National Library of Energy BETA

Sample records for major equipment-driven end-uses

  1. End-Use Sector Flowchart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  2. ,"California Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","California Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: California Natural Gas Consumption by End Use" ...

  3. ,"Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Consumption by End ... 11:05:20 AM" "Back to Contents","Data 1: Virginia Natural Gas Consumption by End Use" ...

  4. ,"Oklahoma Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End ... 11:05:14 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Consumption by End Use" ...

  5. ,"Texas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Consumption by End ... 6:36:11 AM" "Back to Contents","Data 1: Texas Natural Gas Consumption by End Use" ...

  6. End-use taxes: Current EIA practices

    SciTech Connect (OSTI)

    Not Available

    1994-08-17

    There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

  7. ,"Kansas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas ...

  8. ,"Arizona Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas ...

  9. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas ...

  10. Preliminary CBECS End-Use Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    For the past three CBECS (1989, 1992, and 1995), we used a statistically-adjusted engineering (SAE) methodology to estimate end-use consumption. The core of the SAE methodology...

  11. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  12. Alternative Strategies for Low Pressure End Uses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Strategies for Low Pressure End Uses Alternative Strategies for Low Pressure End Uses This tip sheet outlines alternative strategies for low-pressure end uses as a ...

  13. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  14. Residential Lighting End-Use Consumption

    Broader source: Energy.gov [DOE]

    The U.S. DOE Residential Lighting End-Use Consumption Study aims to improve the understanding of lighting energy usage in U.S. residential dwellings using a regional estimation framework. The framework allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications.

  15. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  16. Realizing Building End-Use Efficiency with Ermerging Technologies

    Broader source: Energy.gov [DOE]

    Information about the implementation of emerging technologies to maximize end-use efficiency in buildings.

  17. Healthcare Energy: Using End-Use Data to Inform Decisions

    Broader source: Energy.gov [DOE]

    The relative magnitude of the energy consumption of different end uses can be a starting point for prioritizing energy investments and action, whether the scope under consideration involves new metering, targeted energy audits, or end-use equipment upgrades.

  18. Healthcare Energy End-Use Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Energy End-Use Monitoring Healthcare Energy End-Use Monitoring NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers,

  19. Engineer End Uses for Maximum Efficiency; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End Uses for Maximum Efficiency Compressed air is one of the ... such as pneumatic tools, pneumatic controls, compressed air operated cylinders for machine actuation, ...

  20. Energy End-Use Intensities in Commercial Buildings 1995 - Index...

    U.S. Energy Information Administration (EIA) Indexed Site

    End-Use Analyst Contact: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbec-eu1.html separater bar If...

  1. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimates The end-use estimates had two main sources: the 1989 Commercial Buildings Energy Consumption Survey (CBECS) and the Facility Energy Decision Screening (FEDS) system....

  2. ,"West Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Consumption by End Use" ...

  3. ,"New Mexico Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Consumption by End Use" ...

  4. ,"New Hampshire Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire ...

  5. ,"Rhode Island Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island ...

  6. Energy End-Use Intensities in Commercial Buildings 1989

    U.S. Energy Information Administration (EIA) Indexed Site

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  7. Energy End-Use Intensities in Commercial Buildings1992 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    in the way that variables such as building age and employment density could interact with the engineering estimates of end-use consumption. The SAE equations were...

  8. Engineer End Uses for Maximum Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Maximum Efficiency (August 2004) More Documents & Publications Maintaining System Air Quality Compressed Air Storage Strategies Alternative Strategies for Low Pressure End Uses

  9. Estimating Methods for Determining End-Use Water Consumption

    Broader source: Energy.gov [DOE]

    The Federal Building Metering Guidance specifies buildings with water using processes and whole building water consumption that exceeds 1,000 gallons per day must have a water meter installed. Below are methods for estimating daily water use for typical end-uses that drive building-level, end-use water consumption.

  10. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  11. ,"U.S. Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas ...

  12. Distribution Infrastructure and End Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Infrastructure and End Use Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by 2022. Meeting the RFS2 target introduces new challenges for U.S. infrastructure, as modifications will be needed to transport and deliver renewable fuels that are not compatible with existing petroleum infrastructure. The

  13. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect (OSTI)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  14. Refining and End Use Study of Coal Liquids

    SciTech Connect (OSTI)

    1997-10-01

    This report summarizes revisions to the design basis for the linear programing refining model that is being used in the Refining and End Use Study of Coal Liquids. This revision primarily reflects the addition of data for the upgrading of direct coal liquids.

  15. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  16. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    2 APPENDIX A FINAL EIA - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case Presented to: U.S. Energy Information Administration Prepared by Navigant Consulting, Inc. 1200 19 St. NW, Suite 700 Washington, D.C. 20036 With SAIC 8301 Greensboro Drive McLean, VA 22102 March 2014 Final DISCLAIMER This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency

  17. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    4 APPENDIX C EIA - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case Presented to: U.S. Energy Information Administration Prepared by: Navigant Consulting, Inc. 1200 19th Street, NW, Suite 700 Washington, D.C. 20036 And SAIC 8301 Greensboro Drive McLean, VA 22102 December 19, 2012 Confidential and Proprietary, ©2012 Navigant Consulting, Inc. Do not distribute or copy Final DISCLAIMER This presentation was prepared as an account of work sponsored by

  18. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    5 APPENDIX D EIA - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case Presented to: U.S. Energy Information Administration Prepared by: Navigant Consulting, Inc. 1200 19th Street, NW, Suite 700 Washington, D.C. 20036 And SAIC 8301 Greensboro Drive McLean, VA 22102 December 19, 2012 Confidential and Proprietary, ©2012 Navigant Consulting, Inc. Do not distribute or copy Advanced Case Final DISCLAIMER This presentation was prepared as an account of work

  19. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    National Energy Modeling System (NEMS) contain equipment ... equipment stock can change over time in response to ... are in the same product class as electric resistance ...

  20. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    ... are in the same product class as electric resistance ... the typical inch and change the venting. 20 ... closed loop) system, including tank and backup heater. ...

  1. REFINING AND END USE STUDY OF COAL LIQUIDS

    SciTech Connect (OSTI)

    Unknown

    2002-01-01

    This document summarizes all of the work conducted as part of the Refining and End Use Study of Coal Liquids. There were several distinct objectives set, as the study developed over time: (1) Demonstration of a Refinery Accepting Coal Liquids; (2) Emissions Screening of Indirect Diesel; (3) Biomass Gasification F-T Modeling; and (4) Updated Gas to Liquids (GTL) Baseline Design/Economic Study.

  2. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  3. Detailed End Use Load Modeling for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.

    2010-04-09

    The field of distribution system analysis has made significant advances in the past ten years. It is now standard practice when performing a power flow simulation to use an algorithm that is capable of unbalanced per-phase analysis. Recent work has also focused on examining the need for time-series simulations instead of examining a single time period, i.e., peak loading. One area that still requires a significant amount of work is the proper modeling of end use loads. Currently it is common practice to use a simple load model consisting of a combination of constant power, constant impedance, and constant current elements. While this simple form of end use load modeling is sufficient for a single point in time, the exact model values are difficult to determine and it is inadequate for some time-series simulations. This paper will examine how to improve simple time invariant load models as well as develop multi-state time variant models.

  4. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  5. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  6. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  7. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  8. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  9. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  10. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  11. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17

  12. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural ...

  13. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural ...

  14. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. An Assessment of Interval Data and Their Potential Application to Residential Electricity End-Use Modeling

    U.S. Energy Information Administration (EIA) Indexed Site

    An Assessment of Interval Data and Their Potential Application to Residential Electricity End- Use Modeling February 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | An Assessment of Interval Data and Their Potential Application to Residential Electricity End-Use Modeling i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S.

  16. Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education 15 74 83 11 113 2 16 4 32 21 371 Food Sales 6 12 7 Q 46 2 119 2 2 10 208 Food Service 10 28 24 10 42 13 70 2 2 15 217 Health Care 6 34 42 2 105 1 8 4 10 36 248 Inpatient 3 25 38 2 76 1 4 2 7 21

  17. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  18. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  19. End-use Breakdown: The Building Energy Modeling Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End-use Breakdown: The Building Energy Modeling Blog End-use Breakdown: The Building Energy Modeling Blog RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. April 14, 2016 A before-and-after image of the OpenStudio Measure "AEDG K-12 school daylighting package" demonstrates the surgical power of Measures. Source: NREL. There's a Measure for That! OpenStudio Measures are short programs that can be used to transform models, create custom visualizations and

  20. Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world

    SciTech Connect (OSTI)

    Levine, M.D.; Koomey, J.; Price, L.; Geller, H.; Nadel, S.

    1992-03-01

    In its August meeting in Geneva, the Energy and Industry Subcommittee (EIS) of the Policy Response Panel of the Intergovernmental Panel on Climate Change (IPCC) identified a series of reports to be produced. One of these reports was to be a synthesis of available information on global electricity end-use efficiency, with emphasis on developing nations. The report will be reviewed by the IPCC and approved prior to the UN Conference on Environment and Development (UNCED), Brazil, June 1992. A draft outline for the report was submitted for review at the November 1991 meeting of the EIS. This outline, which was accepted by the EIS, identified three main topics to be addressed in the report: status of available technologies for increasing electricity end-use efficiency; review of factors currently limiting application of end-use efficiency technologies; and review of policies available to increase electricity end-use efficiency. The United States delegation to the EIS agreed to make arrangements for the writing of the report.

  1. Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Energy End Uses, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,,"Total Floorspace (million square feet)" ,"All Buildings","Energy Used For (more than one may apply)",,,,,"All Buildings","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manufact-uring",,"Space

  2. End-Use Opportunity Analysis from Progress Indicator Results for ASHRAE Standard 90.1-2013

    SciTech Connect (OSTI)

    Hart, Philip R.; Xie, YuLong

    2015-02-05

    This report and an accompanying spreadsheet (PNNL 2014a) compile the end use building simulation results for prototype buildings throughout the United States. The results represent he energy use of each edition of ASHRAE Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004, 2007, 2010, 2013). PNNL examined the simulation results to determine how the remaining energy was used.

  3. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  4. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  5. Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Five Retailers of Electricity, with End Use Sectors, 2014" "Alaska" "megawatthours" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Golden Valley Elec Assn Inc","Cooperative",1219363,276627,129773,812963,0 2,"Chugach Electric Assn Inc","Cooperative",1134527,513748,563581,57198,0 3,"Anchorage Municipal

  6. Renewable Electricity Futures Study Volume 3: End-Use Electricity Demand

    Broader source: Energy.gov [DOE]

    This volume details the end-use electricity demand and efficiency assumptions. The projection of electricity demand is an important consideration in determining the extent to which a predominantly renewable electricity future is feasible. Any scenario regarding future electricity use must consider many factors, including technological, sociological, demographic, political, and economic changes (e.g., the introduction of new energy-using devices; gains in energy efficiency and process improvements; changes in energy prices, income, and user behavior; population growth; and the potential for carbon mitigation).

  7. "Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Energy End Uses, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manu- facturing" "All Buildings* ...............",64783,60028,56940,56478,22237,3138 "Building Floorspace" "(Square Feet)" "1,001 to 5,000

  8. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) 12,109 21 4 2 2,059 25 – – Conventional Boiler Use 12,109 11 3 2 1,245 6 – – CHP 6 and/or Cogeneration Process – – 10 1 (s) 814 19 – – Direct End Use All Process Uses 657,810

  9. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

  10. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  11. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  12. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  13. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  14. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  15. Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  16. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  17. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  18. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  19. Industrial end-use forecasting that incorporates DSM and air quality

    SciTech Connect (OSTI)

    Tutt, T.; Flory, J.

    1995-05-01

    The California Energy Commission (CEC) and major enregy utilities in California have generally depended on simple aggregate intensity or economic models to forecast energy use in the process industry sector (which covers large industries employing basic processes to transform raw materials, such as paper mills, glass plants, and cement plants). Two recent trends suggests that the time has come to develop a more disaggregate process industry forecasting model. First, recent efforts to improve air quality, especially by the South Coast Air Quality Management District (SCAQMD), could significantly affect energy use by the process industry by altering the technologies and processes employed in order to reduce emissions. Second, there is a renewed interest in Demand-Side Management (DSM), not only for utility least-cost planning, but also for improving the economic competitiveness and environmental compliance of the pro{minus}cess industries. A disaggregate forecasting model is critical to help the CEC and utilities evaluate both the air quality and DSM impacts on energy use. A crucial obstacle to the development and use of these detailed process industry forecasting models is the lack of good data about disaggregate energy use in the sector. The CEC is nearing completion of a project to begin to overcome this lack of data. The project is testing methds of developing detailed energy use data, collecting an initial database for a large portion of southern California, and providing recommendations and direction for further data collection efforts.

  20. Refining and end use of coal liquids. Quarterly report, January--March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An intregral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop, an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with the Process Industry Modeling System (PICS) software. The objectives of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major efforts conducted during the first quarter of 1994 were in the areas of: subcontract preparation and negotiation; and linear programming modeling.

  1. End-use load control for power system dynamic stability enhancement

    SciTech Connect (OSTI)

    Dagle, J.E.; Winiarski, D.W.; Donnelly, M.K.

    1997-02-01

    Faced with the prospect of increasing utilization of the transmission and distribution infrastructure without significant upgrade, the domestic electric power utility industry is investing heavily in technologies to improve network dynamic performance through a program loosely referred to as Flexible AC Transmission System (FACTS). Devices exploiting recent advances in power electronics are being installed in the power system to offset the need to construct new transmission lines. These devices collectively represent investment potential of several billion dollars over the next decade. A similar development, designed to curtail the peak loads and thus defer new transmission, distribution, and generation investment, falls under a category of technologies referred to as demand side management (DSM). A subset of broader conservation measures, DSM acts directly on the load to reduce peak consumption. DSM techniques include direct load control, in which a utility has the ability to curtail specific loads as conditions warrant. A novel approach has been conceived by Pacific Northwest National Laboratory (PNNL) to combine the objectives of FACTS and the technologies inherent in DSM to provide a distributed power system dynamic controller. This technology has the potential to dramatically offset major investments in FACTS devices by using direct load control to achieve dynamic stability objectives. The potential value of distributed versus centralized grid modulation has been examined by simulating the western power grid under extreme loading conditions. In these simulations, a scenario is analyzed in which active grid stabilization enables power imports into the southern California region to be increased several hundred megawatts beyond present limitations. Modeling results show distributed load control is up to 30 percent more effective than traditional centralized control schemes in achieving grid stability.

  2. Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts )

    U.S. Energy Information Administration (EIA) Indexed Site

    Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts 1 ) Year By Sector By End Use Total Residential Commercial 3 Industrial 4 Electric Power 5 Other 6 Grid-Connected 2 Off-Grid 2 Centralized 7 Distributed 8 Domestic 9 Non-Domestic 10 Total Shipments of Photovoltaic Cells and Modules 11<//td> 1989 1,439 6,057 [R] 3,993 785 551 [12] 1,251 [12] 2,620 8,954 12,825 1990 1,701 8,062 [R] 2,817 826 432 [12] 469 [12] 3,097 10,271 13,837 1991 3,624 5,715 [R] 3,947

  3. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  4. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...-",347224,"*",5,116,1,"*","--" " Electro-Chemical Processes","--",55414,"--","--","--","--...--",33354,"*","*",5,"*",0,"--" " Electro-Chemical Processes","--",5538,"--","--","--","--"...

  5. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ve",511864,"*",3,106,1,"*",4.8 " Electro-Chemical Processes",86360,"--","--","--","--","--...ive",53477,"*","*",7,"*",0,8.8 " Electro-Chemical Processes",6295,"--","--","--","--","--"...

  6. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1746,2,16,109,4,5,4.8 " Electro-Chemical Processes",295,"--","--","--","--","--",... Drive",182,"*",2,7,1,0,8.8 " Electro-Chemical Processes",21,"--","--","--","--","--",1 ...

  7. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",1560,5,13,99,7,7,"--",12.9 " Electro-Chemical Processes","--",298,"--","--","--","--",... *","--",8.1 " Electro-Chemical Processes","--",23,"--","--","--","--","...

  8. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1454,"*",28,120,3,1 " Electro-Chemical Processes",263,"--","--","--","--","--" ... Drive",139,"*",2,5,"*",0 " Electro-Chemical Processes",19,"--","--","--","--","--" " ...

  9. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...-",422408,"*",4,126,"*",3,"--" " Electro-Chemical Processes","--",60323,"--","--","--","--...,"--",38962,"*",1,5,"*",0,"--" " Electro-Chemical Processes","--",6558,"--","--","--","--"...

  10. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",1426,2,16,109,4,5,"--",4.8 " Electro-Chemical Processes","--",242,"--","--","--","--",...,"--",152,"*",2,7,1,0,"--",8.8 " Electro-Chemical Processes","--",21,"--","--","--","--","...

  11. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",507223,"*",4,126,"*",3 " Electro-Chemical Processes",74825,"--","--","--","--","--... Drive",46977,"*",1,5,"*",0 " Electro-Chemical Processes",6569,"--","--","--","--","--" ...

  12. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"--",1185,"*",28,120,3,1,"--" " Electro-Chemical Processes","--",189,"--","--","--","--",...e","--",114,"*",2,5,"*",0,"--" " Electro-Chemical Processes","--",19,"--","--","--","--","...

  13. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,457344,1,2,96,2,"*","--",12.7 " Electro-Chemical Processes","--",87200,"--","--","--","--...8832,1,"*",11,"*","*","--",8.1 " Electro-Chemical Processes","--",6858,"--","--","--","--"...

  14. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","--",1441,2,24,129,2,56,"--" " Electro-Chemical Processes","--",206,"--","--","--","--",...e","--",133,"*",6,5,"*",0,"--" " Electro-Chemical Processes","--",22,"--","--","--","--","...

  15. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1731,2,24,129,2,56 " Electro-Chemical Processes",255,"--","--","--","--","--" ... Drive",160,"*",6,5,"*",0 " Electro-Chemical Processes",22,"--","--","--","--","--" " ...

  16. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",426121,"*",5,116,1,"*" " Electro-Chemical Processes",77146,"--","--","--","--","--... Drive",40701,"*","*",5,"*",0 " Electro-Chemical Processes",5597,"--","--","--","--","--" ...

  17. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...17998,"*",3,106,1,"*","--",4.8 " Electro-Chemical Processes","--",71045,"--","--","--","--...44630,"*","*",7,"*",0,"--",8.8 " Electro-Chemical Processes","--",6260,"--","--","--","--"...

  18. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...rive",551318,1,2,96,2,"*",11.3 " Electro-Chemical Processes",103615,"--","--","--","--","-...ve",57198,1,"*",11,"*","*",8.1 " Electro-Chemical Processes",6905,"--","--","--","--","--"...

  19. Table 7. U.S. Energy-Related Carbon Dioxide Emissions by End-Use Sector, 1990-20

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy-Related Carbon Dioxide Emissions by End-Use Sector, 1990-2009" " (Million Metric Tons Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Residential",,963.38,980.093,981.418,1039.553,1032.275,1039.099,1099.143,1089.835,1097.465,1121.649,1185.104,1171.525,1203.666,1230.086,1227.758,1261.459,1192.007,1242.002,1228.992,1162.154 "

  20. Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households<//td> Space Heating - Main Fuel 1 Natural Gas 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 16 17 18 17 16 17 20 23 26 29 29 30 35 17 Liquefied Petroleum Gases 4 5 5 4 5 5 5 5 5 5 5 5 5 0 Distillate

  1. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  2. Table 2.5 Household Energy Consumption and Expenditures by End Use, Selected Years, 1978-2005

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Household 1 Energy Consumption and Expenditures by End Use, Selected Years, 1978-2005 Year Space Heating Air Conditioning Water Heating Appliances, 2 Electronics, and Lighting Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Electricity 3 Natural Gas Elec- tricity 3 Fuel Oil 4 LPG 5 Total Natural Gas Elec- tricity 3 LPG 5 Total Consumption (quadrillion Btu)<//td> 1978 4.26 0.40 2.05 0.23 6.94 0.31 1.04 0.29 0.14 0.06 1.53 0.28 1.46 0.03 1.77 1980 3.41 .27 1.30 .23 5.21 .36 1.15 .30 .22

  3. Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934 2,060 1,574

  4. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  5. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  6. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  7. The use of negotiated agreements to improve efficiency of end-use appliances: First results from the European experience

    SciTech Connect (OSTI)

    Bertoldi, P.; Bowie, R.; Hagen, L.

    1998-07-01

    The European Union is pursuing measures to improve end-use equipment efficiency through a variety of policy instruments, in particular for domestic appliances. One of the most effective methods to achieve market transformation is through minimum efficiency performance standards (MEPS). However, after the difficulties and controversy following the adoption of legislation for MEPS for domestic refrigerators/freezers, a new policy instrument, i.e. negotiated agreements by manufacturers, has been investigated and tested for two type of appliances: domestic washing machines and TVs and VCRs. Based on the positive experience of the above two agreements, other products (e.g. dryers, dishwasher, electric water heaters, etc.) will be the subject of future negotiated agreements. Based on the results of the two negotiated agreements, this paper describes the energy efficiency potential, the procedures, and the advantages and disadvantages of negotiated agreements compared to legislated mandatory for MEPS, as developed in the European context. The paper concludes that negotiated agreements are a viable policy option, which allow flexibility in the implementation of the efficiency targets and therefore the adoption of cost-effective solutions for manufacturers. In addition, negotiated agreements can be implemented more quickly compared to mandatory MEPS and they allow a closer monitoring of the results. The main question asked in the paper is whether the negotiated agreements can deliver the results in the long term compared to what could be achieved through legislation. The European experience indicates that this instrument can deliver the results and that it offer a number of advantages compared to MEPS.

  8. Major Components of Lending

    Broader source: Energy.gov [DOE]

    The major components of a clean energy financing program are described below, centered around the characteristics and sources of capital.

  9. Internships for Physics Majors

    Broader source: Energy.gov [DOE]

    Fermilab's IPM program offers ten-week summer internships to outstanding undergraduate physics majors. This program has been developed to familiarize students with opportunities at the frontiers of...

  10. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  11. Major Partner Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Test Partners Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding ...

  12. EM Major Procurements

    Broader source: Energy.gov [DOE]

    Following is a listing of major procurement actions currently being competed by the Office of Environmental Management.  Information contained in the report is based on publicly available...

  13. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  14. Major Biomass Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference International gathering to focus on business successes, technology updates, facility tours For more information contact: e:mail: Public Affairs Golden, Colo., Aug. 6, 1997 -- Media are invited to cover the conference in Montreal, Canada. What: Scientists, financiers and industry and government leaders from North America, South America and Europe will focus on building a sustainable, profitable biomass business

  15. Major Partner Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Test Partners Once a technology is ready to be tested at pilot or commercial scale, the cost of building a test facility becomes significant -- often beyond the funding provided for any one project. It then becomes critical to test the technology at a pre-existing facility willing to test experimental technologies. Not surprisingly, most commercial facilities are hesitant to interfere with their operations to experiment, but others, with a view towards the future, welcome promising

  16. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  17. Major Program Offices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101 Major Program Offices Doing Business with... Energy Efficiency and Renewable Energy Office of Environmental Management National Nuclear Security Administration Office of Science Gary G. Lyttek, Business Source Manager FY2010 DOE Procurement Base: $22.9B $1,556 $5,701 $9,523 $3,793 $2,304 $'s - Millions EE EM NNSA SC Other 2 Presentation for the DOE Small Business Conference EERE Funding Opportunity Announcements (FOA) May 2011 3 Office of Energy Efficiency and Renewable Energy 4 * The

  18. EFRC CMSNF Major Accomplishments

    SciTech Connect (OSTI)

    D. Hurley; Todd R. Allen

    2014-09-01

    The mission of the Center for Material Science of Nuclear Fuels (CMSNF) has been to develop a first-principles-based understanding of thermal transport in the most widely used nuclear fuel, UO2, in the presence of defect microstructure associated with radiation environments. The overarching goal within this mission was to develop an experimentally validated multiscale modeling capability directed toward a predictive understanding of the impact of radiation and fission-product induced defects and microstructure on thermal transport in nuclear fuel. Implementation of the mission was accomplished by integrating the physics of thermal transport in crystalline solids with microstructure science under irradiation through multi institutional experimental and computational materials theory teams from Idaho National Laboratory, Oak Ridge National Laboratory, Purdue University, the University of Florida, the University of Wisconsin, and the Colorado School of Mines. The Centers research focused on five major areas: (i) The fundamental aspects of anharmonicity in UO2 crystals and its impact on thermal transport; (ii) The effects of radiation microstructure on thermal transport in UO2; (iii) The mechanisms of defect clustering in UO2 under irradiation; (iv) The effect of temperature and oxygen environment on the stoichiometry of UO2; and (v) The mechanisms of growth of dislocation loops and voids under irradiation. The Center has made important progress in each of these areas, as summarized below.

  19. The examination of pretreatment and end use technologies for dirty fuels produced from coal gasification, coal pyrolysis, oil shale processing, and heavy oil recovery: Final technology status report

    SciTech Connect (OSTI)

    Raden, D.P.; Page, G.C.

    1987-01-01

    The objective of this study was to identify pretreatment (upgrading) and end use technologies which: (1) reduce environmental, health and safety impacts, (2) reduce pollution control costs, or (3) reduce upgrading costs of ''dirty fuels'' while producing higher value energy products. A comprehensive list of technologies was developed for upgrading the various dirty fuels to higher value and products. Fifty-two process flow concepts were examined and from these four process flow concepts were chosen for further development. These are: heavy oil recovery and in situ hydrotreating; wet air oxidation in a downhole reactor; total raw gas shift; and high density fuels via vacuum devolatilization. Each of these four process flow concepts described exhibit the potential for reducing environmental, health and safety impacts and/or pollution control costs. In addition these concepts utilize dirty fuels to produce an upgraded or higher value energy product. These concepts should be developed and evaluated in greater detail to assess their technical and economical viability. Therefore, it is recommended that a program plan be formulated and a proof-of-concept research program be performed for each process concept. 3 refs., 5 figs., 11 tabs.

  20. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre-weatherization water-heating energy consumption and 17% of predicted). The overall BCR for the ECMs was 1.24 using the same assumptions followed in the selection technique: no administration cost, residential fuel costs, real discount rate of 0.05, and no fuel escalation. A weatherization program would be cost effective at an administration cost less than $335/house. On average, the indoor temperature increased in the audit houses by 0.5 F following weatherization and decreased in the control houses by 0.1 F. The following conclusions regarding the measure selection technique were drawn from the study: (1) a significant cost-effective level of energy savings resulted, (2) space-heating energy savings and total installation costs were predicted with reasonable accuracy, indicating that the technique's recommendations are justified, (3) effectiveness improved from earlier versions and can continue to be improved, and (4) a wider variety of ECMs were installed compared to most weatherization programs. An additional conclusion of the study was that a significant indoor temperature take-back effect had not occurred.

  1. Major Demonstrations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major Demonstrations Major Demonstrations A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. A state-of-the-art integrated coal gasification combined-cycle (IGCC) power plant, Tampa Electric's Polk Power Station produces enough electricity to serve 75,000 homes. The Office of Fossil Energy is co-funding large-scale demonstrations of clean coal technologies in three different

  2. Major Communications Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major Communications Reports Major Communications Reports May 18, 2012 Green Button Data: More Power to You May 28, 2009 Major Communications Report May 28, 2009 May 7, 2009 Major Communications Report May 7, 2009 May 5, 2009 Major Communications Report May 5, 2009 April 30, 2009 Major Communications Report April 30, 2009 April 28, 2009 Major Communications Report April 28, 2009 April 17, 2009 Major Communications Report April 17, 2009 March 24, 2009 Major Communications Report March 24, 2009

  3. Major NERSC Maintenance Tuesday November 11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major NERSC Maintenance Tuesday November 11 Major NERSC Maintenance Tuesday November 11 October 31, 2014 by Francesca Verdier There will be a major NERSC maintenance on Tuesday,...

  4. Major Conformed Contract Links | Department of Energy

    Energy Savers [EERE]

    17, 2009 Major Communications Report April 17, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of April 17, 2009. Office spreadsheet icon DOE_Major_Communications_04172009.xls More Documents & Publications Major Communications Report May 5, 2009 Major Communications Report April 30, 2009 Major Communications Report April 28

    28, 2009 Major Communications

  5. Minnesota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    22,872 27,097 35,845 NA NA NA 2001-2016 Residential 2,362 5,207 10,741 18,067 24,809 NA 1989-2016 Commercial 2,786 5,206 8,381 12,550 16,259 14,811 1989-2016 Industrial 11,305 ...

  6. Tennessee Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    18,246 18,807 24,268 29,015 44,796 37,150 2001-2016 Residential 1,163 1,982 4,847 7,765 16,024 12,051 1989-2016 Commercial 2,259 3,080 4,707 5,273 10,237 7,613 1989-2016 Industrial 8,683 9,162 9,248 9,813 12,165 11,147 2001-2016 Vehicle Fuel 8 9 8 9 10 9 2010-2016 Electric Power 6,133 4,574 5,458 6,156 6,360 6,331

  7. Texas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    291,178 276,726 267,183 307,656 333,433 290,730 2001-2016 Residential 5,116 5,934 9,793 24,772 40,886 32,681 1989-2016 Commercial 9,558 10,313 12,553 17,584 22,844 19,794 1989-2016 Industrial 125,076 128,958 134,340 141,897 145,142 132,333 2001-2016 Vehicle Fuel 290 300 290 300 333 301 2010-2016 Electric Power 151,139 131,222 110,207 123,103 124,228 105,622

  8. Utah Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    10,440 10,855 20,739 27,782 28,211 22,064 2001-2016 Residential 1,320 2,002 8,290 12,265 12,761 9,010 1989-2016 Commercial 1,170 1,474 4,732 6,881 7,089 5,319 1989-2016 Industrial 2,757 2,969 3,120 3,612 3,608 3,634 2001-2016 Vehicle Fuel 22 22 22 22 25 22 2010-2016 Electric Power 5,171 4,387 4,575 5,002 4,727 4,079

  9. Vermont Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    566 875 1,024 1,168 1,695 1,459 2001-2016 Residential 79 164 288 393 576 541 1989-2016 Commercial 336 522 557 586 899 714 1989-2016 Industrial 150 188 178 188 220 204 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 1 0 1 1 0 --

  10. Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    33,817 27,516 36,489 44,149 NA 54,140 2001-2016 Residential 1,913 3,395 6,309 7,966 17,223 14,368 1989-2016 Commercial 3,658 4,647 6,019 6,065 11,580 9,235 1989-2016 Industrial 6,116 7,701 7,582 7,259 NA 7,756 2001-2016 Vehicle Fuel 20 21 20 21 23 21 2010-2016 Electric Power 22,109 11,752 16,558 22,839 23,125 22,761

  11. Washington Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,103 25,442 NA NA NA 29,337 2001-2016 Residential 2,519 4,019 9,599 14,167 13,821 9,280 1989-2016 Commercial 2,709 3,462 5,744 8,090 7,971 5,823 1989-2016 Industrial 5,921 6,680 NA NA NA 6,785 2001-2016 Vehicle Fuel 40 42 40 42 46 42 2010-2016 Electric Power 10,914 11,239 10,383 9,481 9,841 7,407

  12. Wisconsin Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    3,582 29,272 38,845 49,528 66,422 57,410 2001-2016 Residential 2,498 6,080 11,070 16,428 24,782 19,769 1989-2016 Commercial 2,867 4,985 7,776 10,352 15,417 13,091 1989-2016 Industrial 9,103 10,742 12,289 12,859 15,948 14,197 2001-2016 Vehicle Fuel 10 10 10 10 11 10 2010-2016 Electric Power 9,104 7,455 7,700 9,879 10,264 10,342

  13. Office Buildings - End-Use Equipment

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration, 2003 Commercial Buildings Energy Consumption Survey. More computers, dedicated servers, printers, and photocopiers were used in office buildings than in...

  14. ,"Missouri Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 39979,13144,2270,2201,4272,,4401 40009,12199,1930,1901,4243,,4126 40040,12779,1884,1920,4390,,4585 40071,10268,2000,2321,4322,,1626 40101,13672,4317,3170,4983,,1203 ...

  15. ,"Maryland Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...8,3440,1884,,1201 38883,9251,1972,3084,1899,,2296 38913,11438,1654,2479,1813,,5490 38944,11236,1617,2784,1978,,4856 38975,8042,2121,3434,1374,,1114 39005,11895,4315,4622,1884,,1074 ...

  16. ,"Utah Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...7787,5612,1540,1026,1902,,1145 37817,6174,1358,902,1911,,2002 37848,6166,1355,973,1955,,1884 37879,6229,1856,1243,1950,,1181 37909,7898,2988,1718,2117,,1076 37940,13299,6914,3783,2...

  17. Arkansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    17,958 14,702 18,552 22,561 30,965 24,701 2001-2016 Residential 546 731 2,155 3,933 7,500 5,665 1989-2016 Commercial 2,571 3,048 3,863 4,724 7,048 6,010 1989-2016 Industrial 6,286 6,790 7,098 7,148 7,825 7,184 2001-2016 Vehicle Fuel 3 3 3 3 3 3 2010-2016 Electric Power 8,552 4,130 5,434 6,754 8,589 5,839

  18. Colorado Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    9,128 22,856 40,791 49,929 48,740 38,586 2001-2016 Residential 3,036 5,976 16,679 23,229 22,390 17,313 1989-2016 Commercial 1,694 2,859 6,789 9,397 9,251 7,255 1989-2016 Industrial 4,790 5,823 7,640 8,931 9,107 7,704 2001-2016 Vehicle Fuel 26 27 26 27 30 27 2010-2016 Electric Power 9,582 8,172 9,658 8,346 7,962 6,288

  19. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    7,939 6,849 6,797 7,386 9,040 8,389 2001-2016 Residential 157 378 720 978 2,084 1,879 1989-2016 Commercial 432 812 1,065 1,177 2,003 1,658 1989-2016 Industrial 2,448 2,590 2,682 3,040 2,821 2,517 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 4,903 3,068 2,330 2,190 2,132 2,335

  20. Florida Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    118,468 114,127 106,003 105,637 106,331 97,329 2001-2016 Residential 632 1,081 1,216 1,440 2,848 2,446 1989-2016 Commercial 4,441 5,003 5,214 5,660 7,017 6,427 1989-2016 Industrial 7,385 7,997 7,774 8,933 9,502 8,746 2001-2016 Vehicle Fuel 17 18 17 18 19 18 2010-2016 Electric Power 105,993 100,028 91,782 89,587 86,943 79,693

  1. Georgia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    49,172 52,445 55,858 56,505 79,308 67,395 2001-2016 Residential 3,794 5,873 10,248 11,943 26,193 19,976 1989-2016 Commercial 2,417 3,159 4,695 5,185 10,325 7,942 1989-2016 Industrial 12,244 13,714 13,291 13,391 14,101 13,756 2001-2016 Vehicle Fuel 96 99 96 99 111 100 2010-2016 Electric Power 30,621 29,598 27,527 25,887 28,578 25,621

  2. Hawaii Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    233 240 228 251 259 247 2001-2016 Residential 41 44 44 47 52 47 1989-2016 Commercial 153 152 148 167 159 155 1989-2016 Industrial 37 43 36 36 47 44 2001-2016 Vehicle Fuel 1 1 1 1 1 1 2010-2016 Electric Power -- -- -- -- -- --

  3. Idaho Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    6,838 7,606 11,261 13,715 13,779 11,067 2001-2016 Residential 638 995 3,624 4,740 4,467 3,241 1989-2016 Commercial 694 1,066 2,068 2,719 2,781 2,076 1989-2016 Industrial 2,564 3,032 3,315 3,403 3,647 3,335 2001-2016 Vehicle Fuel 13 13 13 13 15 13 2010-2016 Electric Power 2,930 2,500 2,240 2,840 2,870 2,401

  4. Illinois Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    43,969 57,973 NA 107,844 151,423 128,292 2001-2016 Residential 8,021 18,056 35,960 50,744 78,595 62,355 1989-2016 Commercial 7,821 12,312 NA 24,179 35,911 30,543 1989-2016 Industrial 19,312 21,016 24,322 25,140 28,674 26,493 2001-2016 Vehicle Fuel 28 29 28 29 32 29 2010-2016 Electric Power 8,788 6,560 7,008 7,753 8,211 8,872

  5. Indiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    39,873 48,080 59,575 72,031 92,671 79,178 2001-2016 Residential 2,432 5,799 11,746 16,881 27,835 21,691 1989-2016 Commercial 2,784 4,720 6,409 8,381 14,495 11,554 1989-2016 Industrial 26,713 28,848 29,980 33,462 36,985 34,155 2001-2016 Vehicle Fuel 2 2 2 2 2 2 2010-2016 Electric Power 7,942 8,711 11,439 13,305 13,353 11,776

  6. Iowa Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    17,814 21,170 NA 32,191 40,243 34,191 2001-2016 Residential 1,260 2,268 5,686 8,921 13,190 10,164 1989-2016 Commercial 1,716 3,156 NA 6,246 8,771 7,041 1989-2016 Industrial 13,086 14,826 14,751 15,399 16,580 15,443 2001-2016 Vehicle Fuel 1 2 1 2 2 2 2010-2016 Electric Power 1,750 918 530 1,623 1,700 1,542

  7. Kansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,628 12,195 NA 24,751 31,236 23,125 2001-2016 Residential 1,075 1,701 NA 8,698 13,126 9,206 1989-2016 Commercial 1,164 1,755 2,731 4,161 5,913 4,247 1989-2016 Industrial 7,725 8,738 8,919 11,086 11,471 9,114 2001-2016 Vehicle Fuel 1 1 1 1 1 1 2010-2016 Electric Power 1,662 W W 804 725 55

  8. Connecticut Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    27,870 20,353 15,426 14,745 16,786 17,440 2001-2015 Residential 8,998 4,902 2,172 1,368 1,120 997 1989-2015 Commercial 7,504 4,556 2,676 2,295 2,379 2,512 1989-2015 Industrial...

  9. Alaska Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  10. Kentucky Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  11. Michigan Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  12. Oregon Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  13. Minnesota Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  14. Montana Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  15. Ohio Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  16. Oregon Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  17. Nebraska Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  18. California Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  19. Maine Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  20. Wyoming Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  1. Connecticut Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  2. Michigan Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  3. Colorado Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  4. Ohio Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  5. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  6. Vermont Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  7. Alaska Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  8. Indiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  9. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  10. Wisconsin Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  11. Mississippi Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  12. Georgia Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  13. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  14. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  15. Massachusetts Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  16. Virginia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  17. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  18. Tennessee Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  19. Alabama Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  20. Nevada Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  1. Pennsylvania Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  2. Florida Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  3. Mississippi Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  4. Nebraska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  5. Wyoming Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  6. Utah Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  7. Washington Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  8. Missouri Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,873 1,770 3,351 8,236 1989-2015 Commercial 1,960 2,021 2,299 2,254 3,585 5,631 1989-2015 Industrial 4,605 4,716 4,376 4,527 4,939 5,585 2001-2015 Vehicle Fuel 4 4 4 4 4 4...

  9. California Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9,015 189,292 186,757 195,837 235,282 222,856 2001-2016 Residential 17,560 17,188 19,412 44,802 73,730 69,466 1989-2016 Commercial 16,537 15,250 16,321 26,389 29,820 26,589 ...

  10. Nevada Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Residential 1,854 1,467 1,108 1,176 1,209 1,436 1989-2015 Commercial 2,079 1,807 1,598 1,709 1,668 2,052 1989-2015 Industrial NA NA 1,165 NA NA 1,182 2001-2015 Vehicle Fuel 56 55...

  11. Kentucky Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,294 858 858 912 845 1,565 1989-2015 Commercial 1,336 1,075 1,139 1,330 1,154 1,709 1989-2015 Industrial 8,722 8,564 8,478 8,791 8,464 8,840 2001-2015 Vehicle Fuel 0 2 2 2...

  12. Missouri Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel 1967-1998 Lease Fuel 0 0 0 0 * 1984-2014 Pipeline & Distribution Use 5,820 7,049 4,973 5,626 6,184 1997-2014 Volumes Delivered to Consumers 274,361 265,534 ...

  13. Oklahoma Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    38,010 34,185 42,019 50,354 55,937 NA 2001-2016 Residential 1,169 1,308 2,614 6,999 11,199 NA 1989-2016 Commercial 1,509 1,638 2,339 4,093 6,177 NA 1989-2016 Industrial 15,155 14,917 16,551 16,204 16,775 NA 2001-2016 Vehicle Fuel 33 34 33 34 38 35 2010-2016 Electric Power 20,143 16,289 20,482 23,024 21,749 16,047

  14. Pennsylvania Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    67,203 78,980 87,069 96,515 133,446 119,940 2001-2016 Residential 4,892 11,789 18,582 24,976 46,310 38,599 1989-2016 Commercial 5,319 10,093 13,175 15,188 27,618 22,317 1989-2016 Industrial 17,224 18,923 19,211 20,699 23,708 23,498 2001-2016 Vehicle Fuel 30 31 30 31 35 31 2010-2016 Electric Power 39,738 38,145 36,071 35,621 35,776 35,495

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...457344,1,2,96,2,"*","--",12.7 ," Electro-Chemical Processes","--",87200,"--","--","--","--...,31301,0,"*",7,"*",0,"--",1.2 ," Electro-Chemical Processes","--",57,"--","--","--","--","...

  16. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...-",1560,5,13,99,7,7,"--",12.9 ," Electro-Chemical Processes","--",298,"--","--","--","--",... *",8," *",0,"--",1.2 ," Electro-Chemical Processes","--"," *","--","--","--","--"...

  17. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ive",551318,1,2,96,2,"*",11.3 ," Electro-Chemical Processes",103615,"--","--","--","--","-...rive",35070,0,"*",7,"*",0,1.2 ," Electro-Chemical Processes",72,"--","--","--","--","--",1 ...

  18. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1731,2,24,129,2,56 ," Electro-Chemical Processes",255,"--","--","--","--","--" ... Drive",121,"*",3,11,"*",0 ," Electro-Chemical Processes","*","--","--","--","--","--" ...

  19. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",507223,"*",4,126,"*",3 ," Electro-Chemical Processes",74825,"--","--","--","--","--... Drive",35339,"*","*",10,"*",0 ," Electro-Chemical Processes",113,"--","--","--","--","--" ...

  20. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e",511864,"*",3,106,1,"*",4.8 ," Electro-Chemical Processes",86360,"--","--","--","--","--... Drive",36479,0,1,13,"*",0,11 ," Electro-Chemical Processes","Q","--","--","--","--","--",...

  1. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1454,"*",28,120,3,1 ," Electro-Chemical Processes",263,"--","--","--","--","--" ... Drive",124,"*","*",4,"*","*" ," Electro-Chemical Processes",1,"--","--","--","--","--" ," ...

  2. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...7998,"*",3,106,1,"*","--",4.8 ," Electro-Chemical Processes","--",71045,"--","--","--","--...-",32187,0,1,13,"*",0,"--",11 ," Electro-Chemical Processes","--","Q","--","--","--","--",...

  3. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"--",1441,2,24,129,2,56,"--" ," Electro-Chemical Processes","--",206,"--","--","--","--",...,"--",110,"*",3,11,"*",0,"--" ," Electro-Chemical Processes","--","*","--","--","--","--",...

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",347224,"*",5,116,1,"*","--" ," Electro-Chemical Processes","--",55414,"--","--","--","--...,32764,"*","*",4,"*","*","--" ," Electro-Chemical Processes","--",158,"--","--","--","--",...

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1746,2,16,109,4,5,4.8 ," Electro-Chemical Processes",295,"--","--","--","--","--",... Drive",124,0,3,13,"*",0,11 ," Electro-Chemical Processes","*","--","--","--","--","--",...

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",1881,5,13,99,7,7,11.5 ," Electro-Chemical Processes",354,"--","--","--","--","--",... *",8," *",0,1.2 ," Electro-Chemical Processes","*","--","--","--","--","--",...

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",422408,"*",4,126,"*",3,"--" ," Electro-Chemical Processes","--",60323,"--","--","--","--...",32259,"*","*",10,"*",0,"--" ," Electro-Chemical Processes","--",112,"--","--","--","--",...

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...-",1426,2,16,109,4,5,"--",4.8 ," Electro-Chemical Processes","--",242,"--","--","--","--",..."--",110,0,3,13,"*",0,"--",11 ," Electro-Chemical Processes","--","*","--","--","--","--",...

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",1185,"*",28,120,3,1,"--" ," Electro-Chemical Processes","--",189,"--","--","--","--",...-",112,"*","*",4,"*","*","--" ," Electro-Chemical Processes","--",1,"--","--","--","--","-...

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive",426121,"*",5,116,1,"*" ," Electro-Chemical Processes",77146,"--","--","--","--","--...rive",36373,"*","*",4,"*","*" ," Electro-Chemical Processes",159,"--","--","--","--","--" ...

  11. ,"Pennsylvania Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Excel File Name:","ngconssumdcuspam.xls" ,"Available from Web Page:","http:www.eia.govdnavngngconssumdcuspam.htm" ,"Source:","Energy Information ...

  12. Massachusetts Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    25,692 29,699 31,148 36,395 52,994 46,930 2001-2016 Residential 2,465 5,784 9,387 12,553 20,032 18,664 1989-2016 Commercial 4,066 7,399 9,210 10,044 17,790 13,347 1989-2016 Industrial 2,507 3,055 4,108 4,110 5,486 5,065 2001-2016 Vehicle Fuel 67 70 67 70 77 70 2010-2016 Electric Power 16,586 13,391 8,375 9,618 9,608 9,783

  13. Montana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    3,662 4,787 7,811 9,316 9,465 7,453 2001-2016 Residential 494 1,042 2,634 3,260 3,276 2,376 1989-2016 Commercial 689 1,158 2,508 3,107 3,244 2,434 1989-2016 Industrial 1,709 1,873 2,004 2,173 2,128 1,911 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 770 714 666 777 816 73

  14. Alabama Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    454,456 534,779 598,514 666,712 615,407 634,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,460 10,163 10,367 12,389 12,456 10,055 1983-2014 Plant Fuel 6,470 6,441 6,939...

  15. Idaho Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    78,166 75,647 77,343 83,274 98,843 87,647 1997-2014 Residential 25,531 23,975 26,666 23,924 27,370 24,616 1967-2014 Commercial 15,740 15,033 16,855 15,838 18,485 16,963...

  16. Oklahoma Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    675,727 655,919 691,661 658,569 640,607 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 39,489 40,819 43,727 45,581 50,621 1983-2014 Plant Fuel 23,238 24,938 27,809 32,119 ...

  17. Arizona Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    369,739 330,914 288,802 332,068 332,073 307,946 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 17 19 17 12 4 3 1983-2014 Pipeline & Distribution Use 20,846 15,447 13,158...

  18. Maine Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    7,575 71,690 68,266 64,091 60,661 1997-2014 Pipeline & Distribution Use 1,753 2,399 762 844 1,300 1997-2014 Volumes Delivered to Consumers 75,821 69,291 67,504 63,247 59,362 NA ...

  19. End-Use Taxes: Current EIA Practices

    U.S. Energy Information Administration (EIA) Indexed Site

    However, many States levy taxes on aviation fuel, as shown in Table B3 in Appendix B, based on information obtained from State TaxationRevenue Offices. The use of the national...

  20. ,"Wisconsin Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    67,2429,2389,7792,5,7152 40405,20798,2472,2385,8311,5,7624 40436,16423,2833,2891,8505,5,2189 40466,21523,5597,4616,9601,5,1704 40497,33652,12885,8423,10973,5,1366...

  1. ,"Louisiana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    32582,,8377,3462 32613,,4724,2362 32643,,2816,1790 32674,,2321,1479 32704,,2189,1399 32735,,2026,1340 32766,,2035,1433 32796,,2513,1568 32827,,4166,2035...

  2. Texas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    85,549 138,429 294,316 274,451 1997-2014 Volumes Delivered to Consumers 2,947,542 3,185,011 3,305,730 3,377,217 3,350,645 3,415,789 1997-2014 Residential 192,153 226,445 199,958...

  3. Hawaii Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,607 2,627 2,619 2,689 2,855 2,928 1997-2014 Pipeline & Distribution Use 2 2 2 3 1 1 2004-2014 Volumes Delivered to Consumers 2,605 2,625 2,616 2,687 2,853 2,927 1997-2014...

  4. ,"Delaware Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    8817,1663,1627,2865,0,2661 41654,9350,2463,2128,2676,0,2083 41685,8446,2138,1696,2644,0,1968 41713,9361,1858,1502,2871,0,3129 41744,6829,825,740,2340,0,2924 41774,6637,496,615,2477...

  5. ,"Nebraska Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    (MMcf)" 32523,,7006,4202 32554,,7911,4825 32582,,6742,4252 32613,,3687,2505 32643,,1968,1648 32674,,1137,1757 32704,,1078,3381 32735,,1007,4240 32766,,1212,1634...

  6. ,"Indiana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusinm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  7. ,"Ohio Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusohm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  8. ,"Michigan Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmim.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  9. ,"Massachusetts Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  10. ,"Vermont Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusvtm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  11. ,"Washington Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuswam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  12. ,"Arkansas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusarm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  13. ,"Iowa Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusiam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  14. ,"Florida Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusflm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  15. ,"Minnesota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmnm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  16. ,"Illinois Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusilm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  17. ,"Hawaii Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcushim.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  18. ,"Oregon Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    32978,,1820,1550 33008,,1476,1268 33039,,1206,1157 33069,,704,821 33100,,560,769 ... 37726,13784,3838,2544,5408,,1994 37756,12066,3058,2088,5382,,1537 ...

  19. ,"Alaska Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    33649,,1933,2372 33678,,1764,2319 33709,,1346,1935 33739,,1012,1597 33770,,628,1206 33800,,474,1084 33831,,438,1013 33862,,643,1252 33892,,1209,1790 33923,,1442,1928 ...

  20. ,"Montana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    33131,,450,347 33161,,1040,782 33192,,1694,1206 33222,,2673,1889 33253,,3533,2425 ...,3279,1081,737,1444,,16 38153,2725,856,647,1206,,16 38183,2154,553,456,1129,,16 ...

  1. ,"Maine Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 38671,4236,102,416,513,,3205 38701,2234,170,664,563,,836 38732,3888,153,605,1206,,1923 38763,4850,166,636,1426,,2622 38791,5239,142,620,2121,,2355 38822,4090,87,355,124...

  2. ,"Mississippi Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 35504,,3058,2114 35535,,1916,1532 35565,,1472,1305 35596,,926,1174 35626,,815,1206 35657,,761,1309 35688,,778,924 35718,,902,1224 35749,,2561,2027 35779,,4355,2937 ...

  3. ,"Tennessee Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 40283,14937,4022,3553,7241,1,119 40313,11682,1468,2245,7020,1,948 40344,12260,1206,2041,6804,1,2209 40374,14350,1036,1878,6882,1,4553 40405,13862,956,1725,7350,1,3829 ...

  4. ,"Nevada Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 37118,14023,996,1238,910,,10878 37149,12067,1034,1655,858,,8520 37179,12854,1245,1383... 40954,22161,5815,3266,972,47,12062 40983,20389,4325,2888,1019,50,12107 ...

  5. ,"Connecticut Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 39675,9545,1103,1409,1439,,5594 39706,8662,1081,1554,1477,,4549 39736,12106,1610,2113,1929,,6454 39767,13148,3699,3254,2087,,4108 39797,17393,6259,4754,2126,,4253 ...

  6. ,"Wyoming Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 39736,4922,738,610,3480,,94 39767,5595,1207,908,3394,,86 39797,7419,1929,1386,4005,,100 39828,7385,2040,1589,3639,,117 39859,6193,1754,1416,2927,,96 ...

  7. ,"Idaho Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    34196,,251,360 34227,,310,381 34257,,481,507 34288,,1159,947 34318,,2057,1543 34349,,1929,1510 34380,,1926,1457 34408,,1432,1121 34439,,1001,771 34469,,568,480 34500,,367,377 ...

  8. Arkansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    244,193 271,515 284,076 296,132 282,120 268,453 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 4,091 5,340 6,173 6,599 6,605 6,452 1983-2014 Plant Fuel 489 529 423 622 797 871...

  9. ,"Kentucky Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Excel File Name:","ngconssumdcuskym.xls" ,"Available from Web Page:","http:www.eia.govdnavngngconssumdcuskym.htm" ,"Source:","Energy Information ...

  10. Kansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    86,973 275,184 279,724 262,316 283,177 285,969 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 15,169 13,461 12,781 17,017 17,110 14,851 1983-2014 Plant Fuel 2,126 2,102 2,246...

  11. Arizona Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    9,020 35,358 38,296 42,000 35,461 29,557 2001-2015 Residential 1,805 1,303 1,056 971 1,072 1,334 1989-2015 Commercial 2,204 1,878 1,758 1,654 1,714 1,918 1989-2015 Industrial 1,611...

  12. ,"Georgia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,5851,3726,10622,93,22727 41228,52299,12989,6200,12742,90,20277 41258,61950,16188,6843,13500,93,25326 41289,62324,18331,7191,13879,85,22838 41320,63455,19031,7667,12703,77,23978 ...

  13. ,"Colorado Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    34288,,8984,6080 34318,,14527,9396 34349,,16252,10134 34380,,15391,9633 34408,,13500,8295 34439,,9732,6300 34469,,6819,4573 34500,,3474,2745 34530,,2546,2268 ...

  14. Biomass Resource Allocation among Competing End Uses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Scenario Model. iv List of Acronyms AEO Annual Energy Outlook BAM Biomass Allocation Model ... Today, traditional use of biomass accounts for 14% of world energy usage, which is ...

  15. Financial News for Major Energy Companies

    Gasoline and Diesel Fuel Update (EIA)

    ... Chemical Operations * Higher margins and sales volumes trebled the earnings of the majors' chemical operations. Earnings from the majors' chemical operations were 202 percent higher ...

  16. Financial News for Major Energy Companies

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Chemical Operations Higher feedstock costs and effects of hurricanes decreased earnings from the majors' chemical operations. Earnings from the majors' chemical operations were 56 ...

  17. Major Contracts Summary | Department of Energy

    Energy Savers [EERE]

    Contracts Summary Major Contracts Summary PDF icon Major Contracts Summary More Documents & Publications Contractor Fee Payments - Savannah River Operations Office Contractor Fee Payments - Office of River Protection Contractor Fee Payments - Richland Operations Office

  18. Mozambique becomes a major coking coal exporter?

    SciTech Connect (OSTI)

    Ruffini, A.

    2008-06-15

    In addition to its potential role as a major international supplier of coking coal, Mozambique will also become a major source of power generation for southern Africa. 3 figs.

  19. Major Communications Report April 17, 2009

    Broader source: Energy.gov [DOE]

    This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of April 17, 2009.

  20. Financial News for Major Energy Companies

    Gasoline and Diesel Fuel Update (EIA)

    Second Quarter 2005 The "Financial News for Major Energy Companies" is issued quarterly to report recent trends in the financial performance of the major energy companies. These include the respondents to Form EIA-28 (Financial Reporting System (FRS)), with the exception of the FRS companies that do not issue quarterly earnings releases or fail to provide separate information for the company's U.S. operations. Twenty-five major energy companies reported overall net income (excluding

  1. Disruption of Hydrogen Bonds between Major Histocompatibility...

    Office of Scientific and Technical Information (OSTI)

    Complex Class II and the Peptide NTerminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II ...

  2. Performance profiles of major energy producers 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-23

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  3. Financial News for Major Energy Companies

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Chemical Operations * Lower margins and divestitures result in decreased earnings from the majors' chemical operations. Most companies reported lower earnings as the overall result ...

  4. Summary - Major Risk Factors Integrated Facility Disposition...

    Office of Environmental Management (EM)

    Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did...

  5. Argonne's Major Nuclear Energy Milestones | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Major Nuclear Energy Milestones Argonne's reactor tree Argonne's reactor tree December 2, 1942: Enrico Fermi's team produces the world's first sustained nuclear chain ...

  6. major-projects | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Gasification Projects The Gasification Systems Program sponsors R&D for technology at certain levels of technological maturity. These vary from new technological concepts...

  7. Majors' Shift to Natural Gas, The

    Reports and Publications (EIA)

    2001-01-01

    The Majors' Shift to Natural Gas investigates the factors that have guided the United States' major energy producers' growth in U.S. natural gas production relative to oil production. The analysis draws heavily on financial and operating data from the Energy Information Administration's Financial Reporting System (FRS)

  8. Performance profiles of major energy producers 1994

    SciTech Connect (OSTI)

    1996-02-01

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  9. Major NERSC Maintenance Tuesday November 11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major NERSC Maintenance Tuesday November 11 Major NERSC Maintenance Tuesday November 11 October 31, 2014 by Francesca Verdier There will be a major NERSC maintenance on Tuesday, November 11, from 08:00 until 18:00 PST. Several systems and services will be unavailable during this time. Edison, Hopper, Data Transfer nodes, and Science Gateway (data portal) nodes will be unavailable 08:00 - 13:00. Carver/Dirac, PDSF, and Genepool will be unavailable 08:00 - 18:00. HPSS and web servers

  10. PIA - WEB Physical Security Major Application | Department of...

    Energy Savers [EERE]

    PIA - WEB Physical Security Major Application PIA - WEB Physical Security Major Application PIA - WEB Physical Security Major Application PDF icon PIA - WEB Physical Security Major...

  11. Performance profiles of major energy producers 1993

    SciTech Connect (OSTI)

    1995-01-01

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  12. Performance profiles of major energy producers 1996

    SciTech Connect (OSTI)

    1998-01-01

    This publication examines developments in the operations of the major US e energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area. In 1996, 24 companies filed Form EIA-28. The analysis and data presented in this report represents the operations of the Financial Reporting System companies in the context of their worldwide operations and in the context of the major energy markets which they serve. Both energy and nonenergy developments of these companies are analyzed. Although the focus is on developments in 1996, important trends prior to that time are also featured. Sections address energy markets in 1996; key financial developments; oil and gas exploration, development, and production; downstream petroleum in 1996; coal and alternative energy; and foreign direct investment in US energy. 30 figs., 104 tabs.

  13. Recent NERSC User Publications in Major Journals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent NERSC User Publications in Major Journals Recent NERSC User Publications in Major Journals Proceedings of the National Academy of Sciences Amarnath, Kapil, et al. "Multiscale model of light harvesting by photosystem II in plants." Proceedings of the National Academy of Sciences (2016): 201524999. Huang, Shin-Ming, et al. "New type of Weyl semimetal with quadratic double Weyl fermions." Proceedings of the National Academy of Sciences (2016): 201514581. Hudson, William

  14. Major Subcontractors Consortium sharpens its focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Subcontractors Consortium sharpens its focus Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Major Subcontractors Consortium sharpens its focus Area businesses gain more value in MSC collaboration with Lab in 2016. April 4, 2016 Picuris Pueblo among non-profits receving MSC grant Picuris Pueblo was among the non-profits that received an MSC grant in 2015. In the past 10 years, 42 separate

  15. Country analysis briefs: 1994. Profiles of major world energy producers, consumers, and transport centers

    SciTech Connect (OSTI)

    1995-05-01

    Country Analysis Briefs: 1994 is a compilation of country profiles prepared by the Energy Markets and Contingency Information Division (EMCID) of the Office of Energy Markets and End Use. EMCID maintains Country Analysis Briefs (CABs) for specific countries or geographical areas that are important to world energy markets. As a general rule, CABs are prepared for all members of the Organization of Petroleum Exporting Countries (OPEC), major non-OPEC oil producers (i.e., the North Sea, Russia), major energy transit areas (i.e., Ukraine), and other areas of current interest to energy analysts and policy makers. As of January 1995, EMCID maintained over 40 CABs, updated on an annual schedule and subject to revision as events warrant. This report includes 25 CABs updated during 1994. All CABs contain a profile section, a map showing the country`s location, and a narrative section. The profile section includes outlines of the country`s economy, energy sector, and environment. The narrative provides further information and discussion of these topics. Some CABs also include a detailed map displaying locations of major oil and gas fields, pipelines, ports, etc. These maps were created as a result of special individual requests and so are not typically a standard feature of the CABs. They are presented here wherever available as a supplement to the information contained in the CABs.

  16. Performance profiles of major energy producers 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-13

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  17. Strategies of the major oil companies

    SciTech Connect (OSTI)

    Greene, W.N.

    1982-01-01

    This study identifies, documents, and analyzes the strategies of the seven largest oil companies in the world, collectively called the Majors (Exxon, Shell, Gulf, Mobil, Socal, Texaco, and BP). The period covered for each company begins at its origin, generally near 1900, and concludes in 1976. This study documents and analyzes all the major components of the long-term strategies of these companies since their origins. The policy components of each company's strategy are classified into six categories where major changes have occurred in the growth of the large-scale firm. These policy categories are geographic exapansion, size/scale of operations, vertical integration, horizontal combination, product and industry diversification, and administrative structure. With each category, policies can be compared between firms and overtime to illustrate similarities, differences, and changes in strategy. The main results are discussed.

  18. Performance Profiles of Major Energy Producers

    Reports and Publications (EIA)

    2011-01-01

    The information and analyses in Performance Profiles of Major Energy Producers is intended to provide a critical review, and promote an understanding, of the possible motivations and apparent consequences of investment decisions made by some of the largest corporations in the energy industry.

  19. QER- Comment of Neal Major Jameson

    Broader source: Energy.gov [DOE]

    It has come to my attention that the Shale Gas Tennessee Pipeline is proposed to pass through several different protected properties in Massachusetts. This is an outrage. Such a pipeline, I feel, is questionable in the best of circumstances, but to run the risk of passing it through several pristine properties is a risk that should not, in good conscience, be considered. I am asking that you please reconsider the proposed course for this pipeline. Sincerely, Neal Major Jameson

  20. Major Demonstrations | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Contract Solicitation Sandia National Laboratories (M&O) Contract Competition National Security Campus M&O Contract Competition Pantex Plant Wind Farm Acquisition Y-12 National Security Complex, Pantex Plant, with Option for Savannah River Tritium Operations Management and Operating (M&O) Contract Competition NNSA Pantex/Y-12 National Security Complex and DOE Oak Ridge Office Consolidated Protective Force Services Emergency Operations Training Academy (EOTA) Support Service

  1. Major Contract Solicitation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Major Contract Solicitation Current and future contract solicitations Design, Integration, Construction, Communications and Engineering (DICCE) 2 Contract Los Alamos National Laboratory Steam Plant Project Nevada National Security Site Management and Operating (M&O) Contract Competition Sandia National Laboratories (M&O) Contract Competition Past contract solicitations: National Security Campus M&O Contract Competition Related Topics apm contracting contracts Related News Sandia

  2. EM Major Contracts Awarded Since 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM's major contracts PDF icon Awarded Major Contracts Since 2006 More Documents & Publications Major Contracts Summary Service Contract Inventory Acquisition Forecast Download

  3. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

  4. Performance profiles of major energy producers, 1997

    SciTech Connect (OSTI)

    1999-01-01

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  5. Major marine source rocks and stratigraphic cycles

    SciTech Connect (OSTI)

    Duval, B.C.

    1995-11-01

    The identification of continental encroachment cycles and subcycles by using sequence stratigraphy can assist explorationists in locating source rocks. The continental encroachment cycles are associated with the breakup of the supercontinents and fit a smooth long-term eustatic curve. They are first order, with a duration greater than 50 m.y., and are composed of transgressive and regressive phases inducing major changes in shoreline. The limit between the transgressive and regressive phases corresponds to a major downlap surface, and major marine source rocks are often found in association with this surface, particularly in the northern hemisphere. Potential {open_quotes}secondary{close_quotes} source rock intervals can also be sought by sequence stratigraphy because each continental encroachment cycle is composed of several subcycles, and the same configuration of a regressive forestepping phase overlying a transgressive backstepping phase also creates a downlap surface that may correspond with organic-rich intervals. The stratigraphic distribution of source rocks and related reserves fits reasonably well with continental encroachment cycles and subcycles. For instance, source rocks of Silurian, Upper Jurassic, and Middle-Upper Cretaceous are associated with eustatic highs and bear witness to this relationship. The recognition and mapping of such downlap surfaces is therefore a useful step to help map source rocks. The interpretation of sequence stratigraphy from regional seismic lines, properly calibrated with geochernical data whenever possible, can be of considerable help in the process. Several examples from around the world illustrate the power of the method: off-shore of eastern Venezuela, coastal basin of Angola, western Africa, the North Sea, south Algeria, and the North Caucasian trough.

  6. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  7. Office of Environmental Management MAJOR CONTRACTS SUMMARY

    Office of Environmental Management (EM)

    Environmental Management MAJOR CONTRACTS SUMMARY As of 5/16/2016 Site Contractor Contract # Current Contract Period Total Value Contract Description Contract Type Carlsbad Field Office Nuclear Waste Partnership, LLC DE-EM0001971 Base Period 10/01/12 - 9/30/17 $1.42B Waste Isolation Pilot Project Management and Operating Contract Cost plus award fee 1-Yr Option 10/01/17 - 9/30/18 4-Yr Option 10/01/18-9/30/22 Portage, Inc. DE-EM0004007 Base Period 1/02/16 - 1/01/19 $42.4M Carlsbad Technical

  8. Major Communications Report May 28, 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 28, 2009 Major Communications Report May 28, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of May 28, 2009. Office spreadsheet icon DOE_Major_Communications_05282009.xls More Documents & Publications Major Communications Report May 5, 2009 Major Communications Report April 17

  9. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-01-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  10. Selecting major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

    1992-06-01

    Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

  11. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

  12. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  13. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Association of Petroleum Geologists, for presentation at the 2004 annual meeting in Dallas, Texas. Another abstract was submitted for consideration on basin-wide correlation of Green River Formation plays and subplays in the Uinta Basin in Utah. The project home page was updated on the Utah Geological Survey Internet web site.

  14. Major Communications Report April 28, 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28, 2009 Major Communications Report April 28, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of April 28, 2009. Office spreadsheet icon DOE_Major_Communications_04282009.xls More Documents & Publications Major Communications Report April 17, 2009 Major Communications Report May 5, 2009 Major Communications Report April 30

  15. Major Communications Report April 30, 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30, 2009 Major Communications Report April 30, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of April 30, 2009. Office spreadsheet icon DOE_Major_Communications_04302009.xls More Documents & Publications Major Communications Report April 17, 2009 Major Communications Report May 5, 2009 Major Communications Report April 28

  16. Major Communications Report May 5, 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2009 Major Communications Report May 5, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of May 5, 2009. Office spreadsheet icon DOE_Major_Communications_05052009.xls More Documents & Publications Major Communications Report April 17, 2009 Major Communications Report April 30, 2009 Major Communications Report April 28

  17. Major Communications Report May 7, 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7, 2009 Major Communications Report May 7, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of May 7, 2009. Office spreadsheet icon DOE_Major_Communications_05072009.xls More Documents & Publications Major Communications Report April 17, 2009 Major Communications Report May 5, 2009 Major Communications Report April 30

  18. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) Absaroka thrust - Paleozoic-cored structures. The Mesozoic-cored structures subplay represents a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in this subplay produce crude oil and associated gas. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplay. It represents a very continuous and linear, hanging wall, ramp anticline where the Twin Creek is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in both subplays consist of long, narrow, doubly plunging anticlines.

  19. Performance profiles of major energy producers 1995, January 1997

    SciTech Connect (OSTI)

    1997-02-01

    This publication examines developments in the operations of the major U.S. energy-producing companies on a corporate level, by major line of business, by major function within each line of business, and by geographic area.

  20. Obama Administration Announces Major Step Forward for the American...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Step Forward for the American Centrifuge Plant Obama Administration Announces Major Step ... Chu announced today that the Obama Administration reached a major milestone in its ...

  1. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office ...

  2. EO 12114: Environmental Effects Abroad of Major Federal Actions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12114 Environmental Effects Abroad of Major Federal Actions: Final Guideline (DOE, 1981) Unified Procedures Applicable to Major Federal Actions Relating to Nuclear Activities ...

  3. Environmental Effects Abroad of Major Federal Actions (CEQ, 1979...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of Executive Order 12114 Environmental Effects Abroad of Major Federal Actions: Final Guideline (DOE, 1981) EO 12114: Environmental Effects Abroad of Major Federal ...

  4. Financial News for Major Energy Companies, April - June 2004

    Gasoline and Diesel Fuel Update (EIA)

    ... Chemical Operations Higher margins and sales volumes boost earnings of the majors' chemical operations. Earnings from the majors' chemical operations were 84 percent higher in Q204 ...

  5. Primer on Clean Energy Lending: The Major Components and Options...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Primer on Clean Energy Lending: The Major Components and Options Primer on Clean Energy Lending: The Major Components and Options PDF icon Chapter 1: Primer on Clean Energy...

  6. Financial News for Major Energy Companies, Second Quarter 2006

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Second Quarter 2006 Overview The "Financial News for Major Energy Companies" is issued quarterly to report recent trends in the financial performance of the major energy ...

  7. Financial News for Major Energy Companies, Third Quarter 2006

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Third Quarter 2006 Overview The "Financial News for Major Energy Companies" is issued quarterly to report recent trends in the financial performance of the major energy companies. ...

  8. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  9. Major Communications Report February 23, 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 23, 2009 Major Communications Report February 23, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of February 23, 2009. Office spreadsheet icon DOE_Major_Communications_022

  10. Major Communications Report March 13, 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13, 2009 Major Communications Report March 13, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of March 13, 2009. Office spreadsheet icon DOE_Major_Communications_0313

  11. Major Communications Report March 24, 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    24, 2009 Major Communications Report March 24, 2009 This file includes the Department of Energy's major announcements regarding the Recovery Act such as press releases, videos, press events or other major communications for the week of March 24, 2009. Office spreadsheet icon DOE_Major_Communications_0324

  12. PIA - WEB Physical Security Major Application | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physical Security Major Application PIA - WEB Physical Security Major Application PIA - WEB Physical Security Major Application PDF icon PIA - WEB Physical Security Major Application More Documents & Publications PIA - WEB Unclassified Business Operations General Support System Occupational Medical Surveillance System (OMSS) PIA, Idaho National Laboratory PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009

  13. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge |

    Energy Savers [EERE]

    Biomass Program Major DOE Biofuels Project Locations in the United States PDF icon Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Major DOE Biofuels Project Locations Algal Biofuel Technologies

    Slide 1 The Current State of Technology for Cellulosic Ethanol

    Algal Biofuel Technologies Slide 1

    101 Major Program Offices Doing Business with... Energy Efficiency and Renewable Energy Office of Environmental Management

  14. U.S. Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland ... Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio ...

  15. U.S. Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New ...

  16. Rhode Island Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    4,837 6,216 7,643 6,847 8,611 7,986 2001-2016 Residential 385 1,038 1,591 1,903 3,421 2,876 1989-2016 Commercial 244 624 1,007 1,106 2,008 1,770 1989-2016 Industrial 694 683 704 750 730 799 2001-2016 Vehicle Fuel 7 7 7 7 8 7 2010-2016 Electric Power 3,507 3,864 4,334 3,081 2,443 2,533

  17. South Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    20,307 22,863 25,780 24,364 28,082 23,581 2001-2016 Residential 542 1,020 2,345 2,982 6,837 5,615 1989-2016 Commercial 1,380 1,827 2,136 1,907 3,896 3,003 1989-2016 Industrial 6,616 7,238 7,342 7,873 7,803 7,191 2001-2016 Vehicle Fuel 2 2 2 2 2 2 2010-2016 Electric Power 11,768 12,777 13,955 11,601 9,544 7,772

  18. South Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    4,529 4,893 6,660 8,123 9,012 7,556 2001-2016 Residential 226 473 1,162 1,996 2,371 1,689 1989-2016 Commercial 315 571 1,127 1,564 1,995 1,376 1989-2016 Industrial 3,469 3,452 3,849 3,907 4,111 3,866 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 519 396 521 656 535 625

  19. West Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    914 6,180 6,835 NA 12,049 10,209 2001-2016 Residential 387 1,242 2,132 2,485 5,340 4,215 1989-2016 Commercial 1,107 1,547 1,923 2,034 3,648 3,015 1989-2016 Industrial 1,677 1,849 2,014 NA 2,842 2,743 2001-2016 Vehicle Fuel 1 1 1 1 1 1 2010-2016 Electric Power 1,742 1,541 765 522 219 236

  20. New Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    41,194 241,137 246,418 243,961 245,502 246,178 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 49,655 49,070 47,556 47,696 47,018 49,406 1983-2014 Plant Fuel 36,827 35,289...

  1. U.S. Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  2. Energy End-Use Intensities in Commercial Buildings 1992 - Index...

    U.S. Energy Information Administration (EIA) Indexed Site

    Author Contact: Joelle.Michaels@eia.doe.gov Joelle Michaels CBECS Survey Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbecs1d.html separater bar...

  3. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  4. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Active Solar: As an energy source, energy from the sun collected and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the...

  5. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Energy Use in Commercial Buildings The purpose of this section is to provide an overview of how energy was used in commercial buildings. Focusing on 1989 buildings, the section...

  6. ,"South Carolina Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 35139,,3741,2190 35170,,2996,1884 35200,,954,1154 35231,,547,997 ... 35626,,517,989 35657,,449,1004 35688,,471,1884 35718,,637,1167 35749,,2424,1757 ...

  7. District of Columbia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    ,072 1,740 2,437 2,907 5,148 4,776 2001-2016 Residential 253 520 911 1,335 2,524 2,285 1989-2016 Commercial 736 1,135 1,443 1,487 2,528 2,405 1989-2016 Industrial 0 0 0 0 0 0 2001-2016 Vehicle Fuel 83 86 83 86 95 86 2010-2016 Electric Power -- -- -- -- -- --

  8. South Dakota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  9. District of Columbia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  10. New York Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  11. Rhode Island Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  12. West Virginia Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  13. North Dakota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  14. North Carolina Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  15. New Jersey Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  16. North Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  17. New Hampshire Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  18. Louisiana Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  19. Mississippi Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  20. New Mexico Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    09,709 554,352 574,557 608,490 621,430 669,923 1984-2014 Residential 55 46 37 27 72 53 1984-2014 Commercial 11,030 9,435 9,609 9,145 9,112 12,114 1984-2014 Industrial 33,804 24,429 27,110 31,316 32,029 32,917 1984-2014 Oil Company 9,871 1,705 2,127 5,857 11,218 27,016 1984-2014 Farm 11,278 14,821 10,955 12,816 15,784 11,752 1984-2014 Electric Power 4,321 4,000 1,689 5,155 4,816 3,826 1984-2014 Railroad 245 1,780 1,707 19,123 38,543 45,446 1984-2014 Vessel Bunkering 0 0 0 0 0 0 1984-2014

  1. New York Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    20,336 33,321 1989-2015 Commercial 12,774 14,178 14,539 13,736 18,646 24,042 1989-2015 Industrial 5,333 5,249 5,770 5,562 6,203 6,620 2001-2015 Vehicle Fuel 305 331 331 320...

  2. Alternative Strategies for Low-Pressure End Uses; Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IOF focuses on the following eight energy and resource intensive industries: * Aluminum * Forest Products * Metal Casting * Petroleum * Chemicals * Glass * Mining * Steel The ...

  3. End Use and Fuel Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Market Opportunities High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super ...

  4. Energy End-Use Intensities in Commercial Buildings1995 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The...

  5. Energy End-Use Intensities in Commercial Buildings1995 -- Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    model using survey data from the 1995 commercial buildings energy consumption survey and building energy simulations provided by the Facility Energy Decision Screening system....

  6. Alabama Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  7. Florida Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    840,100 2,027,012 1,914,621 1,918,039 2,023,650 2,038,923 1984-2014 Residential 1,551 1,820 1,085 572 451 728 1984-2014 Commercial 126,292 113,313 100,791 104,860 113,873 110,082 1984-2014 Industrial 36,512 43,088 35,652 32,087 31,458 42,894 1984-2014 Oil Company 236 2,255 4,038 4,359 4,427 3,802 1984-2014 Farm 86,642 204,866 109,177 103,325 122,563 98,418 1984-2014 Electric Power 31,161 43,675 35,577 16,137 16,244 12,182 1984-2014 Railroad 33,651 42,353 46,461 66,711 93,844 92,435 1984-2014

  8. Energy Information Administration - Table 2. End Uses of Fuel...

    Gasoline and Diesel Fuel Update (EIA)

    -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry...

  9. New Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    10,219 10,795 14,369 19,223 19,201 15,207 2001-2016 Residential 854 1,282 3,863 6,379 6,677 4,728 1989-2016 Commercial 1,106 1,689 3,294 4,321 3,911 3,120 1989-2016 Industrial 1,348 1,479 1,616 1,575 1,730 1,461 2001-2016 Vehicle Fuel 15 16 15 16 17 16 2010-2016 Electric Power 6,895 6,330 5,581 6,933 6,866 5,881

  10. North Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    5,685 35,342 43,008 NA 60,449 55,952 2001-2016 Residential 1,121 2,814 6,342 7,028 16,311 13,029 1989-2016 Commercial 3,004 4,282 5,548 NA 10,328 8,034 1989-2016 Industrial 7,974 9,044 8,911 9,049 10,520 10,075 2001-2016 Vehicle Fuel 7 7 7 7 8 7 2010-2016 Electric Power 23,579 19,195 22,200 22,474 23,283 24,806

  11. Driving Biofuels End Use: BETO/VTO Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Engine + Realistic Fuels GEFORCE - Near term technology exploration 6 6 | Vehicle Technologies Program Efficiency Through Biofuels Biofuel blends enhance ...

  12. Table 5.5 End Uses of Fuel Consumption, 2010;

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Drive -- 347,224 * 5 116 1 * -- Electro-Chemical Processes -- 55,414 -- -- -- -- -- -- ... Drive -- 33,354 * * 5 * 0 -- Electro-Chemical Processes -- 5,538 -- -- -- -- -- -- ...

  13. Table 5.6 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive -- 1,185 * 28 120 3 1 -- Electro-Chemical Processes -- 189 -- -- -- -- -- -- Other ... Drive -- 114 * 2 5 * 0 -- Electro-Chemical Processes -- 19 -- -- -- -- -- -- Other ...

  14. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive -- 347,224 * 5 116 1 * -- Electro-Chemical Processes -- 55,414 -- -- -- -- -- -- ... Drive -- 32,764 * * 4 * * -- Electro-Chemical Processes -- 158 -- -- -- -- -- -- Other ...

  15. Table 5.4 End Uses of Fuel Consumption, 2010;

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Machine Drive 1,454 * 28 120 3 1 Electro-Chemical Processes 263 -- -- -- -- -- Other ... * 0 Machine Drive 124 * * 4 * * Electro-Chemical Processes 1 -- -- -- -- -- Other Process ...

  16. Table 5.3 End Uses of Fuel Consumption, 2010;

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Drive 426,121 * 5 116 1 * Electro-Chemical Processes 77,146 -- -- -- -- -- Other ... 0 Machine Drive 36,373 * * 4 * * Electro-Chemical Processes 159 -- -- -- -- -- Other ...

  17. Table 5.7 End Uses of Fuel Consumption, 2010;

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Drive 426,121 * 5 116 1 * Electro-Chemical Processes 77,146 -- -- -- -- -- Other ... 0 Machine Drive 40,701 * * 5 * 0 Electro-Chemical Processes 5,597 -- -- -- -- -- Released: ...

  18. Table 5.8 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    Machine Drive 1,454 * 28 120 3 1 Electro-Chemical Processes 263 -- -- -- -- -- Other ... * 0 Machine Drive 139 * 2 5 * 0 Electro-Chemical Processes 19 -- -- -- -- -- Other ...

  19. Table 5.2 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Drive -- 1,185 * 28 120 3 1 -- Electro-Chemical Processes -- 189 -- -- -- -- -- -- Other ... Drive -- 112 * * 4 * * -- Electro-Chemical Processes -- 1 -- -- -- -- -- -- Other ...

  20. New Hampshire Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA 5,978 NA 2001-2016 Residential 148 242 657 854 1,334 1,136 1989-2016 Commercial 232 377 823 1,017 1,584 1,320 1989-2016 Industrial NA NA NA NA 856 NA 2001-2016 Vehicle Fuel 6 6 6 6 7 6 2010-2016 Electric Power 3,922 3,375 3,795 2,706 2,196 1,145

  1. CBECS 1989 - Energy End-use Intensities in Commercial Buildings...

    U.S. Energy Information Administration (EIA) Indexed Site

    the sampling error is nonzero and unknown for the particular sample chosen, the sample design permits sampling errors to be estimated. Due to the complexity of the sample design,...

  2. Energy End-Use Intensities in Commercial Buildings 1989 data...

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey. Divider Bar To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  3. Energy End-Use Intensities in Commercial Buildings 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey. divider line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  4. Distribution Category UC-98 Consumption End-Use A Comparison...

    U.S. Energy Information Administration (EIA) Indexed Site

    buildings) as well as a list of large buildings in each metropolitan area. MECS is based upon a comprehensive list of manufactures that is maintained by the Census Bureau for...

  5. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Blog en EnergyPlus Logo Debuts on Revit Toolbar http:energy.goveerebuildingsarticlesenergyplus-logo-debuts-revit-toolbar

  6. Texas Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    ,329,790 5,693,270 6,373,078 6,688,629 6,914,481 7,837,118 1984-2014 Residential 67 28 127 102 16 59 1984-2014 Commercial 136,419 100,886 184,312 173,303 142,268 132,601 1984-2014 ...

  7. South Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline & Distribution Use 3,452 3,408 3,416 2,529 2,409 1997-2014 Volumes Delivered to Consumers 216,783 226,089 241,434 229,768 229,454 270,546 1997-2015 Residential 32,430 ...

  8. New Jersey Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential 219,141 213,630 191,371 226,195 247,742 237,164 1967-2015 Commercial 181,480 ... Vehicle Fuel 150 191 191 195 229 222 1988-2015 Electric Power 199,059 199,594 226,469 ...

  9. Biogas end-use in the European community

    SciTech Connect (OSTI)

    Constant, M.; Naveau, H.; Nyns, E.J. ); Ferrero, G.L.

    1989-01-01

    In Europe over the past few years the generation of biogas for energy and environmental purposes has been gaining in importance. Industrial wastewaters, cattle manure, sewage sludges, urban wastes, crop residues, algae and aquatic biomass are all typical of the materials being utilized. In contrast to the extensive inventory of biomethanation processes which has been carried out within the EEC, until recently a detailed, up-to-date investigation of the end-sues of biogas had not been undertaken. To supply the necessary information, the Commission of the European Communities and the Belgian Science Policy Office jointly entrusted a study to the Unit of Bioengineering at the Catholic University of Louvain, Belgium. This book is record of the study and has the following key features: it gives a broad overview of the ongoing use of biogas in Europe; it summarizes available data on storage, purification and engines using biogas; it draws several conclusions concerning the technical and economic viability of the processes; it discusses the problems of using biogas; and it outlines recommendations and future R and D and demonstration projects in the field.

  10. End-Use Intensity in Commercial Buildings 1992 (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 9 21 5 64 1 9 Food Service . . . . . . . . . . . . . . 307 43 53 9 37 28 116 17 1 5 Health Care . . . . . . . . . . . . . . . 403 88 32 11 128 52 30 6 15 41 Lodging . . . . . ....

  11. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  12. Energy End-Use Intensities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the building. Examples include the use of solar collectors for water...

  13. ,"North Carolina Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    34380,,9487,6269 34408,,6623,4727 34439,,3521,2761 34469,,1704,1844 34500,,1206,1605 34530,,866,1487 34561,,806,1647 34592,,903,1831 34622,,1568,2115 34653,,3655,2817 ...

  14. U.S. Adjusted Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  15. U.S. Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  16. ,"South Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 37909,2054,590,533,836,,95 37940,3715,1464,1166,995,,90 37970,4455,1929,1485,988,,54 38001,5515,2506,1871,1023,,115 38032,4940,2214,1653,1049,,24 ...

  17. Refining and end use study of coal liquids

    SciTech Connect (OSTI)

    Choi, G.

    1998-05-01

    A conceptual design and ASPEN Plus process flowsheet simulation model was developed for a Battelle biomass-based gasification, Fischer-Tropsch (F-T) liquefaction and combined-cycle power plant. This model was developed in a similar manner to those coal liquefaction models that were developed under DOE contract DE-AC22-91PC90027. As such, this process flowsheet simulation model was designed to be a research guidance tool and not a detailed process design tool. However, it does contain some process design features, such as sizing the F-T synthesis reactors. This model was designed only to predict the effects of various process and operating changes on the overall plant heat and material balances, utilities, capital and operating costs.

  18. 1999 Commercial Buildings Characteristics--End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Cooling Equipment Packaged air conditioning units were the predominant type of cooling...

  19. Gulf of Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View ...

  20. Vehicle Technologies Office: Biofuels End-Use Research | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of biofuels with internal combustion engines. This work includes: Developing detailed kinetic reaction models to better describe components of advanced biofuels and then testing ...

  1. ,"New Jersey Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,20576,14730,6914,,10275 38122,39871,8867,9693,5860,,15451 38153,33708,6026,8360,5823,,13500 38183,33345,5433,7004,5549,,15358 38214,34799,5428,7656,5364,,16351 ...

  2. Y-12 fulfills major milestone in fuel conversion commitment for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fulfills major ... Y-12 fulfills major milestone in fuel conversion commitment for Jamaican research reactor Posted: June 3, 2014 - 4:42pm The Y-12 National Security Complex...

  3. Disruption of Hydrogen Bonds between Major Histocompatibility Complex Class

    Office of Scientific and Technical Information (OSTI)

    II and the Peptide NTerminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II (Journal Article) | SciTech Connect Disruption of Hydrogen Bonds between Major Histocompatibility Complex Class II and the Peptide NTerminus Is Not Sufficient to Form a Human Leukocyte Antigen-DM Receptive State of Major Histocompatibility Complex Class II Citation Details In-Document Search Title: Disruption of Hydrogen Bonds between Major

  4. Major Risk Factors to the Integrated Facility Disposition Project |

    Energy Savers [EERE]

    Department of Energy to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). PDF icon Major Risk Factors to the Integrated Facility Disposition Project More Documents & Publications Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

  5. TOMORROW: Secretaries Chu and Salazar to Make Major Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announcement | Department of Energy Secretaries Chu and Salazar to Make Major Renewable Energy Announcement TOMORROW: Secretaries Chu and Salazar to Make Major Renewable Energy Announcement December 15, 2010 - 12:00am Addthis WASHINGTON, DC --- Secretary of Energy Steven Chu and Secretary of the Interior Ken Salazar will hold a news media teleconference tomorrow, Thursday, December 16, 2010 to make a major announcement regarding renewable energy development on public lands in the West.

  6. Fuel Cell Technologies Office Reaches Major Patent Milestone | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel Cell Technologies Office Reaches Major Patent Milestone Fuel Cell Technologies Office Reaches Major Patent Milestone January 9, 2015 - 10:01am Addthis Fuel Cell Technologies Office Reaches Major Patent Milestone Sunita Satyapal Director, Fuel Cell Technologies Office Fuel cells are an emerging technology that can provide heat and electricity to buildings and power for vehicles while emitting nothing but water. To bring more high-impact fuel cell innovations to the marketplace,

  7. Thirteen Major Companies Join Energy Department's Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge | Department of Energy Major Companies Join Energy Department's Workplace Charging Challenge Thirteen Major Companies Join Energy Department's Workplace Charging Challenge January 31, 2013 - 11:38am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Energy Secretary Steven Chu announced 13 major U.S. employers and eight stakeholder groups have joined the new Workplace Charging Challenge to help expand access to workplace charging stations for American workers across the

  8. Environmental Effects Abroad of Major Federal Actions (CEQ, 1979) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Environmental Effects Abroad of Major Federal Actions (CEQ, 1979) Environmental Effects Abroad of Major Federal Actions (CEQ, 1979) On January 4, 1979, President Carter signed Executive Order 12114, entitled Environmental Effects of Major Federal Actions. The purpose of this Council on Environmental Quality memorandum is to initiate the consultation process required by this Executive Order. PDF icon 44 Fed Reg 18633: Council on Environmental Quality: Environmental

  9. DOE Announces Major Expansion of Crowdsourcing Initiative for Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Announces Major Expansion of Crowdsourcing Initiative for Building Technologies DOE Announces Major Expansion of Crowdsourcing Initiative for Building Technologies April 12, 2016 - 1:30pm Addthis Join our online community to learn about industry challenges, share ideas, and discuss solutions. Join our online community to learn about industry challenges, share ideas, and discuss solutions. The U.S. Department of Energy today announced a major expansion of

  10. Radioactive Waste Issues in Major Nuclear Incidents | Department of Energy

    Energy Savers [EERE]

    Radioactive Waste Issues in Major Nuclear Incidents Radioactive Waste Issues in Major Nuclear Incidents S.Y. Chen*, Illinois Institute of Technology Abstract: Large amounts of radioactive waste had been generated in major nuclear accidents such as the Chernobyl nuclear accident in Ukraine of 1986 and the recent Fukushima nuclear accident in Japan of 2011. The wastes were generated due to the accidental releases of radioactive materials that resulted in widespread contamination throughout the

  11. List of Major Information Systems,National Nuclear Security Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADaPT Networked: | Department of Energy List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems, Defense Line of Business National Nuclear Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear

  12. Salazar, Chu Announce Major Offshore Wind Initiatives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Major Offshore Wind Initiatives Salazar, Chu Announce Major Offshore Wind Initiatives February 7, 2011 - 12:00am Addthis NORFOLK, VA - Unveiling a coordinated strategic plan to accelerate the development of offshore wind energy, Secretary of the Interior Ken Salazar and Secretary of Energy Steven Chu today announced major steps forward in support of offshore wind energy in the United States, including new funding opportunities for up to $50.5 million for projects that support offshore

  13. Financial News for Major Energy Companies, Fourth Quarter 2005

    Gasoline and Diesel Fuel Update (EIA)

    Fourth Quarter 2005 Overview The "Financial News for Major Energy Companies" is issued quarterly to report recent trends in the financial performance of the major energy companies. These include the respondents to Form EIA-28 (Financial Reporting System (FRS)), with the exception of the FRS companies that do not issue quarterly earnings releases or fail to provide separate information for the company's U.S. operations. Twenty-one major energy companies 1 reported overall net income

  14. Financial News for Major Energy Companies, October - December 2004

    Gasoline and Diesel Fuel Update (EIA)

    The "Financial News for Major Energy Companies" is issued quarterly to report recent trends in the financial performance of the major energy companies. These include the respondents to Form EIA-28 (Financial Reporting System (FRS)), with the exception of the FRS companies that do not issue quarterly earnings releases or fail to provide separate information for the company's U.S. operations. Twenty-three major energy companies reported overall net income (excluding unusual items) of

  15. Chu, Salazar to Announce Major Offshore Wind Energy Initiatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chu, Salazar to Announce Major Offshore Wind Energy Initiatives Chu, Salazar to Announce Major Offshore Wind Energy Initiatives February 4, 2011 - 12:00am Addthis NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. WHAT: Offshore Wind Energy News Conference WHEN: Monday, February 7, 11:00 AM

  16. Energy Department Announces Major Milestones for Decatur, Ill. Clean Coal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Major Milestones for Decatur, Ill. Clean Coal Project Energy Department Announces Major Milestones for Decatur, Ill. Clean Coal Project September 19, 2012 - 1:00pm Addthis Washington, DC - Today, the U.S. Energy Department marked two important milestones in the Illinois Industrial Carbon Capture and Storage (ICCS) project in Decatur, Illinois, a major clean coal project and the Department's first large-scale industrial carbon capture and storage demonstration

  17. Obama Administration Takes Major Step toward Advanced Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama Administration Takes Major Step toward Advanced Vehicles with New Fleet Management ... In conjunction with the Memorandum, the General Services Administration (GSA) today ...

  18. Obama Administration Officials to Announce Major Steps toward...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major Steps toward Federal Advanced Vehicle Fleet Obama Administration Officials to ... Martha Johnson, Administrator, U.S. General Services Administration Nancy Sutley, Chair, ...

  19. Major Effects in the Thermodynamics of Detonation Products: Phase...

    Office of Scientific and Technical Information (OSTI)

    Water (Hsub 2O) and nitrogen (Nsub 2) are major detonation products of high explosives ... enough temperatures and pressures to influence detonation properties of common explosives. ...

  20. Genealogy of Major U.S. Oil and Gas Producers

    Reports and Publications (EIA)

    2007-01-01

    Summarizes the mergers and acquisitions of the U.S. major oil companies that have occurred, in some cases, over approximately the last 20 years.

  1. Environmental Effects Abroad of Major Federal Actions | Department...

    Broader source: Energy.gov (indexed) [DOE]

    4, 1979, President Carter signed Executive Order 12114, entitled Environmental Effects of Major Federal Actions. The purpose of this Council on Environmental Quality memorandum is...

  2. Recovery Act Investment Wraps Up, Delivering Major Benefits to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivering Major Benefits to the Nation October 5, 2015 - 3:21pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy...

  3. Dating of major normal fault systems using thermochronology-...

    Open Energy Info (EERE)

    Dating of major normal fault systems using thermochronology- An example from the Raft River detachment, Basin and Range, western United States Jump to: navigation, search OpenEI...

  4. Financial News for Major Energy Companies, July - September 2004

    Gasoline and Diesel Fuel Update (EIA)

    ... the three companies that reported decreased earnings relative to Q303. Chemical Operations * Higher margins and sales volumes boosted earnings of the majors' chemical operations. ...

  5. Financial News for Major Energy Companies, January - March 2004

    Gasoline and Diesel Fuel Update (EIA)

    ... Chemical Operations Earnings of the majors' chemical operations increased substantially relative to a year ago, mostly due to higher margins and reduced operating costs. The ...

  6. Financial News for Major Energy Companies, July - September 2003

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Chemical Operations Earnings of the majors' chemical operations decrease in total, as company results were consistently lower than a year ago, mostly due to higher feedstock ...

  7. Financial News for Major Energy Producers, Third Quarter 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... worldwide gas and power, and worldwide chemical operations) generated higher earnings in ... Worldwide chemical operations generated 46 percent higher earnings for the majors in Q310 ...

  8. DOE Announces Major Expansion of Crowdsourcing Initiative for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Department of Energy today announced a major expansion of its distinctive online crowdsourcing community for building technologies. Seeking to draw on the creativity and ...

  9. Unified Procedures Applicable to Major Federal Actions Relating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Subject to Executive Order 12114 (State Department, 1979) Unified Procedures Applicable to Major Federal Actions Relating to Nuclear Activities Subject to Executive Order 12114 ...

  10. Major Projects with Quick Starts & Jobs Creation Office of Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Major Projects with Quick Starts & Jobs Creation Office of Clean Coal Summary of Projects ... Carbon dioxide capture and storage (CCS) is a technology that is indispensable in ...

  11. Nonproliferation Uncertainties, a Major Barrier to Used Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Barrier to Used Nuclear Fuel Recycle in the United States Citation Details In-Document Search Title: Nonproliferation Uncertainties, a Major Barrier to Used Nuclear Fuel Recycle in ...

  12. AUDIT REPORT Cybersecurity Controls Over a Major National Nuclear...

    Broader source: Energy.gov (indexed) [DOE]

    FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report: "Cybersecurity Controls Over a Major National Nuclear Security Administration Information System"...

  13. Major Facility Siting Program - Circular 2 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Major Facility Siting Program - Circular 2PermittingRegulatory...

  14. Energy Department Awards First Major Task Order Under Streamlined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up ...

  15. Major Process Revision of WP&C - Lessons Learned | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Hazard AnalysisControl Subject Matter Expert Involvement Expectations for Workers Lessons Learned Major Process Revision of WP&C - Lessons Learned More Documents &...

  16. Achievements by The Department of Energy's Other Major Laboratories...

    Office of Scientific and Technical Information (OSTI)

    Major Labs and Facilities Top Savannah River Ecology Laboratory (SREL) Overview of SREL SREL Research Snapshots Savannah River Ecology Laboratory Annual Technical Progress Report ...

  17. History by The Department of Energy's Other Major Laboratories...

    Office of Scientific and Technical Information (OSTI)

    Listing of Major Labs and Facilities Top Savannah River Ecology Laboratory (SREL) Institute of Ecology-Associated Facilities The National Environmental Research Park at ...

  18. SOC-Los Alamos and major subcontractors support northern New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos and major subcontractors support northern New Mexico Currently offered Industry Cluster Development Grants are latest funding initiative October 1, 2014 SOC-Los Alamos' Jack...

  19. Financing Vogtle: A Major Achievement for the Loan Programs Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vogtle: A Major Achievement for the Loan Programs Office Financing Vogtle: A Major Achievement for the Loan Programs Office June 24, 2015 - 12:01pm Addthis Financing Vogtle: A Major Achievement for the Loan Programs Office Peter W. Davidson Peter W. Davidson Former Executive Director of the Loan Programs Office (LPO) What does this project do? The Vogtle project is the first new nuclear power plant to be licensed and begin construction in the U.S. in more than three

  20. Genealogy of major U.S. refiners - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    See full Genealogy of Major U.S. Refiners Previous Release Genealogy of Major U.S. Refiners Genealogy of Major U.S. Refiners Release date: September 18, 2013 figre 1. World energy consumption, 1990-2040. The structure of the U.S. petroleum refining industry has changed substantially over the past several years. In the diagram the companies shown on the right side are presently active in U.S. refining. The transactions over the past 25 years that created these companies also are shown. The

  1. Financial News for Major Energy Companies, October - December 2001

    Gasoline and Diesel Fuel Update (EIA)

    Financial News for Major Energy Companies Twenty-two major energy companies reported overall net income (excluding unusual items) of $4.6 billion during the fourth quarter of 2001 (Q401). The level of net income represented a 65-percent decline relative to the fourth quarter of 2000 (Q400) (Table 1). The majors' foreign upstream oil and natural gas production operations made the largest contribution to overall net income in Q401 at $2.0 billion (Table 1), with domestic upstream oil and natural

  2. Secretary Chu and Senator Reid to Make Major Energy Announcement...

    Broader source: Energy.gov (indexed) [DOE]

    D.C. - U.S. Secretary Steven Chu and U.S. Senator Harry Reid will host a press conference call today, Tuesday, February 15 at 4:00 pm EST to make a major funding announcement...

  3. Nevada Strengthens Electric Vehicle Infrastructure on Major U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Infrastructure on Major U.S. Highway December 15, 2015 - 3:55pm Addthis Paul Thomsen, Director of the Nevada Governors Office of Energy, announces the new...

  4. Other Major Litigation of Direct Interest to DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 4, 2008 Other Major Litigation of Direct Interest to DOE Entergy Corporation v. EPA; PSEG Fossil LLC v. Riverkeeper, Inc.; Utility Water Group v. Riverkeeper, Inc., S. Ct. ...

  5. Paper on "Other Major Litigation of Direct Interest to DOE"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The claims in one of the cases, E.I. DuPont de Nemours & Co. v. Stanton, are briefly ... Other Major Litigation of Direct Interest to DOE Entergy Corporation v. EPA; PSEG Fossil ...

  6. MAJOR FOREST COMMUNITY TYPES OF THE SAVANNAH RIVER PLANT: AFIELD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAJOR FOREST COMMUNITY TYPES OF THE SAVANNAH RIVER PLANT: AFIELD GUIDE BY STEVEN M. JONES, DAVID H. VAN LEAR, AND S. KNIGHT COX JULY 1981 l1Research Forester, Professor, and ...

  7. EM Aims for Major Accomplishments in 2013 Budget Request | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis EM Aims for Major Accomplishments in 2013 Budget Request WASHINGTON, D.C. - Today EM Acting Assistant Secretary David Huizenga rolled out EM's 5.65 billion budget request ...

  8. Better Buildings Challenge SWAP Teams with Industry for Major Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings | Department of Energy Challenge SWAP Teams with Industry for Major Energy Savings Better Buildings Challenge SWAP Teams with Industry for Major Energy Savings February 17, 2016 - 3:36pm Addthis In Better Buildings Challenge SWAP, Hilton Worldwide and Whole Foods Market swap energy teams to learn from each other and produce even greater savings. Watch all three episodes and learn more about the series. | Better Buildings Challenge video. Franklin (Lynn) Orr Franklin (Lynn) Orr Under

  9. New Reports Highlight Major Potential in Offshore Wind Energy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reports Highlight Major Potential in Offshore Wind Energy New Reports Highlight Major Potential in Offshore Wind Energy August 29, 2014 - 12:53pm Addthis The Energy Department today announced a new report showing steady progress for the U.S. offshore wind energy industry over the past year. The report highlights 14 projects in advanced stages of development, together representing nearly 4,900 megawatts (MW) of potential offshore wind energy capacity for the United States. Further,

  10. Obama Administration Takes Major Step toward Advanced Vehicles with New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot | Department of Energy Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot Obama Administration Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot May 24, 2011 - 12:00am Addthis WASHINGTON, DC - Today, Secretary of Energy Steven Chu, General Services

  11. Unified Procedures Applicable to Major Federal Actions Relating to Nuclear

    Energy Savers [EERE]

    Activities Subject to Executive Order 12114 (State Department, 1979) | Department of Energy Unified Procedures Applicable to Major Federal Actions Relating to Nuclear Activities Subject to Executive Order 12114 (State Department, 1979) Unified Procedures Applicable to Major Federal Actions Relating to Nuclear Activities Subject to Executive Order 12114 (State Department, 1979) The following unified procedures issued by the State Department are established to satisfy the requirement of the

  12. Lab subcontractor a major asset to Northern New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Subcontractor Major Asset To Northern New Mexico Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Lab subcontractor a major asset to Northern New Mexico Adelante Consulting, Inc. holds Laboratory contracts for environmental work and supports more than 30 regional nonprofit organizations. August 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office

  13. DOE Highlights Clean Energy Jobs, Announces Major New Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milestone | Department of Energy Highlights Clean Energy Jobs, Announces Major New Energy Efficiency Milestone DOE Highlights Clean Energy Jobs, Announces Major New Energy Efficiency Milestone September 21, 2011 - 10:23am Addthis Washington, D.C. - One day before Deputy Secretary of Energy Daniel Poneman highlights the clean energy jobs created with support from the Obama Administration, the Energy Department announced that the weatherization program under the Recovery Act has now made more

  14. A Major Milestone for ARPA-E | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Major Milestone for ARPA-E A Major Milestone for ARPA-E August 31, 2011 - 8:47am Addthis Dr. Anthony Atti, CEO of Phononic Devices, demonstrates the standard semiconductor bonding equipment used to fabricate Phononic's high performance thermoelectric devices. Phononic Devices is one of the five innovative ARPA-E Awardees that have attracted over $100 million in outside capital investments. | Photo Courtesy of Phononic Devices. Dr. Anthony Atti, CEO of Phononic Devices, demonstrates the

  15. Financial News for Major Energy Producers, Third Quarter 2010

    Gasoline and Diesel Fuel Update (EIA)

    Forecasts and Analysis > Energy Finance > Financial News for Major Energy Producers > Company List Financial News for Major Energy Producers, Third Quarter 2010 What is FRS? | Contacts | FRS Home Corporate and Petroleum Net Income Worldwide Oil and Gas Production Operations Worldwide Refining/Marketing Operations Worldwide Petroleum Capital Expenditures Worldwide Downstream Natural Gas and Power Operations, Supplemental Figures Supplemental Tables Download this Report: pdf icon Full

  16. SRS Recovery Act Completes Major Lower Three Runs Project Cleanup |

    Energy Savers [EERE]

    Department of Energy Recovery Act Completes Major Lower Three Runs Project Cleanup SRS Recovery Act Completes Major Lower Three Runs Project Cleanup American Recovery and Reinvestment Act can now claim that 85 percent of the Savannah River Site (SRS) has been cleaned up with the recent completion of the Lower Three Runs (stream) Project. Twenty miles long, Lower Three Runs leaves the main body of the 310-square mile site and runs through parts of Barnwell and Allendale Counties until it

  17. Nonproliferation Uncertainties, a Major Barrier to Used Nuclear Fuel

    Office of Scientific and Technical Information (OSTI)

    Recycle in the United States (Conference) | SciTech Connect SciTech Connect Search Results Conference: Nonproliferation Uncertainties, a Major Barrier to Used Nuclear Fuel Recycle in the United States Citation Details In-Document Search Title: Nonproliferation Uncertainties, a Major Barrier to Used Nuclear Fuel Recycle in the United States A study and comparison of the goals and understandings of nonproliferation authorities with those of used nuclear fuel (UNF) recycle advocates have

  18. Innovative Nanocoatings Unlock the Potential for Major Energy and Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings for Airline Industry | Department of Energy Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry Innovative Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry July 17, 2012 - 3:33pm Addthis Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Bob

  19. Five More States Reach Major Recovery Act Weatherization Milestone |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy More States Reach Major Recovery Act Weatherization Milestone Five More States Reach Major Recovery Act Weatherization Milestone June 18, 2010 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy announced today that five more states have reached a significant milestone under the American Recovery and Reinvestment Act - completing weatherization work for more than 30 percent of the homes they have planned. Now that New Hampshire, New Mexico, Montana, Minnesota,

  20. MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho

    Office of Environmental Management (EM)

    MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho Idaho Cleanup Project http://www.id.doe.gov/doeid/ICPContract/ICPContract.htm Advance Mixed Waste Treatment http://www.id.energy.gov/doeid/AMWTPContract/AMWTPcontract.htm Oak Ridge http://science.energy.gov/isc/foia/electronic-reading-room/#MajorContractsAwarded Office of River Protection http://www.hanford.gov/page.cfm/DOE-ORPPrimeContracts EMCBC and Small Sites https://www.emcbc.doe.gov/About/PrimeContracts Richland

  1. Obama Administration Officials to Announce Major Steps toward Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Fleet | Department of Energy Major Steps toward Federal Advanced Vehicle Fleet Obama Administration Officials to Announce Major Steps toward Federal Advanced Vehicle Fleet May 23, 2011 - 12:00am Addthis WASHINGTON, DC - On May 24, 2011, U.S. Department of Energy Secretary Steven Chu, U.S. General Services Administrator Martha Johnson and White House Council on Environmental Quality Chair Nancy Sutley, will announce next steps in moving the Federal fleet further towards

  2. DOE Marks Major Milestone with Startup of Recovery Act Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Marks Major Milestone with Startup of Recovery Act Demonstration Project DOE Marks Major Milestone with Startup of Recovery Act Demonstration Project April 9, 2014 - 10:36am Addthis News Media Contact 202-586-4940 Editor's Note: This post has been updated as of April 11, 2014. TAMPA, FL. - Today, the Department of Energy joined RTI International and Tampa Electric Company (TECO) to celebrate the successful startup of a pilot project to demonstrate a warm gas

  3. Energy Department Awards First Major Task Order Under Streamlined

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracting System | Department of Energy First Major Task Order Under Streamlined Contracting System Energy Department Awards First Major Task Order Under Streamlined Contracting System October 17, 2005 - 11:59am Addthis New Mexico Firm Contracted for Ashtabula Clean-up WASHINGTON, DC - The Department of Energy (DOE) has awarded a Task Order for an estimated $19.4 million to LATA-SHARP Remediation Services, LLC for the completion of clean-up activities at the Ashtabula Closure Project (ACP)

  4. EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow

  5. Financial statistics of major US publicly owned electric utilities 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

  6. University of Regina researchers complete milestone in major international

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics project at JLab (University of Regina) | Jefferson Lab researchers complete milestone in major international physics project at JLab (University of Regina) External Link: http://www.uregina.ca/external/communications/releases/current/nr-03232012.html By jlab_admin on Fri, 2012-03-23

  7. MSU student researcher gets major recognition with JLab assistantship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Mississippi State University) | Jefferson Lab MSU student researcher gets major recognition with JLab assistantship (Mississippi State University) External Link: http://www.msstate.edu/web/media/detail.php?id=5607 By jlab_admin on Mon, 2012-06-1

  8. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  9. Sustainability in Federal Building New Construction and Major Renovations

    Broader source: Energy.gov [DOE]

    The Guiding Principles require agencies to design, construct, and operate high-performance and sustainable buildings. New construction and major renovations to existing buildings offer agencies opportunities to incorporate energy-efficient designs, sustainable siting and materials, and renewable energy technologies into federal facilities.

  10. Recommended nozzle loads for major equipment in fossil plants

    SciTech Connect (OSTI)

    Basavaraju, C.

    1995-12-31

    Most commonly, equipment nozzles are limiting items in the qualification of piping systems. Difficulty in meeting the allowable nozzle loads for major equipment such as boilers, HRSGs, steam turbines, pumps, tanks, heat exchangers, etc. is a commonly encountered and recurring problem. This issue also has a potential for impact on project costs and schedules due to modifications, piping reanalysis, and repeated interfaces with equipment vendor. The purpose of this paper is to provide guidance with regard to allowable nozzle loads. The approach consisted of utilizing data gathered and experience gained from several recently completed fossil fueled power projects. Tables containing a reasonable set of recommended values for allowable nozzle loads, which do not impose unnecessary burden either on the equipment manufacturers or on the designers and analysts of connected piping, are presented for guidance and use in the procurement of major equipment.

  11. Major Corporate Fleets Align to Reduce Oil Consumption | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Corporate Fleets Align to Reduce Oil Consumption Major Corporate Fleets Align to Reduce Oil Consumption April 1, 2011 - 1:07pm Addthis President Obama announces the National Clean Fleets Partnership to help companies reduce fuel usage by incorporating electric vehicles, alternative fuels, and conservation techniques. Dennis A. Smith Director, National Clean Cities What does this project do? Cuts oil imports and consumption Helps businesses save money Increases the efficiency of

  12. Obama Administration Announces Major Steps Forward to Advance Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Efforts, Improve Access to Low-Cost Financing for States and Local Communities | Department of Energy Steps Forward to Advance Energy Efficiency Efforts, Improve Access to Low-Cost Financing for States and Local Communities Obama Administration Announces Major Steps Forward to Advance Energy Efficiency Efforts, Improve Access to Low-Cost Financing for States and Local Communities June 26, 2012 - 2:15pm Addthis News Media Contacts DOE: (202) 586-4940 Treasury: (202) 622-2812

  13. PRIVACY IMPACT ASSESSMENT: SPRO Physical Security Major Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPRO - Physical Security Major Application PIA Template Version 3 - May, 2009 Department of Energy Privacy Impact Assessment (PIA) Guidance is provided in the template. See DOE Order 206.1, Deparlment of Energy Privacy Program, Appendix A, Privacy Impact Assessments, for requirements and additional gUidance for conducting a PIA: http://www.directives.doe.gov/pdfs/doe/doetexUneword/206/o2061.pdf MODULE I - PRIVACY NEEDS ASSESSMENT Date Departmental Element & Site JUly 21, 2009 Office of

  14. Attachment 2 … List of Major Information Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhibit 1 - List of Major Information Systems Defense Line of Business National Nuclear Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear Security Administration ADaPT Network Infrastructure: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. Advanced Simulation and

  15. NNSA Completes Major Computing Upgrade for Faster Predictions at National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Completes B61 Warhead Refurbishment NNSA Completes B61 Warhead Refurbishment Washington, DC NNSA completed a six-year effort to deliver the first refurbished B61 nuclear bomb. This program will extend the life of the B61 Mod-7 and Mod-11 strategic bombs in the U.S. nuclear weapons stockpile Atmospheric Release Advisory Center | National Nuclear Security Administration

    Completes Major Computing Upgrade for Faster Predictions at National Atmospheric Release Advisory

  16. Sandia completes major overhaul of key nuclear weapons test facilities |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Home / Blog Sandia completes major overhaul of key nuclear weapons test facilities Tuesday, May 13, 2014 - 2:46pm Sandia National Laboratories recently completed the renovation of five large-scale test facilities that are crucial to ensuring the safety and reliability of the nation's nuclear weapons systems. The work supports Sandia's ongoing nuclear stockpile modernization work on the B61-12 and W88 Alt, assessments of current stockpile systems, and

  17. Major Risk Factors to the Integrated Facility Disposition Project

    Office of Environmental Management (EM)

    Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization,

  18. Argonne's Major Nuclear Energy Milestones | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Major Nuclear Energy Milestones Argonne's reactor tree Argonne's reactor tree December 2, 1942: Enrico Fermi's team produces the world's first sustained nuclear chain reaction. March 20, 1943: Chicago Pile 2 achieves criticality. It was CP-1, Fermi's first reactor, dismantled and reassembled at the Argonne Forest site in the Cook Country Forest Preserve. May 15, 1944: Walter Zinn starts Chicago Pile 3, the world's first heavy-water-moderated nuclear reactor, at Site A. January 31,

  19. Helping Advance the Scientific Foundation that Enables Major Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements Helping Advance the Scientific Foundation that Enables Major Efficiency Improvements - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  20. Statement on Department of Energy's Major System Capital Asset Projects

    National Nuclear Security Administration (NNSA)

    before the House Committee on Appropriations Subcommittee on Energy & Water Development | National Nuclear Security Administration Department of Energy's Major System Capital Asset Projects before the House Committee on Appropriations Subcommittee on Energy & Water Development March 20, 2013 INTRODUCTION Chairman Frelinghuysen, Ranking Member Kaptur, and distinguished members of the Subcommittee, thank you for having me here today to discuss the National Nuclear Security

  1. Financial statistics of major US publicly owned electric utilities 1994

    SciTech Connect (OSTI)

    1995-12-15

    This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

  2. Anniversary of Fire, Radiological Events Marks Major Progress at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 12, 2016 Anniversary of Fire, Radiological Events Marks Major Progress at WIPP February 2016 marks two years since the underground fire and radiological release events forced the temporary closure of the Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Since that time much progress has been made in the recovery of the underground including mine stability and habitability, initial panel closure, radiological risk remediation and the addition of

  3. Other Major Litigation of Direct Interest to DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 4, 2008 Other Major Litigation of Direct Interest to DOE Entergy Corporation v. EPA; PSEG Fossil LLC v. Riverkeeper, Inc.; Utility Water Group v. Riverkeeper, Inc., S. Ct. Nos. 07-588, 07-589, and 07-597. The question presented in this litigation is whether Section 316(b) of the Clean Water Act, 33 U.S.C. 1326(b), authorizes EPA to compare costs and benefits in determining the "best technology available for minimizing adverse environmental impact" at cooling water intake

  4. Major General Hans A. Van Winkle Director of Civil Works

    Office of Legacy Management (LM)

    i.\ : -P/l q i ii ..i Department of Energy Washmgron. DC 20585 MAY 5 5 730i ' Major General Hans A. Van Winkle Director of Civil Works U.S. .&-my Corps of Engineers Department of the Army Washington. D.C. 203 lJ- 1000 Dear Generai Van Winkle: This ietter is a follow-up to a phone conversation between the Department of Energy (DOE) and the Army Corps of Engineers staff concerning Congressional interest m the inclusion of the Shallow Land Disposal Area (SLDA) in Parks Township, Pennsylvania

  5. Asia to see major pipelines in near future

    SciTech Connect (OSTI)

    Friedman, D.R.

    1987-11-30

    Recent discoveries of crude oil and natural gas in Asia and the Far East have spawned a number of major pipeline projects. Many of these are underway or likely to be started in the next few years. The author reviews what is being done in Taiwan, South Korea, Thailand, Malaysia, Indonesia, Papua New Guinea, and China. He says all of the countries discussed are undergoing an overall improvement in the quality of life, demonstrated by changing life styles, and an overall advancement in economic activity as a result of the discovery of oil and the need for pipelines.

  6. Microsoft Word - EM Major Contracts Summary 093013update.docx

    Office of Environmental Management (EM)

    MAJOR CONTRACTS SUMMARY As of 9/30/2013 Site Contractor Contractor # Current Contract Period Total Value Contract Description Contract Type Idaho CH2M-WG Idaho, LLC DE-AC07-05ID14516 3/23/05-9/30/15 $3.81B Idaho Cleanup Project Cost plus incentive fee Idaho Treatment Group DE-EM0001467 10/11/11-9/30/15 $456.4M Advanced Mixed Waste Treatment Plant Transuranic waste shipments to the Waste Isolation Pilot Plant Cost plus award fee Site Contractor Contractor # Current Contract Period Total Value

  7. Financial News for Major Energy Companies, April - June 2003

    Gasoline and Diesel Fuel Update (EIA)

    two major energy companies reported overall net income (excluding unusual items) of $10.0 billion on revenues of $164 billion during the second quarter of 2003 (Q203). The level of net income for Q203 was 96 percent higher than in the second quarter of 2002 (Q202) (Table 1). The overall increase in net income was due primarily to higher crude oil and natural gas prices. Overall, the petroleum line of business registered a 64-percent increase in net income between Q202 and Q203, as the 49-percent

  8. Los Alamos National Laboratory, Sandia Labs, other major employers commit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to STEM education in New Mexico STEM education in New Mexico Los Alamos National Laboratory, Sandia Labs, other major employers commit to STEM education in New Mexico Los Alamos, Sandia and several partners are hosting a discussion on "STEM Education in New Mexico" on Nov. 22. November 20, 2014 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from

  9. Financial statistics major US publicly owned electric utilities 1996

    SciTech Connect (OSTI)

    1998-03-01

    The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

  10. Review of tribological sinks in six major industries

    SciTech Connect (OSTI)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  11. Petroleum Development Oman gas exploration unlocks major new reserves

    SciTech Connect (OSTI)

    Wood, A.; Mozetic, A.

    1995-08-01

    Since 1985, Petroleum Development Oman (PDO) has been exploring for gas on behalf of the Government of Oman under a ten-year agreement signed in June 1984. The aim of the one-rig programme was to find additional non-associated gas reserves (3 TCF) to meet domestic energy requirements for a minimum of 40 years, for which the available reserves at that time (5.6 TCF) were insufficient. Initial results of the campaign, which principally targeted the Permian Khuff Formation, were disappointing, analogues to the major accumulations of the Arabian Gulf failing to materialise. During the second half of the programme, therefore, the strategy was revised to address the prospectivity of higher risk/higher reward plays recognised at greater depths. Well Saih Nihayda-24, drilled in 1989, found gas/condensate-bearing reservoirs in Cambro/Ordovician sandstones of the Andam Formation below 4000 metres. This discovery, in a seismically poorly defined anticline, sparked an intensive effort of 2D, and later 3D, long cable seismic acquisition. This led in 1991 to additional major gas/condensate finds in Saih Rawl and Barik, and a dedicated two-year two-rig appraisal campaign has since proven up sufficient reserves to support an LNG gas export scheme. The ten-year programme has more than tripled Oman`s non-associated gas expectation reserves to some 22 TCF, exceeding-the target more than five-fold. Significant potential for further gas discoveries identified in both North and South Oman provides encouragement for continued successful gas exploration in the future.

  12. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  13. Synoptic comparison of major US and UK simulations

    SciTech Connect (OSTI)

    Henderson, D.B.; Oxenham, D.

    1994-07-01

    The six simulations considered include two from the United Kingdom: The United Kingdom Extended Air Defence Test Bed (UKEADTB) and the Air Defence Test Bed (ADTB). There are two from the Test Bed Product Office of the US Army Space and Strategic Defense Command (USASSDC) in Huntsville, Alabama: The Extended Air Defense Test Bed (EADTB) and the Extended Air Defense Simulation (EADSIM). There are two from the National Test Facility in Colorado Springs, Colorado: The Test Planning Tool (TPT) and the Human in Control Test Bed (HICTB). A seventh, the Brilliant Eyes Simulator (BESim) -- an element simulation and a close family member of the system level TPT -- is included along with TPT by noting exceptions where necessary. The comparisons are designed to be compact and comprehensible, with no table occupying more than a single page. The present report is organized with the tables on the odd numbered pages and some commentary on the facing even numbered pages. While the effort reported is extensive, it needs to be further developed as planned as the Subpanel`s next major undertaking. Analogously with simulations themselves, there remains the question of validation or accreditation. Also analogously, these depend upon the question being served. That is, the responses reported here, while extensive and interesting, need to be explicitly reviewed in the light of any given serious application. Unfortunately, and again analogously with simulations, this accreditation can not be done in the abstract or once and for all.

  14. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

    Office of Environmental Management (EM)

    D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the

  15. Identification and Selection of Major Carbon Dioxide Stream Compositions

    SciTech Connect (OSTI)

    Last, George V.; Schmick, Mary T.

    2011-06-30

    A critical component in the assessment of long-term risk from geologic sequestration of CO2 is the ability to predict mineralogical and geochemical changes within storage reservoirs due to rock-brine-CO2 reactions. Impurities and/or other constituents selected for co-sequestration can affect both the chemical and physical (e.g. density, viscosity, interfacial tension) behavior of CO2 in the deep subsurface. These impurities and concentrations are a function of both the industrial source(s) of the CO2, as well as the carbon capture technology used to extract the CO2 and produce a concentrated stream for geologic sequestration. This report summarizes the relative concentrations of CO2 and other constituents in exhaust gases from major non-energy related industrial sources of CO2. Assuming that carbon-capture technology would remove most of the incondensable gases N2, O2, and Ar, leaving SO2 and NOx as the main impurities, we selected four test fluid compositions for use in geochemical experiments. These included: 1) a pure CO2 stream representative of food grade CO2 used in most enhanced oil recovery projects: 2) a test fluid composition containing low concentrations (0.5 mole %) SO2 and NOx (representative of that generated from cement production), 3) a test fluid composition with higher concentrations (2.5 mole %) of SO2, and 4) and test fluid composition containing 3 mole % H2S.

  16. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect (OSTI)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

  17. DOE and Stakeholders Consider Best Approach to Major HVAC&R Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stakeholders Consider Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Consider Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis ...

  18. Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products Fact 863 March 9, 2015 Crude Oil Accounts for the Majority of ...

  19. Montana - MCA 75-20 - Major Facility Siting | Open Energy Information

    Open Energy Info (EERE)

    MCA 75-20 - Major Facility Siting Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana - MCA 75-20 - Major Facility...

  20. Title 18 CFR Subpart E Application for License for Major Unconstructed...

    Open Energy Info (EERE)

    Title 18 CFR Subpart E Application for License for Major Unconstructed Project and Major Modified Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  1. DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort DOE and Stakeholders Ponder Best Approach to Major HVAC&R Research Effort January 15, 2016 - 11:27am Addthis...

  2. Downstream Petroleum Mergers and Acquisitions by U.S. Major Oil Companies

    Reports and Publications (EIA)

    2009-01-01

    A summary presentation of mergers and acquisitions by U.S. major oil companies (including the U.S. affiliates of foreign major oil companies). The presentation focuses on petroleum refining over the last several years through late 2009.

  3. EM Capital and Major Operating Project Standard Review Plan Edition Two

    Broader source: Energy.gov [DOE]

    This memorandum introduces the Second Edition of the Capital and Major Operations Projects Standard Review Plan (SRP).

  4. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Elect. ...

  5. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  6. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-ow...

  7. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NorthWestern Energy LLC - (MT)","Investor-owned",597...

  8. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Puget Sound Energy Inc","Investor-owned",20568948...

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",567506...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",19844...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20585461,570529...

  12. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",38670...

  13. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",...

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9973395,3434301,4...

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",41994756...

  16. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28224148,9...

  17. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Alabama Power Co","Investor-Owned",56854751,18726485,14329217,23799049,0 2,"Tennessee Valley Authority","Federal",5374405,0,0,5374405,0 3,"City of Huntsville - (AL)","Public",5277748,2559875,2127737,590136,0 4,"Joe Wheeler

  18. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Arkansas Inc","Investor-owned",21049257,8069917,6170936,6808318,86 2,"Southwestern Electric Power Co","Investor-owned",4018839,1121436,1354356,1543047,0 3,"Mississippi County Electric

  19. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ned",27584533,12837752,12477518,2269263,0 2,"Salt River Project","Public",27548529,12293633,11099759,4155137,0 3,"Tucson Electric Power Co","Investor-owned",9165355,3726983,2202954...

  20. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... coal coke imports and exports, which are not separately displayed. 3Retail electricity prices paid by ultimate customers, reported by electric utilities and, beginning in ...