Powered by Deep Web Technologies
Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table WH5. Total Expenditures for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Total Table WH5. Total Expenditures for Water Heating by Major Fuels Used, 2005 Billion Dollars Electricity Natural Gas Fuel Oil LPG U.S. Households

2

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

3

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

4

Table WH11. Expenditures Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (Dollars/number of household members) Electricity Table WH11. Expenditures Intensity by Main Water Heating Fuel Used, 2005

5

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

6

TAX EXPENDITURES RELATED TO THE PRODUCTION AND CONSUMPTION OF MOTOR FUELS AND MOTOR VEHICLES  

E-Print Network (OSTI)

-miles of travel RECS = Residential Energy Consumption Survey SIC = standard industrial classification SOx = sulfur industries, or oil over other energy industries: virtually all major energy sources require large investments.......................24 18.5.1 Corporate income-tax expenditures for the oil industry

Delucchi, Mark

7

Commercial Buildings Energy Consumption and Expenditures 1992...  

U.S. Energy Information Administration (EIA) Indexed Site

1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

8

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of fuel oil used for appliances is included in "Fuel Oil" under "All Uses." NF = No applicable RSE row factor.

9

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

10

Table SH3. Total Consumption for Space Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Natural Gas (billion cf) Major Fuels Used 4 (physical units) Table SH3. Total Consumption for Space Heating by Major Fuels Used, 2005 Physical Units

11

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-08-01T23:59:59.000Z

12

A comparative analysis of energy demand and expenditures by minority and majority households within the context of a conditional demand system  

SciTech Connect

Analysis and evaluation of the impact that programs and policies have on energy consumption and expenditures are confounded by many intervening variables. A clear understanding of how these variables influence energy consumption patterns should be grounded in a rigorously developed framework. In this regard much is documented in the literature. However, an analysis of the comparative relationship between energy demand and variables which influence it among different socioeconomic groups has not been thoroughly explored with any theoretical rigor. It is proposed that differences in patterns of energy use between black, Hispanic, and majority households (where the household head is neither black nor Hispanic) are due to both structural and distribution differences. It is felt that the structural dissimilarities are primarily due to the dynamic nature in which energy consumption patterns evolve, with differences in changing housing patterns playing a significant role. For minorities, this implies a potential difference in the effect of policy and programs on economic welfare when compared to majority households.To test this hypothesis, separate conditional demand systems are estimated for majority, black, and Hispanic households. With the use of separate variance/covariance matrices, various parameter groups are tested for statistically significant differences.

Poyer, D.A.

1992-01-01T23:59:59.000Z

13

Table WH3. Total Consumption for Water Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Table WH3. Total Consumption for Water Heating by Major Fuels Used, 2005 Physical Units Electricity (billion kWh) Natural Gas (billion cf) Fuel Oil

14

State energy price and expenditure report, 1986  

SciTech Connect

The average price paid for energy in the United States in 1986 was $7.19 per million Btu, down significantly from the 1985 average of $8.42 per million Btu. While total energy consumption increased slightly to 74.3 quadrillion Btu from 1985 to 1986, expenditures fell from $445 billion to $381 billion. Energy expenditures per capita in 1986 were $1578, down significantly from the 1985 rate. In 1986, consumers used only 94 percent as much energy per person as they had in 1970, but they spent 3.9 times as much money per person on energy as they had in 1970. By state, energy expenditures per capita in 1986 ranged from the lowest rate of $1277 in New York to the highest of $3108 in Alaska. Of the major energy sources, electricity registered the highest price per million Btu ($19.00), followed by petroleum ($5.63), natural gas ($3.97), coal ($1.62), and nuclear fuel ($0.70). The price of electricity is relatively high because of significant costs for converting energy from various forms (e.g., fossil fuels, nuclear fuel, hydroelectric energy, and geothermal energy) into electricity, and additional, somewhat smaller costs for transmitting and distributing electricity to end users. In addition, electricity is a premium form of energy because of its flexibility and clean nature at energy consumers' sites.

Not Available

1988-10-28T23:59:59.000Z

15

State energy price and expenditure report 1994  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.

NONE

1997-06-01T23:59:59.000Z

16

Table WH6. Average Consumption for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Major Fuels Used 5 (physical units of consumption per household using the fuel as a water heating source) Electricity (kWh) Table WH6. Average Consumption for Water ...

17

RSEs for Table C1A. Total Energy Consumption by Major Fuel for ...  

U.S. Energy Information Administration (EIA)

Number of Buildings Floorspace Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings ..... 3.8 1 4.5 4. 5.0 16.4 32

18

State energy price and expenditure report, 1995  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.

1998-08-01T23:59:59.000Z

19

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

F23: Nuclear Energy Consumption, Price, and Expenditure Estimates, 2011 State Nuclear Electric Power Nuclear Fuel Consumption Prices Expenditures Million Kilowatthours Trillion Btu...

20

Residential energy-consumption survey: consumption and expenditures, April 1978-March 1979  

SciTech Connect

Tables present data on energy consumption and expenditures for US households during a 12-month period. The total amount of energy consumed by the residential sector from April 1978 through March 1979 is estimated to have been 10,563 trillion Btu with an average household consumption of 138 million Btu. Table 1 summarizes residential energy consumption for all fuels (totals and averages) as wells as total amounts consumed and expenditures for each of the major fuel types (natural gas, electricity, fuel oil, and liquid petroleum gas). Tables 2 and 3 give the number of households and the average energy prices, respectively, for each of the major fuel types. In Tables 4 to 9, totals and averages for both consumption and expenditures are given for each of the major fuels. The consumption of each fuel is given first for all households using the fuel. Then, households are divided into those that use the fuel as their main source of heat and those using the fuel for other purposes. Electricity data (Tables 5 to 7) are further broken down into households that use electricity for air conditioning and those not using it for this purpose. Limited data are also presented on households that use each of the major fuels for heating water. Each of the consumption tables is given for a variety of general household features, including: geographical, structural and physical, and demographic characteristics. Tables 10 to 18 present the same information for the subgroup of households living in single-family owner-occupied detached houses. The third set of tables (19 to 27) is limited to households that paid directly for all of the energy they used. Tables 28 to 36 provide variance estimates for the data.

Not Available

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

State energy fuel prices by major economic sector from 1960 through 1977  

SciTech Connect

The state energy fuel prices are described and displayed by major economic sector for 1960 to 1977. These prices support the Regional Energy Demand Model. The 7 major fuel commodities in the Price Data System fall into two groups: petroleum products (distillate, residual, kerosene, gasoline, and liquid petroleum gas) and non-petroleum product fuels (electric power and natural gas). The methodology for calculating each commodity is shown. A detailed description of the wholesale and retail price methodology is presented. Appendices A and B display the price series in calorific and physical units, respectively. Some data-supporting tables are presented in Appendix C and Appendix D describes the fuel identifiers for decoding information in Appendices A and B.

Galliker, J.P.

1979-07-01T23:59:59.000Z

22

The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels  

SciTech Connect

In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

Harkreader, S.A.; Hattrup, M.P.

1988-09-01T23:59:59.000Z

23

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

24

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

25

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 2, Regional data. [Contains glossary  

SciTech Connect

Included here are data at the Census region and division level on consumption of and expenditures for the major fuels used in residential households - electricity, natural gas, fuel oil/kerosene, and liquefied petroleum gas (LPG). Data are also presented on wood consumption. Section 1 of this report contains data on the average amount of energy consumed per household for space heating in 1984 and the corresponding expenditures. Sections 2 through 7 summarize the energy consumption and expenditure patterns. Appendices A through D contain information on how the survey was conducted, estimates of the size of the housing unit in square feet and the quality of the data. Procedures for calculating relative standard errors (RSE) are located in Appendix C, Quality of the Data. Procedures for estimating the end-use statistics are located in Appendix D. Census and weather maps, and related publications are located in Appendices E through G.

Not Available

1987-05-13T23:59:59.000Z

26

10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion  

SciTech Connect

The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

2012-05-01T23:59:59.000Z

27

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

28

Table AP4. Total Expenditures for Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

and Lighting Table AP4. Total Expenditures for Home Appliances and Lighting by Fuels Used, 2005 Billion Dollars U.S. Households (millions) Electricity

29

Table 3.6 Consumer Expenditure Estimates for Energy by End ...  

U.S. Energy Information Administration (EIA)

1999. 31,577 : 11,397 : 93,482: ... · Expenditures include taxes where data are ... includes fuel ethanol blended into motor gasoline that is not ...

30

U.S. household expenditures for gasoline account for nearly 4% of ...  

U.S. Energy Information Administration (EIA)

Electricity. Sales, revenue and prices, power plants, fuel use, ... a rise in average gasoline prices has led to higher overall household gasoline expenditures.

31

Update on Fuel Cell Development: Review of Major and Stealth Fuel Cell Players' Activities: Stealth Player Reviews  

Science Conference Proceedings (OSTI)

EPRI has been conducting fuel cell technology assessments and sponsoring research and development of fuel cell technologies for distributed power market applications for the past 20 years. Over the past several years, four fuel cell technologies have emerged for stationary power generation applications: • Molten carbonate fuel cells (MCFCs) • Phosphoric acid fuel cells (PAFCs) • Proton exchange membrane fuel cells (PEMFCs) • Solid oxide fuel cells (SOFCs) There are dozens of companies...

2004-12-21T23:59:59.000Z

32

Household energy consumption and expenditures 1993  

Science Conference Proceedings (OSTI)

This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

NONE

1995-10-05T23:59:59.000Z

33

State Energy Price and Expenditure Estimates  

U.S. Energy Information Administration (EIA)

2010 Price and Expenditure Summary Tables. Table E1. Primary Energy, Electricity, ... Ranked by State, 2010 Rank Prices Expenditures Expenditures per Person State

34

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

35

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

3.3 Commercial Sector Expenditures 3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2 16.7 198.9 147.5 36.8 16.9 201.2 143.8 35.1 16.4 195.2 145.0 35.5 16.6 197.0 141.1 34.0 16.0 191.1 142.5 34.6 16.2 193.3 136.9 32.1 15.7 184.8 139.1 33.0 15.9 188.0 133.5 31.0 15.4 179.9 135.0 31.6 15.6 182.2 131.0 29.7 15.1 175.8 131.9 30.3 15.3 177.5 128.1 28.7 14.5 171.3 130.0 29.3 15.0 174.4 129.4 29.7 15.4 174.5 127.7 29.2 13.8 170.7 134.8 29.9 14.5 179.2 134.5 28.5 16.9 180.0 141.1

36

Expenditures on Children by Families | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Expenditures on Children by Families Expenditures on Children by Families Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Expenditures on Children by Families Dataset Summary Description This dataset provides expenditures on Children by Families provides estimates of the cost of raising children from birth through age 17 for major budgetary components. Tags {children,families,expenditures,cost,budget,household,income,single-parent,husband-wife} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness 0 No votes yet Ease of Access 0 No votes yet Dataset Additional Information Last Updated 2012 Publisher Food and Nutrition Service, Department of Agriculture Contact Name Contact Email Mark.Lino@cnpp.usda.gov

37

Table CE2-5.1u. Space-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household ... Total Households Using a Major Space-Heating

38

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and expenditures, and Table A-9, p. 97 for total energy expenditures; EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. 24.30 318.35 17.06 43.87 16.19 36.64 9.37 1138.21 15.25 419.30 3.62 62.87 Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) 23.68

39

State energy price and expenditure report 1984  

Science Conference Proceedings (OSTI)

The average price paid by US consumers for energy in 1984 was $8.43 per million Btu, down 0.5% from the 1983 average price of $8.47 per million Btu. While the average price changed very little, total expenditures rose 5% from $418 billion in 1983 to $438 billion in 1984 due to increased energy consumption. By energy source, prices showed the most change in petroleum and electricity: the average price paid for petroleum products fell from $7.79 per million Btu in 1983 to $7.62 per million Btu in 1984, and the average price paid for electricity increased from $18.62 per million Btu in 1983 to $19.29 per million Btu in 1984. Expenditures in 1984 hit record high levels for coal, natural gas, nuclear fuel, and electricity, but were 16% below the 1981 peak for petroleum.

Not Available

1986-12-04T23:59:59.000Z

40

Household Energy Consumption and Expenditures  

Reports and Publications (EIA)

Presents information about household end use consumption of energy and expenditures for that energy. These data were collected in the 2005 Residential Energy Consumption Survey (RECS)

Information Center

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

42

Household energy and consumption and expenditures, 1990. [Contains Division, Census Region, and Climate Zone maps  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

43

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015 241.7 2016 241.8 2017 243.0 2018 244.7 2019 246.4 2020 247.9 2021 250.4 2022 253.3 2023 255.6 2024 257.8 2025 260.3 2026 263.2 2027 266.0 2028 267.6 2029 268.1 2030 269.7 2031 272.9 2032 276.6 2033 280.4 2034 284.6 2035 288.6 Note(s): Source(s): 1) Residential petroleum products include distillate fuel oil, LPG, and kerosene. EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table

44

Energy Expenditures | OpenEI  

Open Energy Info (EERE)

Expenditures Expenditures Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. Source EIA Date Released June 30th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Energy Consumption Energy Expenditures energy prices energy production SEDS State energy data States US Data text/csv icon Complete SEDS dataset as csv (may be too big for Excel) (csv, 40.6 MiB)

45

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

46

Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction  

SciTech Connect

Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.

Collins, Emory D [ORNL; DelCul, Guillermo D [ORNL; Terekhov, Dmitri [ORNL; Emmanuel, N. V. [Chemical Vapor Metal Refining, Inc.

2011-01-01T23:59:59.000Z

47

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE5-1e. Appliances1 Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone2 RSE Row Factors Fewer than 2,000 CDD and --

48

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE4-1e. Water-Heating Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD ...

49

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

50

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

51

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 1, National data  

Science Conference Proceedings (OSTI)

This report presents data collected in the 1984 Residential Energy Consumption Survey (RECS) conducted by the Energy Information Administration (EIA). The 1984 RECS was the sixth national survey of US households and their energy suppliers. The purpose of these surveys is to provide baseline information on how households use energy. Households in all types of housing units - single family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public in published reports such as this one and on public-use data tapes. The report presents data on the US consumption and expenditures for residential use of these ''major fuels'' - natural gas, electricity, fuel oil, kerosene, and liquefied petroleum gas (LPG) - from April 1984 through March 1985. These data are presented in tables in the Detailed Statistics section of this report. Except for kerosene and wood fuel, the consumption and expenditures data are based on actual household bills obtained, with the permission of the household, from the companies supplying energy to the household. Purchases of kerosene are based on respondent reports because records of ''cash and carry'' purchases of kerosene for individual households are usually unavailable. Data on the consumption of wood fuel (Table 27) covers the 12-month period ending November 1984 and are based on respondent recall of the amount of wood burned during the 12-month period. Both the kerosene and wood consumption data are subject to memory errors and other reporting errors. This report does not cover household use of motor fuel, which is reported separately.

Not Available

1987-03-04T23:59:59.000Z

52

Major Government-Supported Fuel Cell Vehicle Projects Government support for fuel cell projects is critical to the development of fuel cell technology.  

E-Print Network (OSTI)

provide most of its power. In the future, there are plans to use fuel cells, a solar-thermal system. The Centre also will house a "National Research Flagship," entitled "Energy Transformed," that will focus sustainable energy technologies, including solar, gas micro-turbines, and wind generators that will initially

53

Assumptions to the Annual Energy Outlook 2002 - Household Expenditures...  

Annual Energy Outlook 2012 (EIA)

Expenditures Module The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and...

54

Household energy consumption and expenditures 1987  

SciTech Connect

This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

Not Available

1990-01-22T23:59:59.000Z

55

Household Energy Consumption and Expenditures 1993 -- Executive ...  

U.S. Energy Information Administration (EIA)

national level data on energy-related issues on households and energy expenditures in the residential sector.

56

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Key Assumptions Key Assumptions The historical input data used to develop the HEM version for the AEO2000 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2000 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and transportation sectors as inputs to the disaggregation algorithm that results in the direct fuel expenditure analysis. Household end-use and personal transportation service consumption are obtained by HEM from the NEMS Residential and Transportation Demand Modules. Household disposable income is adjusted with forecasts of total disposable income from the NEMS Macroeconomic Activity Module.

57

SEDS CSV File Documentation: Price and Expenditure  

Gasoline and Diesel Fuel Update (EIA)

Prices and Expenditures Prices and Expenditures The State Energy Data System (SEDS) comma-separated value (CSV) files contain the price and expenditure estimates shown in the tables located on the SEDS website. There are three files that contain estimates for all states and years. Prices contains the price estimates for all states and Expenditures contains the expenditure estimates for all states. The third file, Adjusted Consumption for Expenditure Calculations contains adjusted consumption estimates used in calculating expenditures (see Appendix E below). Zip files are also available for the large data files. In addition, there is a CSV file for each state, named with the two-letter U.S. Postal Code listed in Appendix A, as well as a file for the United States.

58

OpenEI - Energy Expenditures  

Open Energy Info (EERE)

State Energy Data State Energy Data System (SEDS) Complete Dataset through 2009 http://en.openei.org/datasets/node/883 The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates.

License
Type of

59

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Residential Buildings Commercial Buildings Total Building Electricity Natural Gas Petroleum (2) Total Electricity Natural Gas Petroleum (3) Total Expenditures 1980 89.1 40.5 28.9 158.5 70.9 20.5 17.2 108.6 267.2 1981 94.9 41.3 27.8 164.0 79.4 21.4 16.5 117.3 281.3 1982 99.9 47.9 24.5 172.3 83.4 25.1 13.7 122.2 294.5 1983 103.6 51.0 21.4 176.1 83.6 26.1 14.6 124.3 300.4 1984 103.3 51.6 23.6 178.5 87.6 25.9 14.7 128.2 306.7 1985 105.4 48.8 22.6 176.8 90.0 24.0 12.6 126.6 303.4 1986 106.9 44.2 18.1 169.2 90.5 20.7 9.1 120.2 289.4 1987 108.2 40.9 18.0 167.1 88.7 19.8 9.2 117.7 284.7 1988 110.3 41.8 18.0 170.1 89.9 20.4 8.2 118.5 288.7 1989 110.2 42.9 19.7 172.8 91.5 20.5 8.4 120.4 293.2 1990 110.9 39.0 18.2 168.2 92.9 19.4 9.2 121.5 289.7 1991 113.7 39.2 17.0 169.9 93.9 19.5 7.7 121.1 291.0

60

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

State energy price and expenditure report 1992  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1980, and 1985 through 1992. Data for all years, 1970 through 1992, are available on personal computer diskettes.

1994-12-01T23:59:59.000Z

62

State energy price and expenditure report 1991  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1975, 1980, and 1985 through 1991. Data for all years, 1970 through 1991, are available on personal computer diskettes. Documentation in Appendix A describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. This report is an update of the State Energy Price and Expenditure Report 1990, published in September 1992.

1993-09-01T23:59:59.000Z

63

2005 RECS Consumption and Expenditures Detailed Tables  

U.S. Energy Information Administration (EIA)

Detailed Consumption and Expenditures (C&E) tables containing Space Heating, Air-Conditioning, Water Heating, and Appliance residential energy data are now available.

64

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2012 (EIA)

(92) Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Contacts The Energy Information Administration (EIA) prepared this...

65

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

66

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

propane Go propane Go Propane_li_by_state Propane Incentives and Laws, by State Propane_li_by_state View Map Graph Propane-stations Propane Fueling Station Locations by State Propane-stations View Map Graph 10561_expenditures_by_sector_20130906 Per Capita Energy Expenditures by Sector 10561_expenditures_by_sector_20130906 Trend of transportation and residential energy expenditures from 1970-2010 Last update September 2013 View Graph Graph Download Data Generated_thumb20130810-31804-yezn9l Alternative Fuel Vehicles in Use Generated_thumb20130810-31804-yezn9l Trend of the number of AFVs in use by fuel type from 1992-2010 Last update May 2012 View Graph Graph Download Data Generated_thumb20130810-31804-1gs1r9t Estimated Consumption of Alternative Fuels by AFVs Generated_thumb20130810-31804-1gs1r9t

67

Table A1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel ...  

U.S. Energy Information Administration (EIA)

Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel 2001 Household and Vehicle Expenditures ... Age of Primary Driver 16 to 17 Years ...

68

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Appliances ... include the small number of households where the fuel for central air-conditioning equipment was something other than electricity; ...

69

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Table C4; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for price deflators...

70

Table F18: Coal Price and Expenditure Estimates and Imports ...  

U.S. Energy Information Administration (EIA)

Table F18: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2011 State Coal Coal Coke Prices Expenditures Prices ...

71

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Quadrillion British Thermal Units (Btu) U.S. Households (millions) Other Appliances and Lighting Space Heating (Major Fuels) 4 Air-Conditioning 5 Water Heating 6 ...

72

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

US military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi 2008 Keywords: Oil importing cost Motor fuel social cost Energy security cost a b s t r a c t Analyses of the full social cost of motor vehicle use in the US often estimate an ``oil import premium'' that includes

Murphy, James J.

73

State energy price and expenditure report 1993  

SciTech Connect

The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 states and the District of Columbia and in aggregate for the US. The five economic sectors used in SEPER correspond to those used in SEDR and are residential, commercial, industrial, transportation, and electric utility. Documentation in appendices describe how the price estimates are developed, provide conversion factors for measures used in the energy analysis, and include a glossary. 65 tabs.

1995-12-01T23:59:59.000Z

74

Table 7.9 Expenditures for Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2010; 9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107 31131 Sugar Manufacturing 367 105 7 18 87 1 118 29 2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,408 698 17 Q 579 18 7 0 18 3115 Dairy Products 1,186 695 20 40 412 8 1 0 10 3116 Animal Slaughtering and Processing

75

Residential energy consumption and expenditures by end use for 1978, 1980, and 1981  

Science Conference Proceedings (OSTI)

The end-use estimates of the average household consumption and expenditures are statistical estimates based on the 1978, 1980, and 1981 Residential Enery Consumption Surveys (RECS) conducted by the Energy Information Administration (EIA) rather than on metered observations. The end-use estimates were obtained by developing a set of equations that predict the percentage of energy used for each broad end-use category. The equations were applied separately to each household and to each fuel. The resulting household end-use estimates were averaged to produce estimates of the average end-use consumption and expenditures on a national and regional basis. The accuracy and potential biases of these end-use estimates vary depending on the fuel type, on the year of the survey, and on the type of end use. The figures and tables presented show the amount and the type of energy cosumed, plus the cost of this energy. National averages are given as well as averages for various categories including region, size and age of dwelling, number of heating degree-days, and income. Some of the significant findings; energy trends by end use for all fuels used in the home for 1978, 1980, and 1981; and electricity consumption and expenditures and natural gas consumption and expenditures are discussed.

Johnson, M.

1984-12-01T23:59:59.000Z

76

Annual Capital Expenditures Survey | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Capital Expenditures Survey Annual Capital Expenditures Survey BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Annual Capital Expenditures Survey Dataset Summary Description Provides national estimates of investment in new and used buildings and other structures, machinery, and equipment by U.S. nonfarm businesses with and without employees. Data are published by industry for companies with employees for NAICS 3-digit and selected 4-digit industries. Data on the amount of business expenditures for new plant and equipment and measures of the stock of existing facilities are critical to evaluate productivity growth, the ability of U.S. business to compete with foreign business, changes in industrial capacity, and measures of overall economic performance. In addition, ACES data provide industry analysts with capital expenditure data for market analysis, economic forecasting, identifying business opportunities and developing new and strategic plans. The ACES is an integral part of the Federal Government's effort to improve and supplement ongoing statistical programs. Private companies and organizations,, educators and students, and economic researchers use the survey results for analyzing and conducting impact evaluations on past and current economic performance, short-term economic forecasts, productivity, long-term economic growth, tax policy, capacity utilization, business fixed capital stocks and capital formation, domestic and international competitiveness trade policy, market research, and financial analysis.

77

A Review and Discussion of the Literature on Travel Time and Money Expenditures  

E-Print Network (OSTI)

Expenditure of Time and Money on Travel. Transport RoadExpenditure of Time and Money on Travel. Transp. Research6 I.2.4.2. Travel Money Expenditure …………………………………………………………..

Chen, Cynthia; Mokhtarian, Patricia

2008-01-01T23:59:59.000Z

78

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

79

1997 Consumption and Expenditures-Detailed Data Tables  

U.S. Energy Information Administration (EIA)

1997 Resdiential Energy Consumption Survey(RECS)-1997 Consumption and Expenditures-1997 Detailed Tables, Energy Information Administration

80

U.S. Uranium Expenditures, 2003-2010  

U.S. Energy Information Administration (EIA)

Domestic Uranium Production Report presents information Operating Status of U.S. Uranium Expenditures, 2003-2005

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The cost of dying on Medicare: an analysis of expenditure data  

E-Print Network (OSTI)

Roughly one third of Medicare expenditures are made on behalf of beneficiaries in their terminal year, though only five percent of the Medicare-covered population dies annually. Per-capita spending on decedents is as much as six times the level of spending on survivors. The demographic, technological and political trends that will determine the future path of spending on terminal-year beneficiaries have important implications for the fiscal well-being of the Medicare program, and by extension, the American taxpayer. Coming to an understanding of the moving parts that will control the path of the cost of dying on Medicare is vital for careful consideration of Medicare??s future, and for any discussions about further reform of the program. Analysis of expenditures in the terminal year must be made while keeping in mind the fact that major expenditures are often made in surviving years. The spike in spending in the terminal period rightly focuses attention to expenditures near death, but also we should proceed in its analysis keeping in mind that it is not the only spell of elevated medical spending for a typical individual. Given those cautions, however, the cost of dying on Medicare stands as an important area of economic inquiry and policy consideration. As total Medicare expenditures top a quarter trillion dollars, the third of that spending which covers treatments in beneficiaries?? terminal years ought to be understood more fully than it is currently.

House, Donald Reed

2005-08-01T23:59:59.000Z

82

Short-Term Energy and Winter Fuels Outlook October 2013  

U.S. Energy Information Administration (EIA) Indexed Site

and Winter Fuels Outlook October 2013 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights EIA projects average U.S. household expenditures for natural...

83

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

84

wf01 - Energy_Expenditures.xlsx  

U.S. Energy Information Administration (EIA) Indexed Site

6-07 6-07 07-08 08-09 09-10 10-11 11-12 12-13 13-14 % Change Natural Gas Northeast Consumption (mcf**) 73.6 74.2 79.6 74.7 79.7 65.6 75.2 77.5 3.1 Price ($/mcf) 14.74 15.18 15.83 13.31 12.66 12.23 11.75 13.38 13.8 Expenditures ($) 1,085 1,127 1,260 994 1,010 802 883 1,036 17.3 Midwest Consumption (mcf) 74.5 78.2 80.8 78.6 80.1 65.4 77.5 77.9 0.5 Price ($/mcf) 11.06 11.40 11.47 9.44 9.23 8.96 8.23 9.15 11.2 Expenditures ($) 824 892 927 742 740 586 638 713 11.8 South Consumption (mcf) 45.3 44.8 47.0 53.4 49.5 41.1 46.6 47.5 1.9 Price ($/mcf) 13.57 14.19 14.08 11.52 11.03 11.47 10.69 11.78 10.3 Expenditures ($) 615 635 661 615 546 472 498 560 12.4 West Consumption (mcf) 46.4 48.1 46.2 47.7 47.2 47.6 46.9 46.5 -0.8 Price ($/mcf) 11.20 11.31 10.86 9.91 9.67 9.38 9.15 9.90 8.1 Expenditures ($) 520 544 502 473 457 447 429

85

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

86

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2% Ventilation (7) 2.4 2.4 0.5% Other (8) 9.3 0.4 12.6 2.0 15.0 88.8 113.2 22.0% Adjust to SEDS (9) 4.6 5.3 5.3 21.7 31.6 6.2% Total 108.2 21.0 1.6 22.3 2.8 47.6 0.2 357.8 513.8 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.8 billion) and motor gasoline other uses ($2.0 billion). 3) Includes furnace fans ($4.8 billion). 4) Includes color televisions ($14.2 billion). 5) Includes refrigerators ($24.1 billion) and freezers ($3.0

87

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8% Adjust to SEDS (5) 5.8 4.5 4.5 17.7 28.1 16.1% Total 29.3 8.4 1.3 3.7 1.5 14.9 0.1 130.0 174.5 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.4 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

88

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7) 0.0 7.7 7.7 47.9 55.7 19.3% Total 66.0 11.5 17.5 29.6 0.0 193.0 288.6 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.8 billion). 3) Fan energy use included. 4) Includes refrigerators ($14.1 billion) and freezers ($2.9 billion). 5) Includes color televisions ($14.2 billion). 6) Includes clothes washers ($0.8 billion), natural gas

89

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other (8) 0.0 4.4 4.4 6.7 11.1 4.4% Adjust to SEDS (9) 13.6 13.6 5.4% Total 56.1 13.3 15.2 29.0 0.0 166.8 251.8 100% Note(s): Source(s): 0.5 0.5 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.5 billion). 3) Fan energy use included. 4) Includes residential recreational water heating ($1.4 billion). 5) Includes refrigerators ($15.3 billion) and freezers ($4.4 billion). 6) Includes color televisions ($11.0

90

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0 15.6% Adjust to SEDS (5) 6.2 5.2 5.2 0.6 12.0 6.7% Total 29.9 9.0 0.9 3.3 1.3 14.5 0.1 134.8 179.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.2 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

91

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet Cleaning (7) 0.6 11.0 11.6 2.7% Other (8) 2.7 0.3 7.7 1.2 9.2 27.3 39.2 9.1% Adjust to SEDS (9) 6.2 5.2 5.2 11.9 23.4 5.4% Total 86.0 22.3 0.9 18.5 1.8 43.5 0.1 301.6 431.2 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.6 billion) and motor gasoline other uses ($1.2 billion). 3) Includes furnace fans ($4.5 billion). 4) Includes refrigerators ($24.1 billion) and freezers ($2.8 billion). 5) Includes color televisions ($11.0

92

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4 9.1 2.2% Other (8) 2.9 0.3 8.9 1.4 10.6 54.1 67.6 16.3% Adjust to SEDS (9) 5.8 4.5 4.5 17.7 28.1 6.7% Total 80.6 23.3 1.3 19.4 2.1 46.1 0.2 289.3 416.2 100% Note(s): Source(s): Petroleum Electricity 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.4 billion). 3) Includes furnace fans ($4.6 billion). 4) Includes refrigerators ($22.6 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9

93

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7) 0.0 6.4 6.4 38.7 45.0 17.3% Total 59.1 12.9 16.3 29.8 0.0 171.3 260.3 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.7 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.7 billion) and freezers ($2.8 billion). 5) Includes color televisions ($12 billion). 6) Includes clothes washers ($0.8 billion), natural gas

94

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3% Ventilation (7) 16.6 16.6 3.6% Other (8) 4.8 0.4 10.6 1.7 12.7 69.8 87.4 19.1% Adjust to SEDS (9) 5.9 4.9 4.9 19.2 30.0 6.6% Total 94.6 21.9 1.5 20.6 2.5 46.4 0.2 316.3 457.4 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.7 billion) and motor gasoline other uses ($1.7 billion). 3) Includes furnace fans ($4.7 billion). 4) Includes refrigerators ($22.3 billion) and freezers ($2.6 billion). 5) Includes color televisions ($12.0

95

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5% Adjust to SEDS (5) 5.9 4.9 4.9 19.2 30.0 15.2% Total 35.5 8.9 1.5 4.3 1.9 16.5 0.2 145.0 197.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.1 billion) and motor gasoline other uses ($1.7 billion). 3) Coal average price is from AEO 2011 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

96

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

7 7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5 25.5% Adjust to SEDS (5) 4.6 5.3 5.3 21.7 31.6 14.0% Total 42.2 9.4 1.6 4.9 2.2 18.0 0.2 164.8 225.1 100% Note(s): Source(s): 1) Expenditures include coal and exclude wood. 2) Includes kerosene space heating ($0.2 billion) and motor gasoline other uses ($2.0 billion). 3) Coal average price is from AEO 2012 Early Release, all users price. 4) Includes service station equipment, ATMs, medical equipment,

97

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

6 6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7) 0.0 5.2 5.2 31.3 36.5 15.1% Total 51.3 14.9 15.7 31.1 0.0 159.3 241.7 100% Note(s): Source(s): 0.6 0.6 1) Expenditures include coal and exclude wood. 2) Includes furnace fans ($4.6 billion). 3) Fan energy use included. 4) Includes refrigerators ($12.3 billion) and freezers ($2.8 billion). 5) Includes color televisions ($10.9 billion). 6) Includes clothes washers ($1.1 billion), natural gas

98

Energy consumption and expenditure projections by income quintile on the basis of the Annual Energy Outlook 1997 forecast  

SciTech Connect

This report presents an analysis of the relative impacts of the base-case scenario used in the Annual Energy Outlook 1997, published by the US Department of Energy, Energy Information Administration, on income quintile groups. Projected energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1993 to 2015 are reported. Projected consumption of electricity, natural gas, distillate fuel, and liquefied petroleum gas over this period is also reported for each income group. 33 figs., 11 tabs.

Poyer, D.A.; Allison, T.

1998-03-01T23:59:59.000Z

99

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

4 4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

100

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the Consumer Expenditure Survey (CE). RECS assumed total US households to be 111,090,617 in 2005, while the CE data is based on 117,356,000 "consumer units," which the Bureau of Labor Statistics defines to be financially independent persons or groups of people that use their incomes to make joint expenditure decisions, including all members of a

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lower residential energy use reduces home energy expenditures as ...  

U.S. Energy Information Administration (EIA)

Aggregate home energy expenditures by U.S. households fell $12 billion in 2012 ... households spent $1,945 on heating, cooling, appliances, electronics, and lighting ...

102

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

1 Expenditures include taxes where data are available. 5 In chained (2005) dollars. See "Chained Dollars" in Glossary. 2 Carbon dioxide emissions from energy consumption.

103

Table 2.10 Commercial Buildings Energy Consumption and Expenditure ...  

U.S. Energy Information Administration (EIA)

Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003: Energy Source and Year: Building Characteristics

104

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

105

Residential Energy Expenditures for Water Heating (2005) | OpenEI  

Open Energy Info (EERE)

Expenditures for Water Heating (2005) Expenditures for Water Heating (2005) Dataset Summary Description Provides total and average household expenditures on energy for water heating in the United States in 2005. The data was collected as part of the Residential Energy Consumption Survey (RECS). RECS is a national survey that collects residential energy-related data. The survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the United States. Data were obtained from residential energy suppliers for each unit in the sample to produce the data. Source EIA Date Released September 01st, 2008 (6 years ago) Date Updated January 01st, 2009 (6 years ago) Keywords Energy Expenditures Residential Water Heating Data application/vnd.ms-excel icon 2005_Total.Expenditures.for_.Water_.Heating_EIA.Sep_.2008.xls (xls, 70.1 KiB)

106

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02 2023 4.07 2024 4.10 2025 4.15 2026 4.19 2027 4.23 2028 4.26 2029 4.30 2030 4.34 2031 4.35 2032 4.38 2033 4.43 2034 4.50 2035 4.55 Source(s): EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2, p. 24-25 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A3, p. 6-8 for 2010-2035 and Table G1, p. 215 for fuels' heat content; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

107

Residential energy consumption and expenditure patterns of low-income households in the United States  

SciTech Connect

The principal objective of this study is to compare poor and non-poor households with respect to energy consumption and expenditures, housing characteristics, and energy-related behavior. We based our study on an analysis of a national data base created by the US Department of Energy, the 1982-1983 Residential Energy Consumption Survey (RECS). RECS includes detailed information on individual households: demographic characteristics, energy-related features of the structure, heating equipment and appliances, recent conservation actions taken by the household, and fuel consumption and costs for April 1982-March 1983. We found a number of statistically significant (at the 0.05 level) differences between the two income groups in terms of demographics, heating/cooling/water heating systems, appliance saturation, the thermal integrity of their home, energy conservation behavior, energy consumption, energy expenditures, and the percentage of income spent on energy costs. For example, the non-poor used 22% more energy and paid 25% more money on utilities than the poor; however, the poor spent 20% more energy per square foot than the non-poor and spent about 25% of their income on energy expenditures, compared to 7% for the non-poor. These differences suggest different approaches that might be taken for targeting energy conservation programs to low-income households. Since the poor's ''energy burden'' is large, informational, technical, and financial assistance to low-income households remains an urgent, national priority. 13 refs., 26 tabs.

Vine, E.L.; Reyes, I.

1987-09-01T23:59:59.000Z

108

EXPENDITURES General Fund Expenditures-2.0 % Page 12 NON-GENERAL FUND REVENUES  

E-Print Network (OSTI)

Key to revenue trend indicators: ?NEUTRAL ? = Variance of-1 % to +2 % compared to projections. ?POSITIVE ? = Positive variance of>+2 % compared to projections. ?WARNING ? = Negative variance of-1 % to-4 % compared to projections. ?NEGATIVE ? = Negative variance of>-4 % compared to projections. 1 First Quarter 2013- May 2013CITY FINANCIAL OVERVIEW EXECUTIVE SUMMARY Total General Fund revenue receipts for the first quarter of 2013, in the amount of $4,175,309, are above the projection by $172,955, or 4.3%. Total General Fund expenditures, in the amount of $4,508,707, are below the projection by $92,764, or 2.0%. Street Fund revenue receipts for the first quarter of 2013, including transfers in, total $511,302 and are $3,654, or 0.7%, above the projection. Street Fund expenditures, including transfers out, total $460,168 and are $19,734, or 4.1%, below the projection. Surface Water Utility Fund (SWM) revenue receipts for the first quarter of 2013 totaling $114,495 are $42,761, or 59.6%, above the projection. SWM expenditures total $691,401 and are $90,757, or 15.1%, above the projection. Real Estate Excise Tax (REET) revenue receipts for the first quarter of 2013 totaling $231,011 are $7,274, or 3.3%, ahead of the projection and

unknown authors

2013-01-01T23:59:59.000Z

109

Residential energy consumption and expenditure patterns of black and nonblack households in the United States  

Science Conference Proceedings (OSTI)

Residential energy consumption and expenditures by black and nonblack households are presented by Census region and for the nation based on the Energy Information Administration's 1982-83 Residential Energy Consumption Survey (RECS). Black households were found to have significantly lower levels of electricity consumption at both the national and regional level. Natural gas is the dominant space heating fuel used by black households. Natural gas consumption was typically higher for black households. However, when considering natural gas consumption conditional on natural gas space heating no significant differences were found. 10 refs., 1 fig., 8 tabs.

Vyas, A.D.; Poyer, D.A.

1987-01-01T23:59:59.000Z

110

Table 1.5 Energy Consumption, Expenditures, and Emissions ...  

U.S. Energy Information Administration (EIA)

Consumption per Capita: Energy Expenditures 1: Energy ... 2009. 94,559,407 [R] 308 : 1,061,220 [R] ... 2 Carbon dioxide emissions from energy consumption. See Table 11.1.

111

Commercial Buildings Energy Consumption and Expenditures 1992 - Publication  

U.S. Energy Information Administration (EIA) Indexed Site

and Expenditures > Publication and Tables and Expenditures > Publication and Tables 1992 Consumption & Expenditures Publication and Tables Figure ES1. Energy Consumption in Commercial Buildings by Energy Sources, 1992 Separater Bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader . If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report. Separater Bar Full Report - Commercial Buildings Energy Consumption and Expenditures, 1992 (file size 1.07 MB) pages: 214 Selected Sections Main Text - requires Adobe Acrobat Reader (file size 193,634 bytes) pages: 28, includes the following: Contacts Contents Executive Summary Introduction Background

112

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

113

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-01-01T23:59:59.000Z

114

An analysis of residential energy consumption and expenditures by minority households by home type and housing vintage  

SciTech Connect

In this paper a descriptive analysis of the relationship between energy consumption, patterns of energy use, and housing stock variables is presented. The purpose of the analysis is to uncover evidence of variations in energy consumption and expenditures, and patterns of energy use between majority households (defines as households with neither a black nor Hispanic head of household), black households (defined as households with a black head of household), and Hispanic households (defined as households with a Hispanic head of household) between 1980 (time of the first DOE/EIA Residential Energy Consumption Survey, 1982a) and 1987 (time of the last DOE/EIA Residential Energy Consumption Survey, 1989a). The analysis is three-dimensional: energy consumption and expenditures are presented by time (1980 to 1987), housing vintage, and housing type. A comparative analysis of changes in energy variables for the three population groups -- majority, black, and Hispanic -- within and between specific housing stock categories is presented.

Poyer, D.A.

1992-06-01T23:59:59.000Z

115

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 for 2005 expenditures; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators.

116

Capital expenditures of leading petroleum companies 1968-1982  

Science Conference Proceedings (OSTI)

A review of aggregate capital expenditures by 37 leading US petroleum companies from 1968 through 1982 examines data from several vantages, including capital expenditures by geographical and functional segment and in relation to sources of funds. The paper responds to a number of issues raised during and after the Arab oil embargo, when widespread public concern developed over the economic and security implications of US dependence on foreign energy supplies and over whether US petroelum companies were adequately using their profits to assure sufficient supplies. Contrary to the allegations made, this study finds that capital expenditures increased and were largely directed toward exploration and production in the US, with only a small proportion going to non-petroleum, non-energy purposes. 2 figures, 17 tables.

Gal, N.P.

1984-01-01T23:59:59.000Z

117

Note on R&D expenditures and fixed capital formation  

Science Conference Proceedings (OSTI)

In this paper we deal with the fixed capital nature of the means of production and labour employed in research and development which generate scientific and technological knowledge. We argue that these R&D current expenditures typically have the ... Keywords: Capital, Innovation, Research

Mario Marchi; Maurizio Rocchi

2010-11-01T23:59:59.000Z

118

ORIGINAL PAPER Differential sperm expenditure by male sailfin mollies,  

E-Print Network (OSTI)

Introduction It is increasingly evident that sperm production is costly to males (Dewsbury 1982; Nakatsuru expected outcome of costly sperm production is differential control of sperm production and expenditure strategies that reduce costs associated with spermatogenesis. This is especially true when males

Gabor, Caitlin - Department of Biology, Texas State University

119

The federal energy policy: An example of its potential impact on energy consumption and expenditures in minority and poor households  

SciTech Connect

This report presents an analysis of the relative impacts of the National Energy Strategy on majority and minority households and on nonpoor and poor households. (Minority households are defined as those headed by black or Hispanic persons; poor households are defined as those having combined household income less than or equal to 125% of the Office of Management and Budget`s poverty-income threshold.) Energy consumption and expenditures, and projected energy expenditures as a share of income, for the period 1987 to 2009 are reported. Projected consumptions of electricity and nonelectric energy over this period are also reported for each group. An analysis of how these projected values are affected under different housing growth scenarios is performed. The analysis in this report presents a preliminary set of projections generated under a set of simplifying assumptions. Future analysis will rigorously assess the sensitivity of the projected values to various changes in a number of these assumptions.

Poyer, D.A.

1991-09-01T23:59:59.000Z

120

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Short-Term Energy and Winter Fuels Outlook October 2013  

Gasoline and Diesel Fuel Update (EIA)

and Winter Fuels Outlook October 2013 1 and Winter Fuels Outlook October 2013 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights ï‚· EIA projects average U.S. household expenditures for natural gas and propane will increase by 13% and 9%, respectively, this winter heating season (October 1 through March 31) compared with last winter. Projected U.S. household expenditures are 2% higher for electricity and 2% lower for heating oil this winter. Although EIA expects average expenditures for households that heat with natural gas will be significantly higher than last winter, spending for gas heat will still be lower than the previous 5-year average (see EIA Short-Term Energy and Winter Fuels Outlook slideshow). ï‚· Brent crude oil spot prices fell from a recent peak of $117 per barrel in early September to

122

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

123

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part1; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for

124

Green Pricing Program Marketing Expenditures: Finding the Right Balance  

NLE Websites -- All DOE Office Websites (Extended Search)

449 449 September 2009 Green Pricing Program Marketing Expenditures: Finding the Right Balance Barry Friedman and Mackay Miller National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46449 September 2009 Green Pricing Program Marketing Expenditures: Finding the Right Balance Barry Friedman and Mackay Miller Prepared under Task No. SAO9.3003 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

125

Table 2.10 Commercial Buildings Energy Consumption and Expenditure ...  

U.S. Energy Information Administration (EIA)

parking garages. Note: Data are estimates. Statistics for individual fuels are for all buildings using each fuel. ... "Nonresidential Buildings Energy Consumption

126

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs. EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Oct. 2006, Table 4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price deflators. Per Square Foot Per Building

127

California Fuel Cell Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Speaker(s): Bob Knight Date: October 19, 2000 - 12:00pm Location: Bldg. 90 The California Fuel Cell Partnership is a current collaboration among major automakers, fuel cell...

128

The impact of the Persian Gulf crisis on household energy consumption and expenditure patterns  

Science Conference Proceedings (OSTI)

The Iraqi invasion of the Kingdom of Kuwait on August 2, 1990, and the subsequent war between Iraq and an international alliance led by the United States triggered first immediate and then fluctuating world petroleum prices. Increases in petroleum prices and in U.S. petroleum imports resulted in increases in the petroleum prices paid by U.S. residential, commercial, and industrial consumers. The result was an immediate price shock that reverberated throughout the U.S. economy. The differential impact of these price increases and fluctuations on poor and minority households raised immediate, significant, and potentially long-term research, policy, and management issues for a variety of federal, state, and local government agencies, including the U.S. Department of Energy (DOE). Among these issues are (1) the measurement of variations in the impact of petroleum price changes on poor, nonpoor, minority, and majority households; (2) how to use the existing policy resources and policy innovation to mitigate regressive impacts of petroleum price increases on lower-income households; and (3) how to pursue such policy mitigation through government agencies severely circumscribed by tax and expenditure limitations. Few models attempt to assess household energy consumption and energy expenditure under various alternative price scenarios and with respect to the inclusion of differential household choices correlated with such variables as race, ethnicity, income, and geographic location. This paper provides a preliminary analysis of the nature and extent of potential impacts of petroleum price changes attributable to the Persian Gulf War and its aftermath on majority, black, and Hispanic households and on overlapping poor and nonpoor households. At the time this was written, the Persian Gulf War had concluded with Iraq`s total surrender to all of the resolutions and demands of the United Nations and United States.

Henderson, L. [Univ. of Baltimore, MD (United States); Poyer, D.; Teotia, A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

129

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

F2: Jet Fuel Consumption, Price, and Expenditure Estimates, 2012 F2: Jet Fuel Consumption, Price, and Expenditure Estimates, 2012 State Jet Fuel a Consumption Prices Expenditures Thousand Barrels Trillion Btu Dollars per Million Btu Million Dollars Alabama 2,193 12.4 23.24 289.1 Alaska 19,966 113.2 23.28 2,635.6 Arizona 3,812 21.6 23.28 503.2 Arkansas 988 5.6 22.84 128.0 California 94,474 535.7 22.88 12,256.9 Colorado 10,601 60.1 23.04 1,384.7 Connecticut 1,699 9.6 23.55 226.9 Delaware 132 0.7 23.08 17.3 Dist. of Col. 0 0.0 - - Florida 33,167 188.1 23.23 4,368.5 Georgia 11,252 63.8 22.84 1,457.5 Hawaii 11,311 64.1 22.94 1,471.3 Idaho 726 4.1 24.50 100.9 Illinois 24,668 139.9 22.85 3,196.2 Indiana 8,519 48.3 22.80 1,101.3 Iowa 1,101 6.2 23.44 146.3 Kansas 2,759 15.6 22.97 359.3 Kentucky 9,000 51.0 23.07 1,177.5 Louisiana 19,080 108.2 22.79 2,464.9 Maine 1,175 6.7 23.55 156.9 Maryland 2,100 11.9 23.08 274.8 Massachusetts

130

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

0: Natural Gas Price and Expenditure Estimates, 2011 State Prices Expenditures Residential Commercial Industrial Transpor- tation Electric Power Total Residential Commercial...

131

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

0: Total Energy Consumption, Price, and Expenditure Estimates, 2011 State Consumption Prices Expenditures Residential a Commercial a Industrial a,b Transportation Total b...

132

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

F14: Other Petroleum Products Consumption, Price, and Expenditure Estimates, 2011 State Consumption Prices Expenditures Thousand Barrels Trillion Btu Dollars per Million Btu...

133

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

9 9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018 1,982 2019 1,973 2020 1,963 2021 1,961 2022 1,964 2023 1,962 2024 1,959 2025 1,957 2026 1,959 2027 1,960 2028 1,953 2029 1,938 2030 1,932 2031 1,937 2032 1,946 2033 1,956 2034 1,967 2035 1,978 Source(s): Average Expenditure EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table A2, p. 3-

134

Table CE3-3e. Electric Air-Conditioning Energy Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Electric Air-Conditioning Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli-

135

Table CE3-1e. Electric Air-Conditioning Energy Expenditures in U.S ...  

U.S. Energy Information Administration (EIA)

Dollars per Household4,a Electric Air-Conditioning Expenditures per Household ... per Household4 2001 Cooling Degree-Days per Household Total U.S. Households ...

136

Table AC7. Average Expenditures for Air-Conditioning by Equipment ...  

U.S. Energy Information Administration (EIA)

Central System 5 Table AC7. Average Expenditures for Air-Conditioning by Equipment Type, 2005 Dollars per Household Type of Air-Conditioning Equipment

137

Relationships between U.S. Consumer Expenditures on Communications and Travel: 1984-2002  

E-Print Network (OSTI)

and new and old communications technologies). The first fourchanges in new communications technology on personal vehiclePV items on old communications technology expenditures. The

Choo, Sangho; Lee, Taihyeong; Mokhtarian, Patricia L

2006-01-01T23:59:59.000Z

138

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

139

Caloric expenditure and substrate utilization in underwater treadmill running versus land-based treadmill running.  

E-Print Network (OSTI)

??The objective of this study is to compare the caloric expenditure and oxidative sources of underwater treadmill running and land-based treadmill running at maximal and… (more)

Schaal, Courtney

2009-01-01T23:59:59.000Z

140

Table CE5-5.1u. Appliances Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE5-5.1u. Appliances1 Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household Demographics RSE Column Factor:

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table CE5-6.1u. Appliances Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE5-6.1u. Appliances1 Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

142

U.S. household expenditures for gasoline account for nearly 4% ...  

U.S. Energy Information Administration (EIA)

Gasoline expenditures in 2012 for the average U.S. household reached $2,912, or just under 4% of income before taxes, according to EIA estimates.

143

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

5 5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a family, an individual, or a group of up to nine unrelated individuals occupying the same housing unit. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-1 part 2; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price inflators. 2,431 847 3% 2,774 909 3% 1,995

144

New America Foundation Working Paper The Price-Induced Energy Trap Exploring the Impacts of Transportation Expenditures on the American Economy  

E-Print Network (OSTI)

Even though the U.S. economy grows at an anemic rate of perhaps 1.5 percent and 1.9 percent (or less) in this year and next, the world economy is likely to expand by well over 3 percent in that same two-year period. The world demand for oil is expected to increase, concurrently, by about 1.5 percent annually. The most recent projections by the U.S. Energy Information Administration (EIA 2011a) suggest that – absent major disruptions – the growing demand for energy worldwide will continue to push oil prices up in a slow but steady movement. Absent dramatic changes in U.S. energy policy, consumers are likely to continue to pay high and volatile prices. Despite an anticipated 1.8 percent decline this year in gasoline consumption, for example, the overall expenditures for gasoline will increase 25 percent, rising from $391 billion dollars in 2010 to $489 billion dollars in 2011. Both the size of the U.S. gasoline bill, and its dependence on global events, impact the lives and well-being of individuals, families, and households – especially those from the middle and lower income levels. And as consumers ’ incomes, already shrinking in the after-effects of the recession, continue to be absorbed by high fuel costs, gasoline is becoming a drag on the economy. How will U.S. policy makers navigate the future? For decades price has been the focus of policy-maker’s attention. Policy-byprice has taken three approaches. First, policymakers have tried to keep prices low through subsidies for ethanol and biofuels, increased domestic oil production and an active foreign policy toward oil suppliers, while letting “the market ” (i.e., rising prices),

John A. “skip Laitner; For The Energy Policy Initiative

2011-01-01T23:59:59.000Z

145

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

8 8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018 2.29 2019 2.29 2020 2.29 2021 2.31 2022 2.32 2023 2.32 2024 2.32 2025 2.32 2026 2.32 2027 2.33 2028 2.32 2029 2.31 2030 2.31 2031 2.32 2032 2.35 2033 2.37 2034 2.39 2035 2.42 Note(s): Source(s): EIA, State Energy Data Prices and Expenditures Database, June 2011 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A2, p. 3-5 and Table A5, p. 11-12 for consumption, Table A3, p. 6-8 for prices for 2008-2035; EIA, Annual Energy Review

146

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market...

147

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

148

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

system-efficiency Go system-efficiency Go Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-1fnxsdr Average Per-Passenger Fuel Economy of Various Travel Modes Generated_thumb20130810-31804-1fnxsdr Comparison of per-passenger fuel economy for various modes of transportation. Last update April 2013 View Graph Graph Download Data Average Annual Fuel Use of Major Vehicle Categories Class 8 Truck Transit Bus Refuse Truck Para. Shuttle Taxi Delivery Truck School Bus Police Light Truck Light-Duty Vehicle Car Motorcycle Annual Fuel Use (GGE) 11500 10063 9876.738 2695 3392 1814 1896.33375 1423.474 853.56725 528.8785 459.4805 33

149

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993 34.52 8.47 10.75 17.76 1994 34.04 8.63 10.63 17.87 1995 33.43 8.00 10.33 17.50 1996 32.63 8.21 11.70 17.28 1997 32.34 8.83 11.47 17.69 1998 31.33 8.55 9.96 17.73 1999 30.52 8.29 10.13 17.09 2000 30.13 9.54 14.18 18.06 2001 30.71 11.50 13.98 19.38 2002 29.73 9.24 12.26 17.89 2003 30.05 10.87 14.21 18.88 2004 29.98 11.97 15.54 19.76 2005 30.64 13.66 18.93 21.50 2006 32.67 14.30 21.06 23.34 2007 32.50

150

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 Building Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Residential Buildings Commercial Buildings Building Electricity Natural Gas Petroleum (1) Avg. Electricity Natural Gas Petroleum (2) Avg. Avg. (3) 1980 36.40 8.35 16.77 17.64 37.22 7.70 13.06 18.52 17.99 1981 38.50 8.88 18.35 19.09 39.06 8.29 14.78 20.56 19.68 1982 40.15 10.08 17.28 19.98 40.15 9.40 13.28 21.21 20.48 1983 40.43 11.30 16.08 21.00 39.51 10.43 12.53 21.55 21.23 1984 38.80 11.02 15.61 20.20 38.68 10.00 12.04 21.14 20.58 1985 38.92 10.68 14.61 20.10 38.29 9.60 11.68 21.41 20.63 1986 38.24 9.98 11.88 19.38 37.09 8.69 7.85 20.17 19.70 1987 37.29 9.22 11.23 18.73 34.93 7.93 8.16 19.14 18.90 1988 36.22 8.80 10.83 18.02 33.60 7.45 7.47 18.24 18.11 1989 35.67 8.71 11.96 17.93 33.06 7.34 8.13 18.29 18.07 1990 35.19 8.63 13.27 18.64 32.49 7.20 9.31 18.62 18.63 1991 34.88 8.38 12.49 18.31

151

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06 27.74 10.12 26.73 21.07 28.00 9.75 25.85 20.90 27.96 9.93 26.16 21.01 27.78 9.21 25.46 20.46 27.90 9.45 25.69 20.67 27.76 8.95 24.95 20.23 27.72 9.09 25.24 20.32 27.96 8.64 24.34 20.11 27.81 8.77 24.80 20.14 27.91 8.46 23.15 19.90 28.07 8.59 24.07 20.11 28.61 8.72 23.94 20.36 28.05 8.70 22.00 19.99 29.73 9.10 20.28 20.99 29.57 8.61 24.24 21.03 30.95 12.12 23.75 23.21 30.09 9.79 15.83 21.13 29.70

152

Relationships between U.S. Consumer Expenditures on Communications and Travel: 1984-2002  

E-Print Network (OSTI)

is, an increase in the price of non-PV goods/services leadsimpact of a change in PV capital prices on expenditures forof Alt. 1, Table 5.4. PV own-price elasticities have also

Choo, Sangho; Lee, Taihyeong; Mokhtarian, Patricia L

2006-01-01T23:59:59.000Z

153

Table CE3-10e. Electric Air-Conditioning Energy Expenditures in U ...  

U.S. Energy Information Administration (EIA)

Table CE3-10e. Electric Air-Conditioning Energy Expenditures in U.S. Households by Midwest Census Region, 2001 RSE Column Factor: Total U.S. Midwest Census Region

154

Table CE1-6.2u. Total Energy Consumption and Expenditures by ...  

U.S. Energy Information Administration (EIA)

Table CE1-6.2u. Total Energy Consumption and Expenditures by Square Feet and Usage Indicators, 2001 Usage Indicators RSE Column Factor: Total End-Use Energy

155

Table 3.5 Consumer Expenditure Estimates for Energy by Source ...  

U.S. Energy Information Administration (EIA)

1972. 5,415 -26: 13,198 : 7,552: 1,682: 2,834 : 35,346 : ... 8 Asphalt and road oil, aviation gasoline, kerosene, ... "State Energy Data 2010: Prices and Expenditures"

156

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

157

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

158

Social and cultural factors as a determinate of ICT expenditures: an empirical study  

Science Conference Proceedings (OSTI)

Information and communication technologies (ICT) have come to hold an important place in strategies for promoting economic growth and development in developing countries. It is known that ICT expenditures as a percent of GDP vary between countries. An ...

Larry Allen; Vivek Natarajan; Donald Price

2012-12-01T23:59:59.000Z

159

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Notes: • To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. • Because of rounding, data may ...

160

Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19  

U.S. Energy Information Administration (EIA) Indexed Site

4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" 4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" 8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,,"Total United States"

162

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources","RSE"

163

"Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Electricity, Steam, and Natural" 6. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Million Dollars)" ,," Electricity",," Steam",," Natural Gas" ,,"-","-----------","-","-----------","-","------------","-","RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Code(a)","Industry Groups and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"

164

"Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Total Expenditures for Purchased Electricity, Steam, and Natural" 8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Supplier(b)","Pipelines","Supplier(d)","Factors"," "

165

Number 158 June 1, 2002 Development of technically and economically viable processes for the conversion and utilization of fossil fuels is a major objective of both the DOE Fossil  

E-Print Network (OSTI)

ODS Alloy Heat Exchangers for Solid-Fuel Thermal Systems A high-efficiency coal-fired power plant and liquefaction, improved power generation and advanced combustion. As these processes evolve to the pilot plant. The power plant was commissioned during the springof1998andhasbeeninoperationsincethen.Allthree headers were

166

Performance Profiles of Major Energy Producers - Energy ...  

U.S. Energy Information Administration (EIA)

Research and Development Expenditures: Table 12. Income Taxes: Table 13. U.S. Taxes Other Than Income Taxes: Table 14. U.S. Energy Operating Statistics: Table 15.

167

Performance Profiles of Major Energy Producers - Energy ...  

U.S. Energy Information Administration (EIA)

Capital expenditures for the FRS companies' domestic refining/marketing segment decreased 16 percent from 2008 to $22 billion in 2009 while foreign ...

168

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

Trade, Miscellaneous Subjects, 1991). Nevertheless, we use electricity andelectricity and fuel-use part of the survey (Bureau of the Census1987 Census of Wholesale Trade,electricity and fuel-use expenditure data are from the same survey (Bureau of the Census, The 1987 Census of Retail Trade,

Delucchi, Mark

1996-01-01T23:59:59.000Z

169

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

5: Wood and Biomass Waste Price and Expenditure Estimates, 2011 State Prices Expenditures Wood Wood and Biomass Waste a Total b Wood Wood and Biomass Waste a Total b Residential...

170

Haptic Seat for Fuel Ecomony  

and fuel consumption.  The majority of the current systems are visual providing data on an already crowded instrument cluster.  In order to realize ...

171

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General Transportation Stationary/Distributed Power Auxiliary & Portable Power Manufacturing General Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act-This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery Act, by the U.S. Department of Energy for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment-This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. (April 2013).

172

Fuel Cells publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells » Fuel Cells Publications Fuel Cells publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electorchemical Devices Email Fernando Garzon Sensors & Electorchemical Devices Email Piotr Zelenay Sensors & Electorchemical Devices Email Rod Borup Sensors & Electorchemical Devices Email Karen E. Kippen Chemistry Communications Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

173

Financial News for Major Energy Producers, Third Quarter 2010  

Gasoline and Diesel Fuel Update (EIA)

Producers, Third Quarter 2010 Producers, Third Quarter 2010 Release Date: January 5, 2011 Next Release Date: To Be Determined Report Sections: Corporate and Petroleum Net Income Worldwide Oil and Gas Production Operations Worldwide Refining/Marketing Operations Worldwide Petroleum Capital Expenditures Worldwide Downstream Natural Gas and Power, and Chemicals Operations Supplemental Figures Supplemental Tables Download this Report: Full Report in PDF-Format Past Issues in PDF-Format Additional Information FRS Home Financial Terms Glossary Contacts Notes: The "Financial News for Major Energy Producers" is issued quarterly to report recent trends in the financial performance of the major energy producers. "Major energy producers" are respondents to Form EIA-28 (Financial Reporting System). All U.S.-based respondent companies that

174

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels................................................................................................... 145 Table C6. Expenditures by Census Region for Sum of Major Fuels......................... 150 Table C7. Consumption and Gross Energy Intensity by Building Size for Sum of

175

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

176

New process speeds conversion of biomass to fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

177

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

178

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

179

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

180

HTR Fuel Development in Europe  

SciTech Connect

In the frame of the European Network HTR-TN and in the 5. EURATOM RTD Framework Programme (FP5) European programmes have been launched to consolidate advanced modular HTR technology in Europe. This paper gives an overall description and first results of this programme. The major tasks covered concern a complete recovery of the past experience on fuel irradiation behaviour in Europe, qualification of HTR fuel by irradiating of fuel elements in the HFR reactor, understanding of fuel behaviour with the development of a fuel particle code and finally a recover of the fuel fabrication capability. (authors)

Languille, Alain [CEA Cadarache, 13108 Saint-Paul-lez-Durance BP1 (France); Conrad, R. [CEC/JRC/IE Petten (Netherlands); Guillermier, P. [Framatome-ANP/ Lyon (France); Nabielek, H. [FZJ/Juelich (Germany); Bakker, K. [NRG/Petten (Netherlands); Abram, T. [BNFL UK (United Kingdom); Haas, D. [JRC/ITU/Karlsruhe (Germany)

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Internships for Physics Majors  

Energy.gov (U.S. Department of Energy (DOE))

Fermilab's IPM program offers ten-week summer internships to outstanding undergraduate physics majors. This program has been developed to familiarize students with opportunities at the frontiers of...

182

Household Projection and Its Application to Health/Long-Term Care Expenditures in Japan Using INAHSIM-II  

Science Conference Proceedings (OSTI)

Using a microsimulation model named Integrated Analytical Model for Household Simulation (INAHSIM), the author conducted a household projection in Japan for the period of 2010â??2050. INAHSIM-II specifically means that the initial population is ... Keywords: dynamic micro simulation, health expenditure, household projection, initial population, long-term care expenditure, transition probabilities

Tetsuo Fukawa

2011-02-01T23:59:59.000Z

183

Assumptions to the Annual Energy Outlook 2000 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIAÂ’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

184

Spent fuel management fee methodology and computer code user's manual.  

Science Conference Proceedings (OSTI)

The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

Engel, R.L.; White, M.K.

1982-01-01T23:59:59.000Z

185

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

186

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

187

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

188

Rethinking the light water reactor fuel cycle  

E-Print Network (OSTI)

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

189

Alcohol Transportation Fuels Demonstration Program  

DOE Green Energy (OSTI)

Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

Kinoshita, C.M. (ed.)

1990-01-01T23:59:59.000Z

190

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

191

ICPP Special Fuels Canning and Characterization Facility  

SciTech Connect

This report examines the functional mission of a Special Fuels Canning and Characterization Facility (SFCCF) for the Idaho Chemical Processing Plant (ICPP) and presents justification for its implementation as part of Westinghouse Idaho Nuclear Co., Inc. (WINCO) long-range plans. The SFCCF would be built as the first phase of an overall facility for dispositioning special fuels. Issues related to feasibility, cost, and preconceptual design criteria are also discussed in this report. A preconceptual facility layout based on existing information was developed to enhance the preconceptual design criteria and support a rough order-of-magnitude cost estimate for the construction of the SFCCF. The US Department of Energy (DOE) is the landlord of a large quantity of spent nuclear fuel and related materials. A significant quantity of this inventory, approximately 730,000 kg total fuel mass, is labeled as ``special fuel`` because no specific processing technique and/or facility to disposition this material is available in the NMP complex. The dispositioning of this fuel is especially complex because of the variety of fuel types. Of these special fuels, approximately 90 %wt are stored at the INEL. Timely dispositioning of the fuels would avoid expenditures of funds for a second generation of storage facilities at the INEL and other DOE facilities and would demonstrate to the public that solutions to nuclear fuel dispositioning exist and that a plan is being executed. The SFCCF is required to characterize, verify the storage can contents, and, if necessary, recan the special fuels to help assure safe, interim storage (i.e. fission product containment and criticality control) until the special fuels processing facility is operating.

Sire, D.L.; Bendixsen, C.L.; Armstrong, E.F.; Henry, R.N.; Frandsen, G.B.

1992-04-01T23:59:59.000Z

192

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

DOE Green Energy (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

193

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

194

DOUBLE MAJORS Imaging Science + ...  

E-Print Network (OSTI)

DOUBLE MAJORS Imaging Science + ... Applied Mathematics Biomedical Sciences Computer Science Undergraduate Research Internships and Cooperative Education (Co-op) (optional) Study Abroad WHY IMAGING SCIENCE Science: BS, MS, PhD Color Science: MS, PhD BS + MS/PhD Combos HUMAN VISION BIO- MEDICAL ASTRO- PHYSICS

Zanibbi, Richard

195

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Commercial Energy Prices, by Year and Fuel Type ($2010) Electricity Natural Gas Distillate Oil Residual Oil ($/gal) ($/gal) 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 9.39 104.50 2.79 3.78 9.35 104.74 2.81 3.81 9.47 101.25 2.73 3.69 9.40 103.22 2.76 3.75 9.54 99.28 2.67 3.60 9.51 100.49 2.70 3.64 9.52 94.53 2.66 3.52 9.55 97.45 2.64 3.55 9.46 90.92 2.61 3.46 9.48 92.13 2.63 3.49 9.49 87.65 2.54 3.41 9.47 89.48 2.58 3.42 9.58 85.91 2.41 3.28 9.54 86.36 2.49 3.34 9.57 87.02 2.07 2.97 9.52 84.58 2.26 3.14 10.09 86.14 2.34 3.55 9.76 87.22 2.37 3.57 10.27 97.87 1.49 2.03 10.14 90.95 1.66 2.86 10.04 114.33 1.51 2.47 10.56 121.16 2.01 3.34 9.59 121.45 1.24 2.07 10.13 124.31 1.39 2.32 9.44 94.94 0.93 1.23

196

Buildings Energy Data Book: 1.2 Building Sector Expenditures  

Buildings Energy Data Book (EERE)

2 2 Building Energy Prices, by Year and Fuel Type ($2010) (cents/therm) (cents/gal) ($/gal) 1980 12.42 83.51 1.53 2.24 12.70 77.01 1.43 2.05 1981 13.14 88.83 1.47 2.51 13.33 82.90 1.63 2.32 1982 13.70 100.83 1.54 2.30 13.70 93.95 1.40 2.11 1983 13.79 113.04 1.51 2.14 13.48 104.33 1.30 1.75 1984 13.24 110.16 1.46 2.10 13.20 100.01 1.37 1.68 1985 13.28 106.80 1.37 1.96 13.06 95.96 1.21 1.56 1986 13.05 99.76 1.25 1.54 12.66 86.86 0.71 1.01 1987 12.72 92.16 1.22 1.42 11.92 79.32 0.79 1.05 1988 12.36 87.96 1.15 1.39 11.46 74.52 0.62 0.95 1989 12.17 87.08 1.39 1.48 11.28 73.39 0.70 1.07 1990 12.01 86.28 1.40 1.69 11.08 72.04 0.78 1.26 1991 11.90 83.77 1.34 1.56 10.97 69.49 0.58 1.11 1992 11.87 82.80 1.24 1.40 10.93 68.64 0.58 1.01 1993 11.78 84.73 1.19 1.33 10.81 71.91 0.58 0.96 1994 11.62 86.30 1.25 1.27 10.57 74.09 0.60 0.90 1995 11.41 79.96 1.22 1.22 10.32 66.99 0.64 0.88 1996 11.13 82.07 1.36 1.37

197

Buildings Energy Data Book: 3.3 Commercial Sector Expenditures  

Buildings Energy Data Book (EERE)

1 1 Energy Service Company (ESCO) Industry Activity ($Million Nominal) (1) Low High 1990 143 342 Market Segment Share 1991 218 425 MUSH (2) 69% 1992 331 544 Federal 15% 1993 505 703 Commercial & Industrial 7% 1994 722 890 Residential 6% 1995 1,105 1,159 Public Housing 3% 1996 1,294 1,396 1997 1,394 1,506 1998 1,551 1,667 2008 Revenues by Project/Technology Type 1999 1,764 1,925 2000 1,876 2,186 Market Segment Share 2001 - - Energy Efficiency 75% 2002 - - Onsite Renewables 14% 2003 - - Engine/Turbine Generators 6% 2004 2,447 2,507 Consulting/Master Planning 3% 2005 2,949 3,004 Other 2% 2006 3,579 3,627 2007 - - 2008 4,087 4,171 Note(s): Source(s): Estimated Revenue ($Million Nominal) (1) 2008 Revenue Sources 1) Estimates based on surveys of major ESCOs and input from industry experts. 2) Includes municipal and state governments, universities

198

Effect Of Alternative Fuels On Aftertreatment Device.  

E-Print Network (OSTI)

?? EFFECT OF ALTERNATIVE FUELS ON THE AFTERTREATMENT DEVICE. by BUNPREET SINGH Dec 2010 Advisor: Dr. Dinu Taraza Major: Mechanical Engineering Degree: Master of Science… (more)

Singh, Bunpreet

2010-01-01T23:59:59.000Z

199

Clean Energy: Fuel Cells, Batteries, Renewables - Materials ...  

Science Conference Proceedings (OSTI)

Major areas of rapid advancement include fuel cells, wind, solar, and geothermal ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

200

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No....

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; 0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635 692 3,391 1,675 3112 Grain and Oilseed Milling 932 850 82 673 261 311221 Wet Corn Milling 352 331 21 296 103 31131 Sugar Manufacturing 105 87 18 87 39 3114 Fruit and Vegetable Preserving and Specialty Foods 698

202

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

203

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

204

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

205

Table 2.5 Household Energy Consumption and Expenditures by End ...  

U.S. Energy Information Administration (EIA)

Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec-tricity 3: Fuel Oil ...

206

Table 3.6 Consumer Expenditure Estimates for Energy by End-Use ...  

U.S. Energy Information Administration (EIA)

1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 8 Wood and wood-derived fuels, and biomass waste; excludes fuel ethanol and biodiesel.

207

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch FCEVs in the U.S. market between 2015 and 2020....

208

Relationships between US consumer expenditures on communications and transportation using almost ideal demand system modeling: 1984-2002  

E-Print Network (OSTI)

diture elasticity Price elasticity Non-PV Marshallian (impact of a change in PV capital prices on expenditures forin the non-PV category are own-price elastic, consistent

Choo, Sangho; Lee, Taihyeong; Mokhtarian, Patricia L

2007-01-01T23:59:59.000Z

209

Diacylglycerol Oil, 2nd Edition Chapter 5 The Effect of Diacylglycerols on Energy Expenditure and Substrate Utilization in Humans  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 5 The Effect of Diacylglycerols on Energy Expenditure and Substrate Utilization in Humans Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Bioc

210

Diacylglycerol Oil, 2nd EditionChapter 4 Activation of Lipid Metabolism and Energy Expenditure by Dietary Diacylglycerol  

Science Conference Proceedings (OSTI)

Diacylglycerol Oil, 2nd Edition Chapter 4 Activation of Lipid Metabolism and Energy Expenditure by Dietary Diacylglycerol Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry

211

Energy consumption and expenditure projections by population group on the basis on the annual energy outlook 2000 forecast.  

SciTech Connect

The changes in the patterns of energy use and expenditures by population group are analyzed by using the 1993 and 1997 Residential Energy Consumption Surveys. Historically, these patterns have differed among non-Hispanic White households, non-Hispanic Black households, and Hispanic households. Patterns of energy use and expenditures are influenced by geographic and metropolitan location, the composition of housing stock, economic and demographic status, and the composition of energy use by end-use category. As a consequence, as energy-related factors change across groups, patterns of energy use and expenditures also change. Over time, with changes in the composition of these factors by population group and their variable influences on energy use, the impact on energy use and expenditures has varied across these population groups.

Poyer, D. A.; Decision and Information Sciences

2001-05-31T23:59:59.000Z

212

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

213

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

214

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

215

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

216

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

217

Nuclear fuel cycle information workshop  

SciTech Connect

This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

1983-01-01T23:59:59.000Z

218

Montana Major Facility Siting Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Major Facility Siting Act (Montana) Montana Major Facility Siting Act (Montana) Montana Major Facility Siting Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Wind Solar Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The Montana Major Facility Siting Act aims to protect the environment from

219

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1991  

SciTech Connect

This is the sixth report submitted to Congress under section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $3,517,020.56 was expended during calendar year 1991 and $6,602,546.24 was expended during the prior 5 years. At the end of December 1991, $4,918,212.11 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1992-06-01T23:59:59.000Z

220

Fuel Cell Handbook, Fifth Edition  

DOE Green Energy (OSTI)

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Energy and Environmental Solutions

2000-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

222

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

223

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

224

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

225

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

226

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

227

Major Program Offices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101 101 Major Program Offices Doing Business with... Energy Efficiency and Renewable Energy Office of Environmental Management National Nuclear Security Administration Office of Science Gary G. Lyttek, Business Source Manager FY2010 DOE Procurement Base: $22.9B $1,556 $5,701 $9,523 $3,793 $2,304 $'s - Millions EE EM NNSA SC Other 2 Presentation for the DOE Small Business Conference EERE Funding Opportunity Announcements (FOA) May 2011 3 Office of Energy Efficiency and Renewable Energy 4 * The mission and vision of the Office of Energy Efficiency and Renewable Energy (EERE) is to strengthen America's energy security, environmental quality and economic vitality in public-private partnerships that: * Enhance energy efficiency and productivity

228

Table H5: Major Fuels Usage for Large Hospitals  

U.S. Energy Information Administration (EIA)

District Chilled Water ..... Propane ..... More than 7,000 HDD ..... 5,500-7,000 HDD ..... 4,000-5,499 HDD ..... Fewer than 4,000 HDD ..... ...

229

Financial News for Major Energy Producers, Third Quarter 2010  

Gasoline and Diesel Fuel Update (EIA)

for Major for Major Energy Producers > Company List Financial News for Major Energy Producers, Third Quarter 2010 What is FRS? | Contacts | FRS Home Corporate and Petroleum Net Income Worldwide Oil and Gas Production Operations Worldwide Refining/Marketing Operations Worldwide Petroleum Capital Expenditures Worldwide Downstream Natural Gas and Power Operations, Supplemental Figures Supplemental Tables Download this Report: pdf icon Full Report in PDF-format pdf icon Past issues in PDF-format Additional Information FRS Home Financial Terms Glossary Contacts Company List for the Financial News for Major Energy Producers Links to the press releases of 21 companies are provided below, which is the number of companies that are included in this report. Only 20 of the companies are included in compilation of corporate revenue and corporate net income because the U.S. operations of BP are included in the results of the U.S. lines of business, but not in the foreign or corporate results because it is foreign based and does not report the overall revenues and net income of its U.S. affiliate.

230

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

231

Racial and demographic differences in household travel and fuel purchase behavior  

Science Conference Proceedings (OSTI)

Monthly fuel purchase logs from the Residential Energy Consumption Survey's Household Transportation Panel (TP) were analyzed to determine the relationship between various household characteristics and purchase frequency, tank inventories, vehicle-miles traveled, and fuel expenditures. Multiple classification analysis (MCA) was used to relate observed differences in dependent variables to such index-type household characteristics as income and residence location, and sex, race and age of household head. Because it isolates the net effect of each parameter, after accounting for the effects of all other parameters, MCA is particularly appropriate for this type of analysis. Results reveal clear differences in travel and fuel purchase behavior for four distinct groups of vehicle-owning households. Black households tend to own far fewer vehicles with lower fuel economy, to use them more intensively, to purchase fuel more frequently, and to maintain lower fuel inventories than white households. Similarly, poor households own fewer vehicles with lower fuel economy, but they drive them less intensively, purchase fuel more frequently, and maintain lower fuel inventories than nonpoor households. Elderly households also own fewer vehicles with lower fuel economy. But since they drive them much less intensively, their fuel purchases are much less frequent and their fuel inventories are higher than nonelderly households. Female-headed households also own fewer vehicles but with somewhat higher fuel economy. They drive them less intensively, maintain higher fuel inventories, and purchase fuel less frequently than male-headed households. 13 refs., 8 tabs.

Gur, Y.; Millar, M.

1987-01-01T23:59:59.000Z

232

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

233

Major Energy Producers  

Gasoline and Diesel Fuel Update (EIA)

206(92) 206(92) Performance Profiles of Major Energy Producers 1992 January 1994 Elk. I nergy Information dministration This publication and other Energy Information Administration (EIA) publications may be purchased from the Superintendent of Documents, U.S. Government Printing Office. All telephone orders should be directed to: U.S. Government Printing Office Superintendent of Documents McPherson Square Bookstore U.S. Government Printing Office 1510 H Street, N.W. Washington, DC 20402 Washington, DC 20005 (202)783-3238 (202)653-2050 FAX (202)512-2233 FAX (202)376-5055 8 a.m. to 4 p.m., eastern time, M-F 9 a.m. to 4:30 p.m., eastern time, M-F All mail orders should be directed to: U.S. Government Printing Office P.O. Box 371954 Pittsburgh, PA 15250-7954 Complimentary subscriptions and single issues are available to certain groups of subscribers, such as

234

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

235

Fuel Cell Handbook, Fourth Edition  

SciTech Connect

Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

236

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Consumption and Efficiency Consumption and Efficiency All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-ufdolp Average Annual Vehicle Miles Traveled of Major Vehicle Categories

237

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies in the Media Spotlight Vehicle Technologies in the Media Spotlight August 19, 2013 Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market between 2015 and 2020. A recent Denver Post article highlights the National Renewable Energy Laboratory's contribution to the progress that automakers have made in getting their fuel cell electric vehicles ready for production. "When I started working on fuel cells in the '90s, people said it was a good field because a solution would always be five years away," said Brian Pivovar, who leads NREL's fuel cell research. "Not anymore." The article references a variety of NREL's hydrogen and fuel cell

238

Innovative Nanocoatings Unlock the Potential for Major Energy and Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanocoatings Unlock the Potential for Major Energy and Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry Innovative Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry July 17, 2012 - 3:33pm Addthis Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Bob Gemmer Technology Manager, Research and Development for the Advanced Manufacturing Office What does this mean for me? WIth help from DOE, one company has developed a nanocoating that has the potential to improve the energy efficiency of aircrafts and save the airline industry hundreds of millions of dollars in fuel costs annually.

239

Fuel Cell Seminar, 1992: Program and abstracts  

DOE Green Energy (OSTI)

This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

Not Available

1992-12-31T23:59:59.000Z

240

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Checklist for transition to new highway fuel(s).  

DOE Green Energy (OSTI)

Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

Risch, C.; Santini, D.J. (Energy Systems)

2011-12-15T23:59:59.000Z

242

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

243

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

244

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

245

Alternative fuel information: Alternative fuel vehicle outlook  

DOE Green Energy (OSTI)

Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

Not Available

1994-06-01T23:59:59.000Z

246

Fuels & Lubricant Technologies- FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels & Lubricants Technology Fuels & Lubricants Technology Fuels and lubricants research at FEERC involves study of the impacts of fuel and lubricant properties on advanced combustion processes as well as on emissions and emission control strategies and devices. The range of fuels studied includes liquid fuels from synthetic and renewable sources as well as conventional and unconventional fossil-based sources. Combustion and emissions studies are leveraged with relevant single and multi-cylinder engine setups in the FEERC and access to a suite of unique diagnostic tools and a vehicle dynamometer laboratory. ORNL/DOE research has been cited by EPA in important decisions such as the 2006 diesel sulfur rule and the 2010/2011 E15 waiver decision. Major program categories and examples

247

Industrial Wastes as a Fuel  

E-Print Network (OSTI)

With the advent of scarce supplies and rising costs for traditional industrial fuels such as natural gas and fuel oil, a large amount of technical data has been collected and published to encourage their efficient use. This same data is readily available for coal since it was at one time a major industrial fuel and is still used extensively for electric power generation. However, combustion data for other fuels such as wood and solid materials typically generated as industrial wastes can only be found in widely scattered and more obscure sources. Therefore, this information is not always easily accessible to operating personnel at plants where these type fuels are being utilized. The resulting lack of proper information many times leads to poor fuel utilization because of less than optimum combustion efficiencies. Operational and maintenance problems may also be caused by a misunderstanding of combustion characteristics.

Richardson, G.; Hendrix, W.

1980-01-01T23:59:59.000Z

248

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

Annual Report, data on motor fuel use available online at /and diesel fuel used by motor vehicles. We recommend thatanalyses of the social cost of motor vehicle use in the US.

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

249

FUEL ELEMENTS CONFERENCE, PARIS, NOVEMBER 18-23, 1957  

SciTech Connect

Papers are presented in the following major categories: applied metallurgical research, natural-uranium metallic fuel elements, enriched-uranium metallic fuel elements, nonmetallic fuel elements, corrosion of U alloys, irradiation effects on U, its alloys, and its compounds, and Pu fuel elements. (M.H.R.)

1958-10-31T23:59:59.000Z

250

Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures  

Buildings Energy Data Book (EERE)

2 2 Annual Energy Expenditures per Gross Square Foot of Federal Floorspace Stock, by Year ($2010) FY 1985 2.13 FY 2000 1.36 FY 2001 1.58 FY 2002 1.49 FY 2003 1.45 FY 2004 1.54 FY 2005 1.59 FY 2006 2.01 (1) FY 2007 2.01 Note(s): Source(s): Total Federal buildings and facilities energy expenditures in FY 2006 were $5.79 billion (in $2010). 1) Increase due to change in FEMP categorization of Federal buildings. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-9, p. 97 and Table 1, p. 13; DOE/FEMP, Annual Report to Congress on FEMP, Nov. 2008, Table A-9, p. 78 for energy costs, and Table 1, p. 12 for floorspace for 2006; DOE/FEMP, Annual Report to Congress on FEMP, Sep. 2006, Table A-12, p. 158 for energy costs for 1985-2005; DOE/FEMP, Annual Report on FEMP, Dec. 2002, Table 8-A, p. 61 for 2000; DOE/FEMP, Annual

251

FUEL PROCESSING FOR FUEL CELLS: EFFECTS ON CATALYST DURABILITY AND CARBON FORMATION  

DOE Green Energy (OSTI)

On-board production of hydrogen for fuel cells for automotive applications is a challenging developmental task. The fuel processor must show long term durability and under challenging conditions. Fuel processor catalysts in automotive fuel processors will be exposed to large thermal variations, vibrations, exposure to uncontrolled ambient conditions, and various impurities from ambient air and from fuel. For the commercialization of fuel processors, the delineation of effects on catalyst activity and durability are required. We are studying fuels and fuel constituent effects on the fuel processor system as part of the DOE Fuel Cells for Transportation program. Pure fuel components are tested to delineate the fuel component effect on the fuel processor and fuel processor catalysts. Component blends are used to simulate ''real fuels'', with various fuel mixtures being examined such as reformulated gasoline and naptha. The aliphatic, napthenic, olefin and aromatic content are simulated to represent the chemical kinetics of possible detrimental reactions, such as carbon formation, during fuel testing. Testing has examined the fuel processing performance of different fuel components to help elucidate the fuel constituent effects on fuel processing performance and upon catalyst durability. Testing has been conducted with vapor fuels, including natural gas and pure methane. The testing of pure methane and comparable testing with natural gas (97% methane) have shown some measurable differences in performance in the fuel processor. Major gasoline fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared for their effect on the fuel processing performance. Experiments have been conducted using high-purity compounds to observe the fuel processing properties of the individual components and to document individual fuel component performance. The relative carbon formation of different fuel constituents have been measured by monitoring carbon via in situ laser optics, and by monitoring carbon buildup on the catalyst surface. The fuel processing performance of the individual components is compared with the fuel processing performance of blended fuel components and the reformulated gasoline to examine synergistic or detrimental effects the fuel components have in a real fuel blend.

R. BORUP; M. INBODY; B. MORTON; L. BROWN

2001-05-01T23:59:59.000Z

252

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1992  

SciTech Connect

This is the seventh report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of Title I--Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $1,445,701.61 was expended during calendar year 1992 and $10,026,763.87 was expended during the prior 6 years. At the end of December 1992, $3,565,313.43 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1993-06-01T23:59:59.000Z

253

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

254

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

255

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

256

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

257

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor ...

258

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

259

Fertile free fuels for plutonium and minor actinides burning in LWRs  

E-Print Network (OSTI)

The feasibility of using various uranium-free fuels for plutonium incineration in present light water reactors is investigated. Two major categories of inert matrix fuels are studied: composite ceramic fuel particles ...

Zhang, Yi, 1979-

2003-01-01T23:59:59.000Z

260

Advanced thermally stable jet fuels  

Science Conference Proceedings (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Production and Handling Slide 23: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image description The fourth major step in the uranium fuel cycle is uranium enrichment. Slide 23...

262

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network (OSTI)

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

263

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

264

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

265

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

266

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

267

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

268

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

269

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

270

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

271

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

272

The more you spend, the more you get? The effects of R&D and capital expenditures on the patenting activities of biotechnology firms  

Science Conference Proceedings (OSTI)

This paper provides evidence on the mechanisms influencing the patent output of a sample of small and large, entrepreneurial and established biotechnology firms from the input of indirect knowledge acquired from capital expenditures and direct ... Keywords: Biotechnology, Capital expenditure, L25, L65, O34, Patents, Poisson models, R&D

Roberta Piergiovanni; Enrico Santarelli

2013-02-01T23:59:59.000Z

273

Major Business Facility Job Tax Credit (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Job Tax Credit (Virginia) Facility Job Tax Credit (Virginia) Major Business Facility Job Tax Credit (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Corporate Tax Incentive Provider Virginia Department of Taxation The Major Business Facility Job Tax Credit is a program administered by the Virginia Department of Taxation. The credit provides $1,000 per job over a 25 or 50-job threshold, which varies by locality. The job threshold must be

274

Major Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Renovations Major Renovations Major Renovations October 16, 2013 - 4:50pm Addthis Project Phases for Major Renovations The major renovation process still follows the phases of project design and construction, from planning to operations and maintenance. More information on how to integrate renewable energy into the phases of design is discussed in the main portion of this Guide. Major renovations are more constricted in design choices than new construction, but can still offer a wide range of opportunities for integrating renewable energy technologies into the renovation process. During a major Federal building renovation, more design factors may be pre-determined, such as building site and orientation, but a whole building design approach can still offer the most economic and efficient options.

275

Alcohol Transportation Fuels Demonstration Program. Phase 1  

DOE Green Energy (OSTI)

Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

Kinoshita, C.M. [ed.

1990-12-31T23:59:59.000Z

276

USCG Energy Program Resource Management, Fuel Logistics, and Facility Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Program Energy Program Resource Management, Fuel Logistics, and Facility Energy Presented by Daniel Gore USCG Energy Program Manager Office of Resource Management 1 1 2 Presentation Contents * Overview CG Energy Program * Highlights * Interesting Projects for Utilities * Alternatively Financed Projects Discussion 2 3 Overview 3 USCG Energy Program Growth * CG represents 80% of DHS energy consumption * Obligations up 210% from FY 2000 * Energy = 25% of O&M budget 4 4 Energy Program Dynamics Increasing Expenditures Increasing Politics & Mandates Increasing Scrutiny & Reporting Procurement & Credit Card Transformations Accounting System Improvements Organizational Strategic Transformations 5 5 What is CG Energy Management? * Policies impacting $306M annual obligations

277

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

278

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

279

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

280

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

282

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

283

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

284

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

285

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

286

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

287

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

288

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

289

Table 2.5 Household Energy Consumption and Expenditures by End Use ...  

U.S. Energy Information Administration (EIA)

Air Conditioning: Water Heating: Appliances, 2 Electronics, and Lighting : Natural Gas: Elec-tricity 3: Fuel Oil 4: LPG 5: Total: Electricity 3: Natural Gas: Elec ...

290

Relationships between U.S. Consumer Expenditures on Communications and Travel: 1984-2002  

E-Print Network (OSTI)

charges Gasoline and motor oil Vehicle maintenance andtown lodging Gasoline and motor oil Vehicle finance chargeshere). Gasoline and Motor Oil (T2): Gasoline, diesel fuel,

Choo, Sangho; Lee, Taihyeong; Mokhtarian, Patricia L

2006-01-01T23:59:59.000Z

291

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1990  

SciTech Connect

This is the fifth report submitted to Congress under Title 1, section 5(d)(2)(E) of Public Law 99--240, The Low-Level Radioactive Waste Policy Amendments Act of 1985'' (the Act). This section of the Act requests the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the specified limitations. The Act places limitations on the use of these funds and requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, DOE is to furnish Congress a summary of the reported expenditures and an assessment of compliance with the limitations on the use of these funds specified in the Act. This report fulfills that requirements. DOE disbursed funds totaling $15,006,587.76 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones. Of this amount, $4,328,340.44 was expended during calendar year 1990 and $2,239,205.80 was expended during the prior 4 years. At the end of December 1990, $8,439,041.52 was unexpended. 5 tabs.

Not Available

1991-06-01T23:59:59.000Z

292

Nonlinear Dynamics in an OLG Growth Model with Young and Old Age Labour Supply: The Role of Public Health Expenditure  

Science Conference Proceedings (OSTI)

This study analyses the dynamics of a two-dimensional overlapping generations economy with young and old age labour supply. We show that the public provision of investments in health, which, in turn, affects the demand for material consumption of the ... Keywords: C62, C68, Chaos, I18, J22, Labour supply, O41, OLG model, Public health expenditure

Luca Gori; Mauro Sodini

2011-10-01T23:59:59.000Z

293

Status of the US Fuel Cell Program  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is sponsoring major programs to develop high efficiency fuel cell technologies to produce electric power from natural gas and other hydrogen sources. Fuel cell systems offer attractive potential for future electric power generation and are expected to have worldwide markets. They offer ultra-high energy conversion efficiency and extremely low environmental emissions. As modular units for distributed power generation, fuel cells are expected to be particularly beneficial where their by-product, heat, can be effectively used in cogeneration applications. Advanced fuel cell power systems fueled with natural gas are expected to be commercially available after the turn of the century.

Williams, M.C.

1996-04-01T23:59:59.000Z

294

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

295

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

296

Microsoft PowerPoint - 2011WinterFuels_finalv3.pptx [Read-Only]  

Gasoline and Diesel Fuel Update (EIA)

Sh Sh t T d Wi t F l O tl k EIA Short-Term and Winter Fuels Outlook f for Winter Fuels Outlook Conference National Association of State Energy Officials (NASEO) O b 12 2011 | h C October 12, 2011 | Washington, DC by www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Howard Gruenspecht, Acting Administrator Overview * EIA expects higher average fuel bills this winter heating season for heating oil, propane, and natural gas, but little change in electricity bills. y * Higher fuel prices are the main driver - 10% higher heating oil prices (than last winter) g g p ( ) - 7% higher propane prices - 4% higher residential natural gas prices - 1% higher electricity prices * Projected average expenditures for heating oil users are at their highest level ever. 2 Howard Gruenspecht, Winter Fuels Outlook

297

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

298

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

299

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

300

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

302

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

303

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

304

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

305

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

306

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

307

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

308

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

309

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

310

Major Corporate Fleets Align to Reduce Oil Consumption | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of large-scale fleets Reduces emissions Surrounded by cutting-edge vehicles, from all-electric trucks to hydraulic hybrids, President Obama today announced the National Clean Fleets Partnership, an initiative of the Department's Clean Cities program, at a UPS fleet facility in Landover, Maryland. This public-private partnership

311

2007 Fuel Cell Technologies Market Report  

SciTech Connect

The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

McMurphy, K.

2009-07-01T23:59:59.000Z

312

Comparative analysis of selected fuel cell vehicles  

DOE Green Energy (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

313

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

314

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

315

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

316

Economic analysis of fuel recycle  

SciTech Connect

Economic analysis was performed at KAERI with the assistance of US DOE to compare single reactor fuel cycle costs for a once-through option and a thermal recycle option to operate 1 GWe of a PWR plant for its lifetime. A reference fuel cycle cost was first calculated for each option with best estimated reference input data. Then a sensitivity analysis was performed changing each single value of such fuel cycle component costs as yellow cake price, enrichment charges, spent fuel storage cost, reprocessing cost, spent fuel disposal cost and reprocessing waste disposal cost. Savings due to thermal recycle in requirements of uranium, conversion, and enrichment were examined using formulas suggested by US DOE, while MOX fabrication penalty was accounted for. As a result of the reference fuel cycle cost analysis, it is calculated that the thermal recycle option is marginally more economical than the once-through option. The major factors affecting the comparative costs between thermal recycle and once-through are the costs of reprocessing, spent fuel storage and the difference between spent fuel disposal and reprocessing waste disposal. However, considering the uncertainty in these cost parameters there seems no immediate economic incentive for thermal recycle at the present time.

Juhn, P.E.

1985-01-01T23:59:59.000Z

317

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

318

Status of IFR fuel cycle demonstration  

SciTech Connect

The next major step in Argonne`s Integral Fast Reactor (IFR) Program is demonstration of the pyroprocess fuel cycle, in conjunction with continued operation of EBR-II. The Fuel Cycle Facility (FCF) is being readied for this mission. This paper will address the status of facility systems and process equipment, the initial startup experience, and plans for the demonstration program.

Lineberry, M.J.; Phipps, R.D.; McFarlane, H.F.

1993-09-01T23:59:59.000Z

319

Major Demonstrations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Demonstrations Major Demonstrations Major Demonstrations A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. The Office of Fossil Energy is co-funding large-scale demonstrations of clean coal technologies to hasten their adoption into the commercial marketplace. Through the year 2030, electricity consumption in the United States is expected to grow by about 1 percent per year. The ability of coal-fired generation to help meet this demand could be limited by concerns over greenhouse gas emissions. While the Major Demonstrations performed to date

320

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

national security. Energy Policy 20, 1089–1096. Hamilton,Delucchi, J.J. Murphy / Energy Policy 36 (2008) 2253–2264alternative fuels/engines. Energy Policy 32, 7–27. Parry,

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

assistance related to oil, and the cost of defending oil21 April 2008 Keywords: Oil importing cost Motor fuel socialexample, if the oil defense cost per gallon is proportional

Delucchi, Mark; Murphy, James

2008-01-01T23:59:59.000Z

322

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network (OSTI)

comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

323

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

324

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

325

Spent fuel characteristics & disposal considerations  

SciTech Connect

The fuel used in commercial nuclear power reactors is uranium, generally in the form of an oxide. The gas-cooled reactors developed in England use metallic uranium enclosed in a thin layer of Magnox. Since this fuel must be processed into a more stable form before disposal, we will not consider the characteristics of the Magnox spent fuel. The vast majority of the remaining power reactors in the world use uranium dioxide pellets in Zircaloy cladding as the fuel material. Reactors that are fueled with uranium dioxide generally use water as the moderator. If ordinary water is used, the reactors are called Light Water Reactors (LWR), while if water enriched in the deuterium isotope of hydrogen is used, the reactors are called Heavy Water reactors. The LWRs can be either pressurized reactors (PWR) or boiling water reactors (BWR). Both of these reactor types use uranium that has been enriched in the 235 isotope to about 3.5 to 4% total abundance. There may be minor differences in the details of the spent fuel characteristics for PWRs and BWRs, but for simplicity we will not consider these second-order effects. The Canadian designed reactor (CANDU) that is moderated by heavy water uses natural uranium without enrichment of the 235 isotope as the fuel. These reactors run at higher linear power density than LWRs and produce spent fuel with lower total burn-up than LWRs. Where these difference are important with respect to spent fuel management, we will discuss them. Otherwise, we will concentrate on spent fuel from LWRs.

Oversby, V.M.

1996-06-01T23:59:59.000Z

326

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

327

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

328

NETL: News Release - Major Milestone Met in Government-Industry Drive to  

NLE Websites -- All DOE Office Websites (Extended Search)

January 3, 2005 January 3, 2005 Major Milestone Met in Government-Industry Drive to Develop Affordable Fuel Cell Achievement Brightens Prospects for Environmentally Clean Technology to Move into Mainstream Energy Markets Squeezing more watts of electric power from smaller and smaller volumes of fuel cell materials is one of the "holy grails" of fuel cell developers. Combined with advances in mass production, such improvements in a fuel cell's "power density" could provide one of the much needed technological leaps that could make this environmentally attractive technology economically competitive with today's traditional ways of generating electricity. Now Delphi Corp., a partner in the U.S. Department of Energy's advanced fuel cell development program, has reported that it has exceeded the power density level required to meet the government's $400 per kilowatt cost goal for fuel cells. Meeting the cost target is essential if fuel cells are to expand beyond their current niche markets into widespread commercial use.

329

FUEL ELEMENT  

DOE Patents (OSTI)

A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

Fortescue, P.; Zumwalt, L.R.

1961-11-28T23:59:59.000Z

330

Microsoft PowerPoint - 2006 winter fuels.ppt  

Annual Energy Outlook 2012 (EIA)

1.7 Expenditures 6.3 -4.4 17.3 Propane Price -5.3 -8.6 -1.6 Expenditures -1.1 -12.6 11.5 Electricity Price 4.6 4.3 4.9 Expenditures 7.4 1.8 12.9 Average Expenditures -4.8 -15.3...

331

Special Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures, OAS-RA-L-12-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Inquiry on the Office of the Special Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures OAS-RA-L-12-01 November 2011 Department of Energy Washington, DC 20585 November 28, 2011 MEMORANDUM FOR THE DEPUTY SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report on "Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures" INTRODUCTION The Office of the Chief Financial Officer (OCFO) is responsible for ensuring the effective management and financial integrity of Department of Energy programs, projects, and resources. To achieve its mission, the OCFO develops, implements, and monitors policies and systems related to areas such as budget administration, program analysis, and strategic planning. The

332

A Look at Commercial Buldings in 1995: Characteristics, Energy Consumption, and Energy Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

DOE/EIA-0625(95) DOE/EIA-0625(95) Distribution Category UC-950 A Look at Commercial Buildings in 1995: Characteristics, Energy Consumption, and Energy Expenditures October 1998 En ergy In for ma tion Ad min istra tion Of fice of En ergy Mar kets and End Use U.S. De part ment of En ergy Wash ing ton, DC 20585 This re port was pre pared by the En ergy In for ma tion Ad min istra tion, the in de pend ent sta tis ti cal and ana lytic agency within the U.S. De part ment of En ergy. The in for ma tion con tained herein should be at trib uted to the En ergy In for ma tion Ad min istra tion and should not be con strued as ad vo cat ing or re flect ing any pol icy po si tion of the De part ment of En ergy or any other or gani za tion. Contacts The En ergy In for ma tion Ad min istra tion (EIA) pre pared this pub li ca tion un der the gen eral di rec tion of W. Cal vin

333

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

334

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

335

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1988  

SciTech Connect

This is the third report submitted to Congress under Public Law 99-240, The Low-Level Radioactive Waste Policy Amendments Act of 1985'' (the Act). This section of the Act requires the Department of Energy to summarize the annual expenditures made by states and compacts of funds disbursed from the Department's Surcharge Escrow Account, and to assess the compliance of these expenditures with the specified limitations. This report covers expenditures made during calendar year 1988 from funds disbursed to states and compacts following the July 1, 1986, and January 1, 1988, milestones. The next milestone in the Act is January 1, 1990, following which the accumulated surcharge deposits in the Department's Surcharge Escrow Account will again be disbursed. The Act authorizes states with operating low-level radioactive waste disposal sites (sited states) to collect surcharges on disposal of waste from generators located in compact regions currently without disposal sites (non-sited compacts) and in states that do not have sites and that are not members of compacts (nonmember states). The Act requires the sited states to make a monthly deposit to the Department of Energy's Surcharge Escrow Account of 25 percent of the surcharges they collect. Following each milestone date, the Department is required to disburse these funds, with accrued interest, back to those non-sited compacts and nonmember states found in compliance with the milestone requirements for new disposal site development. 4 tabs.

Not Available

1989-06-01T23:59:59.000Z

336

Major Business Expansion Bond Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expansion Bond Program (Maine) Expansion Bond Program (Maine) Major Business Expansion Bond Program (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Bond Program Provider Finance Authority of Maine The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000,000 is available for businesses which expand their manufacturing services. The bond proceeds may be used to acquire real estate, machinery, equipment, or rehabilitate or expand an existing facility. The interest rate is determined by market forces at the time of the bond sale

337

Obama Administration Takes Major Step toward Advanced Vehicles with New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes Major Step toward Advanced Vehicles with Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot Obama Administration Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot May 24, 2011 - 12:00am Addthis WASHINGTON, DC - Today, Secretary of Energy Steven Chu, General Services Administrator Martha Johnson, and White House Council on Environmental Quality Chair Nancy Sutley announced a major step in moving the Federal fleet further towards advanced vehicles and decreased petroleum consumption, while also cutting costs associated with fuel consumption. Furthering the Administration's goals to cut oil imports by one-third by 2025 and to put one million advanced vehicles on the road by 2015,

338

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

339

Customizable Fuel Processor Technology Benefits Fuel Cell ...  

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory. Contact ANL About This ...

340

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Cell Technologies Office: Fuel Cell Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

342

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Digg

343

DIESEL FUEL TANK FOUNDATIONS  

DOE Green Energy (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

344

Low Temperature PEM Fuel Cell Manufacturing Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

PEM Fuel Cell PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project  Cost drivers were identified for the following: * MEA * Plates * Balance of Plant (BOP) * Fuel Processing Manufacturing Fuel Cell Project - Phase 1 Note that this presentation will be MEA centric as this is the working group I represent...  MEA Cost Drivers Identified: Identifying MEA Cost Drivers * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA. Thus, focus cost reduction efforts on MEA manufacturing methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction

345

Rugged ATS turbines for alternate fuels  

SciTech Connect

A major national effort is directed to developing advanced turbine systems designed for major improvements in efficiency and emissions performance using natural gas fuels. These turbine designs are also to be adaptable for future operation with alternate coal and biomass derived fuels. For several potential alternate fuel applications, available hot gas cleanup technologies will not likely be adequate to protect the turbine flowpath from deposition and corrosion. Past tests have indicated that cooling turbine airfoil surfaces could ruggedized a high temperature turbine flowpath to alleviate deposition and corrosion. Using this specification. ATS turbine that was evaluated. The initial analyses also showed that two-phase cooling offers the most attractive method of those explored to protect a coal-fueled ATS turbine from deposition and corrosion. This paper describes ruggedization approaches, particularly to counter the extreme deposition and corrosion effects of the high inlet temperatures of ATS turbines using alternate fuels.

Wenglarz, R.A.; Nirmalan, N.V.; Daehler, T.G.

1995-02-01T23:59:59.000Z

346

Majoring in Forest Resources & Conservation  

E-Print Network (OSTI)

Majoring in Forest Resources & Conservation University of Florida/IFAS School of Forest Resources & Conservation www.sfrc.ufl.edu ~ 352-846-0847 ~ khaselier@ufl.edu Business Management gives students a sound Management Summer B FOR3200C Foundations in Natural Resources and Conservation 3 credits FOR3434C Forest

Watson, Craig A.

347

Majoring in Forest Resources & Conservation  

E-Print Network (OSTI)

Majoring in Forest Resources & Conservation University of Florida/IFAS School of Forest Resources & Conservation www.sfrc.ufl.edu ~ 352-846-0847 ~ khaselier@ufl.edu Protected Areas Management is for students interested in managing lands for conservation and restoration purposes, usually on lands owned

Watson, Craig A.

348

Novel Water-Neutral Diesel Fuel Processor and Sulfur Trap„Precision Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel Water-Neutral Diesel Fuel Novel Water-Neutral Diesel Fuel Processor and Sulfur Trap-Precision Combustion Background Solid-Oxide Fuel Cell (SOFC) technology for auxiliary power units (APUs) offers the potential for major contributions toward Department of Energy (DOE) objectives such as clean energy deployment and improved efficiency. Reforming of conventional liquid fuels to produce synthesis gas (syngas) fuel for SOFC stacks is a practical approach for operating fuel cell APUs

349

Powering Cell Phones with Fuel Cells Running on Renewable Fuels  

DOE Green Energy (OSTI)

The major goals of this project were to increase lifetime, increase energy density, and reduce material costs. The combination of identifying corrosion resistant materials and changing catalysts increased lifetimes. Work to increase the energy density included increasing the concentration of the formic acid fuel from 12M (ca. 50 wt%) to 22M (ca. 85 wt%) and decreasing the amount of fuel crossing over. The largest expense of the device is the cathode catalyst. At the beginning of the project Pt loading was over 8 mg/cm2 on our cathodes. Through optimization work we managed to bring down the cathode loading to approximately half of what we started with.

Dr. Ruiming Zhang

2007-01-31T23:59:59.000Z

350

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Biofuels Project Locations Pacific Ethanol (Boardman, OR) BlueFire Ethanol (Corona, CA) POET (Emmetsburg, IA) Lignol Innovations (Commerce City, CO) ICM (St. Joseph, MO) Abengoa (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage (Wisconsin Rapids, WI) Range Fuels (Soperton, GA) DSM Innovation Center (Parsippany, NJ) Novozymes (Davis, CA) Genencor (Palo Alto, CA) Verenium Corp (San Diego, CA) Dupont (Wilmington, DE) Mascoma (Lebanon, NH) Cargill Inc (Minneapolis, MN) Regional Partnerships South Dakota State University, Brookings, SD Cornell University, Ithaca, NY University of Tennessee, Knoxville, TN Oklahoma State University, Stillwater, OK Oregon State University, Corvallis, OR

351

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feedstock, and Technology Diversity Feedstock, and Technology Diversity Pacific Ethanol Biochemical Wheat Straw/Corn Stover (Boardman, OR) Iogen Biochemical Wheat Straw (Shelly, ID) Blue Fire Biochemical Municipal Solid Waste (Corona, CA) Poet Biochemical Corn Stover (Emmetsburg, IA) Lignol Biochemical Wood Residues (Commerce City, CO) ICM Biochemical Switchgrass, Corn Stover (St. Joseph, MO) Abengoa Biochemical/ Thermo Ag Waste, Switchgrass (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) Stora Enso North America Thermochemical Wood Chips (Wisconsin Rapids, WI) Range Fuels Thermochemical Wood Chips (Soperton, GA) Alico Thermochemical/Bio Citrus Waste (LaBelle, FL) Six Commercial-Scale Biorefinergy

352

The Impact of Carbon Control on Low-Income Household Electricity and Gasoline Expenditures  

SciTech Connect

In July of 2007 The Department of Energy's (DOE's) Energy Information Administration (EIA) released its impact analysis of 'The Climate Stewardship And Innovation Act of 2007,' known as S.280. This legislation, cosponsored by Senators Joseph Lieberman and John McCain, was designed to significantly cut U.S. greenhouse gas emissions over time through a 'cap-and-trade' system, briefly described below, that would gradually but extensively reduce such emissions over many decades. S.280 is one of several proposals that have emerged in recent years to come to grips with the nation's role in causing human-induced global climate change. EIA produced an analysis of this proposal using the National Energy Modeling System (NEMS) to generate price projections for electricity and gasoline under the proposed cap-and-trade system. Oak Ridge National Laboratory integrated those price projections into a data base derived from the EIA Residential Energy Consumption Survey (RECS) for 2001 and the EIA public use files from the National Household Transportation Survey (NHTS) for 2001 to develop a preliminary assessment of impact of these types of policies on low-income consumers. ORNL will analyze the impacts of other specific proposals as EIA makes its projections for them available. The EIA price projections for electricity and gasoline under the S.280 climate change proposal, integrated with RECS and NHTS for 2001, help identify the potential effects on household electric bills and gasoline expenditures, which represent S.280's two largest direct impacts on low-income household budgets in the proposed legislation. The analysis may prove useful in understanding the needs and remedies for the distributive impacts of such policies and how these may vary based on patterns of location, housing and vehicle stock, and energy usage.

Eisenberg, Joel Fred [ORNL

2008-06-01T23:59:59.000Z

353

The Impact of Carbon Control on Low-Income Household Electricity and Gasoline Expenditures  

SciTech Connect

In July of 2007 The Department of Energy's (DOE's) Energy Information Administration (EIA) released its impact analysis of 'The Climate Stewardship And Innovation Act of 2007,' known as S.280. This legislation, cosponsored by Senators Joseph Lieberman and John McCain, was designed to significantly cut U.S. greenhouse gas emissions over time through a 'cap-and-trade' system, briefly described below, that would gradually but extensively reduce such emissions over many decades. S.280 is one of several proposals that have emerged in recent years to come to grips with the nation's role in causing human-induced global climate change. EIA produced an analysis of this proposal using the National Energy Modeling System (NEMS) to generate price projections for electricity and gasoline under the proposed cap-and-trade system. Oak Ridge National Laboratory integrated those price projections into a data base derived from the EIA Residential Energy Consumption Survey (RECS) for 2001 and the EIA public use files from the National Household Transportation Survey (NHTS) for 2001 to develop a preliminary assessment of impact of these types of policies on low-income consumers. ORNL will analyze the impacts of other specific proposals as EIA makes its projections for them available. The EIA price projections for electricity and gasoline under the S.280 climate change proposal, integrated with RECS and NHTS for 2001, help identify the potential effects on household electric bills and gasoline expenditures, which represent S.280's two largest direct impacts on low-income household budgets in the proposed legislation. The analysis may prove useful in understanding the needs and remedies for the distributive impacts of such policies and how these may vary based on patterns of location, housing and vehicle stock, and energy usage.

Eisenberg, Joel Fred [ORNL

2008-06-01T23:59:59.000Z

354

EFFECT OF FUEL IMPURITIES ON FUEL CELL PERFORMANCE AND DURABILITY  

DOE Green Energy (OSTI)

A fuel cell is an electrochemical energy conversion device that produces electricity during the combination of hydrogen and oxygen to produce water. Proton exchange membranes fuel cells are favored for portable applications as well as stationary ones due to their high power density, low operating temperature, and low corrosion of components. In real life operation, the use of pure fuel and oxidant gases results in an impractical system. A more realistic and cost efficient approach is the use of air as an oxidant gas and hydrogen from hydrogen carriers (i.e., ammonia, hydrocarbons, hydrides). However, trace impurities arising from different hydrogen sources and production increases the degradation of the fuel cell. These impurities include carbon monoxide, ammonia, sulfur, hydrocarbons, and halogen compounds. The International Organization for Standardization (ISO) has set maximum limits for trace impurities in the hydrogen stream; however fuel cell data is needed to validate the assumption that at those levels the impurities will cause no degradation. This report summarizes the effect of selected contaminants tested at SRNL at ISO levels. Runs at ISO proposed concentration levels show that model hydrocarbon compound such as tetrahydrofuran can cause serious degradation. However, the degradation is only temporary as when the impurity is removed from the hydrogen stream the performance completely recovers. Other molecules at the ISO concentration levels such as ammonia don't show effects on the fuel cell performance. On the other hand carbon monoxide and perchloroethylene shows major degradation and the system can only be recovered by following recovery procedures.

Colon-Mercado, H.

2010-09-28T23:59:59.000Z

355

Failed Fuel Inspection and Lessons-Learned Practices  

Science Conference Proceedings (OSTI)

Nuclear power stations challenge themselves to operate with defect-free fuel cores with an objective of maximizing plant output and operational efficiency. This report summarizes the project work initiated in support of EPRI’s Fuel Reliability Program under direction of the Fuel Failure Detection Subcommittee. The vast majority of nuclear fuel rods (consisting of 40,000 to 75,000 rods per core) function in support of generating power, but operational experiences have shown failures of ...

2013-02-11T23:59:59.000Z

356

Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption . U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 1993 Household and 1994 Vehicle Characteristics RSE Column Factor: Number of Vehicles Vehicle-Miles Traveled Motor Fuel Consumption Motor Fuel Expenditures RSE Row Factor: (million) (percent) (billion) (percent) (billion gallons) (gallon percent) (quadril- lion Btu) (billion dollars) (percent) 0.9 0.8 1.1 1.0 1.1 1.0 1.1 1.1 1.0 Household Characteristics Total .................................................... 156.8 100.0 1,793 100.0 90.6 100.0 11.2 104.7 100.0 2.8 Census Region and Division Northeast ........................................... 26.6 17.0 299 16.7 14.5 16.0 1.8 17.2 16.4 5.7 New England ................................... 7.6 4.8 84 4.7 4.1 4.5 0.5 4.8 4.6 13.8 Middle Atlantic

357

Fuel Impacts on SCR Catalyst Life and Performance: Analysis of Field Data  

Science Conference Proceedings (OSTI)

In the United States, selective catalytic reduction (SCR) is being used on approximately 100 GW of coal-fired utility boilers, a 12-billion-dollar investment by the utility industry. In addition to the initial capital expenditure, catalyst management and replacement strategies will have a major impact on operations and maintenance costs at each SCR site. EPRI and Post Combustion NOx Control Program funders have sponsored tests to assess catalyst life and performance issues and to develop data for making ...

2004-10-13T23:59:59.000Z

358

DOE Hydrogen and Fuel Cells Program Record 5036: Fuel Cell Stack Durability  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Date: April 20, 2006 6 Date: April 20, 2006 Title: Fuel Cell Stack Durability Originator: Valri Lightner Approved by: JoAnn Milliken Date: May 22, 2006 Item: Over the past several years, the durability of the fuel cell stack has doubled. Supporting Information: Fuel cell and component developers, supported by the DOE program (through the FreedomCAR and Fuel Partnership, which includes DOE, USCAR, and the five major U.S. energy companies), have developed fuel cell components having improved performance and durability. These improvements have been demonstrated in fuel cell stacks built by industry having double the lifetime - from 1,000 hours to 2,000 hours over the past two years. These results have been independently verified by Ballard, a fuel cell developer/supplier

359

Synthetic fuels  

Science Conference Proceedings (OSTI)

In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

Not Available

1989-01-01T23:59:59.000Z

360

California Fuel Cell Partnership Alternative Fuels Research  

E-Print Network (OSTI)

and maintenance are both important. Propane and CNG are NOT "cleaner burning". RSD is a very good tool but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department inventories · Only need one week of work and fuel sales to get fuel based emissions inventories · RSD

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Financing Strategies for Nuclear Fuel Cycle Facility  

SciTech Connect

To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

David Shropshire; Sharon Chandler

2005-12-01T23:59:59.000Z

362

Major Communications Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Communications Reports Major Communications Reports May 18, 2012 Green Button Data: More Power to You May 28, 2009 Major Communications Report May 28, 2009 May 7, 2009 Major...

363

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Line-of-Credit to Term Loans (Connecticut) Line-of-Credit to Term Loans (Connecticut) CDA's Line-of-Credit to Term Loans good for one year for capital expenditures, converting to a fully amortizing term loan. Funds may be used for building expansion, equipment, or IT upgrades. October 16, 2013 Life-Cycle Analysis and Energy Efficiency in State Buildings Several provisions of Missouri law govern energy efficiency in state facilities. In 1993 Missouri enacted legislation requiring life-cycle cost analysis for all new construction of state buildings and substantial renovations of existing state buildings when major energy systems are involved. Substantial renovations involve projects that will affect at least 50% of the building's square footage or cost at least 50% of its market value. October 16, 2013

364

Spent Fuel Background Report Volume I  

Science Conference Proceedings (OSTI)

This report is an overview of current spent nuclear fuel management in the DOE complex. Sources of information include published literature, internal DOE documents, interviews with site personnel, and information provided by individual sites. Much of the specific information on facilities and fuels was provided by the DOE sites in response to the questionnaire for data for spent fuels and facilities data bases. This information is as accurate as is currently available, but is subject to revision pending results of further data calls. Spent fuel is broadly classified into three categories: (a) production fuels, (b) special fuels, and (c) naval fuels. Production fuels, comprising about 80% of the total inventory, are those used at Hanford and Savannah River to produce nuclear materials for defense. Special fuels are those used in a wide variety of research, development, and testing activities. Special fuels include fuel from DOE and commercial reactors used in research activities at DOE sites. Naval fuels are those developed and used for nuclear-powered naval vessels and for related research and development. Given the recent DOE decision to curtail reprocessing, the topic of main concern in the management of spent fuel is its storage. Of the DOE sites that have spent nuclear fuel, the vast majority is located at three sites-Hanford, INEL, and Savannah River. Other sites with spent fuel include Oak Ridge, West Valley, Brookhaven, Argonne, Los Alamos, and Sandia. B&W NESI Lynchburg Technology Center and General Atomics are commercial facilities with DOE fuel. DOE may also receive fuel from foreign research reactors, university reactors, and other commercial and government research reactors. Most DOE spent fuel is stored in water-filled pools at the reactor facilities. Currently an engineering study is being performed to determine the feasibility of using dry storage for DOE-owned spent fuel currently stored at various facilities. Delays in opening the deep geologic repository and the decision to phase out reprocessing of production fuels are extending the need for interim storage. The report describes the basic storage conditions and the general SNF inventory at individual DOE facilities.

Abbott, D.

1994-03-01T23:59:59.000Z

365

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

366

Alternative Fuels Data Center: Natural Gas Fuel Rate Reduction...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

367

Alternative Fuels Data Center: Natural Gas Fuel Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

368

President Obama Announces Major Initiative to Spur Biofuels Industry and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Initiative to Spur Biofuels Major Initiative to Spur Biofuels Industry and Enhance America's Energy Security President Obama Announces Major Initiative to Spur Biofuels Industry and Enhance America's Energy Security August 16, 2011 - 11:45am Addthis USDA, Department of Energy and Navy Partner to Advance Biofuels to Fuel Military and Commercial Transportation, Displace Need for Foreign Oil, and Strengthen Rural America WASHINGTON, Aug. 16, 2011 - President Obama today announced that the U.S. Departments of Agriculture, Energy and Navy will invest up to $510 million during the next three years in partnership with the private sector to produce advanced drop-in aviation and marine biofuels to power military and commercial transportation. The initiative responds to a directive from President Obama issued in March as part of his Blueprint for A Secure

369

Obama Administration Officials to Announce Major Steps toward Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Officials to Announce Major Steps toward Officials to Announce Major Steps toward Federal Advanced Vehicle Fleet Obama Administration Officials to Announce Major Steps toward Federal Advanced Vehicle Fleet May 23, 2011 - 12:00am Addthis WASHINGTON, DC - On May 24, 2011, U.S. Department of Energy Secretary Steven Chu, U.S. General Services Administrator Martha Johnson and White House Council on Environmental Quality Chair Nancy Sutley, will announce next steps in moving the Federal fleet further towards advanced vehicles and decreased petroleum consumption. Tuesday's announcement will continue to advance the President's goals of reducing Federal agency petroleum fuel use by 30 percent by 2020 and cutting our nation's oil imports by one-third by 2025. In October 2009, President Obama signed Executive Order 13514 on Federal Leadership in

370

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly  

National Nuclear Security Administration (NNSA)

Spacer Grid Structural Guide Tube End Fitting Fuel Rod Upper Tie Plate ULTRAFLOW Spacer Water Channel Part-length Fuel Rod Lower Tie Plate PWR pressurized water reactor BWR ...

371

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

372

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

373

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

374

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

375

Key Technologies for the Development of Fossil Fuels in the 21st Century  

SciTech Connect

As the world faces growing economic and environmental challenges, the energy mix that fuels the global economy is undergoing rapid change. Yet how this change will evolve in the future is uncertain. What will be the sources of primary energy in twenty years? In fifty years? In different regions of the globe? How will this energy be utilized? Fossil energy currently supplies about ninety percent of the world's primary energy. In Japan this number is closer to eighty percent. It is clear that fossil energy will be a major supplier of global energy for some time to come, but what is not clear is the types of fossil energy and how it will be utilized. The degree to which the abundant supplies of fossil energy, especially coal, will continue to play a major role will depend on whether technology will provide safe, clean and affordable fuel for electricity and transportation. Technology will not only assist in finding more fossil energy in varying regions of the globe but, most importantly, will play a strong role in efficient utilization and in determining the cost of delivering that energy. Several important questions will have to be answered: (1) Will cost effective technologies be found to burn coal more cleanly? Can this be done with drastically reduced or no emitted carbon? (2) Can enough oil be found outside the Middle East to ensure more adequate and secure supplies to fuel the transportation and industrial needs? (3) Will the transportation sector, so heavily dependent on oil, be fueled on another source? (4) Can enough natural gas be assured from enough secure places to ensure investment in the utilization of this lowest-carbon fossil fuel? (5) What will these options cost in research and in the price of energy? The answers to these and other questions challenge leaders and researchers in the fossil energy industry. A World Energy Council (WEC) study of those technologies that might be key sheds some light on what might happen in terms of a wide range of possible scenarios. Also on what might be necessary in expenditure, time, and policies to help bring these technologies to market. This study should be helpful to energy executives in planning for future technologies, either as new ventures or as competition for existing technologies. The emphasis in this ongoing study is on what is possible from today's vantage, not what will happen--actual developments are unpredictable and it is, of course, impossible to foresee the course of actual technology development or economic growth. Nevertheless, it is possible to look at what could happen in a number of scenarios using (1) knowledge about current technologies and (2) their projected development, investment costs, and likely time to commercialization based on historical energy technology development. A comprehensive set of possible technologies was available from the WEC in conjunction with the International Institute for Applied Systems Analysis (IIASA) and studies as part of the Intergovernmental Panel on Climate Change (IPCC).

Schock, R

2002-11-22T23:59:59.000Z

376

NONDESTRUCTIVE EXAMINATION OF FUEL PLATES FOR THE RERTR FUEL DEVELOPMENT EXPERIMENTS  

SciTech Connect

Nuclear fuel is the core component of reactors that is used to produce the neutron flux required for irradiation research purposes as well as commercial power generation. The development of nuclear fuels with low enrichments of uranium is a major endeavor of the RERTR program. In the development of these fuels, the RERTR program uses nondestructive examination (NDE) techniques for the purpose of determining the properties of nuclear fuel plate experiments without imparting damage or altering the fuel specimens before they are irradiated in a reactor. The vast range of properties and information about the fuel plates that can be characterized using NDE makes them highly useful for quality assurance and for analyses used in modeling the behavior of the fuel while undergoing irradiation. NDE is also particularly useful for creating a control group for post-irradiation examination comparison. The two major categories of NDE discussed in this paper are X-ray radiography and ultrasonic testing (UT) inspection/evaluation. The radiographic scans are used for the characterization of fuel meat density and homogeneity as well as the determination of fuel location within the cladding. The UT scans are able to characterize indications such as voids, delaminations, inclusions, and other abnormalities in the fuel plates which are generally referred to as debonds as well as to determine the thickness of the cladding using ultrasonic acoustic microscopy methods. Additionally, the UT techniques are now also being applied to in-canal interim examination of fuel experiments undergoing irradiation and the mapping of the fuel plate surface profile to determine fuel swelling. The methods used to carry out these NDE techniques, as well as how they operate and function, are described along with a description of which properties are characterized.

N.E. Woolstenhulme; S.C. Taylor; G.A. Moore; D.M. Sterbentz

2012-09-01T23:59:59.000Z

377

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

378

Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Grants

379

Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Replacement Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Replacement Grants

380

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

382

Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Labeling Requirement

383

Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Fueling Biofuel Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Fueling Infrastructure Tax Credit

384

Alternative Fuels Data Center: Alternative Fuels Promotion and Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Promotion and Information to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion and Information

385

Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Taxation Study Commission to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Taxation Study Commission

386

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

387

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

388

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

389

Alternative Fuels Data Center: Alternative Fuel Production Subsidy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Production Subsidy Prohibition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Production Subsidy Prohibition

390

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

391

Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Infrastructure Tax Credit

392

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

393

Alternative Fuels Data Center: Alternative Fuels Feasibility Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Feasibility Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Feasibility Study The North Carolina State Energy Office, Department of Administration,

394

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Registration

395

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

396

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

397

Fuel-cycle costs for alternative fuels  

Science Conference Proceedings (OSTI)

This paper compares the fuel cycle cost and fresh fuel requirements for a range of nuclear reactor systems including the present day LWR without fuel recycle, an LWR modified to obtain a higher fuel burnup, an LWR using recycle uranium and plutonium fuel, an LWR using a proliferation resistant /sup 233/U-Th cycle, a heavy water reactor, a couple of HTGRs, a GCFR, and several LMFBRs. These reactor systems were selected from a set of 26 developed for the NASAP study and represent a wide range of fuel cycle requirements.

Rainey, R.H.; Burch, W.D.; Haire, M.J.; Unger, W.E.

1980-01-01T23:59:59.000Z

398

Why don't fuel prices change as quickly as crude oil prices? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

399

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

400

Significant Winter Weather Events and Associated Socioeconomic Impacts (Federal Aid Expenditures) across Oklahoma: 2000–10  

Science Conference Proceedings (OSTI)

Exceptionally severe winter storms that overwhelm local government result in major disaster declarations. Each National Weather Service forecast office in the United States reports winter events for a specific group of counties, known as the ...

Trevor Grout; Yang Hong; Jeffrey Basara; Balabhaskar Balasundaram; Zhenyu Kong; Satish T. S. Bukkapatnam

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

under Low Carbon Fuel Standards? American Economic Journal:the Low Carbon Fuel Standard, Volume I Sta? Report: Initialpolicies: Renewable fuel standards versus Fuel greenhouse

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

402

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

with the more-polluting fossil fuels being consumed abroaddomestic fuel consumers and fossil fuel suppliers. Numericalequivalent quantity of fossil fuel but may replace more or

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

403

NETL: Major Demonstrations Clean Coal Related Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Shelf Clean Coal Related Information Advanced Power Systems General Low-Emission Boiler System High-Performance Coal-Fired Power Systems Alternative Fuels and Chemicals from...

404

Performance Profiles of Major Energy Producers 2009  

U.S. Energy Information Administration (EIA)

Imported Refiner Acquisition Cost of Crude Oil and Natural Gas Wellhead Prices, ... sales of Chevron- and Texaco-branded motor fuels in the mid-Atlantic and other .

405

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on AddThis.com...

406

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on AddThis.com...

407

Utilization of alternative fuels in diesel engines:  

DOE Green Energy (OSTI)

The thrust of this resarch program has been to determine the effect of various alternative and synthetic fuels on the performance and emissions from Diesel engines. The purpose of research was to investigate the various fuels for extension of existing supplies or as emergency substitutes for Diesel fuels. Thus, the work did not emphasize optimization of the engines for a given fuel;the engines were generally run at manufacturers specifications for conventional fuels. During the various studies, regulated and unregualted emissions were investigated and the biological activity of the soluble organics on the particulate emissions was determined using the Ames test procedure. During the present contract period, three experimental programs were carried out. The first program investigated the utilization of methane and propane in an indirect injection, multicylinder engine. In the other two studies, a single cylinder direct injection Diesel engine was used to investigate the performance and emission characteristics of synthetic fuels derived from tar sands and oil shale and of three fuels derived from coal by the Exxon Donor Solvent (EDS) process. The body of this report consists of three chapters which summarize the experimental equipment, procedures, and major results from the studies of methane and propane fumigation, of synthetic fuels from oil shale and tar sands and of the coal-derived fuels.

Not Available

1987-06-01T23:59:59.000Z

408

NETL: Fuel Cells - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel CellsSolid State Energy Conversion Alliance (SECA) Contacts For information on the Fuel CellsSECA program, contact: Fuel Cells Technology Manager: Shailesh Vora 412-386-7515...

409

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

410

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Operation of a Solid Polymer Fuel Cell: A Parametric Model,"1991). G. Bronoel, "Hydrogen-Air Fuel Cells Without PreciousG. Abens, "Development of a Fuel Cell Power Source for Bus,"

Delucchi, Mark

1992-01-01T23:59:59.000Z

411

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Data Included in the Alternative Fuel Stations Download The following data fields are provided in the downloadable files for alternative fuel stations. Field Value Description fuel_type_code Type: string The type of alternative fuel the station provides. Fuel types are given as code values as described below: Value Description BD Biodiesel (B20 and above)

412

Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends  

DOE Green Energy (OSTI)

The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

2012-03-01T23:59:59.000Z

413

202-328-5000 www.rff.orgA New Look at Residential Electricity Demand Using Household Expenditure Data  

E-Print Network (OSTI)

We estimate residential electricity demand for different regions of the country, assuming that consumers respond to average electricity prices. We circumvent the need for individual billing information by developing a novel generalized method of moments approach that allows us to estimate demand based on household electricity expenditure data from the Consumer Expenditure Survey, which does not have quantity and price information. We find that price elasticity estimates vary across the four census regions—the South at –1.02 is the most price-elastic region and the Northeast at –0.82 is the least—and are essentially equivalent across income quartiles. In general, these price elasticity estimates are considerably larger in magnitude than those found in other studies using household-level data that assume that consumers respond to marginal prices. We also apply our elasticity estimates in a U.S. climate policy simulation to determine how these elasticity estimates alter consumption and price outcomes compared to the more conservative elasticity estimates commonly used in policy analysis.

Harrison Fell; Shanjun Li; Anthony Paul; Harrison Fell; Shanjun Li; Anthony Paul; Monte Carlo Analysis

2010-01-01T23:59:59.000Z

414

Summary report : universal fuel processor.  

DOE Green Energy (OSTI)

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

Coker, Eric Nicholas; Rice, Steven F. (Sandia National Laboratories, Livermore, CA); Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M. (Sandia National Laboratories, Livermore, CA)

2008-01-01T23:59:59.000Z

415

National emissions data system (NEDS) fuel use report (1977). Final report  

SciTech Connect

This report summarizes annual estimates of total consumption of major fuels such as coal, fuel oil, natural gas, gasoline, and diesel fuel. Estimates of the consumption of a number of other comparatively minor fuels are also included. The data are distributed according to major categories of air pollutant emissions sources and are reported for the nation as a whole and for individual states, territories, and the District of Columbia.

1980-03-01T23:59:59.000Z

416

Status of Molten Carbonate Fuel Cell Technology  

Science Conference Proceedings (OSTI)

Fuel cell technology development and commercialization continues to be a major thrust in the alternative energy sector of distributed generation (DG). Second generation, molten carbonate fuel cell technology (MCFC) is now entering a critical commercialization phase. Given recent MCFC developments and advances in other distributed generation technologies, an assessment and update on the prospects for MCFC power systems is needed to guide future utility investments.

2003-01-22T23:59:59.000Z

417

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

418

Advanced Fuels Campaign FY 2011 Accomplishments Report  

SciTech Connect

One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

Not Listed

2011-11-01T23:59:59.000Z

419

Fossil Fuels News  

Science Conference Proceedings (OSTI)

NIST Home > Fossil Fuels News. Fossil Fuels News. (showing 1 - 5 of 5). In Natural Gas Pipelines, NIST Goes with the Flow ...

2010-10-26T23:59:59.000Z

420

Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search...

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CMVRTC: Fuel Tax Evasion  

NLE Websites -- All DOE Office Websites (Extended Search)

concentration of fuel markers in the fuel. This research integrated advances in sensor technology, wireless communications, vehicle tracking, and information analysis. An...

422

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

423

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

424

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

425

Alternative and Advanced Fuels  

Energy.gov (U.S. Department of Energy (DOE))

There are a variety of alternative and advanced fuels available, which are used to fuel alternative and advanced vehicles. Learn more about:

426

Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is a fossil fuel that generates less air pollutants and greenhouse gases. CNG Logo Propane, also called liquefied petroleum gas (LPG), is a domestically abundant fossil fuel...

427

Fuel Reliability Program: BWR Fuel Crud Modeling  

Science Conference Proceedings (OSTI)

Deposition of BWR reactor system corrosion products (crud) on operating fuel rods has resulted in performance limiting conditions in a limited number of cases. The operational impact can include unplanned, or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and undesirable core design restrictions. T...

2010-12-23T23:59:59.000Z

428

Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Municipal Alternative Municipal Alternative Fuel Tax Regulation to someone by E-mail Share Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Facebook Tweet about Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Twitter Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Google Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Delicious Rank Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Digg Find More places to share Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Municipal Alternative Fuel Tax Regulation

429

Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Retrofit Emissions Inspection Process to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on AddThis.com...

430

Alternative Fuels Data Center: Alternative Fuel Definition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition and Specifications to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

431

Alternative Fuels Data Center: Hydrogen Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations

432

Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Permitting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fueling Hydrogen Fueling Infrastructure Permitting and Safety to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Permitting and Safety on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Permitting and Safety on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Permitting and Safety on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Permitting and Safety on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Permitting and Safety on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Permitting and Safety on AddThis.com... More in this section... Federal State Advanced Search

433

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

434

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

435

Alternative Fuels Data Center: Alternative Fuel Public Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Public Transportation Vehicle Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

436

Alternative Fuels Data Center: Alternative Fuel Resale and Generation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Resale and Generation Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

437

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Procurement Preference to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on AddThis.com... More in this section... Federal State Advanced Search

438

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit for Residents to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on AddThis.com... More in this section...

439

Alternative Fuels Data Center: Natural Gas Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development

440

Alternative Fuels Data Center: Alternative Fuel and Advanced Technology  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Technology Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on AddThis.com... More in this section... Federal

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com... More in this section... Federal State Advanced Search

442

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

443

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Fuel Cells Reversible Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Twitter Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Google Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Delicious Rank Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Digg Find More places to share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

444

Internal reforming fuel cell assembly with simplified fuel feed  

DOE Patents (OSTI)

A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

2001-01-01T23:59:59.000Z

445

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Parking Incentive Programs to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Parking Incentive Programs on AddThis.com... More in this section...

446

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Tax Credit for Businesses to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Businesses on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Businesses on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Businesses on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Businesses on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Businesses on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Businesses on AddThis.com...

447

Alternative Fuels Data Center: Alternative Fuel Research and Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Research and Development Funding to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

448

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com... More in this section... Federal

449

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Registration on AddThis.com... More in this section... Federal State

450

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com... More in this section... Federal

451

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition Requirements on AddThis.com... More in this section... Federal

452

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on AddThis.com...

453

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options

454

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on AddThis.com...

455

Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Vehicle Acquisition Requirements on AddThis.com...

456

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Manufacturer Tax Credit on AddThis.com... More in this section... Federal State

457

Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

458

Alternative Fuels Data Center: Alternative Fuel Use and Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Use Alternative Fuel Use and Vehicle Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Vehicle Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Vehicle Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Vehicle Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Vehicle Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Vehicle Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use and Vehicle Acquisition Requirements on AddThis.com... More in this section...

459

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Oak Ridge Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN More Documents & Publications Major Risk Factors to the Integrated...

460

NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT  

DOE Patents (OSTI)

A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1962-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "major fuel expenditures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FCT Fuel Cells: Fuel Cell R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell R&D Activities to someone by E-mail Share FCT Fuel Cells: Fuel Cell R&D Activities on Facebook Tweet about FCT Fuel Cells: Fuel Cell R&D Activities on Twitter Bookmark...

462

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFDC AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Alternative Fuels Data Center: Page Not Found Skip to Content Eere_header_logo U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Alternative Fuels Data Center Search Search Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles

463

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen » Laws & Incentives Hydrogen » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Hydrogen Fuel Cells The list below contains summaries of all Federal laws and incentives related to Hydrogen Fuel Cells. Incentives Alternative Fuel Tax Exemption Alternative fuels used in a manner that the Internal Revenue Service (IRS)

464

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conserve Fuel » Laws & Incentives Conserve Fuel » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Emerging Fuels Fuel Prices Federal Laws and Incentives for Idle Reduction The list below contains summaries of all Federal laws and incentives related to Idle Reduction. Incentives Idle Reduction Technology Excise Tax Exemption Qualified on-board idle reduction devices and advanced insulation are

465

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fuel-Efficient Vehicle Title Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Title Tax Exemption on AddThis.com...

466

Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fuel-Efficient Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fuel-Efficient Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search

467

Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Low Carbon Fuel and Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on AddThis.com...

468

Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient and Fuel-Efficient and Alternative Fuel Vehicle Use to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

469

Alternative Fuels Data Center: Natural Gas Fuel Rates and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fuel Rates Natural Gas Fuel Rates and Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Rates and Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Rates and Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Rates and Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Rates and Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Rates and Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Rates and Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search