Powered by Deep Web Technologies
Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Engineering secondary cell wall deposition in plants  

loop, biofuels, cell wall, lignin, sacchari?cation, synthetic biology. Summary ... target speci?c cell types such as ?bre and pith cells. It is well

2

Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy  

DOE Green Energy (OSTI)

Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

Buyck, N.; Thomas, S.

2001-01-01T23:59:59.000Z

3

2003 Plant Cell Walls Gordon Conference  

DOE Green Energy (OSTI)

This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

Daniel J. Cosgrove

2004-09-21T23:59:59.000Z

4

Changes in Cell Wall Carbohydrate Extractability Are Correlated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Short Communication Changes in Cell Wall Carbohydrate Extractability Are Correlated with Reduced Recalcitrance of HCT Downregulated Alfalfa Biomass Sivakumar Pattathil, 1 Trina...

5

Mound Isotope Power Systems; AMTEC Integral Cell Wall Compression Test  

DOE Green Energy (OSTI)

An AMTEC (Alkali Metal Thermal-to-Electric Conversion) device is tested under a compression load at a rate of 0.0025 inches/minute. The integral cell wall is made of Haynes Alloy 25. The wall buckled at 724 pounds load.

None

1997-11-05T23:59:59.000Z

6

Chemical profiling of the plant cell wall through Raman microspectroscopy  

Science Conference Proceedings (OSTI)

This paper presents a computational framework for chemical profiling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, ... Keywords: multispectral analysis, raman spectroscopy, spatial clustering

Ju Han; Seema Singh; Lan Sun; Blake Simmons; Manfred Auer; Bahram Parvin

2010-04-01T23:59:59.000Z

7

Plant cell walls throughout evolution: towards a molecular understanding of their design principles  

SciTech Connect

Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

2009-02-16T23:59:59.000Z

8

Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy  

Science Conference Proceedings (OSTI)

In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 C) allowed the enzymes to penetrate {approx}20% of the cell wall, and the high severity (20 min pretreatment at 150 C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes.

Donohoe, B. S.; Selig, M. J.; Viamajala, S.; Vinzant, T. B.; Adney, W. S.; Himmel, M. E.

2009-06-15T23:59:59.000Z

9

A Survey of Databases for Analysis of Plant Cell Wall-Related Enzymes  

E-Print Network (OSTI)

Plant genetic engineering for biofuel production: towardspublications. Keywords Biofuel . Plant cell wall . Databasewalls, has advantages as a biofuel feedstock, compared with

Cao, Peijian; Jung, Ki-Hong; Ronald, Pamela C.

2010-01-01T23:59:59.000Z

10

Structural Basis of Cell Wall Cleavage by a Staphylococcal  

E-Print Network (OSTI)

The major autolysins (Atl) of Staphylococcus epidermidis and S. aureus play an important role in cell separation, and their mutants are also attenuated in virulence. Therefore, autolysins represent a promising target for the development of new types of antibiotics. Here, we report the high-resolution structure of the catalytically active amidase domain AmiE (amidase S. epidermidis) from the major autolysin of S. epidermidis. This is the first protein structure with an amidase-like fold from a bacterium with a gram-positive cell wall architecture. AmiE adopts a globular fold, with several a-helices surrounding a central b-sheet. Sequence comparison reveals a cluster of conserved amino acids that define a putative binding site with a buried zinc ion. Mutations of key residues in the putative active site result in loss of activity, enabling us to propose a catalytic mechanism. We also identified and synthesized muramyltripeptide, the minimal peptidoglycan fragment that can be used as a substrate by the enzyme. Molecular docking and digestion assays with muramyltripeptide derivatives allow us to identify key determinants of ligand binding. This results in a plausible model of interaction of this ligand not only for AmiE, but also for other PGN-hydrolases that share the same fold. As AmiE active-site mutations also show a severe growth defect, our findings provide an excellent platform for the design of specific inhibitors that target staphylococcal cell

Sebastian Zoll; Bernhard Ptzold; Martin Schlag; Friedrich Gtz; Hubert Kalbacher

2010-01-01T23:59:59.000Z

11

Quantitative Trait Loci Analysis of Primary Cell Wall Composition in Arabidopsis1  

E-Print Network (OSTI)

fingerprinting techniques: monosaccharide composition analysis by gas chromatography, xyloglucan oligosaccharideQuantitative Trait Loci Analysis of Primary Cell Wall Composition in Arabidopsis1 Gre´gory Mouille2 trait loci (QTL) analysis was used to identify genes underlying natural variation in primary cell wall

Pauly, Markus

12

Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass  

Science Conference Proceedings (OSTI)

The generation of bioethanol from lignocellulosic biomass holds great promise for renewable and clean energy production. A better understanding of the complex mechanisms of lignocellulose breakdown during various pretreatment methods is needed to realize this potential in a cost and energy efficient way. Here, we use small-angle neutron scattering (SANS) to characterize morphological changes in switchgrass lignocellulose across molecular to sub-micron length scales resulting from the industrially-relevant dilute acid pretreatment method. Our results demonstrate that dilute acid pretreatment increases the cross-sectional radius of the crystalline cellulose fibril. This change is accompanied by removal of hemicellulose and the formation of Rg ~ 135 lignin aggregates. The structural signature of smooth cell wall surfaces is observed at length scales larger than 1000 , and it remains remarkably invariable during pretreatment. This study elucidates the interplay of the different biomolecular components in the break down process of switchgrass by dilute acid pretreatment. The results are important for the development of efficient strategies of biomass to biofuel conversion.

Pingali, Sai Venkatesh [ORNL; Urban, Volker S [ORNL; Heller, William T [ORNL; McGaughey, Joseph [ORNL; O'Neill, Hugh Michael [ORNL; Foston, Marcus B [ORNL; Myles, Dean A A [ORNL; Ragauskas, Arthur J [ORNL; Evans, Barbara R [ORNL

2010-01-01T23:59:59.000Z

13

The structure, function, and biosynthesis of plant cell wall pectic polysaccharides  

NLE Websites -- All DOE Office Websites (Extended Search)

structure, structure, function, and biosynthesis of plant cell wall pectic polysaccharides Kerry Hosmer Caffall a , Debra Mohnen a,b, * a University of Georgia, Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, 315 Riverbend Road Athens, GA 30602, United States b DOE BioEnergy Science Center (BESC), 315 Riverbend Road Athens, GA 30602, United States a r t i c l e i n f o Article history: Received 18 November 2008 Received in revised form 4 May 2009 Accepted 6 May 2009 Available online 2 June 2009 Keywords: Cell wall polysaccharides Galacturonan Glycosyltransferases Homogalacturonan Pectin function Rhamnogalacturonan a b s t r a c t Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up $90% of the primary wall, and are critical to wall

14

In Situ Chemical Imaging of Plant Cell Walls Using CARS/SRS Microscopy (Poster)  

Science Conference Proceedings (OSTI)

This poster demonstrates coherent anti-Stokes Raman scattering and stimulated Raman scattering of plant cell walls. It includes simultaneous chemical imaging of lignin and cellulose (corn stover) during acidic pretreatment.

Zeng, Y.; Liu, Y. S.; Saar, B. G.; Xie, X. S.; Chen, F.; Dixon, R. A.; Himmel, M. E.; Ding S. Y.

2009-06-01T23:59:59.000Z

15

2012 PLANT CELL WALLS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, AUGUST 4-10, 2012  

SciTech Connect

The sub-theme of this years meeting, Cell Wall Research in a Post-Genome World, will be a consideration of the dramatic technological changes that have occurred in the three years since the previous cell wall Gordon Conference in the area of DNA sequencing. New technologies are providing additional perspectives of plant cell wall biology across a rapidly growing number of species, highlighting a myriad of architectures, compositions, and functions in both "conventional" and specialized cell walls. This meeting will focus on addressing the knowledge gaps and technical challenges raised by such diversity, as well as our need to understand the underlying processes for critical applications such as crop improvement and bioenergy resource development.

Rose, Jocelyn

2012-08-10T23:59:59.000Z

16

Studying plant cell walls for better biofuels | OpenEI Community  

Open Energy Info (EERE)

Studying plant cell walls for better biofuels Studying plant cell walls for better biofuels Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 27 July, 2010 - 10:49 imported OpenEI A common garden plant known as zinnia may yield important results for better future biofuels. Current research at Lawrence Berkeley National Laboratory (LBNL) and the National Renewable Energy Laboratory (NREL) are focusing on the leaves of the zinnia plant, on the nanometer scale, to hopefully develop better biofuels than current biofuels. The researchers are trying to understand ways to break down lignin, the substance that cell walls are composed of. Lignin is tough to break down, so understanding the decomposition of it will help producing biofuels. The basic idea is that cellulose is composed of a polymer of sugars. If

17

Asc1 Supports Cell-Wall Integrity Near Bud Sites by a Pkc1 Independent Mechanism  

E-Print Network (OSTI)

Background: The yeast ribosomal protein Asc1 is a WD-protein family member. Its mammalian ortholog, RACK1 was initially discovered as a receptor for activated protein C kinase (PKC) that functions to maintain the active conformation of PKC and to support its movement to target sites. In the budding yeast though, a connection between Asc1p and the PKC signaling pathway has never been reported. Methodology/Principal Findings: In the present study we found that asc1-deletion mutant (asc1D) presents some of the hallmarks of PKC signaling mutants. These include an increased sensitivity to staurosporine, a specific Pkc1p inhibitor, and susceptibility to cell-wall perturbing treatments such as hypotonic- and heat shock conditions and zymolase treatment. Microscopic analysis of asc1D cells revealed cell-wall invaginations near bud sites after exposure to hypotonic conditions, and the dynamic of cells survival after this stress further supports the involvement of Asc1p in maintaining the cell-wall integrity during the mid-to late stages of bud formation. Genetic interactions between asc1 and pkc1 reveal synergistic sensitivities of a double-knock out mutant (asc1D/pkc1D) to cell-wall stress conditions, and high basal level of PKC signaling in asc1D. Furthermore, Asc1p has no effect on the cellular distribution or redistribution of Pkc1p at optimal or at cell-wall stress conditions. Conclusions/Significance: Taken together, our data support the idea that unlike its mammalian orthologs, Asc1p acts

Daniel Melamed; Lavi Bar-ziv; Yossi Truzman; Yoav Arava

2010-01-01T23:59:59.000Z

18

Formation of thin walled ceramic solid oxide fuel cells  

DOE Patents (OSTI)

To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

Claar, Terry D. (Tisle, IL); Busch, Donald E. (Hinsdale, IL); Picciolo, John J. (Lockport, IL)

1989-01-01T23:59:59.000Z

19

Bioinformatics-Based Identification of Candidate Genes from QTLs Associated with Cell Wall Traits in Populus  

DOE Green Energy (OSTI)

Quantitative trait locus (QTL) studies are an integral part of plant research and are used to characterize the genetic basis of phenotypic variation observed in structured populations and inform marker-assisted breeding efforts. These QTL intervals can span large physical regions on a chromosome comprising hundreds of genes, thereby hampering candidate gene identification. Genome history, evolution, and expression evidence can be used to narrow the genes in the interval to a smaller list that is manageable for detailed downstream functional genomics characterization. Our primary motivation for the present study was to address the need for a research methodology that identifies candidate genes within a broad QTL interval. Here we present a bioinformatics-based approach for subdividing candidate genes within QTL intervals into alternate groups of high probability candidates. Application of this approach in the context of studying cell wall traits, specifically lignin content and S/G ratios of stem and root in Populus plants, resulted in manageable sets of genes of both known and putative cell wall biosynthetic function. These results provide a roadmap for future experimental work leading to identification of new genes controlling cell wall recalcitrance and, ultimately, in the utility of plant biomass as an energy feedstock.

Ranjan, Priya [ORNL; Yin, Tongming [ORNL; Zhang, Xinye [ORNL; Kalluri, Udaya C [ORNL; Yang, Xiaohan [ORNL; Jawdy, Sara [ORNL; Tuskan, Gerald A [ORNL

2009-11-01T23:59:59.000Z

20

On the origin of microcraters on the surface of ion beam bombardedplant cell walls  

SciTech Connect

Ion bombardment of plant and bacterial cellular material has recently been used as a tool for the transfer of exogenous DNA macromolecules into the cell interior region. The precise mechanism that leads to the transfer of macromolecules through the cell envelope is not yet clear, however it has been observed that the ion bombardment is accompanied by the formation of ''microcraters'' on the cell wall, and it is possible that these features provide channels for the macromolecule transfer. Thus the nature and origin of the microcraters is of importance to understanding the DNA transfer phenomenon as well as being of fundamental interest. We report here on some scanning electron microscope observations we have made of onion skin cells that have been subjected to electron beam bombardment of sufficiently high power density to damage the cell wall. The damage seen is much less than and different from the microcraters formed subsequent to ion bombardment. We speculate that the microcraters may originate from the explosive release of gas generated in the biomaterial by ion bombardment.

Salvadori, M.C.; Teixeira, F.S.; Brown, I.G.

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gene expression in physically impeded maize roots  

E-Print Network (OSTI)

Two approaches were used to search for genes which respond to physical impedance. First, cDNA clones induced by mechanical stress or drought stress of other plant species were hybridized to mRNA from maize root tips. The results showed that only two clones, TCH1 induced by wind stress in Arabidopsis, and LP2 induced by drought stress in pine, had high homology with the RNA in maize root tips, but they did not reveal an inducible pattern of expression in the impeded maize roots tips. Second, a cDNA library was constructed from mMRNA from a 10 min physical impedance treatment of maize roots tips and was differentially screened with radioactive labeled cDNA probes synthesized using mRNA extracted from stressed and non-stressed maize roots tips. Three clones, PIIGI, pIIG2, and pIRG3, were identified as responding to a 10 min physical impedance stress. The first two cDNA clones (PIIGI and pIIG2), whose expressions were induced in a 10 min physical impedance treatment, were characterized further. cDNA PIIGI contains 678 hp with an open reading frame which specifies a polypeptide of 129 amino acid residues which showed 97% similarity at the nucleic acid level to maize root cortical cell delineating protein. Northern analysis with cDNA PIIGI as a probe showed that the expression was strongly induced by the 10 min physical impedance treatment and genomic Southern analysis showed that a relatively conserved gene family exists in maize. The CDNA pIIG2 has a nucleotide sequence of 830 bp with an open reading frame which specifies a polypeptide of 210 amino acid residues, but in a search of the GENBANK database it did not show significant homology with any identified gene of known function. Genomic Southern hybridization using cDNApIIG2 found duplicated loci in maize but single loci in rice. The third cDNA clone pIRG3, 800 bp, whose expression was reduced about 33% by 10 to 30 min physical impedance, is identical to the partial sequence of maize "calreticulin!' gene by GENBANK search.

Huang, Ying-Fei

1996-01-01T23:59:59.000Z

22

Molecular Organization in the Native State of Wood Cell Walls: Studies of Nanoscale Structure and its Development  

DOE Green Energy (OSTI)

With respect to cell wall biogenesis we have developed a theory concerning the formation of lignin in which the regulation of structure is attributed to the hemicelluloses; they are viewed as templates for the assembly of lignin. The key supporting evidence is derived from the symmetry of annual rings in trees free of reaction wood. This symmetry is interpreted to point to genetic encoding as the dominant factor in the pattern of interunit linkages in lignin. More recently, we have explored further the implications of annual ring symmetries within the contexts of systems and information theory and theories of organization of hierarchic structures. This has led us to proposed a unifying model for cell wall biogenesis that comprehends cell wall polysaccharides as well as lignin. The model is based on examining the implications of symmetries and of hierarchic relationships between different levels of structure, with respect to synchrony and coordination of the stages of formation of the individual constituents.

Atalla, R. H.

2001-02-01T23:59:59.000Z

23

Rapid Determination of Lignin Content via Direct Dissolution and 1HNMR Analysis of Plant Cell Walls  

NLE Websites -- All DOE Office Websites (Extended Search)

02/cssc.201000120 02/cssc.201000120 Rapid Determination of Lignin Content via Direct Dissolution and 1 H NMR Analysis of Plant Cell Walls Nan Jiang, [a, b] Yunqiao Pu, [b] and Arthur J. Ragauskas* [a, b] Increasing societal demand for environmental and economic sustainability is placing a renewed focus on the agro-forest in- dustry. This industry plays an essential role in the development of renewable energy and biofuels, especially in light of grow- ing concerns related to energy security and climate change. [1] The economical transformation of differing sources of biomass into biofuels has become a global research theme, directed at displacing nonrenewable petroluem-based resources to reduce long-term carbon dioxide emissions. [2] Although most current bioethanol and biodiesel plants represent first-generation biorefi- neries, utilizing readily processa- ble bioresources such as

24

Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls  

E-Print Network (OSTI)

cell wall in grasses. Keywords Biofuels Digestibility a broader adaptation of biofuels. One of the limitations foryield and composition for biofuels. Crop Sci 47:22112227

Piston, Fernando; Uauy, Cristobal; Fu, Lianhai; Langston, James; Labavitch, John; Dubcovsky, Jorge

2010-01-01T23:59:59.000Z

25

Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics  

SciTech Connect

Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Bisaria, Anjali [ORNL; Tuskan, Gerald A [ORNL; Kalluri, Udaya C [ORNL

2011-01-01T23:59:59.000Z

26

Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations  

NLE Websites -- All DOE Office Websites (Extended Search)

Populus Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations Ilga Porth 1 *, Jaroslav Kla ´ ps ˇte ˇ 2 *, Oleksandr Skyba 1 , Ben S. K. Lai 1 , Armando Geraldes 3 , Wellington Muchero 4 , Gerald A. Tuskan 4 , Carl J. Douglas 3 , Yousry A. El-Kassaby 2 and Shawn D. Mansfield 1 1 Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; 2 Department of Forest Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; 3 Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; 4 BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA Authors for correspondence: Shawn D. Mansfield Tel: +1 604 822 0196 Email: shawn.mansfield@ubc.ca Yousry A. El-Kassaby Tel: +1 604 822 1821 Email: y.el-kassaby@ubc.ca

27

New Combined Laser Ablation Platform Determines Cell Wall Chemistry (Fact Sheet)  

DOE Green Energy (OSTI)

NREL has designed and developed a combined laser ablation/pulsed sample introduction/mass spectrometry platform that integrates pyrolysis and/or laser ablation with resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry. Using this apparatus, we can measure the cell wall chemical composition of untreated biomass materials. Understanding the chemical composition of untreated biomass is key to both the biochemical and thermochemical conversion of lignocellulosic biomass to biofuels. In the biochemical conversion process, the new technique provides a better understanding of the chemistry of lignin and will improve accessibility to plant sugars. In thermochemical conversion, the information provided by the new technique may help to reduce the formation of unwanted byproducts during gasification. NREL validated the ability of the system to detect pyrolysis products from plant materials using poplar, a potentially high-impact bioenergy feedstock. In the technique, biomass vapors are produced by laser ablation using the 3rd harmonic of an Nd:YAG laser (355 nm). The resulting vapors are entrained in a free jet expansion of helium, then skimmed and introduced into an ionization region. REMPI is used to ionize the vapors because it is highly sensitive for detecting lignin and aromatic metabolites. The laser ablation method was used to selectively volatilize specific plant tissues and detect lignin-based products from the vapors with enhanced sensitivity. This will allow the determination of lignin distribution in future biomass studies.

Not Available

2011-09-01T23:59:59.000Z

28

Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)  

DOE Green Energy (OSTI)

Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

Not Available

2012-06-01T23:59:59.000Z

29

Application of Single Wall Carbon Nanotubes as Transparent Electrodes in Cu(In,Ga)Se2-Based Solar Cells: Preprint  

DOE Green Energy (OSTI)

We present a new thin-film solar cell structure in which the traditional transparent conductive oxide electrode (ZnO) is replaced by a transparent conductive coating consisting of a network of bundled single-wall carbon nanotubes. Optical transmission properties of these coatings are presented in relation to their electrical properties (sheet resistance), along with preliminary solar cell results from devices made using CuIn1-xGaxSe2 thin-film absorber materials. Achieving an energy conversion efficiency of >12% and a quantum efficiency of {approx}80% demonstrate the feasibility of the concept. A discussion of the device structures will be presented considering the physical properties of the new electrodes comparing current-voltage results from the new solar cell structure and those from standard ZnO/CdS/Cu(In,Ga)Se2/Mo solar cells.

Contreras, M.; Barnes, T.; van de Lagemaat, J.; Rumbles, G.; Coutts, T. J.; Weeks, C.; Glatkowski, P.; Levitsky, I.; Peltola, J.

2006-05-01T23:59:59.000Z

30

Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

Science Conference Proceedings (OSTI)

Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

Muchero, Wellington [Oak Ridge National Laboratory

2012-03-22T23:59:59.000Z

31

Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls  

Science Conference Proceedings (OSTI)

The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

2012-02-15T23:59:59.000Z

32

Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans  

E-Print Network (OSTI)

Abstract. C. Elegans has four muscle quadrants that are used for locomotion. Contraction is converted to locomotion because muscle cells are anchored to the cuticle (the outer covering of the worm) by a specialized basement membrane and hemidesmosome structures in the hypodermis (a cellular syncytium that covers the worm and secretes the cuticle). To study muscle assembly, we have used antibodies to determine the spatial and temporal distribution of muscle and attachment structure components in wild-type and mutant C. elegans embryos. Myofibrillar components are first observed diffusely distributed in the muscle cells, and are expressed in some dividing cells. Later, the components accumulate at the membrane adjacent to the hypodermis where the sarcomeres will form,

Michelle Coutu Hresko; Benjamin D. Williams; Robert H. Waterston

1994-01-01T23:59:59.000Z

33

Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)  

DOE Green Energy (OSTI)

Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

Ding, S. Y.

2012-05-01T23:59:59.000Z

34

Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

Science Conference Proceedings (OSTI)

N. Louise Glass from the University of California, Berkeley, presents a talk titled "Systems Biology Approaches to Dissecting Plant Cell Wall Biosynthesis Genes in Poplus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

Glass, N Louise [UC Berkeley

2012-03-22T23:59:59.000Z

35

Plant Cell Walls: Basics of Structure, Chemistry, Accessibility and the Influence on Conversion - Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals  

SciTech Connect

This book is focused on the pretreatment of biomass, a necessary step for efficient conversion of the plant cell wall materials to fuels and other products. Pretreatment is required because it is difficult to access, separate, and release the monomeric sugars comprising the biopolymers within the biomass that can be further upgraded to products through chemical processes such as aqueous phase reforming or biological routes such as fermentation of the sugars to ethanol This resistance to degradation or difficulty to release the monomers (mostly sugars) is commonly referred to as recalcitrance. There are many methods to overcome plant recalcitrance, but the underlying cause of the recalcitrance lies in the complex combination of chemical and structural features of the plant cell walls.

Davison, Brian H [ORNL; Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL); Parks, Jerry M [ORNL; Donohoe, Bryan [National Renewable Energy Laboratory (NREL)

2013-01-01T23:59:59.000Z

36

LiquidMaize LLC | Open Energy Information  

Open Energy Info (EERE)

LiquidMaize LLC LiquidMaize LLC Jump to: navigation, search Name LiquidMaize, LLC Place Denver, Colorado Zip 80237 Product LiquidMaize is an ethanol development and management company that builds, owns, and operates ethanol plants within existing cattle feed-yards and dairy operations. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Maize Pollen Dispersal under Convective Conditions  

Science Conference Proceedings (OSTI)

The widespread adoption of genetically modified (GM) crops has led to a need to better understand the atmospheric transport of pollen because of concerns over potential cross-pollination between GM and non-GM crops. Maize pollen concentrations ...

Matthew T. Boehm; Donald E. Aylor; Elson J. Shields

2008-01-01T23:59:59.000Z

38

Maize  

NLE Websites -- All DOE Office Websites (Extended Search)

spring when Squanto, a friendly Indian, showed them how to plant it, with three herring placed spokewise on each hillock. That crop of corn saved them from starvation and at...

39

On the tetraploid origin of the maize genome: Conference Reviews  

Science Conference Proceedings (OSTI)

Data from cytological and genetic mapping studies suggest that maize arose as a tetraploid. Two previous studies investigating the most likely mode of maize origin arrived at different conclusions. Gaut and Doebley [7] proposed a segmental allotetraploid ... Keywords: maize, sorghum, tetraploidy

Zuzana Swigonova; Jinsheng Lai; Jianxin Ma; Wusirika Ramakrishna; Victor Llaca; Jeffrey L. Bennetzen; Joachim Messing

2004-04-01T23:59:59.000Z

40

Down-regulation of four putative arabinoxylan feruloyl transferase genes from family PF02458 reduces ester-linked ferulate content in rice cell walls  

E-Print Network (OSTI)

feedstock for biofuel production. It has been estimated thatcell walls, both for biofuel production or to improve the

Piston, Fernando; Uauy, Cristobal; Fu, Lianhai; Langston, James; Labavitch, John; Dubcovsky, Jorge

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Establishment of somatic hybrid cell lines between Zea mays L ...  

Science Conference Proceedings (OSTI)

the fusion of protoplasts isolated from cell suspensions of. Zea mays L. (maize, 2n = 20) ... including the transfer of drought tolerance, cold hardiness and salinity

42

Genetic analysis and molecular mapping of maize (Zea mays L ...  

Science Conference Proceedings (OSTI)

Nov 27, 2003 ... molecular marker analysis. Introduction. Stalk rot is a serious and widespread disease in maize that reduces both yield and quality (Chiang and...

43

Maize, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maize, Kansas: Energy Resources Maize, Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7791787°, -97.4672674° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7791787,"lon":-97.4672674,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Mutant maize variety containing the glt1-1 allele  

DOE Patents (OSTI)

A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating.

Nelson, Oliver E. (Cross Plains, WI); Pan, David (Madison, WI)

1994-01-01T23:59:59.000Z

45

Mutant maize variety containing the glt1-1 allele  

DOE Patents (OSTI)

A maize plant has in its genome a non-mutable form of a mutant allele designated vitX-8132. The allele is located at a locus designated as glt which conditions kernels having an altered starch characteristic. Maize plants including such a mutant allele produce a starch that does not increase in viscosity on cooling, after heating. 2 figs.

Nelson, O.E.; Pan, D.

1994-07-19T23:59:59.000Z

46

TransWall  

Science Conference Proceedings (OSTI)

Nowadays, imagining modern buildings without glass is difficult, and glass walls can be found almost everywhere around us. Glass has been one of the most valued materials owing to its transparency. Glass walls' transparency in modern architecture involves ...

Heejeong Heo; Seungki Kim; Hyungkun Park; Jeeyong Chung; Geehyuk Lee; Woohun Lee

2013-07-01T23:59:59.000Z

47

Prismatic wall heater  

Science Conference Proceedings (OSTI)

A prismatic beam concentrator mounted at the top of two adjacent walls so as to receive a rectangular incipient beam of diffused sunlight and emit a vertical concentrated sheet beam through a cavity between the walls to a mirror which reflects the beam at right angles onto a radiant iron bar at the base of one wall, as a source of supplemental household heat.

Clegg, J. E.

1985-07-09T23:59:59.000Z

48

Fluidized wall for protecting fusion chamber walls  

DOE Patents (OSTI)

Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

Maniscalco, James A. (Danville, CA); Meier, Wayne R. (Livermore, CA)

1982-01-01T23:59:59.000Z

49

Tokamak reactor first wall  

DOE Patents (OSTI)

This invention relates to an improved first wall construction for a tokamak fusion reactor vessel, or other vessels subjected to similar pressure and thermal stresses.

Creedon, R.L.; Levine, H.E.; Wong, C.; Battaglia, J.

1984-11-20T23:59:59.000Z

50

Collector: storage wall systems  

SciTech Connect

Passive Trombe wall systems require massive masonry walls to minimize large temperature swings and movable night insulation to prevent excessive night heat losses. As a solar energy collection system, Trombe wall systems have low efficiencies because of the nature of the wall and, if auxiliary heat is needed, because of absorption of this heat. Separation of collector and storage functions markedly improves the efficiency. A simple fiberglass absorber can provide high efficiency while phase change storage provides a compact storage unit. The need for movable insulation is obviated.

Boardman, H.

1980-01-01T23:59:59.000Z

51

Walls and Windows  

SciTech Connect

Energy travels in and out of a building through the walls and windows by means of conduction, convection, and radiation. The walls and windows, complex systems in themselves, are part of the overall building system. A wall system is composed of multiple layers that work in concert to provide shelter from the exterior weather. Wall systems vary in the degree to which they provide thermal resistance, moisture resistance, durability, and thermal storage. High tech windows are now available that can resist radiation heat transfer while still providing light and visibility. The combination of walls and windows within the building system can be adapted to meet a wide range of environmental conditions, recognizing that the best building envelope system for one climate may not be the first choice for another location.

Stovall, Therese K [ORNL

2007-01-01T23:59:59.000Z

52

The Interannual Variability of the Onset of the Maize Growing Season over South Africa and Zimbabwe  

Science Conference Proceedings (OSTI)

Subsistence farmers within southern Africa have identified the onset of the maize growing season as an important seasonal characteristic, advance knowledge of which would aid preparations for the planting of rain-fed maize. Onset over South ...

M. A. Tadross; B. C. Hewitson; M. T. Usman

2005-08-01T23:59:59.000Z

53

Natural balance of graminicolous aphids in Pakistan II. Aphids populations on maize  

E-Print Network (OSTI)

Natural balance of graminicolous aphids in Pakistan II. Aphids populations on maize Sulaiman HAMID Sind Sugar Industry Research Institute, 14/A, Latifabad III, Hyderabad Sind, Pakistan SUMMARY Maize in Pakistan is attacked by Myzus obtusirostris David, Narayanan & Rajasingh, Rhopalosiphum

Recanati, Catherine

54

Gina Valds. Comiendo lumbre. Colorado Springs, Colorado: Maize Press, 1986. 62 pages.  

E-Print Network (OSTI)

Los Angeles GiNA Valds. Comiendo lumbre. ColoradoSprings, Colorado: Maize Press, 1986. 62 pages. The Gina

Sherno, Sylvia R.

1989-01-01T23:59:59.000Z

55

Automatic expert system based on images for accuracy crop row detection in maize fields  

Science Conference Proceedings (OSTI)

This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification ... Keywords: Crop row detection in maize fields, Expert system, Image segmentation, Image thresholding, Linear regression, Machine vision, Theil-Sen estimator

J. M. Guerrero; M. Guijarro; M. Montalvo; J. Romeo; L. Emmi; A. Ribeiro; G. Pajares

2013-02-01T23:59:59.000Z

56

Seasonal Maize Forecasting for South Africa and Zimbabwe Derived from an Agroclimatological Model  

Science Conference Proceedings (OSTI)

Seasonal maize water-stress forecasts were derived for area averages of the primary maize-growing regions of South Africa and Zimbabwe. An agroclimatological model was used to create a historical record of maize water stress as a function of ...

Randall V. Martin; Richard Washington; Thomas E. Downing

2000-09-01T23:59:59.000Z

57

Dynamic load test of Arquin-designed CMU wall.  

SciTech Connect

The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as a means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBA), Sandia National Laboratories conducted a series of tests that dynamically loaded wall segments to compare the performance of walls constructed using the Arquin method to a more traditional method of constructing CMU walls. A total of four walls were built, two with traditional methods and two with the Arquin method. Two of the walls, one traditional and one Arquin, had every third cell filled with grout. The remaining two walls, one traditional and one Arquin, had every cell filled with grout. The walls were dynamically loaded with explosive forces. No significant difference was noted between the performance of the walls constructed by the Arquin method when compared to the walls constructed by the traditional method.

Jensen, Richard Pearson

2010-02-01T23:59:59.000Z

58

Thermal treatment wall  

DOE Patents (OSTI)

A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

2000-01-01T23:59:59.000Z

59

BNL | Joseph S. Wall  

NLE Websites -- All DOE Office Websites (Extended Search)

Joseph S. Wall Joseph S. Wall Emeritus Research Interests Mass mapping of unstained biological molecules with the scanning transmission electron microscope (STEM), particularly assemblies of complexes from subunits of known size and shape. Examples include: Alzheimer's filaments, viral capsids, annelid hemoglobins, hemocyanins, proteases, chaperonins, microtubule proteins, prions and various nucleic acid-protein complexes. Another research area is instrument development involving design and construction of an instrument for low-temperture, energy loss spectroscopy, and elemental mapping at low dose. This is being used to map phosphorus in nucleic acid-protein complexes, phosphorylated proteins and phospholipid structures. He also is director of the Scanning Transmission Electron Microscope STEM

60

INFLUENCE OF UNREFINED SORGHUM OR MAIZE ON SERUM LIPIDS  

E-Print Network (OSTI)

ABSTRACT: The rural population in many parts of India consumes sorghum (Jowar) and maize as staple food. The flour made out of these cereals is consumed after cooking or baking on a pan with or without oil. The present study was undertaken in two groups of healthy human volunteers. Each subject of first group consumed ground unrefined sorghum (100g) daily as supper for three weeks in the form of pancake. The subjects of second group consumed ground unrefined Maize (50g) daily as supper for three weeks also as pancake. Both the diets showed significant reduction in serum total cholesterol and triglyceride levels with simultaneous increase in HDL cholesterol value.

G. E. Suhasini; D. R. Krishna

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High-R Walls for Remodeling: Wall Cavity Moisture Monitoring  

Science Conference Proceedings (OSTI)

The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

Wiehagen, J.; Kochkin, V.

2012-12-01T23:59:59.000Z

62

Wall conditions in ORMAK  

SciTech Connect

From surface effects in controlled thermonuclear fusion devices and reactors meeting; Argonne, Illnois, USA (10 Jan 1974). ORMAK is a diffuse toroidal pinch with typical plasma currents of 100 kA, electron temperatures of 800 eV, and ion temperatures of 300 eV. The walls of the plasma region are made of stainless steel coated with an intermediate layer of platinum 0.05 mu thick and an outer 1 to 2 mu layer of gold. Tests with an Ion Microprobe Mass Analyzer have shown that the platinum acts to decrease diffusion of impurities from the stalnless steel to the surface. Gold was chosen to inhibit the surface chemical adsorption of gases. Studies with a movable limiter indicate that electron energy is lost at the plasma edge mainly via line radiation and cooling on ions, while ions are lost from the plasma by charge exchange. Thus the walls are bombarded by energetic neutrals, line radiation and, in addition, bremsstrahlung x-rays. The flux of energetic neutrals is measured by a charge exchange analyzer. Wall bombardment by such neutrals should cause sputtering, and gold has been observed spectroscopically near the limiter, increasing with time during a shot, However, analysis of impurities coated on a window by the discharge indicated very little gold sputtering and re-deposition. To measure the sputterirg rate, a wall sample was coated with 105 A of radioactive gold and bombarded with neutrals from ORMAK during a day's run. No measurable sputtering was found within the counting statistics of the measurement, but surface carbon contamination of the sample prevented any final conclusions. (auth)

Colchin, R.J.; Berry, L.A.; Haste, G.R.; Kelley, G.G.; Lyon, J.F.; McNally, J.R.; Murakami, M.; Neidigh, R.V.; Simpkins, J.E.; Wing, W.R.

1972-01-01T23:59:59.000Z

63

Bumper wall for plasma device  

DOE Patents (OSTI)

Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

Coultas, Thomas A. (Hinsdale, IL)

1977-01-01T23:59:59.000Z

64

Vector-field domain walls  

Science Conference Proceedings (OSTI)

We argue that spontaneous Lorentz violation may generally lead to metastable domain walls related to the simultaneous violation of some accompanying discrete symmetries. Remarkably, such domain-wall solutions exist for spacelike Lorentz violation and do not exist for the timelike violation. Because a preferred space direction is spontaneously induced, these domain walls have no planar symmetry and produce a peculiar static gravitational field at small distances, while their long-distance gravity appears the same as for regular scalar-field walls. Some possible applications of vector-field domain walls are briefly discussed.

Chkareuli, J. L. [E. Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia (United States); I. Chavchavadze State University, 0162 Tbilisi (Georgia); Kobakhidze, Archil [E. Andronikashvili Institute of Physics, 0177 Tbilisi (Georgia); School of Physics, University of Melbourne, Victoria 3010 (Australia); Volkas, Raymond R. [School of Physics, University of Melbourne, Victoria 3010 (Australia)

2009-09-15T23:59:59.000Z

65

Thick planar domain wall: its thin wall limit and dynamics  

E-Print Network (OSTI)

We consider a planar gravitating thick domain wall of the $\\lambda \\phi^4$ theory as a spacetime with finite thickness glued to two vacuum spacetimes on each side of it. Darmois junction conditions written on the boundaries of the thick wall with the embedding spacetimes reproduce the Israel junction condition across the wall in the limit of infinitesimal thickness. The thick planar domain wall located at a fixed position is then transformed to a new coordinate system in which its dynamics can be formulated. It is shown that the wall's core expands as if it were a thin wall. The thickness in the new coordinates is not constant anymore and its time dependence is given.

S. Ghassemi; S. Khakshournia; R. Mansouri

2006-09-28T23:59:59.000Z

66

Oven wall panel construction  

DOE Patents (OSTI)

An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

Ellison, Kenneth (20 Avondale Cres., Markham, CA); Whike, Alan S. (R.R. #1, Caledon East, both of Ontario, CA)

1980-04-22T23:59:59.000Z

67

Characterization of maize testing locations in eastern and southern Africa  

E-Print Network (OSTI)

The region of eastern and southern Africa is very diverse in environments and agronomic practices. The region has one of the highest per capita consumption of maize (Zea mays. L), which is predominantly produced by smallholder farmers. Some important constraints facing these farmers include drought and low fertility. For decades, the International Center for Wheat and Maize Improvement (CIMMYT) has been involved in developing maize genotypes that have high grain yields and are tolerant to drought, low fertility and other important constraints. This germplasm is developed for wide adaptation. However, the development of superior germplasm is significantly affected by interaction between genotypes and the environment (i.e., genotype by environment interaction, GEI). To estimate and understand GEI maize genotypes are evaluated in a range of environments representing as much variability of the target growing areas as possible. Because of dwindling resources needed to conduct testing in the region, it may not be possible to test in all potential target areas. Therefore, a careful process of site selection for testing is essential to improve efficiencies in cultivar testing and deployment. The objective of this research was to characterize the maize testing locations of the eastern and southern Africa region. Historical data from CIMMYT Regional Trials from 1999 to 2003 was used to characterize the environments and estimate genetic parameters. Environmnent and GEI showed consistently high contributions to the total variation observed among genotypes for grain yield. Environment contributed over 60% and sometimes up to 85% of total variation observed. Sequential retrospective pattern analysis (Seqret) was conducted on the adjusted standardized grain yield. A total of 7 groups of environments were identified. Repeatabilites, a measure of the proportion of phenotypic variation that is due to genetic differences, was reduced under stress conditions. The relationship among traits showed that anthesis-silking interval (ASI) is an important selective trait, which can improve selection efficiency for grain yield under stress conditions. Stability analysis provided an opportunity to observe the response and adaptation of genotypes to a wide range of environments. Variety ZM621 was a stable and high yielding genotype.

Maideni, Francis W.

2005-05-01T23:59:59.000Z

68

NREL: News Feature - NREL Breaks Down Walls for Biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Breaks Down Walls for Biofuels NREL Breaks Down Walls for Biofuels November 30, 2009 Researchers at the National Renewable Energy Laboratory (NREL) and ethanol producers are racing to come up with ways to make ethanol from cellulosic biomass that are cheaper and easier to produce than current methods. But they are hitting a wall. Cell walls in plants are making the production of cellulosic ethanol a challenge. So researchers are creating their own computer program to help model and break down the tiny fibers of cellulose - or fibrils - found in plant cells. Although ethanol is becoming more available to consumers, NREL is working closely with the U.S. Department of Energy (DOE) to meet a quickly approaching goal to produce competitively priced ethanol for $1.50 per gallon by 2012. Why the rush? DOE believes this is the price at which

69

Study on the Maize Straw Process of Fast Pyrolysis in the Rotating Cone Reactor and Process  

Science Conference Proceedings (OSTI)

With maize straw as raw material and quartz sand as heat medium, the system of rapid pyrolysis of biology materials using a rotating cone reactor was established. seven main factors during the pyrolysis process including temperature, rotating rate, degree ... Keywords: biomass, maize straw, bio-oil, fast pyrolysis, rotating cone reactor

Li Junsheng

2010-03-01T23:59:59.000Z

70

Moisture Research - Optimizing Wall Assemblies  

SciTech Connect

The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

Arena, L.; Mantha, P.

2013-05-01T23:59:59.000Z

71

Multi-Location Evaluation of Agronomic Traits in Maize Hybrids  

E-Print Network (OSTI)

Maize (Zea mays L.) is one of the main crops grown in the United States. Genetic improvement over the last century has seen a shift from using open-pollinated varieties to single cross hybrids. This has resulted in major grain yield gains and improved management methodologies. However, there is still concern about reduced genetic diversity in elite corn germplasm and the potential effects this could have on future maize productivity in the presence of numerous abiotic and biotic pressures. One solution to this issue is the incorporation of exotic germplasm into existing maize improvement programs. This exotic material must be evaluated and characterized because too much or poorly matched exotic material can lead to reduced productivity. The use of multiple environments representative to the target improvement area is the best way to determine the true potential of certain material. The objectives of this research were to: i) estimate the responses of hybrids to aflatoxin and their agronomic performance across a range of environments under inoculation with Aspergillus flavus; ii) identify the hybrids within each group that exhibit the lowest levels of contamination; iii) analyze the relationship between agronomic performance and aflatoxin accumulation; and iv) determine how Genotype x Environment interactions affect these traits. Agronomic data was collected in ten Texas environments in 2005 for hybrids created from yellow, white, and Quality Protein Maize material that was crossed with one of two elite temperate inbred testers, LH195 or LH210. Response to aflatoxin was measured in eight of these environments. U.S. commercial hybrids were used as checks. Significant differences between hybrids were observed at different environments for different traits. Overall the experimental hybrids had lower aflatoxin accumulation than the commercial checks. They also yielded lower and had lower test weights and 1000 kernel weights. However, there were some hybrids that were competitive with the commercial checks for these agronomic traits. The incorporation of this material into established U.S. lines could be beneficial with regards to aflatoxin accumulation and kernel quality, which could ultimately translate to higher yields and crop quality.

McKee, Michael 1982-

2012-12-01T23:59:59.000Z

72

EERE Roofus' Solar and Efficient Home: Walls  

NLE Websites -- All DOE Office Websites (Extended Search)

Walls Insulation Windows Activities Printable Version Walls Illustration of Roofus, a golden retriever, sitting in front of a wall. On cold nights, you use a blanket to keep you...

73

Wall Insulation; BTS Technology Fact Sheet  

SciTech Connect

Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

Southface Energy Institute; Tromly, K.

2000-11-07T23:59:59.000Z

74

Security_Walls_VPP_Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Force Recognized for Outstanding Safety CARLSBAD, N.M., May 10, 2013 - The U.S. Department of Energy (DOE) has awarded Security Walls, LLC, the Waste Isolation Pilot...

75

Compositional characterization and imaging of "Wall-bound" acylesters of Populus trichocarpa Reveal Differential Accumulation of acyl Molecules in Normal and Reactive Woods  

SciTech Connect

Acylesterification is one of the common modifications of cell wall non-cellulosic polysaccharides and/or lignin primarily in monocot plants. We analyzed the cell-wall acylesters of black cottonwood (Populus trichocarpa Torr. & Gray) with liquid chromatography-mass spectrometry (LC-MS), Fourier transform-infrared (FT-IR) microspectroscopy, and synchrotron infrared (IR) imaging facility. The results revealed that the cell wall of dicotyledonous poplar, as the walls of many monocot grasses, contains a considerable amount of acylesters, primarily acetyl and p-hydroxycinnamoyl molecules. The 'wall-bound' acetate and phenolics display a distinct tissue specific-, bending stress responsible- and developmental-accumulation pattern. The 'wall-bound' p-coumarate predominantly accumulated in young leaves and decreased in mature leaves, whereas acetate and ferulate mostly amassed in the cell wall of stems. Along the development of stem, the level of the 'wall-bound' ferulate gradually increased, while the basal level of p-coumarate further decreased. Induction of tension wood decreased the accumulation of the 'wall-bound' phenolics while the level of acetate remained constant. Synchrotron IR-mediated chemical compositional imaging revealed a close spatial distribution of acylesters with cell wall polysaccharides in poplar stem. These results indicate that different 'wall-bound' acylesters play distinct roles in poplar cell wall structural construction and/or metabolism of cell wall matrix components.

Guo, J.; Park, S; Yu, X; Liu, C

2008-01-01T23:59:59.000Z

76

Farmers' Subjective Valuation of Subsistence Crops: The Case of Traditional Maize in Mexico  

E-Print Network (OSTI)

genetica del maiz en Mexico. Programa de Estudios del Cambioin lowland tropical Mexico. World Development, 34(1):113Central Valleys of Oaxaca, Mexico. Human Ecology, 34(2):249

Arslan, Aslihan; Taylor, J. Edward

2008-01-01T23:59:59.000Z

77

Domain walls riding the wave.  

SciTech Connect

Recent years have witnessed a rapid proliferation of electronic gadgets around the world. These devices are used for both communication and entertainment, and it is a fact that they account for a growing portion of household energy consumption and overall world consumption of electricity. Increasing the energy efficiency of these devices could have a far greater and immediate impact than a gradual switch to renewable energy sources. The advances in the area of spintronics are therefore very important, as gadgets are mostly comprised of memory and logic elements. Recent developments in controlled manipulation of magnetic domains in ferromagnet nanostructures have opened opportunities for novel device architectures. This new class of memories and logic gates could soon power millions of consumer electronic devices. The attractiveness of using domain-wall motion in electronics is due to its inherent reliability (no mechanical moving parts), scalability (3D scalable architectures such as in racetrack memory), and nonvolatility (retains information in the absence of power). The remaining obstacles in widespread use of 'racetrack-type' elements are the speed and the energy dissipation during the manipulation of domain walls. In their recent contribution to Physical Review Letters, Oleg Tretiakov, Yang Liu, and Artem Abanov from Texas A&M University in College Station, provide a theoretical description of domain-wall motion in nanoscale ferromagnets due to the spin-polarized currents. They find exact conditions for time-dependent resonant domain-wall movement, which could speed up the motion of domain walls while minimizing Ohmic losses. Movement of domain walls in ferromagnetic nanowires can be achieved by application of external magnetic fields or by passing a spin-polarized current through the nanowire itself. On the other hand, the readout of the domain state is done by measuring the resistance of the wire. Therefore, passing current through the ferromagnetic wire is the preferred method, as it combines manipulation and readout of the domain-wall state. The electrons that take part in the process of readout and manipulation of the domain-wall structure in the nanowire do so through the so-called spin transfer torque: When spin-polarized electrons in the ferromagnet nanowire pass through the domain wall they experience a nonuniform magnetization, and they try to align their spins with the local magnetic moments. The force that the electrons experience has a reaction force counterpart that 'pushes' the local magnetic moments, resulting in movement of the domain wall in the direction of the electron flow through the spin-transfer torque. The forces between the electrons and the local magnetic moments in the ferromagnet also create additional electrical resistance for the electrons passing through the domain wall. By measuring resistance across a segment of the nanowire, one determines if a domain wall is present; i.e., one can read the stored information. The interaction of the spin-polarized electrons with the domain wall in the ferromagnetic nanowire is not very efficient. Even for materials achieving high polarization of the free electrons, it is very difficult to move the magnetic domain wall. Several factors contribute to this problem, with imperfections of the ferromagnetic nanowire that cause domain-wall pinning being the dominant one. Permalloy nanowires, one of the best candidates for domain-wall-based memory and logic devices, require current densities of the order of 10{sup 8} A/cm{sup 2} in order to move a domain wall from a pinning well. Considering that this current has to pass through a relatively long wire, it is not very difficult to imagine that most of the energy will go to Joule heating. The efficiency of the process - the ratio of the energy converted to domain-wall motion to the total energy consumed - is comparable to that of an incandescent light bulb converting electricity to light. A step towards more efficient domain-wall-based memory devices is the advance of using alternating currents or curren

Karapetrov, G.; Novosad, V.; Materials Science Division

2010-11-01T23:59:59.000Z

78

Key words: serology/sedimentation/virus group~maize stripe virus/rice stripe virus Relationship Between Maize Stripe Virus and Rice Stripe Virus  

E-Print Network (OSTI)

Maize stripe virus (MStpV) and rice stripe virus (RSV) were compared serologically, chemically and physically. Cross-reactions in agar gel double-diffusion and microprecipitin tests, and neutralization of MStpV infectivity by antiserum to either virus showed that MStpV and RSV are serologically related. Both viruses sedimented slowly and in a heterodisperse manner in rate-zonal sucrose gradients, and both had similar buoyant densities in CsC1. Large amounts of a low molecular weight non-capsid protein were found in plants infected with either virus. Only limited maize-to-maize transmission of RSV was obtained with Peregrinus maidis (Ashmead), the MStpV vector. This transmission, however, resulted in symptoms similar to those induced by MStpV. MStpV and RSV appear to be members of the same virus group.

E. Gingery; Lowell R. Nault; Shuichi Yamashita

1983-01-01T23:59:59.000Z

79

Density equation of bio-coal briquettes and quantity of maize cob in Phitsanulok, Thailand  

SciTech Connect

One of the most important crops in Phitsanulok, a province in Northern Thailand, is maize. BaseD on the calculation, the quantity of maize cob produced in this region was approximately 220 kton year{sup -1}. The net heating value of maize cob was found to be 14.2 MJ kg{sup -1}. Therefore, the total energy over 874 TJ year-1 can be obtained from this agricultural waste. In the experiments, maize cob was utilized as the major ingredient for producing biomass-coal briquettes. The maize cob was treated with sodium hydroxide solution before mixing with coal fine. The ratios of coal:maize were 1:2 and 1:3, respectively. The range of briquetting pressures was from 4-8 MPa. The result showed that the density was strongly affected by both parameters. Finally, the relationship between biomass ratio, briquetting pressures and briquette density was developed and validated by using regression technique. 13 refs., 2 figs.

Patomsok Wilaipon [Naresuan University, Phitsanulok (Thailand). Department of Mechanical Engineering

2008-07-01T23:59:59.000Z

80

Glazing and the Trombe wall  

DOE Green Energy (OSTI)

Single, double and triple glazing are examined for use in passive solar Trombe walls and south facing windows. Net gains and losses are calculated employing regional weather data and annual contribution to heating load reduction is evaluated. The study concentrates on the reflectivity of each glass pane, including the dependence of reflectivity on the angle of incidence of the radiation, and resulting heat gains and losses. This facet of passive design heretofore has been inadequately treated as is shown to be significant. The marginal value of each additional pane is investigated with regard to heat gain, energy savings and total costs. Additionally, attention is given to the effects of Trombe wall energy storage.

Pouder, R W; Leigh, R W

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Characterisation of the maize leaf patterning mutants Wavy auricle in blade1-R and milkweed pod1-R.  

E-Print Network (OSTI)

??The maize leaf has three main axes of growth, with an asymmetric distribution of tissue types along each axis. This study focuses on three mutants, (more)

Johnston, Robyn Maree

2007-01-01T23:59:59.000Z

82

Photovoltaic properties of multi-walled carbon nanotubes deposited on n-doped silicon  

Science Conference Proceedings (OSTI)

Multi-wall carbon nanotubes (MWCNTs), grown by catalytic chemical vapor deposition (CCVD) over Fe supported on alumina catalyst, using isobutane as feedstock, are dispersed in aqueous solutions of sodium dodecyl sulfate. Stable and highly photosensitive ... Keywords: Hybrid solar cells, Multi-walled carbon nanotubes, Silicon heterojunctions

A. Arena; N. Donato; G. Saitta; S. Galvagno; C. Milone; A. Pistone

2008-12-01T23:59:59.000Z

83

Vacuum Insulator Development for the Dielectric Wall Accelerator  

Science Conference Proceedings (OSTI)

At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.

Harris, J R; Blackfield, D; Caporaso, G J; Chen, Y; Hawkins, S; Kendig, M; Poole, B; Sanders, D M; Krogh, M; Managan, J E

2008-03-17T23:59:59.000Z

84

Steel-framed buildings: Impacts of wall detail configurations on the whole wall thermal performance  

SciTech Connect

The main objective of this paper is the influence of architectural wall details on the whole wall thermal performance. Whole wall thermal performance analysis was performed for six light gage steel-framed wall systems (some with wood components). For each wall system, all wall details were simulated using calibrated 3-D finite difference computer modeling. The thermal performance of the six steel-framed wall systems included various system details and the whole wall system thermal performance for a typical single-story ranch house. Currently, predicted heat losses through building walls are typically based on measurements of the wall system clear wall area using test methods such as ASTM C 236 or are calculated by one of the procedures recommended in the ASHRAE Handbook of Fundamentals that often is carried out for the clear wall area exclusively. In this paper, clear wall area is defined as the part of the wall system that is free of thermal anomalies due to building envelope details or thermally unaffected by intersections with other surfaces of the building envelope. Clear wall experiments or calculations normally do not include the effects of building envelope details such as corners, window and door openings, and structural intersections with roofs, floors, ceilings, and other walls. In steel-framed wall systems, these details typically consist of much more structural components than the clear wall. For this situation, the thermal properties measured or calculated for the clear wall area do not adequately represent the total wall system thermal performance. Factors that would impact the ability of today`s standard practice to accurately predict the total wall system thermal performance are the accuracy of the calculation methods, the area of the total wall that is clear wall, and the quantity and thermal performance of the various wall system details.

Kosny, J.; Desjarlais, A.O.; Christian, J.E.

1998-06-01T23:59:59.000Z

85

Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Wall Turbine Jump to: navigation, search Name Water Wall Turbine Sector Marine and Hydrokinetic Website http:www.wwturbine.com Region Canada LinkedIn Connections CrunchBase...

86

Through the wall solar cooker  

SciTech Connect

This patent describes a solar appliance for extending from the interior of a kitchen through an exterior wall of the building and beyond a predetermined distance in a cantilever manner to receive and concentrate in the appliance outside of the building, solar radiation rays for cooking purposes comprising: a housing, the housing being mounted to extend from a kitchen through an external wall of a building and beyond in a cantilever manner and forming a closed oven, the oven comprising a bottom, glass top, a pair of sides and a first end positioned with access from within the kitchen and comprising an oven door, a first reflective panel member mounted above, juxtapositioned to one edge of the glass top for positioning against the outer surface of the external wall and extending laterally therefrom for receiving and directing solar rays impinging thereon through the glass top and into the oven, and a second double-sided reflective panel mounted above and juxtapositioned to the glass top and extending substantially perpendicular to the first reflective panel for receiving solar rays impinging on either side thereof, and directing the solar rays into the oven.

Kerr, B.P.

1987-04-07T23:59:59.000Z

87

Tube wall thickness measurement apparatus  

DOE Patents (OSTI)

An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

Lagasse, Paul R. (Santa Fe, NM)

1987-01-01T23:59:59.000Z

88

Tube wall thickness measurement apparatus  

DOE Patents (OSTI)

An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

Lagasse, P.R.

1985-06-21T23:59:59.000Z

89

Occurrence of non-hydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by [sup 15]N NMR: Origin of n-alkylnitriles in pyrolysates of ultralaminai-containing kerogens  

Science Conference Proceedings (OSTI)

New structures, termed ultralaminae, were recently shown to occur in kerogens from numerous oil shales and source rocks. Morphological and chemical studies revealed that ultralaminae originate from the selective preservation of the non-hydrolysable biomacromolecules (algaenans) building up the thin outer walls of several Chlorophyceae (green microalgae) including the cosmopolitan general Scenedesmus and Chlorella. The chemical correlation between such algaenans and fossil ultralaminae was mainly based on the production, on pyrolysis, of nitrogen compounds, n-alkylnitriles, with specific distributions depending on the lacustrine of marine origin of the considered samples. In addition, these bio-and geopolymers were characterized by quite high N levels.

Derenne, S.; Largeau, C. (Ecole Nationale Superieure de Chimie de Paris (France)); Taulelle, F. (Univ. P. et M. Curie, Paris (France))

1993-02-01T23:59:59.000Z

90

Organization of the R chromosome region in maize. Triennial report  

DOE Green Energy (OSTI)

R-r controls the production of anthocyanin pigment in plant parts and the aleurone layer of seeds through the production of a family of transcriptional activating proteins of the helix-loop-helix type. A series of mutant derivatives of R-r which have lost portions of the complex through unequal crossing over or intrachromosomal rearrangements have been examined to elucidate the molecular structure of the complex. The complex comprises a series of repeated, homologous components arranged in both direct and inverted orientations. These include the (P) component which causes pigmentation of plant parts and consists of a simple R gene; the (Q) component which is a truncated and, therefore, an inactive R gene, and the (S) subcomplex which consists of two functional R components that pigment the aleurone. The identity of each functional component was confirmed by microprojectile bombardment of intact maize tissues with cloned genomic DNA. Analysis of high molecular weight DNA has shown that the R-r complex spans more than 250 kb of DNA with the (P) component separated from the others by 190 kb, and the (Q) component separated from the (S) subcomplex by 20 kb. Sequence analysis shows that the R-r elements, (Q), (Sl) and (S2) were derived through the rearrangement of a simple (P)-like progenitor element. We present molecular evidence that the complex arose through a series of transposon-mediated rearrangements.

Kermicle, J.

1992-07-01T23:59:59.000Z

91

Organization of the R chromosome region in maize  

DOE Green Energy (OSTI)

R-r controls the production of anthocyanin pigment in plant parts and the aleurone layer of seeds through the production of a family of transcriptional activating proteins of the helix-loop-helix type. A series of mutant derivatives of R-r which have lost portions of the complex through unequal crossing over or intrachromosomal rearrangements have been examined to elucidate the molecular structure of the complex. The complex comprises a series of repeated, homologous components arranged in both direct and inverted orientations. These include the (P) component which causes pigmentation of plant parts and consists of a simple R gene; the (Q) component which is a truncated and, therefore, an inactive R gene, and the (S) subcomplex which consists of two functional R components that pigment the aleurone. The identity of each functional component was confirmed by microprojectile bombardment of intact maize tissues with cloned genomic DNA. Analysis of high molecular weight DNA has shown that the R-r complex spans more than 250 kb of DNA with the (P) component separated from the others by 190 kb, and the (Q) component separated from the (S) subcomplex by 20 kb. Sequence analysis shows that the R-r elements, (Q), (Sl) and (S2) were derived through the rearrangement of a simple (P)-like progenitor element. We present molecular evidence that the complex arose through a series of transposon-mediated rearrangements.

Kermicle, J.

1992-07-01T23:59:59.000Z

92

Long-Predicted Fluctuations in Cell Membranes Observed for ...  

Science Conference Proceedings (OSTI)

... cell membrane, a thin, flexible wall made of fatty molecules that maintains the integrity of the nucleus and the rest of the cell's interior. Cells need a ...

2012-08-08T23:59:59.000Z

93

POROUS WALL, HOLLOW GLASS MICROSPHERES  

DOE Green Energy (OSTI)

Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of magnitude, which can result in unique properties in areas such as hydrogen storage, gas transport, gas separations and purifications, sensors, global warming applications, new drug delivery systems and so on. One of the most interesting porous glass products that SRNL has developed and patented is Porous Wall, Hollow Glass Microspheres (PW-HGMs) that are being studied for many different applications. The European Patent Office (EPO) just recently notified SRS that the continuation-in-part patent application for the PW-HGMs has been accepted. The original patent, which was granted by the EPO on June 2, 2010, was validated in France, Germany and the United Kingdom. The microspheres produced are generally in the range of 2 to 100 microns, with a 1 to 2 micron wall. What makes the SRNL microspheres unique from all others is that the team in Figure 1 has found a way to induce and control porosity through the thin walls on a scale of 100 to 3000 {angstrom}. This is what makes the SRNL HW-HGMs one-of-a-kind, and is responsible for many of their unique properties and potential for various applications, including those in tritium storage, gas separations, H-storage for vehicles, and even a variety of new medical applications in the areas of drug delivery and MRI contrast agents. SRNL Hollow Glass Microspheres, and subsequent, Porous Wall, Hollow Glass Microspheres are fabricated using a flame former apparatus. Figure 2 is a schematic of the apparatus.

Sexton, W.

2012-06-30T23:59:59.000Z

94

First Wall and Operational Diagnostics  

SciTech Connect

In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER.

Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C

2006-06-19T23:59:59.000Z

95

Heat-sound insulating wall  

SciTech Connect

The wall comprises a closed acoustic box-structure which is defined by a slightly ribbed sheet and a flat sheet. The boxstructure has lateral ribs which extend beyond the sheet. A panel of high-density mineral wool which is of small thickness is enclosed inside the box-structure. A heat insulator covers the box-structure and the ribs of the box-structure and is protected by an outer trough which has ribs or corrugations perpendicular to the ribs of the box-structure.

Ovaert, F.; Reneault, P.

1980-10-21T23:59:59.000Z

96

SRNL POROUS WALL GLASS MICROSPHERES  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

Wicks, G; Leung Heung, L; Ray Schumacher, R

2008-04-15T23:59:59.000Z

97

Seismic behavior of geogrid reinforced slag wall  

Science Conference Proceedings (OSTI)

Flexible retaining structures are known with their high performance under earthquake loads. In geogrid reinforced walls the performance of the fill material and the interface of the fill and geogrid controls the performance. Geosynthetic reinforced walls in seismic regions must be safe against not only static forces but also seismic forces. The objective of this study is to determine the behavior of a geogrid reinforced slag wall during earthquake by using shaking table experiments. This study is composed of three stages. In the first stage the physical properties of the material to be used were determined. In the second part, a case history involving the use of slag from steel industry in the construction of geogrid reinforced wall is presented. In the third stage, the results of shaking table tests conducted using model geogrid wall with slag are given. From the results, it is seen that slag can be used as fill material for geogrid reinforced walls subjected to earthquake loads.

Edincliler, Ayse [Bogazici University, Kandilli Observatory and Earthquake Research Institute, Department of Earthquake Engineering, Cengelkoey-Istanbul (Turkey); Baykal, Gokhan; Saygili, Altug [Bogazici University, Department of Civil Engineering, Bebek-Istanbul (Turkey)

2008-07-08T23:59:59.000Z

98

Quantum Fusion of Domain Walls with Fluxes  

E-Print Network (OSTI)

We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.

S. Bolognesi; M. Shifman; M. B. Voloshin

2009-07-20T23:59:59.000Z

99

Textural break foundation wall construction modules  

SciTech Connect

Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

Phillips, Steven J. (Kennewick, WA)

1990-01-01T23:59:59.000Z

100

Panelized wall system with foam core insulation  

DOE Patents (OSTI)

A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

First wall for polarized fusion reactors  

DOE Patents (OSTI)

Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

Greenside, Henry S. (Cranbury, NJ); Budny, Robert V. (Princeton, NJ); Post, Jr., Douglass E. (Buttonwood, CT)

1988-01-01T23:59:59.000Z

102

Spectral Impact of Low-Power Laser Radiation on Wheat and Maize Parameters*  

E-Print Network (OSTI)

and development of plants. The additionally absorbed light energy accelerates plant growth and increases7 4 Spectral Impact of Low-Power Laser Radiation on Wheat and Maize Parameters* St. Dinoev, M density, can be used not only in all spheres of engineering but also in biology and plant growing

Borissova, Daniela

103

Monte Carlo simulation of solar radiation in maize canopies and its visualization  

Science Conference Proceedings (OSTI)

The spatial distribution of solar radiation casts important influences on eco-physiological functions of plant canopies. A simulation model of the three-dimensional of direct and indirect solar radiation in real maize canopies is developed from measured ... Keywords: Monte Carlo algorithm, plant canopy, radiosity, ray tracing, three-dimensional distribution

Zhang Yuan; Lao Cai-lian; Lee Bao-Guo; Chen Yan; Guo Yan; Wang Xi-ping; Ma Yun-tao; Zhao Ming

2007-04-01T23:59:59.000Z

104

Seismic Response of Reinforced Concrete Walls Project  

Science Conference Proceedings (OSTI)

... data verification and development of improved models; and (2) investigation of global wall bucking in the 2010 Chile earthquake designed using ...

2012-01-20T23:59:59.000Z

105

First wall for polarized fusion reactors  

DOE Patents (OSTI)

A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

1985-01-29T23:59:59.000Z

106

Genetic diversity and performance of maize varieties from Zimbabwe, Zambia and Malawi  

E-Print Network (OSTI)

Large scale and planned introduction of maize (Zea mays) in southern Africa was accomplished during the last 100 years. Since then, smallholder farmers and breeders have been selecting varieties best adapted to their specific growing conditions. Six studies were conducted to generate information on the current levels of genetic diversity and agronomic performance of both farmer-developed and commercially-bred maize varieties in Zimbabwe, Zambia and Malawi to help in the identification of sources of new alleles for improving yield, especially under the main abiotic stresses that prevail in the region. In the first study, 267 maize landraces were collected from smallholder farmers in different agro-ecological zones of the three countries for conservation and further studies. Passport data and information on why smallholder farmers continue to grow landraces despite the advent of modern varieties were also collected along with the landraces. The second study revealed considerable variation for phenological, morphological and agronomic characters, and inter-relationships among the landraces and their commercial counterparts. A core sample representing most of the diversity in the whole collection of landraces was selected for further detailed analyses. The third study revealed high levels of molecular diversity between landraces originating from different growing environments and between landraces and commercially-bred varieties. The Simple Sequence Repeat (SSR) data also showed that the genetic diversity introduced from the original gene pool from the USA about 100 years ago is still found in both the descendant landraces and commercially-bred varieties. The fourth study showed that in general, commercially-bred varieties outyielded landraces under both abiotic stress and nonstress conditions with some notable exceptions. Landraces were more stable across environments than improved varieties. The most promising landraces for pre-breeding and further investigation were also identified. The clustering patterns formed based on agronomic data were different from SSR markers, but in general the genotype groupings were consistent across the two methods of measuring diversity. In the fifth study, the more recently-bred maize varieties in Zimbabwe showed consistent improvement over older cultivars in grain yield. The apparent yearly rate of yield increase due to genetic improvement was positive under optimum growing conditions, low soil nitrogen levels and drought stress. The sixth study revealed that in general, genetic diversity in Zimbabwean maize has neither significantly decreased nor increased over time, and that the temporal changes observed in this study were more qualitative than quantitative. The results from the six studies confirm the origin of maize in southern Africa and reveals that considerable genetic variation exists in the region which could be used to broaden the sources of diversity for maize improvement under the current agro-ecological conditions in southern Africa.

Magorokosho, Cosmos

2006-12-01T23:59:59.000Z

107

Comparative analysis of environmental impacts of maize-biogas and photovoltaics on a land use basis  

Science Conference Proceedings (OSTI)

This study aims to stimulate the discussion on how to optimize a sustainable energy mix from an environmental perspective and how to apply existing renewable energy sources in the most efficient way. Ground-mounted photovoltaics (PV) and the maize-biogas-electricity route are compared with regard to their potential to mitigate environmental pressure, assuming that a given agricultural area is available for energy production. Existing life cycle assessment (LCA) studies are taken as a basis to analyse environmental impacts of those technologies in relation to conventional technology for power and heat generation. The life-cycle-wide mitigation potential per area used is calculated for the impact categories non-renewable energy input, green house gas (GHG) emissions, acidification and eutrophication. The environmental performance of each system depends on the scenario that is assumed for end energy use (electricity and heat supply have been contemplated). In all scenarios under consideration, PV turns out to be superior to biogas in almost all studied impact categories. Even when maize is used for electricity production in connection with very efficient heat usage, and reduced PV performance is assumed to account for intermittence, PV can still mitigate about four times the amount of green house gas emissions and non-renewable energy input compared to maize-biogas. Soil erosion, which can be entirely avoided with PV, exceeds soil renewal rates roughly 20-fold on maize fields. Regarding the overall Eco-indicator 99 (H) score under most favourable assumptions for the maize-biogas route, PV has still a more than 100% higher potential to mitigate environmental burden. At present, the key advantages of biogas are its price and its availability without intermittence. In the long run, and with respect to more efficient land use, biogas might preferably be produced from organic waste or manure, whereas PV should be integrated into buildings and infrastructures. (author)

Graebig, Markus; Fenner, Richard [Centre for Sustainable Development, Department of Engineering, University of Cambridge (United Kingdom); Bringezu, Stefan [Wuppertal Institute for Climate, Environment and Energy. P.B. 100480, 42004 Wuppertal (Germany)

2010-07-15T23:59:59.000Z

108

External Insulation of Masonry Walls and Wood Framed Walls  

Science Conference Proceedings (OSTI)

The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

Baker, P.

2013-01-01T23:59:59.000Z

109

BronWall: a software system for volumetric quantification of the bronchial wall remodeling in MDCT  

Science Conference Proceedings (OSTI)

This paper develops an original volumetric quantification approach of the bronchial wall remodeling, based on MDCT acquisitions prior/post-medication delivery. The methodology is implemented as a software system -BronWall- integrating 3D segmentation, ... Keywords: 3D image processing, 3D segmentation, bronchial reactivity, software system, volumetric quantification, wall remodeling

A. Saragaglia; C. Fetita; F. Preteux

2006-07-01T23:59:59.000Z

110

New Corrosion Resistance Bar in Sandwich Wall  

Science Conference Proceedings (OSTI)

Sandwich masonry wall is an energy-saving composite wall with good mechanical properties and durability. But the adhesion strength to its tie bar affects its permanence. In order to simple the traditional production processes, a new method was proposed. ... Keywords: energy-saving, durability, steel bar, insulation

Li Yancang; Ge Xiaohua; Wang Fengxin

2010-03-01T23:59:59.000Z

111

Fire performance of single leaf masonry walls  

Science Conference Proceedings (OSTI)

A finite element model called MasSET has been developed which is capable of predicting the structural behaviour of single leaf masonry walls subject to elevated temperatures. The analysis models a slice through the wall as a column strip in plane stress, ... Keywords: boundary conditions, eccentricity, finite element model, masonry in fire, slenderness ratio

A. Nadjai; M. O'Gara; F. Ali

2001-09-01T23:59:59.000Z

112

Wall System Innovations: Familiar Materials, Better Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Wall System Innovation Vladimir Kochkin Joseph Wiehagen April 2013 Wall Innovation Metrics  High R (thermal and air barrier)  High Performance  Durable, structural  Build-able  Low transition risk to builders  50% Building America Goal  ≈ R25+ (CZ 4 and higher) 2 Background  Technologies for high-R walls have been proposed and used for over 25 years  But real market penetration is very low  Often the last EE measure implemented by builders (e.g. E*) 3 Background  High-R wall solutions have not achieved a broad level of standardization and commonality  A large set of methods and materials entered the market  Multiple and conflicting details  Wall characteristics are more critical = RISK 4 New Home Starts -

113

The use of multi-temporal MODIS images with ground data to distinguish cotton from maize and sorghum fields in smallholder agricultural landscapes of Southern Africa  

Science Conference Proceedings (OSTI)

In this study, we test whether we can significantly p Gossypium hirsutum L. fields from maize Zea mays L. and sorghum Sorghum ...

Mbulisi Sibanda; Amon Murwira

2012-08-01T23:59:59.000Z

114

Bio-Synthetic Wall Systems Visualization  

NLE Websites -- All DOE Office Websites (Extended Search)

Bio-Synthetic Wall Systems Visualization Speaker(s): Maria-Paz Gutierrez Date: December 16, 2008 - 10:00am Location: 90-3075 Seminar HostPoint of Contact: Michael Donn...

115

SO(10) domain-wall brane models  

E-Print Network (OSTI)

We construct domain-wall brane models based on the grand-unification group SO(10), generalising the SU(5) model of Davies, George and Volkas. Motivated by the Dvali-Shifman proposal for the dynamical localisation of gauge bosons, the SO(10) symmetry is spontaneously broken inside the wall. We present two scenarios: in the first, the unbroken subgroup inside the wall is SU(5) x U(1)X, and in the second it is the left-right symmetry group SU(3) x SU(2)L x SU(2)R x U(1)B-L. In both cases we demonstrate that the phenomenologically-correct fermion zero modes can be localised to the wall, and we briefly discuss how the symmetry-breaking dynamics may be extended to induce breaking to the standard model group with subsequent electroweak breaking. Dynamically localised gravity is realised through the type 2 Randall-Sundrum mechanism.

Jayne E. Thompson; Raymond R. Volkas

2009-08-28T23:59:59.000Z

116

Electric and Magnetic Walls on Dielectric Interfaces  

E-Print Network (OSTI)

Sufficient conditions of the existence of electric or magnetic walls on dielectric interfaces are given for a multizone uniform dielectric waveguiding system. If one of two adjacent dielectric zones supports a TEM field distribution while the other supports a TM (TE) field distribution, then the common dielectric interface behaves as an electric (magnetic) wall, that is, the electric (magnetic) field line is perpendicular to the interface while the magnetic (electric) field line is parallel to the interface.

Changbiao Wang

2010-07-20T23:59:59.000Z

117

Thin Wall Cast Iron: Phase II  

DOE Green Energy (OSTI)

The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

Doru M. Stefanescu

2005-07-21T23:59:59.000Z

118

Shear wall experiments and design in Japan  

SciTech Connect

This paper summarizes the results of recent survey studies on the available experimental data bases and design codes/standards for reinforced concrete (RC) shear wall structures in Japan. Information related to the seismic design of RC reactor buildings and containment structures was emphasized in the survey. The seismic requirements for concrete structures, particularly those related to shear strength design, are outlined. Detailed descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

Park, Y.J.; Hofmayer, C.

1994-12-01T23:59:59.000Z

119

Building Technologies Office: Highly Energy Efficient Wall Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Energy Efficient Wall Systems Research Project to someone by E-mail Share Building Technologies Office: Highly Energy Efficient Wall Systems Research Project on Facebook...

120

OPERATIONAL WINDOWS FOR DRY-WALL AND WETTED-WALL IFE CHAMBERS  

E-Print Network (OSTI)

OPERATIONAL WINDOWS FOR DRY-WALL AND WETTED-WALL IFE CHAMBERS F. NAJMABADI* University the trade- offs, to develop operational windows for chamber con- cepts, and to identify high the injection process; (d) for relatively low yield targets ( 250 MJ), an operational window with no buffer gas

California at San Diego, University of

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wall R-values that tell it like it is  

SciTech Connect

The R-value of a whole wall can be considerable lower than the R-value of the insulation that fills it. At DOE`s Buildings Technology Center, scientists have developed a system for measuring whole wall R-value and have already tested several wall systems. Topics covered include the following: how wall r-value is usually calculated; measuring whole-wall r-values; evaluating wall performance; a wall rating label; beyond r-value; r-value terminology. 1 fig., 1 tab.

Christian, J.E. [Oak Ridge National Lab., TN (United States); Kosny, J. [Univ. of Tennessee, Knoxville, TN (United States)

1997-03-01T23:59:59.000Z

122

Domain wall conduction in multiaxial ferroelectrics  

Science Conference Proceedings (OSTI)

The conductance of domain wall structures consisting of either stripes or cylindrical domains in multiaxial ferroelectric-semiconductors is analyzed. The effects of the flexoelectric coupling, domain size, wall tilt, and curvature on charge accumulation are analyzed using the Landau-Ginsburg Devonshire theory for polarization vector combined with the Poisson equation for charge distributions. The proximity and size effect of the electron and donor accumulation/depletion by thin stripe domains and cylindrical nanodomains are revealed. In contrast to thick domain stripes and wider cylindrical domains, in which the carrier accumulation (and so the static conductivity) sharply increases at the domain walls only, small nanodomains of radii less than 5-10 correlation lengths appeared conducting across the entire cross-section. Implications of such conductive nanosized channels may be promising for nanoelectronics.

Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Svechnikov, S. V. [National Academy of Science of Ukraine, Kiev, Ukraine; Maksymovych, Petro [ORNL; Kalinin, Sergei V [ORNL

2012-01-01T23:59:59.000Z

123

living walls | OpenEI Community  

Open Energy Info (EERE)

14 14 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142229614 Varnish cache server living walls Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind

124

Domain-wall branes in Lifshitz theories  

E-Print Network (OSTI)

We analyze whether or not Lifshitz field theories in 4 + 1 dimensions may provide ultraviolet-complete domain-wall brane models. We first show that Lifshitz scalar field theory can admit topologically stable domain wall solutions. A Lifshitz fermion field is then added to the toy model, and we demonstrate that 3+1- dimensional Kaluza-Klein zero mode solutions do not exist when the four spatial dimensions are treated isotropically. To recover 3 + 1-dimensional chiral fermions dynamically localized to the domain wall, we must postulate the breaking of full 4-dimensional rotational symmetry down to the subgroup of rotations which mix the usual 3-dimensional spatial directions and fix the extra-dimensional axis in addition to the anisotropy between space and time.

Jayne E. Thompson; Raymond R. Volkas

2010-08-12T23:59:59.000Z

125

INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS  

SciTech Connect

The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

Michael Arney, Ph.D.

2002-12-31T23:59:59.000Z

126

Thermodynamics of free Domain Wall fermions  

E-Print Network (OSTI)

Studying various thermodynamic quantities for the free domain wall fermions for both finite and infinite fifth dimensional extent N_5, we find that the lattice corrections are minimum for $N_T\\geq10$ for both energy density and susceptibility, for its irrelevant parameter M in the range 1.45-1.50. The correction terms are, however, quite large for small lattice sizes of $N_T\\leq8$. We propose modifications of the domain wall operator, as well as the overlap operator, to reduce the finite cut-off effects to within 10% of the continuum results of the thermodynamic quantities for the currently used N_T=6-8 lattices. Incorporating chemical potential, we show that \\mu^2 divergences are absent for a large class of such domain wall fermion actions although the chiral symmetry is broken for $\\mu\

R. V. Gavai; Sayantan Sharma

2008-11-19T23:59:59.000Z

127

Turbine airfoil with a compliant outer wall  

DOE Patents (OSTI)

A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation in the outer layer is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a support structure. The outer layer may be a compliant layer configured such that the outer layer may thermally expand and thereby reduce the stress within the outer layer. The outer layer may be formed from a nonplanar surface configured to thermally expand. In another embodiment, the outer layer may be planar and include a plurality of slots enabling unrestricted thermal expansion in a direction aligned with the outer layer.

Campbell, Christian X. (Oviedo, FL); Morrison, Jay A. (Oviedo, FL)

2012-04-03T23:59:59.000Z

128

Living Walls | OpenEI Community  

Open Energy Info (EERE)

Living Walls Living Walls Home > Groups > Buildings Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid). Architects

129

Wood Pulp Digetster Wall Corrosion Investigation  

DOE Green Energy (OSTI)

The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

Giles, GE

2003-09-18T23:59:59.000Z

130

Standing gravitational waves from domain walls  

SciTech Connect

We construct a plane symmetric, standing gravitational wave for a domain wall plus a massless scalar field. The scalar field can be associated with a fluid which has the properties of 'stiff' matter, i.e., matter in which the speed of sound equals the speed of light. Although domain walls are observationally ruled out in the present era, the solution has interesting features which might shed light on the character of exact nonlinear wave solutions to Einstein's equations. Additionally this solution may act as a template for higher dimensional 'brane-world' model standing waves.

Gogberashvili, Merab [Andronikashvili Institute of Physics, 6 Tamarashvili Street, Tbilisi 0177 (Georgia); Javakhishvili Tbilisi State University, 3 Chavchavadze Avenue, Tbilisi 0128 (Georgia); California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Myrzakul, Shynaray [Department of General and Theoretical Physics, Gumilev Eurasian National University, Astana, 010008 (Kazakhstan); California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Singleton, Douglas [California State University, Fresno, Physics Department, Fresno, California 93740-8031 (United States); Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, Moscow 117198 (Russian Federation)

2009-07-15T23:59:59.000Z

131

When wall insulation doesn`t save  

Science Conference Proceedings (OSTI)

A recent study in Florida concluded that while wall insulation clearly saves heating energy, it is less effective at saving cooling energy. The study focused on concrete block houses on slab foundations, and determined that whether insulation saves cooling energy depends significantly on the interior thermostat setpoint, the lower the thermostat below outside temperature, the more likely wall installation was to save energy. This article describes the design of the study and compares it to other studies. Results in their entirety are described. 1 fig.

Johnson, D.

1997-05-01T23:59:59.000Z

132

Enhancement of wall jet transport properties  

DOE Patents (OSTI)

By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

Claunch, Scott D. (Broomfield, CO); Farrington, Robert B. (Golden, CO)

1997-01-01T23:59:59.000Z

133

Thermodynamic Measurements under a Wall Cloud  

Science Conference Proceedings (OSTI)

A storm intercept crew from the University of Oklahoma made a sounding near and underneath the wall cloud of the right-moving member of a splitting thunderstorm in north Texas on 27 May 1985. A comparison between the sounding and an environmental ...

Howard B. Bluestein; Eugene W. McCaul Jr.; Gregory P. Byrd; Robert L. Walko

1990-03-01T23:59:59.000Z

134

Multi-wall carbon nanotubes in microwaves  

Science Conference Proceedings (OSTI)

The electromagnetic (EM) response of multi-wall carbon nanotubes (MWCNT) prepared by chemical vapor decomposition (CVD) method has been analyzed in the microwave frequency range. EM absorption properties of MWCNT depend on their medium diameter related ... Keywords: carbon nanotube, coating, electromagnetic absorption, microwave

S. Moseenkov; V. Kuznetsov; A. Usoltseva; I. Mazov; A. Ischenko; T. Buryakov; O. Anikeeva; A. Romanenko; P. Kuzhir; D. Bychenok; K. Batrakov; S. Maksimenko

2009-02-01T23:59:59.000Z

135

Hot wire production of single-wall and multi-wall carbon nanotubes  

DOE Patents (OSTI)

Apparatus (210) for producing a multi-wall carbon nanotube (213) may comprise a process chamber (216), a furnace (217) operatively associated with the process chamber (216), and at least one filament (218) positioned within the process chamber (216). At least one power supply (220) operatively associated with the at least one filament (218) heats the at least one filament (218) to a process temperature. A gaseous carbon precursor material (214) operatively associated with the process chamber (216) provides carbon for forming the multi-wall carbon nanotube (213). A metal catalyst material (224) operatively associated with the process (216) catalyzes the formation of the multi-wall carbon nanotube (213).

Dillon, Anne C. (Boulder, CO); Mahan, Archie H. (Golden, CO); Alleman, Jeffrey L. (Lakewood, CO)

2010-10-26T23:59:59.000Z

136

Engineering the fusion reactor first wall  

SciTech Connect

Recently the National Academy of Engineering published a set of Grand Challenges in Engineering in which the second item listed was entitled 'Provide energy from fusion'. Clearly a key component of this challenge is the science and technology associated with creating and maintaining burning plasmas. This is being vigorously addressed with both magnetic and inertial approaches with various experiments such as ITER and NIF. Considerably less attention is being given to another key component of this challenge, namely engineering the first wall that will contain the burning plasma. This is a daunting problem requiring technologies and materials that can not only survive, but also perform multiple essential functions in this extreme environment. These functions are (1) shield the remainder of the device from radiation. (2) convert of neutron energy to useful heat and (3) breed and extract tritium to maintain the reactor fuel supply. The first wall must not contaminate the plasma with impurities. It must be infused with cooling to maintain acceptable temperatures on plasma facing and structural components. It must not degrade. It must avoid excessive build-up of tritium on surfaces, and, if surface deposits do form, must be receptive to cleaning techniques. All these functions and constraints must be met while being subjected to nuclear and thermal radiation, particle bombardment, high magnetic fields, thermal cycling and occasional impingement of plasma on the surface. And, operating in a nuclear environment, the first wall must be fully maintainable by remotely-operated manipulators. Elements of the first wall challenge have been studied since the 1970' s both in the US and internationally. Considerable foundational work has been performed on plasma facing materials and breeding blanket/shield modules. Work has included neutronics, materials fabrication and joining, fluid flow, tritium breeding, tritium recovery and containment, energy conversion, materials damage and magnetohydrodynamics. While work to date has been quite valuable, no blanket concept has been built and operated in anything approaching a realistic fusion reactor environment. Rather, work has been limited to isolated experiments on first wall components and paper studies. The need now is to complete necessary R&D on first wall components, assemble components into a practical design, and test the first wall in a realistic fusion environment. Besides supporting work, major prototype experiments could be performed in non-nuclear experiments, as part of the ITER project and as part of the Component Test Facility. The latter is under active consideration and is a proposed machine which would use a driven plasma to expose an entire first wall to a fusion environment. Key US contributors to first wall research have been UCLA, UCSD, U of Wisconsin, LANL, ORNL, PNNL, Argonne and Idaho National Lab. Current efforts have been coordinated by UCLA. It is recognized that when this work progresses to a larger scale, leadership from a national laboratory will be required. LANL is well-prepared to provide such leadership.

Wurden, Glen [Los Alamos National Laboratory; Scott, Willms [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

137

Plant Cell Walls: Basics of Structure, Chemistry, Accessibility...  

NLE Websites -- All DOE Office Websites (Extended Search)

M. et al. (2009) Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn stover pretreatment. Cellulose, 16, 649. 7....

138

Deuterium incorporation in biomass cell wall components by NMR analysis  

SciTech Connect

A commercially available deuterated kale sample was analyzed for deuterium incorporation by ionic liquid solution 2H and 1H nuclear magnetic resonance (NMR). This protocol was found to effectively measure the percent deuterium incorporation at 33%, comparable to the 31% value determined by combustion. The solution NMR technique also suggested by a qualitative analysis that deuterium is preferentially incorporated into the carbohydrate components of the kale sample.

Foston, Marcus B [ORNL; McGaughey, Joseph [ORNL; O'Neill, Hugh Michael [ORNL; Evans, Barbara R [ORNL; Ragauskas, Arthur J [ORNL

2012-01-01T23:59:59.000Z

139

New Combined Laser Ablation Platform Determines Cell Wall Chemistry...  

NLE Websites -- All DOE Office Websites (Extended Search)

ablation laser mass spectrometer molecular beam REMPI laser NREL has designed and developed a combined laser ablation pulsed sample introductionmass spectrometry platform that...

140

Degradation of Algal Cell Walls by Enzymes and Dyes ...  

With the annual potential of over 1.3 billion dry tons of biomass, the prospective growth of biofuels is great. The National Renewable Energy ...

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls...  

NLE Websites -- All DOE Office Websites (Extended Search)

simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on...

142

A study of the molecular mechanics of wood cell walls  

E-Print Network (OSTI)

Wood is the original structural material, developed by nature to support tall plants. Every advantageous feature of wood as used in artificial structures is rooted in the plant's evolved capability to withstand the conditions ...

Adler, David, S.M. (David C.). Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

143

The Viscoelastic Properties of Wood Cell Walls after Minimally ...  

Science Conference Proceedings (OSTI)

Samples were prepared on dried wood with no embedding resin within the cellular structure. Four types of analysis methods were used; the standard method,...

144

Update on Fluorescent Protein-Tagged Lines in Maize Advancing Cell Biology and Functional Genomics in  

E-Print Network (OSTI)

Chan, Anne W. Sylvester*, and David Jackson Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, such studies relied on fixed tissue or FP fusions driven by constitutive pro- moters, which can lead potential for crop improvement. METHODOLOGY We developed a protocol to generate fusion proteins with yellow

Jackson, David

145

Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol  

SciTech Connect

Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.

Lorenz, A. J.; Coors, J. G.; de Leon, N.; Wolfrum, E. J.; Hames, B. R.; Sluiter, A. D.; Weimer, P. J.

2009-01-01T23:59:59.000Z

146

Optimization of source-sink dynamics in plant growth for ideotype breeding: A case study on maize  

Science Conference Proceedings (OSTI)

The objective of this work is to illustrate how a mathematical model of plant growth could be possibly used to design ideotypes and thus leads to new breeding strategies based on the guidance from optimization techniques. As a test case, maize (Zea mays ... Keywords: Functional-structural model, GreenLab, Multi-objective optimization, Pareto front, Zea mays

Rui Qi; Yuntao Ma; Baogang Hu; Philippe de Reffye; Paul-Henry Cournde

2010-04-01T23:59:59.000Z

147

Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States  

E-Print Network (OSTI)

had an important effect. 1 Introduction In the event of nuclear war, targets in cities and industrialImpacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States decline in the Midwestern United States from climate change following a regional nuclear conflict between

Robock, Alan

148

A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested through lower severity  

E-Print Network (OSTI)

A new transgenic maize was observed to be less recalcitrant than wild-type biomass, as manifested. This biomass recalcitrance makes costly thermochemical pretreatment necessary. Scientists at the National. This engineered feedstock was observed to be less recalcitrant than wild-type biomass when subjected to reduced

149

Evaluation of an ecosystem model for a wheat-maize double cropping system over the North China Plain  

Science Conference Proceedings (OSTI)

A process-based ecosystem model (Vegetation-atmosphere Interface Processes (VIP) model) is expanded, and then validated against three years' biometric, soil moisture and eddy-covariance fluxes data over a winter wheat-summer maize cropping system in ... Keywords: Eddy covariance, Evapotranspiration, Net ecosystem production, Uncertainty, VIP model

Xingguo Mo; Suxia Liu; Zhonghui Lin

2012-06-01T23:59:59.000Z

150

Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States  

E-Print Network (OSTI)

States from climate change following a regional nuclear conflict between India and Pakistan. Using AgroImpacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States phases also had an important effect. 1 Introduction In the event of nuclear war, targets in cities

Robock, Alan

151

Single-Wall Carbon Nanotubes as Transparent Electrodes for Photovoltaics  

Science Conference Proceedings (OSTI)

Transparent and electrically conductive coatings and films have a variety of uses in the fast-growing field of optoelectronic applications. Transparent electrodes typically include semiconductive metal oxides such as indium tin oxide (ITO), and conducting polymers such as poly(3,4-ethylenedioxythiophene), doped and stabilized with poly(styrenesulfonate) (PEDOT/PSS). In recent years, Eikos, Inc. has conceived and developed technologies to deliver novel alternatives using single-wall carbon nanotubes (SWNT). These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. Additional benefits include ease of ambient processing and patterning capability. This paper reports our recent findings on achieving 2.6% and 1.4% efficiencies on nonoptimized organic photovoltaic cells employing SWNT as a transparent electrode.

Weeks, C.; Peltola, J.; Levitsky, I.; Glatkowski, P.; van de Lagemaat, J.; Rumbles, G.; Barnes, T.; Coutts, T.

2006-01-01T23:59:59.000Z

152

Reading the Cosmic Writing on the Wall  

NLE Websites -- All DOE Office Websites (Extended Search)

Reading the Cosmic Reading the Cosmic Writing on the Wall Reading the Cosmic Writing on the Wall NERSC Key to Planck's Revision of Universal Recipe March 21, 2013 Contact: Margie Wylie, mwylie@lbl.gov, + 1 510 486 7421 map800-600.jpg This map shows the oldest light in our universe, as detected with the greatest precision yet by the Planck mission. The ancient light, called the cosmic microwave background, was imprinted on the sky when the universe was 370,000 years old. (Image credit: ESA and the Planck Collaboration) Thanks to a supersensitive space telescope and some sophisticated supercomputing, scientists from the international Planck collaboration have made the closest reading yet of the most ancient story in our universe: the cosmic microwave background (CMB). Today, the team released preliminary results based on the Planck

153

Wall, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wall, Pennsylvania: Energy Resources Wall, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3936801°, -79.7861577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3936801,"lon":-79.7861577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Solar Decathlon 2013: Raising More Than Just Walls | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Raising More Than Just Walls Solar Decathlon 2013: Raising More Than Just Walls September 10, 2013 - 1:36pm Addthis Key to the University of North Carolina at Charlotte's...

155

TBU-0061- In the Matter of Misti Wall  

Energy.gov (U.S. Department of Energy (DOE))

Misti Wall (the complainant or Wall), appeals the dismissal of her complaint of retaliation filed under 10 C.F.R. Part 708, the Department of Energy (DOE) Contractor Employee Protection Program. As...

156

After Exodus : re-occupation of the metropolitan wall  

E-Print Network (OSTI)

The title "Exodus alludes to a restricted exclave encircled by a forbidding wall -- effect, a prison on the scale of a metropolis, and one in which people sought refuge voluntarily. Over the past forty years, similar walls ...

Allison, Jordan Lloyd Norman

2012-01-01T23:59:59.000Z

157

Recording of Heart Wall Motion with Ultrasound  

Science Conference Proceedings (OSTI)

An ultrasonic echo?ranging apparatus using a pulse transmitter and high gain broadband receiver connected to a bariumtitanatetransducer has been used to obtain echoes from the walls and septa of the beating heart. The apparatus can be used over a center frequency range of 0.5 to 2.5 Mc. The sound beam is directed into the heart through the spaces between the ribs

John M. Reid

1961-01-01T23:59:59.000Z

158

Testing wall panels for earthquake response  

SciTech Connect

As part of the structural response research program being conducted for the Nevada Operations Office of ERDA a testing program for the investigation of nonstructural wall panels subjected to racking was developed and conducted. The objectives of the testing program were to determine thresholds for damage to partitions due to horizontal adjacent story displacement in high-rise buildings and to gather data that can be used to determine the influence of nonstructural partitions on the structural response of high-rise buildings. In general, the wall panels were constructed to represent typical partitions used in high-rise building construction. Some of the panels were used for special parameter studies or for comparisons with other test programs. A specially designed testing frame simulated cyclic lateral displacement, parallel to the plane of the wall panels, that might be experienced during the response of a building to strong winds or earthquake motion. Stiffness and strength characteristics, estimates of equivalent viscous damping, and damage threshold results were obtained. The data appear to give a good approximate evaluation of the performance of non-load-bearing partitions under cyclic loading. (LCL)

Freeman, S.A.

1976-01-01T23:59:59.000Z

159

ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS  

Science Conference Proceedings (OSTI)

OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

2002-04-01T23:59:59.000Z

160

Fluctuating pressure correlations in wall turbulence  

E-Print Network (OSTI)

The purpose of the present paper is to study the influence of wall-echo on pressure fluctuations $p'$, and on statistical correlations containing $p'$, {\\em viz} redistribution $\\phi_{ij}$ and pressure diffusion $d_{ij}^{(p)}$. We extend the usual analysis of turbulent correlations containing pressure fluctuations in wall-bounded \\tsc{dns} computations [Kim J.: {\\em J. Fluid Mech.} {\\bf 205} (1989) 421--451], separating $p'$ not only into rapid $p_{(\\mathrm{r})}'$ and slow $p_{(\\mathrm{s})}'$ parts [Chou P.Y.: {\\em Quart. Appl. Math.} {\\bf 3} (1945) 38--54], but further into volume (weakly inhomogeneous; $p'_{(\\mathrm{r};\\mathfrak{V})}$ and $p'_{(\\mathrm{s};\\mathfrak{V})}$) and surface (strongly inhomogeneous wall-echo; $p'_{(\\mathrm{r};w)}$ and $p'_{(\\mathrm{s};w)}$) terms. An algorithm, based on a Green's function approach, is developed to compute the above splittings for various correlations containing pressure fluctuations (redistribution, pressure diffusion, velocity/pressure-gradient), in fully develope...

Gerolymos, G A; Senechal, D; Vallet, I

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Polysulfone /Multi-Walled Carbon Nanotube Hybrid Nanocomposites  

Science Conference Proceedings (OSTI)

Abstract Scope, Polyurethane (PU)/ polysulfone/multi-walled carbon nanotubes ( MWNTs) hybrid nanocomposites of different weight ratio have been prepared...

162

Cooperative Dynamics of a 'Conjugated' Domain Wall in Giant ...  

Science Conference Proceedings (OSTI)

Presentation Title, Cooperative Dynamics of a 'Conjugated' Domain Wall in Giant ... Appropriately designed, such a superstructure can cooperatively move...

163

Multiple cell radiation detector system, and method, and submersible sonde  

DOE Patents (OSTI)

A multiple cell radiation detector includes a central cell having a first cylindrical wall providing a stopping power less than an upper threshold; an anode wire suspended along a cylindrical axis of the central cell; a second cell having a second cylindrical wall providing a stopping power greater than a lower threshold, the second cylindrical wall being mounted coaxially outside of the first cylindrical wall; a first end cap forming a gas-tight seal at first ends of the first and second cylindrical walls; a second end cap forming a gas-tight seal at second ends of the first and second cylindrical walls; and a first group of anode wires suspended between the first and second cylindrical walls.

Johnson, Larry O. (Island Park, ID); McIsaac, Charles V. (Idaho Falls, ID); Lawrence, Robert S. (Shelley, ID); Grafwallner, Ervin G. (Arco, ID)

2002-01-01T23:59:59.000Z

164

Proposal on Lithium Wall Experiment (LWX) on PBXM 1  

E-Print Network (OSTI)

Proposal on Lithium Wall Experiment (LWX) on PBX­M 1 Leonid E. Zakharov, Princeton University; OUTLINE 1. Mini­conference on Lithium walls and low recycling regime. 2. PBX­M Capabilities. 3. Motivation "Lithium covered walls and low recycling regimes in toka­ maks". APS meeting, October 23­27, 2000, Quebec

Zakharov, Leonid E.

165

Simulation of terrace wall methane-steam reforming reactors  

Science Conference Proceedings (OSTI)

Terrace wall arrangement is one of the most common arrangements for methane-steam reforming reactor furnaces. In this work, a mathematical model of heat transfer in terrace wall furnaces has been developed. The model has been coupled with a reliable ... Keywords: heat transfer modeling, methane-steam reforming, reformer simulation, terrace wall furnace

J. S. Soltan Mohammadzadeh; A. Zamaniyan

2002-08-01T23:59:59.000Z

166

Electronics Properties of Single-Walled Twisted Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Electronic properties are calculated and simulited by using density functional theory based on the nonequilibrium Green's function when a zigzag single-wall carbon nanotube (SCNTs) is twisted. We found that the twist of the single-wall carbon nanotube ... Keywords: single-wall twisted carbon nanotubes, nonequilibrium Green's function, density functional theory, electric structure, electronic transmission

Qing-fang Fu; Da-peng Hao; Xiao-mi Yan; Dao-wei He; Zhi-shun Chen; Li-guang Wang; Terence K. S. W

2011-04-01T23:59:59.000Z

167

Genomic Analysis of Natural Variation for Seed and Plant Size in Maize ( JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)  

Science Conference Proceedings (OSTI)

Shawn Kaeppler from the University of Wisconsin-Madison on "Genomic Analysis of Biofuel Traits in Maize and Switchgrass" at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

Kaeppler, Shawn [University of Wisconsin, Madison

2012-03-21T23:59:59.000Z

168

Asymmetric error field interaction with rotating conducting walls  

Science Conference Proceedings (OSTI)

The interaction of error fields with a system of differentially rotating conducting walls is studied analytically and compared to experimental data. Wall rotation causes eddy currents to persist indefinitely, attenuating and rotating the original error field. Superposition of error fields from external coils and plasma currents are found to break the symmetry in wall rotation direction. The vacuum and plasma eigenmodes are modified by wall rotation, with the error field penetration time decreased and the kink instability stabilized, respectively. Wall rotation is also predicted to reduce error field amplification by the marginally stable plasma.

Paz-Soldan, C.; Brookhart, M. I.; Hegna, C. C.; Forest, C. B. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-07-15T23:59:59.000Z

169

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning Stochastic Domain-Wall Depinning in Magnetic Nanowires Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Wednesday, 29 July 2009 00:00 Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

170

Highly Energy Efficient Wall Systems Research Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highly Energy Efficient Wall Systems Highly Energy Efficient Wall Systems Research Project Highly Energy Efficient Wall Systems Research Project The Department of Energy is currently conducting research into highly energy efficient wall systems. Walls with high R-values are better insulators, and their development can help buildings come closer to having zero net energy consumption. Project Description This project seeks to develop a commercially viable wall system up to R-40 through integration of vacuum technology with the exterior insulated façade system (EIFS). Dow Corning will develop a wall system configuration of expanded polystyrene vacuum isolation panels that can be specified for R-values of 20, 30, and 40. This project also aims to develop a unitized protection system of vacuum isolation panels and to validate current code

171

Ideal Magnetohydrodynamics Stability Spectrum with a Resistive Wall  

SciTech Connect

We show that the eigenvalue equations describing a cylindrical ideal magnetophydrodynamicsw (MHD) plasma interacting with a thin resistive wall can be put into the standard mathematical form: ??? = ??? ?. This is accomplished by using a finite element basis for the plasma, and by adding an extra degree of freedom corresponding to the electrical current in the thin wall. The standard form allows the use of linear eigenvalue solvers, without additional interations, to compute the complete spectrum of plasma modes in the presence of a surrounding restrictive wall at arbitrary separation. We show that our method recovers standard results in the limits of (1) an infinitely resistive wall (no wall), and (2) a zero resistance wall (ideal wall).

S.P. Smith and S.C. Jardin

2008-05-22T23:59:59.000Z

172

BESC - A novel monolignol that reduces recalcitrance of plant cell ...  

synthesis of cell walls of switchgrass and other bioenergy grasses and crops, including woody perennial species, for more facile deconstruction in energy, ...

173

WELDING THIN-WALLED URANIUM CYLINDERS  

SciTech Connect

One of Its Monograph Series, The Industrial Atom.'' The development of a satisfactory process for the fusion welding of thin-walled uranium cylinders is discussed. Optimum results were obtained using the inert-gas shielded-arc method without the use of filler metal. The ductility of the welded joints, however, was lower than that of cast metal. Surface conditions and and the purity of the inert gas used affected the weld soundness. Straight polarity direct current was used for welding to achieve maximum penetration and to provide are stability. Welding must be done in the flat position. (auth)

Brundige, E.L.; Taub, J.M.; Hanks, G.S.; Doll, D.T.

1957-01-01T23:59:59.000Z

174

Gas turbine bucket wall thickness control  

DOE Patents (OSTI)

A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

Stathopoulos, Dimitrios (Glenmont, NY); Xu, Liming (Greenville, SC); Lewis, Doyle C. (Greer, SC)

2002-01-01T23:59:59.000Z

175

Defining the maize transcriptome de novo using deep RNA-Seq  

DOE Green Energy (OSTI)

De novo assembly of the transcriptome is crucial for functional genomics studies in bioenergy research, since many of the organisms lack high quality reference genomes. In a previous study we successfully de novo assembled simple eukaryote transcriptomes exclusively from short Illumina RNA-Seq reads [1]. However, extensive alternative splicing, present in most of the higher eukaryotes, poses a significant challenge for current short read assembly processes. Furthermore, the size of next-generation datasets, often large for plant genomes, presents an informatics challenge. To tackle these challenges we present a combined experimental and informatics strategy for de novo assembly in higher eukaryotes. Using maize as a test case, preliminary results suggest our approach can resolve transcript variants and improve gene annotations.

Martin, Jeffrey; Gross, Stephen; Choi, Cindy; Zhang, Tao; Lindquist, Erika; Wei, Chia-Lin; Wang, Zhong

2011-06-01T23:59:59.000Z

176

Effect of porosity on resistance of epoxy coatings to cold-wall blistering  

Science Conference Proceedings (OSTI)

Electric utilities use polymer coatings for corrosion protection in a variety of locations, such as cooling towers, water boxes, and tubesheets. In some cases, these coatings are vulnerable to failure in areas where a temperature gradient exists between a cold substrate and relatively warm fluid (cold-wall blistering). Six epoxy-based coating systems were tested for their resistance to degradation in the form of cold wall blistering. The coatings were applied to type 1010 steel substrates and exposed to heated water for up to 10 months in Atlas test cells as a modified version of NACE Standard TM0174. The performance of the coatings was measured by the exposure time for the coatings to start blistering, the time for the corrosion potential of the coating substrates to shift toward active values, and the delamination rate of the coatings. Good cold-wall blistering resistance was observed for two polyamine-cured epoxy coating systems with porosity levels 1 vol%. Poor cold-wall blistering resistance was shown by a polyamide epoxy system, an amine adduct epoxy system, and an amido-amine epoxy system, all of which had porosity levels > 1 vol%. Most of the coating samples exhibited linear blistering rates, which indicated that the kinetics of cold-wall blistering were diffusion controlled. The two coating systems that showed the best resistance to cold-wall blistering also showed the lowest blistering rates, indicating that these coatings may have had lower permeabilities and/or better adherences than the poorer performing coatings, probably as a result of their lower porosity levels and similar compositions.

Kosek, J.R.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States)

1995-11-01T23:59:59.000Z

177

Experimental Evaluation of Innovative Wall Daylighting Systems  

E-Print Network (OSTI)

Daylighting offers the potential to save electrical energy and reduce peak demand for lighting, the major consumer of energy in a variety of buildings. However, widespread adoption of daylighting techniques is hampered by the lack of both daylight resource information and simple, reliable methods of testing daylighting designs. To surmount these obstacles, facilities for collecting illuminance data and for testing small-scale and full-size models have been established. These are (1) an extensively instrumented resource measurement station, (2) a sun angle simulator for exploring the geometries of the sun and the building during the early stages of design, (3) a heliodon to allow detailed illuminance and luminance distribution measurements in scale models, and (4) a rotating test building for quantitative and qualitative assessments of full-scale components. The current research efforts have been using these facilities to seek ways of projecting light admitted through walls deep into interior spaces. Sidelighting systems are of interest because the wall is the only available source of daylight in many commercial buildings. Innovative static and dynamic reflector assemblies have been examined and proven effective. Compared with typical sidelighting designs, the systems examined in this study project light deeper and produce more uniform illuminance across the space.

Place, J. W.; Howard, T. C.; Paulos, S.; Chung, K.

1988-01-01T23:59:59.000Z

178

"A Wall Victim from the West": Migration, German Division, and Multidirectional Memory in Kreuzberg  

E-Print Network (OSTI)

19502000. The German Wall: Fallout in Europe. Ed. Marcin Berlin. The German Wall: Fallout in Europe. Ed. Marc

Jurgens, Jeffrey

2013-01-01T23:59:59.000Z

179

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

180

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

182

Thermal Performance of Uninsulated and Partially Filled Wall Cavities: Preprint  

SciTech Connect

Low-rise, wood-framed homes are the most common type of residential structures in the United States. Wood wall construction supports roofs efficiently and provides a stable frame for attaching interior and exterior wall coverings. Wall cavities are prevalent and increase thermal resistance, particularly when they are filled with insulating material. This paper describes detailed computational fluid dynamics modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities and accounts for conduction through framing, convection, and radiation. Parameters are ambient outdoor temperature, cavity surface emissivity, cavity aspect ratio, and insulation height. Understanding the thermal performance of uninsulated or partially insulated wall cavities is essential for conserving energy in residential buildings. The results can serve as input for building energy simulation tools such as DOE2 and EnergyPlus for modeling the temperature dependent energy performance of new and older homes with uninsulated or partially insulated walls.

Ridouane, E. H.; Bianchi, M.

2011-08-01T23:59:59.000Z

183

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

184

Stochastic Domain-Wall Depinning in Magnetic Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Stochastic Domain-Wall Depinning in Magnetic Nanowires Print Reliably controlling the motion of magnetic domain walls along magnetic nanowires is a key requirement for current technological development of novel classes of logic and storage devices, but understanding the nature of non-deterministic domain-wall motion remains a scientific challenge. A statistical analysis of high-resolution magnetic soft x-ray microscopy images by a Berkeley Lab-University of Hamburg group has now revealed that the stochastic behavior of the domain-wall depinning field in notch-patterned Ni80Fe20 (permalloy) nanowires depends strongly on the wire width and the notch depth. This result both provides valuable insight into the motion of magnetic-domain walls and opens a path to further technological developments in spintronics applications.

185

Trombe Walls in Low-Energy Buildings: Practical Experiences; Preprint  

DOE Green Energy (OSTI)

Low-energy buildings today improve on passive solar design by incorporating a thermal storage and delivery system called a Trombe wall. Trombe walls were integrated into the envelope of a recently completed Visitor Center at Zion National Park and a site entrance building at the National Wind Technology Center located at the National Renewable Energy Laboratory. NREL helped to design these commercial buildings to minimize energy consumption, using Trombe walls as an integral part of their design.

Torcellini, P.; Pless, S.

2004-07-01T23:59:59.000Z

186

Mr. Andy Wall0 The Aerospace Corporation  

Office of Legacy Management (LM)

'k.f' :, , j '"; ,,' 'k.f' :, , j '"; ,,' DEC 5 1984 Mr. Andy Wall0 The Aerospace Corporation suite 4000 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Dear Mr. Wallo: The Divisfon of Remedial Action Projects staff has reviewed the authority review documents for Gardinler, Inc., Tampa, Florida; Conserv (formerly Virginia-Carolina Chemical Co.), Nichols, Florida; and Blockson Chemical co., Joliet, Illinois. Based on the content therein and in consultation with Mr. Steve Miller, Office of General Counsel (C&11), Departamt of Energy, It has been determined that the Department has no authority, through the Atomic Energy Act of 1954, as amended, to conduct remedial action at the aforementioned sites, Therefore, please prepare the document packages necessary to notify the appropriate state authorities and the

187

An Exploration of Wall Retrofit Best Practices  

SciTech Connect

A series of experiments were performed to examine wall retrofit options including replacing the cladding, adding insulation under the cladding, and multiple sealing methods that can be used when installing replacement windows in well-built or loosely-built rough openings. These experiments included thermal measurements in a hot box and air-leakage measurements. The retrofit claddings considered included wood-lap siding, vinyl siding, and vinyl siding with an integrated and formed foam insulation. Retrofit insulations included expanded and extruded polystyrene and foil-faced polyisocyanurate in various thicknesses. Air sealing methods for replacement windows included traditional caulking, exterior trim variations, loose-fill fiberglass, low-expansion foam, self-expanding foam inserts, and specialty tape. Results were applied to a model to estimate whole-house energy impacts for multiple climates.

Stovall, Therese K [ORNL; Petrie, Thomas [ORNL; Kosny, Jan [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Hulvey, Kimberly D [ORNL

2007-01-01T23:59:59.000Z

188

Fracture of welded aluminum thin-walled structures  

E-Print Network (OSTI)

A comprehensive methodology was developed in the thesis for damage prediction of welded aluminum thin-walled structures, which includes material modeling, calibration, numerical simulation and experimental verification. ...

Zheng, Li, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

189

Reinforced Concrete Wall Research Based on the Experience ...  

Science Conference Proceedings (OSTI)

... the Experience and Observations from the February 2010 Maule, Chile, Earthquake ... of walls as observed in Chile could be realized in the US. ...

2013-02-23T23:59:59.000Z

190

Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics  

NLE Websites -- All DOE Office Websites (Extended Search)

Monday, February 4, 2013 11:00 am Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics Alexander K. Tagantsev Ceramics Laboratory, Swiss Federal Institute of...

191

Walls Falling Faster for Solid-State Memory  

Science Conference Proceedings (OSTI)

... found that flaws in the structure of magnetic nanoscale wires play an ... the domain walls, and the information they enclose, through the wire and past ...

2010-11-08T23:59:59.000Z

192

Moisture Management for High R-Value Walls  

SciTech Connect

The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

Lepage, R.; Schumacher, C.; Lukachko, A.

2013-11-01T23:59:59.000Z

193

Thermal performance of concrete masonry unit wall systems  

Science Conference Proceedings (OSTI)

New materials, modern building wall technologies now available in the building marketplace, and unique, more accurate, methods of thermal analysis of wall systems create an opportunity to design and erect buildings where thermal envelopes that use masonry wall systems can be more efficient. Thermal performance of the six masonry wall systems is analyzed. Most existing masonry systems are modifications of technologies presented in this paper. Finite difference two-dimensional and three-dimensional computer modeling and unique methods of the clear wall and overall thermal analysis were used. In the design of thermally efficient masonry wall systems is t to know how effectively the insulation material is used and how the insulation shape and its location affect the wall thermal performance. Due to the incorrect shape of the insulation or structural components, hidden thermal shorts cause additional heat losses. In this study, the thermal analysis of the clear wall was enriched with the examination of the thermal properties of the wall details and the study of a quantity defined herein the Thermal Efficiency of the insulation material.

Kosny, J.

1995-12-31T23:59:59.000Z

194

Single Wall Carbon Nanotube/Polyacrylonitrile Composite Fiber .  

E-Print Network (OSTI)

??Single Wall Carbon Nanotubes (SWNTs), discovered in 1993, have good mechanical, electrical and thermal properties. Polyacrylonitrile (PAN) is an important fiber for textiles as well (more)

Liang, Jianghong

2004-01-01T23:59:59.000Z

195

Wall and laser spot motion in cylindrical hohlraums  

Science Conference Proceedings (OSTI)

Wall and laser spot motion measurements in empty, propane-filled and plastic (CH)-lined gold coated cylindrical hohlraums were performed on the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Wall motion was measured using axial two-dimensional (2D) x-ray imaging and laser spot motion was perpendicularly observed through a thinned wall using streaked hard x-ray imaging. Experimental results and 2D hydrodynamic simulations show that while empty targets exhibit on-axis plasma collision, CH-lined and propane-filled targets inhibit wall expansion, corroborated with perpendicular streaked imaging showing a slower motion of laser spots.

Huser, G.; Courtois, C.; Monteil, M.-C. [CEA, DAM, DIF, F-91297 Arpajon (France)

2009-03-15T23:59:59.000Z

196

Moisture Management of High-R Walls (Fact Sheet)  

SciTech Connect

The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

Not Available

2013-12-01T23:59:59.000Z

197

Explicit finite element analysis of lightly reinforced masonry shear walls  

Science Conference Proceedings (OSTI)

Explicit finite element analysis (FEA) of masonry shear walls containing reinforcement at spacing between 800mm and 2000mm, referred to as wide spaced reinforced masonry (WSRM), are modelled using macroscopic material characteristics for the unreinforced ... Keywords: Characteristic length, Ductility, Explicit finite element method, Failure mode, Masonry shear walls: Reinforced masonry, Quasi-static modelling

M. Dhanasekar; W. Haider

2008-01-01T23:59:59.000Z

198

Wall Lake Municipal Utilities Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wall Lake Municipal Utilities Wind Farm Wall Lake Municipal Utilities Wind Farm Jump to: navigation, search Name Wall Lake Municipal Utilities Wind Farm Facility Wall Lake Municipal Utilities Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wall Lake Municipal Utilities Developer Wall Lake Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965°, -95.094098° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.281965,"lon":-95.094098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Liquid Lithium Wall Experiments in CDX-U R. Majeski,  

E-Print Network (OSTI)

Liquid Lithium Wall Experiments in CDX-U R. Kaita, a R. Majeski, a S. Luckhardt, b R. Doerner, b M ABSTRACT The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance is intensely heated and well diagnosed, and an extensive liquid lithium plasma-facing surface will be used

200

Particle production by the expanding thin-walled bubble  

E-Print Network (OSTI)

Neglecting the effect of particle production at the moment of bubble nucleation, the spectrum of created particles during the bubble expansion is evaluated in the thin-wall approximation. It is shown that the expanding thin-walled bubble makes the dominant contribution to the particle production.

Michael Maziashvili

2003-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reducing the beta-shift in domain wall fermion simulations  

E-Print Network (OSTI)

The beta-shift induced from dynamical domain wall quarks leads to increased roughness of the gauge field, thus reversing the effect of smoothing from the gauge action improvement. By exploiting the relation of overlap and domain wall fermions in greater detail,we propose an algorithm which reduces the beta-shift to the level of dynamical overlap fermions.

Alban Allkoci; Artan Borici

2006-01-24T23:59:59.000Z

202

Bending and shear moduli of single-walled carbon nanotubes  

Science Conference Proceedings (OSTI)

Elastic properties of single-walled carbon nanotubes (SWCNT) obtained experimentally and computationally are reviewed. Attention is paid particularly on the evaluation of Young's and shear moduli of SWCNT. A finite element method (FEM) previously presented ... Keywords: Finite element method, Mechanical properties, Single-walled carbon nanotubes

Cho W. S. To

2006-02-01T23:59:59.000Z

203

Progressive collapse simulation of precast panel shear walls during earthquakes  

Science Conference Proceedings (OSTI)

A distinct element method (DEM) program is modified to model precast panel shear walls. The influence of collapse time t"0 of local failure of a panel is presented. Integrity analyses of a twelve-storey, three-bay precast panel shear wall in different ... Keywords: Concrete panels, Distinct element method, Earthquakes, Failure process simulation, Progressive collapse

O. A. Pekau; Yuzhu Cui

2006-01-01T23:59:59.000Z

204

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

205

Borehole-Wall Imaging with Acoustic and Optical Televiewers for  

Open Energy Info (EERE)

Borehole-Wall Imaging with Acoustic and Optical Televiewers for Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Borehole-Wall Imaging with Acoustic and Optical Televiewers for Fractured-Bedrock Aquifer Investigations Abstract Imaging with acoustic and optical televiewers results in continuous and oriented 360 degree views of the borehole wall from which the character and orientation of lithologic and structural features can be defined for fractured-bedrock aquifer investigations. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing

206

Characterization of transport of calcium by microsomal membranes from roots maize  

SciTech Connect

This study investigates calcium transport by membranes of roots of maize isolated by differential centrifugation. The preparation was determined to be enriched in plasma membrane using market enzyme and electron microscopy. Using the /sup 45/Ca filtration technique and liquid scintillation counting, vesicular calcium uptake was shown to be stimulated by added calmodulin and specific for and dependent on ATP. Conditions for maximal calcium accumulation were found to be 30 min incubation in the presence of 5 mM ATP, 5 mM MgCl/sub 2/, 50 ..mu..M CaCl/sub 2/, at 23/sup 0/C, and at pH 6.5. Calcium uptake was inhibited by the ionophores A23187, X-537A, and ionomycin. Sodium fluoride, ruthenium red, and p-chloromercuribenzoate completely inhibited transport: diamide and vanadate produced slight inhibition; caffeine, caffeic acid, oligomycin, and ouabain produced little or no inhibition. Chlorpromazine, W7, trifluoperazine, and R 24 571 inhibit calcium uptake irrespective of added calmodulin, while W5 showed little effect on uptake. Verapamil, nifedipine, cinnarizine, flunarizine, lidoflazine, and diltiazem decreased calcium uptake by 17%-50%. Electron microscopic localization of calcium by pyroantimonate showed vesicles incubated with calmodulin and ATP showed the greatest amount of precipitate. These results suggest that these vesicles accumulate calcium in an ATP-dependent, calmodulin-stimulated manner.

Vaughan, M.A.

1985-01-01T23:59:59.000Z

207

CT-Guided Percutaneous Fine-Needle Aspiration Biopsy of the Inferior Vena Cava Wall: A Posterior Coaxial Approach  

Science Conference Proceedings (OSTI)

A 72-year-old man was referred to our department with an incidentally diagnosed bronchogenic carcinoma of the right upper lobe. Positron emission tomography (PET) combined with computed tomography (PET-CT) revealed an unexpected hot spot in the ventral wall of the infrarenal segment of the inferior vena cava (IVC). Diagnostic biopsy of this lesion was performed under CT guidance with semiautomated 20G fine-needle aspiration (FNA) through a 19G coaxial needle. Cytology revealed few carcinoma cells, which led to the remarkable diagnosis of a distant metastasis to the IVC wall. Both the immediate postinterventional CT control and the further surveillance period of the patient were unremarkable; in particular, no signs of bleeding complications were detected. We conclude that coaxial FNA of an IVC wall lesion is technically feasible and may even help diagnose distant metastasis.

Kos, Sebastian, E-mail: skos@gmx.de; Bilecen, Deniz [University Hospital Basel, Institute of Radiology (Switzerland); Baumhoer, Daniel [University Hospital Basel, Institute of Pathology (Switzerland); Guillaume, Nicolas [University Hospital Basel, Institute of Nuclear Medicine (Switzerland); Jacob, Augustinus L. [University Hospital Basel, Institute of Radiology (Switzerland)

2010-02-15T23:59:59.000Z

208

Systematic Analysis of Sequences and Expression Patterns of Drought-Responsive Members of the HD-Zip Gene Family in Maize  

E-Print Network (OSTI)

Background: Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings: In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related ciselements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution.

Yang Zhao; Yuqiong Zhou; Haiyang Jiang; Xiaoyu Li; Defang Gan; Xiaojian Peng; Suwen Zhu

2011-01-01T23:59:59.000Z

209

Penetration through a wall: Is it reality?  

E-Print Network (OSTI)

A tennis ball is not expected to penetrate through a brick wall since a motion under a barrier is impossible in classical mechanics. With quantum effects a motion of a particle through a barrier is allowed due to quantum tunneling. According to usual theories of tunneling, the particle density decays inside a classical barrier resulting in an extremely slow pentration process. However, there are no general laws forbidding fast motion through classical barriers. The problem addressed is investigation of unusual features o quantum tunneling through a classic static barrier which is at least two-dimensional. Here we show that penetration through such barrier can be not slow. When the barrier satisfies the certain conditions, a regime of quantum lens is possible with formation of caustics. De Broglie waves are reflected from the caustics, interfere, and result in a not small flux from under the barrier. This strongly contrasts to the usual scenario with a decaying under-barrier density. We construct a particular example of fast motion through a classical barrier. One can unexectedly conclude that, in principle, nature allows fast penetration through classical barriers which against common sense. The phenomenon may be responsible for a variety of processes in labs and nature. For example, tunneling in solids may occur with a different scenario, in biophysics and chemistry one can specify conditions for unusual reactions, and evanescent optical waves may strongly change their properties. In condensed matter and cosmic physics there are phenomena with misterious reasons of an energy emission, for instance, gamma-ray bursts. One can try to treat them in the context of fast escape from under some barriers.

B. Ivlev

2011-08-25T23:59:59.000Z

210

Wall Orientation and Shear Stress in the Lattice Boltzmann Model  

E-Print Network (OSTI)

The wall shear stress is a quantity of profound importance for clinical diagnosis of artery diseases. The lattice Boltzmann is an easily parallelizable numerical method of solving the flow problems, but it suffers from errors of the velocity field near the boundaries which leads to errors in the wall shear stress and normal vectors computed from the velocity. In this work we present a simple formula to calculate the wall shear stress in the lattice Boltzmann model and propose to compute wall normals, which are necessary to compute the wall shear stress, by taking the weighted mean over boundary facets lying in a vicinity of a wall element. We carry out several tests and observe an increase of accuracy of computed normal vectors over other methods in two and three dimensions. Using the scheme we compute the wall shear stress in an inclined and bent channel fluid flow and show a minor influence of the normal on the numerical error, implying that that the main error arises due to a corrupted velocity field near ...

Matyka, Maciej; Miros?aw, ?ukasz

2013-01-01T23:59:59.000Z

211

Artificial Life Simulation of Living Alga Cells and Its Sorption Mechanisms  

Science Conference Proceedings (OSTI)

Resistance mechanisms of organisms against toxic metals are based on a few different mechanisms provided by algae cells. These mechanisms can be localized on the cell wall, on the cell wall and cytoplasm membrane, and intracellular localized mechanisms. ... Keywords: Chlorella kessleri, Swarm, arsenic, artificial life, heavy metal, sorption

Julius Csonto; Jana Kadukova; Marek Polak

2001-06-01T23:59:59.000Z

212

Aerosol penetration through a seismically loaded shear wall  

SciTech Connect

An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

Farrar, C.R.; Girrens, S.P.

1992-01-01T23:59:59.000Z

213

Aerosol penetration through a seismically loaded shear wall  

SciTech Connect

An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

Farrar, C.R.; Girrens, S.P.

1992-05-01T23:59:59.000Z

214

Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure  

DOE Patents (OSTI)

Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

Sachtler, Wolfgang M. H. (Evanston, IL); Huang, Yin-Yan (Evanston, IL)

1998-01-01T23:59:59.000Z

215

Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure  

DOE Patents (OSTI)

Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

Sachtler, W.M.H.; Huang, Y.Y.

1998-07-28T23:59:59.000Z

216

Method and apparatus for constructing an underground barrier wall structure  

SciTech Connect

A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

Dwyer, Brian P. (Albuquerque, NM); Stewart, Willis E. (W. Richland, WA); Dwyer, Stephen F. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

217

Sizing Relationships for Pipe Wall Preheater-710 Reactor Experiment  

SciTech Connect

Relationships presented as curves are given that permit selection of preheater pipe diameters and lengths consistent with objective pressure drops, wall temperatures, and heat addition. The data are for 710 reactor experiment coolant and operating conditions.

Moon, C.W.

1965-01-29T23:59:59.000Z

218

Tire shreds as lightweight retaining wall backfill: Active conditions  

Science Conference Proceedings (OSTI)

A 4.88-m-high retaining wall test facility was constructed to test tire shreds as retaining wall backfill. The front wall of the facility could be rotated outward away from the fill and was instrumented to measure the horizontal stress. Measurement of movement within the backfill and settlement of the backfill surface during wall rotation allowed estimation of the pattern of movement within the fill. Tests were conducted with tire shreds from three suppliers. Moreover, horizontal stress at this rotation for tire shreds was about 35% less than the active stress expected for conventional granular backfill. Design parameters were developed using two procedures; the first used the coefficient of lateral earth pressure and the other was based on equivalent fluid pressure. The inclination of the sliding plane with respect to horizontal was estimated to range from 61{degree} to 70{degree} for the three types of shreds.

Tweedie, J.J. [State of Maine Dept. of Transportation, Augusta, ME (United States); Humphrey, D.N.; Sandford, T.C. [Univ. of Maine, Orono, ME (United States). Dept. of Civil and Environmental Engineering

1998-11-01T23:59:59.000Z

219

Evaluations of single walled carbon nanotubes using resonance Raman spectroscopy  

E-Print Network (OSTI)

This work reports the results of two studies which use resonance Raman scattering to evaluate the vibrational properties of single walled carbon nanotubes (SWNTs). In the first study, we report an evaluation of second-order ...

Brar, Victor W. (Victor Watson), 1981-

2004-01-01T23:59:59.000Z

220

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network (OSTI)

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass walls; as one of envelope surfaces; has an important impact on solar radiation. Design and construction of glass walls have significant effects on building comfort and energy consumption. This paper describes methods of improving glass walls thermal resistance in air conditioned buildings. Effect of glass wall radiation temperature on the indoor temperature distribution of building rooms is also investigated. Heat gain through various types of glass is discussed. Optimization and testing of these types are carried out theoretically and experimentally as well. A series of experiments on different types of glass with special strips is performed.

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Influence of soil parameters on the motion of rocking walls  

E-Print Network (OSTI)

Introduced as a system in earthquake engineering in 2004 [6], rocking walls are a fairly new system in earthquake engineering. Their performance has been proven, both in research as in practice. However, a few uncertainties ...

Houbrechts, Jeroen J. J. (Jeroen Jose Julien)

2011-01-01T23:59:59.000Z

222

Domain wall induced magnetoresistance in a superconductor/ferromagnet nanowire  

E-Print Network (OSTI)

In a nanowire consisting of a ferromagnet/insulator/superconductor multilayer structure, the superconductivity is shown to depend strongly on the configuration of the magnetic domain walls in the neighboring ferromagnetic ...

Miao, G. X.

223

YMGI Through-the-Wall Air Conditioner Determined Noncompliant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

testing revealed that this model operates at a Seasonal Energy Efficiency Rating (SEER) of 8.3. The current federal standard requires that through-the-wall split system...

224

Transpiring wall supercritical water oxidation test reactor design report  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G. [Sandia National Labs., Livermore, CA (United States). Engineering for Transportation and Environment Dept.; Rousar, D.C. [GenCorp Aerojet, Sacramento, CA (United States)

1996-02-01T23:59:59.000Z

225

Interactions between Liquid-Wall Vapor and Edge Plasmas  

DOE Green Energy (OSTI)

The use of liquid walls for fusion reactors could help solve problems associated with material erosion from high plasma heat-loads and neutronic activation of structures. A key issue analyzed here is the influx of impurity ions to the core plasma from the vapor of liquid side-walls. Numerical 2D transport simulations are performed for a slab geometry which approximates the edge region of a reactor-size tokamak. Both lithium vapor (from Li or SnLi walls) and fluorine vapor (from Flibe walls) are considered for hydrogen edge-plasmas in the high- and low-recycling regimes. It is found that the minimum influx is from lithium with a low-recycling hydrogen plasma, and the maximum influx occurs for fluorine with a high-recycling hydrogen plasma.

Rognlien, T D; Rensink, M E

2000-05-25T23:59:59.000Z

226

Helium Pumping Wall for a Liquid Lithium Tokamak Richard Majeski...  

NLE Websites -- All DOE Office Websites (Extended Search)

is that a permeable wall is used to separate out helium produced as ash by a burning fusion reactor. This would replace the divertor structure and associated pumps in a...

227

Gas Adsorption on Heterogeneous Single-Walled Carbon Nanotube...  

NLE Websites -- All DOE Office Websites (Extended Search)

the adsorption of C, Xe, and Ar onto bundles of closed-ended SWNTs. The Single-walled carbon nanotubes (SWNTs) are of inter- est as gas adsorbents because of their unique...

228

Dynamic analysis of concrete coupled wall structures : a parametric study  

E-Print Network (OSTI)

Concrete coupled wall structure is a system that can efficiently dissipate energy under the effect of lateral loads. It has been widely used in medium height buildings for several decades. While researchers have conducted ...

Huang, Elaine Annabelle, 1981-

2005-01-01T23:59:59.000Z

229

Seismic design, testing and analysis of reinforced concrete wall buildings  

E-Print Network (OSTI)

J. of Engrg. Mech. 130, 1019, ASCE. Massone L.M. and WallaceWall. (To be submitted in ASCE Journal of Structuralof the Structural Division ASCE, 137-157. He, X. , Moaveni,

Panagiotou, Marios

2008-01-01T23:59:59.000Z

230

Conserval aka SolarWall | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Conserval (aka SolarWall) Place Toronto, Ontario, Canada Zip M3J2N5 Sector Solar Product Makes solar passive heating and cooling products, and...

231

Thermal Performance of Uninsulated and Partially Filled Wall Cavities  

SciTech Connect

Wall cavities are widely present in the construction of low rise homes since wood framing is the most common type of construction for residential buildings in the United States. The primary function of such wall construction is to provide a stable frame to which interior and exterior wall coverings can be attached and by which a roof can be supported. The existence of wall cavities increases the thermal resistance of the enclosure, particularly when they are filled with insulating material. Several design guides provide data for prediction of the thermal resistance of uninsulated wall cavities of varying internal geometries. However, U-value coefficients provided in these guides do not account for partially insulated cavities or for variations in aspect ratio. Whole building energy simulation tools, like DOE2 or Energy Plus, use simplified, 1-D characterization of building envelopes. For the most part, this characterization assumes a fixed thermal resistance over the range of temperatures experienced by the enclosure. In reality, the thermal resistance is dominated by convection and radiation and is a function of several parameters, including the temperatures and emissivities of the cavity surfaces and the aspect ratio of the cavity. This study describes detailed CFD modeling to evaluate the thermal performance of uninsulated or partially filled wall cavities accounting for conduction through framing, convection, and radiation. The resulting correlations can serve as input for DOE2 and Energy Plus modeling of older homes, where the walls are either uninsulated or partially insulated due to the settling of the insulating material. Parameters of the study are the ambient temperature outdoors, emissivity of the cavity surfaces, cavity aspect ratio, and height of the insulation level. The outcomes of this study provide: An understanding of the thermal performance of uninsulated or partially insulated wall cavities, which is an essential aspect of energy conservation in residential buildings. Accurate input for whole building simulations models like DOE2 and Energy Plus in various climate zones. Recommendations on retrofit measures.

Ridouane, E.H.; Bianchi, M. V. A.

2011-01-01T23:59:59.000Z

232

Hygro-Thermal Performance of Imperfectly Protected Below-Grade Walls with Interior Insulation.  

E-Print Network (OSTI)

??This study investigates the performance of three different types of insulation installed in the interior of a basement wall system in a below-grade wall system. (more)

Wolfgang, Brian

2010-01-01T23:59:59.000Z

233

Static load test of Arquin-designed CMU wall.  

Science Conference Proceedings (OSTI)

The Arquin Corporation has developed a new method of constructing CMU (concrete masonry unit) walls. This new method uses polymer spacers connected to steel wires that serve as reinforcing as well as means of accurately placing the spacers so that the concrete block can be dry stacked. The hollows of the concrete block used in constructing the wall are then filled with grout. As part of a New Mexico Small Business Assistance Program (NMSBAP), Sandia National Laboratories conducted a series of tests that statically loaded wall segments to compare the Arquin method to a more traditional method of constructing CMU walls. A total of 12 tests were conducted, three with the Arquin method using a W5 reinforcing wire, three with the traditional method of construction using a number 3 rebar as reinforcing, three with the Arquin method using a W2 reinforcing wire, and three with the traditional construction method but without rebar. The results of the tests showed that the walls constructed with the Arquin method and with a W5 reinforcing wire withstood more load than any of the other three types of walls that were tested.

Jensen, Richard Pearson; Cherry, Jeffery L.

2008-12-01T23:59:59.000Z

234

Evaluation of a Process-Based Agro-Ecosystem Model (Agro-IBIS) across the U.S. Corn Belt: Simulations of the Interannual Variability in Maize Yield  

Science Conference Proceedings (OSTI)

A process-based terrestrial ecosystem model, Agro-IBIS, was used to simulate maize yield in a 13-state region of the U.S. Corn Belt from 1958 to 1994 across a 0.5 terrestrial grid. For validation, county-level census [U.S. Department of ...

Christopher J. Kucharik

2003-12-01T23:59:59.000Z

235

Critical review: Plasma-surface reactions and the spinning wall method  

Science Conference Proceedings (OSTI)

This article reviews methods for studying reactions of atoms and small molecules on substrates and chamber walls that are immersed in a plasma, a relatively unexplored, yet very important area of plasma science and technology. Emphasis is placed on the ''spinning wall'' technique. With this method, a cylindrical section of the wall of the plasma reactor is rotated, and the surface is periodically exposed to the plasma and then to a differentially pumped mass spectrometer, to an Auger electron spectrometer, and, optionally, to a beam of additional reactants or surface coatings. Reactants impinging on the surface can stick and react over time scales that are comparable to the substrate rotation period, which can be varied from {approx}0.5 to 40 ms. Langmuir-Hinshelwood reaction probabilities can be derived from a measurement of the absolute desorption product yields as a function of the substrate rotation frequency. Auger electron spectroscopy allows the plasma-immersed surface to be monitored during plasma operation. This measurement is critical, since wall ''conditioning'' in the plasma changes the reaction probabilities. Mass spectrometer cracking patterns are used to identify simple desorption products such as Cl{sub 2}, O{sub 2}, ClO, and ClO{sub 2}. Desorption products also produce a measurable pressure rise in the second differentially pumped chamber that can be used to obtain absolute desorption yields. The surface can also be coated with films that can be deposited by sputtering a target in the plasma or by evaporating material from a Knudsen cell in the differentially pumped wall chamber. Here, the authors review this new spinning wall technique in detail, describing both experimental issues and data analysis methods and interpretations. The authors have used the spinning wall method to study the recombination of Cl and O on plasma-conditioned anodized aluminum and stainless steel surfaces. In oxygen or chlorine plasmas, these surfaces become coated with a layer containing Si, Al, and O, due to slow erosion of the reactor materials, in addition to Cl in chlorine plasmas. Similar, low recombination probabilities were found for Cl and O on anodized Al versus stainless steel surfaces, consistent with the similar chemical composition of the layer that forms on these surfaces after long exposure to the plasma. In chlorine plasmas, weakly adsorbed Cl{sub 2} was found to inhibit Cl recombination, hence the Cl recombination probability decreases with increasing Cl{sub 2}-to-Cl number density ratios in the plasma. In mixed Cl{sub 2}/O{sub 2} plasmas, Cl and O recombine to form Cl{sub 2} and O{sub 2} with probabilities that are similar to those in pure chlorine or oxygen plasmas, but in addition, ClO and ClO{sub 2} form on the surface and desorb from the wall. These and other results, including the catalytic enhancement of O recombination by monolayer amounts of Cu, are reviewed.

Donnelly, V. M.; Guha, J.; Stafford, L. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States); Departement de Physique, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada)

2011-01-15T23:59:59.000Z

236

Quantum Fusion of Strings (Flux Tubes) and Domain Walls  

E-Print Network (OSTI)

We consider formation of composite strings and domain walls as a result of fusion of two elementary objects (elementary strings in the first case and elementary walls in the second) located at a distance from each other. The tension of the composite object T_2 is assumed to be less than twice the tension of the elementary object T_1, so that bound states are possible. If in the initial state the distance d between the fusing strings or walls is much larger than their thickness and satisfies the conditions T_1 d^2 >> 1 (in the string case) and T_1 d^3 >> 1 (in the wall case), the problem can be fully solved quasiclassically. The fusion probability is determined by the first, "under the barrier" stage of the process. We find the bounce configuration and its extremal action S_B. In the wall problem e^{-S_B} gives the fusion probability per unit time per unit area. In the string case, due to a logarithmic infrared divergence, the problem is well formulated only for finite-length strings. The fusion probability per unit time can be found in the limit in which the string length is much larger than the distance between two merging strings.

S. Bolognesi; M. Shifman; M. B. Voloshin

2009-05-11T23:59:59.000Z

237

Hot cell shield plug extraction apparatus  

DOE Patents (OSTI)

A hot cell installation for the handling of highly radioactive material may comprise a dozen or more interconnected high density concrete vaults, the concrete vault walls having a thickness of approximately three feet. Typically, hot cells are constructed in rows so as to share as many shielding walls as possible. A typical overall length of a row of cells might be 70 yards. A secondary mechanism exists for placing certain objects into a cell. A typical hot cell has been constructed with 8 inch diameter holes through the exterior shielded walls in the vicinity of, and usually above, the viewing windows. It became evident that if the hot cell plugs could be removed and replaced conveniently significant savings in time and personnel exposure could be realized by using these 8 inch holes as entry ports. Fifteen inch cylindrical steel plugs with a diameter of eight inches weigh about two hundred pounds. The shield plug swing mechanism comprises a steel shielding plug mounted on a retraction device that enables the plug to be pulled out of the wall and supports the weight of the pulled out plug. The retraction device is mounted on a hinge, which allows the plug to be swung out of the way so that an operator can insert material into or remove it from the interior of the hot cell and then replace the plug quickly. The hinge mounting transmits the load of the retracted plug to the concrete wall.

Knapp, P.A.; Manhart, L.K.

1994-12-31T23:59:59.000Z

238

Finite element analysis of the Arquin-designed CMU wall under a dynamic (blast) load.  

Science Conference Proceedings (OSTI)

The Arquin Corporation designed a CMU (concrete masonry unit) wall construction and reinforcement technique that includes steel wire and polymer spacers that is intended to facilitate a faster and stronger wall construction. Since the construction method for an Arquin-designed wall is different from current wall construction practices, finite element computer analyses were performed to estimate the ability of the wall to withstand a hypothetical dynamic load, similar to that of a blast from a nearby explosion. The response of the Arquin wall was compared to the response of an idealized standard masonry wall exposed to the same dynamic load. Results from the simulations show that the Arquin wall deformed less than the idealized standard wall under such loading conditions. As part of a different effort, Sandia National Laboratories also looked at the relative static response of the Arquin wall, results that are summarized in a separate SAND Report.

Lopez, Carlos; Petti, Jason P.

2008-12-01T23:59:59.000Z

239

Qualitative Reliability Issues for Solid and Liquid Wall Fusion Designs  

SciTech Connect

This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

Cadwallader, L.C.

2001-01-31T23:59:59.000Z

240

Qualitative Reliability Issues for Solid and Liquid Wall Fusion Design  

Science Conference Proceedings (OSTI)

This report is an initial effort to identify issues affecting reliability and availability of solid and liquid wall designs for magnetic fusion power plant designs. A qualitative approach has been used to identify the possible failure modes of major system components and their effects on the systems. A general set of design attributes known to affect the service reliability has been examined for the overview solid and liquid wall designs, and some specific features of good first wall design have been discussed and applied to these designs as well. The two generalized designs compare well in regard to these design attributes. The strengths and weaknesses of each design approach are seen in the comparison of specific features.

Cadwallader, Lee Charles

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Long-Term Field Monitoring of an EIFS Clad Wall  

E-Print Network (OSTI)

A popular retrofit option is to install an exterior insulation finish system to the walls of existing buildings. This study evaluates the thermal and moisture performance of such a system with a vented wall assembly. In addition to being a case study, this field monitoring was intended to verify computation methods of building envelope performance. The long term monitoring was designed to be non-destructive so that the building envelope performance is not affected by the measurements that are made, and to allow easy removal of sensors for recalibration and retrieval at the end of the test period. The field monitoring is planned for two years to capture a wide range of environmental conditions. This paper discusses the instrumentation used in the study and presents interim results of the thermal resistance of the wall and surface moisture.

Nady Sad William; M. Nady; A. Sad; William C. Brown; Iain S. Walker

1997-01-01T23:59:59.000Z

242

Penetration of the LCLS Injector Shield Wall at Sector 20  

SciTech Connect

Penetrations through the LCLS injector shield wall are needed for the alignment of the accelerator, a diagnostic laser beam and utilities, and are shown in figure 1. The 1-inch diameter LCLS injector beam tube is blocked by the PPS stopper when the injector side of the wall is occupied. The two 3-inch diameter penetrations above and to the left of the beam tube are used by Precision Alignment and will be open only during installation of the injector beamline. Additional 3-inch diameter penetrations are for laser beams which will be used for electron beam diagnostics. These will not be plugged when the injector occupied. Other penetrations for the RF waveguide and other utilities are approximately 13-inch from the floor and as such are far from the line-of-sight of any radiation sources. The waveguide and utility penetrations pass only through the thicker wall as shown in the figure. The principal issue is with the two laser penetrations, since these will be open when the linac is operating and people are in the LCLS injector area. A principal concern is radiation streaming through the penetrations due to direct line-of sight of the PEP-2 lines. To answer this, fans of rays were traced through the 3-inch diameter laser penetrations as shown in Figures 2 and 3. Figure 2 gives the top view of the shield walls, the main linac and PEP-2 lines, and the ray-fans. The fans appear to originate between the walls since their angular envelope is defined by the greatest angle possible when rays are just on the 3-inch diameter at the inner most and outermost wall surfaces. The crossovers of all possible rays lie half way between these two surfaces. As the end-on view of Figure 3 clearly shows, there is no direct line-of-sight through the laser penetrations of the PEP-2 or linac beamlines.

Dowell, D

2010-12-10T23:59:59.000Z

243

CFD Simulation of Airflow in Ventilated Wall System Report #9  

DOE Green Energy (OSTI)

The objective of this report was to examine air movements in vinyl and brick ventilation cavities in detail, using a state of the art CFD commercial modeling tool. The CFD activity was planned to proceed the other activities in order to develop insight on the important magnitudes of scales occurring during ventilation air flow. This information generated by the CFD model was to be used to modify (if necessary) and to validate the air flow dynamics already imbedded in the hygrothermal model for the computer-based air flow simulation procedures. A comprehensive program of advanced, state-of-the-art hygrothermal modeling was then envisaged mainly to extend the knowledge to other wall systems and at least six representative climatic areas. These data were then to be used to provide the basis for the development of design guidelines. CFD results provided timely and much needed answers to many of the concerns and questions related to ventilation flows due to thermal buoyancy and wind-driven flow scenarios. The relative strength between these two mechanisms. Simple correlations were developed and are presented in the report providing the overall pressure drop, and flow through various cavities under different exterior solar and temperature scenarios. Brick Rainscreen Wall: It was initially expected that a 50 mm cavity would offer reduced pressure drops and increased air flow compared to a 19 mm cavity. However, these models showed that the size of the ventilation slots through the wall are the limiting factor rather than the cavity depth. Of course, once the slots are enlarged beyond a certain point, this could change. The effects of natural convection within the air cavities, driven by the temperature difference across the cavity, were shown to be less important than the external wind speed (for a wind direction normal to the wall surface), when wind action is present. Vinyl Rainscreen Wall: The CFD model of the vinyl rainscreen wall was simpler than that for the brick wall. Constant wall temperatures were used rather than conjugate heat transfer. Although this is appropriate for a thin surface with little heat capacity, it does mean that an empirical correlation between solar radiation (and perhaps wind speed) and vinyl temperature is required to use these results appropriately. The results developed from this CFD model were correlated to weather parameters and construction details so that they can be incorporated into ORNL s advanced hygrothermal models MOISTURE- EXPERT.

Stovall, Therese K [ORNL; Karagiozis, Achilles N [ORNL

2004-01-01T23:59:59.000Z

244

MHK Technologies/Water Wall Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Resource Click here Current Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WWTurbine has developed and introduced a new commercially viable system for the extraction of Potential and Kinetic Energy from large fast moving water currents for conversion into Electric Energy Mooring Configuration Monopile Optimum Marine/Riverline Conditions min current velocity of 2 m s Technology Dimensions Technology Nameplate Capacity (MW) 0 5 3 0 MW Device Testing

245

Ellipsoidal cell flow system  

SciTech Connect

The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.

Salzman, Gary C. (Los Alamos, NM); Mullaney, Paul F. (Los Alamos, NM)

1976-01-01T23:59:59.000Z

246

Neutron Electric Dipole Moment with Domain Wall Quarks  

E-Print Network (OSTI)

We present preliminary results for nucleon dipole moments computed with domain wall fermions. Our main target is the electric dipole moment of the neutron arising from the theta term in the gauge part of the QCD lagrangian. The calculated magnetic dipole moments of the proton and neutron are in rough accord with experimental values.

F. Berruto; T. Blum; K. Orginos; A. Soni

2004-11-02T23:59:59.000Z

247

Instrument for measurement of vacuum in sealed thin wall packets  

DOE Patents (OSTI)

An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

Kollie, T.G.; Thacker, L.H.; Fine, H.A.

1993-10-05T23:59:59.000Z

248

Finite Element formulation for nonlinear analysis of masonry walls  

Science Conference Proceedings (OSTI)

The work builds upon previous developments made by the authors in the context of the nonlinear, in-plane analysis of masonry walls. The structural behavior is characterized by phenomena, such as strain localization, damage, and friction, which need to ... Keywords: In-plane nonlinear masonry mechanics, Mohr-Coulomb frictional behavior, Non-associated plasticity

S. Brasile; R. Casciaro; G. Formica

2010-02-01T23:59:59.000Z

249

Extended study on limit analysis of masonry wall with openings  

Science Conference Proceedings (OSTI)

The present study deals with limit analysis of masonry walls with rectangular openings subject to vertical and horizontal loading by means of the genetic algorithm (GA). Herein, an equivalent shear truss model whose structural parameters should be defined ... Keywords: genetic algorithm, limit analysis, masonry structure

A. Miyamura; A. DeStefano; Y. Kohama; T. Takada

2001-09-01T23:59:59.000Z

250

Manufactured residential utility wall system (ResCore), overview  

SciTech Connect

This paper provides an overview of the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self-contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the residential kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty and students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the US Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a ``layered`` manufacturing technique that allows each major component group--structural, cold water, hot water, drain, gas, electric, etc.--to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

Wendt, R. [Oak Ridge National Lab., TN (United States); Lundell, C.; Lau, T.M. [Auburn Univ., AL (United States)

1997-05-01T23:59:59.000Z

251

Manufactured Residential Utility Wall System (ResCore),  

SciTech Connect

This paper describes the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty, students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the U.S. Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a layered manufacturing technique that allows each major component group: structural, cold water, hot water, drain, gas, electric, etc. to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

Wendt, Robert [Oak Ridge National Lab., TN (United States); Lundell, Clark; Lau, Tin Man [Auburn Univ., AL (United States)

1997-12-31T23:59:59.000Z

252

Temperature Measurements in Full-Scale Wood Stud Shear Walls  

E-Print Network (OSTI)

This report presents the results of 10 full-scale fire resistance tests conducted at the National Fire Laboratory on load-bearing gypsum board protected, wood stud shear wall assemblies with and without resilient channels on the fire-exposed side. The two assembly arrangements studied were: symmetrical installation 1x1 (one layer of gypsum board on each of the exposed and unexposed sides) and asymmetrical installation of the shear membrane (one layer of gypsum board on both the exposed and unexposed sides and a shear wall membrane as a base layer alternating between the exposed (2x1) and unexposed sides (1x2)) on a wood stud frame. The gypsum board was 12.7 mm thick Type X. The insulations used were glass and rock fibres. The shear membranes used were plywood and oriented strand board (OSB). Tests were conducted to determine the effects of the placement of the shear membrane on the exposed/unexposed face, type of shear membrane, insulation type, load intensity and resilient channel installations on the fire resistance of gypsum board protected, wood stud shear wall assemblies. Details of the results, including the temperatures and deflections measured during the fire tests, are presented. ACKNOWLEDGEMENTS This research is part of a consortium project on the fire resistance and sound performance of wall assemblies - Phase II, among the following partners: . Canadian Wood Council . Canadian Home Builders Association . Canadian Sheet Steel Building Institute . Gypsum Manufacturers of Canada . Owens-Corning Canada . Roxul Inc.

V. K. R. Sultan; M. A. Denham; V. K. R. Kodur; M. A. Sultan; E. M. A. Denham; Canadian Wood Council; Shear Walls; Shear Walls; Shear Walls; Shear Walls

1996-01-01T23:59:59.000Z

253

Heat exchanger with leak detecting double wall tubes  

DOE Patents (OSTI)

A straight shell and tube heat exchanger utilizing double wall tubes and three tubesheets to ensure separation of the primary and secondary fluid and reliable leak detection of a leak in either the primary or the secondary fluids to further ensure that there is no mixing of the two fluids.

Bieberbach, George (Tampa, FL); Bongaards, Donald J. (Seminole, FL); Lohmeier, Alfred (Tampa, FL); Duke, James M. (St. Petersburg, all of, FL)

1981-01-01T23:59:59.000Z

254

Radial elasticity of multi-walled boron nitride nanotubes  

Science Conference Proceedings (OSTI)

We investigated the radial mechanical properties of multi-walled boron nitride nanotubes (MW-BNNTs) using atomic force microscopy. The employed MW-BNNTs were synthesized using pressurized vapor/condenser (PVC) methods and were dispersed in aqueous solution using ultrasonication methods with the aid of ionic surfactants. Our nanomechanical measurements reveal the elastic deformational behaviors of individual BNNTs with two to four tube walls in their transverse directions. Their effective radial elastic moduli were obtained through interpreting their measured radial deformation profiles using Hertzian contact mechanics models. Our results capture the dependences of the effective radial moduli of MW-BNNTs on both the tube outer diameter and the number of tube layers. The effective radial moduli of double-walled BNNTs are found to be several-fold higher than those of single-walled BNNTs within the same diameter range. Our work contributes directly to a complete understanding of the fundamental structural and mechanical properties of BNNTs and the pursuits of their novel structural and electronics applications.

Michael W. Smith, Cheol Park, Meng Zheng, Changhong Ke ,In-Tae Bae, Kevin Jordan

2012-02-01T23:59:59.000Z

255

WUFI COMPUTER MODELING WORKSHOP FOR WALL DESIGN AND PERFORMANCE  

E-Print Network (OSTI)

on your laptop so that you can load the software. · You will be walked through every aspect standard, for building envelope design and wall analysis. See how to use WUFI® in conjunction with ASHRAE, to ensure personalized attention. · You will receive a copy of WUFI® software; the US Department of Energy

Oak Ridge National Laboratory

256

Transpiring wall supercritical water oxidation reactor salt deposition studies  

Science Conference Proceedings (OSTI)

Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G. [and others

1996-09-01T23:59:59.000Z

257

A Few Equivalences of Wall-Sun-Sun Prime Conjecture  

E-Print Network (OSTI)

In this paper, we prove a few lemmas concerning Fibonacci numbers modulo primes and provide a few statements that are equivalent to Wall-Sun-Sun Prime Conjecture. Further, we investigate the conjecture through heuristic arguments and propose a few additional conjectures for future research.

Saha, Arpan

2011-01-01T23:59:59.000Z

258

WUFI COMPUTER MODELING WORKSHOP FOR WALL DESIGN AND PERFORMANCE  

E-Print Network (OSTI)

from rain, solar radiation and other crucial weather events on an hourly basis. Both vapor and liquid of multi- layer building walls exposed to natural weather. The WUFI series models can handle contributions and is free of charge. WUFI ORNL/IBP comes complete with weather data for scores of North-American cities

Oak Ridge National Laboratory

259

WUFI COMPUTER MODELING WORKSHOP FOR WALL DESIGN AND PERFORMANCE  

E-Print Network (OSTI)

from rain, solar radiation and other crucial weather events on an hourly basis. Both vapor and liquid sophisticated modeling software that gives you heat and moisture data and uses weather data files from all over of multi- layer building walls exposed to natural weather. The WUFI series models can handle contributions

Oak Ridge National Laboratory

260

WUFI COMPUTER MODELING WORKSHOP FOR WALL DESIGN AND PERFORMANCE  

E-Print Network (OSTI)

from rain, solar radiation and other crucial weather events on an hourly basis. Both vapor and liquid and uses weather data files from all over the country. The software includes analysis to predict mold. Dr of multi- layer building walls exposed to natural weather. The WUFI series models can handle contributions

Oak Ridge National Laboratory

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method of controlling the side wall thickness of a turbine nozzle segment for improved cooling  

SciTech Connect

A gas turbine nozzle segment has outer and inner bands and a vane extending therebetween. Each band has a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band has an inturned flange defining with the nozzle wall an undercut region. The outer surface of the side wall is provided with a step prior to welding the cover to the side wall. A thermal barrier coating is applied in the step and, after the cover is welded to the side wall, the side wall is finally machined to a controlled thickness removing all, some or none of the coating.

Burdgick, Steven Sebastian (Schenectady, NY)

2002-01-01T23:59:59.000Z

262

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Proto col for US Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben, JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for US Midwest Agriculture. In Journal of Mitigation and Adaptation Strategies for Global Change,Volume 15, Number 2, 2010, pp. 185-204. Link to Journal Publication: See Journal of Mitigation and Adaptation Strategies for Global Change.

2010-09-03T23:59:59.000Z

263

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Redu ction Protocol for U.S. Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben; JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for U.S. Midwest Agriculture. In Mitigation and Adaptation Strategies for Global Change, Volume 15, Number 2, 2010, pp. 185-204. A peer-reviewed journal article that identifies, describes and analyzes socio-economic factors that may encourage or inhibit farmers from participat...

2009-12-17T23:59:59.000Z

264

Tritium permeation and wall loading in the TFTR vacuum vessel  

SciTech Connect

The problems of tritium permeation through and loading of the TFTR vacuum vessel wall structural components are considered. A general analytical solution to the time dependent diffusion equation which takes into account the boundary conditions arising from the tritium filling gas as well as the source function associated with implanted energetic charge exchange tritium is presented. Expressions are derived for two quantities of interest: (1) the total amount of tritium leaving the outer surface of a particular vessel component as a function of time, and (2) the amount retained as a function of time. These quantities are evaluated for specific TFTR operating scenarios and outgassing modes. The results are that permeation through the vessel is important only for the bellows during discharge cleaning if the wall temperature rises above approximately 150/sup 0/C. At 250/sup 0/C, after 72 hours of discharge cleaning 195 Ci would be lost.

Cecchi, J.L.

1978-05-01T23:59:59.000Z

265

Walled Lake, Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Walled Lake, Michigan: Energy Resources Walled Lake, Michigan: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.537811°, -83.4810481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.537811,"lon":-83.4810481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Prediction of turbulence control for arbitrary periodic spanwise wall movement  

E-Print Network (OSTI)

In order to generalize the well-known spanwise-oscillating-wall technique for drag reduction, non-sinusoidal oscillations of a solid wall are considered as a means to alter the skin-friction drag in a turbulent channel flow. A series of Direct Numerical Simulations is conducted to evaluate the control performance of nine different temporal waveforms, in addition to the usual sinusoid, systematically changing the wave amplitude and the period for each waveform. The turbulent average spanwise motion is found to coincide with the laminar Stokes solution that is constructed, for the generic waveform, through harmonic superposition. This allows us to define and compute, for each waveform, a new penetration depth of the Stokes layer which correlates with the amount of turbulent drag reduction, and eventually to predict both turbulent drag reduction and net energy saving rate for arbitrary waveforms. Among the waveforms considered, the maximum net energy saving rate is obtained by the sinusoidal wave at its optimal ...

Cimarelli, Andrea; Hasegawa, Yosuke; De Angelis, Elisabetta; Quadrio, Maurizio

2013-01-01T23:59:59.000Z

267

Plasma wall interaction and tritium retention in TFTR  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) has been operating safely and routinely with deuterium-tritium fuel for more than two years. In this time, TFTR has produced an impressive number of record breaking results including core fusion power, {approximately} 2 MW/m{sup 3}, comparable to that expected for ITER. Advances in wall conditioning via lithium pellet injection have played an essential role in achieving these results. Deuterium-tritium operation has also provided a special opportunity to address the issues of tritium recycling and retention. Tritium retention over two years of operation was approximately 40%. Recently, the in-torus tritium inventory was reduced by half through a combination of glow discharge cleaning, moist-air soaks, and plasma discharge cleaning. The tritium inventory is not a constraint in continued operations. The authors present recent results from TFTR in the context of plasma wall interactions and deuterium-tritium issues.

Skinner, C.H.; Amarescu, E.; Ascione, G. [and others

1996-08-01T23:59:59.000Z

268

Trombe Walls in Low-Energy Buildings: Practical Experiences; Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Trombe Walls in Low-Energy Trombe Walls in Low-Energy Buildings: Practical Experiences Preprint July 2004 * NREL/CP-550-36277 P. Torcellini and S. Pless To be presented at the World Renewable Energy Congress VIII and Expo Denver, Colorado August 29-September 3, 2004 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

269

ac and dc current-induced motion of a 360 degrees domain wall  

E-Print Network (OSTI)

he response of 360 [360 degrees]domain walls in narrow magnetic stripes to applied dc and ac currents, investigated by micromagnetic simulation, differs qualitatively from the response of 180 [180 degrees] domain walls. ...

Mascaro, Mark D.

270

Building America Top Innovations Hall of Fame Profile … High-R Walls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

require walls that cost-effectively require walls that cost-effectively control both thermal and moisture flow. Building America research results have provided proven high-R wall options for builders across the country. Building America's research teams have conducted modeling analysis as well as field studies of several different wall assemblies to identify effective "whole- wall" R-values that take into account thermal bridging of framing members. Researchers have also investigated critical moisture potential and durability issues since high-R walls have much less drying potential. Between 2008 and 2012, CARB conducted several evaluations of wall types (see for example Aldrich et al. 2010). In one study, CARB performed THERM and WUFI analysis on three typical cold climate wall assemblies modeled at ASHRAE

271

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate  

E-Print Network (OSTI)

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate David A. Scrymgeour and Venkatraman Gopalan Department of Materials Science, lithium niobate and lithium tantalate. The contributions to the domain- wall energy from polarization

Gopalan, Venkatraman

272

Apparatus for impingement cooling a side wall adjacent an undercut region of a turbine nozzle segment  

SciTech Connect

A gas turbine nozzle segment has outer and inner bands and vanes therebetween. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. Slots are formed through the inturned flange along the nozzle side wall. A plate having through-apertures extending between opposite edges thereof is disposed in each slot, the slots and plates being angled such that the cooling medium exiting the apertures in the second cavity lie close to the side wall for focusing and targeting cooling medium onto the side wall.

Burdgick, Steven Sebastian (Schenectady, NY)

2002-01-01T23:59:59.000Z

273

Building America Top Innovations Hall of Fame Profile High-R Walls  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research on high-R-value walls showing the difference between rated and whole wall R values and the need for vented cladding to reduce condensation potential with some insulation types.

274

Experimental observation and quantum modeling of electron irradiation on single-wall carbon nanotubes  

Science Conference Proceedings (OSTI)

In situ experiments, based on electron irradiation at high temperature in a transmission electron microscope, are used to investigate isolated, packed and crossing single-wall nanotubes. During continuous, uniform atom removal, surfaces of isolated single-wall ...

J. -C. Charlier; M. Terrones; F. Banhart; N. Grobert; H. Terrones; P. M. Ajayan

2003-12-01T23:59:59.000Z

275

Magnetic behavior of 360 domain walls in patterned magnetic thin films  

E-Print Network (OSTI)

360 transverse domain walls (360DWs), which form readily from transverse 180 domain walls (180DWs) of opposite sense, demonstrate qualitatively distinct behaviors from their constituent 180DWs and are therefore of interest ...

Mascaro, Mark Daniel

2012-01-01T23:59:59.000Z

276

Deposition of micron liquid droplets on wall in impinging turbulent air jet  

E-Print Network (OSTI)

The fluid mechanics of the deposition of micron liquid (olive oil) droplets on a glass wall in an impinging turbulent air jet is studied experimentally. The spatial patterns of droplets deposited on a wall are measured by ...

Liu, Tianshu

277

Analyses using Cell Wall Glycan-directed Monoclonal Antibodies Reveal Xylan-degradation by Two Microbial Glycosyl Hydrolases in Cell Walls from Poplar and Switchgrass Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

ISSN:2155-6199 ISSN:2155-6199 The International Open Access Journal of Bioremediation & Biodegradation Special Issue Title: Biofuels & their applications Handling Editor(s) Kirill I Kostyanovskiy Texas Agri Life Research & Extension Center, USA T his article was originally published in a journal by OMICS Publishing Group, and the attached copy is provided by OMICS Publishing Group for the author's benefit and for the benefit of the author's institution, for commercial/research/educational use including without limitation use in instruction at your institution, sending it to specific colleagues that you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access,

278

Production of single-walled carbon nanotube grids  

Science Conference Proceedings (OSTI)

A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

2013-12-03T23:59:59.000Z

279

Summary of SLAC'S SEY Measurement On Flat Accelerator Wall Materials  

E-Print Network (OSTI)

The electron cloud effect (ECE) causes beam instabilities in accelerator structures with intense positively charged bunched beams. Reduction of the secondary electron yield (SEY) of the beam pipe inner wall is effective in controlling cloud formation. We summarize SEY results obtained from flat TiN, TiZrV and Al surfaces carried out in a laboratory environment. SEY was measured after thermal conditioning, as well as after low energy, less than 300 eV, particle exposure.

F. Le Pimpec; R. E. Kirby; F. K. King; M. Pivi

2007-11-09T23:59:59.000Z

280

ENCAPSULATION OF PALLADIUM IN POROUS WALL HOLLOW GLASS MICROSPHERES  

DOE Green Energy (OSTI)

A new encapsulation method was investigated in an attempt to develop an improved palladium packing material for hydrogen isotope separation. Porous wall hollow glass microspheres (PWHGMs) were produced by using a flame former, heat treating and acid leaching. The PWHGMs were then filled with palladium salt using a soak-and-dry process. The palladium salt was reduced at high temperature to leave palladium inside the microspheres.

Heung, L; George Wicks, G; Ray Schumacher, R

2008-04-09T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Modeled and metered energy savings from exterior wall insulation  

SciTech Connect

Millions of single-family masonry (block) houses with slab foundations exist in the southern United States. In fact, approximately 50% of Florida`s six million residences are of concrete block construction. The block walls in these homes are usually uninsulated, and the technology for retrofitting wall insulation is not well developed. Two field tests were performed--one near Phoenix, Arizona and one in Cocoa, Florida--to measure the air-conditioning energy savings and demand reduction impact of applying an exterior insulation and finish system (EEFS) to the exterior of the block wall, and gain practical experience with retrofit application techniques and costs. One field test used a {open_quotes}site-fabricated{close_quotes} insulation system, while the other field test used a commercially available system. The field tests measured a savings of 9% in Arizona and less savings in Florida, and emphasized the impact indoor temperature settings have on cooling energy savings: exterior wall insulation on block homes will produce energy savings in Florida houses only if a low cooling thermostat setting is desirable. The field tests also highlighted an improved comfort benefit from the retrofit - namely, elimination of overheating in rooms with south and west exposures. The DOE-2. ID program was used to analyze the energy savings (air-conditioning and heating) and electric demand impact of applying an EIFS. Air-conditioning energy savings were estimated to be in the range of 8% to 10% in many southern U.S. regions. A 12% savings was predicted for Phoenix, Arizona and a savings of 1% to 4% was predicted for seacoast regions, particularly in Florida. These predictions were in good agreement with the measured values. Peak hour cooling energy savings were predicted to be more uniform throughout the country, generally in the range of %8 to %12.

Ternes, M.; Parker, D.; McLain, H.; Barkaszi, S. Jr.

1996-09-01T23:59:59.000Z

282

Residential Utility Core Wall System - ResCore  

SciTech Connect

This paper describes activities associated with the RESidential utility CORE wall system (ResCore) developed by students and faculty in the Department of Industrial Design at Auburn University between 1996 and 1998. These activities analyize three operational prototype units installed in Habitat for Humanity Houses. The paper contains two Parts: 1) analysis of the three operational prototype units, 2) exploration of alternative design solutions. ResCore is a manufactured construction component designed to expedite home building by decreasing the need for skilled labor at the work site. The unit concentrates untility elements into a wall unit(s), which is shipped to the construction site and installed in minimum time. The ResCore unit is intended to be built off-site in a manufacturing environment where the impact of vagaries of weather and work-crew coordination and scheduling are minimized. The controlled environment of the factory enhances efficient production of building components through material and labor throughput controls, enabling the production of components at a substantially reduced per-unit cost. The ResCore unit when compared to traditional "stick-built" utility wall components is in may ways analogous to the factory built roof truss compared to on-site "stick-Built" roof framing.

Boyd, G.; Lundell, C.; Wendt, R.

1999-06-01T23:59:59.000Z

283

Counter-ions at single charged wall: Sum rules  

E-Print Network (OSTI)

For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.

Ladislav Samaj

2013-04-15T23:59:59.000Z

284

Resistive Wall Mode Stabilization Studies at DIII-D  

Science Conference Proceedings (OSTI)

The effort to understand the physics of the resistive wall mode (RWM) and develop methods to control this magnetohydrodynamic mode to allow achievement of higher pressure in advanced tokamak plasmas has been an example of successful multi-institutional collaboration at the DIII-D National Fusion Facility in San Diego, California. DIII-D research in this area has produced several advances and breakthroughs following a coordinated research plan involving a sequence of measurements, development of new analysis tools, and the installation of new diagnostic and feedback stabilization hardware: Suppression of the RWM by active magnetic feedback has been demonstrated using the DIII-D six-element error field correction coil, rotational stabilization of the RWM has been demonstrated and sustained for all values of the plasma pressure from the no-wall to the ideal-wall stability limits, improved RWM feedback stabilization has been shown using a new set of 12 internal control coils, and newly developed models of feedback have shown good agreement with the measurements. By so doing, the DIII-D work on RWM stabilization has become a cornerstone of the long-term advanced tokamak program and is having impact on the world fusion program. Presently both ITER and FIRE are including plans for RWM stabilization in their programs.

Garofalo, A.M. [Columbia University (United States)

2005-10-15T23:59:59.000Z

285

Delay uncertainty in single- and multi-wall carbon nanotube interconnects  

Science Conference Proceedings (OSTI)

Carbon nanotube (CNT) has become the promising candidate for replacing the traditional copper based interconnect systems in future VLSI technology nodes. This paper analyzes delay uncertainty due to crosstalk in the Single- and Multi-wall CNT bundle ... Keywords: carbon nanotube (CNT), crosstalk delay, double-wall carbon nanotube (DWCNT), multi-wall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), very large scale integration (VLSI)

Debaprasad Das; Hafizur Rahaman

2012-07-01T23:59:59.000Z

286

Multi-physical simulations of current-induced domain wall motion using graphics processing units  

Science Conference Proceedings (OSTI)

Micromagnetic simulations of current- induced domain wall motion are presented. Domain walls are prominent candidates for concepts of storing binary data by the magnetization of ferromagnetic nanostructures. Influences of the spin-torque and the Oersted ... Keywords: current-induced domain wall motion, graphics processing units, multi-physical micromagnetic modelling and simulations, racetrack memory

Andr Drews; Gunnar Selke; Dietmar P. F. Mller

2010-07-01T23:59:59.000Z

287

Local Electromechanical Response at a Single Ferroelectric Domain Wall in Lithium Niobate  

E-Print Network (OSTI)

Local Electromechanical Response at a Single Ferroelectric Domain Wall in Lithium Niobate DAVID A electromechanical response across a single ferroelectric domain wall in congruent lithium niobate at room in the crystal, which interact with the domain wall. I. INTRODUCTION FERROELECTRIC lithium niobate and lithium

Gopalan, Venkatraman

288

On Lithium Wall and Performance of Magnetic Fusion Device S. I. Krasheninnikov1  

E-Print Network (OSTI)

On Lithium Wall and Performance of Magnetic Fusion Device S. I. Krasheninnikov1 , L. E. Zakharov2 It is shown that lithium walls resulting in zero recycling conditions at the edge of magnetic fusion device strong impact of fully absorbing lithium walls on the performance of magnetic fusion devices have been

Krstic, Miroslav

289

A new wall-shear stress model for atmospheric boundary layer simulations  

Science Conference Proceedings (OSTI)

A new wall-shear stress model to be used as wall-boundary condition for Large Eddy Simulations of the Atmospheric Boundary Layer is proposed. The new model computes the wall shear stress and the vertical derivatives of the streamwise velocity ...

Marcus Hultmark; Marc Calaf; Marc B. Parlange

290

Sustainable wall construction and exterior insulation retrofit technology process and structure  

DOE Patents (OSTI)

A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

2000-01-01T23:59:59.000Z

291

Numerical analysis of sheathing boards influence on racking resistance of timber-frame walls  

Science Conference Proceedings (OSTI)

This paper provides a numerical analysis of sheathing boards influence on racking resistance of timber-frame walls coated with single sheathing boards fastened to a timber frame. Worldwide, the walls are usually broadly used as main bearing capacity ... Keywords: Fibre-plaster boards, Numerical analysis, OSB, Racking resistance, Timber structures, Timber-framed walls

M. Premrov; P. Dobrila

2012-03-01T23:59:59.000Z

292

Computational studies of the effect of wall temperature on hypersonic shock-induced  

E-Print Network (OSTI)

Computational studies of the effect of wall temperature on hypersonic shock-induced boundary layer of an investigation into the effect of wall to freestream temperature on boundary layer separation for a nominal flat separation size to increase with wall-to-freestream temperature ratio; that the separation process

293

Effects of seawater-structure-soil interaction on seismic performance of caisson-type quay wall  

Science Conference Proceedings (OSTI)

The objective of this paper is to clarify the effects of seawater-structure interaction on the residual displacement of caisson-type quay wall after a real earthquake shock. The dynamic response of quay wall during earthquake, including soil-sea-structure ... Keywords: Base acceleration, Caisson-type quay wall, Permanent displacement, Seawater-structure interaction

A. Arablouei; A. R. M. Gharabaghi; A. Ghalandarzadeh; K. Abedi; I. Ishibashi

2011-12-01T23:59:59.000Z

294

Protective interior wall and attaching means for a fusion reactor vacuum vessel  

DOE Patents (OSTI)

The wall basically consists of an array of small rectangular plates attached to the existing walls with threaded fasteners. The protective wall effectively conceals and protects all mounting hardware beneath the plate array, while providing a substantial surface area that will absorb plasma energy.

Phelps, R.D.; Upham, G.A.; Anderson, P.M.

1985-03-01T23:59:59.000Z

295

Boundary-layer control for reducing deposition of solids at a geothermal nozzle wall  

DOE Green Energy (OSTI)

Deposition of solids at the wall of a nozzle used to expand geothermal brine may be accounted for by a hydrodynamic model describing eddy formation near the wall. A conceptual design of a nozzle with injection of an annular ring of fluid at the wall is presented.

Homsy, R.V.

1976-06-10T23:59:59.000Z

296

Thermal Inertia of Conductivity Cells: Observations with a Sea-Bird Cell  

Science Conference Proceedings (OSTI)

We have examined the magnitude and relaxation time of the thermal anomaly of the fluid flowing through the conductivity cell manufactured by Sea-Bird Electronics (SBE) that is induced by the heat stored in the wall of this cell using oceanic data ...

Rolf G. Lueck; James J. Picklo

1990-10-01T23:59:59.000Z

297

Aspect ratio effect on heat transfer in rotating two-pass rectangular channels with smooth walls and ribbed walls  

E-Print Network (OSTI)

This study experimentally investigates the effects of rotation, the buoyancy force, and the channel aspect ratio on heat transfer in two-pass rotating rectangular channels. The experiments are conducted with two surface conditions: smooth walls and 45?? angled ribbed walls. The channel aspect ratios include 4:1, 2:1, 1:1, 1:2 and 1:4. Four Reynolds numbers are studied: 5000, 10000, 25000 and 40000. The rotation speed is fixed at 550 rpm for all tests, and for each channel, two channel orientations are studied: 90?? and 45?? or 135??, with respect to the plane of rotation. Rib turbulators are placed on the leading and trailing walls of the channels at an angle of 45?? to the flow direction. The ribs have a 1.59 by 1.59 mm square cross section, and the rib pitch-to-height ratio (P/e) is 10 for all tests. The effects of the local buoyancy parameter and channel aspect ratio on the regional Nusselt number ratio are presented. Pressure drop data are also measured for both smooth and ribbed channels in rotating and non-rotating conditions. The results show that increasing the local buoyancy parameter increases the Nusselt number ratio on the trailing surface and decreases the Nusselt number ratio on the leading surface in the first pass for all channels. However, the trend of the Nusselt number ratio in the second pass is more complicated due to the strong effect of the 180?? turn. Results are also presented for this critical turn region of the two-pass channels. In addition to these regions, the channel averaged heat transfer, friction factor, and thermal performance are determined for each channel. With the channels having comparable Nusselt number ratios, the 1:4 channel has the superior thermal performance because it incurs the least pressure penalty. In this study, the author is able to systematically analyze, correlate, and conclude the thermal performance comparison with the combination of rotation effects on five different aspect ratio channels with both smooth walls and rib turbulated walls.

Fu, Wen-Lung

2005-05-01T23:59:59.000Z

298

Effect of design parameter changes on the performance of thermal storage wall passive systems  

DOE Green Energy (OSTI)

Hour-by-hour computer simulations based on one year of solar radiation and temperature data are used to analyze annual energy savings in thermal storage wall passive designs, both Trombe wall and water wall cases. The calculations are rerun many times changing various parameters one at a time to assess the effect on performance. Parameters analyzed are: night insulation R-value, number of glazings, wall absorptance and emittance, thermal storage capacity, Trombe wall properties and vent area size, additional building mass, and temperature control set points. Calculations are done for eight cities.

McFarland, R.D.; Balcomb, J.D.

1979-01-01T23:59:59.000Z

299

Modeling uptake and translocation of lead (Pb) in maize for the purposes of phyutoextraction. Master`s Thesis  

Science Conference Proceedings (OSTI)

Phytoextraction is a remediation technology that uses plants to remove heavy metals from soil. This technology has the potential to decrease the costs of remediating contaminated sites by several orders of magnitude compared to traditional technologies. To effectively implement this technology requires an understanding of the plant processes that control uptake and translocation of metals from the soil. Currently these processes are poorly understood, and especially so for Pb. The purpose of this thesis was to gain insights concerning the plant mechanisms that control uptake and translocation of Pb and how these mechanisms interact to control levels of Pb accumulation in the plant. This was accomplished by developing, testing, and implementing a system dynamics model that simulated a maize plant taking up and translocating Pb. As a result of a rigorous process of conceptualization, formulation, and testing, it appears that this model is a valid tool for studying uptake, translocation, and accumulation of Pb. The results suggest that precipitation of Pb as a Pb-phosphate at the root surface and throughout the plant is one of the most important mechanisms in this system. The maximal uptake rate of Pb (Vmax) and effective root mass may also be key plant parameters in this process. The model may also be used to test various phytoextraction management scenarios, two of which were tested in this study.

Brennan, M.A.

1997-12-01T23:59:59.000Z

300

Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations  

Science Conference Proceedings (OSTI)

A new combination of vortex-in-cell and parallel fast multipole methods is presented which allows to efficiently simulate, in parallel, unbounded and half-unbounded vortical flows (flows with one flat wall). In the classical vortex-in-cell (VIC) method, ... Keywords: Incompressible flows, Lagrangian methods, Parallel fast multipole method, Particle methods, Unbounded flows, Unsteady flows, Vortex methods, Vortex-in-cell method, Wall-bounded flows

Roger Cocle; Grgoire Winckelmans; Goric Daeninck

2008-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

How are basement walls input in REScheck? | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

basement walls input in REScheck? basement walls input in REScheck? After selecting a basement wall type, a basement wall illustration will appear with input boxes for the basement wall height, depth below grade, and depth of insulation. The illustration helps identify the dimensions being requested. You may enter basement wall dimensions directly into this illustration and select the OK button to have them transferred to the corresponding row in the table on the Envelope screen. If you prefer to enter the dimensions directly into the table on the Envelope screen, you can select Cancel to remove the illustration without entering dimensions. To view the basement wall illustration and inputs at a later time, click the right-mouse button anywhere on the basement row and select Edit Basement Inputs from the popup menu.

302

Thermal control system and method for a passive solar storage wall  

DOE Patents (OSTI)

A system and method are provided for controlling the storing and release of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, J.K.E.

1981-07-10T23:59:59.000Z

303

Apparatus and methods for impingement cooling of a side wall of a turbine nozzle segment  

SciTech Connect

A gas turbine nozzle segment has outer and inner bands and a vane therebetween. Each band includes a nozzle wall, a side wall, a cover and an impingement plate between the cover and the nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The impingement plate has a turned flange welded to the inturned flange. A backing plate overlies the turned flange and aligned apertures are formed through the backing plate and turned flange to direct and focus cooling flow onto the side wall of the nozzle segment.

Burdgick, Steven Sebastian (Schenectady, NY)

2002-01-01T23:59:59.000Z

304

The logic behind thick, liquid-walled, fusion concepts  

Science Conference Proceedings (OSTI)

It may be possible to surround the region where fusion reactions are taking place with a neutronically thick liquid blanket which has penetrations that allow only a few tenths of a percent of the neutrons to leak out. Even these neutrons can be attenuated by adding an accurately placed liquid or solid near the target to shadow-shield the beam ports from line-of-sight neutrons. The logic of such designs are discussed and their evolution is described with examples applied to both magnetic and inertial fusion (HYLIFE-II). These designs with liquid protection are self healing when exposed to pulsed loading and have a number of advantages-over the usual designs with solid first walls. For example, the liquid-protected solid components will last the life of the plant, and therefore the capacity factor is estimated to be approximately 10% higher than for the non-liquid-walled blankets, because no blanket replacement shutdowns are required. The component replacement, operations, and maintenance costs might be half the usual value because no blanket change-out costs or accompanying facilities are required. These combined savings might lower the cost of electricity by 20%. Nuclear-grade construction should not be needed, largely because the liquid attenuates neutrons and results in less activation of materials. Upon decommissioning, the reactor materials should qualify for disposal by shallow burial even when constructed of ordinary 304 stainless steel. The need for a high-intensity 14-MeV neutron test facility to develop first-wall materials is avoided or greatly reduced, saving billions of development dollars. Flowing molten Li, the molten salt Flibe (Li{sub 2}BeF{sub 4}), and molten Li{sub l7}Pb{sub 83} have been considered. An advantage of molten salt is that it will not burn and has a low tritium solubility and therefore low tritium inventory.

Moir, R.W.

1994-04-15T23:59:59.000Z

305

Active control of the resistive wall mode with power saturation  

SciTech Connect

An analytic model of non-linear feedback stabilization of the resistive wall mode is presented. The non-linearity comes from either the current or the voltage saturation of the control coil power supply. For the so-called flux-to-current control, the current saturation of active coils always results in the loss of control. On the contrary, the flux-to-voltage control scheme tolerates certain degree of the voltage saturation. The minimal voltage limit is calculated, below which the control will be lost.

Li Li; Liu Yue [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China); Liu Yueqiang [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

2012-01-15T23:59:59.000Z

306

Generalized dilaton-Maxwell cosmic string and wall solutions  

E-Print Network (OSTI)

The class of static solutions found by Gibbons and Wells for dilaton-electrodynamics in flat spacetime, which describe nontopological strings and walls that trap magnetic flux, is extended to a class of dynamical solutions supporting arbitrarily large, nondissipative traveling waves, using techniques previously applied to global and local topological defects. These solutions can then be used in conjunction with S-duality to obtain more general solitonic solutions for various axidilaton-Maxwell theories. As an example, a set of dynamical solutions is found for axion, dilaton, and Maxwell fields in low energy heterotic string theory using the SL(2,R) invariance of the equations of motion.

John Morris

2006-08-15T23:59:59.000Z

307

LiWall Fusion - The New Concept of Magnetic Fusion  

Science Conference Proceedings (OSTI)

Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

L.E. Zakharov

2011-01-12T23:59:59.000Z

308

REVIEW / SYNTHSE Comparative morphology of the body wall in  

E-Print Network (OSTI)

been the subject of more comprehensive reviews of epidermal ultrastructure (Bedini and Papi 1974; Tyler of the epidermal cell bearing them (Bedini and Papi 1974; Ehlers 1985; Rohde and Watson 1995). Some species in proseriates (Bedini and Papi 1974; Ehlers 1985). Tall epidermal cells (e.g., the columnar cells of polyclads

Hooge, Matthew

309

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

1993-01-01T23:59:59.000Z

310

Evaluation of integrated wall systems incorporating electrochromic windows [Final report  

SciTech Connect

Billions of dollars are spent annually in the U.S. on energy lost through the use of inefficient windows. Even wall systems with advanced static glazings and moveable shading devices are not optimal because they can't effectively respond to changing solar conditions. Electrochromic (EC) smart windows can dynamically control the amount of solar light and heat entering a building. The energy saving performance of fully dynamic wall systems containing EC windows was compared with that of static systems using the DOE 2.1E building simulation program. Total costs for different scenarios were computed. SAGE demonstrated the capability to produce double pane EC windows in which the transmittance repeatedly varied between 2-58%. Relative impact of EC glazings in buildings compared to static is 10-20% energy savings across all climatic regions investigated. Significant life cycle cost savings are predicted for SAGE's EC windows when compared to conventional solar control windows over an estimated product lifetime of 20 years.

Sbar, Neil L.

2001-03-30T23:59:59.000Z

311

Experimental Investigation of Natural Convection in Trombe Wall Systems  

E-Print Network (OSTI)

In this paper, experiments with a passive solar building with Trombe wall in the north cold climate are carried out and discussed, and the natural convection heat transfer process has been investigated. The relativity of the factors affecting indoor air temperature is analyzed with the stepwise regression method. The results indicate that thermo-circulation induced by the stack effect is the dominant factor. The natural convection in the channel is fairly complex; it changes from the laminar flow to the turbulent flow and the turbulent flow covers at least half the height of massive wall during the normal circulation. The flow in the channel is considered as natural convection between vertical plates. Analyzing the natural convection heat transfer process with the Rayleigh number and the mean Nusselt number, the thermo-circulation can be divided into three periods in the daytime: coast up, maintenance and weaken. During the maintenance period, the changes of the solar radiation intensity and surface temperatures have little effect on Nu number.

Chen, B.; Zhao, J.; Chen, C.; Zhuang, Z.

2006-01-01T23:59:59.000Z

312

Domain Wall QCD with Near-Physical Pions  

E-Print Network (OSTI)

We present physical results for a variety of light hadronic quantities obtained via a combined analysis of three 2+1 flavour domain wall fermion ensemble sets. For two of our ensemble sets we used the Iwasaki gauge action with beta=2.13 (a^-1=1.75(4) GeV) and beta=2.25 (a^-1=2.31(4) GeV) and lattice sizes of 24^3 x 64 and 32^3 x 64 respectively, with unitary pion masses in the range 293(5)-417(10) MeV. The extent L_s for the 5^th dimension of the domain wall fermion formulation is L_s=16 in these ensembles. In this analysis we include a third ensemble set that makes use of the novel Iwasaki+DSDR (Dislocation Suppressing Determinant Ratio) gauge action at beta = 1.75 (a^-1=1.37(1) GeV) with a lattice size of 32^3 x 64 and L_s=32 to reach down to partially-quenched pion masses as low as 143(1) MeV and a unitary pion mass of 171(1) MeV, while retaining good chiral symmetry and topological tunneling. We demonstrate a significant improvement in our control over the chiral extrapolation, resulting in much improved ...

Arthur, R; Boyle, P A; Christ, N H; Garron, N; Hudspith, R J; Izubuchi, T; Jung, C; Kelly, C; Lytle, A T; Mawhinney, R D; Murphy, D; Ohta, S; Sachrajda, C T; Soni, A; Zanotti, J M

2012-01-01T23:59:59.000Z

313

Seismic Vulnerability and Performance Level of confined brick walls  

Science Conference Proceedings (OSTI)

There has been an increase on the interest of Engineers and designers to use designing methods based on displacement and behavior (designing based on performance) Regarding to the importance of resisting structure design against dynamic loads such as earthquake, and inability to design according to prediction of nonlinear behavior element caused by nonlinear properties of constructional material.Economically speaking, easy carrying out and accessibility of masonry material have caused an enormous increase in masonry structures in villages, towns and cities. On the other hand, there is a necessity to study behavior and Seismic Vulnerability in these kinds of structures since Iran is located on the earthquake belt of Alpide.Different reasons such as environmental, economic, social, cultural and accessible constructional material have caused different kinds of constructional structures.In this study, some tied walls have been modeled with software and with relevant accelerator suitable with geology conditions under dynamic analysis to research on the Seismic Vulnerability and performance level of confined brick walls. Results from this analysis seem to be satisfactory after comparison of them with the values in Code ATC40, FEMA and standard 2800 of Iran.

Ghalehnovi, M.; Rahdar, H. A. [University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

314

Evaluation of integrated wall systems incorporating electrochromic windows [Final report  

DOE Green Energy (OSTI)

Billions of dollars are spent annually in the U.S. on energy lost through the use of inefficient windows. Even wall systems with advanced static glazings and moveable shading devices are not optimal because they can't effectively respond to changing solar conditions. Electrochromic (EC) smart windows can dynamically control the amount of solar light and heat entering a building. The energy saving performance of fully dynamic wall systems containing EC windows was compared with that of static systems using the DOE 2.1E building simulation program. Total costs for different scenarios were computed. SAGE demonstrated the capability to produce double pane EC windows in which the transmittance repeatedly varied between 2-58%. Relative impact of EC glazings in buildings compared to static is 10-20% energy savings across all climatic regions investigated. Significant life cycle cost savings are predicted for SAGE's EC windows when compared to conventional solar control windows over an estimated product lifetime of 20 years.

Sbar, Neil L.

2001-03-30T23:59:59.000Z

315

Experimental study of a fiber absorber-suppressor modified Trombe wall  

DOE Green Energy (OSTI)

An experimental study has been conducted to ascertain the effects of introducing fiber bed absorbers on Trombe wall passive solar collectors. Two identical, Trombe wall passive solar units were constructed that incorporate the basic components of masonry collector-storage walls: glazings, masonry and thermal insulation. Both units were extensively instrumented with thermocouples and heat flux transducers. Ambient temperature, relative humidity, wind speed and insolation are also measured. In the first part of the study the two Trombe wall units were tested with a single glass cover. The thermal performance of both units was found to be virtually identical. In the second part of the study a single cover Trombe wall unit was compared with a double cover unit and the latter was found to have higher air gap and masonry wall temperatures and heat fluxes. In the final phase of the experiment, an absorbing, scattering and emitting fiberglass-like material was placed in the air gap of the single gazed wall. Tests were conducted to compare the solar-thermal performance, heat loss and gain characteristics between the units with and without the fiber absorber-suppressor. This experiment showed that the fiber bed served to decouple the wall at night from its exterior environment and to reduce the heat losses. The modified Trombe wall with the fiber absorber-suppressor out-performed the double glazed Trombe wall system by approximately ten percent gain in useable thermal energy. Also, the fiber bed eliminates one glazing thereby reducing system cost as well.

Choudhury, D; Birkebak, R C

1982-12-01T23:59:59.000Z

316

Electrolytic cells for hydrogen gas production  

SciTech Connect

An electrolytic cell bank is described comprising two end plate electrodes, a plurality of intermediate electrodes, a plurality of dielectric separators spaced between the electrodes to form electrolytic cell chambers, a plurality of gas separator diaphragms, alkaline electrolyte, manifolds for allowing off-gas withdrawal of hydrogen and oxygen and means for back-pressuring the exterior walls of each end plate to counter-balance pressures developed within the electrolytic cell chambers. The cell bank is utilized to convert water into its constituent gases of oxygen and hydrogen, and the cell bank is sufficiently large to commercially produce hydrogen at pressures equal to the pressures utilized in commercial gas transmission lines.

Hall, F.F.

1980-11-25T23:59:59.000Z

317

Mold susceptibility of rapidly renewable materials used in wall construction  

E-Print Network (OSTI)

Since 1998, the United States Green Building Council, via the Leadership in Energy and Environmental Design (LEED) standards, has established the premiere set of guidelines for construction ethics from the standpoint of eco-friendliness and occupant safety and health in the U.S. and around the world. These guidelines are skyrocketing in use due in part to two reasons: increased awareness of a need for reducing, reusing, and recycling in order to save resources and natural areas for future generations; and, increased amount of time spent indoors in work places and homes. The LEED guidelines encourage sustainable and responsible use of land, water, energy, and materials, and promote a safe and healthy environment through use of innovative designs and technology. As part of the responsible use of materials, the LEED guidelines encourage the use of rapidly renewable materials such as cotton, straw, wool, and cork as insulation products. Although these products can be produced naturally and quickly from nature, they are also cellulose or carbohydrate based products. Cellulose and carbohydrate based materials are typically optimal food sources for mold in the presence of moisture, ironically destroying facilities and creating poor living and work environments. Samples of wool, cork, straw, and cotton--rapidly renewable materials used as exterior wall insulation products--were exposed to different moisture amounts in an encapsulated environment, representing the environment within a wall cavity when exposed to water from pipes, leaks, condensation and absorption, or from initial construction. The samples were monitored over time for mold growth. The data logged from the samples were analyzed to determine the degree of mold susceptibility of each material. In addition, samples with increased amounts of moisture were examined to determine increased promotion of mold growth. The results from this study showed that all of the above mentioned materials were highly susceptible to mold growth and that the moisture amount did not increase the rate of mold growth. Based on the data collected from this study, recommendations were made to review the current use of rapidly renewable and other cellulose and carbohydrate based materials in wall construction.

Cooper, Aaron McGill

2007-12-01T23:59:59.000Z

318

Performance of a selective-surface trombe wall in a small commercial building  

DOE Green Energy (OSTI)

The design and construction of a 100% passive solar building utilizing a clerestory and a trombe wall are described. The use of three selectively absorptive and emissive coverings on the trombe wall outer surface are investigated. One of the coverings and its laminating adhesive are tested for degradation after a year of exposure under normal operating conditions. Ambient temperature, room air temperature, trombe wall interior and exterior surface temperatures, and solar radiation are measured.

Judkoff, R.; Sokol, F.

1981-03-01T23:59:59.000Z

319

One-loop fluctuation-dissipation formula for bubble-wall velocity  

Science Conference Proceedings (OSTI)

The limiting bubble wall velocity during a first-order electroweak phase transition is of interest in scenarios for electroweak baryogenesis. Khlebnikov has recently proposed an interesting method for computing this velocity based on the fluctuation-dissipation theorem. It is demonstrated that at one-loop order this method is identical to simple, earlier techniques for computing the wall velocity based on computing the friction from particles reflecting off or transmitting through the wall in the ideal gas limit.

Arnold, P.

1993-06-01T23:59:59.000Z

320

Characterization of Plasma Sprayed Beryllium ITER First Wall Mockups  

Science Conference Proceedings (OSTI)

ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/sq m without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface.

Castro, Richard G.; Vaidya, Rajendra U.; Hollis, Kendall J.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Kinetic damping of resistive wall modes in ITER  

SciTech Connect

Full drift kinetic modelling including finite orbit width effects has been used to assess the passive stabilisation of the resistive wall mode (RWM) that can be expected in the ITER advanced scenario. At realistic plasma rotation frequency, the thermal ions have a stabilising effect on the RWM, but the stability limit remains below the target plasma pressure to achieve Q = 5. However, the inclusion of damping arising from the fusion-born alpha particles, the NBI ions, and ICRH fast ions extends the RWM stability limit above the target {beta} for the advanced scenario. The fast ion damping arises primarily from finite orbit width effects and is not due to resonance between the particle frequencies and the instability.

Chapman, I. T.; Liu, Y. Q. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Asunta, O. [Department of Applied Physics, Association EURATOM-Tekes, Aalto University, P.O. Box 14100 FI-00076 AALTO (Finland); Graves, J. P. [CRPP, Association EURATOM/Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Johnson, T. [EURATOM-VR Association, EES, KTH, Stockholm (Sweden); Jucker, M. [GFDL/Princeton University, AOS Program, Princeton, New Jersey 08544 (United States)

2012-05-15T23:59:59.000Z

322

Water infiltration and intermittent flow in rough-walled fractures  

DOE Green Energy (OSTI)

Flow visualization experiments were conducted in transparent replicas of natural rough-walled fractures. The fracture was inclined to observe the interplay between capillary and gravity forces. Water was introduced into the fracture by a capillary siphon. Preferential flow paths were observed, where intermittent flow frequently occurred. The water infiltration experiments suggest that intermittent flow in fractures appears to be the rule rather than the exception. In order to investigate the mechanism causing intermittent flow in fractures, parallel plates with different apertures were assembled using lucite and glass. A medium-coarse-fine pore structure is believed to cause the intermittency in flow. Intermittent flow was successfully produced in the parallel plate experiments using the lucite plates. After several trials, intermittent flow was also produced in the glass plates.

Su, G.

1995-05-01T23:59:59.000Z

323

On relative permeability of rough-walled fractures  

DOE Green Energy (OSTI)

This paper presents a conceptual and numerical model of multiphase flow in fractures. The void space of real rough-walled rock fractures is conceptualized as a two-dimensional heterogeneous porous medium, characterized by aperture as a function of position in the fracture plane. Portions of a fracture are occupied by wetting and non-wetting phase, respectively, according to local capillary pressure and accessibility criteria. Phase occupancy and permeability are derived by assuming a parallel-plate approximation for suitably small subregions in the fracture plane. Wetting and non-wetting phase relative permeabilities are calculated by numerically simulating single phase flows separately in the wetted and non-wetted pore spaces. Illustrative examples indicate that relative permeabilities depend sensitively on the nature and range of spatial correlation between apertures. 30 refs., 7 figs., 1 tab.

Pruess, K.; Tsang, Y.W.

1989-01-01T23:59:59.000Z

324

A Shell Theory for Chiral Single-Wall Carbon Nanotubes  

E-Print Network (OSTI)

In this paper, we propose a characterization of the mechanical response of the linearly elastic shell we associate to a single-wall carbon nanotube of arbitrary chirality. In Bajaj et al. 2013, we gave such a characterization in the case of zigzag and armchair nanotubes; in particular, we showed that the orthotropic response we postulated for the associated shells is to become isotropic in the graphene-limit, that is, when the shell radius grows bigger and bigger. Here we give an explicit recipe to construct the generally anisotropic response of the shell associated to a nanotube of any chirality in terms of the response of the shell associated to a related zigzag or armchair nanotube. The expected coupling of mechanical effects that anisotropy entrains is demonstrated in the case of a torsion problem, where the axial extension accompanying twist is determined analytically and found in good agreement with the available experimental data.

Antonino Favata; Paolo Podio-Guidugli

2013-06-28T23:59:59.000Z

325

Fluorescent single walled nanotube/silica composite materials  

DOE Patents (OSTI)

Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

2013-03-12T23:59:59.000Z

326

Wall pressure exerted by hydrogenation of sodium aluminum hydride.  

DOE Green Energy (OSTI)

Wall pressure exerted by the bulk expansion of a sodium aluminum hydride bed was measured as a function of hydrogen content. A custom apparatus was designed and loaded with sodium alanates at densities of 1.0, 1.1, and 1.16 g/cc. Four complete cycles were performed to identify variations in measured pressure. Results indicated poor correlation between exerted pressure and hydrogen capacity of the sodium alanate beds. Mechanical pressure due to the hydrogenation of sodium alanates does not influence full-scale system designs as it falls within common design factors of safety. Gas pressure gradients within the porous solid were identified and may limit reaction rates, especially for high aspect ratio beds.

Perras, Yon E.; Dedrick, Daniel E.; Zimmerman, Mark D.

2009-06-01T23:59:59.000Z

327

Deformation and tribology of multi-walled hollow nanoparticles  

E-Print Network (OSTI)

Multi-walled hollow nanoparticles made from tungsten disulphide (WS$_2$) show exceptional tribological performance as additives to liquid lubricants due to effective transfer of low shear strength material onto the sliding surfaces. Using a scaling approach based on continuum elasticity theory for shells and pairwise summation of van der Waals interactions, we show that van der Waals interactions cause strong adhesion to the substrate which favors release of delaminated layers onto the surfaces. For large and thin nanoparticles, van der Waals adhesion can cause considerable deformation and subsequent delamination. For the thick WS$_2$ nanoparticles, deformation due to van der Waals interactions remains small and the main mechanism for delamination is pressure which in fact leads to collapse beyond a critical value. We also discuss the effect of shear flow on deformation and rolling on the substrate.

U. S. Schwarz; S. Komura; S. A. Safran

2000-05-01T23:59:59.000Z

328

[Feedback control mechanisms of plant cell expansion  

DOE Green Energy (OSTI)

We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

Cosgrove, D.J.

1992-01-01T23:59:59.000Z

329

Thick Liquid-Walled Spheromak Magnetic Fusion Power Plant  

DOE Green Energy (OSTI)

We assume a spheromak configuration can be made and sustained by a steady gun current, which injects particles, current and magnetic field, i.e., helicity injection. The equilibrium is calculated with an MHD equilibrium code, where an average beta of 10% is found. The toroidal current of 40 MA is sustained by an injection current of 100 kA (125 MW of gun power). The flux linking the gun is 1/1000th that of the flux in the spheromak. The geometry allows a flow of liquid, either molten salt, (flibe-Li{sub 2}BeF{sub 4} or flinabe-LiNaBeF{sub 4}) or liquid metal such as SnLi which protects most of the walls and structures from neutron damage. The free surface between the liquid and the burning plasma is heated by bremsstrahlung and optical radiation and neutrons from the plasma. The temperature of the free surface of the liquid is calculated and then the evaporation rate is estimated. The impurity concentration in the burning plasma is estimated and limited to a 20% reduction in the fusion power. For a high radiating edge plasma, the divertor power density of 460 MW/m{sup 2} is handled by high-speed (20 m/s), liquid jets. For low radiating edge plasmas, the divertor-power density of 1860 MW/m{sup 2} is too high to handle for flibe but possibly acceptable for SnLi with jets of 100 m/s flow speed. Calculations show the tritium breeding is adequate with enriched Li and appropriate design of the walls not covered by flowing liquid 15% of the total. We have come up with a number of problem areas needing further study to make the design self consistent and workable.

Moir, R W; Bulmer, R H; Fowler, T K; Youssef, M Z

2002-04-08T23:59:59.000Z

330

The Kelastic variable wall mining machine. Interim final report  

SciTech Connect

This machine cuts coal along a longwall face extending up to 500 feet by a rotating auger with bits. The machine also transports the coal that is cut acting as screw conveyor. By virtue of an integral shroud comprising part of the conveyor the machine is also amenable to a separation of the zones where men work from air being contaminated by dust and methane gas by the cutting action. Beginning as single intake air courses, the air separates at the working section where one split provides fresh air to the Occupied Zone (OZ) for human needs and the other split purges and carries away dust and methane from face fragmentation in the Cutting Zone (CZ). The attractiveness of the Variable Wall Mining Machine is that it addresses the limitations of current longwall mining equipment: it can consistently out-produce continuous mining machines and most longwall shearing machines. It also is amenable to configuring an environment, the dual-duct system, where the air for human breathing is separated from dust-laden ventilating air with methane mixtures. The objective of the research was to perform a mathematical and experimental study of the interrelationships of the components of the system so that a computer model could demonstrate the workings of the system in an animation program. The analysis resulted in the compilation of the parameters for three different configurations of a dual aircourse system of ventilating underground mines. In addressing the goal of an inherently safe mining system the dual-duct adaptation to the Variable Wall Mining Machine appears to offer the path to solution. The respirable dust problem is solvable; the explosive dust problem is nearly solvable; and the explosive methane problem can be greatly reduced. If installed in a highly gassy mine, the dual duct models would also be considerably less costly.

1995-11-12T23:59:59.000Z

331

Experimental investigation of the Trombe wall. Final report, October 1977-March 1979  

DOE Green Energy (OSTI)

A variable geometry test facility was constructed and an experimental program conducted to investigate the performance characteristics of the Trombe wall, passive solar heating system. The principal objective met in the research project was the determination of representative values of wall gap thermocirculation parameters for various wall geometries. Velocity and temperature profiles in the wall gap were obtained for 2, 4, and 6-inch gap widths. Maximum values for the Grashof number under measured flow conditions ranged approximately from 6 x 10/sup 5/ for the 2-inch gap to 1.5 x 10/sup 7/ for the 6-inch gap, indicating laminar flow and possibly the initiation of transitional flow regimes at the higher Grashof numbers. Turbulent flow behavior was not exhibited within the relatively broad range of test conditions studied in this research, conditions typical of one-story Trombe walls employing practical geometries. A second objective accomplished in this research was the characterization of the Trombe wall thermal efficiency for a variety of operating conditions and wall geometries. Using data collected under essentially clear-sky conditions, collector efficiency curves similar to those commonly used to describe the performance of flat-plate solar collectors were developed for the Trombe wall. The efficiency plots were determined for 2, 4, and 6-inch gap widths using linear regression fits. These regression fits were sufficiently good to validate the applicability of this approach in describing Trombe wall performance.

Casperson, R.L.; Hocevar, C.J.

1979-05-15T23:59:59.000Z

332

Go No-Go Decision: Pure, Undoped, Single Walled Carbon Nanotubes for Vehicular Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This document provides information about the go/no-go decision on pure, undoped single walled carbon nanotubes for vehicular hydrogen storage.

333

IFE thick liquid wall chamber dynamics: Governing mechanisms and modeling and experimental capabilities  

E-Print Network (OSTI)

Wall Inertial Fusion Reactors " Nuclear Eng. and Design 63,Heavy Ion Beam Fusion Reactor," Nuclear J. P E R L A D O ,

2005-01-01T23:59:59.000Z

334

Transport Phenomena and Structuring in Shear Flow of Suspensions near Solid Walls  

E-Print Network (OSTI)

In this paper we apply the lattice-Boltzmann method and an extension to particle suspensions as introduced by Ladd et al. to study transport phenomena and structuring effects of particles suspended in a fluid near sheared solid walls. We find that a particle free region arises near walls, which has a width depending on the shear rate and the particle concentration. The wall causes the formation of parallel particle layers at low concentrations, where the number of particles per layer decreases with increasing distance to the wall.

A. Komnik; J. Harting; H. J. Herrmann

2004-08-02T23:59:59.000Z

335

DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT  

E-Print Network (OSTI)

Hoffman, et. a1. , "Fusion Reactor First Wall Cooling forTheir Signif- icance in Fusion Reactors," Fifth ConferenceProb- lems in Toroidal Fusion Reactors," Fifth Conference

Myers, Richard Allen

2011-01-01T23:59:59.000Z

336

STUDY OF PROPANE ADSORPTION ISOTHERM ON PURIFIED HIPCO SINGLE-WALLED CARBON NANOTUBES.  

E-Print Network (OSTI)

??Isotherms of one atom thick film of adsorption for propane on purified Hipco single-walled carbon nanotube were experimentally studied at 6 different temperatures ranging from (more)

Furuhashi, Toyohisa

2009-01-01T23:59:59.000Z

337

Analysis of Thermostat Design for Vertical Fan Coil Units Within Modern Window-Wall Condominium Suites.  

E-Print Network (OSTI)

??The aim for this research is to identify the issues with poor thermostat designs in a window-wall condominium suite during cooling season, and to investigate (more)

Ruff, Shawn

2013-01-01T23:59:59.000Z

338

Potential contour shaping and sheath behavior with wall electrodes and near-wall magnetic fields in Hall thrusters  

SciTech Connect

Graphite electrodes are embedded within the discharge channel of a Hall effect thruster to focus ions for improved performance. Cusp-shaped magnetic fields are added around the electrodes to shield the electrodes from high electron current. Internal plasma potential measurements inside the discharge channel show that the presence of floating graphite does not significantly affect the potential contours at 150 V anode potential. Creation of closed contour pockets are observed with the electrodes biased 10 and 30 V above the anode potential. The electrodes also cause a compression of the acceleration region in the thruster. The cause of the changes in the potential contours is attributed to a shifting of discharge electrode from the anode to the electrodes and an expansion of the near-wall plasma sheath. The presence of the cusp magnetic fields is shown to affect the current collected by the electrodes, a behavior associated with modification of the plasma sheath properties due to magnetization of electrons.

Xu, K. G. [Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Dao, H.; Walker, M. L. R. [Department of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318 (United States)

2012-10-15T23:59:59.000Z

339

The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea  

E-Print Network (OSTI)

.3% Italian 46.5% 52.4% 5.9% Romanian 70.1% 73.2% 3.1% Table 2: Using simple tie-breakers in voting submitted under the label "Swat". The "Swat-HK" and "Swat HK-Bo" en- tries were submitted by Swarthmore

Cosgrove, Daniel J.

340

Impact of Cell Wall Acetylation on Corn Stover Hydrolysis by Cellulolytic and Xylanolytic Enzymes  

SciTech Connect

Analysis of variously pretreated corn stover samples showed neutral to mildly acidic pretreatments were more effective at removing xylan from corn stover and more likely to maintain the acetyl to xylopyranosyl ratios present in untreated material than were alkaline treatments. Retention of acetyl groups in the residual solids resulted in greater resistance to hydrolysis by endoxylanase alone, although the synergistic combination of endoxylanase and acetyl xylan esterase enzymes permitted higher xylan conversions to be observed. Acetyl xylan esterase alone did little to improve hydrolysis by cellulolytic enzymes, although a direct relationship was observed between the enzymatic removal of acetyl groups and improvements in the enzymatic conversion of xylan present in substrates. In all cases, effective xylan conversions were found to significantly improve glucan conversions achievable by cellulolytic enzymes. Additionally, acetyl and xylan removal not only enhanced the respective initial rates of xylan and glucan conversion, but also the overall extents of conversion. This work emphasizes the necessity for xylanolytic enzymes during saccharification processes and specifically for the optimization of acetyl esterase and xylanase synergies when biomass processes include milder pretreatments, such as hot water or sulfite steam explosion.

Selig, M. J.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Plant cell walls throughout evolution: towards a molecular understanding of their design principles  

E-Print Network (OSTI)

engineering for biofuel production: towards affordableviable lignocellulosic biofuel production as well as for thefor lignocellulose-based biofuel production. Remodelling and

Sarkar, Purbasha

2010-01-01T23:59:59.000Z

342

Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana  

E-Print Network (OSTI)

Abstract Background Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its...

Van Acker, Rebecca; Vanholme, Ruben; Storme, Vronique; Mortimer, Jennifer C; Dupree, Paul; Boerjan, Wout

2013-04-26T23:59:59.000Z

343

Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Sai Venkatesh Pingali,*,  

E-Print Network (OSTI)

Weave Composite ~ 1 dpa, HFIR irradiation ORNL / Kyoto U. A science-based program involving tailored

344

A Survey of Databases for Analysis of Plant Cell Wall-Related Enzymes  

E-Print Network (OSTI)

Feedstocks Division, Joint BioEnergy Institute, Emeryville,work was part of the DOE Joint BioEnergy Institute (http://

Cao, Peijian; Jung, Ki-Hong; Ronald, Pamela C.

2010-01-01T23:59:59.000Z

345

3D Electron Tomography of Switchgrass Cell Wall Deconstruction by Clostridium cellulolyticum (Poster)  

DOE Green Energy (OSTI)

This poster describes research about biomass-digesting microorganisms that produce structured biomass-degrading enzyme complexes.

Haas, T.; Donohoe, B.; Wei, H.; Yang, Y.; Keller, M.; Himmel, M.; Ding, S.-Y.

2009-06-01T23:59:59.000Z

346

Passive test-cell experiments during the winter of 1979-1980  

DOE Green Energy (OSTI)

During the winter of 1979-80 the performance of a variety of passive solar heating configurations in 14 passive test cells were monitored. The cells included attached greenhouses, masonry and water walls with black-chrome absorber surfaces, night insulation, and phase-change thermal storage walls. The results of these side-by-side tests were used to make quantitative comparisons of the delivered performance of these configurations for the conditions under which they were tested.

Hyde, J.C.

1981-11-01T23:59:59.000Z

347

Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations  

SciTech Connect

Nonstationary heat conduction in a single-walled carbon nanotube was investigated by applying a local heat pulse with duration of subpicoseconds. The investigation was based on classical molecular dynamics simulations, where the heat pulse was generated as coherent fluctuations by connecting a thermostat to the local cell for a short duration. The heat conduction through the nanotube was observed in terms of spatiotemporal temperature profiles. Results of the simulations exhibit non-Fourier heat conduction where a distinct amount of heat is transported in a wavelike form. The geometry of carbon nanotubes allows us to observe such a phenomenon in the actual scale of the material. The resulting spatiotemporal profile was compared with the available macroscopic equations, the so-called non-Fourier heat conduction equations, in order to investigate the applicability of the phenomenological models to a quasi-one-dimensional system. The conventional hyperbolic diffusion equation fails to predict the heat conduction due to the lack of local diffusion. It is shown that this can be remedied by adopting a model with dual relaxation time. Further modal analyses using wavelet transformations reveal a significant contribution of the optical phonon modes to the observed wavelike heat conduction. The result suggests that, in carbon nanotubes with finite length where the long-wavelength acoustic phonons behave ballistically, even optical phonons can play a major role in the non-Fourier heat conduction.

Shiomi, Junichiro; Maruyama, Shigeo [Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

2006-05-15T23:59:59.000Z

348

Surface studies of hydroxylated multi-wall carbon nanotubes  

Science Conference Proceedings (OSTI)

CVD grown MWCNTs, of typical diameter 5 to 50 nm and with approximately 15-20 concentric graphene layers in the multi-walls, have been surface functionalised using the Fenton hydroxylation reaction. HRTEM reveals little physical difference between the treated and untreated materials; images from both exhibit similar multi-wall structure and contain evidence for some low-level disruption of the very outermost layers. Raman spectra from the two types of nanotubes are almost identical displaying the disorder (D) peaks at approximately 1350 cm{sup -1} and graphite (G) peaks at approximately 1580 cm{sup -1}, characteristic of graphene-based carbon materials, in approximately equal intensity ratios. Equilibrium adsorption data for nitrogen at 77 K leads to BET surface areas of 60.4 m{sup 2} g{sup -1} for the untreated and 71.8 m{sup 2} g{sup -1} for the hydroxylated samples; the increase in area being due to separation of the tube-bundles during functionalization. This is accompanied by a decrease in measured porosity, mostly at high relative pressures of nitrogen, i.e. where larger (meso 2-5 nm and macro >5 nm) pores are being filled, which is consistent with an attendant loss of inter-tube capillarity. X-ray photoelectron spectroscopy (XPS) shows that hydroxylation increases the nanotube surface oxygen level from 4.3 at.% to 22.3 at.%; chemical shift data indicate that approximately 75% of that oxygen is present as hydroxyl (-OH) groups. Water vapour adsorption by the hydroxylated surfaces leads to Type II isotherms which are characteristic of relatively high numbers of hydrogen bonding interactions compared to the untreated materials which exhibit Type III curves. This difference in polar surface energy is confirmed by calorimetric enthalpies of immersion in water which are -54 mJ m{sup -2} for the untreated and -192 mJ m{sup -2} for the hydroxylated materials. The treated materials therefore have significantly increased water wettability/dispersivity and a greater potential for cross-linking with matrix compounds. The mechanism by which hydroxylation occurs i.e. free radical (OH{sm_bullet}) attack and subsequent electrophilic addition at CC bonds in the graphene basal planes, is discussed.

Bradley, Robert [Department of Materials, University of Oxford, Parks Rd, Oxford, OX1 3PH, UK; Cassity, Kelby [Oak Ridge National Laboratory (ORNL); Andrews, Rodney [University of Kentucky, Lexington; Meier, Mark [University of Kentucky, Lexington; Osbeck, Susan [The Robert Gordon University, Aberdeen AB10 1FR, U.K.; Andreu, Aurik [The Robert Gordon University, Aberdeen AB10 1FR, U.K.; Johnston, Colin [Department of Materials, University of Oxford, Parks Rd, Oxford, OX1 3PH, UK; Crossley, Alison [Department of Materials, University of Oxford, Parks Rd, Oxford, OX1 3PH, UK

2012-01-01T23:59:59.000Z

349

Plasma wall charge-exchange interactions in the 2XIIB magnetic mirror experiment  

SciTech Connect

Plasma-wall interactions by charge-exchange wall bombardment in the 2XIIB magnetic mirror experiment are discussed. Experimental measurements are modeled with a time-dependent, radial density buildup calculation. A low-density plasma sufficient to help shield the hot interior plasma from cold-gas erosion, as required by the model, is measured.

Stallard, B.W.; Coensgen, F.H.; Cummins, W.F.; Gormezano, C.; Logan, B.G.; Molvik, A.W.; Nexsen, W.E.; Simonen, T.C.; Turner, W.C.

1976-01-01T23:59:59.000Z

350

Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers  

E-Print Network (OSTI)

Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers Paul A Abstract The louvered fin heat exchanger, a type of compact heat exchanger, has been used heavily transfer along the tube wall of the compact heat exchanger through the use of winglets placed

Thole, Karen A.

351

End-Triassic calcification crisis and blooms of organic-walled `disaster species'  

E-Print Network (OSTI)

End-Triassic calcification crisis and blooms of organic-walled `disaster species' B. van de the response of marine photosynthetic phytoplankton to the proposed perturbation in the carbon cycle. Our high) contemporaneous blooms of organic-walled, green algal `disaster' species which comprise in one case N70

352

Hitting the "wall" : the role of leadership and organizational process in the successful growth of SMEs  

E-Print Network (OSTI)

Rapidly growing companies often start out well, but hit a "wall" as they continue to expand. This wall is partly due to a lack of structure within the organization, but is also due to a lack of leadership and training to ...

Macaux, Michelle (Wendy Michelle)

2009-01-01T23:59:59.000Z

353

Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results  

Science Conference Proceedings (OSTI)

This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non?zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic

Luigi Sorrentino; Renato Masiani; Stefano Benedetti

2008-01-01T23:59:59.000Z

354

Distributed control of hexapod wall climbing robot implementing Controller Area Network (CAN)  

Science Conference Proceedings (OSTI)

Service robots have been used in tasks that require navigation of horizontal or near horizontal surfaces. Some applications require service robots that are capable of moving along a vertical plane e.g., wall painting, window washing, non-destructive ... Keywords: CAN, biomechatronics, controller area networks, distributed control, hexapod robots, mechatronics, robot actuators, robot design, robot safety, robot sensors, service robots, wall climbing robots

Nkgatho Sylvester Tale; Glen Bright; W. L. Xu

2005-07-01T23:59:59.000Z

355

Numerical Investigation of Wall Temperature and Entropy Layer Effects on Double Wedge Shock /  

E-Print Network (OSTI)

Numerical Investigation of Wall Temperature and Entropy Layer Effects on Double Wedge Shock of a strongly curved shock in front of the leading edge causing a layer of high-temperature and high the separation shock, reaching a plateau value which is only slightly affected by the increasing wall temperature

356

Molecular Dynamics Study of Phase Change of Water inside a Single-Walled Carbon Nanotube  

E-Print Network (OSTI)

The phase change of liquid water to ice crystal inside a single-walled carbon nanotube (SWNT) was studiedMolecular Dynamics Study of Phase Change of Water inside a Single-Walled Carbon Nanotube Shigeo phase change for various cooling rates in a SWNT with various chiralities were examined. With certain

Maruyama, Shigeo

357

Bright and dark exciton energy and excitonic effect of single wall carbon  

E-Print Network (OSTI)

Bright and dark exciton energy and excitonic effect of single wall carbon nanotubes Kentaro Sato1-inactive (dark) exciton energy of single wall carbon nanotubes (SWNTs). The bright and dark exciton energy of SWNTs is calculated by solving the Bethe-Salpeter equation in which the one particle energies are given

Maruyama, Shigeo

358

Resonance Raman Study of I2 -Intercalated Single-Walled Carbon Nanotubes  

Science Conference Proceedings (OSTI)

We conducted resonance Raman studies on the iodine-intercalated bundles of single-walled carbon nanotubes (SWNTs). The Raman spectra obtained using the 647.1-nm line of a Kr-ion laser indicate that I2 intercalation affects the electronic ... Keywords: I $_2$-intercalation, Raman spectroscopy, resonance Raman, single-walled carbon nanotubes

V. M. Nguyen; I. S. Yang; Y. Jung; S. -J. Kim; J. Oh; W. Yi

2007-01-01T23:59:59.000Z

359

Photovoltaic device using single wall carbon nanotubes and method of fabricating the same  

DOE Patents (OSTI)

A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

Biris, Alexandru S.; Li, Zhongrui

2012-11-06T23:59:59.000Z

360

Automated Heart Wall Motion Abnormality Detection From Ultrasound Images using Bayesian Networks  

E-Print Network (OSTI)

Automated Heart Wall Motion Abnormality Detection From Ultrasound Images using Bayesian Networks± . maleeha.qazi@siemens.com , glenn.fung@siemens.com Abstract Coronary Heart Disease can be diagnosed by mea- suring and scoring regional motion of the heart wall in ultrasound images of the left ventricle (LV

Rosales, Rómer E.

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

"Self Cooled Recirculating Liquid Metal Plasma Facing Wall System"  

NLE Websites -- All DOE Office Websites (Extended Search)

Self Cooled Recirculating Liquid Metal Plasma Facing Wall System" Self Cooled Recirculating Liquid Metal Plasma Facing Wall System" Inventor ..--.. Richard P. Majeski Disclosed is a design for a fully axisymmetric, fast flowing liquid lithium plasma facing "wall" or surface which, in its present form, is intended for implementation in a tokamak. The design employs JxB forces to form a free-surface flow along a guide wall at the outer boundary of the plasma. The implementation of the disclosure design includes a system for recirculating the liquid metal within the volume of the toroidal field coils using inductive pumping, an approach wich allows independent energizing of the wall-forming and recirculating pumping systems, cooling of the recirculating liquid using fluid heat exchange with a molten salt,

362

YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

YMGI Through-the-Wall Air Conditioner Determined Noncompliant With YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard October 11, 2012 - 4:10pm Addthis The U.S. Department of Energy's Office of Enforcement issued a Notice of Noncompliance Determination (Notice) on October 11, 2012, to YMGI Group, LLC (YMGI) regarding through-the-wall split system central air conditioner basic model TTWC-18K-31B. DOE enforcement testing revealed that this model operates at a Seasonal Energy Efficiency Rating (SEER) of 8.3. The current federal standard requires that through-the-wall split system central air conditioners operate at a SEER of 12 or greater. Addthis Related Articles Four Central Air Conditioners Determined Noncompliant With Energy

363

YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

YMGI Through-the-Wall Air Conditioner Determined Noncompliant With YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard YMGI Through-the-Wall Air Conditioner Determined Noncompliant With Energy Efficiency Standard October 11, 2012 - 4:10pm Addthis The U.S. Department of Energy's Office of Enforcement issued a Notice of Noncompliance Determination (Notice) on October 11, 2012, to YMGI Group, LLC (YMGI) regarding through-the-wall split system central air conditioner basic model TTWC-18K-31B. DOE enforcement testing revealed that this model operates at a Seasonal Energy Efficiency Rating (SEER) of 8.3. The current federal standard requires that through-the-wall split system central air conditioners operate at a SEER of 12 or greater. Addthis Related Articles Four Central Air Conditioners Determined Noncompliant With Energy

364

Support pedestals for interconnecting a cover and nozzle band wall in a gas turbine nozzle segment  

DOE Patents (OSTI)

A gas turbine nozzle segment has outer and inner band portions. Each band portion includes a nozzle wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through the apertures of the impingement plate to cool the nozzle wall. Structural pedestals interconnect the cover and nozzle wall and pass through holes in the impingement plate to reduce localized stress otherwise resulting from a difference in pressure within the chamber of the nozzle segment and the hot gas path and the fixed turbine casing surrounding the nozzle stage. The pedestals may be cast or welded to the cover and nozzle wall.

Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Webbon, Waylon Willard (Greenville, SC); Bagepalli, Radhakrishna (Schenectady, NY); Burdgick, Steven Sebastian (Schenectady, NY); Kellock, Iain Robertson (Simpsonville, SC)

2002-01-01T23:59:59.000Z

365

Retrofit wall system for insulation and lead encasement in older multi-family housing.  

Science Conference Proceedings (OSTI)

This paper presents an approach to modernization or rehabilitation of buildings with uninsulated masonry walls that have lead-based paint hazards or deteriorated plaster walls. The approach provides a solution to lead contamination on the walls, increased energy efficiency and comfort improvements associated with better insulated building envelopes. The system sheaths or replaces damaged or contaminated walls with a tight, well-insulated, durable interior surface. The costs of this system are estimated to be less than those of other insulated wall systems. Modeling of the impact of this system shows significant improvement in energy performance. The energy savings over the life of this durable system contribute to significantly offset the often-times sizeable cost of lead hazard remediation.

Wendt, R. L.

1998-08-11T23:59:59.000Z

366

Evaluation of concrete masonry unit walls for lateral natural phenomena hazards loads  

Science Conference Proceedings (OSTI)

Older single-story facilities (Pre-1985 vintage) are commonly constructed of structural steel framing with concrete masonry unit (CMU) walls connected to columns and roof girders of the steel framing system. The CMU walls are designed for lateral wind and seismic loads (perpendicular to the wall) and transmit shear loads from the roof diaphragm to the foundation footings. The lateral loads normally govern their design. The structural framing system and the roof diaphragm system are straight forward when analyzing or upgrading the structure for NPH loads. Because of a buildings design vintage, probable use of empirical methodology, and poor design basis documentation (and record retention); it is difficult to qualify or upgrade CMU walls for lateral Natural Phenomena Hazards (NPH) loads in accordance with References 1, 2 and 3. This paper discusses three analytical approaches and/or techniques (empirical, working stress and yield line) to determine the collapse capacity of a laterally loaded CMU wall, and compares their results

Faires, W.E. Jr.

1996-03-08T23:59:59.000Z

367

Method and apparatus for detecting irregularities on or in the wall of a vessel  

DOE Patents (OSTI)

A method of detecting irregularities on or in the wall of a vessel by detecting localized spatial temperature differentials on the wall surface, comprising scanning the vessel surface with a thermal imaging camera and recording the position of the or each region for which the thermal image from the camera is indicative of such a temperature differential across the region. The spatial temperature differential may be formed by bacterial growth on the vessel surface; alternatively, it may be the result of defects in the vessel wall such as thin regions or pin holes or cracks. The detection of leaks through the vessel wall may be enhanced by applying a pressure differential or a temperature differential across the vessel wall; the testing for leaks may be performed with the vessel full or empty, and from the inside or the outside.

Bowling, Michael Keith (Blackborough Cullompton, GB)

2000-09-12T23:59:59.000Z

368

Code-compliant 2X4 Walls for Zones Marine 4-8 - Code Notes | Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Code-compliant 2X4 Walls for Zones Marine 4-8 - Code Notes Code-compliant 2X4 Walls for Zones Marine 4-8 - Code Notes The 2009 International Residential Code and International Energy Conservation Code do not permit trade-offs for installing high-efficiency heating, ventilation, and air conditioning equipment-installing a 90%+ furnace as a trade-off for 2" x 4" stud walls with R-13 insulation. The more permanent building insulation and sealing features now take precedence. However, there still remain optional strategies allowing 2" x 4" exterior stud walls. cn_code-compliant_2x4_walls_for_zones_marine_4-8.pdf Document Details Prepared by: Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program Focus: Compliance Building Type: Residential Code Referenced:

369

Apparatus and methods for impingement cooling of an undercut region adjacent a side wall of a turbine nozzle segment  

SciTech Connect

A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.

Burdgick, Steven Sebastian (Schenectady, NY); Itzel, Gary Michael (Simpsonville, SC)

2001-01-01T23:59:59.000Z

370

Hot cell shield plug extraction apparatus  

DOE Patents (OSTI)

An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

Knapp, Philip A. (Moore, ID); Manhart, Larry K. (Pingree, ID)

1995-01-01T23:59:59.000Z

371

Polymer Grafted Janus Multi-Walled Carbon Nanotubes  

Science Conference Proceedings (OSTI)

We describe a novel and facile strategy to modify the surface of carbon nanotubes (CNTs) with two chemically different polymer brushes utilizing the grafting from technique. A [4 + 2] Diels Alder cycloaddition reaction was used to functionalize multi-walled carbon nanotubes (MWNTs) with two different precursor initiators, one for ring opening polymerization (ROP) and one for atom transfer radical polymerization (ATRP). The binary functionalized MWNTs were used for the simultaneous surface initiated polymerizations of different monomers resulting in polymer grafted MWNTs that can form Janus type structures under appropriate conditions. 1H NMR, FTIR and Raman spectra showed that the precursor initiators were successfully synthesized and covalently attached on the CNT surface. Thermogravimetric analysis (TGA) revealed that the grafted polymer content varies when different monomer ratios and polymerization times are used. The presence of an organic layer around the CNTs was observed through transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) proved that the glass transition (Tg) and melting (Tm) temperatures of the grafted polymers are affected by the presence of the CNTs, while circular dichroism (CD) spectra indicated that the PLLA ahelix conformation remains intact.

Priftis, Dimitrios [ORNL; Sakellariou, Georgios [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK); Mays, Jimmy [ORNL; Hadjichristidis, Nikos [University of Athens, Athens, Greece

2009-01-01T23:59:59.000Z

372

Boiling radial flow in fractures of varying wall porosity  

DOE Green Energy (OSTI)

The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

Barnitt, Robb Allan

2000-06-01T23:59:59.000Z

373

Foam flow through a transparent rough-walled rock fracture  

SciTech Connect

This paper presents an experimental study of nitrogen, water, and aqueous foam flow through a transparent replica of a natural rough-walled rock fracture with a hydraulic aperture of roughly 30 {mu}m. It is established that single-phase flow of both nitrogen and water is well described by analogy to flow between parallel plates. Inertial effects caused by fracture roughness become important in single-phase flow as the Reynolds number approaches 1. Foam exhibits effective control of gas mobility. Foam flow resistances are approximately 10 to 20 times greater than those of nitrogen over foam qualities spanning from 0.60 to 0.99 indicating effective gas-mobility control. Because previous studies of foam flow have focused mainly upon unfractured porous media, little information is available about foam flow mechanisms in fractured media. The transparency of the fracture allowed flow visualization and demonstrated that foam rheology in fractured media depends upon bubble shape and size. Changes in flow behavior are directly tied to transitions in bubble morphology.

Kovscek, A.; Tretheway, D.; Radke, C. [and others

1995-07-01T23:59:59.000Z

374

Power Supply Changes for NSTX Resistive Wall Mode Coils  

SciTech Connect

The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physics Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. Prior to 2004, the NSTX power system was feeding twelve (12) circuits in the machine. In 2004 the Resistive Wall Mode (RWM) Coils were installed on the machine to correct error fields. There are six of these coils installed around the machine in the mid-plane. Since these coils need fast and accurate controls, a Switching Power Amplifier (SPA) with three sub-units was procured, installed and commissioned along with other power loop components. Two RWM Coils were connected in series and fed from one SPA sub-unit. After the initial RWM campaign, operational requirements evolved such that each of the RWM coils now requires separate power and control. Hence a second SPA with three sub-units has been procured and installed. The second unit is of improved design and has the controls and power components completely isolated. The existing thyristor rectifier is used as DC Link to both of the Switching Power Amplifiers. The controls for the RWM are integrated into the overall computer control of the DC Power systems for NSTX. This paper describes the design changes in the RWM Power system for NSTX.

Ramakrishnan, S S.

2013-06-28T23:59:59.000Z

375

Menu driven heat treatment control of thin walled bodies  

DOE Patents (OSTI)

A process for controlling the heating of a thin-walled body according to a predetermined temperature program by means of electrically controllable heaters, comprising: disposing the heaters adjacent one surface of the body such that each heater is in facing relation with a respective zone of the surface; supplying heat-generating power to each heater and monitoring the temperature at each surface zone; and for each zone: deriving (16,18,20), on the basis of the temperature values obtained in the monitoring step, estimated temperature values of the surface at successive time intervals each having a first selected duration; generating (28), on the basis of the estimated temperature values derived in each time interval, representations of the temperature, THSIFUT, which each surface zone will have, based on the level of power presently supplied to each heater, at a future time which is separated from the present time interval by a second selected duration; determining (30) the difference between THSIFUT and the desired temperature, FUTREFTVZL, at the future time which is separated from the present time interval by the second selected duration; providing (52) a representation indicating the power level which sould be supplied to each heater in order to reduce the difference obtained in the determining step; and adjusting the power level supplied to each heater by the supplying step in response to the value of the representation provided in the providing step.

Kothmann, Richard E. (Churchill Boro, PA); Booth, Jr., Russell R. (Elizabeth Twp., PA); Grimm, Noel P. (Monroeville, PA); Batenburg, Abram (Greensburg, PA); Thomas, Vaughn M. (Allison Park, PA)

1992-01-01T23:59:59.000Z

376

Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation  

Science Conference Proceedings (OSTI)

Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study.

Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

1999-08-01T23:59:59.000Z

377

Hypergolic fuel detection using individual single walled carbon nanotube networks  

SciTech Connect

Accurate and reliable detection of hypergolic fuels such as hydrazine (N{sub 2}H{sub 4}) and its derivatives is vital to missile defense, aviation, homeland security, and the chemical industry. More importantly these sensors need to be capable of operation at low temperatures (below room temperature) as most of the widely used chemical sensors operate at high temperatures (above 300 deg. C). In this research a simple and highly sensitive single walled carbon nanotube (SWNT) network sensor was developed for real time monitoring of hydrazine leaks to concentrations at parts per million levels. Upon exposure to hydrazine vapor, the resistance of the air exposed nanotubes (p-type) is observed to increase rapidly while that of the vacuum-degassed nanotubes (n-type) is observed to decrease. It was found that the resistance of the sample can be recovered through vacuum pumping and exposure to ultraviolet light. The experimental results support the electrochemical charge transfer mechanism between the oxygen redox couple of the ambient and the Fermi level of the SWNT. Theoretical results of the hydrazine-SWNT interaction are compared with the experimental observations. It was found that a monolayer of water molecules on the SWNT is necessary to induce strong interactions between hydrazine and the SWNT by way of introducing new occupied states near the bottom of the conduction band of the SWNT.

Desai, S. C.; Willitsford, A. H. [Department of Electrical and Computer Engineering, University of Louisville, Louisville, Kentucky 40292 (United States); Sumanasekera, G. U. [Department of Electrical and Computer Engineering, University of Louisville, Louisville, Kentucky 40292 (United States); Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292 (United States); Yu, M.; Jayanthi, C. S.; Wu, S. Y. [Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky 40292 (United States); Tian, W. Q. [State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023 (China)

2010-06-15T23:59:59.000Z

378

Design of Roadside Barrier Systems Placed on Mechanically Stabilized Earth (MSE) Retaining Walls  

E-Print Network (OSTI)

Millions of square feet of mechanically stabilized earth retaining wall are constructed annually in the United States. When used in highway fill applications in conjunction with bridges, these MSE walls are typically constructed with a roadside barrier system supported on the edge of the wall. This barrier system generally consists of a traffic barrier or bridge rail placed on a continuous footing or structural slab. The footing is intended to reduce the influence of barrier impact loads on the retaining wall system by distributing the load over a wide area and to provide stability for the barrier against sliding or overturning. The proper design of the roadside barrier, the structural slab, and the MSE wall system requires a good understanding of relevant failure modes, how barrier impact loads are transferred into the wall system, and the magnitude and distribution of these loads. In this study, a procedure is developed that provides guidance for designing: 1. the barrier-moment slab, 2. the wall reinforcement, and 3. the wall panels. These design guidelines are developed in terms of AASHTO LRFD procedures. The research approach consisted of engineering analyses, finite element analyses, static load tests, full-scale dynamic impact tests, and a full-scale vehicle crash test. It was concluded that a 44.5 kN (10 kips) equivalent static load is appropriate for the stability design of the barrier-moment slab system. This will result in much more economical design than systems developed using the 240 kN (54 kips) load that some user agencies are using. Design loads for the wall reinforcement and wall panels are also presented.

Kim, Kang

2009-05-01T23:59:59.000Z

379

Jet-wall interaction effects on diesel combustion and soot formation.  

SciTech Connect

The effects of wall interaction on combustion and soot formation processes of a diesel fuel jet were investigated in an optically-accessible constant-volume combustion vessel at experimental conditions typical of a diesel engine. At identical ambient and injector conditions, soot processes were studied in free jets, plane wall jets, and 'confined' wall jets (a box-shaped geometry simulating secondary interaction with adjacent walls and jets in an engine). The investigation showed that soot levels are significantly lower in a plane wall jet compared to a free jet. At some operating conditions, sooting free jets become soot-free as plane wall jets. Possible mechanisms to explain the reduced or delayed soot formation upon wall interaction include an increased fuel-air mixing rate and a wall-jet-cooling effect. However, in a confined-jet configuration, there is an opposite trend in soot formation. Jet confinement causes combustion gases to be redirected towards the incoming jet, causing the lift-off length to shorten and soot to increase. This effect can be avoided by ending fuel injection prior to the time of significant interaction with redirected combustion gases. For a fixed confined-wall geometry, an increase in ambient gas density delays jet interaction, allowing longer injection durations with no increase in soot. Jet interaction with redirected combustion products may also be avoided using reduced ambient oxygen concentration because of an increased ignition delay. Although simplified geometries were employed, the identification of important mechanisms affecting soot formation after the time of wall interaction is expected to be useful for understanding these processes in more complex and realistic diesel engine geometries.

Pickett, Lyle M.; Lopez, J. Javier (Polytechnic University of Valencia)

2004-09-01T23:59:59.000Z

380

Numerical Investigations On The Seismic Behaviour Of Confined Masonry Walls  

SciTech Connect

In the last century, severe earthquakes highlighted the seismic vulnerability of unreinforced masonry buildings. Many technological innovations have been introduced in time in order to improve resistance, ductility, and dissipation properties of this type of constructions. The most widely diffused are reinforced masonry and confined masonry. Damage observation of recent earthquakes demonstrated the effectiveness of the response of confined masonry structures to seismic actions. In general, in this type of structures, reinforced concrete beams and columns are not main structural elements, however, they have the following functions: to confine masonry in order to increase its ductility; to bear tensile stresses derived from bending; to contrast the out-of-plane overturning of masonry panels. It is well evident that these functions are as much effectively performed as the connection between masonry and reinforced concrete elements is good (for example by mean of local interlocking or reinforcements). Confined masonry structures have been extensively studied in the last decades both from a theoretical point of view and by experimental tests Aims of this paper is to give a contribution to the understanding of the seismic behaviour of confined masonry walls by means of numerical parametrical analyses. There latter are performed by mean of the finite element method; a nonlinear anisotropic constitutive law recently developed for masonry is adopted. Comparison with available experimental results are carried out in order to validate the results. A comparison between the resistance obtained from the numerical analyses and the prevision provided by simplified resistance criteria proposed in literature and in codes is finally provided.

Calderini, Chiara; Cattari, Serena; Lagomarsino, Sergio [University of Genoa, Department of Civil, Environmental and Architectural Engineering (Italy)

2008-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal control system and method for a passive solar storage wall  

DOE Patents (OSTI)

The invention provides a system and method for controlling the storing and elease of thermal energy from a thermal storage wall wherein said wall is capable of storing thermal energy from insolation of solar radiation. The system and method includes a device such as a plurality of louvers spaced a predetermined distance from the thermal wall for regulating the release of thermal energy from the thermal wall. This regulating device is made from a material which is substantially transparent to the incoming solar radiation so that when it is in any operative position, the thermal storage wall substantially receives all of the impacting solar radiation. The material in the regulating device is further capable of being substantially opaque to thermal energy so that when the device is substantially closed, thermal release of energy from the storage wall is substantially minimized. An adjustment device is interconnected with the regulating mechanism for selectively opening and closing it in order to regulate the release of thermal energy from the wall.

Ortega, Joseph K. E. (Westminister, CO)

1984-01-01T23:59:59.000Z

382

Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings  

SciTech Connect

This document serves as the Topical Report documenting the first year of work completed by Washington State University (WSU) under US Department of Energy Grant, Developing Innovative Wall Systems that Improve Hygrothermal Performance of Residential Buildings. This project is being conducted in collaboration with Oak Ridge National Laboratory (ORNL), and includes the participation of several industry partners including Weyerhaeuser Company, APA - The Engineered Wood Association, CertainTeed Corporation and Fortifiber. This document summarizes work completed by Washington State University August, 2002 through October, 2003. WSU's primary experimental role is the design and implementation of a field testing protocol that will monitor long term changes in the hygrothermal response of wall systems. In the first year WSU constructed a test facility, developed a matrix of test wall designs, constructed and installed test walls in the test facility, and installed instrumentation in the test walls. By the end of the contract period described in this document, WSU was recording data from the test wall specimens. The experiment described in this report will continue through December, 2005. Each year a number of reports will be published documenting the hygrothermal response of the test wall systems. Public presentation of the results will be made available to the building industry by industry partners and the University cooperators.

Robert Tichy; Chuck Murray

2003-10-01T23:59:59.000Z

383

Determination of mechanisms of host plant resistance to the Banks grass mite Oligonychus pratensis (Banks) (Acari: Tetranychidae) in selected maize inbreds  

E-Print Network (OSTI)

Maize lines selected for resistance to the Banks Grass Mite were tested to determine which mechanisms of resistance were being expressed: Antibiosis, Nonpreference, or Tolerance. Inbred 3 and, to a lesser degree Inbred 2, expressed antibiosis when compared with Mo17, the susceptible check. None of the resistant inbreds expressed nonpreference when compared with Mo17 and no conclusive evidence was determined about expression of tolerance. Useful estimates of r[] values, the intrinsic rate of increase, could be calculated from data collected over a shortened period of time. Differences in r[] values calculated with and without the Jackknife method were so small as to negate the usefulness of the Jackknife method. The Wyatt and White method for calculating r[] values did not provide good estimates of r[] values for mites on resistant plants, especially when juvenile mortality was high. Greenhouse grown plants did not provide a satisfactory substitute for held grown plants.

Krakowsky, Matthew David

1999-01-01T23:59:59.000Z

384

Sealed absorbed electrolyte battery with bulge compensating end cells  

Science Conference Proceedings (OSTI)

A sealed absorbed electrolyte battery is described comprising, in combination: a sealed container divided into working cells by internal partition walls; each working cell containing an electrode stack comprising positive and negative plates and substantially porous separators intimately contacting and separating the positive and negative plates; an electrolyte substantially completely absorbed in the plates and separators; the working cells being dimensioned to hold the plates and separators within the working cell in contact with each other; and bulge compensating auxiliary cells for accommodating gas pressure changes within the battery without substantially deforming the working cells.

Oswald, T.L.

1988-03-08T23:59:59.000Z

385

Wall-pressure and PIV analysis for microbubble drag reduction investigation  

E-Print Network (OSTI)

The effects of microbubbles injection in the boundary layer of a turbulent channel flow are investigated. Electrolysis demonstrated to be an effective method to produce microbubbles with an average diameter of 30 ??m and allowed the placement of microbubbles at desired locations within the boundary layer. Measurement of velocity fluctuations and the instantaneous wall shear stress were carried out in a channel flow facility. The wall shear stress is an important parameter that can help with the characterization of the boundary layer. This parameter can be obtained indirectly by the measurement of the flow pressure at the wall. The wall shear stress in the channel was measured by means of three different independent methods: measurement of the pressure gradient by a differential pressure transducer, Particle Image Velocimetry (PIV), and an optical wall shear stress sensor. The three methods showed reasonable agreement of the wall shear stress values for single-phase flow. However, differences as skin friction reductions were observed when the microbubbles were injected. Several measurements of wall-pressure were taken at various Reynolds numbers that ranged from 300 up to 6154. No significant drag reduction was observed for flows in the laminar range; however, a drag reduction of about 16% was detected for turbulent Reynolds numbers. The wall-pressure measurements were shown to be a powerful tool for the measurement of drag reduction, which could help with the design of systems capable of controlling the skin friction based on feedback given by the wall-pressure signal. The proposed measurement system designed in this work has capabilities for application in such diverse fields as multiphase flows, drag reduction, stratified flows, heat transfer among others. The synchronization between independent systems and apparatus has the potential to bring insight about the complicated phenomena involved in the nature of fluid flows.

Dominguez Ontiveros, Elvis Efren

2004-08-01T23:59:59.000Z

386

Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLS Undulator  

E-Print Network (OSTI)

Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLS Undulator

Bane, K L F; Tu, J J

2006-01-01T23:59:59.000Z

387

Thermal conductor for high-energy electrochemical cells  

DOE Patents (OSTI)

A thermal conductor for use with an electrochemical energy storage device is disclosed. The thermal conductor is attached to one or both of the anode and cathode contacts of an electrochemical cell. A resilient portion of the conductor varies in height or position to maintain contact between the conductor and an adjacent wall structure of a containment vessel in response to relative movement between the conductor and the wall structure. The thermal conductor conducts current into and out of the electrochemical cell and conducts thermal energy between the electrochemical cell and thermally conductive and electrically resistive material disposed between the conductor and the wall structure. The thermal conductor may be fabricated to include a resilient portion having one of a substantially C-shaped, double C-shaped, Z-shaped, V-shaped, O-shaped, S-shaped, or finger-shaped cross-section. An elastomeric spring element may be configured so as to be captured by the resilient conductor for purposes of enhancing the functionality of the thermal conductor. The spring element may include a protrusion that provides electrical insulation between the spring conductor and a spring conductor of an adjacently disposed electrochemical cell in the presence of relative movement between the cells and the wall structure. The thermal conductor may also be fabricated from a sheet of electrically conductive material and affixed to the contacts of a number of electrochemical cells.

Hoffman, Joseph A. (Minneapolis, MN); Domroese, Michael K. (South St. Paul, MN); Lindeman, David D. (Hudson, WI); Radewald, Vern E. (Austin, TX); Rouillard, Roger (Beloeil, CA); Trice, Jennifer L. (Eagan, MN)

2000-01-01T23:59:59.000Z

388

Fuel cell separator plate with bellows-type sealing flanges  

DOE Patents (OSTI)

A fuel cell separator includes a rectangular flat plate having two unitary upper sealing flanges respectively comprising opposite marginal edges of the plate folded upwardly and back on themselves and two lower sealing flanges respectively comprising the other two marginal edges of the plate folded downwardly and back on themselves. Each of the sealing flanges includes a flat wall spaced from the plate and substantially parallel thereto and two accordion-pleated side walls, one of which interconnects the flat wall with the plate and the other of which steps just short of the plate, these side walls affording resilient compressibility to the sealing flange in a direction generally normal to the plane of the plate. Four corner members close the ends of the sealing flanges. An additional resiliently compressible reinforcing member may be inserted in the passages formed by each of the sealing flanges with the plate.

Louis, G.A.

1984-05-29T23:59:59.000Z

389

Revisit of interfacial free energy of the hard sphere system near hard wall  

E-Print Network (OSTI)

We propose a simple Monte Carlo method to calculate the interfacial free energy between the substrate and the material. Using this method we investigate the interfacial free energys of the hard sphere fluid and solid phases near a smooth hard wall. According to the obtained interfacial free energys of the coexisting fluid and solid phases and the Young equation we are able to determine the contact angle with high accuracy, cos$\\theta$ = 1:010(31), which indicates that a smooth hard wall can be wetted completely by the hard sphere crystal at the interface between the wall and the hard sphere fluid.

Mingcheng Yang; Hongru Ma

2008-06-23T23:59:59.000Z

390

Three-Dimensional Numerical Evaluation of Thermal Performance of Uninsulated Wall Assemblies: Preprint  

SciTech Connect

This study describes a detailed three-dimensional computational fluid dynamics modeling to evaluate the thermal performance of uninsulated wall assemblies accounting for conduction through framing, convection, and radiation. The model allows for material properties variations with temperature. Parameters that were varied in the study include ambient outdoor temperature and cavity surface emissivity. Understanding the thermal performance of uninsulated wall cavities is essential for accurate prediction of energy use in residential buildings. The results can serve as input for building energy simulation tools for modeling the temperature dependent energy performance of homes with uninsulated walls.

Ridouane, E. H.; Bianchi, M.

2011-11-01T23:59:59.000Z

391

Reproducible domain wall pinning by linear non-topographic features in a ferromagnetic nanowire  

Science Conference Proceedings (OSTI)

We demonstrate that for multilayered magnetic nanowires, where the thickness and composition of the individual layers have been carefully chosen, domain walls can be pinned at non-topographic sites created purely by ion irradiation in a focused ion beam system. The pinning results from irradiation induced alloying leading to magnetic property modification only in the affected regions. Using Lorentz transmission electron microscopy, we have studied the pinning behavior of domain walls at the irradiation sites. Depending on the irradiation dose, a single line feature not only pinned the domain walls but also acted to control their structure and the strength of their pinning.

Basith, M. A.; McVitie, S.; McGrouther, D.; Chapman, J. N. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

2012-06-04T23:59:59.000Z

392

Theoretical analyses of aerosol aging on a substrate without wall-effects by a cross-flow  

Science Conference Proceedings (OSTI)

Long time ({approx}1 day) aging or reactions of aerosol is typically studied using either large aerosol chambers (> 10 m3) or particles supported on a substrate to minimize wall effects. To avoid wall effects in the latter, it is often essential that the wall reactivity be extremely small (aging studies of supported aerosols.

Cowin, James P.; Yang, Xin; Yu, Xiao-Ying; Iedema, Martin J.

2011-12-12T23:59:59.000Z

393

Simple empirical method for estimating the performance of a passive solar heated building of the thermal storage wall type  

DOE Green Energy (OSTI)

Two methods are presented for estimating the annual solar heating performance of a building utilizing a passive thermal storage wall of the Trombe wall or water wall type with or without night insulation and with or without a reflector. The method is accurate to +-3% as compared with hour-by-hour computer simulations.

Balcomb, J.D.; McFarland, R.D.

1978-01-01T23:59:59.000Z

394

RECOMMENDATIONS FOR ASSESSING THE UNCERTAINTY IN TANK 18-F WALL SAMPLES  

Science Conference Proceedings (OSTI)

Tank 18-F in the F-Area Tank Farm at the Savannah River Site (SRS) has had measurements taken from its inner vertical sides in order to determine the level of radionuclide and other analyte concentrations attached to the tank walls. In all, three samples have been obtained by drilling shallow holes into the carbon steel walls and consolidating the material. An Upper Wall Sample (Sample ID: Tk 18-1) was formed by combining two drill samples taken at a height of 17 ft above the tank floor, and a Lower Wall Sample (Sample ID: SPD4) was formed by combining two drill samples taken between 10 and 12 ft above the tank floor. A Scale Sample (Sample ID: Tk 18-2) was formed by combining 5 drill samples obtained between 6 and 7 ft above the tank floor. Photographs of the sampled material and a more detailed description of the samples and the concentration results are presented by Hay and others [2009]. The objective of this report is to determine a method and use it to place an upper confidence bound on the concentrations in the wall samples using only the currently available sample information. None of the three wall locations (tank heights) has been measured more than once. For radionuclides, only the variation among the concentrations per unit mass (g) of the wall samples, ignoring locations, or the variation among the concentrations of the floor samples are possibilities for establishing an upper confidence bound. The wall samples and floor samples were examined for comparability by (a) observing whether the wall sample concentrations fell inside the footprints created by prediction intervals for floor sample radionuclide concentrations and (b) whether the variation among the wall samples was approximately the same as the variation among floor samples. Most of the radionuclide concentrations satisfied (a) but the variation among radionuclide concentrations (b) was smaller for the floor samples. Consequently, upper 95% confidence bounds were established separately for radionuclide concentrations at each of the sampled tank heights using the conservatively estimated variation among the wall samples. A final step to convert concentrations by unit mass (g) to concentrations by sq ft was performed for the Upper Wall Sample and the Lower Wall Sample regions of the tank wall. The Upper Wall Sample and the Lower Wall Sample were not measured for elemental constituents. Consequently, the only possibility for establishing an upper bound for nonradionuclide concentrations for the Scale Sample was using the concentrations from floor samples. However, most non-radionuclide wall concentrations failed to fall within the footprint generated prediction intervals based on the non-radionuclide concentrations for the floor samples. The report concludes that there is no way to establish upper confidence bounds for elemental constituents attached to the inner liner of Tank 18-F based on currently available data.

Shine, G.

2010-10-26T23:59:59.000Z

395

Properties of domain walls and magnetoresistance in low-doped La{sub 2-y}Sr{sub y}CuO{sub 4}  

SciTech Connect

The properties of the diagonal stripe structures of the Hubbard model are theoretically studied in relation to the incommensurate spin order and the magnetic effects detected in the dielectric phase of low-doped La{sub 2-y}Sr{sub y}CuO{sub 4} (y {<=} 0.05). The mean-field approximation is used to investigate the properties of the solutions with domain walls between antiphase antiferromagnetic domains that are centered on bonds. Such periodic structures with 2l sites in a unit cell are shown to have 2(l - 1) levels in the lower and upper Hubbard subbands and two levels that are separated into the Hubbard gap and correspond to quasi-one-dimensional states localized on domain walls. The calculation results are employed to check the assumption that the low conduction of the dielectric LSCO phase occurs via the network of domain walls. The maximum relative change in the magnetoresistance during a spin-flop transition in a critical magnetic field is estimated, and the giant magnetoresistance is qualitatively explained.

Ovchinnikova, M. Ya. [Russian Academy of Sciences, Semenov Institute of Chemical Physics (Russian Federation)], E-mail: movchin@center.chph.ras.ru

2007-03-15T23:59:59.000Z

396

Dynamics of Wave Breaking at a Coastal Sea Wall  

E-Print Network (OSTI)

Structural designs barely consider the dynamic scenario of a well-developed impinging wave hitting the structure. The usual area of focus is on static and stability factors (e.g. drag, inertia, resistive forces related to weight, buoyancy, sliding etc). Even the "Factor of Safety" which is regularly used in designs to account for unknown and/or unforeseen situations which might occur implies a degree of uncertainty about the dynamic scenario of breaking waves in the coastal environment. In the present study the hydrodynamics of a coastal structure-turbulent bore interaction was studied by examination (two-dimensional) of the singular case of a plunging breaking wave forming a well developed turbulent bore which impacted on a model sea wall structure. The turbulent bore impact event was found to display similar characteristics to the impact event of other wave shapes, in particular that of a plunging breaker. Examination of the impact event confirmed the conversion of nearly all horizontal velocity to vertical velocity during the "flip through" event. In accordance with theoretical expectations the location of maximum pressure was found to occur just below the still water level (SWL). Resulting pressure data in the present study consisted of two blunt spikes as opposed to the "church-roof" (high spike) shape seen in other results. The shape of the pressure data was attributed to the following: firstly, to the initial impact of the protruding jet of the breaking wave which causes the first maxima, secondly, to the sensor encountering the bulk of the entrapped air hence causing the drop in pressure between the blunt spikes and lastly, to the inherent hydrostatic pressure combined with the compression of the entrapped air bubbles, by the subsequent forward motion of the water within the wave, which causes the second maxima. The point of maximum pressure was found to always be within the second maxima. Observation of the turbulent bore-structure interaction showed that the consequential maximum pressure was a direct result of the compression of entrapped air by the weight of the water in the wave as it continued forward onto the structure combined with the inherent hydrostatic pressure of the wave. The project was conducted in an attempt to contribute to the vast knowledge of coastal structure-wave interactions and to add to the understanding of the physics and characteristics of breaking waves. Whilst numerous studies and experiments have been carried out on the phenomenon of breaking waves by previous researchers the current project highlights the advent of new equipment and technological advances in existing methods.

Antoine, Arthur L.

2009-12-01T23:59:59.000Z

397

FIA-13-0006 - In the Matter of Wall Street Journal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 - In the Matter of Wall Street Journal 6 - In the Matter of Wall Street Journal FIA-13-0006 - In the Matter of Wall Street Journal On May 24, 2013, the Office of Hearings and Appeals (OHA) issued a decision denying an appeal (Appeal) from a Freedom of Information Act (FOIA) determination issued by the Department of Energy's (DOE) Office of Information Resources (OIR). The Wall Street Journal, the Appellant, sought categories of records concerning IP addresses of computers that have accessed web pages administered by the DOE's Energy Information Administration (EIA) or on which data on energy resources are first made public by the EIA. In its partial response to the Appellant's request, the OIR withheld all IP addresses pursuant to Exemption 6. OIR stated that some of the withheld IP addresses would likely reveal the names of

398

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

399

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

400

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

402

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print X-Ray Imaging Current-Driven Magnetic Domain-Wall Motion in Nanowires Print The quest to increase both computer data-storage density and the speed at which one can read and write the information remains unconsummated. One novel concept is based on the use of a local electric current to push magnetic domain walls along a thin nanowire. A German, Korean, Berkeley Lab team has used the x-ray microscope XM-1 at the ALS to demonstrate that magnetic domain walls in curved permalloy nanowires can be moved at high speed by injecting nanosecond pulses of spin-polarized currents into the wires, but the motion is largely stochastic. This result will have an impact on the current development of magnetic storage devices in which data is moved electronically rather than mechanically as in computer disk drives.

403

Seismic Performance, Modeling, and Failure Assessment of Reinforced Concrete Shear Wall Buildings  

E-Print Network (OSTI)

Post- Tensioned Concrete Buildings, PEER Report 2011/104,RC shear walls in high-rise buildings, The Young ResearcherExtended 3D Analysis of Building Structures, Computers and

Tuna, Zeynep

2012-01-01T23:59:59.000Z

404

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network (OSTI)

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Milorad Boji?; Dragan Cvetkovi?; Marko Mileti?; Jovan Maleevi?; Harry Boyer

2012-12-18T23:59:59.000Z

405

Nuclear Science-A Guide to the Nuclear Science Wall Chart  

NLE Websites -- All DOE Office Websites (Extended Search)

Science-A Guide to the Nuclear Science Wall Chart 2004 Contemporary Physics Education Project (CPEP) 9-1 Chapter 9 Phases of Nuclear Matter As we know, water (H 2 O) can exist as...

406

Assessment of the Energy Rating of Insulated Wall Assemblies - A Step Towards Building Energy Labeling  

E-Print Network (OSTI)

Considerable efforts are recently focusing on energy labeling of components and systems in buildings. In Canada, the energy rating of windows was established, which provides a protocol to rate different types of windows with respect to their energy performance. It takes into account the interaction between: solar heat gain, heat loss due to air leakage and due to the thermal properties of the entire window assembly. A major research project, jointly sponsored by NRC-IRC and the polyurethane spray foam industry, was established to assess the thermal and air leakage performance of insulated walls with the focus on developing an energy rating procedure for insulated wall assemblies. This paper is one in a series of publications to present partial results of this project. Experimental data and computer simulation comparison of a set of wall specimens are presented together with a summary of the proposed procedure for the determination of the energy rating of insulated walls (WER).

Elmahdy, H.; Maref, W.; Saber, H.; Swinton, M.; Glazer, R.

2010-01-01T23:59:59.000Z

407

DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT  

E-Print Network (OSTI)

of Niobium," BNES Nuclear Fusion Reactor Conference, CulhamWall Erosion in Fusion Reactors," Nuclear Fusion. g. 31.and Reactors," Fifth Conference Pro- ceedings on Plasma Physics and Controlled Nuclear Fusion

Myers, Richard Allen

2011-01-01T23:59:59.000Z

408

Rethinking walled residential compound in peripheral urban China : a guideline for boundary and size design  

E-Print Network (OSTI)

In the last two decades, with the high speed urbanization, walled residential compound as the typical housing development is being constructed on a large scale in peripheral areas of Chinese cities. Its self-enclosing ...

Sun, Na

2006-01-01T23:59:59.000Z

409

Raman spectroscopy study of heat-treated and boron-doped double wall carbon nanotubes  

E-Print Network (OSTI)

We performed Raman spectroscopy experiments on undoped and boron-doped double walled carbon nanotubes (DWNTs) that exhibit the coalescence inducing mode as these DWNTs are heat treated to temperatures between 1200 C ...

Villalpando Paez, Federico

410

Electric field control of domain wall propagation in Pt/Co/GdOx films  

E-Print Network (OSTI)

The influence of a gate voltage on domain wall (DW) propagation is investigated in ultrathin Pt/Co/gadolinium oxide (GdOx) films with perpendicular magnetic anisotropy. The DW propagation field can be enhanced or retarded ...

Bauer, Uwe

411

IN-SITU MEASUREMENT OF WALL THERMAL PERFORMANCE: DATA INTERPRETATION AND APPARATUS DESIGN RECOMMENDATIONS  

E-Print Network (OSTI)

6 ft) wall section, made from plywood, extruded polystyrene,to the receiving the plywood laboratory test, sheathing wasto the massive layers of plywood and gypsum board on the two

Modera, M.P.; Sherman, M.H.; de Vinuesa, S.G.

2008-01-01T23:59:59.000Z

412

DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT  

E-Print Network (OSTI)

Hoffman, et. a1. , "Fusion Reactor First Wall Cooling foricance in Fusion Reactors," Fifth Conference Proceedings onfor a Thp.rmonuclear Reactor," Nu'clear Fusion, 26. H.A.B.

Myers, Richard Allen

2011-01-01T23:59:59.000Z

413

IFE thick liquid wall chamber dynamics: Governing mechanisms and modeling and experimental capabilities  

E-Print Network (OSTI)

Metal-Wall Inertial Fusion Reactors " Nuclear Eng. andI A n Inertial Confinement Fusion Reactor," Ph.D. thesis,in Inertial Confinement Fusion Reactors," Ph.D. thesis,

2005-01-01T23:59:59.000Z

414

Theoretical and simulation tools for electron transfer and chain reactions in single walled carbon nanotubes  

E-Print Network (OSTI)

Single walled carbon nanotubes (SWNT) are cylindrical sheets of graphene whose electronic structures and diameters are determined by their chiralities. Current synthetic methods produce batches of nanotubes containing a ...

Nair, Nitish

2009-01-01T23:59:59.000Z

415

Diameter tuning of single-walled carbon nanotubes by diffusion plasma CVD  

Science Conference Proceedings (OSTI)

We have realized a diameter tuning of single-walled carbon nanotubes (SWNTs) by adjusting process gas pressures with plasma chemical vapor deposition (CVD). Detailed photoluminescence measurements reveal that the diameter distribution of SWNTs clearly ...

Toshiaki Kato; Shunsuke Kuroda; Rikizo Hatakeyama

2011-01-01T23:59:59.000Z

416

STUDIES OF WALL FLAME QUENCHING AND HYDROCARBON EMISSIONS IN A MODEL SPARK IGNITION ENGINE  

E-Print Network (OSTI)

Cylinder Engine Study with Propane as a Fuel," SAE Paper No.Wall-Quenching of Laminar Propane Flames as a Function ofQuenching Distance of Propane-Air Flames in a Constant-

Ishikawa, Nobuhiko

2011-01-01T23:59:59.000Z

417

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

DOE Green Energy (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

418

Impact of key design parameters on neutron wall load in an ignited tokamak  

SciTech Connect

A study was performed to determine the impact of key design parameters on neutron wall load in an ignited deuterium-tritium (D-T) tokamak. Systems effects of parameter variations were determined using the Fusion Engineering Design Center (FEDC) Systems Code. Poloidal variations in neutron wall load were determined using the Monte Carlo Code for Neutron and Photon Transport (MCNP). The marked impact of key design parameters is quantitatively shown.

Reiersen, W.T.

1983-01-01T23:59:59.000Z

419

High-R Walls for New Construction Structural Performance: Wind Pressure Testing  

Science Conference Proceedings (OSTI)

This technical report is focused primarily on laboratory testing that evaluates wind pressure performance characteristics for wall systems constructed with exterior insulating sheathing. This research and test activity will help to facilitate the ongoing use of non-structural sheathing options and provide a more in-depth understanding of how wall system layers perform in response to high wind perturbations normal to the surface.

DeRenzis, A.; Kochkin, V.

2013-01-01T23:59:59.000Z

420

Interactions of chlorine plasmas with silicon chloride-coated reactor walls during and after silicon etching  

SciTech Connect

The interplay between chlorine inductively coupled plasmas (ICP) and reactor walls coated with silicon etching products has been studied in situ by Auger electron spectroscopy and line-of-sight mass spectrometry using the spinning wall method. A bare silicon wafer mounted on a radio frequency powered electrode (-108 V dc self-bias) was etched in a 13.56 MHz, 400 W ICP. Etching products, along with some oxygen due to erosion of the discharge tube, deposit a Si-oxychloride layer on the plasma reactor walls, including the rotating substrate surface. Without Si-substrate bias, the layer that was previously deposited on the walls with Si-substrate bias reacts with Cl-atoms in the chlorine plasma, forming products that desorb, fragment in the plasma, stick on the spinning wall and sometimes react, and then desorb and are detected by the mass spectrometer. In addition to mass-to-charge (m/e) signals at 63, 98, 133, and 168, corresponding to SiCl{sub x} (x = 1 - 4), many Si-oxychloride fragments with m/e = 107, 177, 196, 212, 231, 247, 275, 291, 294, 307, 329, 345, 361, and 392 were also observed from what appear to be major products desorbing from the spinning wall. It is shown that the evolution of etching products is a complex 'recycling' process in which these species deposit and desorb from the walls many times, and repeatedly fragment in the plasma before being detected by the mass spectrometer. SiCl{sub 3} sticks on the walls and appears to desorb for at least milliseconds after exposure to the chlorine plasma. Notably absent are signals at m/e = 70 and 72, indicating little or no Langmuir-Hinshelwood recombination of Cl on this surface, in contrast to previous studies done in the absence of Si etching.

Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M. [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204 (United States)

2012-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A particle numerical model for wall film dynamics in port-injected engines  

DOE Green Energy (OSTI)

To help predict hydrocarbon emissions during cold-start conditions the authors are developing a numerical model for the dynamics and vaporization of the liquid wall films formed in port-injected spark-ignition engines and incorporating this model in the KIVA-3 code for complex geometries. This paper summarizes the current status of the project and presents illustrative example calculations. The dynamics of the wall film is influenced by interactions with the impinging spray, the wall, and the gas flow near the wall. The spray influences the film through mass, tangential momentum, and energy addition. The wall affects the film through the no-slip boundary condition and heat transfer. The gas alters film dynamics through tangential stresses and heat and mass transfer in the gas boundary layers above the films. New wall functions are given to predict transport in the boundary layers above the vaporizing films. It is assumed the films are sufficiently thin that film flow is laminar and that liquid inertial forces are negligible. Because liquid Prandtl numbers are typically about then, unsteady heating of the film should be important and is accounted for by the model. The thin film approximation breaks down near sharp corners, where an inertial separation criterion is used. A particle numerical method is used for the wall film. This has the advantages of compatibility with the KIVA-3 spray model and of very accurate calculation of convective transport of the film. The authors have incorporated the wall film model into KIVA-3, and the resulting combined model can be used to simulate the coupled port and cylinder flows in modern spark-ignition engines. They give examples by comparing computed fuel distributions with closed- and open-valve injection during the intake and compression strokes of a generic two-valve engine.

O`Rourke, P.J.; Amsden, A.A.

1996-09-01T23:59:59.000Z

422

On the wall jet from the ring crevice of an internal combustion engine  

DOE Green Energy (OSTI)

Numerical simulations and experiments of the jetting of gases from the ring crevices of a laboratory engine shortly after exhaust valve opening showed an unanticipated radial flow of the crevice gases into the main combustion chamber. We report well-resolved numerical simulations of a wall jet that show that this radial motion is driven by vorticity generation in the wall boundary layer and at the corner of the piston crown.

Cloutman, L.D. [Lawrence Livermore National Lab., CA (United States); Green, R.M. [Sandia National Labs., Livermore, CA (United States)

1996-05-01T23:59:59.000Z

423

Stagnation of Ablated Metal Vapor in Laser Fusion Reactor with Liquid Wall  

E-Print Network (OSTI)

height. The inner surface is covered with a 5-mm thick liquid Li17Pb83 flow as the first protective wall instead of Li17Pb83. A 300 m diameter, 4 m thick lead target was prepared on a glass plate by physical is the chamber wall and x=3 m is the center of the chamber. It is clearly shown that large clusters are formed

Ito, Atsushi

424

SPR salt wall leaching experiments in lab-scale vessel : data report.  

SciTech Connect

During cavern leaching in the Strategic Petroleum Reserve (SPR), injected raw water mixes with resident brine and eventually interacts with the cavern salt walls. This report provides a record of data acquired during a series of experiments designed to measure the leaching rate of salt walls in a labscale simulated cavern, as well as discussion of the data. These results should be of value to validate computational fluid dynamics (CFD) models used to simulate leaching applications. Three experiments were run in the transparent 89-cm (35-inch) ID diameter vessel previously used for several related projects. Diagnostics included tracking the salt wall dissolution rate using ultrasonics, an underwater camera to view pre-installed markers, and pre- and post-test weighing and measuring salt blocks that comprise the walls. In addition, profiles of the local brine/water conductivity and temperature were acquired at three locations by traversing conductivity probes to map out the mixing of injected raw water with the surrounding brine. The data are generally as expected, with stronger dissolution when the salt walls were exposed to water with lower salt saturation, and overall reasonable wall shape profiles. However, there are significant block-to-block variations, even between neighboring salt blocks, so the averaged data are considered more useful for model validation. The remedial leach tests clearly showed that less mixing and longer exposure time to unsaturated water led to higher levels of salt wall dissolution. The data for all three tests showed a dividing line between upper and lower regions, roughly above and below the fresh water injection point, with higher salt wall dissolution in all cases, and stronger (for remedial leach cases) or weaker (for standard leach configuration) concentration gradients above the dividing line.

Webb, Stephen Walter; O'Hern, Timothy John; Hartenberger, Joel David

2010-10-01T23:59:59.000Z

425

Solid oxide fuel cell having monolithic core  

DOE Patents (OSTI)

A solid oxide fuel cell is described for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed. Means direct the fuel to the anode-exposed core passageways and means direct the oxidant to the anode-exposed core passageways and means direct the oxidant to the cathode-exposed core passageway; and means also direct the galvanic output to an exterior circuit. Each layer of the electrolyte and interconnect materials is of the order of 0.002 to 0.01 cm thick; and each layer of the cathode and anode materials is of the order of 0.002 to 0.05 cm thick.

Ackerman, J.P.; Young, J.E.

1983-10-12T23:59:59.000Z

426

Secretary Chu Op-Ed on Small Modular Reactors in the Wall Street Journal |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Op-Ed on Small Modular Reactors in the Wall Street Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:00am Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be viewed on the Wall Street Journal. The text of the op-ed is below: America's New Nuclear Option Small modular reactors will expand the ways we use atomic power. By Steven Chu Wall Street Journal, March 23, 2010 America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

427

Study of the Neutron Flux and Dpa Attenuation in the Reactor Pressure-Vessel Wall  

Science Conference Proceedings (OSTI)

The study of the neutron flux and dpa attenuation in the reactor pressure vessel (PV) wall presented in this work was performed with state-of-the art methods currently used to determine PV fluxes, the BUGLE-96 cross-section library, and the iron displacement cross sections derived from ENDF/B-VI data. The calculations showed that the RG 1.99, Rev. 2, extrapolation formula predicts slower--and therefore conservative--attenuation of the neutron flux (E > 1MeV) in the PV wall. More importantly, the calculations gave slower attenuation of the dpa rate in the PV wall than the attenuation predicted by the formula. The slower dpa rate attenuation was observed for all the cases considered, which included two different PWRs, and several configurations obtained by varying the PV wall thickness and thermal shield thickness. For example, for a PV wall thickness of {approximately}24 cm, the calculated ratio of the dpa rate at 1/4 and 3/4 of the PV wall thickness to the dpa value on the inner PV surface is {approximately}14% and 19% higher, respectively, than predicted by the RG 1.99, Rev. 2, formula.

Remec, I.

1999-06-01T23:59:59.000Z

428

Steady-State Thermal Performance Evaluation of Steel-Framed Wall Assembly with Local Foam Insulation  

DOE Green Energy (OSTI)

During January and May, 2009, two configurations of steel-framed walls constructed with conventional 2 4 steel studs insulated with R-19 ~14cm. (5.5-in. thick) and R-13 ~9cm. (3.5-in. thick) fiberglass insulation batts were tested in the Oak Ridge National Laboratory (ORNL) guarded hot-box using ASTM C1363 test procedure. The first test wall used conventional 2 4 steel studs insulated with 2.5-cm. (1-in.) thick foam profiles, called stud snugglers. These stud snugglers converted the 2 4 wall assembly into a 2 6 assembly allowing application of R-19 fiberglass insulation. The second wall tested for comparison was a conventional 2 4 steel stud wall using R-13 insulation batts. Further, numerical simulations were performed in order to evaluate the steady-state thermal performance of various wood- and steel-framed wall assemblies. The effects of adding the stud-snugglers to the wood and steel studs were also investigated numerically. Different combinations of insulation and framing factor were used in the simulations.

Kosny, Jan [ORNL; Biswas, Kaushik [ORNL; Childs, Phillip W [ORNL

2010-01-01T23:59:59.000Z

429

Seismic Response Of Masonry Plane Walls: A Numerical Study On Spandrel Strength  

Science Conference Proceedings (OSTI)

The paper reports the results of a numerical investigation on masonry walls subjected to in-plane seismic loads. This research aims to verify the formulae of shear and flexural strength of masonry spandrels which are given in the recent Italian Standards. Seismic pushover analyses have been carried out using finite element models of unreinforced walls and strengthened walls introducing reinforced concrete (RC) beams at the floor levels. Two typologies of walls have been considered distinguished for the height to length ratio h/l of the spandrels: a) short beams (h/l = 1.33) and b) slender beams (h/l = 0.5). Results obtained for the unreinforced and the strengthened walls are compared with equations for shear and flexural strength provided in Standards [1]. The numerical analyses show that the reliability of these equations is at least questionable especially for the prediction of the flexural strength. In the cases in which the axial force has not been determined by the structural analysis, Standards seems to overestimate the flexural strength of short spandrels both for the unreinforced and the strengthened wall.

Betti, Michele; Galano, Luciano; Vignoli, Andrea [Department of Civil and Environmental Engineering (DICeA) University of Florence, Via di S. Marta 3, I-50139, Florence (Italy)

2008-07-08T23:59:59.000Z

430

Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint  

SciTech Connect

Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framing properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.

Christensen, D.

2011-01-01T23:59:59.000Z

431

Thermal Impact of Fasteners in High-Performance Wood-Framed Walls: Preprint  

SciTech Connect

Buildings are heavy consumers of energy, and residential building design is rapidly addressing topics to maximize energy conservation en route to net-zero energy consumption. Annual energy analysis of a building informs the choice among disparate energy measures, for cost, durability, occupant comfort, and whole-house energy use. Physics-based and empirical models of elements of a building are used in such analyses. High-performance wood-framed walls enable builders to construct homes that use much less than 40% of the energy consumed by similar homes built to minimum code. Modeling for these walls has considered physical features such as framing factor, insulation and framing properties, roughness and convective effects, and air leakage. The thermal effects of fasteners used to construct these walls have not been fully evaluated, even though their thermal conductivity is orders of magnitudes higher than that of other building materials. Drywall screws and siding nails are considered in this finite element thermal conductivity analysis of wall sections that represent wood-framed walls that are often used in high-performance homes. Nails and screws reduce even the best walls' insulating performance by approximately 3% and become increasingly significant as the framing factor increases.

Christensen, D.

2011-01-01T23:59:59.000Z

432

Analytical Modeling of Wood Frame Shear Walls Subjected to Vertical Load  

E-Print Network (OSTI)

A nonlinear automated parameter fitted analytical model that numerically predicts the load-displacement response of wood frame shear walls subjected to static monotonic loading with and without vertical load is presented. This analytical model referred to as Analytical Model of wood frame SHEar walls subjected to Vertical load (AMSHEV) is based on the kinematic behavior of wood frame shear walls and captures significant characteristics observed from experimental testing through appropriate modeling of three failure mechanisms that can occur within a shear wall under static monotonic load: 1) failure of sheathing-to-framing connectors, 2) failure of vertical studs, and 3) uplift of end studs from bottom sill. Previous models have not accounted for these failure mechanisms as well as the inclusion of vertical load, which has shown to reveal beneficial effects such as increasing the ultimate load capacity and limiting uplift of the wall as noted in experimental tests. Results from the proposed numerical model capture these effects within 7% error of experimental test data even when different magnitudes of vertical load are applied to predict the ultimate load capacity of wood frame shear walls.

Nguyendinh, Hai

2011-05-01T23:59:59.000Z

433

Abstract Large numbers of maize chromosome 9 can be collected with high purity by flow cytometric sorting of  

E-Print Network (OSTI)

of this reporter system is fluorescence-activated cell-sorter (FACS) screening [22,23] of large pools of mammalian to be optimistic about biodiesel: seed meal as a valuable soil amendment Michael F. Cohen and Mark Mazzola USDA

Gill, Kulvinder

434

Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results  

Science Conference Proceedings (OSTI)

As of the development of this thesis, no commercially available products have been identified for the digital communication of instrumented data across a thick ({approx} 6 n.) steel wall using ultrasound. The specific goal of the current research is to investigate the application of methods for digital communication of instrumented data (i.e., temperature, voltage, etc.) across the wall of a steel pressure vessel. The acoustic transmission of data using ultrasonic transducers prevents the need to breach the wall of such a pressure vessel which could ultimately affect its safety or lifespan, or void the homogeneity of an experiment under test. Actual digital communication paradigms are introduced and implemented for the successful dissemination of data across such a wall utilizing solely an acoustic ultrasonic link. The first, dubbed the ''single-hop'' configuration, can communicate bursts of digital data one-way across the wall using the Differential Binary Phase-Shift Keying (DBPSK) modulation technique as fast as 500 bps. The second, dubbed the ''double-hop'' configuration, transmits a carrier into the vessel, modulates it, and retransmits it externally. Using a pulsed carrier with Pulse Amplitude Modulation (PAM), this technique can communicate digital data as fast as 500 bps. Using a CW carrier, Least Mean-Squared (LMS) adaptive interference suppression, and DBPSK, this method can communicate data as fast as 5 kbps. A third technique, dubbed the ''reflected-power'' configuration, communicates digital data by modulating a pulsed carrier by varying the acoustic impedance at the internal transducer-wall interface. The paradigms of the latter two configurations are believed to be unique. All modulation methods are based on the premise that the wall cannot be breached in any way and can therefore be viably implemented with power delivered wirelessly through the acoustic channel using ultrasound. Methods, results, and considerations for future research are discussed herein.

TL Murphy

2006-02-16T23:59:59.000Z

435

Effect of water-wall interaction potential on the properties of nanoconfined water  

E-Print Network (OSTI)

Much of the understanding of bulk liquids has progressed through study of the limiting case in which molecules interact via purely repulsive forces, such as a hard-core potential. In the same spirit, we report progress on the understanding of confined water by examining the behavior of water-like molecules interacting with planar walls via purely repulsive forces and compare our results with those obtained for Lennard-Jones (LJ) interactions between the molecules and the walls. Specifically, we perform molecular dynamics simulations of 512 water-like molecules which are confined between two smooth planar walls that are separated by 1.1 nm. At this separation, there are either two or three molecular layers of water, depending on density. We study two different forms of repulsive confinements, when the interaction potential between water-wall is (i) $1/r^9$ and (ii) WCA-like repulsive potential. We find that the thermodynamic, dynamic and structural properties of the liquid in purely repulsive confinements qualitatively match those for a system with a pure LJ attraction to the wall. In previous studies that include attractions, freezing into monolayer or trilayer ice was seen for this wall separation. Using the same separation as these previous studies, we find that the crystal state is not stable with $1/r^9$ repulsive walls but is stable with WCA-like repulsive confinement. However, by carefully adjusting the separation of the plates with $1/r^9$ repulsive interactions so that the effective space available to the molecules is the same as that for LJ confinement, we find that the same crystal phases are stable. This result emphasizes the importance of comparing systems only using the same effective confinement, which may differ from the geometric separation of the confining surfaces.

Pradeep Kumar; Francis W. Starr; Sergey V. Buldyrev; H. Eugene Stanley

2006-03-30T23:59:59.000Z

436

Use of Phase Change Material in a Building Wall Assembly: A Case Study of Technical Potential in Two Climates  

SciTech Connect

Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL

2012-01-01T23:59:59.000Z

437

Potential Energy Savings Due to Phase Change Material in a Building Wall Assembly: An Examination of Two Climates  

SciTech Connect

Phase change material (PCM), placed in an exterior wall, alters the temperature profile within the wall and thus influences the heat transport through the wall. This may reduce the net energy transport through the wall via interactions with diurnal temperature swings in the external environment or reduce the electricity needed to meet the net load through the wall by shifting the time of the peak load to a time when the cooling system operates more efficiently. This study covers a broad range of parameters that can influence the effectiveness of such a merged thermal storage-thermal insulation system. These parameters included climate, PCM location within the wall, amount of PCM, midpoint of the PCM melting and freezing range relative to the indoor setpoint temperature, temperature range over which phase change occurs, and the wall orientation. Two climates are investigated using finite difference and optimization analyses: Phoenix and Baltimore, with two utility rate schedules. Although potential savings for a PCM with optimized properties were greater when the PCM was concentrated near the inside wall surface, other considerations described here lead to a recommendation for a full-thickness application. An examination of the temperature distribution within the walls also revealed the potential for this system to reduce the amount of energy transported through the wall framing. Finally, economic benefits can exceed energy savings when time-of-day utility rates are in effect, reflecting the value of peak load reductions for the utility grid.

Childs, Kenneth W [ORNL; Stovall, Therese K [ORNL

2012-03-01T23:59:59.000Z

438

Catalytic membranes for fuel cells  

DOE Patents (OSTI)

A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

2011-04-19T23:59:59.000Z

439

Passive test cell data for the solar laboratory, Winter 1980-81  

DOE Green Energy (OSTI)

Testing was done during the 1980-81 winter in 400 ft/sup 3/ test cells at the Los Alamos National Laboratory Solar Lab. This testing was done primarily to determine the relative efficiency of various passive solar heating concepts and to obtain data that could be used to validate computer simulation programs. The passive solar systems tested were Trombe wall with and without selective absorber, water wall, phase-change wall, direct gain, a heat-pipe collector, and two sunspace geometries. The heating load coefficient of these cells was roughly 26 Btu/h /sup 0/F and the collector area was 23.4 ft/sup 2/, giving a load collector ratio of approximately 27 Btu//sup 0/F day ft/sup 2/. The test cell configurations and instrumentation are detailed herein, and the resulting data and cell efficiencies are discussed.

McFarland, R.D.

1982-05-01T23:59:59.000Z

440

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall Street Journal America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

Note: This page contains sample records for the topic "maize cell walls" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Influence of shear flow on vesicles near a wall: a numerical study  

E-Print Network (OSTI)

We describe the dynamics of three-dimensional fluid vesicles in steady shear flow in the vicinity of a wall. This is analyzed numerically at low Reynolds numbers using a boundary element method. The area-incompressible vesicle exhibits bending elasticity. Forces due to adhesion or gravity oppose the hydrodynamic lift force driving the vesicle away from a wall. We investigate three cases. First, a neutrally buoyant vesicle is placed in the vicinity of a wall which acts only as a geometrical constraint. We find that the lift velocity is linearly proportional to shear rate and decreases with increasing distance between the vesicle and the wall. Second, with a vesicle filled with a denser fluid, we find a stationary hovering state. We present an estimate of the viscous lift force which seems to agree with recent experiments of Lorz et al. [Europhys. Lett., vol. 51, 468 (2000)]. Third, if the wall exerts an additional adhesive force, we investigate the dynamical unbinding transition which occurs at an adhesion strength linearly proportional to the shear rate.

Sreejith Sukumaran; Udo Seifert

2001-02-07T23:59:59.000Z

442

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal Secretary Chu's Op-Ed on Small Modular Reactors in the Wall Street Journal March 23, 2010 - 12:24pm Addthis Washington, D.C. - Today, the Wall Street Journal published an op-ed by U.S. Secretary of Energy Steven Chu on small modular reactors. The op-ed can be found here. The text of the op-ed is below: Small modular reactors will expand the ways we use atomic power. By Steven Chu, Secretary of Energy Wall Street Journal America is on the cusp of reviving its nuclear power industry. Last month President Obama pledged more than $8 billion in conditional loan guarantees for what will be the first U.S. nuclear power plant to break ground in nearly three decades. And with the new authority granted by the president's

443

A Study on Experiment and Numerical Analysis for Disclosing Shell Wall Thinning of a Feedwater Heater  

Science Conference Proceedings (OSTI)

Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damage, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle - installed downstream of the high pressure turbine extraction steam line - inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes the comparisons between the numerical analysis results using the FLUENT code and the down scale experimental data in an effort to determine root causes of the shell wall thinning of the high pressure feedwater heaters. The numerical analysis and experimental data were also confirmed by actual wall thickness measured by an ultrasonic test. (authors)

Kyeong Mo, Hwang; Tae Eun, Jin [Korea Power Engineering Company, 360-9, Mabuk-dong, Kusong-Eup, Yongin-Shi (Korea, Republic of); Lee, Woo [Daeji Metal Co., LTD., 994-57, Dongchun-Dong, Yeunsu-Gu, Incheon Shi (Korea, Republic of); Kyung Hoon, Kim [Kyunghee University, 1, Seocheon-Ri, Gihung-Eup, Yongin-Shi (Korea, Republic of)

2006-07-01T23:59:59.000Z

444

Metallic Interface Emerging at Magnetic Domain Wall of Antiferromagnetic Insulator---Fate of Extinct Weyl Electrons  

E-Print Network (OSTI)

Topological insulators, in contrast to ordinary semiconductors, accompany protected metallic surfaces described by Dirac-type fermions. Here, we theoretically show another emergent two-dimensional metal embedded in the bulk insulator is realized at a magnetic domain wall. The domain wall has long been studied as ingredients of both old-fashioned and leading-edge spintronics. The domain wall here, as an interface of seemingly trivial antiferromagnetic insulators, emergently realizes a functional interface preserved by zero modes with robust two-dimensional Fermi surfaces, where pyrochlore iridium oxides proposed to host condensed-matter realization of Weyl fermions offer such examples at low temperatures. The existence of ingap states pinned at domain walls, theoretically resembling spin/charge solitons in polyacetylene, solves experimental puzzles observed in R2Ir2O7 with rare earth elements R. The domain wall realizes a novel quantum confinement of electrons and embosses a net uniform magnetization, which enables magnetic control of electronic interface transports beyond semiconductor paradigm.

Youhei Yamaji; Masatoshi Imada

2013-06-09T23:59:59.000Z

445

Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results  

SciTech Connect

This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), and 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature.

Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano [Dipartimento di Ingegneria Strutturale e Geotecnica, Sapienza Universita di Roma, via Antonio Gramsci, 53-00197 Roma (Italy)

2008-07-08T23:59:59.000Z

446

Domain Walls, near-BPS Bubbles and Probabilities in the Landscape  

SciTech Connect

We develop a theory of static BPS domain walls in stringy landscape and present a large family of BPS walls interpolating between different supersymmetric vacua. Examples include KKLT models, STU models, type IIB multiple flux vacua, and models with several Minkowski and AdS vacua. After the uplifting, some of the vacua become dS, whereas some others remain AdS. The near-BPS walls separating these vacua may be seen as bubble walls in the theory of vacuum decay. As an outcome of our investigation of the BPS walls, we found that the decay rate of dS vacua to a collapsing space with a negative vacuum energy can be quite large. The parts of space that experience a decay to a collapsing space, or to a Minkowski vacuum, never return back to dS space. The channels of irreversible vacuum decay serve as sinks for the probability flow. The existence of such sinks is a distinguishing feature of the landscape. We show that it strongly affects the probability distributions in string cosmology.

Ceresole, Anna; /INFN, Turin /Turin U.; Dall'Agata, Gianguido; /CERN; Giryavets, Alexander; Kallosh, Renata; Linde, Andrei; /Stanford U., Phys. Dept.

2006-06-27T23:59:59.000Z

447

A two dimensional thermal network model for a photovoltaic solar wall  

Science Conference Proceedings (OSTI)

A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

2009-11-15T23:59:59.000Z

448

Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading  

Science Conference Proceedings (OSTI)

A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs.

Girrens, S.P.; Farrar, C.R.

1991-07-01T23:59:59.000Z

449

Radiological Issues for the Thin Liquid Walls of ARIES-IFE Study  

SciTech Connect

Heavy ion beam driven inertial fusion energy (IFE) power plants employ liquid wall materials to protect the structure against the energetic x-rays, ions, and debris emitted from the target following each shot. The objective of this assessment is to identify the radiological issues of the candidate liquid wall materials (Pb, LiPb, Sn, and Flibe) using the ARIES-IFE radiation chamber environment. The issues to be addressed include the radioactivity level and liquid waste minimization for waste management. Specifically, the liquids are evaluated with regard to the Class C limitation for waste disposal, a top-level requirement for all ARIES power plant designs. Two extreme cases were analyzed; the worst case is separation of the liquid wall material (highest radiation exposure) and the breeder (lowest radiation exposure), and the best case is the mixing of the two liquid streams. Both tangential and porous wall injection schemes were examined. Pb and LiPb are more radioactive than Sn and Flibe. For the liquid breeder system, the porous wall injection scheme with mixed liquid flows results in the lowest waste disposal rating and smallest waste stream achieved in our study.

El-Guebaly, L. [University of Wisconsin-Madison (United States); Wilson, P. [University of Wisconsin-Madison (United States); Henderson, D. [University of Wisconsin-Madison (United States); Waganer, L. [Boeing Company (United States); Raffray, R. [University of California-San Diego (United States)

2003-09-15T23:59:59.000Z

450

Compressive strength of masonry (f{sub m}{prime}) for the Oak Ridge Y- 12 Plant, Hollow Clay Tile Walls  

SciTech Connect

Prism tests have been performed on the HCT walls. The three groups of data were treated as separate data points and averaged. The recommended effective compressive strengths for HCT walls are 735 psi for single wythe 6- and 8-in. walls, and 495 psi for the double wythe 13-in. walls.

Fricke, K.E.; Flanagan, R.D.

1995-04-17T23:59:59.000Z

451

Cell separator and cell  

SciTech Connect

There is disclosed a novel cell separator made of a grafted membrane comprising a polyethylene film which is graft copolymerized with a monomer having an ion exchange group, characterized in that said membrane has an area which is not grafted at all or an area of low degree grafting. By making use of this membrane, a small size and thin cell having excellent performance as well as satisfactory mechanical strength can be produced at low cost with great advantages.

Ishigaki, I.; Machi, S.; Murata, K.; Okada, T.; Senoo, K.; Sugo, T.; Tanso, S.

1981-09-01T23:59:59.000Z

452

Decontamination of the Plum Brook Reactor Facility Hot Cells  

Science Conference Proceedings (OSTI)

The NASA Plum Brook Reactor Facility decommissioning project recently completed a major milestone with the successful decontamination of seven hot cells. The cells included thick concrete walls and leaded glass windows, manipulator arms, inter cell dividing walls, and roof slabs. There was also a significant amount of embedded conduit and piping that had to be cleaned and surveyed. Prior to work starting evaluation studies were performed to determine whether it was more cost effective to do this work using a full up removal approach (rip and ship) or to decontaminate the cells to below required clean up levels, leaving the bulk of the material in place. This paper looks at that decision process, how it was implemented, and the results of that effort including the huge volume of material that can now be used as fill during site restoration rather than being disposed of as LLRW. (authors)

Peecook, K.M. [NASA Glenn Research Center, Plum Brook Station, Sandusky, OH (United States)

2008-07-01T23:59:59.000Z

453

Joseph S. Wall, 1988 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Joseph S. Wall, 1988 Joseph S. Wall, 1988 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-9395 E: lawrence.award@science.doe.gov 1980's Joseph S. Wall, 1988 Print Text Size: A A A RSS Feeds FeedbackShare Page Life Sciences: For his singular contributions to the development and application of the Scanning Transmission Electron Microscope (STEM), including the extensions of cellular microscopy to the resolution of single atoms, the measurement of mass and shape of macro-molecules, and the creation of a STEM user facility that makes this technology available to a

454

Advanced Insulation for High Performance Cost-effective Wall, Roof, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Insulation for High Performance Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project Advanced Insulation for High Performance Cost-effective Wall, Roof, and Foundation Systems Research Project The U.S. Department of Energy (DOE) is currently conducting research into advanced insulation for high performance wall, roof, and foundation systems. Heat flows from hotter to colder spaces, and insulation is designed to resist this flow by keeping hot air out in the summer and in during the winter. Project Description This project seeks to develop high performing, durable, hydrofluorocarbon and hydrochlorofluorocarbons -free insulation with an R-value greater than 7.5-per-inch and a Class A fire performance. Project Partners Research is being undertaken between DOE and Dow Chemical.

455

Argonne CNM News: Study of Ferroelectric Domain Walls Offers a New  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of Ferroelectric Domain Walls Offers a New Nanoscale Conduction Path Study of Ferroelectric Domain Walls Offers a New Nanoscale Conduction Path Scanning tunneling microscopy tips SPM images of the (110) surface of cleaved h-HoMnO3. (top) PFM image showing in-plane ferroelectric domains (oriented vertically, red arrows). (bottom) cAFM image showing enhanced conduction along tail-to-tail domain walls; images are 4 microns per side. Facility users from Rutgers University together with the Center for Nanoscale Materials' Electronic & Magnetic Materials & Devices Group have identified two-dimensional sheets of charge formed at the boundaries of ferroelectric domains in a multiferroic material. These two-dimensional charged sheets are not pinned by unstable defects, chemical dopants, or structural interface, but are formed naturally as the inevitable

456

Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure  

DOE Patents (OSTI)

A turbine airfoil usable in a turbine engine with a cooling system and a compliant dual wall configuration configured to enable thermal expansion between inner and outer layers while eliminating stress formation is disclosed. The compliant dual wall configuration may be formed a dual wall formed from inner and outer layers separated by a compliant structure. The compliant structure may be configured such that the outer layer may thermally expand without limitation by the inner layer. The compliant structure may be formed from a plurality of pedestals positioned generally parallel with each other. The pedestals may include a first foot attached to a first end of the pedestal and extending in a first direction aligned with the outer layer, and may include a second foot attached to a second end of the pedestal and extending in a second direction aligned with the inner layer.

Campbell; Christian X. (Oviedo, FL), Morrison; Jay A. (Oviedo, FL)

2011-12-20T23:59:59.000Z

457

A Study of Heat Transfer in a Composite Wall Collector System with Porous Absorber  

E-Print Network (OSTI)

In this paper, heat transfer and flow in a composite solar wall with porous absorber has been studied. The unsteady numerical simulation is employed to analyze the performance of the flow and temperature field in the composite solar wall. The excess heat is stored in the porous absorber and wall by the incident solar radiation and there is a temperature gradient in the porous layer. Therefore, the porous absorber works as thermal insulator in a degree when no solar shining is available. The influence of the porosity within the porous absorber on the air flow in the porous absorber is significant. The results show that all these factors should be taken into account for a better design of a heating system.

Chen, W.

2006-01-01T23:59:59.000Z

458

Fractional domain walls from on-site softening in dipolar bosons  

E-Print Network (OSTI)

We study dipolar bosons in a 1D optical lattice and identify a region in parameter space---strong coupling but relatively weak on-site repulsion---hosting a series of stable charge-density-wave (CDW) states whose low-energy excitations, built from "fractional domain walls," have remarkable similarities to those of non-Abelian fractional quantum Hall states. Here, a conventional domain wall between translated CDW's may be split by inserting strings of degenerate, but inequivalent, CDW states. Outside these insulating regions, we find numerous supersolids as well as a superfluid regime. The mentioned phases should be accessible experimentally and, in particular, the fractional domain walls can be created in the ground state using single-site addressing, i.e., by locally changing the chemical potential.

Emma Wikberg; Jonas Larson; Emil J. Bergholtz; Anders Karlhede

2011-09-15T23:59:59.000Z

459

Continuous growth of single-wall carbon nanotubes using chemical vapor deposition  

DOE Patents (OSTI)

The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

Grigorian, Leonid (Raymond, OH); Hornyak, Louis (Evergreen, CO); Dillon, Anne C (Boulder, CO); Heben, Michael J (Denver, CO)

2008-10-07T23:59:59.000Z

460

Substrate Clamping Effects on Irreversible Domain Wall Dynamics in Lead Zirconate Titanate Thin Films  

Science Conference Proceedings (OSTI)

The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

Griggio, Flavio [ORNL; Jesse, Stephen [ORNL; Kumar, Amit [ORNL; Ovchinnikov, Oleg S [ORNL; Kim, H. [Pennsylvania State University, University Park, PA; Jackson, T. N. [Pennsylvania State University, University Park, PA; Damjanovic, Dragan [ORNL; Kalinin, Sergei V [ORNL; Trolier-Mckinstry, Susan E [ORNL

2012-01-01T23:59:59.000Z