2013 - 2:00pm Addthis To separate electrical charges, crystalline silicon cells must have a ...

  5. Photovoltaic Cell Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Basics Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. ...

  6. Basic concepts of contaminant sorption. Summary paper

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Robert S. Kerr Environmental Research Laboratory (RSKERL) has developed a number of issue papers and briefing documents which are designed to exchange up-to-date information related to the remediation of contaminated soil and ground water at hazardous waste sites. In an attempt to make the content of these documents available to a wider audience, RSKERL is developing a series of summary papers which are condensed versions of the original documents. Understanding the processes which dictate transport and fate characteristics of contaminants in soil and ground water is of paramount importance in designing and implementing remediation systems at hazardous waste sites. Sorption is often the most significant of these processes. The summary paper addresses the basic concepts of sorption in soil and ground water with an emphasis on organic contaminants having the characteristics of those often found at existing hazardous waste sites.

  7. Introduction to 'Make'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    'Make' Introduction to 'Make' Introduction The UNIX make utility facilitates the creation and maintenance of executable programs from source code. make keeps track of the commands needed to build the code and when changes are made to a source file, recompiles only the necessary files. make creates and updates programs with a minimum of effort. A small initial investment of time is needed to set up make for a given software project, but afterward, recompiling and linking is done consistently and

  8. Geothermal Electricity Production Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Production Basics Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Dry Steam Dry steam

  9. Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Vehicle Basics Today's hybrid electric vehicles (HEVs) range from small passenger cars to sport utility vehicles (SUVs) and large trucks. Though they often look just like conventional vehicles, HEVs usually include an electric motor as well as a small internal combustion engine (ICE). This combination provides greater fuel economy and fewer emissions than most conventional ICE vehicles do. Photo of the front and part of the side of a bus parked at the curb of a city street with

  10. Concentrating Solar Power Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Basics Many power plants today use fossil fuels as a heat source to boil water. The steam from the boiling water spins a large turbine, which drives a generator to produce electricity. However, a new generation of power plants with concentrating solar power systems uses the sun as a heat source. The three main types of concentrating solar power systems are: linear concentrator, dish/engine, and power tower systems. Linear concentrator systems collect the sun's energy

  11. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  12. Building the Basic PVC Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building the Basic PVC Wind Turbine Building the Basic PVC Wind Turbine Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Wind Energy Summary This plan shows how to make a rugged and inexpensive classroom wind turbine that can be used for lab bench-based blade design experiments. While a few specialized parts are needed (a hub and DC motor), the rest of the components are easily found at most hardware stores. Curriculum Technology, Science

  13. Monolithic solid electrolyte oxygen pump

    DOE Patents [OSTI]

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  14. Oxygenates du`jour...MTBE? Ethanol? ETBE?

    SciTech Connect (OSTI)

    Wolfe, R.

    1995-12-31

    There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

  15. Basic photovoltaic principles and methods

    SciTech Connect (OSTI)

    Hersch, P.; Zweibel, K.

    1982-02-01

    This book presents a nonmathematical explanation of the theory and design of photovoltaic (PV) solar cells and systems. The basic elements of PV are introduced: the photovoltaic effect, physical aspects of solar cell efficiency, the typical single-crystal silicon solar cell, advances in single-crystal silicon solar cells. This is followed by the designs of systems constructed from individual cells, including possible constructions for putting cells together and the equipment needed for a practical producer of electrical energy. The future of PV is then discussed. (LEW)

  16. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  17. Bio-Based Product Basics

    Broader source: Energy.gov [DOE]

    Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often require less energy to produce than petroleum-based ones.

  18. PC Basic Linear Algebra Subroutines

    Energy Science and Technology Software Center (OSTI)

    1992-03-09

    PC-BLAS is a highly optimized version of the Basic Linear Algebra Subprograms (BLAS), a standardized set of thirty-eight routines that perform low-level operations on vectors of numbers in single and double-precision real and complex arithmetic. Routines are included to find the index of the largest component of a vector, apply a Givens or modified Givens rotation, multiply a vector by a constant, determine the Euclidean length, perform a dot product, swap and copy vectors, andmore » find the norm of a vector. The BLAS have been carefully written to minimize numerical problems such as loss of precision and underflow and are designed so that the computation is independent of the interface with the calling program. This independence is achieved through judicious use of Assembly language macros. Interfaces are provided for Lahey Fortran 77, Microsoft Fortran 77, and Ryan-McFarland IBM Professional Fortran.« less

  19. Basic visual observation skills training course: Appendix B. Final report

    SciTech Connect (OSTI)

    Toquam, J.L.; Morris, F.A.; Griggs, J.R.

    1995-06-01

    The purpose of the basic visual observation skills course is to help safeguards inspectors evaluate and improve their skills in making observations during inspections and in evaluating and interpreting this information. The first 12 hours of the course provide training in five skill areas: perception and recognition; attention to detail; memory; mental imaging, mapping, and modeling skills; and judgment and decision making. Following this training is an integrating exercise involving a simulated safeguards inspection. This report contains the in-class exercises in the five skill areas; pre- and post-course exercises in closure, hidden figures, map memory, and mental rotations; the final examination; a training evaluation form; and the integrating exercise.

  20. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: Air Distribution Basics and Duct Design Arlan Burdick IBACOS, Inc. December 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

  1. Basic research needed for the development of geothermal energy

    SciTech Connect (OSTI)

    Aamodt, R.L.; Riecker, R.E.

    1980-10-01

    Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

  2. Solar Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Solar Water Heater Basics Solar Water Heater Basics August 19, 2013 - 3:01pm Addthis Illustration of an active, closed loop solar water heater. A large, flat panel ...

  3. Basic Research Needs for the Hydrogen Economy

    Fuel Cell Technologies Publication and Product Library (EERE)

    The Basic Energy Sciences (BES) Workshop on Hydrogen Production, Storage and Use was held May 13-15, 2003 to assess the basic research needs to assure a secure energy future. This report is based on t

  4. Photovoltaic Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV ...

  5. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  6. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  7. Basic ReseaRch DiRections

    National Nuclear Security Administration (NNSA)

    Basic ReseaRch DiRections for User Science at the National Ignition Facility Report on the National Nuclear Security Administration - Office of Science Workshop on Basic Research Directions on User Science at the National Ignition Facility BASIC RESEARCH DIRECTIONS FOR USER SCIENCE AT THE NATIONAL IGNITION FACILITY Report on the National Nuclear Security Administration (NNSA) - Office of Science (SC) Workshop on Basic Research Directions on User Science at the National Ignition Facility Chairs:

  8. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.

  9. Lighting and Daylighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting and Daylighting Basics Lighting and Daylighting Basics August 15, 2013 - 5:05pm Addthis Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting. Learn more about: Lighting Daylighting Addthis Related Articles Daylighting Basics Energy 101: Daylighting The Biggest, Brightest Star of Energy Efficiency Energy Basics Home Renewable Energy Homes &

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  11. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  12. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, H.R.; Bevolo, A.J.; Danielson, G.C.; Weber, M.F.

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A/sub x/WO/sub 3/ where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt/sub y/WO/sub 3/ where y is at least 0.8.

  13. Fuel cell oxygen electrode

    DOE Patents [OSTI]

    Shanks, Howard R.; Bevolo, Albert J.; Danielson, Gordon C.; Weber, Michael F.

    1980-11-04

    An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

  14. Energy Basics Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Basics Website Contact Energy Basics Website Contact Use this form to send us your comments, report problems, and/or ask questions about information on the Energy Basics website. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to prevent automated spam submissions. Submit

  15. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  17. A miniature inexpensive, oxygen sensing element

    SciTech Connect (OSTI)

    Arenz, R.W.

    1991-10-07

    An exhaustive study was conducted to determine the feasibility of Nernst-type oxygen sensors based on ceramics containing Bi{sub 2}O{sub 3}. The basic sensor design consisted of a ceramic sensing module sealed into a metal tube. The module accommodated an internal heater and thermocouple. Thermal-expansion-matched metals, adhesives, and seals were researched and developed, consistent with sequential firings during sensor assembly. Significant effort was devoted to heater design/testing and to materials' compatibility with Pt electrodes. A systematic approach was taken to develop all sensor components which led to several design modifications. Prototype sensors were constructed and exhaustively tested. It is concluded that development of Nerst-type oxygen sensors based on Bi{sub 2}O{sub 3} will require much further effort and application of specialized technologies. However, during the course of this 3-year program much progress was reported in the literature on amperometric-type oxygen sensors, and a minor effort was devoted here to this type of sensor based on Bi{sub 2}O{sub 3}. These studies were made on Bi{sub 2}O{sub 3}-based ceramic samples in a multilayer-capacitor-type geometry and amperometric-type oxygen sensing was demonstrated at very low temperatures ({approximately} 160{degree}C). A central advantage here is that these types of sensors can be mass-produced very inexpensively ({approximately} 20--50 cents per unit). Research is needed, however, to develop an optimum diffusion-limiting barrier coating. In summary, the original goals of this program were not achieved due to unforeseen problems with Bi{sub 2}O{sub 3}-based Nernst sensors. However, a miniature amperometric sensor base on Bi{sub 2}O{sub 3} was demonstrated in this program, and it is now seen that this latter sensor is far superior to the originally proposed Nernst sensor. 6 refs., 24 figs.

  18. Method of making fully dense anisotropic high energy magnets

    SciTech Connect (OSTI)

    Chatterjee, D.K.

    1990-01-09

    This patent describes a method of making anisotropic permanent magnets. It comprises extruding a rare earth, transition metal, magnetic alloy together with an oxygen-getter material at a temperature of from about 600{degrees} C to about 1000{degrees} C at an extrusion ratio of from about 10:1 to about 26:1 the rare earth, transition metal, magnetic alloy and the oxygen-getter material being disposed within an extrusion zone in Separate and discrete locations.

  19. Making a Solar Oven

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  20. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  1. Composite oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  2. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in

  3. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2004-03-16

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  4. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-08-05

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  5. Methods of making pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-10-14

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  6. Methods Of Making Pyrrolidones

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2003-12-30

    The present invention provides methods for making N-methylpyrrolidine and analogous compounds via hydrogenation. Novel catalysts for this process, and novel conditions/yields are also described. Other process improvements may include extraction and hydrolysis steps. Some preferred reactions take place in the aqueous phase. Starting materials for making N-methylpyrrolidine may include succinic acid, N-methylsuccinimide, and their analogs.

  7. Researchers Directly Observe Oxygen Signature in the Oxygen-evolving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex of Photosynthesis Researchers Directly Observe Oxygen Signature in the Oxygen-evolving Complex of Photosynthesis Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the

  8. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  9. Vehicle Battery Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Vehicle Battery Basics Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). WHAT IS A BATTERY? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the

  10. Wind Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Wind Energy Basics Wind Energy Basics Wind Energy Basics Once called windmills, the technology used to harness the power of wind has advanced significantly over the past ten years, with the United States increasing its wind power capacity 30% year over year. Wind turbines, as they are now called, collect and convert the kinetic energy that wind produces into electricity to help power the grid. Wind energy is actually a byproduct of the sun. The sun's uneven heating of

  11. Bio-Benefits Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics » Bio-Benefits Basics Bio-Benefits Basics Biomass is an important commodity for the future of the United States. Increased production and use of biofuels will result in a variety of benefits to the nation, including: Improved national energy security Increased economic growth Broad-based environmental benefits. Biomass and U.S. Energy Security The U.S. economy is heavily dependent on oil imports-containing 4% of the world's

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  13. Photovoltaic Silicon Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... More Information Learn more about these solar cell materials: Polycrystalline Thin Films Single-Crystalline Thin Films Addthis Related Articles Photovoltaic Cell Material Basics ...

  14. National Laboratory] Basic Biological Sciences(59) Biological...

    Office of Scientific and Technical Information (OSTI)

    Achievements of structural genomics Terwilliger, Thomas C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science Biological Science Abstract Not...

  15. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  16. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  17. Making a One-Way Street for Electricity | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making a One-Way Street for Electricity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 08.04.16 Making a One-Way Street for Electricity Scientists

  18. Oxygenates from synthesis gas

    SciTech Connect (OSTI)

    Falter, W.; Keim, W.

    1994-12-31

    The direct synthesis of oxygenates starting from synthesis gas is feasible by homogeneous and heterogeneous catalysis. Homogeneous Rh and Ru based catalysts yielding methyl formate and alcohols will be presented. Interestingly, modified heterogeneous catalysts based on {open_quotes}Isobutyl Oel{close_quotes} catalysis, practized in Germany (BRD) up to 1952 and in the former DDR until recently, yield isobutanol in addition to methanol. These {open_quotes}Isobutyl Oel{close_quotes} catalysts are obtained by adding a base such as Li < Na < K < Cs to a Zn-Cr{sub 2}O{sub 3} methanol catalyst. Isobutanol is obtained in up to 15% yield. Our best catalyst a Zr-Zn-Mn-Li-Pd catalyst produced isobotanol up to 60% at a rate of 740g isobutanol per liter catalyst and hour.

  19. MTBE, Oxygenates, and Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased

  20. NOVA Making Stuff Season 2

    SciTech Connect (OSTI)

    Leombruni, Lisa; Paulsen, Christine Andrews

    2014-12-12

    Over the course of four weeks in fall 2013, 11.7 million Americans tuned in to PBS to follow host David Pogue as he led them in search of engineering and scientific breakthroughs poised to change our world. Levitating trains, quantum computers, robotic bees, and bomb-detecting plants—these were just a few of the cutting-edge innovations brought into the living rooms of families across the country in NOVA’s four-part series, Making Stuff: Faster, Wilder, Colder, and Safer. Each of the four one-hour programs gave viewers a behind-the-scenes look at novel technologies poised to change our world—showing them how basic research and scientific discovery can hold the keys to transforming how we live. Making Stuff Season 2 (MS2) combined true entertainment with educational value, creating a popular and engaging series that brought accessible science into the homes of millions. NOVA’s goal to engage the public with such technological innovation and basic research extended beyond the broadcast series, including a variety of online, educational, and promotional activities: original online science reporting, web-only short-form videos, a new online quiz-game, social media engagement and promotion, an educational outreach “toolkit” for science educators to create their own “makerspaces,” an online community of practice, a series of nationwide Innovation Cafés, educator professional development, a suite of teacher resources, an “Idealab,” participation in national conferences, and specialized station relation and marketing. A summative evaluation of the MS2 project indicates that overall, these activities helped make a significant impact on the viewers, users, and participants that NOVA reached. The final evaluation conducted by Concord Evaluation Group (CEG) confidently concluded that the broadcast, website, and outreach activities were successful at achieving the project’s intended impacts. CEG reported that the MS2 series and website content were

  1. EIA-819, Monthly Oxygenate Report ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EIA) Form EIA-819, "Monthly Biofuel and Oxygenate Report," is used to collect data on ethanol production capacity, as well as stocks, receipts, inputs, production, and blending of...

  2. Making a Difference

    Broader source: Energy.gov [DOE]

    EERE's work makes a difference in the lives of America's people. By lowering energy costs and supporting new ways to generate electricity, EERE is bringing a better energy future closer every day.

  3. Review - basic research needs in fluid mechanics

    SciTech Connect (OSTI)

    Jones, O.C. Jr.; Kreith, F.; White, F.M.

    1981-12-01

    A small segment of the engineering community was surveyed to obtain their judgement regarding the long-range needs for basic research in fluid mechanics. It is the purpose of this paper to provide a summary of a more detailed report, which identifies basic research needed in fluid mechanics. 12 refs.

  4. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  5. Fuel cell electrolyte membrane with basic polymer

    DOE Patents [OSTI]

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  6. Future steelmaking technologies and the role of basic research

    SciTech Connect (OSTI)

    Fruehan, R.J.

    1996-12-31

    The steel industry is going through a technological revolution which will not only change how steel is produced but, also, the entire structure of the industry. The drivers for the new or improved technologies, including reduction in capital requirements, possible shortages in raw materials such as coke and low residual scrap, environmental concerns and customer demands are briefly examined. The current status of research and development in the US and selected international producers was examined. As expected, it was found that the industry`s research capabilities have been greatly reduced. Furthermore, less than half of the companies which identified a given technology as critical have significant R and D programs addressing the technology. Examples of how basic research aided in process improvements in the past are given. The examples include demonstrating how fundamentals of reaction kinetics, improved nitrogen control, thermodynamics of systems helped reduce nozzle clogging and fluid flow studies reduced defects in casting. However, in general, basic research did not play a major role in processes previously developed, but helped understanding and aided optimization. To have a major impact, basic research must be focused and be an integral part of any new process development. An example where this has been done successfully is the AISI Direct Ironmaking and Waste Oxide Recycle Projects in which fundamental studies on reduction, slag foaming, and post combustion reactions have led to process understanding, control and optimization. Industry leaders recognize the value and need for basic research but insist it be truly relevant and done with industry input. From these examples the lessons learned on how to make basic research more effective are discussed.

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  8. Ethanol Fuel Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More than 95% of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in a high-level blend ...

  9. Novel Membranes and Processes for Oxygen Enrichment

    SciTech Connect (OSTI)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  11. Oxygen detection using evanescent fields

    DOE Patents [OSTI]

    Duan, Yixiang; Cao, Weenqing

    2007-08-28

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  12. Process for making structure for a MCFC

    DOE Patents [OSTI]

    Pasco, Wayne D. (Scotia, NY); Arendt, Ronald H. (Schenectady, NY)

    1986-01-01

    A process of making a porous carbonate-containing structure for use in a molten carbonate fuel cell, wherein a suitable porous structure is prepared having disposed therein a metal salt selected from the alkali metals and the alkaline earth metals or mixtures thereof with at least a portion of the salt being a monobasic organic acid salt. The monobasic acid salt is converted to the carbonate in situ by heating in the presence of oxygen. Both electrode and electrolyte structures can be prepared. Formic acid is preferred.

  13. Process of making structure for a MCFC

    DOE Patents [OSTI]

    Pasco, W.D.; Arendt, R.H.

    1985-04-03

    A process of making a porous carbonate-containing structure for use in a molten carbonate fuel cell is disclosed, wherein a suitable porous structure is prepared having disposed therein a metal salt selected from the alkali metals and the alkaline earth metals or mixtures thereof with at least a portion of the salt being a monobasic organic acid salt. The monobasic acid salt is converted to the carbonate in situ by heating in the presence of oxygen. Both electrode and electrolyte structures can be prepared. Formic acid is preferred.

  14. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    SciTech Connect (OSTI)

    Stevenson, J.W.; Armstrong, B.L.; Armstrong, T.R.; Bates, J.L.; Pederson, L.R.; Weber, W.J.

    1995-05-01

    Solid mixed-conducting electrolytes in the series La{sub l-x}A{sub x}Co{sub l-y}Fe{sub y}O{sub 3-{delta}} (A = Sr,Ca,Ba) are potentially useful as passive membranes to separate high purity oxygen from air and as cathodes in fuel cells. All of the compositions studied exhibited very high electrical conductivities. At lower temperatures, conductivities increased with increasing temperature, characterized by activation energies of 0.05 to 0.16 eV that are consistent with a small polaron (localized electronic carrier) conduction mechanism. At higher temperatures, electronic conductivities tended to decrease with increasing temperature, which is attributed to decreased electronic carrier populations associated with lattice oxygen loss. Oxygen ion conductivities were higher than that of yttria stabilized zirconia and increased with the cobalt content and also increased with the extent of divalent A-site substitution. Thermogravimetric studies were conducted to establish the extent of oxygen vacancy formation as a function of temperature, oxygen partial pressure, and composition. These vacancy populations strongly depend on the extent of A-site substitution. Passive oxygen permeation rates were established for each of the compositions as a function of temperature and oxygen partial pressure gradient. For 2.5 mm thick membranes in an oxygen vs nitrogen partial pressure gradient, oxygen fluxes at 900 C ranged from approximately 0.3 sccm/cm{sup 2} for compositions high in iron and with low amounts of strontium A-site substitution to approximately 0.8 sccm/cm{sup 2} for compositions high in cobalt and strontium. A-site substitution with calcium instead of strontium resulted in substantially lower fluxes.

  15. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    DOE Patents [OSTI]

    Lee, E.H.; Mansur, L.K.; Heatherly, L. Jr.

    1995-04-18

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance. 8 figs.

  16. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    DOE Patents [OSTI]

    Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee

    1995-01-01

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.

  17. Active Solar Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Active Solar Heating Basics Active Solar Heating Basics August 16, 2013 - 3:23pm Addthis There are two basic types of active solar heating systems based on the type of fluid-either liquid or air-that is heated in the solar energy collectors. The collector is the device in which a fluid is heated by the sun. Liquid-based systems heat water or an antifreeze solution in a "hydronic" collector, whereas air-based systems heat air in an "air collector." Both of these systems

  18. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  20. Photovoltaics: Basic Design Principles and Components

    SciTech Connect (OSTI)

    1997-03-01

    This publication will introduce you to the basic design principles and components of PV systems. It will also help you discuss these systems knowledgeably with an equipment supplier or system installer.

  1. FTA Basic Event & Cut Set Ranking.

    Energy Science and Technology Software Center (OSTI)

    1999-05-04

    Version 00 IMPORTANCE computes various measures of probabilistic importance of basic events and minimal cut sets to a fault tree or reliability network diagram. The minimal cut sets, the failure rates and the fault duration times (i.e., the repair times) of all basic events contained in the minimal cut sets are supplied as input data. The failure and repair distributions are assumed to be exponential. IMPORTANCE, a quantitative evaluation code, then determines the probability ofmore » the top event and computes the importance of minimal cut sets and basic events by a numerical ranking. Two measures are computed. The first describes system behavior at one point in time; the second describes sequences of failures that cause the system to fail in time. All measures are computed assuming statistical independence of basic events. In addition, system unavailability and expected number of system failures are computed by the code.« less

  2. NREL: Learning - Fuel Cell Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Vehicle Basics Photo showing a silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. ...

  3. Wind Turbine Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This video explains the basics of how wind turbines operate to produce clean power from an abundant, renewable resource-the wind. Text Version Wind turbine assembly Although all ...

  4. Concentrator Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the ...

  5. Basic Research Needs for Countering Terrorism

    SciTech Connect (OSTI)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  6. NREL: Hydrogen and Fuel Cells Research - Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Basics Photo of vehicle filling up at renewable hydrogen fueling station. NREL's hydrogen fueling station dispenses hydrogen produced via renewable electrolysis. Photo by Dennis Schroeder, NREL NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment, and buildings. View the Hydrogen Program video on NREL's YouTube channel to learn more about the basics of NREL's hydrogen and fuel cell

  7. Ventilation System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System Basics Ventilation System Basics August 16, 2013 - 1:33pm Addthis Ventilation is the process of moving air into and out of an interior space by natural or mechanical means. Ventilation is necessary for the health and comfort of occupants of all buildings. Ventilation supplies air for occupants to breathe and removes moisture, odors, and indoor pollutants like carbon dioxide. Too little ventilation may result in poor indoor air quality, while too much may cause unnecessarily

  8. Biofuel Conversion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived

  9. Evaporative Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaporative Cooling Basics Evaporative Cooling Basics August 16, 2013 - 1:53pm Addthis Evaporative cooling uses evaporated water to naturally and energy-efficiently cool. An illustration of an evaporative cooler. In this example of an evaporative cooler, a small motor (top) drives a large fan (center) which blows air out the bottom and into your home. The fan sucks air in through the louvers around the box, which are covered with water-saturated absorbent material. How Evaporative Coolers Work

  10. LED Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Lighting Basics LED Lighting Basics August 16, 2013 - 10:07am Addthis Light-emitting diodes (LEDs) efficiently produce light in a fundamentally different way than any legacy or traditional light source. LEDs are compound semiconductor devices that produce light when an appropriate electrical current is applied. Applying electrical current causes electrons to flow from one material in the structure to another and this in turn causes a series of complex interactions at an atomic level that

  11. Lesson 1 - Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 - Energy Basics Lesson 1 - Energy Basics This lesson covers the states and forms of energy, where energy comes from, as well as how the way we live is tied to our energy supply and what that means for the future. Specific topics include: States of energy Potential Kinetic Forms of energy Energy sources Primary and secondary sources Renewable and nonrenewable Conversion Conservation Environmental impacts Greenhouse effect Future sources Lesson 1 - Energy.pptx (8.84 MB) More Documents &

  12. Fluorescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power

  13. Fluorescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power

  14. Basic Energy Sciences (BES) at LLNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences at LLNL Eric Schwegler is the Point-of-Contact for DOE Office of Science Programs - Basic Energy Sciences (BES) at LLNL. Highlights Mesoscale Simulations of Coarsening in GB Networks Coherency Does Not Equate to Stability Laser Crystallization of Phase Change Material Extraction of Equilibrium Energy and Kinetic Parameters from Single Molecule Force Spectroscopy Data LLNL BES Programs Theme area 1: Time, Space and Energy Resolved Investigations of Materials in Extreme

  15. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  16. Cooling System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating & Cooling » Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp

  17. Electricity Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Electricity Fuel Basics Electricity Fuel Basics August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated during electricity production at the power plant. Charging plug-in electric vehicles at home is as simple as plugging them into an

  18. Enhanced Geothermal System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal » Enhanced Geothermal System Basics Enhanced Geothermal System Basics A naturally occurring geothermal system, known as Enhanced Geothermal Systems (EGS), is another form of renewable energy. It is defined by three key elements: heat, fluid, and permeability at depth. Essentially, these are engineered reservoirs that produce energy from geothermal resources in areas that are not usually considered economically viable due to a lack of water and/or the ability of that water to pass

  19. Fuel Cell Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Fuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, could greatly improve the sustainability of our transportation sector. Although electricity production may contribute to air pollution, they are more efficient than conventional internal combustion engine vehicles and produce no

  20. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  1. Hydrogen Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Fuels » Hydrogen Fuel Basics Hydrogen Fuel Basics August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the

  2. Biodiesel Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuel Basics Biodiesel Fuel Basics July 30, 2013 - 2:43pm Addthis Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What Is Biodiesel? Biodiesel is a liquid fuel produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum-derived diesel, biodiesel is

  3. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources that are used directly as a fuel, or converted to another form or energy product that are available on a renewable basis are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, algae, biomass processing residues, municipal waste, and animal waste. Dedicated Energy Crops Dedicated energy crops are non-food

  4. Concentrating Solar Power Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar » Concentrating Solar Power Basics Concentrating Solar Power Basics August 20, 2013 - 4:38pm Addthis Text Version This solar concentrator has a fixed-focus faceted dish with a concentration of about 250 suns. This system can be used for large fields connected to the utility grid, hydrogen generation, or water pumping. Credit: Science Applications International Corporation / PIX 13464 Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto a single

  5. Hydropower Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2014, and about 48% of all renewable electricity generated in the United

  6. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  7. Renewable Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and water. According to the Energy Information Administration, in 2007, renewable sources of energy accounted for about 7% of total energy consumption and 9.4% of total electricity generation in the United States. Renewable energy technologies have the potential to strengthen our nation's energy security, improve

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with

  9. NREL Makes Key Appointments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Key Appointments Staffing for Distributed Energy and Tech Management Announced For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Feb. 28, 2001 - Two veterans of energy research have been named to newly created positions at the U.S. Department of Energy's National Renewable Energy Laboratory. Jack Darnell was named Deputy Associate Director for NREL's recently reorganized Planning and Technology Management Division. Anthony Schaffhauser has been

  10. Making IGCC slag valuable

    SciTech Connect (OSTI)

    Wicker, K.

    2005-12-01

    All indications are that integrated gasification combined-cycle (IGCC) technology will play a major role in tomorrow's generation industry. But before it does, some by-products of the process must be dealt with, for example unburned carbon that can make IGCC slag worthless. Charah Inc.'s processing system, used at Tampa Electric's Polk Station for years, segregates the slag's constituents by size, producing fuel and building materials. 3 figs.

  11. Method for making nanomaterials

    DOE Patents [OSTI]

    Fan, Hongyou; Wu, Huimeng

    2013-06-04

    A method of making a nanostructure by preparing a face centered cubic-ordered metal nanoparticle film from metal nanoparticles, such as gold and silver nanoparticles, exerting a hydrostatic pressure upon the film at pressures of several gigapascals, followed by applying a non-hydrostatic stress perpendicularly at a pressure greater than approximately 10 GPA to form an array of nanowires with individual nanowires having a relatively uniform length, average diameter and density.

  12. Dilute Oxygen Combustion Phase IV Final Report

    SciTech Connect (OSTI)

    Riley, M.F.

    2003-04-30

    Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations

  13. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  14. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, Ian C.; Baker, Richard W.

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  15. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOE Patents [OSTI]

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  16. Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Download presentation slides from the June 19, ...

  17. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  18. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  19. Peer review, basic research, and engineering: Defining a role for QA professionals in basic research environments

    SciTech Connect (OSTI)

    Bodnarczuk, M.

    1989-02-01

    Within the context of doing basic research, this paper seeks to answer four major questions: (1) What is the authority structure of science. (2) What is peer review. (3) Where is the interface between basic physics research and standard engineering. and (4) Given the conclusions to the first three questions, what is the role of the QA professional in a basic research environment like Fermilab. 23 refs.

  20. Make aromatics from LPG

    SciTech Connect (OSTI)

    Doolan, P.C. ); Pujado, P.R. )

    1989-09-01

    Liquefied petroleum gas (LPG) consists mainly of the propane and butane fraction recovered from gas fields, associated petroleum gas and refinery operations. Apart from its use in steam cracking and stream reforming, LPG has few petrochemical applications. The relative abundance of LPG and the strong demand for aromatics - benzene, toluene and xylenes (BTX) - make it economically attractive to produce aromatics via the aromatization of propane and butanes. This paper describes the Cyclar process, which is based on a catalyst formulation developed by BP and which uses UOP's CCR catalyst regeneration technology, converts propane, butanes or mixtures thereof to petrochemical-quality aromatics in a single step.

  1. CCUS Demonstrations Making Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9, First Quarter, 2013 www.fossil.energy.gov/news/energytoday.html HigHligHts inside 2 CCUS Demonstrations Making Progress A Column from the Director of Clean Energy Sys- tems, Office of Clean Coal 4 LNG Exports DOE Releases Third Party Study on Impact of Natural Gas Exports 5 Providing Emergency Relief Petroleum Reservers Helps Out with Hurricane Relief Efforts 7 Game-Changing Membranes FE-Funded Project Develops Novel Membranes for CCUS 8 Shale Gas Projects Selected 15 Projects Will Research

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  3. EVALUATING AN INNOVATIVE OXYGEN SENSOR FOR REMOTE SUBSURFACE OXYGEN MEASUREMENTS

    SciTech Connect (OSTI)

    Millings, M; Brian Riha, B; Warren Hyde, W; Karen Vangelas, K; Brian02 Looney, B

    2006-10-12

    Oxygen is a primary indicator of whether anaerobic reductive dechlorination and similar redox based processes contribute to natural attenuation remedies at chlorinated solvent contaminated sites. Thus, oxygen is a viable indicator parameter for documenting that a system is being sustained in an anaerobic condition. A team of researchers investigated the adaptation of an optical sensor that was developed for oceanographic applications. The optical sensor, because of its design and operating principle, has potential for extended deployment and sensitivity at the low oxygen levels relevant to natural attenuation. The results of the research indicate this tool will be useful for in situ long-term monitoring applications, but that the traditional characterization tools continue to be appropriate for characterization activities.

  4. Lesson 2 - Electricity Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Electricity Basics Lesson 2 - Electricity Basics It's difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it's there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities

  5. Absorption Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pump Basics Absorption Heat Pump Basics August 19, 2013 - 11:11am Addthis Absorption heat pumps are essentially air-source heat pumps driven not by electricity, but by a heat source such as natural gas, propane, solar-heated water, or geothermal-heated water. Because natural gas is the most common heat source for absorption heat pumps, they are also referred to as gas-fired heat pumps. There are also absorption coolers available that work on the same principal, but are not reversible and

  6. Incandescent Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps consist of a wire filament inside a glass bulb that is usually filled with inert gas, and they produce light when an electric current heats the filament to a high temperature. Incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options-because most of the energy released is in the form of heat rather than light-and a short average operating life

  7. Criticality safety basics, a study guide

    SciTech Connect (OSTI)

    V. L. Putman

    1999-09-01

    This document is a self-study and classroom guide, for criticality safety of activities with fissile materials outside nuclear reactors. This guide provides a basic overview of criticality safety and criticality accident prevention methods divided into three parts: theory, application, and history. Except for topic emphasis, theory and history information is general, while application information is specific to the Idaho National Engineering and Environmental Laboratory (INEEL). Information presented here should be useful to personnel who must know criticality safety basics to perform their assignments safely or to design critically safe equipment or operations. However, the guide's primary target audience is fissile material handler candidates.

  8. Flexible Fuel Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles & Fuels » Vehicles » Flexible Fuel Vehicle Basics Flexible Fuel Vehicle Basics August 20, 2013 - 9:05am Addthis Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) have an internal combustion engine and are capable of operating on gasoline, E85 (a high-level blend of gasoline and ethanol), or a mixture of both. There are more than 10.6 million flexible fuel vehicles on U.S. roads today. However, many flexible fuel vehicle owners don't realize

  9. Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Fuel Cell Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Text Version Photo of two hydrogen fuel cells. Fuel cells can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. HOW FUEL CELLS WORK Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode

  10. Geothermal Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pump Basics Geothermal Heat Pump Basics August 19, 2013 - 11:12am Addthis Text Version Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes-from scorching heat in the summer to sub-zero cold in the winter-the ground a few feet below the earth's surface remains at a relatively constant temperature. Depending on the latitude, ground temperatures range from 45°F

  11. Heating System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or

  12. Wave Energy Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean » Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of

  13. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. Humans have used biomass for thousands of years. Biomass is any organic material that has stored sunlight in the form of chemical energy. Wood is a well-known example of biomass: it can be burned for heat or shaped into building materials. There are many additional types of biomass that can be used to derive fuels, chemicals, and

  14. Ocean Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind

  15. Solar Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Solar Energy Technology Basics Solar Energy Technology Basics August 16, 2013 - 4:37pm Addthis Did you know that the amount of sunlight that strikes the earth's surface in an hour and a half is enough to handle the entire world's energy consumption for a full year? Solar energy has amazing potential to power our daily lives thanks to constantly-improving technologies. Solar energy systems come in all shapes and sizes. Residential systems are found on rooftops across the

  16. VIDEO: TM-30 BASICS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VIDEO: TM-30 BASICS VIDEO: TM-30 BASICS TM-30 is a new method for evaluating light source color rendition, developed by the Color Metrics Task Group, which was part of the IES Color Committee. And then it was later balloted by the Technical Review Council and the Board of Directors. The Color Metrics Task Force was a group of eight individuals, seven voting members. And we worked collaboratively over about a year and a half to really synthesize and bring in existing research on color rendering.

  17. Making Li-air batteries rechargeable: material challenges

    SciTech Connect (OSTI)

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  18. Method of making an electrode

    DOE Patents [OSTI]

    Isenberg, Arnold O.

    1986-01-01

    Disclosed is a method of coating an electrode on a solid oxygen conductive oxide layer. A coating of particles of an electronic conductor is formed on one surface of the oxide layer and a source of oxygen is applied to the opposite surface of the oxide layer. A metal halide vapor is applied over the electronic conductor and the oxide layer is heated to a temperature sufficient to induce oxygen to diffuse through the oxide layer and react with the metal halide vapor. This results in the growing of a metal oxide coating on the particles of electronic conductor, thereby binding them to the oxide layer.

  19. Method of making an electrode

    DOE Patents [OSTI]

    Isenberg, A.O.

    1986-07-01

    Disclosed is a method of coating an electrode on a solid oxygen conductive oxide layer. A coating of particles of an electronic conductor is formed on one surface of the oxide layer and a source of oxygen is applied to the opposite surface of the oxide layer. A metal halide vapor is applied over the electronic conductor and the oxide layer is heated to a temperature sufficient to induce oxygen to diffuse through the oxide layer and react with the metal halide vapor. This results in the growing of a metal oxide coating on the particles of electronic conductor, thereby binding them to the oxide layer. 2 figs.

  20. Making silicon stronger.

    SciTech Connect (OSTI)

    Boyce, Brad Lee

    2010-11-01

    Silicon microfabrication has seen many decades of development, yet the structural reliability of microelectromechanical systems (MEMS) is far from optimized. The fracture strength of Si MEMS is limited by a combination of poor toughness and nanoscale etch-induced defects. A MEMS-based microtensile technique has been used to characterize the fracture strength distributions of both standard and custom microfabrication processes. Recent improvements permit 1000's of test replicates, revealing subtle but important deviations from the commonly assumed 2-parameter Weibull statistical model. Subsequent failure analysis through a combination of microscopy and numerical simulation reveals salient aspects of nanoscale flaw control. Grain boundaries, for example, suffer from preferential attack during etch-release thereby forming failure-critical grain-boundary grooves. We will discuss ongoing efforts to quantify the various factors that affect the strength of polycrystalline silicon, and how weakest-link theory can be used to make worst-case estimates for design.

  1. Making the Old New Again: Measuring Ultrashort X-ray Laser Pulses | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Making the Old New Again: Measuring Ultrashort X-ray Laser Pulses Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information »

  2. "Electrolyte Balloons" Make Rechargeable Batteries Safer | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) "Electrolyte Balloons" Make Rechargeable Batteries Safer Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information »

  3. Basic Energy Sciences FY 2014 Research Summaries

    SciTech Connect (OSTI)

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  4. Basic Energy Sciences FY 2011 Research Summaries

    SciTech Connect (OSTI)

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  5. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments [OSTI]

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  6. Basic Energy Sciences FY 2012 Research Summaries

    SciTech Connect (OSTI)

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  7. OSTIblog Articles in the basic research Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    basic research Topic Basic Research and Innovation by Dr. Jeffrey Salmon 24 Mar, 2014 in 17010 IdeaSharing.jpg Basic Research and Innovation Read more about 17010 Recently, I ...

  8. Alternative Fuels Data Center: Codes and Standards Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Codes and Standards Basics to someone by E-mail Share Alternative Fuels Data Center: Codes and Standards Basics on Facebook Tweet about Alternative Fuels Data Center: Codes and Standards Basics on Twitter Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Google Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Delicious Rank Alternative Fuels Data Center: Codes and Standards Basics on Digg Find More places to share Alternative Fuels Data Center: Codes and

  9. Electrochemical oxygen pumps. Final CRADA report.

    SciTech Connect (OSTI)

    Carter, J. D. Noble, J.

    2009-10-01

    All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily

  10. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOE Patents [OSTI]

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  11. Atomically Precise Electrocatalyst for Oxygen Evolution Reaction | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Atomically Precise Electrocatalyst for Oxygen Evolution Reaction Thursday, March 31, 2016 Traditional heterogeneous catalysts contain a range of particles sizes, crystallographic faces, and surface structures. This heterogeneity makes catalysts design a challenge because the active sites responsible for catalytic activity are simply not known. An emerging class of "atomically-precise" nanocatalysts can help alleviate this problem because they form

  12. Brochure, A Basic Overview of the Integrated Safety Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Basic Overview of the Integrated Safety Management (ISM) Brochure, A Basic Overview of ... the overview, objective, guiding principles, core functions, safety culture ...

  13. Tribal Renewable Energy Webinar: Transmission and Grid Basics...

    Energy Savers [EERE]

    Transmission and Grid Basics for Tribal Economic and Energy Development Tribal Renewable Energy Webinar: Transmission and Grid Basics for Tribal Economic and Energy Development ...

  14. Controlling Subsurface Fractures and Fluid Flow: A Basic Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda PDF icon BES Report Controlling ...

  15. Chapter 5. Basic Concepts for Clean Energy Unsecured Lending...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds Chapter 5. Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds ...

  16. Guidance on Basic Best Practices in Management of Energy Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Basic Best Practices in Management of Energy Performance Buildings Guidance on Basic Best Practices in Management of Energy Performance Buildings Building energy management best ...

  17. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have ...

  18. Concentrating Solar Power Tower System Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, ...

  19. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses....

  20. Pamphlet, A Basic Overview of Occupational Radiation Exposure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting Pamphlet, A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & ...

  1. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  2. Tankless Coil and Indirect Water Heater Basics | Department of...

    Energy Savers [EERE]

    Homes & Buildings Water Heating Tankless Coil and Indirect Water Heater Basics Tankless Coil and Indirect Water Heater Basics August 19, 2013 - 3:03pm Addthis Illustration of ...

  3. Basic Research Needs for Solar Energy Utulization | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Needs for Solar Energy Utulization Basic Research Needs for Solar Energy Utulization Report of the basic energy sciences workshop on solar utulization. April 18-21, 2005. ...

  4. Photovoltaic Electrical Contact and Cell Coating Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Contact and Cell Coating Basics Photovoltaic Electrical Contact and Cell Coating Basics August 19, 2013 - 4:12pm Addthis The outermost layers of photovoltaic (PV) cell, ...

  5. Metal hydride composition and method of making

    DOE Patents [OSTI]

    Congdon, James W.

    1995-01-01

    A dimensionally stable hydride composition and a method for making such a composition. The composition is made by forming particles of a metal hydride into porous granules, mixing the granules with a matrix material, forming the mixture into pellets, and sintering the pellets in the absence of oxygen. The ratio of matrix material to hydride is preferably between approximately 2:1 and 4:1 by volume. The porous structure of the granules accommodates the expansion that occurs when the metal hydride particles absorb hydrogen. The porous matrix allows the flow of hydrogen therethrough to contact the hydride particles, yet supports the granules and contains the hydride fines that result from repeated absorption/desorption cycles.

  6. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  7. Basic Plasma Science | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Plasma Science Key Laboratory projects include the study of Hall thrusters that satellites and space probes use for propulsion. PPPL's Hall Thruster Experiment (HTX) strives to understand the physics of Hall thrusters and related systems that expel plasma as a propellant. Hall thrusters originated in the Soviet Union in the 1960s and research and development are carried out today in the United States, the European Union, Russia, Japan, Korea and China. PPPL research has expanded knowledge

  8. Biomass Basics: The Facts About Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics: The Facts About Bioenergy Biomass Basics: The Facts About Bioenergy This document provides general information about bioenergy and its creation and potential uses. biomass_basics.pdf (899.36 KB) More Documents & Publications Biomass Basics: The Facts About Bioenergy Bioenergy Impact Posters http://www.energy.gov/media/F...Biofuels_Lower_Gas_Prices.pdf

  9. Method of making L-dopa from L-tyrosine

    DOE Patents [OSTI]

    Xun, L.; Lee, J.Y.

    1998-11-17

    The invention is a method of making a L-dopa from L-tyrosine in the presence of an enzyme catalyst and oxygen. By starting with L-tyrosine, no variant of the L-dopa is produced and the L-dopa is stable in the presence of the enzyme catalyst. In other words, the reaction favors the L-dopa and is not reversible. 3 figs.

  10. Method of making L-dopa from L-tyrosine

    DOE Patents [OSTI]

    Xun, Luying; Lee, Jang Young

    1998-01-01

    The invention is a method of making a L-dopa from L-tyrosine in the presence of an enzyme catalyst and oxygen. By starting with L-tyrosine, no variant of the L-dopa is produced and the L-dopa is stable in the presence of the enzyme catalyst. In other words, the reaction favors the L-dopa and is not reversible.

  11. Perovskite electrodes and method of making the same

    DOE Patents [OSTI]

    Seabaugh, Matthew M.; Swartz, Scott L.

    2009-09-22

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  12. Perovskite electrodes and method of making the same

    DOE Patents [OSTI]

    Seabaugh, Matthew M.; Swartz, Scott L.

    2005-09-20

    The invention relates to perovskite oxide electrode materials in which one or more of the elements Mg, Ni, Cu, and Zn are present as minority components that enhance electrochemical performance, as well as electrode products with these compositions and methods of making the electrode materials. Such electrodes are useful in electrochemical system applications such as solid oxide fuel cells, ceramic oxygen generation systems, gas sensors, ceramic membrane reactors, and ceramic electrochemical gas separation systems.

  13. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  14. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  15. Fusion Basics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are

  16. Conceptual design report, CEBAF basic experimental equipment

    SciTech Connect (OSTI)

    1990-04-13

    The Continuous Electron Beam Accelerator Facility (CEBAF) will be dedicated to basic research in Nuclear Physics using electrons and photons as projectiles. The accelerator configuration allows three nearly continuous beams to be delivered simultaneously in three experimental halls, which will be equipped with complementary sets of instruments: Hall A--two high resolution magnetic spectrometers; Hall B--a large acceptance magnetic spectrometer; Hall C--a high-momentum, moderate resolution, magnetic spectrometer and a variety of more dedicated instruments. This report contains a short description of the initial complement of experimental equipment to be installed in each of the three halls.

  17. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  18. Oxygen-Enriched Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion Oxygen-Enriched Combustion This tip sheet discusses how an increase in oxygen in combustion air can reduce the energy loss in the exhaust gases and increase process heating system efficiency. PROCESS HEATING TIP SHEET #3 Oxygen-Enriched Combustion (September 2005) (249.42 KB) More Documents & Publications Save Energy Now in Your Process Heating Systems Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  19. Materials and methods for the separation of oxygen from air

    DOE Patents [OSTI]

    MacKay, Richard; Schwartz, Michael; Sammells, Anthony F.

    2003-07-15

    Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: O.sub.5+z where: x and x' are greater than 0; y and y' are greater than 0; x+x' is equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B" is Co or Mg, with the exception that when B" is Mg, A' and A" are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element. The invention also provides methods and catalytic reactors for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula.

  20. Oxygen permeation and coal-gas-assisted hydrogen production using...

    Office of Scientific and Technical Information (OSTI)

    Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes Citation Details In-Document Search Title: Oxygen permeation and coal-gas-assisted ...

  1. The mechanisms of oxygen reduction and evolution reactions in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and evolution reactions in nonaqueous lithium-oxygen batteries A mechanistic understanding of the oxygen reductionevolution reaction in non-aqueous lithium-oxygen batteries. ...

  2. Ductless, Mini-Split Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Ductless, mini-split-system heat pumps (mini splits), as their name implies, do not have ducts. Therefore, they make good retrofit add-ons to houses or buildings with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane).

  3. NREL, Governor's Office Help Coloradans Make Clean Energy Choices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL, Governor's Office Help Coloradans Make Clean Energy Choices For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Holmes Barba Golden, Colo., Sept. 13, 2000 - A new publication provides Colorado consumers with the tools to select sensible clean-energy solutions. The booklet, Colorado's Clean Energy Choices, provides basic information on green power available today from Colorado utilities around the state. It also outlines how farmers and ranchers can generate their

  4. Making, Measuring, and Modeling Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making, Measuring, and Modeling Materials Making, Measuring, and Modeling Materials M4 facility aims to accelerate the transition from observation to control of materials providing unique synthesis and characterization tools to advance the frontiers of materials design and discovery. CONTACT Mark Bourke (505) 667-9667 Email Predicting and Controlling Materials' Performance MaRIE's Making, Measuring, and Modeling Materials (M4) Facility aims to accelerate the transition from observation to

  5. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect (OSTI)

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  6. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes themmore » useful for physics simulations in many fields.« less

  7. GenASiS Basics: Object-oriented utilitarian functionality for large-scale physics simulations

    SciTech Connect (OSTI)

    Cardall, Christian Y.; Budiardja, Reuben D.

    2015-06-11

    Aside from numerical algorithms and problem setup, large-scale physics simulations on distributed-memory supercomputers require more basic utilitarian functionality, such as physical units and constants; display to the screen or standard output device; message passing; I/O to disk; and runtime parameter management and usage statistics. Here we describe and make available Fortran 2003 classes furnishing extensible object-oriented implementations of this sort of rudimentary functionality, along with individual `unit test' programs and larger example problems demonstrating their use. Lastly, these classes compose the Basics division of our developing astrophysics simulation code GenASiS (General Astrophysical Simulation System), but their fundamental nature makes them useful for physics simulations in many fields.

  8. ACAA fly ash basics: quick reference card

    SciTech Connect (OSTI)

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  9. Summary of recommendations on basic research

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    There has been considerable progress during the past four decades in organic geochemistry research applied to understanding the origin of coal, oil, and gas, and in understanding contemporary and ancient carbon cycles on Earth. Significant contributions have been made by academic research, government laboratories, and industrial research communities either working independently or with informal cooperation. But, important questions still remain. Among the questions answered in this paper are those dealing with the mechanisms of migration of hydrocarbons and the structure of kerogen and coal. During the final plenary session of the workshop, one way of dealing with the problem of coordinating basic research effects between industry, academic institutions, and government laboratories, strongly favored by some of the participants, was discussed--creation of a National Fossil Fuel Research Institute.

  10. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    SciTech Connect (OSTI)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating

  11. Criticality Safety Basics for INL Emergency Responders

    SciTech Connect (OSTI)

    Valerie L. Putman

    2012-08-01

    This document is a modular self-study guide about criticality safety principles for Idaho National Laboratory emergency responders. This guide provides basic criticality safety information for people who, in response to an emergency, might enter an area that contains much fissionable (or fissile) material. The information should help responders understand unique factors that might be important in responding to a criticality accident or in preventing a criticality accident while responding to a different emergency.

    This study guide specifically supplements web-based training for firefighters (0INL1226) and includes information for other Idaho National Laboratory first responders. However, the guide audience also includes other first responders such as radiological control personnel.

    For interested readers, this guide includes clearly marked additional information that will not be included on tests. The additional information includes historical examples (Been there. Done that.), as well as facts and more in-depth information (Did you know …).

    INL criticality safety personnel revise this guide as needed to reflect program changes, user requests, and better information. Revision 0, issued May 2007, established the basic text. Revision 1 incorporates operation, program, and training changes implemented since 2007. Revision 1 increases focus on first responders because later responders are more likely to have more assistance and guidance from facility personnel and subject matter experts. Revision 1 also completely reorganized the training to better emphasize physical concepts behind the criticality controls that help keep emergency responders safe. The changes are based on and consistent with changes made to course 0INL1226.

  12. Methods of making textured catalysts

    DOE Patents [OSTI]

    Werpy, Todd; Frye, Jr., John G.; Wang, Yong; Zacher, Alan H.

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  13. Method of making monodisperse nanoparticles

    DOE Patents [OSTI]

    Fan, Hongyon; Sun, Zaicheng

    2012-10-16

    A method of making particles of either spherical or cylindrical geometry with a characteristic diameter less than 50 nanometers by mixing at least one structure directing agent dissolved in a solvent with at least one amphiphilic block copolymer dissolved in a solvent to make a solution containing particles, where the particles can be subsequently separated and dispersed in a solvent of choice.

  14. Montana Understanding the Basics of Water Law In Montana Webpage...

    Open Energy Info (EERE)

    Understanding the Basics of Water Law In Montana Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Understanding the Basics of Water Law...

  15. SEP Success Story: Back to the Basics of Sustainability -- Houses...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine SEP Success Story: Back to the Basics of Sustainability -- Houses of Bark and Energy of Sunshine ...

  16. Flat-Plate Photovoltaic Module Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Module Basics Flat-Plate Photovoltaic Module Basics August 20, 2013 - 4:25pm Addthis ... a high transmission in the wavelengths that can be used by the solar cells in the module. ...

  17. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a woman scientist using a machine...

  18. Tankless Demand Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the ...

  19. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source...

  20. Dish/Engine System Concentrating Solar Power Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DishEngine System Concentrating Solar Power Basics DishEngine System Concentrating Solar Power Basics August 20, 2013 - 5:02pm Addthis Illustration of a dishengine power plant. ...

  1. Plug-In Hybrid Electric Vehicle Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workplace Charging Hosts Plug-In Electric Vehicle Handbook for Workplace Charging Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Benefits of Workplace Charging . . . . . . . . . . . . . . . . . . . . . . 8 Evaluating and Planning for

  2. A Basic Overview of the Occupational Radiation Exposure Monitoring...

    Energy Savers [EERE]

    Occupational Radiation Exposure: Monitoring, Analysis & Reporting A Basic Overview of OCCUPATIONAL RADIATION EXPOSURE Monitoring, Analysis & Reporting Outreach & Awareness Series ...

  3. Revolving Loan Funds: Basics and Best Practices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funds: Basics and Best Practices Revolving Loan Funds: Basics and Best Practices This webinar, held on Aug. 26, 2009, provides basic information and best practices for revolving loan funds. It explains existing programs, how to setup a revolving loan fund, and risk management. Presentation More Documents & Publications Financing Energy Upgrades for K-12 School Districts Revolving Loan Funds (RLF) Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and

  4. Webtrends Archives by Fiscal Year — Energy Basics

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Energy Basics site by fiscal year.

  5. Liquefied Natural Gas: Understanding the Basic Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts Liquefied Natural Gas: Understanding the Basic Facts (3.38 MB) More Documents & Publications ORDER NO. 3357: Freeport LNG Order 3669: Sabine Pass Liquefaction, LLC ORDER NO. 3391: CAMERON LNG

  6. Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Date: Tuesday, March 12, 2013 Innovation for Our Energy Future Shyam S. Kocha: NREL Yannick Garsany: EXCET/NRL Deborah Myers: ANL https://www1.eere.energy.gov/hydrogenandfuelcells/webinars.html Outline 1) Background 2) Experimental Aspects of RDE Testing 3) Basic Measurement Technique & Analysis 4) Parameters Affecting RDE Activity Measurements 1) Impact of Film Deposition & Drying Techniques 2) Impact

  7. Making solar power more affordable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making solar power more affordable Making solar power more affordable Although the goal of cheap, plentiful energy from the sun turns out to be a work in progress, not a settled achievement, recent research breakthroughs are helping to deliver on the promise of truly "cheap solar," with several surprising side benefits. August 30, 2016 Making solar power more affordable Three types of large-area solar cells made out of two-dimensional perovskites. At left, a room-temperature cast film;

  8. Basic SCADA systems - from the sensors to the screen

    SciTech Connect (OSTI)

    Merlie, B.

    1995-12-01

    Supervisory Control and Data Acquisition (SCADA) Systems are specialized control systems used to monitor and control facilities which are geographically dispersed. They are commonly used in the gas, oil, electric, and water transmission and distribution industries. SCADA systems differ from other control systems in that they make extensive use of remote communications and are more tolerant to outages of the communications network than a typical control system installation in a plant environment. A basic SCADA system can be broken into five functional parts. These are: (1) Sensors and Actuators; (2) Remote Terminal Units (RTUs); (3) Communications Facilities; (4) Host Computer Systems; and (5) User Interfaces While the fundamental concepts of SCADA systems have changed little in the past 20 years, more sophisticated hardware and software has altered some of the traditional paradigms associated with these control systems. This is particularly true with respect to RTUs, host computer systems, and user interfaces. While this paper will focus on the fundamentals, it will attempt to provide the reader with current trends in the industry where applicable.

  9. Towards reversible basic linear algebra subprograms: A performance study

    SciTech Connect (OSTI)

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) a memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.

  10. Towards reversible basic linear algebra subprograms: A performance study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perumalla, Kalyan S.; Yoginath, Srikanth B.

    2014-12-06

    Problems such as fault tolerance and scalable synchronization can be efficiently solved using reversibility of applications. Making applications reversible by relying on computation rather than on memory is ideal for large scale parallel computing, especially for the next generation of supercomputers in which memory is expensive in terms of latency, energy, and price. In this direction, a case study is presented here in reversing a computational core, namely, Basic Linear Algebra Subprograms, which is widely used in scientific applications. A new Reversible BLAS (RBLAS) library interface has been designed, and a prototype has been implemented with two modes: (1) amore » memory-mode in which reversibility is obtained by checkpointing to memory in forward and restoring from memory in reverse, and (2) a computational-mode in which nothing is saved in the forward, but restoration is done entirely via inverse computation in reverse. The article is focused on detailed performance benchmarking to evaluate the runtime dynamics and performance effects, comparing reversible computation with checkpointing on both traditional CPU platforms and recent GPU accelerator platforms. For BLAS Level-1 subprograms, data indicates over an order of magnitude better speed of reversible computation compared to checkpointing. For BLAS Level-2 and Level-3, a more complex tradeoff is observed between reversible computation and checkpointing, depending on computational and memory complexities of the subprograms.« less

  11. Device and method for separating oxygen isotopes

    DOE Patents [OSTI]

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  12. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  13. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  14. Method of making alkyl esters

    DOE Patents [OSTI]

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  15. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Stability-Low-Cost Supports | Department of Energy Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 adzic_bnl_kickoff.pdf (4.62 MB) More Documents & Publications Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction

  16. Helping make the holidays happier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helping Make The Holidays Happier Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Helping make the holidays happier This year's LANL food drive collected enough donations to provide 11,600 meals for those in need. January 1, 2013 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email The contributions by employees included 164

  17. Oxygen electrocatalysis on (001)-oriented manganese perovskite...

    Office of Scientific and Technical Information (OSTI)

    the nanoscale Citation Details In-Document Search Title: Oxygen electrocatalysis on (001)-oriented manganese perovskite films: Mn valency and charge transfer at the nanoscale ...

  18. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOE Patents [OSTI]

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  19. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Advanced Materials and Concepts for Portable Power Fuel Cells Catalysis Working ...

  20. Jupiter Oxygen Corporation | Open Energy Information

    Open Energy Info (EERE)

    Place: Schiller Park, Illinois Zip: 60176 Product: Illinois-based oxy-fuel combustion company involved in the capture of CO2. References: Jupiter Oxygen Corporation1...

  1. Identification of an Archean marine oxygen oasis

    SciTech Connect (OSTI)

    Riding, Dr Robert E; Fralick, Dr Philip; Liang, Liyuan

    2014-01-01

    The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.

  2. Homogeneously dispersed, multimetal oxygen-evolving catalysts...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Homogeneously dispersed, multimetal oxygen-evolving catalysts Citation ... Publication Date: 2016-03-24 OSTI Identifier: 1245398 Report ...

  3. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  4. Chemistry - Oxygen Vacancies and Catalysis on Ceria Surfaces

    SciTech Connect (OSTI)

    Campbell, Charles T.; Peden, Charles HF.

    2005-07-29

    Chemistry occurring at the surface of metal oxides is critical in a variety of industrial applications including catalysis and photocatalysis, optical display technology, solar energy devices and corrosion prevention. Defects have long been recognized to be the most reactive sites on the surfaces of many oxide materials. The most common types of defects present on the surfaces of metal oxides are oxygen vacancies and step edges. The nature of surface oxygen vacancies, and their number, distribution and diffusion across the surface of oxides, are thus issues of major scientific importance. One of the most interesting oxides in this respect is CeO2, since oxygen vacancies play the key role in giving this material it's industrially important ''oxygen-storage capacity''. This capacity makes modern automotive exhaust treatment catalysts containing CeO2 much more effective than their predecessors without CeO2. Ceria is also well known as a support which enhances the performance of transition metal catalysts, relative to other oxide supports, in a variety of other reactions including water-gas shift, steam reforming of oxygenates and PROX 1-7, all of which hold promise for enabling a hydrogen economy 1. Related to ceria's facile redox capacity (ability to rapidly form and eliminate oxygen vacancy defects) is the poorly understood observation that some less reducible oxides, such as zirconia (ZrO2), are used as additives that actually enhance this ''oxygen storage'' property of CeO2. In this issue, Esch and coworkers in Trieste, Italy report an exciting study that for the first time clearly elucidates the structure, distribution and formation of oxygen vacancies on a cerium oxide surface 8. They have elegantly combined beautiful, atomic-resolution imaging using scanning-tunneling microscopy (STM) on a ceria surface with state-of-the-art quantum mechanical calculations using Density Functional Theory (DFT) to raise our understanding of CeO2 surfaces to a much higher level

  5. New Oxygen-Production Technology Proving Successful

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies.

  6. Making the Connection: Beneficial Collaboration Between Army...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making the Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies Making the Connection: Beneficial Collaboration Between Army Installations ...

  7. Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates

    SciTech Connect (OSTI)

    Zhao, Y.; Xu, Q.; Cheah, S.

    2013-01-01

    Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

  8. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2001-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

  9. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1996-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  10. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1997-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  11. Tribal Renewable Energy Foundational Course: Electricity Grid Basics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on electricity grid basics by clicking on the .swf link below. You can also download the PowerPoint slides and a text version of the audio. See the full list of DOE Office of Indian Energy educational webinars and provide your feedback on the National Training & Education Resource (NTER)

  12. OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety and Health Programs and Related Matters; 29 CFR 1960 | Department of Energy OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational Safety and Health Programs and Related Matters; 29 CFR 1960 OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational Safety and Health Programs and Related Matters; 29 CFR 1960 November 26, 2004 Federal Register copy of OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational Safety and Health

  13. Large Scale Computing and Storage Requirements for Basic Energy Sciences:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target 2014 Large Scale Computing and Storage Requirements for Basic Energy Sciences: Target 2014 BESFrontcover.png Final Report Large Scale Computing and Storage Requirements for Basic Energy Sciences, Report of the Joint BES/ ASCR / NERSC Workshop conducted February 9-10, 2010 Workshop Agenda The agenda for this workshop is presented here: including presentation times and speaker information. Read More » Workshop Presentations Large Scale Computing and Storage Requirements for Basic

  14. A Basic Overview of the Energy Employees Occupational Illness Compensation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Policy, Guidance & Reports » Worker Health & Safety » A Basic Overview of the Energy Employees Occupational Illness Compensation Program A Basic Overview of the Energy Employees Occupational Illness Compensation Program January 2015 A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to assist former and current DOE Federal,

  15. Home and Building Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's buildings consume more energy than any other sector of the U.S. economy, including transportation and industry. Learn more about: Heating and Cooling Passive Solar Design Water Heating Lighting and Daylighting Energy Basics Home Renewable Energy Homes & Buildings Lighting

  16. Manhattan Project: Basic Research at Los Alamos, 1943-1944

    Office of Scientific and Technical Information (OSTI)

    Norris Bradbury, Robert Oppenheimer, Richard Feynman, Enrico Fermi, and others, Los Alamos, 1946 BASIC RESEARCH AT LOS ALAMOS (Los Alamos: Laboratory, 1943-1944) Events > Bringing ...

  17. Detter, John C. [Los Alamos National Laboratory] Basic Biological

    Office of Scientific and Technical Information (OSTI)

    State of the Art for Autonomous Detection Systems using Genomic Sequencing Detter, John C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science...

  18. EPA Brownfields and Land Revitalization Website: Basic Information...

    Open Energy Info (EERE)

    Abstract This site provides basic information regarding EPA's Brownfields program. Author Environmental Protection Agency Published EPA, Date Not Provided DOI Not Provided Check...

  19. Revolving Loan Funds: Basics and Best Practices Webinar

    Broader source: Energy.gov [DOE]

    Provides a webinar presentation, and supporting background materials, on basic information and characteristics for revolving loan funds , including best practices. Author: National Renewable Energy Laboratory

  20. Electricity Grid Basics Webinar Presentation Slides and Text Version

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on electricity grid basics.

  1. Electricity Grid Basics Webinar Presentation Slides and Text...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Grid Basics Webinar Presentation Slides and Text Version Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on ...

  2. Electron Proton Hydrogen Deuterium Tritium Neutron Fusion Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Deuterium Tritium Neutron Fusion Basics Throughout history, the way in which the sun and stars produce their energy remained a mystery. During the 20th century, scientists ...

  3. A Basic Overview of the Energy Employees Occupational Illness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Basic Overview of the Energy Employees Occupational Illness Compensation Program This pamphlet is developed by the Department of Energy (DOE) as an outreach and awareness tool to ...

  4. OSHA Rulemaking on Basic Program Elements for Federal Employee...

    Energy Savers [EERE]

    for Federal Employee Occupational Safety and Health Programs and Related Matters; 29 CFR 1960 OSHA Rulemaking on Basic Program Elements for Federal Employee Occupational ...

  5. Basic Research Needs for High Energy Density Laboratory Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...

  6. Technical Assistance Project (TAP) Revolving Loan Funds: Basics...

    Broader source: Energy.gov (indexed) [DOE]

    pwebinar20090826sifuentes.pdf More Documents & Publications Revolving Loan Funds: Basics and Best Practices LoanSTAR Revolving Loan Program Revolving Loan Funds: An Introduction...

  7. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this

  8. METHOD FOR MAKING FUEL ELEMENTS

    DOE Patents [OSTI]

    Kates, L.W.; Campbell, R.W.; Heartel, R.H.W.

    1960-08-01

    A method is given for making zirconium-clad uranium wire. A tube of zirconium is closed with a zirconium plug, after which a chilled uranium core is inserted in the tube to rest against the plug. Additional plugs and cores are inserted alternately as desired. The assembly is then sheathed with iron, hot worked to the desired size, and the iron sheath removed.

  9. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, K.V.; Berning, D.E.; Volkert, W.A.; Ketring, A.R.

    1998-12-01

    A complex and method for making a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids. 20 figs.

  10. Hydroxyalkyl phosphine gold complexes for use as diagnostic and therapeutic pharmaceuticals and method of making same

    DOE Patents [OSTI]

    Katti, Kattesh V.; Berning, Douglas E.; Volkert, Wynn A.; Ketring, Alan R.

    1998-01-01

    A complex and method for making same for use as a diagnostic or therapeutic pharmaceutical includes a ligand comprising at least one hydroxyalkyl phosphine donor group bound to a gold atom to form a gold-ligand complex that is stable in aqueous solutions containing oxygen, serum and other body fluids.

  11. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOE Patents [OSTI]

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  12. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    SciTech Connect (OSTI)

    Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja

    2015-05-22

    From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research

  13. MESA Makes It Real The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering Sciences Applications (MESA) MESA Makes It Real The Microsystems & Engineering Sciences Applications (MESA) Complex represents the essential facilities and equipment to design, develop, manufacture, integrate, and qualify microsystems for national security needs that cannot or should not be made in industry- either because the low volumes required for these applications are not profitable for the private sector, or because of stringent security requirements for

  14. Making Progress | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Making Progress September 17, 2010 - 10:56pm Addthis Former Under Secretary Koonin Former Under Secretary Koonin Director - NYU's Center for Urban Science & Progress and Former Under Secretary for Science I spoke yesterday to the newly reconstituted Secretary of Energy Advisory Board (SEAB) -- a group of distinguished science and policy leaders who advise the Secretary and Department leadership. My remarks described efforts to better focus Department of Energy's technical talents on

  15. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOE Patents [OSTI]

    Givens, Edwin N.; Hoover, David S.

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  16. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-08-01

    This quarterly technical progress report will summarize work accomplished for the Program through the thirteenth quarter, April-June 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with project objectives. REI's model was modified to evaluate mixing issues in the upper furnace of a staged unit. Analysis of the results, and their potential application to this unit is ongoing. Economic evaluation continues to confirm the advantage of oxygen-enhanced combustion. A contract for a commercial demonstration has been signed with the Northeast Generation Services Company to supply oxygen and license the oxygen enhanced low NOx combustor technology for use at the 147-megawatt coal fired Mt. Tom Station in Holyoke, MA. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  17. Oxygen ion-conducting dense ceramic

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  18. 2 BASIC ENERGY SCIENCES 2.1 Adenosine Triphosphate: The Energy Currency of Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 6/1/2011 2 BASIC ENERGY SCIENCES 2.1 Adenosine Triphosphate: The Energy Currency of Life The energy cycle of all living organisms involves the molecule adenosine triphosphate (ATP), which captures the chemical energy released by the metabolism of nutrients and makes it available for cellular functions such as muscle contraction and transmission of nerve messages. A hard-working human adult can convert almost a ton of ATP daily. From the early 1960s through 1994, the Office of Science supported

  19. Magnetism in LithiumOxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13

    Nonaqueous lithiumoxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithiumoxygen batteries. We demonstrate that the major discharge product formed in the lithiumoxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  20. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-01-01

    This quarterly technical progress report will summarize work accomplished for the Program in the seventh quarter October-December 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. Computational fluid dynamic (CFD) modeling of oxygen injection strategies was performed during the quarter resulting in data that suggest the oxygen injection reduces NOx emissions while reducing LOI. Pilot-scale testing activities concluded at the University of Utah this quarter. Testing demonstrated that some experimental conditions can lead to NOx emissions well below the 0.15 lb/MMBtu limit. Evaluation of alternative OTM materials with improved mechanical properties continued this quarter. Powder procedure optimization continued and sintering trial began on an element with a new design. Several OTM elements were tested in Praxair's single tube high-pressure test facility under various conditions. A modified PSO1d element demonstrated stable oxygen product purity of >98% and oxygen flux of 68% of target. Updated test results and projected economic performance have been reviewed with the Utility Industrial Advisors. The economic comparison remains very favorable for O{sub 2} enhanced combustion. Discussions regarding possible Beta sites have been held with three other utilities in addition to the industrial advisors. Proposals will be prepared after the completion of full scale burner testing. Beta test cost estimating work has been initiated.

  1. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the second year. The first round of pilot scale testing with 3 bituminous coals was completed at the University of Utah. Full-scale testing equipment is in place and experiments are underway. Coal combustion lab-scale testing was completed at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. Combustion modeling activities continued with pilot-scale combustion test furnace simulations. 75% of target oxygen flux was demonstrated with small PSO1 tube in Praxair's single tube high-pressure test facility. The production of oxygen with a purity of better than 99.999% was demonstrated. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host sites have been identified.

  2. Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite...

    Office of Scientific and Technical Information (OSTI)

    Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite Films Citation Details In-Document Search Title: Strain Control of Oxygen Vacancies in Epitaxial Strontium ...

  3. Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From...

    Open Energy Info (EERE)

    Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Oxygen...

  4. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for ...

  5. Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency & ...

  6. Artificial oxygen transport protein (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: Artificial oxygen transport protein Citation Details In-Document Search Title: Artificial oxygen transport protein This invention provides heme-containing peptides capable...

  7. Pt3Re alloy nanoparticles as electrocatalysts for the oxygen...

    Office of Scientific and Technical Information (OSTI)

    Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction Citation ... on March 24, 2018 Title: Pt3Re alloy nanoparticles as electrocatalysts for the oxygen ...

  8. Webinar: Testing Oxygen Reduction Reaction Activity with the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Above is the video recording for the webinar, "Testing Oxygen Reduction Reaction ...

  9. Facile oxygen intercalation between full layer graphene and Ru...

    Office of Scientific and Technical Information (OSTI)

    Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient ... Title: Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient ...

  10. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-07-01

    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance

  11. Direct Observation of the Oxygenated Species during Oxygen Reduction on a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Platinum Fuel Cell Cathode | Stanford Synchrotron Radiation Lightsource Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray spectroscopy identification and DFT simulations of oxygenated intermediates on a platinum fuel-cell cathode. The study shows that two types of hydroxyl intermediates (non-hydrated OH and hydrated OH) with distinct activities coexist on a fuel-cell

  12. cognitive-based-decision-making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 29, 2011 From Cognitive-Based Decision Making To Car-Following Modeling: Beyond an Accident-Free Environment Dr. Samer Hamdar Assistant professor, George Washington University Tuesday, November 29, 2011 - 10am Argonne TRACC Building 222, Room D-233 In the year 2005, the monetary cost of injuries related to traffic accidents reached 625 billion USD (U. S. Dollars) in the U.S.A. only. Based on the National Highway Traffic Safety Agency (NHSTA) studies, 5 accident types of interest can be

  13. Method of making diode structures

    DOE Patents [OSTI]

    Compaan, Alvin D.; Gupta, Akhlesh

    2006-11-28

    A method of making a diode structure includes the step of depositing a transparent electrode layer of any one or more of the group ZnO, ZnS and CdO onto a substrate layer, and depositing an active semiconductor junction having an n-type layer and a p-type layer onto the transparent electrode layer under process conditions that avoid substantial degradation of the electrode layer. A back electrode coating layer is applied to form a diode structure.

  14. Simulation of human decision making

    DOE Patents [OSTI]

    Forsythe, J. Chris; Speed, Ann E.; Jordan, Sabina E.; Xavier, Patrick G.

    2008-05-06

    A method for computer emulation of human decision making defines a plurality of concepts related to a domain and a plurality of situations related to the domain, where each situation is a combination of at least two of the concepts. Each concept and situation is represented in the computer as an oscillator output, and each situation and concept oscillator output is distinguishable from all other oscillator outputs. Information is input to the computer representative of detected concepts, and the computer compares the detected concepts with the stored situations to determine if a situation has occurred.

  15. Method of making permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.

  16. Method of making permanent magnets

    DOE Patents [OSTI]

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.

  17. Oxygen generator for medical applications (USIC)

    SciTech Connect (OSTI)

    Staiger, C. L.

    2012-03-01

    The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible

  18. Fermentative process for making inorganic nanoparticles (Patent...

    Office of Scientific and Technical Information (OSTI)

    Fermentative process for making inorganic nanoparticles Title: Fermentative process for making inorganic nanoparticles A method for producing mixed metal oxide compounds includes ...

  19. Process for selection of Oxygen-tolerant algal mutants that produce H.sub.2

    DOE Patents [OSTI]

    Ghirardi, Maria L.; Seibert, Michael

    1999-01-01

    A process for selection of oxygen-tolerant, H.sub.2 -producing algal mutant cells comprising: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas; (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light. (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H.sub.2 -producing mutants.

  20. Tutorial: The Basics of SAXS Data Analysis | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial: The Basics of SAXS Data Analysis Thursday, November 17, 2011 - 1:00pm SLAC, Redtail Hawk Conference Room 108A Dr. Alexander V. Shkumatov, Biological Small Angle...

  1. Exploring Power Purchase Agreements- The Basics Part 1

    Broader source: Energy.gov [DOE]

    This webinar, held on July 27, 2011, provides information on the basics of Power Purchase Agreements, including risks and unique issues and benefits. Case studies include Salt Lake County, Utah, and Talbot County, Maryland.

  2. Tutorial: The Basics of SAXS Data Analysis | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Tutorial: The Basics of SAXS Data Analysis Thursday, November 17, 2011 - 1:00pm SLAC, Redtail Hawk Conference Room 108A Dr. Alexander V. Shkumatov, Biological Small Angle Scattering Group, EMBL Hamburg

  3. Vehicle Technologies Office Merit Review 2015: Basic Energy Sciences Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by U.S. Department of Energy  at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Basic Energy...

  4. Inflation Basics (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Inflation Basics Authors: Green, Dan 1 + Show ... Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of ...

  5. Energy 101 Videos: Learn More About the Basics! | Department...

    Broader source: Energy.gov (indexed) [DOE]

    out the Energy Basics Web site last week. Because I'm going to talk about something on the site, I wanted to remind you all of what it is: a brand new Web site on EERE that talks ...

  6. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per

  7. Wood and Pellet Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices.

  8. Microhydropower Conveyance and Filter Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conveyance and Filter Basics Microhydropower Conveyance and Filter Basics August 16, 2013 - 3:53pm Addthis Before water enters the turbine or waterwheel of a microhydropower system, it is funneled through a series of components that control its flow and filter out debris. These components include the headrace, forebay, and water conveyance (or channel, pipeline, or penstock). The headrace is a waterway that runs parallel to the water source. A headrace is sometimes necessary for hydropower

  9. Microhydropower Turbine, Pump, and Waterwheel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbine, Pump, and Waterwheel Basics Microhydropower Turbine, Pump, and Waterwheel Basics August 16, 2013 - 3:58pm Addthis A microhydropower system needs a turbine, pump, or waterwheel to transform the energy of flowing water into rotational energy, which is then converted into electricity. Turbines Turbines are commonly used to power microhydropower systems. The moving water strikes the turbine blades, much like a waterwheel, to spin a shaft. But turbines are more compact in relation to their

  10. Guidance on Basic Best Practices in Management of Energy Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings | Department of Energy on Basic Best Practices in Management of Energy Performance Buildings Guidance on Basic Best Practices in Management of Energy Performance Buildings Building energy management best practices 11_001_eecbg_sep_building_best_practice.pdf (206.26 KB) More Documents & Publications Energy Efficiency and Conservation Block Grant Financing Program Guidance Grantee Letter SEP Guidance National Energy Policy Act Guide for State Energy Program and Energy Efficiency

  11. Basic Research for the Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative (143.96 KB) More Documents & Publications FTA - SunLine Transit Agency - Final Report 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office

  12. Safety, Codes and Standards - Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » Safety, Codes and Standards - Basics Safety, Codes and Standards - Basics Hydrogen has a long history of safe use in the chemical and aerospace industries. An understanding of hydrogen properties, proper safety precautions and engineering controls, and established rules, regulations, and standards are the keys to this successful track record. As the use of hydrogen and fuel cell systems expands, codes and standards will be needed to provide the information to

  13. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda BES Report Controlling Subsurface Fractures and Fluid Flow.pdf (815.56 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Jason Report

  14. EV Everywhere: Electric Vehicle Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Electric Vehicle Basics EV Everywhere: Electric Vehicle Basics Just as there are a variety of technologies available in conventional vehicles, plug-in electric vehicles (also known as electric cars or EVs) have different capabilities that can accommodate different drivers' needs. EVs' major feature is that drivers can plug them in to charge from an off-board electric power source. This distinguishes them from hybrid electric vehicles, which supplement an internal combustion engine

  15. Geothermal Direct-Use Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct-Use Basics Geothermal Direct-Use Basics August 14, 2013 - 1:46pm Addthis Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use applications include heating buildings, growing plants in greenhouses, drying crops, heating water at fish farms, and several industrial processes such as pasteurizing milk. Learn more about direct-use of geothermal applications from the EERE Geothermal Technologies Office. Addthis Related Articles

  16. Heating and Cooling System Support Equipment Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cooling System Support Equipment Basics Heating and Cooling System Support Equipment Basics July 30, 2013 - 3:28pm Addthis Thermostats and ducts provide opportunities for saving energy. Dehumidifying heat pipes provide a way to help central air conditioners and heat pumps dehumidify air. Electric and gas meters allow users to track energy use. Thermostats Programmable thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated

  17. Large Scale Production Computing and Storage Requirements for Basic Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences: Target 2017 Large Scale Production Computing and Storage Requirements for Basic Energy Sciences: Target 2017 BES-Montage.png This is an invitation-only review organized by the Department of Energy's Office of Basic Energy Sciences (BES), Office of Advanced Scientific Computing Research (ASCR), and the National Energy Research Scientific Computing Center (NERSC). The goal is to determine production high-performance computing, storage, and services that will be needed for BES to

  18. Advanced Technology and Alternative Fuel Vehicle Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a large blue truck with 'PG&amp;E Cleanair' written on the side. There are a variety of alternative fuel and advanced technology vehicles that run on fuels other than traditional petroleum. Learn about the following types of vehicles: Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid and Plug-In Electric Vehicles Natural Gas

  19. A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reporting | Department of Energy A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting A Basic Overview of Occupational Radiation Exposure Monitoring, Analysis & Reporting September 2012 This pamphlet is intended to provide a short summary of the Department of Energy Laboratory Accreditation Program and DOE Radiation Exposure Monitoring System programs that aid in the oversight of radiation protection activities at DOE. Title 10, Code of Federal

  20. Hydrogen and Fuel Cell Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technology Basics Hydrogen and Fuel Cell Technology Basics August 14, 2013 - 2:01pm Addthis Photo of a scientist testing a photoelectrochemical water splitting system. Hydrogen is the simplest and most abundant element in the universe. It is a major component of water, oil, natural gas, and all living matter. Despite its simplicity and abundance, hydrogen rarely occurs naturally as a gas on Earth. It is almost always combined with other elements. It can be generated from

  1. Space Heating and Cooling Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heating and Cooling Basics Space Heating and Cooling Basics August 16, 2013 - 1:04pm Addthis A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain supporting equipment in common, such as thermostats and ducts, which provide opportunities for saving energy. Learn how these technologies and systems work. Learn about: Cooling Systems Heating Systems Heat Pump Systems Supporting Equipment for

  2. Vehicle Technology and Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn about exciting technologies and ongoing research in advanced technology vehicles and alternative fuel vehicles that run on fuels other than traditional petroleum.. ADVANCED TECHNOLOGY AND ALTERNATIVE FUEL VEHICLES There are a variety of alternative fuel vehicles and advanced technology vehicles available. Learn about: Flexible Fuel Vehicles Fuel

  3. Concentrating Solar Power Thermal Storage System Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Concentrating Solar Power Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to

  4. Process to make structured particles

    DOE Patents [OSTI]

    Knapp, Angela Michelle; Richard, Monique N; Luhrs, Claudia; Blada, Timothy; Phillips, Jonathan

    2014-02-04

    Disclosed is a process for making a composite material that contains structured particles. The process includes providing a first precursor in the form of a dry precursor powder, a precursor liquid, a precursor vapor of a liquid and/or a precursor gas. The process also includes providing a plasma that has a high field zone and passing the first precursor through the high field zone of the plasma. As the first precursor passes through the high field zone of the plasma, at least part of the first precursor is decomposed. An aerosol having a second precursor is provided downstream of the high field zone of the plasma and the decomposed first material is allowed to condense onto the second precursor to from structured particles.

  5. METHOD OF MAKING FUEL BODIES

    DOE Patents [OSTI]

    Goeddel, W.V.; Simnad, M.T.

    1962-04-24

    An improved method of making a fuel body containing carbon for reactors is described. Carbides of uranium and thorium having a particle size of from 100 to 500 microns are mixed with carbon having a particle size that will pass a 200 mesh screen but be retained by a 325 mesh screen, and 10 per cent by weight pitch. The mixture is heated to a temperature of about 700 to 900 deg C, at which point bonding is effected while maintaining it under mechanical pressure of over 3,000 pounds per square inch. The entire compact is heated to a uniform temperature during the process, preferably by electrical resistance of the compact itself. (AEC)

  6. METHOD OF MAKING FUEL BODIES

    DOE Patents [OSTI]

    Goeddel, W.V.; Simnad, M.T.

    1963-04-30

    This patent relates to a method of making a fuel compact having a matrix of carbon or graphite which carries the carbides of fissile material. A nuclear fuel material selected from the group including uranium and thorium carbides, silicides, and oxides is first mixed both with sufficient finely divided carbon to constitute a matrix in the final product and with a diffusional bonding material selected from the class consisting of zirconium, niobium, molybdenum, titanium, nickel, chromium, and silicon. The mixture is then heated at a temperature of 1500 to 1800 nif- C while maintaining it under a pressure of over about 2,000 pounds per square inch. Preferably, heating is accomplished by the electrical resistance of the compact itself. (AEC)

  7. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-02-01

    This quarterly technical progress report will summarize work accomplished for the Program through the eleventh quarter, October-December 2002, in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah were aimed at confirming the importance of oxygen injection strategy for different types of burners. CFD modeling at REI was used to better understand the potential for increased corrosion under oxygen enhanced combustion conditions. Data from a full-scale demonstration test in Springfield, MO were analyzed. OTM element development continued with preliminary investigation of an alternative method of fabrication of PSO1d elements. OTM process development continued with long-term testing of a PSO1d element. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. A first commercial proposal has been submitted. Economic analysis of a beta site test performance was conducted.

  8. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  9. Apparatus for making photovoltaic devices

    DOE Patents [OSTI]

    Foote, James B. (Toledo, OH); Kaake, Steven A. F. (Perrysburg, OH); Meyers, Peter V. (Bowling Green, OH); Nolan, James F. (Sylvania, OH)

    1994-12-13

    A process and apparatus (70) for making a large area photovoltaic device (22) that is capable of generating low cost electrical power. The apparatus (70) for performing the process includes an enclosure (126) providing a controlled environment in which an oven (156) is located. At least one and preferably a plurality of deposition stations (74,76,78) provide heated vapors of semiconductor material within the oven (156) for continuous elevated temperature deposition of semiconductor material on a sheet substrate (24) including a glass sheet (26) conveyed within the oven. The sheet substrate (24) is conveyed on a roller conveyor (184) within the oven (156) and the semiconductor material whose main layer (82) is cadmium telluride is deposited on an upwardly facing surface (28) of the substrate by each deposition station from a location within the oven above the roller conveyor. A cooling station (86) rapidly cools the substrate (24) after deposition of the semiconductor material thereon to strengthen the glass sheet of the substrate.

  10. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOE Patents [OSTI]

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  11. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOE Patents [OSTI]

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  12. Self-Assembled Monolayer And Method Of Making

    DOE Patents [OSTI]

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  13. Self-assembled monolayer and method of making

    DOE Patents [OSTI]

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  14. Self-Assembled Monolayer And Method Of Making

    DOE Patents [OSTI]

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  15. Self-assembled monolayer and method of making

    DOE Patents [OSTI]

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  16. Impact of oxygenates on petroleum refining part 2: Future outlook

    SciTech Connect (OSTI)

    Unzelman, G.H.

    1995-07-01

    With the move to a more conservative political outlook in the U.S. in 1995, some have voiced the opinion there may be resistance to the Clean Air Act and specifically to reformulated gasoline (RFG). There has been some evidence that substantiates early resistance to RFG, brought about by price hikes as high as 10 cents/gal at the pump. Pennsylvania, Maine, New York and Wisconsin have elected to {open_quotes}opt out{close_quotes} about 200,000 b/d of RFG. Certainly a move of this nature may slow the {open_quotes}opt in{close_quotes} movement in other areas of the U.S. On the other hand, the basic RFG program for nine critical areas in the U.S. will remain in place, and as air-quality limits are exceeded in other regions, they will be forced into the program. The movement toward cleaner air is worldwide, and the U.S. has been a leader in fuel reformulation for the past 25 years. While the movement may falter for various reasons, and fine tuning of regulations is inevitable, the ultimate result will be a U.S. gasoline pool that is largely reformulated - and the presence of oxygenates is fundamental to reformulation.

  17. Basic research needs for management and disposal of DOE wastes

    SciTech Connect (OSTI)

    Grazis, B.M.; Horwitz, E.P. ); Schulz, W.W. )

    1991-04-01

    This document was chartered by the Department of Energy (DOE), Office of Energy Research. It identifies and describes 87 basic research needs in support of advanced technology for management and disposal of Department of Energy radioactive, hazardous chemical, and mixed wastes. A team of scientists and engineers from several DOE laboratories and sites, from academia, and from industry identified and described the basic research needs called out in this report. Special efforts were made to ensure that basic research needs related to management and disposal of any hazardous chemical wastes generated at nonnuclear DOE sites and facilities were properly identified. It is hoped that scientists in both DOE and nongovernment laboratories and institutions will find this document useful when formulating research efforts relevant to waste management and disposal. For management and disposal of DOE radioactive and mixed wastes, basic research needs are identified in nine separate action areas. Basic research needs for management and disposal of DOE hazardous chemical wastes are identified in five action areas. Sufficient description and background information are provided in the report for each particular research need to enable qualified and imaginative scientists to conceive research efforts and programs that will meet the need. 28 refs., 7 tabs.

  18. Fundamentals, development and scaleup of the air=oxygen stratified downdraft gasifier

    SciTech Connect (OSTI)

    Reed, T.B.; Levie, B.; Graboski, M.S.

    1988-06-01

    In 1979 the US Department of Energy, Office of Alcohol Fuels, asked the Solar Energy Research Institute to develop a process for manufacturing methanol from biomass. This can be achieved by gasification of the biomass to a ''synthesis gas'' (syn-gas) (composed of primarily hydrogen and carbon monoxide) followed by catalytic conversion of the gas to methanol. The catalytic conversion of syn-gas is a well developed commercial process. There are a number of gasifiers for wood, but most of them make either a producer gas, high on nitrogen or a pyrolysis gas high in hydrocarbons. None were developed to make syn-gas. Thus the principal technical problem was to develop a gasifier to make synthesis gas from biomass. Work was performed at SERI from 1980--1985 which resulted in the development of a prototype 1 ton/day oxygen-biomass gasifier. In 1985 a program was undertaken for Congress by the US Department of Energy (DOE) to build a commercial scale (50--200 tons/day) medium energy gasifier, based on DOE or other research. A new company, Syn-Gas Inc. (SGI), research. A contract was awarded to SGI to modify the air gasifier for oxygen operation for this project. This modification allowed extended tests of the gasifier with oxygen to determine the possibility of scaling up the SERI-SGI gasifier to 50--200 tons/day.

  19. Glass-ceramic material and method of making

    DOE Patents [OSTI]

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA

    2002-08-13

    The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  20. Method for making polysilsesquioxanes and organohydridosilanes

    DOE Patents [OSTI]

    Loy, Douglas A.; Rahimian, Kamyar

    2001-01-01

    A method for disproportionation of an oligohydridosiloxane to produce a polysilsesquioxane compound and an organohydridosilane compound when contacted with a basic catalyst. The basic catalyst can be a tetraalkylammonium hydroxide, an alkali metal hydroxide, and an alkali earth hydroxide. These basic catalysts are generally dissolved in an organic solvent for delivery. The hydroxide catalysts are attractive because many readily decompose by heating above 150.degree. C., thus being easily removed from the final materials. The oligohydridosiloxane is contacted with the basic catalyst under conditions effective to catalytically convert the oligohydridosiloxane into a polysilsesquioxane compound and an organohydridosilane compound. The reaction can occur in either an inert or oxidative atmosphere and can occur without heating, at room temperature. Both polysilsesquioxane foams and gels of the formula (RSiO.sub.1.5).sub.n can be produced.

  1. Oxygen reduction reaction: A framework for success

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allendorf, Mark D.

    2016-05-06

    Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

  2. Ammonia producing engine utilizing oxygen separation

    DOE Patents [OSTI]

    Easley, Jr., William Lanier; Coleman, Gerald Nelson; Robel, Wade James

    2008-12-16

    A power system is provided having a power source, a first power source section with a first intake passage and a first exhaust passage, a second power source section with a second intake passage and a second exhaust passage, and an oxygen separator. The second intake passage may be fluidly isolated from the first intake passage.

  3. Assessment of the basic energy sciences program. Volume II. Appendices

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    A list of experts reviewing the Basic Energy Sciences (BES) program and their organizations are given. The assessment plan is explained; the program examined the following: quality of science being conducted in the program, quality of performers supported by the Basic Energy Sciences (BES) program, and the impact of the research on mission oriented needs. The intent of the assessment is to provide an indication of general status relative to these questions for the BES divisions. The approach to the assessment is described. The sampling plan which was used as a guide in determining the sample size and selecting the sample to evaluate the research program of the Office of Basic Energy Sciences are discussed. Special analyses were conducted on the dispersion of reviewers' ratings, the ratings of the lower funded projects, and the amount of time the principal investigator devoted to the project. These are presented in the final appendix together with histograms for individual rating variables for each program area. (MCW)

  4. High-Intensity Discharge Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. High-intensity discharge (HID) lighting can provide high efficacy and long

  5. Solar Photovoltaic System Design Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Design Basics Solar Photovoltaic System Design Basics August 20, 2013 - 4:00pm Addthis Solar photovoltaic modules are where the electricity gets generated, but are only one of the many parts in a complete photovoltaic (PV) system. In order for the generated electricity to be useful in a home or business, a number of other technologies must be in place. Mounting Structures PV arrays must be mounted on a stable, durable structure that can support the array and withstand wind, rain, hail,

  6. Conventional Storage Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Conventional Storage Water Heater Basics Conventional Storage Water Heater Basics July 30, 2013 - 3:39pm Addthis Illustration showing the components of a storage water heater. On top of the tank are two thin pipes; one pipe is the hot water outlet, and the other is the cold water inlet. A large pipe in the middle is called a vent pipe. A pressure/temperature relief valve is also on top of the tank and is connected to an open pipe that runs down the side of the tank. Another

  7. Heat Pump Water Heater Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating » Heat Pump Water Heater Basics Heat Pump Water Heater Basics August 19, 2013 - 2:59pm Addthis Illustration of a heat pump water heater, which looks like a tall cylinder with a small chamber on top and a larger one on the bottom. In the top chamber are a fan, a cylindrical compressor, and an evaporator that runs along the inside of the chamber. Jutting out from the exterior of the bottom chamber is a temperature and pressure relief valve. This valve has a tube called a hot water

  8. Air-Source Heat Pump Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another

  9. Passive Solar Building Design Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Passive Solar Building Design Basics Passive Solar Building Design Basics July 30, 2013 - 3:20pm Addthis The difference between a passive solar home and a conventional home is design. Passive solar homes and other buildings are designed to take advantage of the local climate. Passive solar design-also known as climatic design-involves using a building's windows, walls, and floors to collect, store, and distribute solar energy in the form of heat in the winter and reject

  10. Large-Scale Hydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the

  11. Making Efficiency a More Efficient Business

    Broader source: Energy.gov [DOE]

    How energy efficiency professionals can make the most out of these new Better Buildings Neighborhood Program features.

  12. Transportation Emergency Preparedness Program - Making A Difference |

    Office of Environmental Management (EM)

    Department of Energy - Making A Difference Transportation Emergency Preparedness Program - Making A Difference Overview of TEPP presented by Tom Clawson. Transportation Emergency Preparedness Program - Making A Difference (493.76 KB) More Documents & Publications Transportation Emergency Preparedness Program Exercise Overview Transportation Emergency Preparedness Program 2012 TEPP Annual Report

  13. Oxygen-producing inert anodes for SOM process

    DOE Patents [OSTI]

    Pal, Uday B

    2014-02-25

    An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

  14. Glass Coating Makes Solar Panels More Efficient | Department...

    Energy Savers [EERE]

    uncover how contact paste performs in solar modules. EERE Success Story - Back to the Basics: Studying Solar Cell Components Photovoltaic Electrical Contact and Cell Coating Basics

  15. DOE Selects Seven Contractors for Waste Treatment Basic Ordering Agreements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cincinnati – The U.S. Department of Energy (DOE) issued seven Basic Ordering Agreements (BOAs) for the treatment of Low-Level Waste (LLW) and Mixed Low-Level Waste (MLLW). The LLW MLLW treatment services also include the treatment of liquid and solid Toxic Substances Control Act (TSCA) regulated waste, such as polychlorinated biphenyls (PCBs) and asbestos.

  16. Basic principles of the surface harmonics method: Flat geometry

    SciTech Connect (OSTI)

    Kovalishin, A. A.

    2011-12-15

    The basic principles of the surface harmonics method are described. A one-dimensional problem is used to exemplify the specific features of the method and the algorithms for construction of finite-difference equations. The objective of this study is to popularize the surface harmonics method among specialists.

  17. Role of basic ecological knowledge in environmental assessment

    SciTech Connect (OSTI)

    Hildebrand, S.G.; Barnthouse, L.W.; Suter, G.W.

    1984-01-01

    The role of basic ecological knowledge in environmental impact assessment was examined. The focus was primarily on the NEPA process. Experience in population biology and ecosystem studies is discussed, the successes and limits of applicability are highlighted, and implications for long-term research needs are identified. Current attempts to develop a national assessment of acid deposition impacts are reviewed. 48 refs. (ACR)

  18. Buying and Making Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver » Buying and Making Electricity Buying and Making Electricity You can make your own electricity by installing a small solar electric (photovoltaic) system at your home. | Photo courtesy of Susan Bilo/NREL. You can make your own electricity by installing a small solar electric (photovoltaic) system at your home. | Photo courtesy of Susan Bilo/NREL. You can take advantage of clean, renewable energy by buying "green power" or by making your own electricity with a small home

  19. Vacuum pyrolysis of waste tires with basic additives

    SciTech Connect (OSTI)

    Zhang Xinghua; Wang Tiejun Ma Longlong; Chang Jie

    2008-11-15

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  20. Excess Oxygen Defects in Layered Cuprates

    DOE R&D Accomplishments [OSTI]

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.

    1990-09-01

    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  1. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-10-01

    This quarterly technical progress report will summarize work accomplished for the Program through the second quarter July--September 2000 in the following task areas: Task 1-Oxygen Enhanced Combustion, Task 2-Oxygen Transport Membranes and Task 4-Program Management. The program is proceeding in accordance with the objectives for the first year. OTM tube characterization is well underway, the design and assembly of the high pressure permeation test facility is complete and the facility will be in full operation during the next quarter. Combustion testing has been initiated at both the University of Arizona and Praxair. Testing at the University of Arizona has experienced some delays; steps have been take to get the test work back on schedule. Completion of the first phase of the testing is expected in next quarter. Combustion modeling has been started at both REI and Praxair, preliminary results are expected in the next quarter.

  2. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, R.R.; Bond, J.A.

    1994-03-29

    A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

  3. Electrical insulator assembly with oxygen permeation barrier

    DOE Patents [OSTI]

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  4. Energy Auditor - Single Family 2.0: Blower Door Basics | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Blower Door Basics Energy Auditor - Single Family 2.0: Blower Door Basics Blower Door Basics - Complete (12.5 MB) Lesson Plan: Blower Door Basics (225.08 KB) PowerPoint: Blower Door Basics (12.84 MB) More Documents & Publications Energy Auditor - Single Family 2.0: Mechanical Ventilation Energy Auditor - Single Family 2.0: Zone Pressure Diagnostics Energy Auditor - Single Family 2.0: Building Science Basics

  5. Assessment of New Approaches in Geothermal Exploration Decision Making: Preprint

    SciTech Connect (OSTI)

    Akar, S.; Young, K. R.

    2015-02-01

    Geothermal exploration projects have significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Understanding when and how to proceed in an exploration program, and when to walk away from a site, are two of the largest challenges for increased geothermal deployment. Current methodologies for exploration decision making is left to subjective by subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a given location, including go-no-go decision points to help developers and investors decide when to give up on a location. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of a particular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basic geothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This second approach was

  6. Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platinum Monolayer Electrocatalysts for Oxygen Reduction Reaction Radoslav Adzic Co-workers: Jia Wang, Miomir Vukmirovic, Kotaro Sasaki, Stoyan Bliznakov, Yun Cai, Yu Zhang, Kurian Kuttiyiel, Kuanping Gong, YongMan Choi, Ping Liu, Hideo Naohara 1 Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 1 Toyota Motor Corporation, Susono, Japan Webinar June 19, 2012 Outline - Introduction on fuel cells, electrocatalysis, existing developments and remaining obstacles to

  7. Oxygen stabilized zirconium vanadium intermetallic compound

    DOE Patents [OSTI]

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

  8. Hydrogen (H2) Production by Oxygenic Phototrophs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production by Oxygenic Phototrophs Eric L. Hegg Michigan State University Great Lakes Bioenergy Research Center Bioresour. Technol. 2011, 102, 8589-8604 Major Challenges to H 2 Photoproduction Biological Challenges * Poor efficiency of H 2 production * Poor heterologous expression of H 2 -forming enzymes * Low quantum yields * Competition for reducing equivalents; poor electron coupling * Sensitivity of H 2 -forming enzymes to O 2 M. Ghirardi, Abstract #1751, Honolulu PRiME 2012 Technical

  9. Impact of interstitial oxygen on the electronic and magnetic...

    Office of Scientific and Technical Information (OSTI)

    interstitial oxygen on the electronic and magnetic structure in superconducting Fe 1 + y Te O x thin films Citation Details In-Document Search Title: Impact of interstitial oxygen...

  10. DME-to-oxygenates process studies

    SciTech Connect (OSTI)

    Tartamella, T.L.; Sardesai, A.; Lee, S.; Kulik, C.J.

    1994-12-31

    The feasibility of the production of hydrocarbons from dimethyl ether (DNM) has been illustrated in a fixed bed micro-reactor as well as a bench scale fluidized bed reactor by the University of Akron/EPRI DME-to-Hydrocarbon (DTG) Process. The DTG process has distinct advantages over its methanol based counterpart. Specifically, the DTG process excels in the area of higher productivity, higher per-pass conversion, and lower heat duties than the MTG process. Also of special importance is the production of oxygenates -- including MTBE, ETBE, and TAME. DME may be reacted with isobutylene to produce a mixture of MTBE and ETBE. The properties of ETBE excel over MTBE in the areas of lower RVP and higher RON. According to industrial reports, MTBE is the fastest growing chemical (1992 US capacity 135,350 BPD, with expected growth of 34%/year to 1997). Also, recent renewed interest as an octane-enhancer and as a source of oxygen has spurred a growing interest in nonrefinery synthesis routes to ETBE. TAME, with its lower RVP and higher RON has proven useful as a gasoline blending agent and octane enhancer and may also be produced directly from DME. DME, therefore, serves as a valuable feedstock in the conversion of may oxygenates with wide-scale industrial importance. It should be also noted that the interest in the utilization of DME as process feedstock is based on the favorable process economics of EPRI/UA`s liquid phase DME process.

  11. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-08-01

    This quarterly technical progress report will summarize work accomplished for the Program through the ninth quarter April-June 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Full-scale testing using the Industrial Boiler Simulation Facility (ISBF) at Alstom Power was completed. The pilot scale experiments to evaluate the effect of air preheat and transport air stoichiometric ratio (SR) on NOx emissions were conducted at the University of Utah. Combustion modeling activities continued with full-scale combustion test furnace simulations. An OTM element was tested in Praxair's single tube high-pressure test facility and two thermal cycles were completed. PSO1d elements of new dimension were tested resulting in a lower flux than previous PSO1d elements of different dimensions, however, no element deformation was observed. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host beta sites have been identified and proposals submitted.

  12. DOE Announces $52.5 Million Solicitation for Basic Hydrogen Research...

    Office of Environmental Management (EM)

    for Basic Hydrogen Research Supporting President Bush's Advanced Energy Initiative DOE Announces 52.5 Million Solicitation for Basic Hydrogen Research Supporting ...

  13. Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication 13159553.pdf (405 KB) Technology Marketing Summary This patent-pending technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen

  14. Oxygen-Enriched Combustion for Military Diesel Engine Generators |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel combustion deer09_yelvington.pdf (196.85 KB) More Documents & Publications Development Methodology for Power-Dense Military Diesel Engine Oxygen-Enriched Combustion Emission Control Strategy for Downsized Light-Duty Diese

  15. Summary proceedings of a workshop on Bioremediation and its Societal Implications and Concerns (BASIC)

    SciTech Connect (OSTI)

    Drell, D.W.; Metting, F.B. Jr.; Wuy, L.D.

    1996-11-01

    This document summarizes the proceedings of a workshop on Bioremediation and Its Societal Implications and Concerns (BASIC) held July 18-19, 1996 at the Airlie Center near Warrenton, Virginia. The workshop was sponsored by the Office of Health and Environmental Research (OHER), U.S. Department of Energy (DOE), as part of its fundamental research program in Natural and Accelerated Bioremediation Research (NABIR). The information summarized in these proceedings represents the general conclusions of the workshop participants, and not the opinions of workshop organizers or sponsors. Neither are they consensus opinions, as opinions differed among participants on a number of points. The general conclusions presented below were reached through a review, synthesis, and condensation of notes taken by NABIR Program Office staff and OHER program managers throughout the workshop. Specific contributions by participants during breakout sessions are recorded in bullet form in the appropriate sections, without attribution to the contributors. These contributions were transcribed as faithfully as possible from notes about the original discussions. They were edited only to make them grammatically correct, parallel in structure, and understandable to someone not familiar with the NABIR Program or BASIC element.

  16. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    SciTech Connect (OSTI)

    Auciello, O. North Carolina State Univ., Raleigh, NC . Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. . Dept. of Materials Science and Engineering); Krauss, A.R. )

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  17. Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Deli; Liu, Sufen; Wang, Jie; Lin, Ruoqian; Kawasaki, Masahiro; Rus, Eric; Silberstein, Katharine E.; Lowe, Michael A.; Lin, Feng; Nordlund, Dennis; et al

    2016-06-23

    Replacing platinum by a less precious metal such as palladium, is highly desirable for lowering the cost of fuel-cell electrocatalysts. However, the instability of palladium in the harsh environment of fuel-cell cathodes renders its commercial future bleak. Here we show that by incorporating trace amounts of gold in palladium-based ternary (Pd6CoCu) nanocatalysts, the durability of the catalysts improves markedly. Using aberration-corrected analytical transmission electron microscopy in conjunction with synchrotron X-ray absorption spectroscopy, we show that gold not only galvanically replaces cobalt and copper on the surface, but also penetrates through the Pd–Co–Cu lattice and distributes uniformly within the particles. Themore » uniform incorporation of Au provides a stability boost to the entire host particle, from the surface to the interior. The spontaneous replacement method we have developed is scalable and commercially viable. This work may provide new insight for the large-scale production of non-platinum electrocatalysts for fuel-cell applications.« less

  18. Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure

    SciTech Connect (OSTI)

    Kamp, B.; Merkle, R. . E-mail: s.weiglein@fkf.mpg.de; Lauck, R.; Maier, J.

    2005-10-15

    Tin dioxide SnO{sub 2-{delta}} is a pronounced n-type electron conductor due to its oxygen deficiency. This study investigates the rate of chemical diffusion of oxygen in SnO{sub 2-{delta}} single crystals, which is a crucial step in the overall stoichiometry change of the material. The chemical diffusion coefficient D{sup {delta}} was determined from conductivity- and EPR-relaxation methods. The temperature dependence was found to be D{sup {delta}}=exp(-4+/-2)cm{sup 2}s{sup -1}exp(-(1.1+/-0.3)eV/kT). The dependence on crystal orientation, dopant content and oxygen partial pressure was below experimental error. The latter observation leads to the conclusion that the chemical diffusion coefficient is close to the diffusion coefficient of oxygen vacancies. Along with the relaxation process resulting from the chemical diffusion of oxygen, additional processes were observed. One of these was attributed to complications in the defect chemistry of the material. The relevance of the results for the kinetics of drift processes of Taguchi sensors is discussed.

  19. Making a Privacy Act Request - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making a Privacy Act Request Freedom of Information and Privacy Act DOE Headquarters FOIA Web Page A Citizen's Guide to the FOIA and Privacy Act Making a Privacy Act Request Freedom of Information Act, 5 U.S.C. Freedom of Information Act Regulations Privacy Act Regulations DOE Public Reading Room PNNL Technical Library Electronic FOIA Reading Room Freedom of Information Act & Privacy Act Contacts Records Previously Disclosed Helpful Links FOIA Home Making a Privacy Act Request Email Email

  20. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  1. Tank Farm Area Cleanup Decision-Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

  2. Carbon nanohoops and methods of making

    DOE Patents [OSTI]

    Jasti, Ramesh; Bertozzi, Carolyn

    2015-10-20

    The present invention provides cycloparaphenylene compounds, their macrocyclic precursors, and methods for making the compounds. The cycloparaphenylene compounds can be used to prepare armchair carbon nanotubes.

  3. Fermentative Method for Making Nonoxide Fluorescent Nanoparticles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermentative Method for Making Nonoxide Fluorescent Nanoparticles (Quantum Dots) Oak Ridge National Laboratory Contact ORNL About This Technology Incubation of quantum dots...

  4. Carbon nanohoops and methods of making

    DOE Patents [OSTI]

    Jasti, Ramesh; Bertozzi, Carolyn

    2013-06-11

    The present invention provides cycloparaphenylene compounds, their macrocyclic precursors, and methods for making the compounds. The cycloparaphenylene compounds can be used to prepare armchair carbon nanotubes.

  5. Electrochemical device and process of making

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2004-07-27

    A process of making an electrochemical device comprising providing a trilayer structure comprising an electrode/electrolyte/electrode and simultaneously sintering the trilayer structure.

  6. The White House's Week of Making

    Broader source: Energy.gov [DOE]

    The White House's Week of Making from June 12-18 will coincide with a National Maker Faire event in Washington, D.C.

  7. Carbon nanohoops and methods of making

    DOE Patents [OSTI]

    Jasti, Ramesh; Bertozzi, Carolyn

    2015-03-24

    The present invention provides cycloparaphenylene compounds, their macrocyclic precursors, and methods for making the compounds. The cycloparaphenylene compounds can be used to prepare armchair carbon nanotubes.

  8. NREL: State and Local Governments - Clean Energy Policy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Policy Basics States and local communities can create policy strategies to help them achieve their clean energy goals. To create effective strategies, it's helpful to understand how to build a clean energy policy portfolio and the different types of policies. Clean Energy Policy Portfolios Single policies don't transform markets for a clean energy economy in states and localities. The most effective approach is to apply a suite of policies in succession-from policies that prepare

  9. Nuclear data for basic and applied science. Volume 1

    SciTech Connect (OSTI)

    Young, P.G.; Brown, R.E.; Auchampaugh, G.F.; Lisowski, P.W.; Stewart, L.

    1985-01-01

    This book presents the papers given at a conference on nuclear data for basic and applied science. Topics considered included: nuclear data needs for fusion reactors; fast-neutron interaction with niobium; neutronic analysis of fusion-fusion (hybrid) blankets; measurements of 14 MeV neutron activation cross sections; recent experimental data on sub-barrier fission of light actinides; and intermediate structure in the fission cross sections of the even curium isotopes.

  10. Events in time: Basic analysis of Poisson data

    SciTech Connect (OSTI)

    Engelhardt, M.E.

    1994-09-01

    The report presents basic statistical methods for analyzing Poisson data, such as the member of events in some period of time. It gives point estimates, confidence intervals, and Bayesian intervals for the rate of occurrence per unit of time. It shows how to compare subsets of the data, both graphically and by statistical tests, and how to look for trends in time. It presents a compound model when the rate of occurrence varies randomly. Examples and SAS programs are given.

  11. Basic Data Report for Monitor Well AEC-7 Reconfiguration

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-01-20

    The New Mexico Office of the State Engineer (OSE) permitted well AEC-7 as C-2742. This well has been part of the far-field monitoring network since 1974. The well was used to obtain water level elevations and hydraulic parameters from both the Bell Canyon Formation and the Culebra Member of the Rustler Formation. This basic data report provides a historical account of the well from the original installation to the current configuration.

  12. Recombinant transfer in the basic genome of E. coli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dixit, Purushottam; Studier, F. William; Pang, Tin Yau; Maslov, Sergei

    2015-07-07

    An approximation to the ~4-Mbp basic genome shared by 32 strains of E. coli representing six evolutionary groups has been derived and analyzed computationally. A multiple-alignment of the 32 complete genome sequences was filtered to remove mobile elements and identify the most reliable ~90% of the aligned length of each of the resulting 496 basic-genome pairs. Patterns of single bp mutations (SNPs) in aligned pairs distinguish clonally inherited regions from regions where either genome has acquired DNA fragments from diverged genomes by homologous recombination since their last common ancestor. Such recombinant transfer is pervasive across the basic genome, mostly betweenmoregenomes in the same evolutionary group, and generates many unique mosaic patterns. The six least-diverged genome-pairs have one or two recombinant transfers of length ~40115 kbp (and few if any other transfers), each containing one or more gene clusters known to confer strong selective advantage in some environments. Moderately diverged genome pairs (0.41% SNPs) show mosaic patterns of interspersed clonal and recombinant regions of varying lengths throughout the basic genome, whereas more highly diverged pairs within an evolutionary group or pairs between evolutionary groups having >1.3% SNPs have few clonal matches longer than a few kbp. Many recombinant transfers appear to incorporate fragments of the entering DNA produced by restriction systems of the recipient cell. A simple computational model can closely fit the data. As a result, most recombinant transfers seem likely to be due to generalized transduction by co-evolving populations of phages, which could efficiently distribute variability throughout bacterial genomes.less

  13. Basic Energy Sciences Materials Sciences programs: FWP executive summaries

    SciTech Connect (OSTI)

    Vook, F.L.; Samara, G.A.

    1989-02-01

    The goals of our Basic Energy Sciences (BES) Materials Science Program at Sandia are: (1) Perform basic, forefront interdisciplinary research using the capabilities of several organizations. (2) Choose programs broadly complementary to Sandia's weapons laboratory mission, but separably identifiable. (3) Perform research in a setting which enhances technological impact because of Sandia's spectrum of basic research, applied research and development engineering. (4) Use large, capital-intensive research facilities not usually found at universities. The BES Materials Science program at Sandia Albuquerque has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia's expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics, and materials-processing science to produce new classes of tailorable materials for the US energy industry, the electronics industry and for defense needs. Current research in this program includes ion-implantation-modified materials, physics and chemistry of ceramics, tailored surfaces for materials applications, strained-layer semiconductors, chemical vapor deposition, surface photo kinetics, organic and high-temperature superconductors, advanced growth techniques for improved semiconductor structures and boron-rich very high temperature semiconductors.

  14. Magnetic interaction in oxygenated alpha Fe-phthalocyanines

    SciTech Connect (OSTI)

    Kuzmann, Ern?, E-mail: kuzmann@caesar.elte.hu; Homonnay, Zoltn; Horvth, Attila [Institute of Chemistry, Etvs Lornd University, P.O. Box 32, 1512 Budapest (Hungary); Pechousek, Jiri; Cuda, Jan; Machala, Libor; Zoppellaro, Giorgio; Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science Palacky University, 17. Listopadu 1192/12, 771 46 Olomouc (Czech Republic); Yin, Houping; Wei, Yen [Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States); Klencsr, Zoltn [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117 (Hungary); Kubuki, Shiro [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan); Nath, Amar [Department of Chemistry, University of North Carolina, Asheville, NC 28804 (United States)

    2014-10-27

    Alpha iron phthalocyanines (?-FePc) oxygenated at low temperatures were investigated with the help of {sup 57}Fe Mssbauer spectroscopy, magnetization measurements (SQUID) and X-ray diffractometry (XRD). Mssbauer spectroscopy revealed that upon oxygenation of ?-FePc, new species were formed which could be associated with Fe{sup III}Pc oxygen adducts. Unexpectedly, magnetically split spectrum of oxygenated ?-FePc was observed below 20 K. In-field Mssbauer spectra in a 5 T external magnetic field at 5K and magnetization measurements indicate antiferromagnetic coupling in oxygenated ?-FePc.

  15. Mechanism of singlet oxygen deactivation in an electric discharge oxygen – iodine laser

    SciTech Connect (OSTI)

    Azyazov, V N; Mikheyev, P A; Torbin, A P; Pershin, A A; Heaven, M C

    2014-12-31

    We have determined the influence of the reaction of molecular singlet oxygen with a vibrationally excited ozone molecule O{sub 2}(a {sup 1}Δ) + O{sub 3}(ν) → 2O{sub 2} + O on the removal rate of O{sub 2}(a {sup 1}Δ) in an electric-discharge-driven oxygen – iodine laser. This reaction has been shown to be a major channel of O{sub 2}(a {sup 1}Δ) loss at the output of an electric-discharge singlet oxygen generator. In addition, it can also contribute significantly to the loss of O{sub 2}(a {sup 1}Δ) in the discharge region of the generator. (lasers)

  16. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently andmore » a new strategy of developing the catalyst for oxygen evolution reaction.« less

  17. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithiumoxygen batteries

    SciTech Connect (OSTI)

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.

  18. The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries

    SciTech Connect (OSTI)

    Cao, Ruiguo; Walter, Eric D.; Xu, Wu; Nasybulin, Eduard N.; Bhattacharya, Priyanka; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Jiguang

    2014-09-01

    The oxygen reduction/evolution reaction (ORR/OER) mechanisms in nonaqueous Li-O2 batteries have been investigated by using electron paramagnetic resonance spectroscopy in this work. We identified the superoxide radical anion (O2•-) as an intermediate in the ORR process using 5,5-dimethyl-pyrroline N-oxide as a spin trap, while no O2•- in OER was detected during the charge process. These findings provide insightful understanding on the fundamental oxygen reaction mechanisms in rechargeable nonaqueous Li-O2 batteries.

  19. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect (OSTI)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  20. Oxygen stabilized zirconium-vanadium-iron alloy

    DOE Patents [OSTI]

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zr.sub.1-x Ti.sub.x).sub.2-u (V.sub.1-y Fe.sub.y)O.sub.z where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 200.degree. C. at pressures down to 10.sup.-6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  1. Method for melting glass by measurement of non-bridging oxygen

    DOE Patents [OSTI]

    Jantzen, Carol M.

    1992-01-01

    A method for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a "non-bridging oxygen" term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term.

  2. Method for melting glass by measurement of non-bridging oxygen

    DOE Patents [OSTI]

    Jantzen, C.M.

    1992-04-07

    A method is described for making better quality molten glass in a glass melter, the glass having the desired viscosity and, preferably, also the desired resistivity so that the glass melt can be established effectively and the product of the glass melter will have the desired level of quality. The method includes the adjustment of the composition of the glass constituents that are fed into the melter in accordance with certain correlations that reliably predict the viscosity and resistivity from the melter temperature and the melt composition, then heating the ingredients to the melter's operating temperature until they melt and homogenize. The equations include the calculation of a non-bridging oxygen' term from the numbers of moles of the various ingredients, and then the determination of the viscosity and resistivity from the operating temperature of the melter and the non-bridging oxygen term. 4 figs.

  3. Instabilities in a capacitively coupled oxygen plasma

    SciTech Connect (OSTI)

    Küllig, C. Wegner, Th. Meichsner, J.

    2015-04-15

    Periodic fluctuations in the frequency range from 0.3 to 3 kHz were experimentally investigated in capacitively coupled radio frequency (13.56 MHz) oxygen plasma. The Gaussian beam microwave interferometry directly provides the line integrated electron density fluctuations. A system of two Langmuir probes measured the floating potential spatially (axial, radial) and temporally resolved. Hence, the floating potential fluctuation development is mapped within the discharge volume and provides a kind of discharge breathing and no wave propagation. Finally, it was measured the optical emission pattern of atomic oxygen during the fluctuation as well as the RF phase resolved optical emission intensity at selected phase position of the fluctuation by an intensified charge-coupled device camera. The deduced excitation rate pattern reveals the RF sheath dynamics and electron heating mechanisms, which is changing between low and high electronegativity during a fluctuation cycle. A perturbation calculation was taken into account using a global model with 15 elementary collision processes in the balance equations for the charged plasma species (O{sub 2}{sup +}, e, O{sup −}, O{sub 2}{sup −}) and a harmonic perturbation. The calculated frequencies agree with the experimentally observed frequencies. Whereby, the electron attachment/detachment processes are important for the generation of this instability.

  4. Dilute Oxygen Combustion Phase I Final Report

    SciTech Connect (OSTI)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    1997-10-31

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions

  5. Dilute Oxygen Combustion Phase 2 Final Report

    SciTech Connect (OSTI)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    2005-09-30

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions

  6. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  7. Basic Data Report for Drillhole SNL-2 (C-2948)

    SciTech Connect (OSTI)

    Dennis W. Powers; Washington Regultory and Environmental Services

    2005-01-19

    SNL-2 was drilled in the northwest quarter of Section 12, T22S, R30E, in eastern Eddy County, New Mexico (Figure 2-1). It is located 574 ft from the north line (fnl) and 859 ft from the west line (fwl) of the section (Figure 2-2). This location places the drillhole east of the Livingston Ridge escarpment among oil wells of the Cabin Lake field. SNL-2 will be used to test hydraulic properties and to monitor ground water levels of the Culebra Dolomite Member of the Permian Rustler Formation. SNL-2 was permitted by the New Mexico State Engineer as C-2948. [Official correspondence regarding permitting and regulatory information must reference this permit number.] In the plan describing the integrated groundwater hydrology program (Sandia National Laboratories, 2003), SNL-2 is also codesignated WTS-1 because the location also satisfies needs for long-term monitoring of water quality and movement in the Culebra Dolomite for RCRA permitting; this program is under the management of Washington TRU Solutions LLC (WTS). In the event that additional wells are established on the SNL-2 drillpad to monitor other hydrological units (e.g., the Magenta Dolomite Member of the Permian Rustler Formation), the current drillhole will likely be referred to as SNL-2C because it is completed in the Culebra. Most drillholes at WIPP have been described after completion to provide an account of the geology, hydrology, or other basic data acquired during drilling and immediate completion of the drillhole. In addition, the basic data report provides an account of the drilling procedures and activities that may be helpful to later interpretations of data or for further work in the drillhole, including test activities and eventual plugging and abandoning activities. The basic data report also provides a convenient means of reporting information about administrative activities necessary to drill the hole.

  8. Basic devices and techniques for supervisory control and telemetery systems

    SciTech Connect (OSTI)

    Knox, R.M.

    1984-04-01

    The microprocessor is creating extraordinary changes in the basic devices used for supervisory control and telemetry systems. Devices which incorporate microprocessors are providing new capabilities to monitor, to control, and to transmit data. These new capabilities provide the opportunity to utilize new techniques in achieving more efficient operation and control of gas transmission and distribution systems. This paper describes several devices being installed at Transcocontinental Gas Pipe Line Corporation and their impact on the planned techniques to be used to collect gas flow data and to implement supervisory control.

  9. MAKE Magazine Review | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burt's Thoughts on MAKE Magazine Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Burt's Thoughts on MAKE Magazine Information Scientist Charles (Burt) Theurer shares his thoughts on MAKE magazine as a way for an everyday person to take something and bend it to his or her own will. You Might Also Like 1-2-77-v

  10. Effect of Oxygen Defects on the Catalytic Performance of VOx/CeO2 Catalysts for Oxidative Dehydrogenation of Methanol

    SciTech Connect (OSTI)

    Li, Yan; Wei, Zhehao; Gao, Feng; Kovarik, Libor; Baylon, Rebecca A.; Peden, Charles HF; Wang, Yong

    2015-05-01

    In this work, CeO2 nanocubes with controlled particle size and dominating (100) facets are synthesized as supports for VOx catalysts. Combined TEM, SEM, XRD, and Raman study reveals that the oxygen vacancy density of CeO2 supports can be tuned by tailoring the particle sizes without altering the dominating facets, where smaller particle sizes result in larger oxygen vacancy densities. At the same vanadium coverage, the VOx catalysts supported on small-sized CeO2 supports with higher oxygen defect densities exhibit promoted redox property and lower activation energy for methoxyl group decomposition, as evidenced by H2-TPR and methanol TPD study. These results further confirm that the presence of oxygen vacancies plays an important role in promoting the activity of VOx species in methanol oxidation. We gratefully acknowledge financial support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Part of this work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle.

  11. How Bacteria Make Magnets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Bacteria Make Magnets For a number of animals, including birds, fish and mammals, there is evidence that magnets are used for orientation. However, little is known about how...

  12. Methods of making organic compounds by metathesis

    DOE Patents [OSTI]

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  13. Method for making spherical binderless pellets

    DOE Patents [OSTI]

    Grubbs, Donald K.; Kochanowski, Andrew T.

    1983-01-01

    A method for making spherical binderless pellets using a rotating drum mixer whereby at least a portion of the particles comprising the pellets is comprised of coking coal particles.

  14. Buying and Making Electricity | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    home. | Photo courtesy of Susan BiloNREL. You can take advantage of clean, renewable energy by buying "green power" or by making your own electricity with a small home...

  15. Going Green to Make the Green

    Broader source: Energy.gov (indexed) [DOE]

    Businesses, LLC "Going Green to Make the Green" November 17, 2009 HEROKEE C N E R G ATION NERGY by ENEWABLE ENERATION Wind Farm Project Location Wind Speeds Measured for 5 Years at ...

  16. Buying and Making Electricity | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    You can take advantage of clean, renewable energy by buying "green power" or by making your own electricity with a small home renewable energy system. Learn the purchasing options ...

  17. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    SciTech Connect (OSTI)

    Domen, Kazunari

    2011-05-26

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several “grand challenges” and use-inspired “basic research needs” recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  18. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Domen, Kazunari (University of Tokyo)

    2012-03-14

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  19. Geospatial Decision Making System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Geospatial Decision Making System Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary The INL has developed a geospatial decision making process to assist agricultural producers in optimizing operating conditions of combine harvesters which detects the presence of grain and distinguishes between that and residual plant material. Upon detecting grain in the process, the system sends

  20. Making Energy Personal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Making Energy Personal Making Energy Personal Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Energy Choices and Society, Energy Efficiency and Conservation Summary Students will work with an interactive website in oder to determine their own CO2 output per year. Afterwards, they will conduct a home energy audit to develop personal energy saving strategies. Curriculum Language Arts, Mathematics, Science Plan Time 90 minutes, plus optional 2-class