National Library of Energy BETA

Sample records for major fuels electricity

  1. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  2. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  3. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  4. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  5. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  6. Fuel Cell Technologies Office Reaches Major Patent Milestone | Department

    Office of Environmental Management (EM)

    of Energy Fuel Cell Technologies Office Reaches Major Patent Milestone Fuel Cell Technologies Office Reaches Major Patent Milestone January 9, 2015 - 10:01am Addthis Fuel Cell Technologies Office Reaches Major Patent Milestone Sunita Satyapal Director, Fuel Cell Technologies Office Fuel cells are an emerging technology that can provide heat and electricity to buildings and power for vehicles while emitting nothing but water. To bring more high-impact fuel cell innovations to the marketplace,

  7. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  8. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department ...

  9. Alternative Fuels Data Center: Fuel Cell Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel

  10. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

  11. Alternative Fuels Data Center: Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric

  12. Alternative Fuels Data Center: Electricity Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Related Links to someone by E-mail Share Alternative Fuels Data Center: Electricity Related Links on Facebook Tweet about Alternative Fuels Data Center: Electricity Related Links on Twitter Bookmark Alternative Fuels Data Center: Electricity Related Links on Google Bookmark Alternative Fuels Data Center: Electricity Related Links on Delicious Rank Alternative Fuels Data Center: Electricity

  13. Electricity Fuel Basics | Department of Energy

    Office of Environmental Management (EM)

    Vehicles & Fuels » Fuels » Electricity Fuel Basics Electricity Fuel Basics August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated during electricity production at the power plant. Charging plug-in electric vehicles at home is as simple as plugging them into an

  14. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  15. Save Electricity and Fuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Save Electricity and Fuel Save Electricity and Fuel A photovoltaic (solar electric) system like the one shown can save you energy and money, while also producing electricity to power your home and vehicle. | Photo courtesy of Susan Bilo/NREL. A photovoltaic (solar electric) system like the one shown can save you energy and money, while also producing electricity to power your home and vehicle. | Photo courtesy of Susan Bilo/NREL. Electricity and fuel power our homes and vehicles and the choices

  16. Electric Fuel Battery Corporation | Open Energy Information

    Open Energy Info (EERE)

    Fuel Battery Corporation Jump to: navigation, search Name: Electric Fuel Battery Corporation Place: Auburn, Alabama Zip: 36832 Product: Develops and manufactures BA-8180U high...

  17. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601, Hydrogen Fueling Guideline Steve Mathison Development Fueling-MC Method Jesse Schneider (BMW) SAE J2601 & J2799 Sponsor SAE TIR J2601 Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Guideline SAE TIR J2601 CURRENT USES AND SUPPORTING ORGANIZATIONS 4 US (DOE,CaFCP/ CARB, CEC) EU CEP/ H2 Mobility/ NOW

  18. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  19. Alternative Fuels Data Center: Benefits and Considerations of Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    as a Vehicle Fuel Benefits and Considerations of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Benefits and

  20. Y-12 fulfills major milestone in fuel conversion commitment for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fulfills major ... Y-12 fulfills major milestone in fuel conversion commitment for Jamaican research reactor Posted: June 3, 2014 - 4:42pm The Y-12 National Security Complex...

  1. Overview of Fuel Cell Electric Bus Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility &

  2. Financial statistics of major US publicly owned electric utilities 1994

    SciTech Connect (OSTI)

    1995-12-15

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  3. EIA model documentation: Electricity market module - electricity fuel dispatch

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

  4. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board ...

  5. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis results...

  6. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

  7. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  8. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  9. INFOGRAPHIC: The Fuel Cell Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle This infographic shows how fuel cell electric vehicles (FCEVs) work and some of the benefits of FCEVs, such as how they reduce greenhouse gas emissions, emit only water, and operate efficiently. PDF icon INFOGRAPHIC: The Fuel Cell Electric Vehicle (FCEV) More Documents & Publications Amped Up! Volume 1, No. 4: The Transportation Issue Fuel Cell Technologies

  10. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels

  11. Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule

    SciTech Connect (OSTI)

    Not Available

    1994-04-08

    This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  12. Infographic: The Fuel Cell Electric Vehicle (FCEV)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Fuel Cell Electric Vehicle (FCEV) FCEVs are available now in southern California and coming soon to a neighborhood near you. as fuel cells can be added to the stack to increase power Scales Up Easily Gasoline H₂ from natural gas H₂ from Wind even at highway speeds, since there are no mechanical gears or combustion Runs Quietly from the tailpipe Emits Only Water * natural gas * water (electrolysis) * biomass * waste products Uses Domestic Fuel Reduces Greenhouse Gas Emissions 50% 90%

  13. Alternative Fuels Data Center: Electricity Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Electricity Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Electricity Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Electricity Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Electricity Laws and Incentives on Delicious Rank Alternative

  14. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share

  15. Alternative Fuels Data Center: Electricity Research and Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Research and Development to someone by E-mail Share Alternative Fuels Data Center: Electricity Research and Development on Facebook Tweet about Alternative Fuels Data Center: Electricity Research and Development on Twitter Bookmark Alternative Fuels Data Center: Electricity Research and Development on Google Bookmark Alternative Fuels Data Center: Electricity Research and Development on Delicious Rank Alternative Fuels Data Center: Electricity Research and Development on Digg Find

  16. Alternative Fuels Data Center: Rental Cars Go Electric in Florida

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Rental Cars Go Electric in Florida to someone by E-mail Share Alternative Fuels Data Center: Rental Cars Go Electric in Florida on Facebook Tweet about Alternative Fuels Data Center: Rental Cars Go Electric in Florida on Twitter Bookmark Alternative Fuels Data Center: Rental Cars Go Electric in Florida on Google Bookmark Alternative Fuels Data Center: Rental Cars Go Electric in Florida on Delicious Rank Alternative Fuels Data Center: Rental Cars Go Electric in Florida on Digg Find More places to

  17. Cost and Quality of Fuels for Electric Plants - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Electric power plants generating capacity Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Revenue and

  18. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  19. Alternative Fuels Data Center: Innovations Improve Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Infrastructure Innovations Improve Electric Vehicle Charging Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Innovations Improve Electric Vehicle Charging Infrastructure on Google Bookmark Alternative Fuels Data Center: Innovations

  20. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

  1. Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels

  2. Alternative Fuels Data Center: Federal Laws and Incentives for Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Electricity to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Google Bookmark Alternative Fuels Data Center: Federal Laws

  3. Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Powers up with Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Sacramento Powers up with Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Sacramento Powers up with

  4. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) held on June 24, 2014.

  5. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Level PHEVs Fuel Cell and Battery Electric Vehicles Compared By C. E. (Sandy) Thomas, Ph.D., President H 2 Gen Innovations, Inc. Alexandria, Virginia Thomas@h2gen.com 1.0 Introduction Detailed computer simulations demonstrate that all-electric vehicles will be required to meet our energy security and climate change reduction goals 1 . As shown in Figure 1, hybrid electric vehicles (HEV's) and plug-in hybrid electric vehicles (PHEV's) both reduce greenhouse gas (GHG) emissions, but neither of

  6. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Electric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Learning Demonstration Fuel Cell Electric Vehicle Learning Demonstration Delve deeper into real-world performance data with our Interactive Composite Data Product demo Graphical thumbnail of the Interactive Composite Data Product demo map. Learn More Subscribe to the biannual Fuel Cell and Hydrogen Technology Validation newsletter, which highlights recent technology validation activities at NREL. Initiated in 2004, DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and

  7. Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric

    Broader source: Energy.gov (indexed) [DOE]

    Vehicles (FCEVs) | Department of Energy Below is the text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: [Audio starts mid-sentence] ... housekeeping items before I turn it over to today's speakers. Today's webinar is being recorded. So a recording along with slides will be posted

  8. Alternative Fuels Data Center: All-Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    All-Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicles on AddThis.com...

  9. Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Minnesota Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air

  10. Alternative Fuels Data Center: Electric Trolley Boosts Business in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bakersfield, California Electric Trolley Boosts Business in Bakersfield, California to someone by E-mail Share Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Facebook Tweet about Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Twitter Bookmark Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Google Bookmark Alternative Fuels Data Center: Electric Trolley

  11. Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative

  12. Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Rides in Maryland Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle

  13. Alternative Fuels Data Center: New York Broadens Network for Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Charging New York Broadens Network for Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Twitter Bookmark Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Google Bookmark Alternative Fuels Data Center: New York Broadens Network for Electric

  14. Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Highways Oregon Celebrates 200 Miles of Electric Highways to someone by E-mail Share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Facebook Tweet about Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Twitter Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Google Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Delicious Rank

  15. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  16. Financial statistics major US publicly owned electric utilities 1996

    SciTech Connect (OSTI)

    1998-03-01

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  17. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  18. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

  19. First Commercially Available Fuel Cell Electric Vehicles Hit the Street |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy First Commercially Available Fuel Cell Electric Vehicles Hit the Street First Commercially Available Fuel Cell Electric Vehicles Hit the Street December 10, 2014 - 12:25pm Addthis A fuel cell electric vehicle (FCEV) at a fueling station in California. New Energy Department reports signal rapid growth in America’s fuel cell and hydrogen industry as FCEVs are introduced to the market. | Energy Department photo A fuel cell electric vehicle (FCEV) at a fueling station

  20. Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells | Department of Energy Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by Pacific Northwest National Laboratory, examines approaches to providing electrical power on board commercial aircraft using solid oxide fuel (SOFC) technology. The focus of this study is on application to "more-electric" airplanes with the Boeing 787 used as a case study. PDF

  1. Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Opportunity Nationwide | Department of Energy Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide September 11, 2014 - 2:38pm Addthis A fuel cell electric vehicle (FCEV) in Hawaii. Engineers from Idaho National Laboratory and National Renewable Energy Laboratory identified a new way to launch economically viable hydrogen fueling

  2. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore »be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  3. Electric heater for nuclear fuel rod simulators

    DOE Patents [OSTI]

    McCulloch, Reginald W. (Knoxville, TN); Morgan, Jr., Chester S. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN)

    1982-01-01

    The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

  4. Proton Exchange Membrane Fuel Cells for Electrical Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Board Commercial Airplanes | Department of Energy Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes This report, prepared by Sandia National Laboratories, is an initial investigation of the use of proton exchange membrane (PEM) fuel cells on-board commercial aircraft. The report examines whether on-board airplane fuel cell systems are

  5. Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy |

    Office of Environmental Management (EM)

    Department of Energy Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy September 26, 2014 - 3:34pm Addthis Deputy Secretary Daniel Poneman test drove the Hyundai Tucson Fuel Cell vehicle when the car made an appearance at the Department of Energy headquarters in Washington, D.C. Deputy Secretary Daniel Poneman test drove the Hyundai Tucson Fuel Cell vehicle when the car made an appearance at the

  6. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

  7. Cost and quality of fuels for electric plants 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  8. Tubular screen electrical connection support for solid oxide fuel cells

    DOE Patents [OSTI]

    Tomlins, Gregory W. (Pittsburgh, PA); Jaszcar, Michael P. (Murrysville, PA)

    2002-01-01

    A solid oxide fuel assembly is made of fuel cells (16, 16', 18, 24, 24', 26), each having an outer interconnection layer (36) and an outer electrode (28), which are disposed next to each other with rolled, porous, hollow, electrically conducting metal mesh conductors (20, 20') between the fuel cells, connecting the fuel cells at least in series along columns (15, 15') and where there are no metal felt connections between any fuel cells.

  9. Greater fuel diversity needed to meet growing US electricity demand

    SciTech Connect (OSTI)

    Burt, B.; Mullins, S.

    2008-01-15

    Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

  10. Alternative Fuels Data Center: Research and Development of Electricity as a

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Fuel Research and Development of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Research and Development of

  11. Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm066_yaccarino_2012_o.pdf More Documents & Publications A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water Reactor Cooling System Components Report on Assessment of

  12. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. PDF icon csd_workshop_2_elrick.pdf More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  13. Washington Auto Show Spotlight: How Fuel Cell Electric Vehicles Work |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington Auto Show Spotlight: How Fuel Cell Electric Vehicles Work Washington Auto Show Spotlight: How Fuel Cell Electric Vehicles Work January 27, 2015 - 12:57pm Addthis The Hyundai Tucson FCEV is currently available for lease in Southern California for less than $500 per month, including free hydrogen fuel. Hydrogen for FCEVs can be produced from a variety of resources all providing emission reductions. Hydrogen derived from natural gas reduces emissions by half and

  14. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  15. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  16. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 7878 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

  17. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Hydrogen) Marianne Mintz and Jerry Gillette, Argonne Catherine Mertes and Eric Stewart, RCF June 24, 2014 * Developed with the support of DOE's Office of Fuel Cell ...

  18. Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol

    Broader source: Energy.gov [DOE]

    Webinar slides from the U.S. Department of Energy Fuel Cell Technologies Office webinar, "Hydrogen Refueling Protocols," held February 22, 2013.

  19. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  20. An Assessment of Heating Fuels And Electricity Markets During...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Reliability conducted an in-depth analysis of regional fuel and electricity sectors during the winters of 2013-2014 and 2014-2015 to assess market behavior and performance. ...

  1. Economic Impacts Associated With Commercializing Fuel Cell Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model | Department of Energy Impacts Associated With Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model Economic Impacts Associated With Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model This report by Argonne National Laboratory summarizes an analysis of the economic

  2. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen Infrastructure and Fuel Cell Electric Vehicle Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to

  3. Electrical contact structures for solid oxide electrolyte fuel cell

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills, PA)

    1984-01-01

    An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

  4. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  5. Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material Handling Fuel Cells for Building Electric Peak Shaving Applications U.S. Department of Energy Fuel Cell Technologies Office August 11, 2015 Presenter: Michael Penev of NREL DOE Host: Pete Devlin 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov 3 Acknowledgments Fuel Cell Technologies Office, DOE EERE For providing funding for this project and for supporting sustainable hydrogen technology development through analysis, demonstration,

  6. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on

  7. U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-10-21

    This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

  8. Nevada Strengthens Electric Vehicle Infrastructure on Major U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governors Office of Energy, announces the new...

  9. Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.

    SciTech Connect (OSTI)

    Mark Hilson Schneider

    2007-06-06

    This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: relatively poor power quality as quantified by the IEEE-defined short term flicker parameter relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available technologies such as propane reciprocating engine generators.

  10. Financial Statistics of Major U.S. Publicly Owned Electric Utilities

    Reports and Publications (EIA)

    2001-01-01

    2000 - Final issue. Presents summary financial data for 1994 through 2000 and detailed financial data for 2000 on major publicly owned electric utilities.

  11. 20,000 and Counting: Alternative Fueling and Charging Stations Hit Major Milestone

    Broader source: Energy.gov [DOE]

    Thanks to the Energy Department’s Alternative Fueling Station Locator tool, it’s easier than ever for drivers of alternative fuel and plug-in electric vehicles to find a place to fill up. This is due, in part, to hitting a recent milestone of more than 20,000 locations listed.

  12. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Plug-In Electric Vehicles in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging

  13. Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Frito-Lay Delivers With Electric Truck Fleet to someone by E-mail Share Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Facebook Tweet about Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Twitter Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Google Bookmark Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet on Delicious Rank Alternative Fuels Data Center: Frito-Lay

  14. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect (OSTI)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  15. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Fuel Cell Electric Vehicles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicles Chapter 8: Technology Assessments Introduction to the Technology/System Overview of Fuel Cell Electric Vehicles Energy planning models demonstrate that electric drive vehicles and low-carbon fuels are needed to address climate change, energy security, and criteria pollutant emissions goals, among others. 1,2,3,4,5 Hydrogen fuel cell electric vehicles (FCEVs) are a promising electric vehicle technology that could meet petroleum and emission reduction goals and be

  16. Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on

  17. Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dwellings Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Delicious Rank

  18. Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Emissions from Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Delicious

  19. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Delicious Rank Alternative

  20. Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dune Buggy Camp Discovery Helps Kids Build an Electric Dune Buggy to someone by E-mail Share Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Facebook Tweet about Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Twitter Bookmark Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune Buggy on Google Bookmark Alternative Fuels Data Center: Camp Discovery Helps Kids Build an Electric Dune

  1. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Google Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Delicious Rank Alternative

  2. RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric Peak Shaving Applications

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications".

  3. Y-12 fulfills major milestone in fuel conversion commitment for Jamaican

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research reactor | Y-12 National Security Complex fulfills major ... Y-12 fulfills major milestone in fuel conversion commitment for Jamaican research reactor Posted: June 3, 2014 - 4:42pm The Y-12 National Security Complex recently completed its final shipment of uranium dioxide powder that will be used as the feedstock for fueling the Safe LOW-POwer Kritical Experiment (SLOWPOKE) research reactor in Kingston, Jamaica. This project is one of many involving Y-12's expertise at creating

  4. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    Broader source: Energy.gov [DOE]

    This report discusses key analysis results based on data from early 2005 through September 2011 from the US DOE’s Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration.

  5. Webinar: BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric

    Broader source: Energy.gov (indexed) [DOE]

    Vehicles (FCEVs) | Department of Energy BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs)," originally held on June 19, 2012. In addition to this recording, you can access the presentation slides. A text version of this recording will be available soon

  6. NREL Uses Fuel Cells to Increase the Range of Battery Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles. Battery electric vehicles (BEVs) offer great potential for...

  7. Financial statistics of major US investor-owned electric utilities 1994

    SciTech Connect (OSTI)

    1995-12-01

    The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

  8. Financial statistics of major U.S. investor-owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

  9. Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tucson Well on Its Way to Go Electric to someone by E-mail Share Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Facebook Tweet about Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Twitter Bookmark Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Google Bookmark Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Delicious Rank Alternative Fuels Data Center: Tucson Well on Its Way to Go Electric on Digg

  10. Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bus in Michigan Fisher Coachworks Develops Plug-In Electric Bus in Michigan to someone by E-mail Share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Facebook Tweet about Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Twitter Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Google Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops

  11. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    SciTech Connect (OSTI)

    2011-01-01

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  12. Fuel Cell Electric Vehicle Powered by Renewable Hydrogen

    ScienceCinema (OSTI)

    None

    2013-05-29

    The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

  13. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  14. Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway Nevada Strengthens Electric Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governor’s Office of Energy, announces the new Nevada Electric Highway Joint Initiative in Carson City, Nevada. He was joined at the event by Carson City Mayor Bob Crowell, left, NV Energy CEO Paul Caudill, and Nevada Governor Brian Sandoval. The

  15. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energys (DOEs) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  16. Cost and Quality of Fuels for Electric Utility Plants 1997

    Gasoline and Diesel Fuel Update (EIA)

    7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost

  17. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Charging Plug-In Electric Vehicles at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In

  18. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect (OSTI)

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  19. Financial statistics of major U.S. publicly owned electric utilities 1997

    SciTech Connect (OSTI)

    1998-12-01

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

  20. Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability NREL analyzed data from 500,000 individual vehicle trips covering 3.6 million miles August 10, 2012 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) recently completed a seven-year project to demonstrate and evaluate hydrogen fuel cell electric vehicles (FCEVs) and hydrogen fueling infrastructure in real-world settings. The National Fuel Cell Electric Vehicle Learning

  1. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Data Sources and Assumptions Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Twitter Bookmark

  2. Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles and Infrastructure Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric Vehicles and Infrastructure on Google

  3. Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools: Zoning, Codes, and Parking Ordinances Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy Tools: Zoning, Codes, and Parking Ordinances on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric

  4. Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Multi-Unit Dwelling Communities San Diego Prepares for Electric Vehicles in Multi-Unit Dwelling Communities to someone by E-mail Share Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in Multi-Unit Dwelling Communities on Facebook Tweet about Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in Multi-Unit Dwelling Communities on Twitter Bookmark Alternative Fuels Data Center: San Diego Prepares for Electric Vehicles in Multi-Unit Dwelling

  5. Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Breaks Guinness World Record Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record to someone by E-mail Share Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on Facebook Tweet about Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on Twitter Bookmark Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on

  6. Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Charging at Home and Work Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work to someone by E-mail Share Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Facebook Tweet about Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at Home and Work on Twitter Bookmark Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric Vehicle Charging at

  7. Financial statistics of major U.S. publicly owned electric utilities 1995

    SciTech Connect (OSTI)

    1997-07-01

    The 1995 Edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents 5 years (1991 through 1995) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 9 figs., 87 tabs.

  8. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank

  9. Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank

  10. Alternative Fuels Data Center: Car2Go Launches Electric Carsharing Fleet in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    San Diego Car2Go Launches Electric Carsharing Fleet in San Diego to someone by E-mail Share Alternative Fuels Data Center: Car2Go Launches Electric Carsharing Fleet in San Diego on Facebook Tweet about Alternative Fuels Data Center: Car2Go Launches Electric Carsharing Fleet in San Diego on Twitter Bookmark Alternative Fuels Data Center: Car2Go Launches Electric Carsharing Fleet in San Diego on Google Bookmark Alternative Fuels Data Center: Car2Go Launches Electric Carsharing Fleet in San

  11. Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Georgia Sets the Pace for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric Vehicles on Delicious

  12. Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Progress San Diego Dealers Plug-In to Electric Vehicle Progress to someone by E-mail Share Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Facebook Tweet about Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Twitter Bookmark Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle Progress on Google Bookmark Alternative Fuels Data Center: San Diego Dealers Plug-In to Electric Vehicle

  13. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    SciTech Connect (OSTI)

    Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

    2012-05-01

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  14. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

  15. Entering a New Stage of Learning from the U.S. Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010 PDF icon 49202.pdf More Documents & Publications National Hydrogen...

  16. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  17. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that has at

  18. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  19. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2010-11-08

    This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

  20. Fact #901: November 30, 2015 States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue

  1. Usage of Electric Vehicle Supply Equipment Along the Corridors between the EV Project Major Cities

    SciTech Connect (OSTI)

    Mindy Kirkpatrick

    2012-05-01

    The report explains how the EVSE are being used along the corridors between the EV Project cities. The EV Project consists of a nationwide collaboration between Idaho National Laboratory (INL), ECOtality North America, Nissan, General Motors, and more than 40 other city, regional and state governments, and electric utilities. The purpose of the EV Project is to demonstrate the deployment and use of approximately 14,000 Level II (208-240V) electric vehicle supply equipment (EVSE) and 300 fast chargers in 16 major cities. This research investigates the usage of all currently installed EV Project commercial EVSE along major interstate corridors. ESRI ArcMap software products are utilized to create geographic EVSE data layers for analysis and visualization of commercial EVSE usage. This research locates the crucial interstate corridors lacking sufficient commercial EVSE and targets locations for future commercial EVSE placement. The results and methods introduced in this research will be used by INL for the duration of the EV Project.

  2. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    DOE Patents [OSTI]

    Kelley; Dana A. (New Milford, CT), Farooque; Mohammad (Danbury, CT), Davis; Keith (Southbury, CT)

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  3. Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings June 20, 2007 Hybrid electric vehicles have saved close to 230 million gallons - or 5.5 million barrels - of fuel in the United States since their introduction in 1999, according to a recent analysis conducted at the U. S. Department of Energy's National Renewable Energy Laboratory (NREL). "Sales of hybrid electric vehicles have increased an average of 72 percent a year for the past five years and in 2006 the average fuel economy

  5. An Assessment of Heating Fuels And Electricity Markets During the Winters

    Energy Savers [EERE]

    of 2013-2014 and 2014-2015 | Department of Energy Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 An Assessment of Heating Fuels And Electricity Markets During the Winters of 2013-2014 and 2014-2015 Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different - but related - challenges across heating fuels and electricity markets. In an effort to understand the impacts of

  6. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  7. Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    McKeever, JW

    2005-06-16

    Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

  8. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  9. Cheyenne Light, Fuel and Power (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for CFL and LED light bulbs,...

  10. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  11. Short-Term Energy Outlook Model Documentation: Electricity Generation and Fuel Consumption Models

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Model Documentation: Electricity Generation and Fuel Consumption Models January 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Model Documentation: Electricity Generation and Fuel Consumption Models i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts

  12. Fuel Cell Electric Vehicles (FCEVs) to Be Displayed on June 22 During

    Office of Environmental Management (EM)

    Sustainable Transportation Day | Department of Energy Electric Vehicles (FCEVs) to Be Displayed on June 22 During Sustainable Transportation Day Fuel Cell Electric Vehicles (FCEVs) to Be Displayed on June 22 During Sustainable Transportation Day June 16, 2015 - 12:40pm Addthis On June 22, the Office of Energy Efficiency and Renewable Energy's (EERE's) Fuel Cell, Bioenergy, and Vehicle Technologies Offices will host a Sustainable Transportation Day showcasing EERE's strategic investments in

  13. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect (OSTI)

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  14. Expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert (Pittsburgh, PA); Antol, Ronald F. (North Huntingdon, PA); Zafred, Paolo R. (Murrysville, PA)

    2002-01-01

    A solid oxide fuel assembly is made, wherein rows (14, 24) of fuel cells (16, 18, 20, 26, 28, 30), each having an outer interconnection (36) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh (22) between each row of cells, the corrugated mesh (22) having top crown portions (40) and bottom shoulder portions (42), where the top crown portion (40) contacts outer interconnections (36) of the fuel cells (16, 18, 20) in a first row (14), and the bottom shoulder portions (42) contacts outer electrodes (32) of the fuel cells in a second row (24), said mesh electrically connecting each row of fuel cells, and where there are no metal felt connections between any fuel cells.

  15. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal...

  16. Table 6. Electric power delivered fuel prices and quality for...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal...

  17. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop

    Broader source: Energy.gov [DOE]

    Agenda and presentations from the Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop hosted by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office and Pacific Northwest National Laboratory in Dallas, Texas, on October 29, 2015.

  18. Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell

    DOE Patents [OSTI]

    Gorer, Alexander

    2004-01-27

    A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  19. Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact

    DOE Patents [OSTI]

    Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT); Johnsen, Richard (New Fairfield, CT)

    2007-04-10

    An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.

  20. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    SciTech Connect (OSTI)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina; Pratt, Joseph William; Akhil, Abbas Ali; Klebanoff, Leonard E.; Schenkman, Benjamin L.

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  1. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    SciTech Connect (OSTI)

    Pratt, Joesph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using todays technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  2. Challenges of Electric Power Industry Restructuring for Fuel Suppliers

    Reports and Publications (EIA)

    1998-01-01

    Provides an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry.

  3. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    SciTech Connect (OSTI)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  4. Financial Statistics of Major U.S. Investor-Owned Electric Utilities

    Reports and Publications (EIA)

    1997-01-01

    1996 - Final issue. Presents summary and detailed financial accounting data on the investor-owned electric utilities.

  5. Challenges of electric power industry restructuring for fuel suppliers

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

  6. MassSAVE (Electric)- Commercial New Construction/Major Renovation Program

    Broader source: Energy.gov [DOE]

    MassSAVE organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  7. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG...

  8. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG...

  9. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint

    Broader source: Energy.gov [DOE]

    To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

  10. Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen

    SciTech Connect (OSTI)

    Charles Forsberg; Steven Aumeier

    2014-04-01

    Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

  11. Aid for electrical contacting of high-temperature fuel cells and method for production thereof

    DOE Patents [OSTI]

    Becker, Ines; Schillig, Cora

    2014-03-18

    A double-sided adhesive metal-based tape for use as contacting aid for SOFC fuel cells is provided. The double-sided metal-based adhesive tape is suitable for simplifying the construction of cell bundles. The double-sided metal-based adhesive tape is used for electrical contacting of the cell connector with the anode and for electrical contacting of the interconnector of the fuel cells with the cell connector. A method for producing the double-sided adhesive metal-base tape is also provided.

  12. EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle |

    Office of Environmental Management (EM)

    Department of Energy You Can Now Drive a Fuel Cell Electric Vehicle EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle April 10, 2015 - 11:45am Addthis Toyota Mirai FCEV (top left), Hyundai Tucson FCEV (top right), and Honda’s concept of its FCEV (bottom)—all showcased during the 2015 Washington Auto Show. | Photos by Sarah Gerrity, Energy Department Toyota Mirai FCEV (top left), Hyundai Tucson FCEV (top right), and Honda's concept of its FCEV (bottom)-all

  13. Electric Fuel Pump Condition Monitor System Using Electricalsignature Analysis

    DOE Patents [OSTI]

    Haynes, Howard D [Knoxville, TN; Cox, Daryl F [Knoxville, TN; Welch, Donald E [Oak Ridge, TN

    2005-09-13

    A pump diagnostic system and method comprising current sensing probes clamped on electrical motor leads of a pump for sensing only current signals on incoming motor power, a signal processor having a means for buffering and anti-aliasing current signals into a pump motor current signal, and a computer having a means for analyzing, displaying, and reporting motor current signatures from the motor current signal to determine pump health using integrated motor and pump diagnostic parameters.

  14. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG...

  15. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for...

  16. Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b)

    U.S. Energy Information Administration (EIA) Indexed Site

    5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Electricity-Only Plants 11<//td> 1989 767,378,330 25,574,094 241,960,194 3,460 517,385 270,124,673

  17. Methodology for comparing the health effects of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    Rhyne, W.R.; El-Bassioni, A.A.

    1981-12-08

    A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

  18. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect (OSTI)

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  19. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most ... of nuclear fusion as a clean, safe and abundant fuel for generating electricity. ...

  20. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class 4 Parcel Delivery Vehicle | Department of Energy Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. PDF icon p-13_thornton.pdf

  1. Corrosion-resistant, electrically-conductive plate for use in a fuel cell stack

    DOE Patents [OSTI]

    Carter, J. David (Bolingbrook, IL); Mawdsley, Jennifer R. (Woodridge, IL); Niyogi, Suhas (Woodridge, IL); Wang, Xiaoping (Naperville, IL); Cruse, Terry (Lisle, IL); Santos, Lilia (Lombard, IL)

    2010-04-20

    A corrosion resistant, electrically-conductive, durable plate at least partially coated with an anchor coating and a corrosion resistant coating. The corrosion resistant coating made of at least a polymer and a plurality of corrosion resistant particles each having a surface area between about 1-20 m.sup.2/g and a diameter less than about 10 microns. Preferably, the plate is used as a bipolar plate in a proton exchange membrane (PEMFC) fuel cell stack.

  2. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  3. Modeling of Uncertainties in Major Drivers in U.S. Electricity Markets: Preprint

    SciTech Connect (OSTI)

    Short, W.; Ferguson, T.; Leifman, M.

    2006-09-01

    This paper presents information on the Stochastic Energy Deployment System (SEDS) model. DOE and NREL are developing this new model, intended to address many of the shortcomings of the current suite of energy models. Once fully built, the salient qualities of SEDS will include full probabilistic treatment of the major uncertainties in national energy forecasts; code compactness for desktop application; user-friendly interface for a reasonably trained analyst; run-time within limits acceptable for quick-response analysis; choice of detailed or aggregate representations; and transparency of design, code, and assumptions. Moreover, SEDS development will be increasingly collaborative, as DOE and NREL will be coordinating with multiple national laboratories and other institutions, making SEDS nearly an 'open source' project. The collaboration will utilize the best expertise on specific sectors and problems, and also allow constant examination and review of the model. This paper outlines the rationale for this project and a description of its alpha version, as well as some example results. It also describes some of the expected development efforts in SEDS.

  4. Improving the actinides recycling in closed fuel cycles, a major step towards nuclear energy sustainability

    SciTech Connect (OSTI)

    Poinssot, C.; Grandjean, S.; Masson, M.; Bouillis, B.; Warin, D.

    2013-07-01

    Increasing the sustainability of nuclear energy is a longstanding road that requires a stepwise approach to successively tackle the following 3 objectives. First of all, optimize the consumption of natural resource to preserve them for future generations and hence guarantee the energetic independence of the countries (no uranium ore is needed anymore). The current twice-through cycle of Pu implemented by France, UK, Japan and soon China is a first step in this direction and already allows the development and optimization of the relevant industrial processes. It also allows a major improvement regarding the conditioning of the ultimate waste in a durable and robust nuclear glass. Secondly, the recycling of americium could be an interesting option for the future with the deployment of FR fleet to save the repository resource and optimize its use by allowing a denser disposal. It would limit the burden towards the future generations and the need for additional repositories before several centuries. Thirdly, the recycling of the whole minor actinides inventory could be an interesting option for the far-future for strongly decreasing the waste long-term toxicity, down to a few centuries. It would bring the waste issue back within the human history, which should promote its acceptance by the social opinion.

  5. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOE Patents [OSTI]

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  6. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOE Patents [OSTI]

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  7. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan

    2003-04-01

    The objective of this project is the development and commercial demonstration of an advanced biomass gasification-based power generation system at Boise Cascade Corporation's pulp and paper mill in DeRidder, Louisiana. The advanced power generation system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as the primary fuel resource. The novel system is based on three advanced technology components: GTI's RENUGAS{reg_sign} and 3-stage solid fuels combustion technologies coupled with one of the power generation approaches used in DOE's HIPPS program. Phase 1 of the project is a technical and economic evaluation of the system at the DeRidder site. A Continuation Application will be submitted at the conclusion of Phase 1 for authorization to proceed to testing and design in Phase 2. Phase 2 includes pilot-scale verification of selected system components and preparation of a detailed engineering design and cost estimate for retrofit of the advanced power system at the DeRidder mill. Phase 3 will complete procurement and construction of the system at the DeRidder site along with all required permitting activities. Phase 4 of the project will included plant commissioning, startup and demonstration operations. Design information for the Gasification Island was completed during the quarter. Two vendor quotations were received for the bark/hog fuel dryers. A final layout plan for the major equipment was developed and submitted to DeRidder for review and approval. The Institute of Paper Science and Technology (IPST) completed a subcontract for a laboratory study on VOC emissions from wood waste drying using bark from the DeRidder mill. Samples of DeRidder's lime mud and green liquor dregs were collected and analyzed in GTI's laboratory. It was determined that lime mud is far too fine to be utilized as inert bed material in the fluidized bed gasifier. Results for the green liquor dregs are currently being reviewed. Design analysis for the in-furnace HPHT Air Heater was completed and the external Syngas Cooler/Air Heater was begun. Materials were received for the air heater tube testing system to be installed in Boiler No. 2 at DeRidder. A refractory interference problem with the original testing system design was discovered and resolved. Analyses of the externally recuperated gas turbine cycles (air heater and booster combustor in parallel or series) were continued including the effects of steam cooling and inlet air humidification on power output and operating cost. Discussions were continued with turbine manufacturers regarding the technical, time and cost requirements for developing an externally recuperated turbine engine suitable for use in the project. A 5-month no-cost time extension was requested and received for the project to accommodate design and evaluation of externally recuperated gas turbines using HPHT air as the working fluid.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    National Alternative Fuels Corridors By December 2016, the U.S. Department of Transportation (DOT) must designate national plug-in electric vehicle charging and hydrogen, propane, and natural gas fueling corridors in strategic locations along major highways to improve the mobility of alternative fuel vehicles. To designate the corridors, DOT will solicit nominations from state and local officials, work with industry stakeholders, and incorporate existing fueling infrastructure. Within five years

  9. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  10. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  11. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  12. RD&D Cooperation for the Development of Fuel Cell, Hybrid and Electric Vehicles within the International Energy Agency: Preprint

    SciTech Connect (OSTI)

    Telias, G.; Day, K.; Dietrich, P.

    2011-01-01

    Annex XIII on 'Fuel Cell Vehicles' of the Implementing Agreement Hybrid and Electric Vehicles of the International Energy Agency has been operating since 2006, complementing the ongoing activities on battery and hybrid electric vehicles within this group. This paper provides an overview of the Annex XIII final report for 2010, compiling an up-to-date, neutral, and comprehensive assessment of current trends in fuel cell vehicle technology and related policy. The technological description includes trends in system configuration as well as a review of the most relevant components including the fuel cell stack, batteries, and hydrogen storage. Results from fuel cell vehicle demonstration projects around the world and an overview of the successful implementation of fuel cells in specific transport niche markets will also be discussed. The final section of this report provides a detailed description of national research, development, and demonstration (RD&D) efforts worldwide.

  13. Method and apparatus for steam mixing a nuclear fueled electricity generation system

    DOE Patents [OSTI]

    Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

    1996-01-01

    A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

  14. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOE Patents [OSTI]

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  15. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect (OSTI)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  16. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

  17. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  18. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Greenville Avenue Room Omni Dallas Hotel 555 S Lamar St, Dallas, TX 75202 Thursday, October 29, 2015 8:00 AM - 12:30 PM http://www.thecamx.org/other-meetings-events/ (under "Co-Located Meetings" tab) Organized by U.S. Department of Energy - Office of Energy Efficiency & Renewable Energy - Fuel Cell Technologies Office and Pacific Northwest National Laboratory Workshop Agenda:

  19. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  20. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  1. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/CP-5400-60053. Posted with permission. Presented at the SAE 2013 Commercial Vehicle Engineering Congress. 2013-01-2471 Published 09/24/2013 doi:10.4271/2013-01-2471 saecomveh.saejournals.org Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells Eric Wood, Lijuan Wang, Jeffrey Gonder, and Michael Ulsh National Renewable Energy Laboratory ABSTRACT Battery electric vehicles possess great potential for decreasing lifecycle costs in

  2. Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.

    SciTech Connect (OSTI)

    Wally, Karl

    2006-05-01

    Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as an electrochemical 'working fluid'.

  3. Light Duty Fuel Cell Electric Vehicle Validation Data. Final Technical Report

    SciTech Connect (OSTI)

    Jelen, Deborah; Odom, Sara

    2015-04-30

    Electricore, along with partners from Quong & Associates, Inc., Honda R&D Americas (Honda), Nissan Technical Center North America (Nissan), and Toyota Motor Engineering & Manufacturing North America, Inc. (Toyota), participated in the Light Duty Fuel Cell Electric Vehicle (FCEV) Validation Data program sponsored by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) (Cooperative Agreement No. DE-EE0005968). The goal of this program was to provide real world data from the operation of past and current FCEVs, in order to measure their performance and improvements over time. The program was successful; 85% of the data fields requested were provided and not restricted due to proprietary reasons. Overall, the team from Electricore provided at least 4.8 GB of data to DOE, which was combined with data from other participants to produce over 33 key data products. These products included vehicle performance and fuel cell stack performance/durability. The data were submitted to the National Renewable Energy Laboratorys National Fuel Cell Technology Evaluation Center (NREL NFCTEC) and combined with input from other participants. NREL then produced composite data products (CDP) which anonymized the data in order to maintain confidentiality. The results were compared with past data, which showed a measurable improvement in FCEVs over the past several years. The results were presented by NREL at the 2014 Fuel Cell Seminar, and 2014 and 2015 (planned) DOE Annual Merit Review. The project was successful. The team provided all of the data agreed upon and met all of its goals. The project finished on time and within budget. In addition, an extra $62,911 of cost sharing was provided by the Electricore team. All participants believed that the method used to collect, combine, anonymize, and present the data was technically and economically effective. This project helped EERE meet its mission of ensuring Americas security and prosperity by documenting progress in addressing energy and environmental challenges. Information from this project will be used by the hydrogen and vehicle industries to help advance the introduction of FCEVs and associated hydrogen infrastructure.

  4. Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

    SciTech Connect (OSTI)

    Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

    2013-10-01

    Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

  5. DOE Issues Request for Information on Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    The USDOE's Fuel Cell Technologies Office has issued an RFI seeking feedback from the research community and relevant stakeholders about fuel cell technology validation, commercial acceleration, and potential deployment strategies for continuous fuel cell rechargers on board light-duty electric vehicle fleets.

  6. Electric power monthly with data for June 1997

    SciTech Connect (OSTI)

    1997-09-01

    This publication provides monthly statistics at the state, census division, and U.S. levels for net generation; fossil fuel consumption and stocks, quantity, and quality of fossil fuels; cost of fossil fuels; electricity retail sales; associated revenue; and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity, and cost of fossil fuels are also displayed for the North American Electric Reliability Council regions. Statistics on net generation by energy source and capability of new generating units by company and plant are also included. A section is included in the report which summarizes major industry developments. 1 fig., 64 tabs.

  7. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect (OSTI)

    Nelson, C.

    1995-08-01

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  8. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A.

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  9. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  10. Method for producing electricity from a fuel cell having solid-oxide ionic electrolyte

    DOE Patents [OSTI]

    Mason, David M. (Los Altos, CA)

    1984-01-01

    Stabilized quadrivalent cation oxide electrolytes are employed in fuel cells at elevated temperatures with a carbon and/or hydrogen containing fuel anode and an oxygen cathode. The fuel cell is operated at elevated temperatures with conductive metallic coatings as electrodes and desirably having the electrolyte surface blackened. Of particular interest as the quadrivalent oxide is zirconia.

  11. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  12. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  13. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  14. Fuel Cell Electric Vehicles (FCEVs) to Be Displayed on June 22...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On June 22, the Office of Energy Efficiency and Renewable Energy's (EERE's) Fuel Cell, Bioenergy, and Vehicle Technologies Offices will host a Sustainable Transportation Day ...

  15. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal"...

  16. Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels

    SciTech Connect (OSTI)

    El-Bassioni, A.A.

    1980-08-01

    An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

  17. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  18. Chemicals, fuels and electricity from coal. A proposed tri-generation concept for utilization of CO{sub 2} from power plants

    SciTech Connect (OSTI)

    Song, C.

    1999-07-01

    A tri-generation concept is proposed for the 21st century for making liquid fuels and chemicals along with electricity using CO{sub 2} from flue gases of coal-based electric power plants. The CO{sub 2} from flue gas in the power plant can be converted with CH{sub 4} (natural gas) to form synthesis gas (CO and H{sub 2} mixture) using the waste heat in the power plant. The H{sub 2}O and O{sub 2} in the flue gas will be used as co-reactants and need not be separated from the flue gas. The hot synthesis gas can be used as feedstock for fuel cells for electricity generation (such as MCFC and SOFC). The hot synthesis gas can also be used for gas turbines to generate electricity. The synthesis gas at moderate temperature can be converted into chemicals and fuels, e.g., methanol and mixed alcohols for chemical and fuel uses, dimethylether (DME) and mixed ethers for diesel fuel, dimethyl carbonate and acetic acid for chemicals. The fuels thus produced may be used either for conventional IC engines or in fuel cell-driven vehicles. This concept could also be applied, in principle, for natural gas-based power plants and IGCC power plants.

  19. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Fuel Cell Technologies Publication and Product Library (EERE)

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to

  20. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight

    Broader source: Energy.gov [DOE]

    Did you know 50 percent of the energy generated annually from all sources is lost as waste heat? What scientists are doing to take advantage of this opportunity to save money and new developments in harvesting fuel through photosynthesis.

  1. Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity & Fuel » Vehicles & Fuels » Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of

  2. Electrical Stability of a Novel Refractory Sealing Glass in a Dual Environment for Solid Oxide Fuel Cell Applications

    SciTech Connect (OSTI)

    Chou, Y. S.; Stevenson, Jeffry W.; Meinhardt, Kerry D.

    2010-03-01

    A novel refractory alkaline-earth silicate (Sr-Ca-Y-B-Si) sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was sealed between two metallic interconnect plates and tested for electrical stability at elevated temperatures and duel environments under DC loading. The isothermal aging results showed very stable electrical resistivity with values 5-9 orders of magnititudes higher than typical SOFC function materials at 850 degrees C for ~700 hr. For comparison, the state-of-the-art sealing glass (G18, Ba-Ca-Al-B-Si) was also evaluated in a similar condition and showed less stable in accelerated tests at 830 degrees C for ~100 hr. Interfacial microstruicture was characterized and possible reactions were discussed.

  3. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  4. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  5. Fuel switching in the electricity sector under the EU ETS: Review and prospective

    SciTech Connect (OSTI)

    Delarue, E.; Voorspools, K.; D'haeseleer, W.

    2008-06-15

    The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS. In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.

  6. Fuel cell components and systems having carbon-containing electrically-conductive hollow fibers

    DOE Patents [OSTI]

    Langry, Kevin C; Farmer, Joseph C

    2015-04-28

    A method, according to one embodiment, includes acquiring a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst along one side thereof, adding an anode that extends along at least part of a length of the structure, and adding a cathode that extends along at least part of the length of the structure, the cathode being on an opposite side of the hollow fiber as the anode.

  7. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or...

  8. Co-production of electricity and alternate fuels from coal. Final report, August 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

  9. Fuel cell components and systems having carbon-containing electrically-conductive hollow fibers

    DOE Patents [OSTI]

    Langry, Kevin C.; Farmer, Joseph C.

    2014-07-08

    According to one embodiment, a system includes a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst coupled to the hollow fiber, an anode extending along at least part of a length of the structure, and a cathode extending along at least part of the length of the structure, the cathode being on an opposite side of the hollow fiber as the anode. In another embodiment, a method includes acquiring a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst along one side thereof, adding an anode that extends along at least part of a length of the structure, and adding a cathode that extends along at least part of the length of the structure on an opposite side as the anode.

  10. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  11. Pngv System Analysis Toolkit Non-Proprietary for Electric Vehicle Fuel Economy

    Energy Science and Technology Software Center (OSTI)

    2002-02-01

    The PSAT-NP software is used for hybrid electric vehicle (HEV) simulation. This forward-looking model allows users to simulate more than 150 different HEV configurations through its Graphical User Interface. With the PSAT Graphical User Interface, the user can choose the configurations desired along with the different components to be considered and develop and appropriate control strategy. Several simulations can be run sequentially using PSAT's compilation extension capability.

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",0,0,1.73,1.48,1.41,2.03," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.07,2.08,1.98,1.8,1.81,1.74,1.59,1.44,1.41,1.3,1.27,1.26,1.25,1.24,1.33,1.33,1.42,1.44,1.39,1.37,1.35,1.37,1.41,1.43 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.39,3.35,3.14,3.05,2.87,2.83,2.58,2.02,2,1.88,1.73,1.8," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.91,1.84,1.74,1.59,1.6,1.47,1.26,1.28,1.06,0.97,0.97,0.95,0.92,0.93,0.98,0.99,1.01,1.03,1.05,1.06,1.09,1.09,1.09,1.06 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.2,3.94,4.04,3.55,3.34,3.52,2.86,3.08,2.81,2.2,1.9,1.78,2.17,1.52,1.59,1.56,1.57,1.59,1.62,1.62,1.69,1.73,1.78,1.81 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," ",1.44," "," "," "," ","

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.47,3.55,3.59,3.47,3.39,2.97,2.56,2.56,2.31,1.92,1.76,1.76,1.72,1.57,1.59,1.65,1.73,1.74,1.79,1.78,1.77,1.82,1.86,1.85 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.2,3.49,3.76,3.9,3.62,3.07,2.61,2.4,2.18,1.8,1.72,1.68,1.66,1.54,1.55,1.55,1.59,1.58,1.67,1.69,1.78,1.8,1.8,1.79 "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.91,3.78,3.37,2.79,2.97,3.58,3.09,2.81,1.75,1.88,2.96,3.03," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",0,0,2.71,2.95,2.55,2.51," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.9,1.94,1.76,1.7,1.65,1.58,1.34,1.26,1.19,1.15,1.16,1.19,1.19,1.15,1.44,1.56,1.55,1.63,1.63,1.61,1.7,1.74,1.71,1.75 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.5,2.56,2.46,2.14,2.02,1.93,1.61,1.52,1.4,1.21,1.2,1.17,1.14,1.08,1.11,1.12,1.16,1.19,1.25,1.27,1.27,1.31,1.34,1.36 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.77,1.54,1.52,1.42,1.34,1.27,1.08,1.05,0.98,0.93,0.89,0.89,0.81,0.82,0.82,0.88,0.94,0.94,0.99,0.99,1.01,1.1,1.1,1.12 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.77,1.83,1.75,1.51,1.43,1.41,1.23,1.19,1.12,1.03,1.01,0.98,1.05,0.98,0.95,0.98,1.02,0.99,1.02,1.02,1.02,1.18,1.23,1.24 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.36,2.42,2.34,2.26,2.17,2.14,1.75,1.7,1.52,1.37,1.23,1.19,1.1,1.02,1.06,1.06,1.05,1.06,1.11,1.16,1.17,1.16,1.18,1.19 "Average heat value (Btu per

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.56,2.49,2.39,2.16,2.04,2.1,1.85,1.66,1.51,1.38,1.34,1.27,1.31,1.32,1.4,1.43,1.48,1.51,1.55,1.54,1.58,1.53,1.65,1.7 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",5.09,7,6.09,6.19,5.06,3.67,3.19,3.27,2.66,2.62,2.37,2.41," "," "," "," "," "," "," "," "," "," "," "," " "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.68,2.79,2.68,2.12,2.07,1.97,1.72,1.68,1.58,1.39,1.34,1.32,1.27,1.3,1.31,1.33,1.37,1.4,1.45,1.51,1.53,1.56,1.59,1.6 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.03,1.99,1.93,1.74,1.64,1.69,1.5,1.22,1.13,1.07,1.08,1.06,1.02,1.11,1.1,1.07,1.09,1.07,1.14,1.14,1.13,1.19,1.26,1.25 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.24,3.52,3.45,2.89,3.01,3.01,2.71,2.31,2.1,1.69,1.54,1.59,1.63,1.52,1.55,1.54,1.55,1.51,1.53,1.57,1.64,1.6,1.67,1.65 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.9,1.85,1.73,1.59,1.53,1.51,1.33,1.11,1.01,0.93,0.92,0.9,0.96,0.92,0.93,0.92,0.93,0.95,0.98,1.1,1.24,1.34,1.34,1.35 "Average heat value (Btu per

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.57,1.38,1.33,1.11,1.07,1.02,0.93,0.85,0.71,0.64,0.62,0.61,0.95,0.92,0.73,0.67,0.68,0.71,0.67,0.69,0.69,0.71,0.67,0.67 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.42,1.55,1.51,1.42,1.33,0.9,0.88,0.8,0.71,0.66,0.6,0.58,0.57,0.56,0.55,0.59,0.59,0.72,0.75,0.77,0.75,0.75,0.75,0.75 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.64,2.57,2.58,2.44,2.22,2.2,1.88,1.73,1.54,1.36,1.42,1.34,1.26,1.26,1.29,1.3,1.39,1.37,1.31,1.43,1.47,1.46,1.41,1.49 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",4.21,4.07,3.55,3.8,3.66,3.53,2.9,2.56,2.44,2.02,1.7,1.8,1.67,1.48,1.52,1.61,1.63,1.61,1.59,1.52,1.61,1.69,1.74,1.78 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.87,4.05,4.18,4.16,4.01,3.33,2.89,2.73,2.18,2.05,1.8,1.87,2.27,1.39,1.45,1.59,1.76,1.75,1.78,1.82,1.77,1.73,1.78,1.8 "Average heat value (Btu per

  18. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.31,2.18,2.05,2.06,1.9,1.99,1.79,1.56,1.51,1.48,1.43,1.53,1.47,1.38,1.33,1.31,1.34,1.43,1.42,1.41,1.37,1.32,1.38,1.32 "Average heat value (Btu per

  19. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.13,3.26,3.32,3.05,2.73,2.57,2.41,2.4,2.13,1.76,1.59,1.55,1.42,1.49,1.45,1.43,1.42,1.43,1.41,1.45,1.5,1.49,1.59,1.61 "Average heat value (Btu per

  20. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.8,3.77,3.63,3.52,3.59,3.26,2.74,2.69,2.4,2,1.78,1.76,1.59,1.43,1.44,1.44,1.43,1.48,1.63,1.68,1.7,1.73,1.78,1.78 "Average heat value (Btu per

  1. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.55,1.49,1.34,1.26,1.14,1.1,0.98,0.88,0.82,0.77,0.74,0.74,0.74,0.72,0.73,0.76,0.78,0.74,0.73,0.7,0.71,0.72,0.71,0.69 "Average heat value (Btu per

  2. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.28,2.48,2.48,2.24,2.39,2.05,1.71,1.7,1.54,1.33,1.21,1.23,1.31,1.46,1.36,1.36,1.32,1.34,1.42,1.44,1.41,1.44,1.48,1.52 "Average heat value (Btu per

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.03,2,1.82,1.72,1.65,1.35,1.19,1.12,1.04,1.04,0.99,0.96,0.91,0.94,0.91,0.91,0.92,0.98,0.99,1.02,1.24,1.23,1.32,1.4 "Average heat value (Btu per

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.96,1.89,1.79,1.67,1.76,1.45,1.38,1.3,1.28,1.18,1.25,1.33,1.11,1.07,1.08,1.09,1.14,1.07,1.06,1.07,1.12,1.1,1.08,1.08 "Average heat value (Btu per

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.48,2.43,2.56,2.41,2.3,2.1,1.75,1.72,1.59,1.37,1.22,1.25,1.21,1.15,1.3,1.35,1.36,1.38,1.36,1.43,1.44,1.48,1.55,1.52 "Average heat value (Btu per

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  7. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.76,3.98,3.85,3.71,3.66,2.89,2.34,2.33,2.17,1.91,1.62,1.59,1.57,1.39,1.42,1.45,1.45,1.47,1.51,1.56,1.57,1.53,1.63,1.72 "Average heat value (Btu per

  8. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2,2.19,2.09,1.95,1.76,1.74,1.56,1.51,1.42,1.39,1.34,1.3,1.03,0.99,0.94,0.93,0.92,0.94,1.03,1.08,1.1,1.13,1.13,1.15 "Average heat value (Btu per

  9. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.49,2.72,2.88,2.69,2.57,2.28,1.94,1.73,1.57,1.36,1.26,1.22,1.22,1.11,1.13,1.12,1.12,1.15,1.15,1.26,1.26,1.27,1.25,1.34 "Average heat value (Btu per

  10. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.97,1.88,1.87,1.84,1.68,1.62,1.49,1.39,1.29,1.31,1.25,1.26,1.33,1.23,1.2,1.24,1.26,1.29,1.34,1.35,1.44,1.49,1.5,1.45 "Average heat value (Btu per

  11. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.05,1.94,1.78,1.7,1.55,1.39,1.36,1.25,1.14,1.13,1.04,0.98,1.12,1.01,1.03,1.15,1.11,1.07,1.09,1.14,1.19,1.21,1.19,1.17 "Average heat value (Btu per

  12. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)"," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  13. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.35,3.67,3.52,3.28,3.08,2.77,2.49,2.45,2.33,1.95,1.67,1.69,1.59,1.33,1.34,1.38,1.39,1.42,1.45,1.45,1.47,1.47,1.52,1.55 "Average heat value (Btu per

  14. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.49,2.55,2.47,2.39,2.54,2.22,1.73,1.67,1.53,1.35,1.25,1.21,1.25,1.2,1.18,1.22,1.24,1.25,1.27,1.39,1.42,1.47,1.52,1.47 "Average heat value (Btu per

  15. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.37,2.42,2.56,2.18,2.06,1.98,1.7,1.5,1.29,1.18,1.12,1.12,1.05,1.02,1.02,1.07,1.09,1.06,1.14,1.21,1.21,1.33,1.36,1.36 "Average heat value (Btu per

  16. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",1.51,1.43,1.54,1.32,1.2,1.17,1.05,1,0.95,0.87,0.82,0.79,0.77,0.78,0.76,0.79,0.81,0.82,0.82,0.8,0.8,0.76,0.83,0.84 "Average heat value (Btu per

  17. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.34,2.38,2.39,2.27,2.21,2.07,1.77,1.69,1.54,1.36,1.28,1.25,1.23,1.2,1.22,1.25,1.27,1.29,1.32,1.36,1.39,1.41,1.45,1.45 "Average heat value (Btu per

  18. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  19. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  20. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generatorfuel...

  1. Pngv System Analysis Toolkit Non-Proprietary for Electric Vehicle Fuel Economy

    Energy Science and Technology Software Center (OSTI)

    2002-02-01

    This is a new version of PSAT. New features include a new Graphical User Interface; an enhanced post processing; new component models, and XML documentation. The PSAT-NP software is used for hybrid electric vehicle (HEV) simulation. This forward-looking model allows users to simulate more than 150 different HEV configurations through its Graphical User Interface. With the PSAT Graphical User Interface, the user can choose the configurations desired along with the different components to be consideredmore »and develop and appropriate control strategy. Several simulations can be run sequentially using PSAT's compilation extension capability.« less

  2. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  3. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.77,4.35,3.7,3.75,3.58,3.15,2.95,2.67,2.46,2.38,2.41,2.45," "," ",1.69,1.81,1.9,1.91,1.88,1.77,1.7,1.95,2.17,2.13 "Average heat value (Btu per pound)",9205,9205,9373,10706,11038,10215,10286,10056,10139,10423,10565,11439,"

  4. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.39,3.57,3.65,3.41,3.01,3.66,2.12,2.27,1.92,1.74,1.63,1.63," ",1.33,1.38,1.46,1.5,1.49,1.5,1.55,1.6,1.59,1.63,1.65 "Average heat value (Btu per pound)",12336,12359,12245,12288,12510,12361,12501,12504,12638,12653,12708,12799,"

  5. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",3.4,3.12,3.68,3.18,3.38,2.94,2.78,2.78,2.94,1.97,1.75,1.92," ",1.75,1.73,1.68,1.7,1.69,1.68,1.68,1.68,1.69,1.72,1.73 "Average heat value (Btu per pound)",11746,12130,11794,11985,11735,11517,11595,11546,11728,11793,12200,12482,"

  6. Table 6. Electric power delivered fuel prices and quality for coal, petroleum, natural gas, 1990 - 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Fuel, quality", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Coal (dollars per million Btu)",2.15,2.29,2.25,2.27,2.16,2.17,1.73,1.54,1.33,1.43,1.4,1.46," ",1.69,1.56,1.49,1.63,1.57,1.44,1.36,1.36,1.37,1.55,1.58 "Average heat value (Btu per pound)",8517,8477,8413,8391,8403,8366,9211,8532,8131,8151,8052,8014,"

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  8. Electric power monthly

    SciTech Connect (OSTI)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  9. NREL: Transportation Research - Fuel Combustion and Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test & Evaluation Fuels Performance Combustion & Engines Fuel Chemistry Emissions & Fuel Economy Power Electronics & Electric Machines Sustainable Mobility Systems Analysis &...

  10. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  11. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  12. Biofuels from Bacteria, Electricity, and CO2: Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Electrofuels Project: Columbia University is using carbon dioxide (CO2) from ambient air, ammoniaan abundant and affordable chemical, and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the systemcreating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

  13. Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (EVSE) Testing Data | Department of Energy Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as Electric Vehicle Supply Equipment - EVSE) are a fundamental part of the plug-in electric vehicle system. Currently, there are three major types of EVSE: AC Level 1, AC Level 2, and DC Fast Charging. For an overview of the types of EVSE, see the Alternative Fuel Data Center's

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Zero Emission Vehicle (ZEV) Promotion Plan All state agencies must support and facilitate the rapid commercialization of ZEVs in California. In particular, the California Air Resources Board, California Energy Commission, Public Utilities Commission, and other relevant state agencies must work with the Plug-in Electric Vehicle Collaborative and the California Fuel Cell Partnership to establish benchmarks to achieve targets for ZEV commercialization. These targets include: By 2015, all major

  15. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  16. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu

  17. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

  18. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering ICEPAG Conference University of California, Irvine March 23, 2015 M. Melaina Senior Engineer, Team Lead Infrastructure Systems Analysis NREL Transportation & Hydrogen Systems Center NREL/PR-5400-64395 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable

  19. Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2"

  20. Fuel Cells News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Photos by Sarah Gerrity, Energy Department EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle Fuel cell electric vehicles (FCEVs) are now commercially...

  1. Major Demonstrations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major Demonstrations Major Demonstrations A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. The Office of Fossil Energy is co-funding large-scale demonstrations of clean coal technologies in three different

  2. Major Corporate Fleets Align to Reduce Oil Consumption | Department...

    Office of Environmental Management (EM)

    President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation ...

  3. Fossil fuel is king with energy producers

    SciTech Connect (OSTI)

    Hansen, T.

    1996-11-01

    Worldwide energy consumption is expected to double today`s levels by 2020, according to the World Energy Council. As diverse energy needs develop, fossil fuels are expected to continue to be the major source for power generation throughout the world. In the United States, utility deregulation is making low-cost fuel and power plant efficiency more important than ever. Electricity generators see both natural gas and coal as the fuels that will allow them to best meet the nation`s future energy needs. Coal will see less increase in its share of electricity generation than natural gas due to the costs associated with meeting the Clean Air Act Amendments` (CAAA) requirements. According to Organizations for Economic Cooperation Development, coal in both the United States and Europe will experience a 12 percent growth by 2010. Even with this somewhat slow growth, coal will remain the nation`s number one fuel for electricity generation well into the next century.

  4. Impacts of Increasing Natural Gas Fueled CHP from 20 to 35 Percent of Total Electricity Production in Texas, April 2011

    Broader source: Energy.gov [DOE]

    Paper proposing that the Legislature adopt an aggressive goal to stimulate additional development of natural gas fueled combined heat and power (CHP) in industries and buildings across Texas

  5. Electric power monthly, April 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  6. Electric power monthly, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  7. 2007 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  8. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  11. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Use: December 2015 Supply and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generator/fuel mix of utilities varies significantly by region, we also present generation output by region. Generation output by region By fuel type

  12. List of Fuel Cells using Renewable Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Conservation...

  13. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  14. Electric power monthly

    SciTech Connect (OSTI)

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  15. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  16. Electric Resistance Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in homes or...

  17. Assessment of Heating Fuels and Electricity Markets During the Winters of 2013-2014 and 2014-2015 Now Available

    Broader source: Energy.gov [DOE]

    Cold weather that blanketed much of the Eastern United States in 2013-2014 and 2014-2015 exhibited unique characteristics that prompted different — but related — challenges across heating fuels and...

  18. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Environmental Management (EM)

    Electricity & Fuel Buying & Making Electricity Hybrid Wind and Solar Electric Systems Hybrid Wind and Solar Electric Systems Because the peak operating times for wind and...

  19. Advanced Composite Materials for Cold and Cryogenic Hydrogen Storage Applications in Fuel Cell Electric Vehicles Workshop Attendee List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIRST NAME LAST NAME ORGANIZATION Jesse Adams U.S. DOE Fuel Cell Technologies Office Kyle Alvine Pacific Northwest National Laboratory Gene Berry Lawrence Livermore National Laboratory Ravi Deo U.S. DOE Advanced Manufacturing Office John Gangloff U.S. DOE Fuel Cell Technologies Office Allan Goldberg That Video Guy David Gotthold Pacific Northwest National Laboratory Patrick Hipp Composite Technology Development, Inc. Thanh Hua Argonne National Laboratory Justin Jackson National Aeronautics and

  20. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  1. Fuel Mix and Emissions Disclosure

    Broader source: Energy.gov [DOE]

    Electricity suppliers and electricity companies must also provide a fuel mix report to customers twice annually, within the June and December billing cycles. Emissions information must be disclos...

  2. Rod consolidation of RG and E's (Rochester Gas and Electric Corporation) spent PWR (pressurized water reactor) fuel

    SciTech Connect (OSTI)

    Bailey, W.J.

    1987-05-01

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister.

  3. 2009 Fuel Cell Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  4. Tilted fuel cell apparatus

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine; Krueger, Roger L.

    2005-04-12

    Bipolar, tilted embodiments of high temperature, molten electrolyte electrochemical cells capable of directly converting carbon fuel to electrical energy are disclosed herein. The bipolar, tilted configurations minimize the electrical resistance between one cell and others connected in electrical series. The tilted configuration also allows continuous refueling of carbon fuel.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient vehicles. Reductions may be met by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of hybrid electric vehicles, other fuel-efficient or low emission vehicles, or additional methods the North Carolina Division of Energy, Mineral and Land Resources approves.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but subject to a special fuel tax at the rate of three-nineteenths of the conventional motor fuel tax. A reduction in special fuel tax is permissible if the fuel is already taxed by the Navajo Nation. Retailers, wholesalers, and suppliers of special fuel are eligible for a refund of the special fuel tax if dyed diesel fuel is

  7. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions. With at least three major auto manufacturers expected to release fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable U.S. hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL), with fund- ing from the U.S. Department of Energy Fuel Cell Technologies Office, is using a robot in the Energy Systems Integration

  8. Energy, Environmental, and Economic Analyses of Design Concepts for the Co-Production of Fuels and Chemicals with Electricity via Co-Gasification of Coal and Biomass

    SciTech Connect (OSTI)

    Eric Larson; Robert Williams; Thomas Kreutz; Ilkka Hannula; Andrea Lanzini; Guangjian Liu

    2012-03-11

    The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercialized component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.

  9. Electric power monthly, October 1991. [CONTAINS GLOSSARY

    SciTech Connect (OSTI)

    Not Available

    1991-10-11

    This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 63 tabs.

  10. Electric Power Monthly, September 1991. [CONTAINS GLOSSARY

    SciTech Connect (OSTI)

    Not Available

    1991-09-12

    This publication provides monthly statistics at the national, Census division, and state levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, statistics at the company and plant level are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 63 tabs.

  11. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

  12. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit The Colorado Department of Revenue offers the Innovative Motor Vehicle Credit for a vehicle titled and registered in Colorado that uses or is converted to use an alternative fuel, is a diesel hybrid electric vehicle (HEV), is a plug-in hybrid electric vehicle (PHEV), or has its power source replaced with one that uses an alternative fuel. Electric vehicles (EVs) and PHEVs must have a maximum speed of at least 55 miles

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Vehicle Acquisition Requirements State agency fleets with more than 15 vehicles, excluding emergency and law enforcement vehicles, may not purchase or lease a motor vehicle unless the vehicle uses compressed or liquefied natural gas, propane, ethanol or fuel blends of at least 85% ethanol (E85), methanol or fuel blends of at least 85% methanol (M85), biodiesel or fuel blends of at least 20% biodiesel (B20), or electricity (including plug-in hybrid electric vehicles).

  15. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective YSZ coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-03-15

    Recently, compliant sealing glass has been proposed as a potential candidate sealant for solid oxide fuel cell (SOFC) applications. In a previous paper, the thermal stability and chemical compatibility were reported for a compliant alkali-containing silicate glass sealed between anode supported YSZ bi-layer and YSZ-coated stainless steel interconnect. In this paper, we will report the electrical stability of the compliant glass under a DC load and dual environment at 700-800 degrees C. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two plain SS441 metal coupons or YSZ-coated aluminized substrates. The results showed instability with plain SS441 at 800 degrees C, but stable behavior of increasing resistivity with time was observed with the YSZ coated SS441. In addition, results of interfacial microstructure analysis with scanning electron microscopy will be correlated with the measured resistivity results. Overall, the YSZ coating demonstrated chemically stability with the alkali-containing compliant silicate sealing glass under electrical field and dual environments.

  16. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: the effect of protective alumina coating on electrical stability in dual environment

    SciTech Connect (OSTI)

    Chou, Y. S.; Choi, Jung-Pyung; Stevenson, Jeffry W.

    2012-12-01

    An alkali-containing silicate glass was recently proposed as a potential sealant for solid oxide fuel cells (SOFC). The glass contains appreciable amount of alkalis and retains its glassy microstructure at elevated temperatures over time. It is more compliant as compared to conventional glass-ceramics sealants and could potentially heal cracks during thermal cycling. In previous papers the thermal cycle stability, thermal stability and chemical compatibility were reported with yttria-stabilized zirconia (YSZ) electrolyte and YSZ-coated ferritic stainless steel interconnect. In this paper, we report the electrical stability of the compliant glass with aluminized AISI441 interconnect material under DC load in dual environment at 700-800oC. Apparent electrical resistivity was measured with a 4-point method for the glass sealed between two aluminized AISI441 metal coupons as well as plain AISI441 substrates. The results showed good electrical stability with the aluminized AISI441 substrate, while unstable behavior was observed for un-coated substrates. In addition, interfacial microstructure was examined with scanning electron microscopy and correlated with the measured resistivity results. Overall, the alumina coating demonstrated good chemical stability with the alkali-containing silicate sealing glass under DC loading.

  17. Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current

    DOE Patents [OSTI]

    Lovley, Derek R; Nevin, Kelly

    2015-11-03

    The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.

  18. Fuel Cell Animation - Fuel Cell Stack (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stack (Text Version) Fuel Cell Animation - Fuel Cell Stack (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell stack with electrical circuit. Fuel cell: The amount of power produced by a fuel cell depends on several factors, including fuel cell type, cell size, temperature at which it operates, and pressure at which the gases are supplied to the cell. A single fuel cell

  19. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  20. P.L. 95-620, "Power Plant and Industrial Fuel Use Act" (1978)

    SciTech Connect (OSTI)

    2011-12-13

    This act prohibits: (1) the use of natural gas or petroleum as a energy source in any new electric powerplant; and (2) construction of any new electric powerplant without the capability to use coal or any alternate fuel as a primary energy source. Prohibits the use of natural gas or petroleum as the primary energy source in a new major fuel-burning installation (MFBI) consisting of a boiler.

  1. Fuel Mix Disclosure

    Broader source: Energy.gov [DOE]

    California's retail electricity suppliers must disclose to all customers the fuel mix used in the generation of electricity. Utilities must use a standard label created by the California Energy...

  2. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells » Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic components are found in many fuel cell systems: Fuel cell stack Fuel processor Power conditioners Air compressors Humidifiers Fuel Cell Stack The fuel cell stack is the heart of a fuel cell power system. It generates electricity in the form of direct current (DC) from electro-chemical reactions that take place in

  3. CASL - Westinghouse Electric Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse Electric Company Cranberry Township, PA Westinghouse Electric Company provides fuel, services, technology, plant design and equipment for the commercial nuclear electric power industry. Westinghouse nuclear technology is helping to provide future generations with safe, clean and reliable electricity. Key Contributions Definition of CASL challenge problems Existing codes and expertise Data for validation Computatinoal fluid dynamics modeling and analysis Development of test stand for

  4. Webinar: California Fuel Cell Partnership's Roadmap to theCommerciali...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles Webinar: California Fuel Cell Partnership's Roadmap to the ...

  5. Five Kilowatt Fuel Cell Demonstration for Remote Power Applications

    SciTech Connect (OSTI)

    Dennis Witmer; Tom Johnson; Jack Schmid

    2008-12-31

    While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

  6. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  7. Electric power monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-13

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  8. Electric power monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-17

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations Regulated electric utility tariffs must explicitly permit customers to resell electricity for use as a motor fuel, as long as the entity is not considered a public utility as defined in Oregon Revised Statutes 757.005 and does not provide any utility service. Additionally, each regulated electric utility must provide customers with a choice of flat rate or time of use electricity rates specific to PEV owners.

  10. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  11. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) Parking Space Regulation An individual is not allowed to park a motor vehicle within any parking space specifically designated for public parking and fueling of AFVs unless the motor vehicle is an AFV fueled by electricity, natural gas, methanol, propane, gasoline blended with at least 85% ethanol (E85), or other fuels the Oregon Department of Energy approves. Eligible AFVs must also be in the process of fueling or charging to park in the space. A person found responsible for

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Grants As part of the Delaware Clean Transportation Incentive Program, the Delaware Department of Natural Resources and Environmental Control (DNREC) provides grant funding for public and private alternative fueling stations, including DC fast electric vehicle supply equipment (EVSE), natural gas, propane, and hydrogen fueling infrastructure. The grant funds 75% of the cost of public access fueling infrastructure and 50% of the cost of private access fueling

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit For tax years beginning before January 1, 2020, a tax credit is available for up to 75% of the cost of installing commercial alternative fueling infrastructure. Eligible alternative fuels include natural gas, propane, and electricity. The infrastructure must be new and must not have been previously installed or used to fuel alternative fuel vehicles. A tax credit is also available for up to 50% of the cost of installing a residential compressed natural gas

  15. Proceedings of the third annual fuel cells contractors review meeting

    SciTech Connect (OSTI)

    Huber, W.J.

    1991-06-01

    The overall objective of this program is to develop the essential technology for private sector characterization of the various fuel cell electrical generation systems. These systems promise high fuel to electricity efficiencies (40 to 60 percent), distinct possibilities for cogeneration applications, modularity of design, possibilities of urban siting, and environmentally benign emissions. The purpose of this meeting was to provide the research and development (R D) participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with the opportunity to present key results of their research and to establish closer business contacts. Major emphasis was on phosphoric acid, molten carbonate, and solid oxide technology efforts. Research results of the coal gasification and gas stream cleanup R D activities pertinent to the Fuel Cells Program were also highlighted. Two hundred seventeen attendees from industry, utilities, academia, and Government participated in this 2-day meeting. Twenty-three papers were given in three formal sessions: molten carbonate fuel cells R D (9 papers), solid oxide fuel cells (8 papers), phosphoric acid fuel cells R D (6 papers). In addition to the papers and presentations, these proceedings also include comments on the Fuel Cells Program from the viewpoint of DOE/METC Fuel Cell Overview by Rita A. Bajura, DOE/METC Perspective by Manville J. Mayfield, Electric Power Research Institute by Daniel M. Rastler, Natural Gas by Hugh D. Guthrie, and Transportation Applications by Pandit G. Patil.

  16. Fuel Cell Animation - Fuel Cell Components (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Components (Text Version) Fuel Cell Animation - Fuel Cell Components (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell shown with its inputs and outputs. Hydrogen input on top, oxygen input in front, water and heat outputs out the back, with an electrical circuit going around the top. Polymer Electrolyte Membrane (PEM) in center, cathode/catalyst to the right

  17. 2015 Solid Oxide Fuel Cells Project Portfolio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Solid Oxide Fuel Cells Project Portfolio Solid Oxide Fuel Cells are energy conversion devices that produce electric power through an electrochemical reaction rather than by...

  18. Alternative Fueling Station Locator | Department of Energy

    Energy Savers [EERE]

    End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more...

  19. Fuel Cell Animation- Chemical Process (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  20. Fuel Oil and Kerosene Sales 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil and Kerosene Sales 2014 December 2015 Independent ... DC 20585 U.S. Energy Information Administration | Fuel ... An energy-consuming sector that consists of electricity only ...

  1. Electric power annual 1995. Volume I

    SciTech Connect (OSTI)

    1996-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions.

  2. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  3. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  4. Electric power monthly, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  5. Electric Power Annual 2014 - U.S. Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Glossary › FAQS › Overview Data Electricity Data Browser (interactive query tool with charting & mapping) Summary Sales (consumption), revenue, prices & customers Generation and thermal output Electric power plants generating capacity Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity generation Fossil-fuel stocks for electricity generation Revenue and expense statistics for...

  6. Major Energy Electric Services | Open Energy Information

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 56504 Utility Location Yes Ownership R NERC Location NPCC ISO NY Yes Activity Retail Marketing Yes This article is a stub. You can...

  7. Electric power annual 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-17

    This publication presents a summary of electric utility statistics at the national, regional and state levels. The Industry At A Glance'' section presents a profile of the electric power industry ownership and performance; a review of key statistics for the year; and projections for various aspects of the electric power industry through 2010. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; electricity sales, revenue and average revenue per kilowatthour sold; financial statistics; environmental statistics; and electric power transactions. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. 24 figs., 57 tabs.

  8. Fuel Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydrogen & Fuel Cells » Fuel Cell Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Text Version Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. How Fuel Cells Work Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two

  9. Electric utility engineer`s FGD manual -- Volume 2: Major mechanical equipment; FGD proposal evaluations; Use of FGDPRISM in FGD system modification, proposal, evaluation, and design; FGD system case study. Final report

    SciTech Connect (OSTI)

    1996-03-04

    Part 2 of this manual provides the electric utility engineer with detailed technical information on some of the major mechanical equipment used in the FGD system. The objectives of Part 2 are the following: to provide the electric utility engineer with information on equipment that may be unfamiliar to him, including ball mills, vacuum filters, and mist eliminators; and to identify the unique technique considerations imposed by an FGD system on more familiar electric utility equipment such as fans, gas dampers, piping, valves, and pumps. Part 3 provides an overview of the recommended procedures for evaluating proposals received from FGD system vendors. The objectives are to provide procedures for evaluating the technical aspects of proposals, and to provide procedures for determining the total costs of proposals considering both initial capital costs and annual operating and maintenance costs. The primary objective of Part 4 of this manual is to provide the utility engineer who has a special interest in the capabilities of FGDPRISM [Flue Gas Desulfurization PRocess Integration and Simulation Model] with more detailed discussions of its uses, requirements, and limitations. Part 5 is a case study in using this manual in the preparation of a purchase specification and in the evaluation of proposals received from vendors. The objectives are to demonstrate how the information contained in Parts 1 and 2 can be used to improve the technical content of an FGD system purchase specification; to demonstrate how the techniques presented in Part 3 can be used to evaluate proposals received in response to the purchase specification; and to illustrate how the FGDPRISM computer program can be used to establish design parameters for the specification and evaluate vendor designs.

  10. EFRC CMSNF Major Accomplishments

    SciTech Connect (OSTI)

    D. Hurley; Todd R. Allen

    2014-09-01

    The mission of the Center for Material Science of Nuclear Fuels (CMSNF) has been to develop a first-principles-based understanding of thermal transport in the most widely used nuclear fuel, UO2, in the presence of defect microstructure associated with radiation environments. The overarching goal within this mission was to develop an experimentally validated multiscale modeling capability directed toward a predictive understanding of the impact of radiation and fission-product induced defects and microstructure on thermal transport in nuclear fuel. Implementation of the mission was accomplished by integrating the physics of thermal transport in crystalline solids with microstructure science under irradiation through multi institutional experimental and computational materials theory teams from Idaho National Laboratory, Oak Ridge National Laboratory, Purdue University, the University of Florida, the University of Wisconsin, and the Colorado School of Mines. The Centers research focused on five major areas: (i) The fundamental aspects of anharmonicity in UO2 crystals and its impact on thermal transport; (ii) The effects of radiation microstructure on thermal transport in UO2; (iii) The mechanisms of defect clustering in UO2 under irradiation; (iv) The effect of temperature and oxygen environment on the stoichiometry of UO2; and (v) The mechanisms of growth of dislocation loops and voids under irradiation. The Center has made important progress in each of these areas, as summarized below.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement All gasoline-powered vehicles purchased with state funds must be flexible fuel vehicles (FFVs) or fuel-efficient hybrid electric vehicles (HEVs). Fuel-efficient HEVs are defined as automobiles or light trucks that use a gasoline or diesel engine and an electric motor to provide power and that gain at least a 20% increase in combined U.S. Environmental Protection Agency city-highway fuel economy over the equivalent or most-similar

  12. Cuivre River Electric- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Cuivre River Electric Cooperative, through the Take Control & Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water...

  13. Innovative Drivetrains in Electric Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells...

  14. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    utility restructuring legislation requires all electric companies and electricity suppliers to provide customers with details regarding the fuel mix and emissions of electric...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Purchase and Pricing Agreement Requirements The Colorado state fleet and the Colorado Department of Transportation (CDOT) must purchase natural gas vehicles (NGVs) where natural gas fueling is available or planned, whenever possible. Where NGVs are not viable options, other alternative fuel vehicles (AFVs) such as plug-in electric, hybrid electric, and propane vehicles, must be considered. All new vehicles purchased must be either alternatively fueled or exceed federal Corporate Average

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information on alternative fuels, AFVs, HEVs, plug-in hybrid electric vehicles; and advanced vehicle technology research, development, and demonstration. Projects that result in product commercialization and the expansion of Pennsylvania companies are favored in the selection process. The AFIG Program also offers

  17. Electric power monthly, July 1995 - with data for April 1995

    SciTech Connect (OSTI)

    1995-07-01

    This publication provides statistical data on net generation, fuel consumption, fossil fuel stocks, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on fossil fuel stocks and costs are also included.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E Pacific Gas & Electric (PG&E) offers discounted Residential Time-of-Use rates for electricity used for plug-in electric vehicle charging. Discounted rates are also available for compressed or uncompressed natural gas used in natural gas vehicle (NGV) home fueling appliances. For more information, see the PG&E Electric Vehicle Rate Options and NGV Rates websites.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Utility Definition A corporation or individual that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge light-duty battery electric and plug-in hybrid electric vehicles, compressed natural gas to fuel natural gas vehicles, or hydrogen as a motor vehicle fuel is not defined as a public utility. (Reference Assembly Bill 109, 2015, and California Public Utilities Code 216

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley The San Joaquin Valley Air Pollution Control District (SJVAPCD) administers the Drive Clean! Rebate Program, which provides rebates for the purchase or lease of eligible new vehicles, including qualified natural gas, hydrogen fuel cell, propane, zero emission motorcycles, battery electric, neighborhood electric, and plug-in electric vehicles. The program offers rebates of up to $3,000, which are available on a first-come,

  1. Electric power monthly, March 1998 with data for December 1997

    SciTech Connect (OSTI)

    1998-03-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  2. 2008 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  3. Electric Power Monthly, July 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-12

    The Electric Power Monthly (EPM) is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost in fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 12 refs., 4 figs., 48 tabs.

  4. Monthly/Annual Energy Review - electricity section

    Reports and Publications (EIA)

    2016-01-01

    Monthly and latest annual statistics on electricity generation, capacity, end-use, fuel use and stocks, and retail price.

  5. Monthly/Annual Energy Review - electricity section

    Reports and Publications (EIA)

    2015-01-01

    Monthly and latest annual statistics on electricity generation, capacity, end-use, fuel use and stocks, and retail price.

  6. Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel Cells A fuel cell uses the chemical energy of hydrogen or another fuel to cleanly and efficiently produce electricity. If hydrogen is the fuel, electricity, water, and heat are the only products. Fuel cells are unique in terms of the variety of their potential applications; they can provide power for systems as large as a utility power station and as small as a laptop computer. Why Study Fuel Cells Fuel cells can be used in a wide range of applications, including transportation,

  7. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training The Alternative Fuels Technician Certification Act (Act) regulates the training, testing, and certification of technicians and trainees who install, modify, repair, or renovate equipment used in alternative fueling infrastructure and in the conversion of any engine to operate on an alternative fuel. This includes original equipment manufacturer engines dedicated to operate on an alternative fuel. Plug-in electric vehicles (PEVs), PEV charging infrastructure, and PEV

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit for Residents Through the Residential Energy Tax Credit program, qualified residents may receive a tax credit for 25% of alternative fuel infrastructure project costs, up to $750. Beginning January 1, 2016, qualified residents may receive a tax credit for 50% of project costs, up to $750. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other fuels that the Oregon Department

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Grants The Texas Commission on Environmental Quality (TCEQ) administers the Alternative Fueling Facilities Program (AFFP) as part of the Texas Emissions Reduction Plan. AFFP provides grants for 50% of eligible costs, up to $600,000, to construct, reconstruct, or acquire a facility to store, compress, or dispense alternative fuels in Texas air quality nonattainment areas. Qualified alternative fuels include biodiesel, electricity, natural gas, hydrogen, propane,

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  12. Electric power monthly, January 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-17

    This publication provides monthly statistics at the national, Census division, and state levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. 4 figs., 48 tabs.

  13. Electric power monthly, April 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the U.S., Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. This April 1994 issue contains 1993 year-end data and data through January 1994.

  14. Lesson 2- Electricity Basics

    Broader source: Energy.gov [DOE]

    It’s difficult to imagine life without convenient electricity. You just flip a switch or plug in an appliance, and it’s there. But how did it get there? Many steps go into providing the reliable electricity we take for granted. This lesson takes a closer look at electricity. It follows the path of electricity from the fuel source to the home, including the power plant and the electric power grid. It also covers the role of electric utilities in the generation, transmission, and distribution of electricity.

  15. Diesel Fuel Price Pass-through

    Gasoline and Diesel Fuel Update (EIA)

    1000 Independence Avenue, SW Washington, DC 20585 Home | Petroleum | Gasoline | Diesel | Propane | Natural Gas | Electricity | Coal | Nuclear Renewables | Alternative Fuels |...

  16. National Alternative Fuels Training Consortium (NAFTC) Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications National Alternative Fuels Training Consortium (NAFTC) Clean Cities Learning Program Clean Cities Education & Outreach Activities Advanced Electric ...

  17. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  18. Micro fuel cell

    SciTech Connect (OSTI)

    Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  19. Fuel Cell Technologies Budget

    SciTech Connect (OSTI)

    EERE

    2012-03-16

    The Fuel Cell Technologies Office receives appropriations from Energy and Water Development. The offices's major activities and budget are outlined in this Web page.

  20. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  1. NETL: Solid Oxide Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and water concerns associated with fossil fuel based electric power generation. The NETL Fuel Cell Program maintains a portfolio of RD&D projects that address the technical issues...

  2. Catalysts compositions for use in fuel cells

    DOE Patents [OSTI]

    Chuang, Steven S.C.

    2015-12-02

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  3. Catalysts compositions for use in fuel cells

    DOE Patents [OSTI]

    Chuang, Steven S.C.

    2015-12-01

    The present invention generally relates to the generation of electrical energy from a solid-state fuel. In one embodiment, the present invention relates to a solid-oxide fuel cell for generating electrical energy from a carbon-based fuel, and to catalysts for use in a solid-oxide fuel cell.

  4. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  5. Hydrogen & Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency » Vehicles » Hydrogen & Fuel Cells Hydrogen & Fuel Cells Watch this video to find out how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. Learn more about hydrogen and fuel cell technology basics. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial

  6. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  7. Fact #682: July 4, 2011 Federal Alternative Fuel Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: July 4, 2011 Federal Alternative Fuel Use Fact #682: July 4, 2011 Federal Alternative Fuel Use The Federal Government used nearly 9 million gasoline-gallon equivalents of alternative fuel in 2010. The majority of the fuel used (92%) was E-85, a combination of 85% ethanol and 15% gasoline. The Government's use of liquefied petroleum gas (LPG), compressed natural gas (CNG), and liquefied natural gas (LNG) has declined over the last few years. In 2010, electricity use grew due to a large

  8. Electric power monthly, July 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

  9. Electric power monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-20

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  10. Electric power monthly, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-26

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  11. Electric Power Monthly, June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-13

    The EPM is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, electricity sales, and average revenue per kilowatthour of electricity sold. Data on net generation are also displayed at the North American Electric Reliability Council (NERC) region level. Additionally, company and plant level information are published in the EPM on capability of new plants, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel. Quantity, quality, and cost of fuel data lag the net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour data by 1 month. This difference in reporting appears in the national, Census division, and State level tables. However, at the plant level, all statistics presented are for the earlier month for the purpose of comparison. 40 tabs.

  12. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  13. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Fuel-Efficient Vehicle Tax Credit Through 2016, new electric, natural gas, and propane vehicles registered in Utah are eligible for an income tax credit of 35% of the vehicle purchase price, up to $1,500. Plug-in hybrid electric vehicles (PHEVs) will be eligible for a tax credit of $1,000. Leased electric, natural gas, and propane vehicles are eligible for a tax credit on a prorated basis up to $1,500. Leased plug-in hybrid electric vehicles will be eligible for a prorated

  15. Alternative Fuels Used in Transportation (5 Activities)

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Gasoline is the most commonly used fuel for transportation; however, there are multiple alternative fuels that are making their way to the market. These alternative fuels include propane, natural gas, electric hybrids, hydrogen fuel cells, and bio-diesel. Students will probably have heard of some of these alternative fuels, but they may not understand how and why they are better then ordinary gasoline.

  16. System for the co-production of electricity and hydrogen

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Anderson, Brian Lee (Lodi, CA)

    2007-10-02

    Described herein is a system for the co-generation of hydrogen gas and electricity, wherein the proportion of hydrogen to electricity can be adjusted from 0% to 100%. The system integrates fuel cell technology for power generation with fuel-assisted steam-electrolysis. A hydrocarbon fuel, a reformed hydrocarbon fuel, or a partially reformed hydrocarbon fuel can be fed into the system.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Fuel Cell Electric Vehicle (FCEV) Emissions Inspection Exemption Qualified PEVs and FCEVs are exempt from state emissions inspection requirements. Other restrictions may apply. (Reference North Carolina General Statutes 20-4.01 and 20-183.2

  18. Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Basics Alternative Fuel Basics August 19, 2013 - 5:42pm Addthis Photo of a man in goggles looking at test tubes full of biodiesel. There are a number of fuels available for alternative fuel vehicles. Learn about the following types of fuels: Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Addthis Related Articles Advanced Technology and Alternative Fuel Vehicle Basics Glossary of Energy-Related Terms Natural Gas Fuel Basics Energy Basics Home Renewable Energy Homes

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains...

  20. Electric power monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-16

    The Electric Power Monthly (EMP) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  1. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  2. Co-production of Hydrogen and Electricity (A Developer's Perspective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Electricity (A Developer's Perspective) FuelCell Energy Overview, Direct Fuel Cell (DFC) Technology Status, Hydrogen Co-production Technology, Benefits and Status, Strategic...

  3. Compact fuel cell

    DOE Patents [OSTI]

    Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  4. Alternative Fuels Data Center: Michigan Transports Students in Hybrid

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric School Buses Michigan Transports Students in Hybrid Electric School Buses to someone by E-mail Share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Facebook Tweet about Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Twitter Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Google Bookmark Alternative Fuels Data Center: Michigan

  5. Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Events Oregon Boosts EV Adoption Through Popular Electric Vehicle Events to someone by E-mail Share Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Facebook Tweet about Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Twitter Bookmark Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Google Bookmark Alternative Fuels Data

  6. Fuel cell electrode and method of preparation

    DOE Patents [OSTI]

    Kaun, T.D

    1984-03-02

    A fuel cell having good resistance to compressive creep includes electrodes having a superstructure of porous electrically conductive foam with surface sections adjacent to opposing surfaces of an electrolyte matrix impregnated with electrode catalyst materials. The catalyst materials are affixed in sections contiguous to an inner major surface by sinter bonding, electrochemical bonding or restrictive interstitial spacing. The outer sections of the porous plaque thickness are reserved for gas distribution to the electrode catalyst. Oxidant and fuel gases can be separately manifolded into alternate sides of a fuel cell stack by sealing opposing edges of the porous plaques containing the anode material in one set of opposing side surfaces and sealing opposing edges of the porous plaque containing cathode material in alternate side surfaces of the stack.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Infrastructure Tax Credit NOTE: This incentive originally expired on December 31, 2013, but was retroactively extended through December 31, 2016, by H.R. 2029. Fueling equipment for natural gas, liquefied petroleum gas (propane), liquefied hydrogen, electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between January 1, 2015, and December 31, 2016, is eligible for a tax credit of 30% of the cost, not to exceed $30,000. Permitting and inspection

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Fleets Under the Energy Policy Act (EPAct) of 1992, 75% of new light-duty vehicles acquired by covered federal fleets must be alternative fuel vehicles (AFVs). As amended in January 2008, Section 301 of EPAct 1992 defines AFVs to include hybrid electric vehicles, fuel cell vehicles, and advanced lean burn vehicles. Fleets that use fuel blends containing at least 20% biodiesel (B20) may earn credits toward their annual requirements. Federal fleets are also required to use alternative

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption States are allowed to exempt certified alternative fuel vehicles (AFVs) and plug-in electric vehicles (PEVs) from HOV lane requirements within the state. Eligible AFVs are defined as vehicles operating solely on methanol, denatured ethanol, or other alcohols; a mixture containing at least 85% methanol, denatured ethanol, or other alcohols; natural gas, propane, hydrogen, or coal derived liquid fuels; or fuels derived from biological materials. PEVs are

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Infrastructure Tax Credit Businesses and individuals are eligible for an income tax credit of 50% of the incremental or conversion cost for qualified AFVs, up to $19,000 per vehicle. A tax credit is also available for 50% of the equipment and labor costs for the purchase and installation of alternative fuel infrastructure on qualified AFV fueling property. The maximum credit is $1,000 per residential electric vehicle charging station, and $10,000 per publicly

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Procurement Preference In determining the lowest responsible qualified bidder for the award of state contracts, the Connecticut Department of Administrative Services may give a price preference of up to 10% for the purchase of AFVs or for the purchase of conventional vehicles plus the conversion equipment to convert the vehicles to dual or dedicated alternative fuel use. For these purposes, alternative fuels are natural gas, hydrogen, propane, or electricity used

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit For tax years beginning on or after January 1, 2015, an income tax credit is available for the cost of constructing a qualified alternative fueling station. The credit is 20% of the costs directly associated with the purchase and installation of any alternative fuel storage and dispensing equipment or electric vehicle supply equipment (EVSE), up to $1,500 for individuals or $20,000 for businesses. Tax credits may be carried forward for two years and

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit An income tax credit is available for 50% of the cost of alternative fueling infrastructure, up to $5,000. Qualifying infrastructure includes electric vehicle supply equipment and equipment to dispense fuel that is 85% or more natural gas, propane, or hydrogen. Unused credits may be carried over into future tax years. The credit expires December 31, 2017. For additional information, including information on how to claim the credit, please see the New York State

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations Converting a vehicle to operate on an alternative fuel in lieu of the original gasoline or diesel fuel is prohibited unless the California Air Resources Board (ARB) has evaluated and certified the retrofit system. ARB will issue certification to the manufacturer of the system in the form of an Executive Order once the manufacturer demonstrates compliance with the emissions, warranty, and durability requirements. A

  15. List of Renewable Fuels Incentives | Open Energy Information

    Open Energy Info (EERE)

    using Renewable Fuels Geothermal Electric Photovoltaics Renewable Fuels Solar Water Heat Natural Gas Hydroelectric energy Small Hydroelectric Yes Alternative Energy Personal...

  16. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The Environmental Protection Agency has developed a new methodology for determining how fuel ...

  17. DOE Issues Request for Information on Fuel Cells for Continuous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for Information on Fuel Cells for Continuous On-Board Recharging for Battery Electric Light-Duty Vehicles DOE Issues Request for Information on Fuel Cells for...

  18. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high efficiency and minimal emissions, fuel cells are an attractive option for distributed power...

  19. Alternative Fuels Used in Transportation: Science Projects in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are making their ways to the market. These alternative fuels include such things as propane, natural gas, electric hybrids, hydrogen fuel cells, and biodiesel. Students will...

  20. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It also presents the different types of fuel cells and hybrid electric vehicles. PDF icon Introduction: Hydrogen Fuel Cell Engines and Related Technologies PDF icon Module 1: ...

  1. Fuel Cell Technologies Office Newsletter: May 2015 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Newsletter: May 2015 The May ... and Requests for Information Webinars and Workshops ... system, using electricity or natural gas, to fuel ...

  2. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high effciency and minimal emissions, fuel cells are an attractive ...

  3. Fuel Cell Technologies Multimedia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Fuel Cell Technologies Multimedia Fuel Cell Technologies Multimedia View and download multimedia-including infographics, videos, and animations-related to hydrogen and fuel cell technologies, research, projects, and program activities. Infographics View the fuel cell electric vehicle infographic to learn about how fuel cell electric vehicles (FCEVs) work and some of the benefits of FCEVs, such as how they reduce greenhouse gas emissions, emit only water, and operate

  4. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  5. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  6. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  7. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  8. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  9. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  10. Electric power annual 1998. Volume 1

    SciTech Connect (OSTI)

    1999-04-01

    The purpose of this report, Electric Power Annual 1998 Volume 1 (EPAVI), is to provide a comprehensive overview of the electric power industry during the most recent year for which data have been collected, with an emphasis on the major changes that occurred. In response to the changes of 1998, this report has been expanded in scope. It begins with a general review of the year and incorporates new data on nonutility capacity and generation, transmission information, futures prices from the Commodity futures Trading commission, and wholesale spot market prices from the pennsylvania-new Jersey-Maryland Independent System Operator and the California Power Exchange. Electric utility statistics at the Census division and State levels on generation, fuel consumption, stocks, delivered cost of fossil fuels, sales to ultimate customers, average revenue per kilowatthour of electricity sold, and revenues from those retail sales can be found in Appendix A. The EPAVI is intended for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public.

  11. 2009 Fuel Cell Market Report, November 2010

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  12. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption Qualified plug-in electric vehicles, dedicated natural gas vehicles, and fuel cell electric vehicles may use North Carolina HOV lanes, regardless of the number of occupants. This exemption expires September 30, 2017. (Reference North Carolina General Statutes 20-4.01 and 20-146.2

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use CNG and electricity that local agencies or public transit operators use as motor vehicle fuel to operate public transit services is exempt from applicable user taxes a county imposes. (Reference California Revenue and Taxation Code 7284.3

  15. Bipolar fuel cell

    DOE Patents [OSTI]

    McElroy, James F. (Suffield, CT)

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  16. Synergistic smart fuel for microstructure mediated measurements

    SciTech Connect (OSTI)

    Smith, James A.; Kotter, Dale K.; Ali, Randall A.

    2014-02-18

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using 'radiation hardened' sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  17. Synergistic Smart Fuel For Microstructure Mediated Measurements

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-07-01

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using radiation hardened sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  18. Interconnection of bundled solid oxide fuel cells

    DOE Patents [OSTI]

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  19. Development of an External Fuel Processor for a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

    2008-02-28

    A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell generator module.

  20. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  1. Energy Department Supporting Nevada's Effort to Increase Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Plug-in hybrid electric vehicles (PHEVs) use both conventional fuel and electricity to power the ... will produce about half the carbon pollution of a conventional gas vehicle, ...

  2. Center for Electric Drive Transportation at the University of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Transportation at the University of Michigan - Dearborn Center for Electric Drive Transportation at the University of Michigan - Dearborn 2012 DOE Hydrogen and Fuel ...

  3. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and ...

  4. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Smith Electric Vehicles:...

  5. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  6. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen and Plug-In Electric Vehicle (PEV) Rebate The Hydrogen and Electric Automobile Purchase Rebate Program (CHEAPR) offers up to $3,000 for the incremental cost of the purchase or lease of a hydrogen fuel cell electric vehicle (FCEV), all-electric vehicle, or plug-in hybrid electric vehicle. Rebates are offered on a sliding scale based on battery capacity, providing $3,000 for any FCEV or vehicle with a battery capacity of 18 kilowatt-hours (kWh) or greater, $1,500 for any vehicle with a

  8. Clean Cities Launches iPhone App for Alternative Fueling Station Locations

    Broader source: Energy.gov [DOE]

    The new app helps users find stations offering electricity, natural gas, propane, and other alternative fuels.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) Tax Exemption New passenger cars, light-duty trucks, and medium-duty passenger vehicles that are dedicated AFVs are exempt from state motor vehicle sales and use taxes. Qualified vehicles include vehicles capable of operating exclusively on natural gas, propane, hydrogen, or electricity, and plug-in electric vehicles that are capable of being charged by an external power source and can travel at least 30 miles using only electricity. Qualified vehicles must meet the California

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use Requirement All state agencies must, to the extent practicable, use 100% biofuels or electricity to operate all publicly owned vehicles. Agencies may substitute natural gas or propane for electricity or biofuel if the Washington State Department of Commerce (Department) determines that electricity and biofuel are not reasonably available. Practicability and measures of compliance are defined in rules adopted by the Washington State Department of Commerce. In addition,

  11. Energy Information Administration - Table 2. End Uses of Fuel...

    Gasoline and Diesel Fuel Update (EIA)

    -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry...

  12. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    restructuring legislation, Illinois established provisions for the disclosure of fuel mix and emissions data. All electric utilities and alternative retail electric...

  13. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) | Department of Energy Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fact sheet describes the initiation of NREL's evaluation of a fuel cell hybrid electric bus

  14. DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated Fuel

    Office of Environmental Management (EM)

    Cell Electric Vehicles, Net Metering for Tribes, and More | Department of Energy Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles, Net Metering for Tribes, and More DOE Announces Webinars on Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles, Net Metering for Tribes, and More June 19, 2014 - 6:48pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to

  15. Electric power monthly, February 1998 with data for November 1997

    SciTech Connect (OSTI)

    1998-02-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lane Exemption Alternative fuel vehicles (AFVs) displaying the proper alternative fuel license plate may use HOV and HOT lanes, regardless of the number of passengers. Qualified AFVs may also use the HOT lanes toll-free. AFVs include plug-in electric vehicles and bi-fuel or dual-fuel vehicles that operate on natural gas or propane. Applicants must provide proof they have paid registration fees in full before receiving the license plate.

  17. Electric Power Monthly, September 1995: With data for June 1995

    SciTech Connect (OSTI)

    1995-09-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  18. Electric power monthly: April 1996, with data for January 1996

    SciTech Connect (OSTI)

    1996-04-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatt hour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 64 tabs.

  19. Dynalene Fuel Cell Coolants Achieve Commercial Success | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynalene has been working with several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power ...

  20. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Vehicle Resources Alternative Fuel Vehicle Resources Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these alternatives often produce less harmful emissions and contribute to a reduction in petroleum dependence. Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992,

  1. Fuel Cells at Supermarkets: NYSERDA's Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Supermarkets: NYSERDA's Perspective Scott Larsen, Project Manager On-Site Power Team 2 NYSERDA Programs to Install Fuel Cells * Distributed Generation as Combined Heat and Power - 14 Fuel Cell as CHP Systems Installed Since 2002 * Renewable Portfolio Standard (RPS) Customer Sited Tier (CST)Fuel Cell Program - $21.6 Million through 2015 - 1 Large Fuel Cell System and 23 Small Fuel Cell Systems Since 2007 3 Benefits of Fuel Cells * Efficient Means of Electric Generation (~40-50%) * High Quality

  2. Fuel Cell Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen fuel cell vehicles emit approximately the same amount of water per mile as conventional vehicles powered by internal combustion engines. Learn more about water emissions from fuel cell vehicles. View text version of animation. FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen

  3. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  4. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars | Department

    Energy Savers [EERE]

    of Energy EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric Vehicle Basics Find the best electric car to meet your needs! Search for makes and models, learn about electric vehicle (EV) charging stations, find tax incentives, explore how an EV can save you money, and discover other benefits of EVs. EV Everywhere is a Clean Energy Grand

  5. Mobile Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a

  6. Technical Breakthrough Points and Opportunities in Transition Scenarios for Hydrogen as Vehicular Fuel

    SciTech Connect (OSTI)

    Diakov, V.; Ruth, M.; James, B.; Perez, J.; Spisak, A.

    2011-12-01

    This technical reports is about investigating a generic case of hydrogen production/delivery/dispensing pathway evolution in a large population city, assuming that hydrogen fuel cell electric vehicles (FCEV) will capture a major share of the vehicle market by the year 2050. The range of questions that are considered includes (i) what is the typical succession of hydrogen pathways that minimizes consumer cost? (ii) what are the major factors that will likely influence this sequence?

  7. BCA Perspective on Fuel Cell APUs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BCA Perspective on Fuel Cell APUs BCA Perspective on Fuel Cell APUs Presentation at DOE-DOE Aircraft Petroleum Use Reduction Workshop, September 30, 2010 PDF icon aircraft_6_breit.pdf More Documents & Publications Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells

  8. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. (North Chili, NY); Cunningham, Kevin M. (Romeo, MI)

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  9. Corrosion resistant PEM fuel cell

    DOE Patents [OSTI]

    Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. NY); Cunningham, Kevin M. (Romeo, MI)

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  10. Electric sales and revenue 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Electric Sales and Revenue is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the US. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1997. 16 figs., 17 tabs.

  11. Electric sales and revenue 1994

    SciTech Connect (OSTI)

    1995-11-01

    The Electric Sales and Revenue is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Information is provided on electricity sales, associated revenue, average revenue per kilowatthour sold, and number of consumers throughout the United States. The data provided in the Electric Sales and Revenue are presented at the national, Census division, State, and electric utility levels. The information is based on annual data reported by electric utilities for the calendar year ending December 31, 1994.

  12. Electric power monthly January 1997 with data for October 1996

    SciTech Connect (OSTI)

    1997-01-01

    This publication presents monthly electricity statistical data. Information is included on U.S. electric utility net generation, consumption of fossil fuels, and fossil-fuel stocks; U.S. electric utility sales; receipts and cost of fossil fuels at utilities; and monthly plant aggregates. A glossary is included.

  13. Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2009-03-01

    Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

  14. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    SciTech Connect (OSTI)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

    2012-09-01

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  15. Spent Nuclear Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Previous releases 2002 1998 Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent

  16. Vehicle Technology and Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology and Alternative Fuel Basics Vehicle Technology and Alternative Fuel Basics Photo of an electric car plugged in and charging. Learn about exciting technologies and ongoing research in advanced technology vehicles and alternative fuel vehicles that run on fuels other than traditional petroleum.. ADVANCED TECHNOLOGY AND ALTERNATIVE FUEL VEHICLES There are a variety of alternative fuel vehicles and advanced technology vehicles available. Learn about: Flexible Fuel Vehicles Fuel

  17. NREL: Learning - Fuel Cell Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    showing a silver four-door sedan being driven on a roadway and containing the words "hydrogen fuel cell electric" across the front and rear doors. This prototype hydrogen fuel...

  18. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  19. Alternative Fueling Station Locator App Provides Info at Your Fingertips |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural

  20. Delaware Electric Cooperative- Green Energy Program Incentives

    Broader source: Energy.gov [DOE]

    The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel cells, and geothermal installed by DEC member-owners. Eligibility is limited to ...