Sample records for maintenance cost efficiency

  1. Estimation of Highway Maintenance Marginal Cost under Multiple Maintenance Activities

    E-Print Network [OSTI]

    Anani, Shadi B.; Madanat, Samer M

    2010-01-01T23:59:59.000Z

    Marginal costs for road maintenance and operation - a cost2010-01) Estimation of Highway Maintenance Marginal Costunder Multiple Maintenance Activities Shadi B. Anani and

  2. Turfgrass: Maintenance Costs in Texas.

    E-Print Network [OSTI]

    Holt, Ethan C.; Allen, W. Wayne; Ferguson, Marvin H.

    1964-01-01T23:59:59.000Z

    . These regions also have high water costs. The Gulf Coast, where water is a minor item, has an average expenditure only slightly greater than half that in West Texas. Average lawn sizes in these two regions are almost identical. Use of com- post, commercial.... Individuals with grasses other than bermuda and St. Augustine spend on the average about 53 percent TARLE 2. TOTALS OF VARIOUS HOME LAWN MAINTENANCE EXPENDITURES WITHIN REGIONS AND FOR THE STATE1 Number of Maintenance items Region households Commercial...

  3. Maintenance cost studies of present aircraft subsystems

    E-Print Network [OSTI]

    Pearlman, Chaim Herman Shalom

    1966-01-01T23:59:59.000Z

    This report describes two detailed studies of actual maintenance costs for present transport aircraft. The first part describes maintenance costs for jet transport aircraft broken down into subsystem costs according to an ...

  4. No maintenance -- no energy efficiency

    SciTech Connect (OSTI)

    Szydlowski, R.F.; Schliesing, J.S.; Winiarski, D.W.

    1994-12-01T23:59:59.000Z

    Field investigations illustrate that it is not realistic to expect new high-tech equipment to function for a full life expectancy at high efficiency without significant operations and maintenance (O&M). A simple walk through inspection of most buildings reveals extensive equipment that is being operated on manual override, is incorrectly adjusted and operating inefficiently, or is simply inoperative. This point is illustrated with two examples at Robins Air Force Base, Georgia. The first describes development of a comprehensive, base-wide, steam trap maintenance program. The second describes a measured evaluation from a typical office building. The objective of both examples was to assess the importance of proper O&M. The proposed ``O&M First`` philosophy will result in more efficient building HVAC operation, provide improved services to the building occupants, and reduce energy consumption and unscheduled equipment repair/replacement. Implementation of a comprehensive O&M program will result in a 15--25% energy savings. The O&M foundation that is established will allow other energy conservation activities such is demand side management or energy management and control systems, to achieve and maintain their expected energy savings.

  5. Maintenance and Operations of Schools for Energy Efficiency

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1986-01-01T23:59:59.000Z

    Maintenance and operations of schools with energy efficiency as a priority can reduce annual utility costs 3 to 30 percent. Most school districts do not have an organized plan for tracking energy usage or cost. Energy performance (e.g. Btu/ft^2-yr...

  6. Distributed Construction and Maintenance of Bandwidth and Energy Efficient

    E-Print Network [OSTI]

    Korpeoglu, Ibrahim

    wireless RF technology designed initially for cable replacement at indoor places, but also supports usageDistributed Construction and Maintenance of Bandwidth and Energy Efficient Bluetooth Scatternets on simulations, the paper also presents the improvements in bandwidth-efficiency and reduction in energy

  7. The estimated costs of corn, corn silage, soybeans, alfalfa, and pasture maintenance in this report are

    E-Print Network [OSTI]

    Duffy, Michael D.

    The estimated costs of corn, corn silage, soybeans, alfalfa, and pasture maintenance in this report summaries, production and costs data from the Depart- ments of Economics, Agricultural and Biosystems and other input suppliers around the state. These costs estimates are representative of average costs

  8. California: Energy-Efficient Glass Saves Energy Costs, Increases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort California: Energy-Efficient Glass Saves Energy Costs, Increases Personal Comfort April 18, 2013 - 12:00am...

  9. Transport Studies Enabling Efficiency Optimization of Cost-Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Presented at...

  10. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters March 10, 2015 -...

  11. Field of Pipe Dreams: Minimizing Maintenance Cost for Hand-Moved

    E-Print Network [OSTI]

    Morrow, James A.

    Field of Pipe Dreams: Minimizing Maintenance Cost for Hand-Moved Irrigation Systems February 6 Conclusion 11 2 #12;Page 3 of 12 Control #23 The "hand-move" irrigation system is widely used on small fields to minimize the maintenance time of a hand-move irrigation system under the following constraints: · No part

  12. A Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management

    E-Print Network [OSTI]

    operations and maintenance. Due to increasing requirements for more effective treatment of runoff, and a subsurface gravel wetland, to $11-$21 per kg/yr TSS removed for a wet pond, a dry pond, and a sand filter maintenance burdens (as measured by cost and personnel hours) and higher water quality treatment capabilities

  13. The estimated costs of corn, corn silage, soybeans, al-falfa, and pasture maintenance in this report are based

    E-Print Network [OSTI]

    Duffy, Michael D.

    The estimated costs of corn, corn silage, soybeans, al- falfa, and pasture maintenance record summaries, production and costs data from the Departments of Economics, Agricultural cooperatives and other input suppliers around the state. These costs estimates are representative of average

  14. ANALYSIS OF SAFETY RELIEF VALVE PROOF TEST DATA TO OPTIMIZE LIFECYCLE MAINTENANCE COSTS

    SciTech Connect (OSTI)

    Gross, Robert; Harris, Stephen

    2007-08-01T23:59:59.000Z

    Proof test results were analyzed and compared with a proposed life cycle curve or hazard function and the limit of useful life. Relief valve proof testing procedures, statistical modeling, data collection processes, and time-in-service trends are presented. The resulting analysis of test data allows for the estimation of the PFD. Extended maintenance intervals to the limit of useful life as well as methodologies and practices for improving relief valve performance and reliability are discussed. A generic cost-benefit analysis and an expected life cycle cost reduction concludes that $90 million maintenance dollars might be avoided for a population of 3000 valves over 20 years.

  15. An integrated approach towards efficient, scalable, and low cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient,...

  16. An integrated approach towards efficient, scalable, and low cost...

    Energy Savers [EERE]

    An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles An integrated approach towards efficient, scalable, and low...

  17. Cost-Effective Industrial Boiler Plant Efficiency Advancements

    E-Print Network [OSTI]

    Fiorino, D. P.

    Natural gas and electricity are expensive to the extent that annual fuel and power costs can approach the initial cost of an industrial boiler plant. Within this context, this paper examines several cost-effective efficiency advancements that were...

  18. Operations & Maintenance Best Practices - A Guide to Achieving Operational Efficiency (Release 3)

    SciTech Connect (OSTI)

    Sullivan, Greg; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2010-08-04T23:59:59.000Z

    This guide highlights operations and maintenance programs targeting energy and water efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide you, the Operations and Maintenance (O&M)/Energy manager and practitioner, with useful information about O&M management, technologies, energy and water efficiency, and cost-reduction approaches. To make this guide useful and to reflect your needs and concerns, the authors met with O&M and Energy managers via Federal Energy Management Program (FEMP) workshops. In addition, the authors conducted extensive literature searches and contacted numerous vendors and industry experts. The information and case studies that appear in this guide resulted from these activities. It needs to be stated at the outset that this guide is designed to provide information on effective O&M as it applies to systems and equipment typically found at Federal facilities. This guide is not designed to provide the reader with step-by-step procedures for performing O&M on any specific piece of equipment. Rather, this guide first directs the user to the manufacturer's specifications and recommendations. In no way should the recommendations in this guide be used in place of manufacturer's recommendations. The recommendations in this guide are designed to supplement those of the manufacturer, or, as is all too often the case, provide guidance for systems and equipment for which all technical documentation has been lost. As a rule, this guide will first defer to the manufacturer's recommendations on equipment operation and maintenance.

  19. Installation, Operation, and Maintenance Strategies to Reduce the Cost of Offshore Wind Energy

    SciTech Connect (OSTI)

    Maples, B.; Saur, G.; Hand, M.; van de Pieterman, R.; Obdam, T.

    2013-07-01T23:59:59.000Z

    Currently, installation, operation, and maintenance (IO&M) costs contribute approximately 30% to the LCOE of offshore wind plants. To reduce LCOE while ensuring safety, this paper identifies principal cost drivers associated with IO&M and quantifies their impacts on LCOE. The paper identifies technology improvement opportunities and provides a basis for evaluating innovative engineering and scientific concepts developed subsequently to the study. Through the completion of a case study, an optimum IO&M strategy for a hypothetical offshore wind project is identified.

  20. Benefits and Costs of Aggressive Energy Efficiency Programs and...

    Open Energy Info (EERE)

    Area: Energy Efficiency Topics: Policy Impacts Website: eetd.lbl.goveaempreportslbnl-3833e.pdf Equivalent URI: cleanenergysolutions.orgcontentbenefits-and-costs-aggressiv...

  1. An integrated approach towards efficient, scalable, and low cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery An integrated approach towards efficient, scalable, and low cost...

  2. Reducing "Search Cost" and Risk in Energy-efficiency Investments

    E-Print Network [OSTI]

    Reducing "Search Cost" and Risk in Energy-efficiency Investments: Two Success Stories Philip E "search Cost"and Risk in Energy-Eficiency Investments: Two Success Stories - 4.91 #12;Perspectives that the unsystematic risk associated with energy-efficiency investments is often very large, since the actual

  3. SEE Action Webinar on Energy Efficiency Measure Cost Studies

    Broader source: Energy.gov [DOE]

    Presented by State and Local Energy Efficiency Action Network (SEE Action), this webinar will explain the importance of measure cost studies, review the current "state of the science" of measure cost development and estimation, and explore opportunities for future collaboration and advancement of measure cost research.

  4. Efficient Network Structures with Separable Heterogeneous Connection Costs

    E-Print Network [OSTI]

    Heydari, Babak; Dalili, Kia

    2015-01-01T23:59:59.000Z

    We introduce a heterogeneous connection model for network formation to capture the effect of cost heterogeneity on the structure of efficient networks. In the proposed model, connection costs are assumed to be separable, which means the total connection cost for each agent is uniquely proportional to its degree. For these sets of networks, we provide the analytical solution for the efficient network and discuss stability impli- cations. We show that the efficient network exhibits a core-periphery structure, and for a given density, we find a lower bound for clustering coefficient of the efficient network.

  5. Expert Meeting Report: Key Innovations for Adding Energy Efficiency to Maintenance Projects

    SciTech Connect (OSTI)

    Wood, A.; Wiehagen, J.

    2012-09-01T23:59:59.000Z

    This report describes an expert meeting hosted by the Building America research team NAHB Research Center, which was held on February 8, 2012, in Orlando, Florida. The topic, Key Innovations for Adding Energy Efficiency to Maintenance Projects, was intended to provide direction to more focused efforts to increase the efficiency of existing homes; in this meeting, the focus was specifically for re-roofing and the opportunities for adding energy efficiency upgrades during this major home repair activity.

  6. Cost and benefit of energy efficient buildings

    E-Print Network [OSTI]

    Zhang, Wenying, S.B. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    A common misconception among developers and policy-makers is that "sustainable buildings" may not be financially justified. However, this report strives to show that building green is cost-effective and does make financial ...

  7. Pacific Northwest National Laboratory Grounds Maintenance: Best Management Practice Case Studies #4 and #5 - Water Efficient Landscape and Irrigation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    FEMP Water Efficiency Best Management Practices #4 and #5 Case Study: Overview of the Pacific Northwest National Laboratory grounds maintenance program and results.

  8. Wind turbine reliability :understanding and minimizing wind turbine operation and maintenance costs.

    SciTech Connect (OSTI)

    Walford, Christopher A. (Global Energy Concepts. Kirkland, WA)

    2006-03-01T23:59:59.000Z

    Wind turbine system reliability is a critical factor in the success of a wind energy project. Poor reliability directly affects both the project's revenue stream through increased operation and maintenance (O&M) costs and reduced availability to generate power due to turbine downtime. Indirectly, the acceptance of wind-generated power by the financial and developer communities as a viable enterprise is influenced by the risk associated with the capital equipment reliability; increased risk, or at least the perception of increased risk, is generally accompanied by increased financing fees or interest rates. This paper outlines the issues relevant to wind turbine reliability for wind turbine power generation projects. The first sections describe the current state of the industry, identify the cost elements associated with wind farm O&M and availability and discuss the causes of uncertainty in estimating wind turbine component reliability. The latter sections discuss the means for reducing O&M costs and propose O&M related research and development efforts that could be pursued by the wind energy research community to reduce cost of energy.

  9. Financing; A Cost Effective Alternative When Upgrading Energy Efficient Systems

    E-Print Network [OSTI]

    Ertle, J. M.

    in order to effectively compete in the marketplace. One obvious method of reducing costs and improving productivity is to upgrade old, antiquated equipment such as lighting to more modern energy efficient systems. Most projects provide a return...

  10. Efficient Blind Search: Optimal Power of Detection under Computational Cost

    E-Print Network [OSTI]

    Rice, John

    Efficient Blind Search: Optimal Power of Detection under Computational Cost Constraints Nicolai a blind search through a vast number of hypotheses to detect objects of interest. The number of hypotheses to test can be in the billions. A naive blind search over every single hypothesis would be far too costly

  11. Project Project Funding Operational & Maintenance Costs Univ. Project Title GSF Brief Description of Project Location Amount Source

    E-Print Network [OSTI]

    Slatton, Clint

    Estimated Annual Amount For Amount Source STATE UNIVERSITY SYSTEM 2012-2013 Fixed Capital Outlay ProjectsProject Project Funding Operational & Maintenance Costs Univ. Project Title GSF Brief Description that will respond to the latest trends in small-group learning, technology resources, and collaboration spaces

  12. Costs and benefits of energy efficiency improvements in ceiling fans

    SciTech Connect (OSTI)

    Shah, Nihar; Sathaye, Nakul; Phadke, Amol; Letschert, Virginie [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division] [Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technology Division

    2013-10-15T23:59:59.000Z

    Ceiling fans contribute significantly to residential electricity consumption, especially in developing countries with warm climates. The paper provides analysis of costs and benefits of several options to improve the efficiency of ceiling fans to assess the global potential for electricity savings and green house gas (GHG) emission reductions. Ceiling fan efficiency can be cost-effectively improved by at least 50% using commercially available technology. If these efficiency improvements are implemented in all ceiling fans sold by 2020, 70 terawatt hours per year could be saved and 25 million metric tons of carbon dioxide equivalent (CO2-e) emissions per year could be avoided, globally. We assess how policies and programs such as standards, labels, and financial incentives can be used to accelerate the adoption of efficient ceiling fans in order to realize potential savings.

  13. Emerging High-Efficiency Low-Cost Solar Cell Technologies

    E-Print Network [OSTI]

    McGehee, Michael

    Emerging High-Efficiency Low-Cost Solar Cell Technologies Mike McGehee Materials Science and Engineering Center for Advanced Molecular Photovoltaics Bay Area Photovoltaic Consortium Precourt Institute for Energy Stanford University #12;Source: US DOE report "$1/W Photovoltaic Systems," August 2010. DOE

  14. On the method of optimal portfolio choice by cost-efficiency

    E-Print Network [OSTI]

    Rüschendorf, Ludger

    On the method of optimal portfolio choice by cost-efficiency Ludger R¨uschendorf*, Viktor Wolf Freiburg, Germany Abstract We develop the method of optimal portfolio choice based on the concept of cost-efficiency class of cost-efficient payoffs. While the results for the cost-efficient payoff given so far

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    technologies/water_efficiency.cfm. High pressure low volumefor Compressed Air Efficiency. E-Source Tech Update.Refrigeration Plant Efficiently -- A Cost Saving Guide for

  16. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15T23:59:59.000Z

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  17. Determining benefits and costs of improved central air conditioner efficiencies

    SciTech Connect (OSTI)

    Rosenquist, G.; Levok, A.; Chan, P.; McMahon, J.

    2001-01-12T23:59:59.000Z

    Economic impacts on individual consumers from possible revisions to U.S. residential-type central air conditioner energy-efficiency standards are examined using a life-cycle cost (LCC) analysis. LCC is the consumer's cost of purchasing and installing a central air conditioner and operating it over its lifetime. This approach makes it possible to evaluate the economic impacts on individual consumers from the revised standards. The methodology allows an examination of groups of the population which benefit or lose from suggested efficiency standards. The results show that the economic benefits to consumers due to modest increases in efficiency are significant. For an efficiency increase of 20percent over the existing minimum standard (i.e., 12 SEER), 35percent of households with central air conditioners experience significant LCC savings, with an average savings of $453, while 25percent show significant LCC losses, with an average loss of $158 compared to apre-standard LCC average of $5,170. The remainder of the population (40percent) are largely unaffected.

  18. Scalable Light Module for Low-Cost, High Efficiency LED Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost, High Efficiency LED Luminaires More Documents & Publications Low-Cost Light-Emitting Diode Luminaire for General Illumination 2015 Project Portfolio 2014 Solid-State...

  19. Data Collection for Current U.S. Wind Energy Projects: Component Costs, Financing, Operations, and Maintenance; January 2011 - September 2011

    SciTech Connect (OSTI)

    Martin-Tretton, M.; Reha, M.; Drunsic, M.; Keim, M.

    2012-01-01T23:59:59.000Z

    DNV Renewables (USA) Inc. (DNV) used an Operations and Maintenance (O&M) Cost Model to evaluate ten distinct cost scenarios encountered under variations in wind turbine component failure rates. The analysis considers: (1) a Reference Scenario using the default part failure rates within the O&M Cost Model, (2) High Failure Rate Scenarios that increase the failure rates of three major components (blades, gearboxes, and generators) individually, (3) 100% Replacement Scenarios that model full replacement of these components over a 20 year operating life, and (4) Serial Failure Scenarios that model full replacement of blades, gearboxes, and generators in years 4 to 6 of the wind project. DNV selected these scenarios to represent a broad range of possible operational experiences. Also in this report, DNV summarizes the predominant financing arrangements used to develop wind energy projects over the past several years and provides summary data on various financial metrics describing those arrangements.

  20. High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical...

    Office of Environmental Management (EM)

    High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2...

  1. Low-to-No Cost Strategy for Energy Efficiency in Public Buildings...

    Broader source: Energy.gov (indexed) [DOE]

    Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Blue version of the EERE PowerPoint template,...

  2. Stochastic Modeling of Future Highway Maintenance Costs for Flexible Type Highway Pavement Construction Projects

    E-Print Network [OSTI]

    Kim, Yoo Hyun

    2012-07-16T23:59:59.000Z

    OF TABLES Page Table 1. Categorized climate region used in California (Caltrans 2007) ................. 6 Table 2. Total lane-mile of Texas highways in 2005 (Mikhail et al. 2006) ............ 15 Table 3. Maintenance categories defined in Maintenance... are as shown in Table 2. Table 2. Total lane-mile of Texas highways in 2005 (Mikhail et al. 2006) Highway type Asphalt Concrete Pavement(ACP) Continuously Reinforced Concrete Pavement (CRCP) Jointed Concrete Pavement(JCP) Total IH 4,745 1,346 244 6...

  3. Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional

    E-Print Network [OSTI]

    operations and maintenance. Due to increasing require- ments for more effective treatment of runoff for porous asphalt, a vegetated swale, bioretention, and a subsurface gravel wetland, to $11­$21=kg=year TSS and personnel hours) and higher water quality treatment capabilities as a function of pollutant removal

  4. Cost-efficiency in multivariate Levy models Ludger Ruschendorf*, Viktor Wolf*

    E-Print Network [OSTI]

    Rüschendorf, Ludger

    Cost-efficiency in multivariate L´evy models Ludger R¨uschendorf*, Viktor Wolf* November 5, 2014 Abstract In this paper we determine lowest cost strategies for given payoff distributions called cost-efficient on the pricing of efficient versions of univariate payoffs. We state various relevant existence and uniqueness

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Inc. (1997). Guide to Energy Efficiency Opportunities in theE. Masanet (2005a). Energy Efficiency Improvement and CostA.R. Ganji (2005). Energy Efficiency Opportunities in Fresh

  6. National and Regional Water and Wastewater Rates For Use inCost-Benefit Models and Evaluations of Water Efficiency Programs

    SciTech Connect (OSTI)

    Fisher, Diane C.; Whitehead, Camilla Dunham; Melody, Moya

    2006-09-01T23:59:59.000Z

    Calculating the benefits and costs of water conservation orefficiency programs requires knowing the marginal cost of the water andwastewater saved by those programs. Developing an accurate picture of thepotential cost savings from water conservation requires knowing the costof the last few units of water consumed or wastewater released, becausethose are the units that would be saved by increased water efficiency.This report describes the data we obtained on water and wastewater ratesand costs, data gaps we identified, and other issues related to using thedata to estimate the cost savings that might accrue from waterconservation programs. We identified three water and wastewater ratesources. Of these, we recommend using Raftelis Financial Corporation(RFC) because it: a) has the most comprehensive national coverage; and b)provides greatest detail on rates to calculate marginal rates. The figurebelow shows the regional variation in water rates for a range ofconsumption blocks. Figure 1A Marginal Rates of Water Blocks by Regionfrom RFC 2004Water and wastewater rates are rising faster than the rateof inflation. For example, from 1996 to 2004 the average water rateincreased 39.5 percent, average wastewater rate increased 37.8 percent,the CPI (All Urban) increased 20.1 percent, and the CPI (Water andSewerage Maintenance) increased 31.1 percent. On average, annualincreases were 4.3 percent for water and 4.1 percent for wastewater,compared to 2.3 percent for the All Urban CPI and 3.7 percent for the CPIfor water and sewerage maintenance. If trends in rates for water andwastewater rates continue, water-efficient products will become morevaluable and more cost-effective.

  7. Cost-Effective Integration of Efficient Low-Lift Base Load Cooling Equipment

    SciTech Connect (OSTI)

    Jiang, Wei; Winiarski, David W.; Katipamula, Srinivas; Armstrong, Peter R.

    2008-01-14T23:59:59.000Z

    The long-term goal of DOE’s Commercial Buildings Integration subprogram is to develop cost-effective technologies and building practices that will enable the design and construction of net Zero Energy Buildings — commercial buildings that produce as much energy as they use on an annual basis — by 2025. To support this long-term goal, DOE further called for — as part of its FY07 Statement of Needs — the development by 2010 of “five cost-effective design technology option sets using highly efficient component technologies, integrated controls, improved construction practices, streamlined commissioning, maintenance and operating procedures that will make new and existing commercial buildings durable, healthy and safe for occupants.” In response, PNNL proposed and DOE funded a scoping study investigation of one such technology option set, low-lift cooling, that offers potentially exemplary HVAC energy performance relative to ASHRAE Standard 90.1-2004. The primary purpose of the scoping study was to estimate the national technical energy savings potential of this TOS.

  8. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01T23:59:59.000Z

    Engineers, Inc. , Energy Efficient Design of New BuildingsStandard 90.1, Energy Efficient Design of New Buildings

  9. Low-Cost Flexible Electrochromic Film for Energy Efficient Buildings

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ITN is addressing the high cost of electrochromic windows with a new manufacturing process: roll-to-roll deposition of the film onto flexible plastic surfaces. Production of electrochromic films on plastic requires low processing temperatures and uniform film quality over large surface areas. ITN is overcoming these challenges using its previous experience in growing flexible thin-film solar cells and batteries. By developing sensor-based controls, ITN’s roll-to-roll manufacturing process yields more film over a larger area than traditional film deposition methods. Evaluating deposition processes from a control standpoint ultimately strengthens the ability for ITN to handle unanticipated deviations quickly and efficiently, enabling more consistent large-volume production. The team is currently moving from small-scale prototypes into pilot-scale production to validate roll-to-roll manufacturability and produce scaled prototypes that can be proven in simulated operating conditions. Electrochromic plastic films could also open new markets in building retrofit applications, vastly expanding the potential energy savings.

  10. A Low-Cost, High-Efficiency Periodic Flow Gas Turbine for Distributed Energy Generation

    SciTech Connect (OSTI)

    Dr. Adam London

    2008-06-20T23:59:59.000Z

    The proposed effort served as a feasibility study for an innovative, low-cost periodic flow gas turbine capable of realizing efficiencies in the 39-48% range.

  11. Identifying Cost-Effective Residential Energy Efficiency Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the...

  12. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01T23:59:59.000Z

    Products: Central Air Conditioners and Heat Pumps Energyof Improved Central Air Conditioner Efficiencies Authorsresidential-type central air conditioner energy-efficiency

  13. SEE Action Webinar – Energy Efficiency Measure Cost Studies

    Broader source: Energy.gov [DOE]

    In this webinar, leading experts will explain the importance of measure cost studies, review the current “state of the science” of measure cost development and estimation, and explore opportunities...

  14. Integrated Chiller System Reduce Building Operation and Maintenance Costs in Cold Climates

    E-Print Network [OSTI]

    Sheets, N.; Liu, M.

    2003-01-01T23:59:59.000Z

    Although water-cooled chillers are more energy efficient than air-cooled chillers, a majority of chilled water systems use air-cooled chillers. In cold weather climates, air-cooled chillers are capable of functioning in low ambient temperatures...

  15. Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems

    SciTech Connect (OSTI)

    Jifeng Zhang; Jean Yamanis

    2007-09-30T23:59:59.000Z

    Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

  16. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  17. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    SciTech Connect (OSTI)

    Busche, S.; Hockett, S.

    2010-06-01T23:59:59.000Z

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  18. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines...

  19. Low Cost, High Efficiency Reversible Fuel Cell Systems

    E-Print Network [OSTI]

    Objectives · Develop Enabling Technology for Low Cost Production of Hydrogen for Vehicles - natural gas - photovoltaic or wind power utilized when available - up to 80 MPa (11,600 psi) - residential or filling station

  20. Implementing Energy Efficiency in Wastewater to Reduce Costs

    E-Print Network [OSTI]

    Cantwell, J. C.

    2008-01-01T23:59:59.000Z

    In the industrial world creating a quality product at minimum cost is the goal. In this environment all expenses are scrutinized, when they are part of the manufacturing process. However, even at the most conscientious facility the wastewater system...

  1. Waste Sampling and Characterization Facility (WSCF). Maintenance Implementation Plan

    SciTech Connect (OSTI)

    Bozich, J.L.

    1993-07-01T23:59:59.000Z

    This Maintenance Implementation Plan has been developed for maintenance functions associated with the Waste Sampling and Characterization Facility (WSCF). This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4A, Maintenance Management Program (DOE 1990), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying WHC conformance programs and policies applicable to implementation of DOE order 4330.4A guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at WSCF.

  2. The cost of efficiency in energy metabolism Arion I. Stettnera

    E-Print Network [OSTI]

    Segrè, Daniel

    conservation are tightly coupled, why is the less-efficient ED pathway so prev- alent? What has kept that logically arises between a glycolytic pathway's ATP yield and thermodynamic driving force. Free energy- sipate as heat, making the overall pathway more thermodynamically favorable (albeit less efficient) (4

  3. Implementing Energy Efficiency in Wastewater to Reduce Costs 

    E-Print Network [OSTI]

    Cantwell, J. C.

    2008-01-01T23:59:59.000Z

    and assessed many municipal and industrial wastewater systems across the state, identified opportunities to save energy and assisted in implementing energy efficiency modifications without adversely impacting the quality of the treatment system...

  4. Some Observations on Energy Efficiency and Capital Cost

    E-Print Network [OSTI]

    Kenney, W. F.

    1982-01-01T23:59:59.000Z

    be required. This paper explores several cases where energy efficiency was improved with no increase in total plant capital (including the energy system). Cogeneration, driver selection and direct exchange are discussed. To explore the limitations...

  5. Operations, Maintenance, and Replacement 10-year plan, 1990-1999 : 1989 Utility OM&R Comparison : A Comparison of BPA (Bonneville Power Administration) and Selected Utility Transmission, Operations and Maintenance Costs.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-09-01T23:59:59.000Z

    For the past several years, competing resource demands within BPA have forced the Agency to stretch Operations, Maintenance and Replacement (OM R) resources. There is a large accumulation of tasks that were not accomplished when scheduled. Maintenance and replacements and outages, due to material and equipment failure, appear to be increasing. BPA has made a strategic choice to increase its emphasis on OM R programs by implementing a multi-year, levelized OM R plan which is keyed to high system reliability. This strategy will require a long-term commitment of a moderate increase in staff and dollars allocated to these programs. In an attempt to assess the direction BPA has taken in its OM R programs, a utility comparison team was assembled in early January 1989. The team included representatives from BPA's Management Analysis, Internal Audit and Financial Management organizations, and operation and maintenance program areas. BPA selected four utilities from a field of more than 250 electric utilities in the US and Canada. The selection criteria generally pertained to size, with key factors including transformation capacity, load, gross revenue, and interstate transmission and/or marketing agreements, and their OM R programs. Information was gathered during meetings with managers and technical experts representing the four utilities. Subsequent exchanges of information also took place to verify findings. The comparison focused on: Transmission operations and maintenance program direction and emphasis; Organization, management and implementation techniques; Reliability; and Program costs. 2 figs., 21 tabs.

  6. History-Dependent Optimization of Bridge Maintenance and Replacement Decisions Using Markov Decision Process

    E-Print Network [OSTI]

    Robelin, Charles-Antoine; Madanat, Samer M

    2007-01-01T23:59:59.000Z

    ?1997?. “Pontis: A system for maintenance optimization andcycle reliability-based maintenance cost optimization ofbridge inspection, maintenance and replacement optimization

  7. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect (OSTI)

    Mark Leavitt

    2010-03-31T23:59:59.000Z

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  8. Factors influencing the efficiency and cost effectiveness of large power transformers

    SciTech Connect (OSTI)

    Peacock, D.W.

    1980-01-01T23:59:59.000Z

    The purpose of this paper is to identify those factors that can influence transformer design, to identify some fundamental and practical constraints that the designer must satisfy, and to show the effect on transformer efficiency and evaluated cost.

  9. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Broader source: Energy.gov [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

  10. Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry

    E-Print Network [OSTI]

    Galitsky, C.; Worrell, E.

    Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency...

  11. ACHIEVING ALL COST-EFFECTIVE ENERGY EFFICIENCY FOR CALIFORNIA

    E-Print Network [OSTI]

    , and to growth rates of forecasted natural gas consumption, electricity consumption, and peak electricity demand of the economic potential for electric consumption savings, 89 percent of the economic potential for peak demand, electricity consumption, natural gas consumption, electric peak demand reduction, energy efficiency potential

  12. Efficient Elicitation w/ Costly Radcliffe Seminar on "Revealed and Latent

    E-Print Network [OSTI]

    Chen, Yiling

    and Substitutes · Find an allocation that solves: #12;Efficient Elicitation Problem · Suppose some valuation class stop elicitation early, before we know complete valuations? #12;Frameworks · Function Class C ­ Boolean domain X ­ m-dimensional ­ Boolean or real-valued range Y · Valuation Classes V1,...,Vn ­ Free

  13. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect (OSTI)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01T23:59:59.000Z

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  14. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    a predictive and preventive maintenance program. The Motor1,700 tons of CO 2 per year. Preventive maintenance.A well structured preventive maintenance program can improve

  15. A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency

    E-Print Network [OSTI]

    Hamadi, Yousseff

    A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency ´Alvaro Fialho 1 and Youssef Hamadi 2 and Marc Schoenauer 3 Abstract. The issue of energy efficiency of buildings for Sustainable De- velopment [14], the building sector is responsible for the most impor- tant energy consumption

  16. The impact of software design structure on product maintenance costs and measurement of economic benefits of product redesign

    E-Print Network [OSTI]

    Akaikine, Andrei

    2010-01-01T23:59:59.000Z

    This paper reports results of an empirical study that aimed to demonstrate the link between software product design structure and engineers' effort to perform a code modification in the context of a corrective maintenance ...

  17. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

    1996-01-01T23:59:59.000Z

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  18. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet (Marietta, GA); Doshi, Parag (Altanta, GA); Tate, John Keith (Lawrenceville, GA); Mejia, Jose (Atlanta, GA); Chen, Zhizhang (Duluth, GA)

    1998-06-16T23:59:59.000Z

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  19. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16T23:59:59.000Z

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  20. Human Capacity Building in Energy Efficiency and Renewable Energy System Maintenance for the Yurok Tribe

    SciTech Connect (OSTI)

    Engel, R. A.' Zoellick, J J.

    2007-07-31T23:59:59.000Z

    From July 2005 to July 2007, the Schatz Energy Research Center (SERC) assisted the Yurok Tribe in the implementation of a program designed to build the Tribe’s own capacity to improve energy efficiency and maintain and repair renewable energy systems in Tribal homes on the Yurok Reservation. Funding for this effort was provided by the U.S. Department of Energy’s Tribal Program under First Steps grant award #DE-FG36-05GO15166. The program’s centerpiece was a house-by-house needs assessment, in which Tribal staff visited and conducted energy audits at over fifty homes. The visits included assessment of household energy efficiency and condition of existing renewable energy systems. Staff also provided energy education to residents, evaluated potential sites for new household renewable energy systems, and performed minor repairs as needed on renewable energy systems.

  1. Measuring the Effect of Uncertainty in Unit Cost and Pre-Treatment Condition on Pavement Maintenance and Rehabilitation Decisions

    E-Print Network [OSTI]

    Li, Jing

    2014-05-23T23:59:59.000Z

    A pavement maintenance and rehabilitation (M&R) project normally extends over 2-10 mile long roadway segment. At the M&R planning stage, these projects are called pavement management sections, which are often comprised of multiple data collection...

  2. Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%

    E-Print Network [OSTI]

    McGehee, Michael

    Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20.1039/c2ee23073a It is estimated that for photovoltaics to reach grid parity around the planet, they must tandem photovoltaic (HTPV), and show that it is capable of meeting these targets. HTPV is composed

  3. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  4. inverters, offering less weight, higher efficiency, and lower-cost installations.

    E-Print Network [OSTI]

    Johnson, Eric E.

    inverters, offering less weight, higher efficiency, and lower- cost installations. The electrical. These locking connectors will also soon appear on most, if not all, PV modules--although they are only required when the PV array wiring is operating above 30 volts and is readily accessible. Another 2008 NEC

  5. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect (OSTI)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19T23:59:59.000Z

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).

  6. Nuclear Engineering and Design 236 (2006) 16411647 Basic factors to forecast maintenance cost and failure processes for

    E-Print Network [OSTI]

    Popova, Elmira

    2006-01-01T23:59:59.000Z

    . The importance of equipment reliability and prediction in the commercial nuclear power plant is presented along a Bayesian model for the failure rate of the equipment, which is input to the cost forecasting model Texas Project Nuclear Operating Company (STPNOC): failure times, repair costs, equipment downtime

  7. LSA Space Guidelines February 2011 The rising costs of utilities and building maintenance have placed increasing stress on the University's

    E-Print Network [OSTI]

    Resnick, Paul

    1 LSA Space Guidelines ­February 2011 Overview The rising costs of utilities and building costs, the Provost has launched a University-wide Space Initiative that will unfold over a period of several years. The Initiative will inventory all University space and study its management

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    E. Masanet (2005a). Energy Efficiency Improvement and CostA.R. Ganji (2005). Energy Efficiency Opportunities in FreshSummer Study on Energy Efficiency in Industry, American

  9. Examining Mentor Enactment Theory from the Mentor's Perspective: Creating Cost and Benefit Scales to Predict Maintenance Usage

    E-Print Network [OSTI]

    Grill, Kristine Marie

    2011-04-27T23:59:59.000Z

    In order to advance theory concerning the mentor's perspective as well as theory concerning how communication is used to maintain mentoring relationships, this research created relationship-focused scales to measure the costs and benefits...

  10. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    problems and maintenance solutions: Blocked pipeline filters increase pressure drop. Keep the compressor

  11. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    SciTech Connect (OSTI)

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08T23:59:59.000Z

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  12. CBE UFAD cost analysis tool: Life cycle cost model, issues and assumptions

    E-Print Network [OSTI]

    Webster, Tom; Benedek, Corinne; Bauman, Fred

    2008-01-01T23:59:59.000Z

    Building Construction Cost Data. ” RS Means, Kingston MA.schedules Refurbish cost data Tax rate data Maintenance &Maintenance & Repair section, cost data is a combination of

  13. Development of a Cost-efficient Autonomous MAV for an Unstructured Indoor Environment

    E-Print Network [OSTI]

    Kernbach, Serge

    2011-01-01T23:59:59.000Z

    Performing rescuing and surveillance operations with autonomous ground and aerial vehicles become more and more apparent task. Involving unmanned robot systems allows making these operations more efficient, safe and reliable especially in hazardous areas. This work is devoted to the development of a cost-efficient micro aerial vehicle in a quadrocopter shape for developmental purposes within indoor scenarios. It has been constructed with off-the-shelf components available for mini helicopters. Additional sensors and electronics are incorporated into this aerial vehicle to stabilize its flight behavior and to provide a capability of an autonomous navigation in a partially unstructured indoor environment.

  14. WhiteOptics' Low-Cost Reflector Composite Boosts LED Fixture Efficiency

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, WhiteOptics has developed a composite coating that can be used to improve efficiency in backlit, indirect, and cavity-mixing LED luminaire designs by maximizing light reflection and output. The highly diffuse coating, which is based on a novel high-reflectance particle technology, allows for uniform distribution of light without exaggerating the point-source nature of the LEDs, and is intended to offer an overall system cost-improving solution for LED optics.

  15. Costs and benefits from utility-funded commissioning of energy- efficiency measures in 16 buildings

    SciTech Connect (OSTI)

    Piette, M.A.; Nordman, B.

    1995-10-01T23:59:59.000Z

    This paper describes the costs and savings of commissioning of energy- efficiency measures in 16 buildings. A total of 46 EEMs were commissioned for all 16 buildings and 73 deficiencies were corrected. On average, commissioning was marginally cost effective on energy savings alone, although the results were mixed among all 16 buildings. When considered as a stand-alone measure, the median simple payback time of 6.5 years under the low energy prices in the Pacific Northwest. Under national average prices the median payback time is about three years. In estimating the present value of the energy savings from commissioning we considered low and high lifetimes for the persistence of savings from deficiency corrections. Under the low- lifetime case the average present value of the energy savings ($0. 21/ft{sup 2}) were about equal to the average commissioning costs ($0. 23/ft{sup 2}). Under the high-lifetime case the savings ($0.51/ft{sup 2}) were about twice the costs. Again, the savings would be about twice as large under national average prices. The results are subject to significant uncertainty because of the small sample size and lack of metered data in the evaluation. However, the findings suggest that investments in commissioning pay off. Building owners want buildings that work as intended, and are comfortable, healthy, and efficient. It is likely that the non-energy benefits, which are difficult to quantify, are larger than the energy-savings benefits.

  16. Maintenance Types

    Broader source: Energy.gov [DOE]

    Proper operations and maintenance (O&M) goes beyond repairing equipment after it breaks. Several maintenance strategies exist to prevent systems disrepair and degradation. A combination of the...

  17. Commissioning of energy-efficiency measures: Costs and benefits for 16 buildings

    SciTech Connect (OSTI)

    Piette, M.A.; Nordman, B.; Greenberg, S.

    1995-04-01T23:59:59.000Z

    Building systems and energy-efficiency measures (EEMs) often don`t perform as well in practice as expected at the design stage. This fact has become clear to many organizations concerned with ensuring building performance. What to do about these problems is less clear. Several electric utilities around the U.S. have begun to take action to address the start-up, control, and operational problems that are found in nearly every building. One of the most beneficial periods to intervene in the building life cycle is during the start-up phase of a now building. Building commissioning during start up is such an intervention. Commissioning can be defined as: a set of procedures, responsibilities, and methods to advance a system from static installation to full working order in accordance with design intent. In broad terms, commissioning can extend from design reviews through operations and maintenance planning and training. With such a broad scope aimed at the entire building life cycle, commissioning is often likened to {open_quotes}Total Quality Management{close_quotes} Yet the heart of commissioning are the procedures developed and executed to ensure that all building systems function as intended. The incorporation of energy-efficiency criteria into building commissioning is a new development.

  18. Business Development - Predictive Maintenance Products

    E-Print Network [OSTI]

    Sceiczina, P.

    2005-01-01T23:59:59.000Z

    BUSINESS DEVELOPMENT - PREDICTIVE MAINTENANCE PRODUCTS Phillip Sceiczina, ifm efector, inc. In this time of global competitiveness, more companies are focusing on reducing manufacturing costs to increase profits. Energy costs can be a... significant portion of a company?s manufacturing costs. Compressed air leakage is often an overlooked area in predictive maintenance programs, however it greatly impacts the amount of electricity required to run a plant. This paper quantifies the cost...

  19. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31T23:59:59.000Z

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  20. Philips Light Sources & Electronics is Developing an Efficient, Smaller, Cost-Effective Family of LED Drivers

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, Philips Light Sources & Electronics is developing a new family of LED drivers that are more efficient and cost-effective as well as smaller in size than currently available drivers. The new drivers are switch-mode power supplies that are similar to today's drivers, but with an improved design. In addition, they have a different topology—boost plus LLC—for wattages of 40W and above, but they retain the commonly used flyback topology at lower wattages.

  1. CO{sub 2} reduction potential in power production and its cost efficiency

    SciTech Connect (OSTI)

    Aijala, M.; Salokoski, P.; Alin, J.; Siikavirta, H.; Nykaenen, J.

    1998-07-01T23:59:59.000Z

    CO{sub 2} reduction potential and the economy of it in power production are handled in this presentation. The main focus is on combined heat and power production, CHP. The reference case has been the conventional coal fired condensing power plant and district heating with heavy fuel oil. Various CHP concepts are handled as substitutive technology for the reference case. Considered fuels are coal and biomass. CO{sub 2} produced in biomass firing processes is not regarded to increase the net CO{sub 2} emissions to the atmosphere. Reference case can be substituted by a more efficient coal-fired power plant, so called USC plant or by natural gas-fired combined cycle power plant. Both changes lead to very limited reduction in CO{sub 2} emissions. On the other hand the shifting is profitable. CO{sub 2} reduction potential differs in various CHP concepts according to the fuel used. With biomass the reduction is 100% and in the smallest considered coal-fired industrial power plant it is only 6%. Looking at CO{sub 2} reduction costs, ECU/t CO{sub 2}, the best alternative seems to be the changing to coal-fired CHP in industrial power plants. Due to different reduction potentials of different methods the reduction cost illustrates poorly the quality of the method. For example, in a case where the profitability is good but reduction potential is small the reduction cost is strongly negative and the case seems to be cost-effective. To avoid the previous effects the profitability of the changes has to be studied with and without CO{sub 2} emission fees. Biomass-CHP will be cost-effective compared to coal-CHP with the prices 2.5--5 ECU/t CO{sub 2} saved. The industrial CHP plant will be cost-effective despite of the fuel used and without CO{sub 2} emission fees. The district heating CHP plant will be cost-effective, if the plant size is large. The small district heating CHP plants are cost-effective, if the saved CO{sub 2} ton has a price.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    a predictive and preventive maintenance program. The Motorand could save considerable energy. Preventive maintenance.A general preventive maintenance (PM) program

  3. Operations & Maintenance Best Practices Guide: Chapter 11

    Broader source: Energy.gov [DOE]

    Guide describes chapter 11 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  4. Operations & Maintenance Best Practices Guide: Appendix d

    Broader source: Energy.gov [DOE]

    Guide describes Appendix D of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  5. Operations & Maintenance Best Practices Guide: Appendix B

    Broader source: Energy.gov [DOE]

    Guide describes Appendix B of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  6. Operations & Maintenance Best Practices Guide: Chapter 10

    Broader source: Energy.gov [DOE]

    Guide describes chapter 10 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  7. Operations & Maintenance Best Practices Guide: Chapter 2

    Broader source: Energy.gov [DOE]

    Guide describes chapter 2 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  8. Operations & Maintenance Best Practices Guide: Appendix c

    Broader source: Energy.gov [DOE]

    Guide describes Appendix C of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  9. Operations & Maintenance Best Practices Guide: Chapter 6

    Broader source: Energy.gov [DOE]

    Guide describes chapter 6 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  10. Operations & Maintenance Best Practices Guide: Chapter 5

    Broader source: Energy.gov [DOE]

    Guide describes chapter 5 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  11. Operations & Maintenance Best Practices Guide: Front Matter

    Broader source: Energy.gov [DOE]

    Guide describes the front matter of the Operations and Maintenance Best Practices: a Guide to Achieving Operational Efficiency.

  12. Operations & Maintenance Best Practices Guide: Chapter 8

    Broader source: Energy.gov [DOE]

    Guide describes chapter 8 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    11) HVAC systems Energy-efficient system design EfficientHVAC Systems Energy-efficient system design. The greatestdesign teams for energy-efficient building design. Financial

  14. Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US

    E-Print Network [OSTI]

    Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models energy­economy models. Using the CIMS hybrid model, we conducted simulations for comparison with the Mc February 2011 Accepted 16 August 2011 Available online 17 September 2011 Keywords: Energy efficiency

  15. Reactive Maintenance

    Broader source: Energy.gov [DOE]

    Reactive maintenance follows a run-it-until-it-breaks strategy where no actions or efforts are taken to maintain equipment as intended by the manufacturer. Studies indicate this is still the predominant mode of maintenance for Federal facilities.

  16. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01T23:59:59.000Z

    Cost Effectiveness Investment cost Demonstration in salad2015 Cost Effectiveness Investment cost Type of cost Change2015 Cost Effectiveness Investment cost Type of cost Change

  17. Inspection & Maintenance

    E-Print Network [OSTI]

    vehicles they own or control: 1. Preventative maintenance/safety inspections at least every 3 to 6 months provides a Preventive Maintenance Check List for guidance and scheduling. 2. If a vehicle is under warranty, Fleet Services will ensure the vehicle has at least the normal preventative, scheduled maintenance

  18. Design and implementation of a new low-cost subsurface mooring system for efficient data recovery

    SciTech Connect (OSTI)

    Tian, Chuan; Deng, Zhiqun; Tian, Jiwei; Zhao, Wei; Song, Dalei; Xu, Ming; Xu, Xiaoyang; Lu, Jun

    2013-09-23T23:59:59.000Z

    Mooring systems are the most effective method for making sustained time series observations in the oceans. Generally there are two types of ocean mooring systems: surface and subsurface. Subsurface mooring system is less likely to be damaged after deployment than surface system. However, subsurface system usually needs to be retrieved from the ocean for data recovery. This paper describes the design and implementation of a new low-cost subsurface mooring system for efficient data recovery: Timed Communication Buoy System (TCBS). TCBS is usually integrated in the main float and the designated data is downloaded from the control system. After data retrieval, TCBS will separate from main float, rise up to the sea surface, and transmit data by satellite communication.

  19. Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes’ ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting today’s coal-fired power plants.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    in flue gas oxygen, boiler efficiency is increased by 2.5% (40 Boiler Energy EfficiencyChapter 13. 7.1 Boiler Energy Efficiency Measures The boiler

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    London, England. Good Practice Guide 279. Energy EfficiencyLondon, England. Good Practice Guide 279. Energy EfficiencyLondon, England. Good Practice Guide 302. Energy Efficiency

  2. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    Employ an energy-efficient system design. For HVAC systemsHVAC Systems Energy-efficient system design Recommissioningdesign teams for energy-efficient building design. Financial

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdCommunications Awareness of energy efficiency createdbasis Raise awareness No promotion of energy efficiency

  4. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05T23:59:59.000Z

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  5. Cost-Effective Energy Efficiency Measures for Above Code (2003 and 2009 IECC) Residential Buildings in the City of Arlington

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    -code approaches that have been made in the CoA during the 2008-2010. #1; Results of the current project: Recommendations of 17 energy efficiency measures (EEMs) to maximize energy savings for residential buildings in the CoA with #1; estimated cost... energy savings from heating, cooling, lighting, equipment and DHW for emissions reductions determination. * Building type: Residential 2. Savings depend on fuel mix used. * Gross area: 2,325 sq-ft * Energy Cost: Electricity = $0.11/k...

  6. Development of a maintenance program

    SciTech Connect (OSTI)

    Walker, I.

    1987-01-01T23:59:59.000Z

    Bruce Nuclear Generating Station (NGS) A in Tiverton, Ontario, has been operating for 10 yr. One reason for its successful operating record is the development of an effective preventive maintenance program. Evaluation of the existing preventive program included a review of maintenance of selected key equipment over the life of the station. The review emphasized the need to improve the storage and sorting of maintenance information for trend and cost analysis, manpower planning, reliability, and radiation dose calculations.

  7. The cost and performance of utility commercial lighting programs. A report from the Database on Energy Efficiency Programs (DEEP) project

    SciTech Connect (OSTI)

    Eto, J.; Vine, E.; Shown, L.; Sonnenblick, R.; Payne, C. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

    1994-05-01T23:59:59.000Z

    The objective of the Database on Energy Efficiency Programs (DEEP) is to document the measured cost and performance of utility-sponsored, energy-efficiency, demand-side management (DSM) programs. Consistent documentation of DSM programs is a challenging goal because of problems with data consistency, evaluation methodologies, and data reporting formats that continue to limit the usefulness and comparability of individual program results. This first DEEP report investigates the results of 20 recent commercial lighting DSM programs. The report, unlike previous reports of its kind, compares the DSM definitions and methodologies that each utility uses to compute costs and energy savings and then makes adjustments to standardize reported program results. All 20 programs were judged cost-effective when compared to avoided costs in their local areas. At an average cost of 3.9{cents}/kWh, however, utility-sponsored energy efficiency programs are not ``too cheap to meter.`` While it is generally agreed upon that utilities must take active measures to minimize the costs and rate impacts of DSM programs, the authors believe that these activities will be facilitated by industry adoption of standard definitions and reporting formats, so that the best program designs can be readily identified and adopted.

  8. Referring heroin users from compulsory detoxification centers to community methadone maintenance treatment: a comparison of three models

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    to community methadone maintenance treatment: a comparisonefficacy of methadone maintenance interventions in reducingLynch F: Methadone maintenance and the cost and utilization

  9. Operations & Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations and Maintenance Operations OASIS: OATI (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) Contact Information...

  10. Operations & Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates Operations & Maintenance Operations OASIS: WACM (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) wesTTrans Common...

  11. Operations & Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Resources Contact Information Transmission Planning Western OATT Revision Maintenance Data Outage Coordination Request (Doc - 21K) Right of Way - Vegetation Management...

  12. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect (OSTI)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31T23:59:59.000Z

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

  13. Optimal Materials and Deposition Technique Lead to Cost-Effective Solar Cell with Best-Ever Conversion Efficiency (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This fact sheet describes how the SJ3 solar cell was invented, explains how the technology works, and why it won an R&D 100 Award. Based on NREL and Solar Junction technology, the commercial SJ3 concentrator solar cell - with 43.5% conversion efficiency at 418 suns - uses a lattice-matched multijunction architecture that has near-term potential for cells with {approx}50% efficiency. Multijunction solar cells have higher conversion efficiencies than any other type of solar cell. But developers of utility-scale and space applications crave even better efficiencies at lower costs to be both cost-effective and able to meet the demand for power. The SJ3 multijunction cell, developed by Solar Junction with assistance from foundational technological advances by the National Renewable Energy Laboratory, has the highest efficiency to date - almost 2% absolute more than the current industry standard multijunction cell-yet at a comparable cost. So what did it take to create this cell having 43.5% efficiency at 418-sun concentration? A combination of materials with carefully designed properties, a manufacturing technique allowing precise control, and an optimized device design.

  14. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21T23:59:59.000Z

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  15. Functional Prognostic Architecture for the Maintenance of Complex Systems

    E-Print Network [OSTI]

    Pencolé, Yannick

    their functions by new ones. In order to optimize the maintenance cost, it is necessary to perform preventive maintenance to prevent failure occur- rence. Preventive maintenance actions consist in replacing components the date of the next scheduled maintenance phase. In the classical case, preventive maintenance is only

  16. Diagnosis and prognosis for the maintenance of complex systems

    E-Print Network [OSTI]

    Pencolé, Yannick

    --Diagnosis, prognosis, preventive maintenance, complex systems. I. INTRODUCTION Nowadays, system maintenance is a key to decrease the maintenance cost, it is necessary to perform preventive maintenance [3], [4], [5] which alsoDiagnosis and prognosis for the maintenance of complex systems Pauline Ribot1,2 , Yannick Pencol´e1

  17. Condition-based maintenance under an imperfect repair policy for a deteriorating production system

    E-Print Network [OSTI]

    Boyer, Edmond

    is periodically monitored. Imperfect preventive maintenance activities, which restore the production system policy, both linear and non-linear imperfect preventive maintenance cost functions are investigated preventive maintenance (or preventive replacement) is usually used. After each preventive maintenance action

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Council for an Energy-Efficient Economy, Washington, D.C. BCCouncil for an Energy-Efficient Economy, Washington, D.C.Council for an Energy-Efficient Economy, Washington, D.C.

  19. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers

    E-Print Network [OSTI]

    Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

    2004-01-01T23:59:59.000Z

    9 Hot-Water Oil Boiler LCC Analysis-Efficiency Levels and10 Hot-Water Gas Boiler LCC Analysis-Efficiency Levels andfurnace and boiler energy-efficiency standards. Determining

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01T23:59:59.000Z

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  1. Proceedings of the Intern. Conference on Passive and Low Energy Architecture (PLEA), Toulouse (2002) 577 Cost efficiency of ventilation systems

    E-Print Network [OSTI]

    Gieseler, Udo D. J.

    2002-01-01T23:59:59.000Z

    ) 577 Cost efficiency of ventilation systems for low-energy buildings with earth-to-air heat exchange residential low-energy building are simulated for different ventilation systems with earth-to-air heat, simulation 1 Author to whom correspondence should be addressed. 1) VENTILATION SYSTEMS Ventilation systems

  2. Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites

    E-Print Network [OSTI]

    Demirbas, Umit

    2010-01-01T23:59:59.000Z

    This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

  3. Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric-of-service regulation to market-oriented environments for many U.S. electric generating plants. Our estimates of input their wholesale electricity markets improved the most. The results suggest modest medium-term efficiency benefits

  4. ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes

    SciTech Connect (OSTI)

    David P. Norton; Stephen Pearton; Fan Ren

    2007-09-30T23:59:59.000Z

    By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light emission. The project engaged established expertise at the University of Florida in ZnO film growth (D. Norton), device fabrication (F. Ren) and wide bandgap photonics (S. Pearton). It addressed p-type doping and junction formation in (Zn,Mg)O alloy thin films. The project employed pulsed laser deposition for film growth. The p-type dopant of interest was primarily phosphorus, given the recent results in our laboratory and elsewhere that this anions can yield p-type ZnO-based materials. The role of Zn interstitials, oxygen vacancies, and/or hydrogen complexes in forming compensating shallow donor levels imposes the need to simultaneously consider the role of in situ and post-growth processing conditions. Temperature-dependent Hall, Seebeck, C-V, and resistivity measurements was used to determine conduction mechanisms, carrier type, and doping. Temperature-dependent photoluminescence was used to determine the location of the acceptor level, injection efficiency, and optical properties of the structures. X-ray diffraction will used to characterize film crystallinity. Using these materials, the fabrication and characterization of (Zn,Mg)O pn homojunction and heterojunction devices was pursued. Electrical characterization of the junction capacitance and I-V behavior was used to extract junction profile and minority carrier lifetime. Electroluminescence from biased junctions was the primary property of interest.

  5. A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

    E-Print Network [OSTI]

    Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

    2001-01-01T23:59:59.000Z

    A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

  6. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    E-Print Network [OSTI]

    Kermeli, Katerina

    2013-01-01T23:59:59.000Z

    are realized when the boiler efficiency is improved, and the43 5.6.1 Boiler energy efficiencysystems. 5.6.1 Boiler energy efficiency measures The boiler

  7. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    E-Print Network [OSTI]

    Billingsley, Megan A.

    2014-01-01T23:59:59.000Z

    CSE DOE DSM EIA EERS HVAC LCOE MUSH WACC American Councillevelized cost of energy (LCOE), which represents the per-the levelized cost of energy (LCOE), often is applied to

  8. CBM processes are applicable to maintenance activities on complex systems. Southwest Research Institute

    E-Print Network [OSTI]

    Chapman, Clark R.

    performance costs, and preventive/ scheduled maintenance replaces parts before the end of their useful life optimizes costs between preventive and corrective maintenance. Preventive Condition Number of FailuresCBM processes are applicable to maintenance activities on complex systems. Southwest Research

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01T23:59:59.000Z

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  10. Single-machine Multiple-recipe Predictive Maintenance , John Hasenbein

    E-Print Network [OSTI]

    Hasenbein, John

    preventative and corrective maintenance costs, holdings costs, and possibly production costs. An optimal policy. In a conventional preventive maintenance policy, it is typically assumed that the decision maker knows only when, conventional preventive maintenance policies are often one of two types: calendar-based or job

  11. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    SciTech Connect (OSTI)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15T23:59:59.000Z

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by California Energy Commission (CEC) and managed by California Institute for Energy and Environment (CIEE). The project purpose is to characterize energy savings, technology costs, market potential, and economic viability of newly selected technologies applicable to California. In this report, LBNL first performed technology reviews to identify new or under-utilized technologies that could offer potential in improving energy efficiency and additional benefits to California industries as well as in the U.S. industries, followed by detailed technology assessment on each targeted technology, with a focus on California applications. A total of eleven emerging or underutilized technologies applicable to California were selected and characterized with detailed information in this report. The outcomes essentially include a multi-page summary profile for each of the 11 emerging or underutilized technologies applicable to California industries, based on the formats used in the technology characterization reports (Xu et al. 2010; Martin et al. 2000).

  12. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    SciTech Connect (OSTI)

    Cappers, Peter; Satchwell, Andrew; Goldman, Charles; Schlegel, Jeff

    2010-08-06T23:59:59.000Z

    Increased interest by state (and federal) policymakers and regulatory agencies in pursuing aggressive energy efficiency efforts could deliver significant utility bill savings for customers while having long-term implications for ratepayers (e.g. potential rate impacts). Equity and distributional concerns associated with the authorized recovery of energy efficiency program costs may necessitate the pursuit of alternative program funding approaches. In 2008, Massachusetts passed the Green Communities Act which directed its energy efficiency (EE) program administrators to obtain all cost-effective EE resources. This goal has translated into achieving annual electric energy savings equivalent to a 2.4% reduction in retail sales from energy efficiency programs in 2012. Representatives of electricity consumer groups supported the new portfolio of EE programs (and the projected bill savings) but raised concerns about the potential rate impacts associated with achieving such aggressive EE goals, leading policymakers to seek out alternative funding sources which can potentially mitigate these effects. Utility administrators have also raised concerns about under-recovery of fixed costs when aggressive energy efficiency programs are pursued and have proposed ratemaking policies (e.g. decoupling) and business models that better align the utility's financial interests with the state's energy efficiency public policy goals. Quantifying these concerns and identifying ways they can be addressed are crucial steps in gaining the support of major stakeholder groups - lessons that can apply to other states looking to significantly increase savings targets that can be achieved from their own ratepayer-funded energy efficiency programs. We use a pro-forma utility financial model to quantify the bill and rate impacts on electricity customers when very aggressive annual energy efficiency savings goals ({approx}2.4%) are achieved over the long-term and also assess the impact of different cost recovery approaches that integrate alternative revenue sources. We also analyze alternative lost fixed cost recovery approaches to better understand how to mitigate the erosion of utility shareholder returns in states that have adopted (and achieved) very aggressive savings targets.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01T23:59:59.000Z

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  14. Predictive Maintenance

    Broader source: Energy.gov [DOE]

    Predictive maintenance aims to detect equipment degradation and address problems as they arise. The result indicates potential issues, which are controlled or eliminated prior to any significant system deterioration.

  15. Preventive Maintenance

    Broader source: Energy.gov [DOE]

    Preventive maintenance aims to sustain and/or extend system lifespan through a set of actions that detect, preclude, or mitigate system degradation. These actions are based on either calendar time or machine run time.

  16. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    E-Print Network [OSTI]

    Taylor, Margaret

    2014-01-01T23:59:59.000Z

    Water Heaters ..Table 7: Annual energy and cost savings of water heaters (Boilers Commercial Water Heater See Appendix F for

  17. Beyond Energy Savings: Case Studies on Enhancing Productivity and Reducing Costs Through Energy Efficiency Investments

    E-Print Network [OSTI]

    Pye, M.

    Promoting energy efficiency to corporate CEOs and CFOs based on energy savings alone has had limited success. Experience shows that energy efficiency projects' non-energy benefits often exceed the value of energy savings, so energy savings should...

  18. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Office of Energy Efficiency and Renewable Energy (EERE)

    This analysis is an update to the Energy Efficiency Potential report completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kaua‘i (KEMA 2005).

  19. Innovative, Cost Effective and Energy Efficient Desgin for New Construction at a Texas High School 

    E-Print Network [OSTI]

    Khan, S.; Bible, M.

    2013-01-01T23:59:59.000Z

    construction in the design phase can result in greater operating efficiency and environmental impact. These measures entail innovative design concepts and control schemes in addition to specification of premium efficiency equipment. This paper presents...

  20. Reliable, Efficient and Cost-Effective Electric Power Converter for Small Wind Turbines Based on AC-link Technology

    SciTech Connect (OSTI)

    Darren Hammell; Mark Holveck; DOE Project Officer - Keith Bennett

    2006-08-01T23:59:59.000Z

    Grid-tied inverter power electronics have been an Achilles heel of the small wind industry, providing opportunity for new technologies to provide lower costs, greater efficiency, and improved reliability. The small wind turbine market is also moving towards the 50-100kW size range. The unique AC-link power conversion technology provides efficiency, reliability, and power quality advantages over existing technologies, and Princeton Power will adapt prototype designs used for industrial asynchronous motor control to a 50kW small wind turbine design.

  1. Preventive maintenance vital to cogen profitability

    SciTech Connect (OSTI)

    Cox, D.R. (Mission Operation and Maintenance Inc. (US))

    1992-04-01T23:59:59.000Z

    A power plant's efficiency is the key to its success in generating a profit. While the fuel used and the mechanical efficiency of the plant itself are key design factor, once the plat is on-stream the main factor becomes the plant's time on line. Any downtime detracts from its profitability, especially during peak periods. In the case of a cogeneration facility downtime becomes even more critical, since it has more than one customer to satisfy; and electrical customer and a thermal energy customer. This paper reports that an unscheduled outage has the potential to be very expensive: Costs and revenue losses escalate rapidly from thousands of dollars into millions of dollars, depending on length of downtime and time of year. During off-peak winter months, losses at the Harbor cogeneration plant can be dramatic; peak summer losses can be catastrophic. Not only are generation revenues loss, but bonus revenues, qualifying facility (QF) status, and contractual obligations are at risk. With these prospects looming over the option, management must practice not only preventive maintenance, but predictive and condition based maintenance as well. HCC's key to preventing unscheduled outages is a computerized maintenance management system (CMMS).

  2. Reliability-Centered Maintenance

    Broader source: Energy.gov [DOE]

    Reliability-centered maintenance leverages the same practices and technologies of predictive maintenance.

  3. Effort estimation for corrective software maintenance

    E-Print Network [OSTI]

    Bae, Doo-Hwan

    Stefanucci Proceedings of the 14th international conference on software engineering and knowledge engineering estimating Size Duration Staff Costs Effort #12;4/20 Introduction (2/2) · Effort estimation ­ Is a valuable asset to maintenance managers in · Planning maintenance · Performing cost/benefits analysis · Approach

  4. Maintenance implementation plan for the Plutonium Finishing Plant. Revision 3

    SciTech Connect (OSTI)

    Meldrom, C.A.

    1996-03-01T23:59:59.000Z

    This document outlines the Maintenance Implementation Plan (MIP) for the Plutonium Finishing Plant (PFP) located at the Hanford site at Richland, Washington. This MIP describes the PFP maintenance program relative to DOE order 4330.4B. The MIP defines the key actions needed to meet the guidelines of the Order to produce a cost-effective and efficient maintenance program. A previous report identified the presence of significant quantities of Pu-bearing materials within PFP that pose risks to workers. PFP`s current mission is to develop, install and operate processes which will mitigate these risks. The PFP Maintenance strategy is to equip the facility with systems and equipment able to sustain scheduled PFP operations. The current operating run is scheduled to last seven years. Activities following the stabilization operation will involve an Environmental Impact Statement (EIS) to determine future plant activities. This strategy includes long-term maintenance of the facility for safe occupancy and material storage. The PFP maintenance staff used the graded approach to dictate the priorities of the improvement and upgrade actions identified in Chapter 2 of this document. The MIP documents PFP compliance to the DOE 4330.4B Order. Chapter 2 of the MIP follows the format of the Order in addressing the eighteen elements. As this revision is a total rewrite, no sidebars are included to highlight changes.

  5. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect (OSTI)

    Cerio, Frank

    2013-09-14T23:59:59.000Z

    The DOE has set aggressive goals for solid state lighting (SSL) adoption, which require manufacturing and quality improvements for virtually all process steps leading to an LED luminaire product. The goals pertinent to this proposed project are to reduce the cost and improve the quality of the epitaxial growth processes used to build LED structures. The objectives outlined in this proposal focus on achieving cost reduction and performance improvements over state-of-the-art, using technologies that are low in cost and amenable to high efficiency manufacturing. The objectives of the outlined proposal focus on cost reductions in epitaxial growth by reducing epitaxy layer thickness and hetero-epitaxial strain, and by enabling the use of larger, less expensive silicon substrates and would be accomplished through the introduction of a high productivity reactive sputtering system and an effective sputtered aluminum-nitride (AlN) buffer/nucleation layer process. Success of the proposed project could enable efficient adoption of GaN on-silicon (GaN/Si) epitaxial technology on 150mm silicon substrates. The reduction in epitaxy cost per cm{sup 2} using 150mm GaN-on-Si technology derives from (1) a reduction in cost of ownership and increase in throughput for the buffer deposition process via the elimination of MOCVD buffer layers and other throughput and CoO enhancements, (2) improvement in brightness through reductions in defect density, (3) reduction in substrate cost through the replacement of sapphire with silicon, and (4) reduction in non-ESD yield loss through reductions in wafer bow and temperature variation. The adoption of 150mm GaN/Si processing will also facilitate significant cost reductions in subsequent wafer fabrication manufacturing costs. There were three phases to this project. These three phases overlap in order to aggressively facilitate a commercially available production GaN/Si capability. In Phase I of the project, the repeatability of the performance was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4”or 6” diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

  6. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul [Ideal Power

    2013-03-23T23:59:59.000Z

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

  7. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation

    SciTech Connect (OSTI)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28T23:59:59.000Z

    Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

  8. Energy Efficiency and Conservation Loan Program Webinar Series-- #1 Overview and Cost Effectiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    The first of a 6 part webinar series on the Rural Utility Service’s new Energy Efficiency and Conservation Loan Program (EECLP).

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Characterization: Steam Turbines. Arlington, Virginia.scale CHP systems use steam turbines. Switching to naturalsystem efficiency of a steam turbine-based CHP system (80%

  10. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    SciTech Connect (OSTI)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15T23:59:59.000Z

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.

  11. Benefits and costs of brine extraction for increasing injection efficiency in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Davidson, Casie L.; Watson, David J.; Dooley, James J.; Dahowski, Robert T.

    2014-01-01T23:59:59.000Z

    Pressure increases attendant with CO2 injection into the subsurface drive many of the risk factors associated with commercial-scale CCS projects, impacting project costs and liabilities in a number of ways. The area of elevated pressure defines the area that must be characterized and monitored; pressure drives fluid flow out of the storage reservoir along higher-permeability pathways that might exist through the caprock into overlying aquifers or hydrocarbon reservoirs; and pressure drives geomechanical changes that could potentially impact subsurface infrastructure or the integrity of the storage system itself. Pressure also limits injectivity, which can increase capital costs associated with installing additional wells to meet a given target injection rate. The ability to mitigate pressure increases in storage reservoirs could have significant value to a CCS project, but these benefits are offset by the costs of the pressure mitigation technique itself. Of particular interest for CO2 storage operators is the lifetime cost of implementing brine extraction at a CCS project site, and the relative value of benefits derived from the extraction process. This is expected to vary from site to site and from one implementation scenario to the next. Indeed, quantifying benefits against costs could allow operators to optimize their return on project investment by calculating the most effective scenario for pressure mitigation. This work builds on research recently submitted for publication by the authors examining the costs and benefits of brine extraction across operational scenarios to evaluate the effects of fluid extraction on injection rate to assess the cost effectiveness of several options for reducing the number of injection wells required. Modeling suggests that extracting at 90% of the volumetric equivalent of injection rate resulted in a 1.8% improvement in rate over a non-extraction base case; a four-fold increase in extraction rate results in a 7.6% increase in injection rate over the no-extraction base case. However, the practical impacts on capital costs suggest that this strategy is fiscally ineffective when evaluated solely on this metric, with extraction reducing injection well needs by only one per 56 (1x case) or one per 13 (4x case).

  12. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30T23:59:59.000Z

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    industry is for process cooling, freezing, and cold storage.Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,industry. Unit processes such as pasteurization, homogenization, and cold storage

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry

    E-Print Network [OSTI]

    Brush, Adrian

    2012-01-01T23:59:59.000Z

    Characterization: Gas Turbines. Arlington, Virginia.is higher than that of a gas turbine-based CHP system (74%electrical efficiency of a gas turbine-based CHP system is

  15. Facility-Level and System-Level Stochastic Optimization of Bridge Maintenance Policies for Markovian Management Systems

    E-Print Network [OSTI]

    Robelin, Charles-Antoine

    2006-01-01T23:59:59.000Z

    Cost of a maintenance action as a function of the conditionUnit cost of maintenance and repair for the system of 20of infrastructure maintenance and inspection policies under

  16. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01T23:59:59.000Z

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  17. Energy efficient HVAC system features thermal storage and heat recovery

    SciTech Connect (OSTI)

    Bard, E.M. (Bard, Rao + Athanas Consulting Engineering Inc., Boston, MA (United States))

    1994-03-01T23:59:59.000Z

    This article describes a HVAC system designed to efficiently condition a medical center. The topics of the article include energy efficient design of the HVAC system, incentive rebate program by the local utility, indoor air quality, innovative design features, operations and maintenance, payback and life cycle cost analysis results, and energy consumption.

  18. Genepool Quarterly Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genepool Quarterly Maintenance Genepool Quarterly Maintenance November 7, 2012 by Kirsten Fagnan (0 Comments) The Genepool cluster will be offline for maintenance next Tuesday,...

  19. Should we transport coal, gas, or electricity: cost, efficiency, and environmental implications

    SciTech Connect (OSTI)

    Joule A. Bergerson; Lester B. Lave [Carnegie Mellon University, Pittsburgh, PA (US)

    2005-08-15T23:59:59.000Z

    The authors examine the life cycle costs, environmental discharges, and deaths of moving coal via rail, coal to synthetic natural gas via pipeline, and electricity via wire from the Powder River Basin (PRB) in Wyoming to Texas. Which method has least social cost depends on how much additional investment in rail line, transmission, or pipeline infrastructure is required, as well as how much and how far energy is transported. If the existing rail lines have unused capacity, coal by rail is the cheapest method (up to 200 miles of additional track could be added). If no infrastructure exists, greater distances and larger amounts of energy favor coal by rail and gasified coal by pipeline over electricity transmission. For 1,000 miles and 9 gigawatts of power, a gas pipeline is cheapest, has less environmental discharges, uses less land, and is least obtrusive. 28 refs., 4 figs., 3 tabs.

  20. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building better understanding of product performance by the entire construction materials industry. INNOVATIONSFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  1. Low-Cost Energy Efficiency Goes Block-to-Block | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms LoanLosCombustionTimTextileLow-Cost Energy

  2. Grouping maintenance strategy with availability constraint under limited

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with significant assumptions: maintenance durations are neglected and only one preventive maintenance for eachGrouping maintenance strategy with availability constraint under limited repairmen Phuc Do Van Hai maintenance strategies of multi-component systems by integrating two efficient optimization algorithms

  3. Comparison of Selected Model Evaluation Criteria for Maintenance Applications

    E-Print Network [OSTI]

    Huang, Samuel H.

    , Louisville, KY 40292, USA Model-based preventive maintenance relies on creating models that can either loss, and as a whole a sluggish system, the focus has shifted to preventive maintenance. Computerized maintenance systems aid in improving the efficiency of maintenance tasks [28]. The approach of preventive

  4. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01T23:59:59.000Z

    energy savings, technology costs, market potential, andenergy savings, technology costs, market potential, andin this study. Normally, technology cost is quantified using

  5. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01T23:59:59.000Z

    Efficiency & Industrial Boiler Efficiency: An Industryapproach to increase boiler efficiency focused on the flue‘Super Boiler' achieves higher efficiency through the

  6. Faced with rising fuel costs, building and home owners are looking for energy-efficient solutions. Improving the building envelope (roof or attic system, walls,

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    and envelope assemblies for use in new construction and retrofits. Patrick Hughes Director, Building materials industry. INNOVATIONS IN BUILDINGS Contact ORNL 2012-G00695/tcc Ensuring Affordable, EfficientFaced with rising fuel costs, building and home owners are looking for energy- efficient solutions

  7. Dye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light-

    E-Print Network [OSTI]

    Dye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light- to-electricity conversion in indoors low light-to -electricity conversion efficiency in early implementations under AM1.5 solar light. Easy

  8. Layer-By-Layer Self-Assembly of CIGS Nanoparticles and Polymers for All-Solution Processable Low-Cost, High-Efficiency Solar Cells

    E-Print Network [OSTI]

    Zhou, Yaoqi

    -Cost, High-Efficiency Solar Cells Tung Ho1 , Robert Vittoe3 , Namratha Kakumanu2 , Sudhir Shrestha2-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202 Thin film solar cells made from copper indium gallium thereby affecting solar cell efficiency. This research aims to study various polymer materials to replace

  9. Macintosh HD:from FWB:IMVP Save Stuff:Engine paper stuff:Engine Paper final COST AND EFFICIENCY PERFORMANCE OF AUTOMOBILE ENGINE

    E-Print Network [OSTI]

    Whitney, Daniel

    AND EFFICIENCY PERFORMANCE OF AUTOMOBILE ENGINE PLANTS Daniel E Whitney* Guillermo Peschard# Denis Artzner:IMVP Save Stuff:Engine paper stuff:Engine Paper final COST AND EFFICIENCY PERFORMANCE OF AUTOMOBILE ENGINE PLANTS Abstract This paper analyzes the basic performance of 27 automobile engine lines operated by 18

  10. Maintenance Screen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    navigation to main content. U.S. Department of Energy Energy Efficiency and Renewable Energy Application Error Oops This Application has experienced an error. Please try your...

  11. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  12. AISI/DOE Technology Roadmap Program: Development of Cost-effective, Energy-efficient Steel Framing

    SciTech Connect (OSTI)

    Nader R. Elhajj

    2003-01-06T23:59:59.000Z

    Steel members in wall construction form a thermal bridge that interrupts the insulation layer of a wall. This causes higher rate of heat transfer by conduction through the wall framing than through other parts of the wall. One method to reduce the thermal bridging effect is to provide a break, such as insulating sheathing. A thermally efficient slit-web and stud was developed in this program to mitigate the conductivity of steel. The thermal performance of the slit-web stud was evaluated at Oak Ridge National Laboratory using hotbox testing. The thermal test results showed that the prototype slit-web stud performed 17% better than the solid-web stud, using R-13 fiber glass batts with exterior OSB sheathing and interior drywall. The structural behavior of this slit-web stud was evaluated in axial, bending, shear, shearwall, and stub-column tests. Test results indicated that the slitweb stud performed similarly or better than the solid-web stud in most structural performance characteristics investigated. Thus, the prototype slit-web stud has been shown to be thermally efficient, economiexecy viable, structurally sound, easily manufactured and usable in a range of residential installations.

  13. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology

    SciTech Connect (OSTI)

    Vernon, S.M. (Spire Corp., Bedford, MA (United States))

    1993-04-01T23:59:59.000Z

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, [approximately] 1 [times] 10[sup 5] cm[sup [minus]5], as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 [times]10[sup 7] cm[sup [minus]2]. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  14. Top Operations and Maintenance (O&M) Efficiency Opportunities at DoD/Army Sites - A Guide for O&M/Energy Managers and Practitioners

    SciTech Connect (OSTI)

    Sullivan, Gregory P.; Dean, Jesse D.; Dixon, Douglas R.

    2007-05-25T23:59:59.000Z

    This report, sponsored the Army's Energy Engineering Analysis Program, provides the Operations and Maintenance (O&M) Energy manager and practitioner with useful information about the top O&M opportunities consistently found across the DoD/Army sector. The target is to help the DoD/Army sector develop a well-structured and organized O&M program.

  15. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    SciTech Connect (OSTI)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31T23:59:59.000Z

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of useful products using this technology is to scale the technology from the 700-L pilot reactor to a small-scale production facility, with dedicated operation staff and engineering controls. In addition, we recommend that a market study be conducted as well as further product development for construction products that will utilize the unique properties of this bio-based material.

  16. Substations reliability-centered maintenance and predictive maintenance - a strategic partnership

    SciTech Connect (OSTI)

    Colsher, R.J. [Electric Power Research Institute, Eddystone, PA (United States); Abbott, P.D.; Matusheski, R.L. [EPRI & MD Center, Eddystone, PA (United States); Smith, S.B. [ERIN Engineering & Research, Walnut Creek, CA (United States)

    1996-08-01T23:59:59.000Z

    A maintenance optimization study for substation components can be most effective when Reliability Centered Maintenance (RCM) Analysis is combined with a Predictive Maintenance (PDM) Assessment. If the two processes are performed concurrently, the benefit-to-cost ratios for each is increased. Also, the cost of implementing RCM recommendations for condition monitoring can be minimized, while maximizing their impact at the same time. This paper presents the essential elements of both the RCM and PDM processes, and describes how they work together in a substation environment as a comprehensive maintenance assessment tool. Descriptions of recent experiences are also included.

  17. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect (OSTI)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02T23:59:59.000Z

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  18. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21T23:59:59.000Z

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  19. Cost and performance data on diesel engine generators and pumps

    SciTech Connect (OSTI)

    Kenna, J.

    1987-05-01T23:59:59.000Z

    This report summarizes performance data and costs of operation and maintenance obtained from seven diesel engines operating under field conditions in Kenya. Four of the engines were diesel water pumps and three were diesel generators. Short-term tests (2-hour) were conducted on-site to determine engine efficiency as a function of time after start-up. After the short-term tests, the engines were monitored for a 3-month period to determine use pattern and fuel consumption. In addition, the owners (or operators) completed a questionnaire which documented their perception of reliability and operation and maintenance costs. The short-term tests showed that the diesel efficiencies were primarily dependent on the load factor and time from start-up to shut-down. The measured efficiencies were significantly reduced when the diesels were run for either short periods (less than 90 minutes for the generators and 30 minutes for the pumps) or with loads less than their rated output. The data collected during the 3-month monitoring period revealed relatively low efficiencies because of low load factors and short run periods. This type of use pattern is typical for diesels in Kenya. Operation and maintenance costs varied from .20 to .95 $/kWh for the generators, and from .13 to .74 $/m/sup 3/ of water for the pumps, depending primarily on the efficiency and the cost of labor for an operator and repairs. The owners' perception of the operation and maintenance costs was usually significantly less than the measured costs. 15 figs., 5 tabs.

  20. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    2009. “The 2009 State Energy Efficiency Scorecard. ” ACEEEFinancial Impact of Energy Efficiency Under a Federal10 3.2 Energy Efficiency Portfolio

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Council for an Energy-Efficient Economy, Washington, D.C.American Council for Energy Efficient Economy, WashingtonAmerican Council for an Energy Efficient Economy Proceedings

  2. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    and Benefits of Alternative Energy Efficiency Portfolios (Figure 7. Effects of Alternative Energy Efficiency BusinessMassachusetts pursues alternative energy efficiency goals: ~

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

  4. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    and Benefits of Alternative Energy Efficiency Portfolios (and Benefits of Alternative Energy Efficiency Portfolios (Figure 7. Effects of Alternative Energy Efficiency Business

  5. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    Figure 7. Effects of Alternative Energy Efficiency Businessand Benefits of Alternative Energy Efficiency Portfolios (and Benefits of Alternative Energy Efficiency Portfolios (

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    perpetuate less energy efficient designs. When a companytips for the energy efficient design of new labs andEnergy Guide. Energy efficient system design. The greatest

  7. Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field

    E-Print Network [OSTI]

    California at Davis, University of

    Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field Kristin Group, Davis, CA, USA 4 Southern California Edison, Irwindale, CA, USA ABSTRACT HVAC maintenance utilities across the nation to include HVAC maintenance measures in energy efficiency programs

  8. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10T23:59:59.000Z

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  9. Field Maintenance Manager

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, (J5100) Wyoming/Nebraska Maintenance Office...

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    size distribution at low energy costs. New grinding technologies are regularly introduced in the market.

  11. Associate Vice Chancellor Maintenance

    E-Print Network [OSTI]

    Hartman, Chris

    Equipment & Vehicle Maintenance Warehouse Vehicle Pool Shuttle Post Office Parking Services Contract

  12. Predictive Maintenance Technologies

    Broader source: Energy.gov [DOE]

    Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    O&M Best Practices for Energy-Efficient Buildings. PreparedGenentech, Vacaville: New Energy Efficient Site. Oakland,200,000 per Year with Energy-Efficient Motors. New York, New

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5%, although this2001a). Boilers and Heaters, Improving Energy Efficiency.

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%gas by 1% increases boiler efficiency by 2.5% (CIPEC 2001).Conservation and Boiler Plant Efficiency Advancements. 22 nd

  16. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    Technology Super Boiler High-efficiency welding Pumppercent and the gas boiler has an efficiency of 68 percent.natural gas boiler plus 33.4% efficiency grid electricity

  17. Benefit-Cost Analysis of Heavy Haul Railway Track Upgrade for Safety and Efficiency X. Liu, M.R. Saat, C.P.L. Barkan

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    1 Benefit-Cost Analysis of Heavy Haul Railway Track Upgrade for Safety and Efficiency X. Liu, M of train accident on North American heavy-haul railroads and reducing their occurrence and severity is an ongoing objective of both industry and government. Upgrading track quality is one possible derailment

  18. Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district

    E-Print Network [OSTI]

    Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

  19. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Awareness of energy efficiency created through posters,External Recognition Awareness of energy efficiency createdsummits and energy fairs, implemented. Raising Awareness

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdout energy audits, improving motivation and awareness in all

  1. Mining Surveillance and Maintenance Dollars

    SciTech Connect (OSTI)

    MARTINEZ, R.

    2000-02-01T23:59:59.000Z

    Accelerating site cleanup to reduce facility risks to the workers, the public and the environment during a time of declining federal budgets represents a significant technical and economic challenge to U.S. Department of Energy (DOE) Operations Offices and their respective contractors. A significant portion of a facility's recurring annual expenses are associated with routine, long-term surveillance and maintenance (S&M) activities. However, ongoing S&M activities do nothing to reduce risks and basically spend money that could be reallocated towards facility deactivation. This paper discusses the background around DOE efforts to reduce surveillance and maintenance costs, one approach used to perform cost reviews, lessons learned from field implementation and what assistance is available to assist DOE sites in performing these evaluations.

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01T23:59:59.000Z

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01T23:59:59.000Z

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  4. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    SciTech Connect (OSTI)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10T23:59:59.000Z

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  5. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    Cold Storage Facilities. Paper presented at the 2005 ACEEE Summer Study on Energy Efficiency in Industry,

  6. Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    efficiency resource savings levels, various treatments of EE funding sources, and alternative EE business models (

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Efficiency. August. Carrier Aeroseal, LLC. (2002). Cases HVAC system (Carrier Aeroseal 2002). Discharge air

  8. Final Report What Will Adaptation Cost?

    E-Print Network [OSTI]

    ..................................................................................................................26 Task 3: Estimate Costs of Implementing Adaptation Strategies ....................................................................34 Task 2: Calculate the Capital and Maintenance CostsFinal Report What Will Adaptation Cost? An Economic Framework for Coastal Community Infrastructure

  9. Communications in Statistics-Stochastic Models, 16(1), 121-142 (2000) 1 BAYESIAN MAINTENANCE POLICIES DURING A

    E-Print Network [OSTI]

    Popova, Elmira

    of maintenance policies which consist of minimal repair and preventive maintenance is analyzed for the case preventive maintenance can reduce the age of the machine by x units. Under a constant maintenance costCommunications in Statistics-Stochastic Models, 16(1), 121-142 (2000) 1 BAYESIAN MAINTENANCE

  10. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOE Patents [OSTI]

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28T23:59:59.000Z

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01T23:59:59.000Z

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  12. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    SciTech Connect (OSTI)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01T23:59:59.000Z

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  13. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01T23:59:59.000Z

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  14. Home Maintenance and Repair Owning a home is a major responsibility.

    E-Print Network [OSTI]

    maintenance is conducted. Regular, preventive maintenance can pay off in peace of mind, utility cost savings, routine maintenance helps to prolong the life of the home and may prevent the need for major repairs of Benjamin Franklin, "An ounce of prevention is worth a pound of cure." Regular, routine maintenance enhances

  15. Optimal Preventive Maintenance Under Decision Dependent Uncertainty

    SciTech Connect (OSTI)

    Galenko, Alexander; Popova, Elmira [University of Texas at Austin, 1 University Station, Austin, Texas 78712 (United States); Kee, Ernie; Grantom, Rick [South Texas Project Nuclear Operating Company - STPNOC, P.O. Box 289, Wadsworth, Tx 77483 (United States)

    2006-07-01T23:59:59.000Z

    We analyze a system of N components with dependent failure times. The goal is to obtain the optimal block replacement interval (different for each component) over a finite horizon that minimizes the expected total maintenance cost. In addition, we allow each preventive maintenance action to change the future joint failure time distribution. We illustrate our methodology with an example from South Texas Project Nuclear Operating Company. (authors)

  16. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program 

    E-Print Network [OSTI]

    Jackson, D.

    1997-01-01T23:59:59.000Z

    on purchased fuel. Georgia-Pacific realized immediate and significant results and reduced fuel cost by about one third over a one year period....

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    costs, and increased energy awareness among employees (Wyethimprove the awareness of personnel with regard to energy useawareness Build capacity Not addressed No promotion of energy

  18. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-06-01T23:59:59.000Z

    To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

  19. Does competition reduce costs? : assessing the impact of regulatory restructuring on U.S. electric generation efficiency

    E-Print Network [OSTI]

    Rose, Nancy L.

    2004-01-01T23:59:59.000Z

    Although the allocative efficiency benefits of competition are a tenet of microeconomic theory, the relation between competition and technical efficiency is less well understood. Neoclassical models of profit-maximization ...

  20. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    SciTech Connect (OSTI)

    Fisk, E.L.

    1994-06-01T23:59:59.000Z

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work.

  1. Location Efficiency as the Missing Piece of The Energy Puzzle: How Smart Growth Can Unlock Trillion Dollar Consumer Cost Savings

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Location Efficiency as the Missing Piece of The Energy Puzzle: How Smart Growth Can Unlock Trillion. In the analysis the energy efficiency potential of smart growth developments (the type that are occurring in the US) are estimated using location efficiency research findings. The results show energy savings

  2. Computerized Maintenance Management Systems

    Broader source: Energy.gov [DOE]

    Computerized maintenance management systems (CMMS) are a type of management software that perform functions in support of operations and maintenance (O&M) programs. The software automates most of the logistical functions performed by O&M staff.

  3. Cost-Effecitive Energy Efficiency Measure for Above 2003 and 2009 IECC Code-Compliant Residential and Commercial Buildings in the City of Arlington

    E-Print Network [OSTI]

    Kim, H.; Do, S.; Baltazar, J.C.; Haberl, J.; Lewis, C.

    ESL-TR-11-07-01 COST-EFFECTIVE ENERGY EFFICIENCY MEASURES FOR ABOVE CODE (2003 AND 2009 IECC): RESIDENTIAL BUILDINGS IN THE CITY OF ARLINGTON A Research Project for the City of Arlington Hyojin Kim Sung Lok Do...-family residential buildings in the CoA. For more realistic recommendations, the CoA provided two years of residential building energy compliance reports from 2008 to 2010 which exceeded the energy efficiency requirements of the CoA (i.e., 2003 International...

  4. Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012

    SciTech Connect (OSTI)

    Mattos, L.

    2012-03-01T23:59:59.000Z

    This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

  5. Optimizing Preventive Maintenance Models

    E-Print Network [OSTI]

    Optimizing Preventive Maintenance Models. Michael Bartholomew-Biggs. School of Physics Astronomy and Mathematics, University of Hertfordshire.

  6. 46 September 2011Vol. 23 No. 3Engineering Management Journal A Budget-SensitiveApproach to Scheduling Maintenance

    E-Print Network [OSTI]

    Gosavi, Abhijit

    in significantly higher costs. It has been empirically shown that preventive maintenance can reduce the frequency the need to reduce lost production costs due to equipment failures with preventive maintenance costs. Managers do this by developing preventative maintenance schedules. Most statistical models in reliability

  7. Energy conversion/power plant cost-cutting

    SciTech Connect (OSTI)

    Nichols, K.

    1996-12-31T23:59:59.000Z

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  8. Harnessing Smart Sensor Technology for Industrial Energy Efficiency- Making Process-Specific Efficiency Projects Cost Effective with a Broadly Configurable, Network-Enabled Monitoring Tool 

    E-Print Network [OSTI]

    Wiczer, J. J.; Wiczer, M. B.

    2011-01-01T23:59:59.000Z

    To improve monitoring technology often re-quired by industrial energy efficiency projects, we have developed a set of power and process monitoring tools based on the IEEE 1451.2 smart sensor interface standard. These tools enable a wide...

  9. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01T23:59:59.000Z

    Energy Agency - Energy Technology Systems AnalysisEfficiency Renewable Energy Technologies TransportationU.S. Department of Energy Industrial Technologies Program. (

  10. U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses

    SciTech Connect (OSTI)

    Simon, J.

    2012-01-01T23:59:59.000Z

    The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

  11. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01T23:59:59.000Z

    overall efficiency and a power-to-heat ratio of 0.66. Thiswith 70% efficiency ; Power/Heat = 0.66 kWh MBtu/kWh Overallfrom boiler based on Power/Heat of 0.607 MBtu/kWh Energy

  12. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    SciTech Connect (OSTI)

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Cohn, S.M.; Purucker, S.L.

    1995-04-01T23:59:59.000Z

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformers may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.

  13. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program

    E-Print Network [OSTI]

    Jackson, D.

    A Georgia-Pacific plywood plant located in Madison, Georgia recently decided to insulate their steam lines for energy conservation, improved process efficiency and personnel protection. The goal of the project was to eliminate dependency...

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Characterization: Gas Turbines. Arlington, VA. February.is higher than that of a gas turbine-based CHP system (74%,electrical efficiency of a gas turbine-based CHP system is

  15. An Analysis of Low Cost, Energy Efficient, Housing for Low-income Residents of How and Humid Climates 

    E-Print Network [OSTI]

    Kootin-Sanwu, Victor

    2004-01-01T23:59:59.000Z

    the implementation of cost-effective construction of low-income housing using volunteer labor. The research uses a case study approach where a base-line energy use is established using a comparative Princeton Score Keeping Method (PRISM) analysis and measurements...

  16. An Analysis of Low Cost, Energy Efficient, Housing for Low-income Residents of How and Humid Climates

    E-Print Network [OSTI]

    Kootin-Sanwu, Victor

    the implementation of cost-effective construction of low-income housing using volunteer labor. The research uses a case study approach where a base-line energy use is established using a comparative Princeton Score Keeping Method (PRISM) analysis and measurements...

  17. Operation and Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations and Maintenance Operations OASIS: WALC-DSW (Note: this site is not hosted by Western and requires a digital certificate and login for full access.) Contact Information...

  18. Centralized maintenance procedures

    SciTech Connect (OSTI)

    Barber, J.R.

    1994-02-01T23:59:59.000Z

    In 1989, shortly after Westinghouse Hanford Company (WHC) assumed maintenance responsibilities for the Hanford site, a Department of Energy (DOE) maintenance audit found that field (working level) maintenance procedures and procedure practices of the facilities scattered across Hanford`s 560 square miles varied as greatly as the locations of those facilities. In some of the audited facilities there were few or no procedures; in others, procedures conflicted with or were redundant to procedures at other facilities. This document presents current efforts to centralize maintenance procedures.

  19. HVAC Maintenance and Technologies

    Broader source: Energy.gov [DOE]

    Presentation covers the HVAC maintenance and technologies, and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  20. Industrial Heat Pumps--Types and Costs 

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    1985-01-01T23:59:59.000Z

    this categorization, the cost of recovering waste energy with heat pumps was examined. Examples were evaluated in which the cost of energy delivered was calculated based on estimates of capital cost, operating costs, and maintenance costs. Heat pumps from the various...

  1. Costing Summaries for Selected Water Treatment

    E-Print Network [OSTI]

    · Engineering News-Record Construction Cost Index · Consumer Prices Index · Year Index = average of the monthly;Develop Costing Curves for : · Construction · Operation and Maintenance #12;Small Systems · Limited · Construction Costs · O&M Costs · General Design and Operational Information #12;Update The Costs for year 2000

  2. Fuel Efficiency Automobile Test Quality Assurance Narrative

    E-Print Network [OSTI]

    Denver, University of

    Fuel Efficiency Automobile Test Quality Assurance Narrative Standard Operating Procedures Help ........................................................................................................... 3 FEAT Standard Operating Procedures...................................................................................................................24 Maintenance Items

  3. Method and computer program product for maintenance and modernization backlogging

    DOE Patents [OSTI]

    Mattimore, Bernard G; Reynolds, Paul E; Farrell, Jill M

    2013-02-19T23:59:59.000Z

    According to one embodiment, a computer program product for determining future facility conditions includes a computer readable medium having computer readable program code stored therein. The computer readable program code includes computer readable program code for calculating a time period specific maintenance cost, for calculating a time period specific modernization factor, and for calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. In another embodiment, a computer-implemented method for calculating future facility conditions includes calculating a time period specific maintenance cost, calculating a time period specific modernization factor, and calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. Other embodiments are also presented.

  4. This new system will allow researchers to much more rapidly screen large numbers of samples and identify the most promising biomass feedstocks for higher efficiency and lower cost bio-

    E-Print Network [OSTI]

    of samples and identify the most promising biomass feedstocks for higher efficiency and lower cost bio- fuels conversion processes. NREL will be screening thousands of variants of different biomass feedstocks to link to develop the next generation of low-cost, easily convert- ible biomass feedstocks. To identify superior

  5. Costs Incurred by Selected Tribal Energy Efficiency and Conservation Block Grant Recipients, OAS-RA-13-28

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout » Contact Us ContactPractices inCosts Incurred by Selected

  6. COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN

    SciTech Connect (OSTI)

    J. Arps; K. Coulter

    2006-09-30T23:59:59.000Z

    In the past quarter, we have conducted additional characterization and permeation tests on different Pd alloy membranes including PdCuTa ternary alloy materials. We attempted to address some discrepancies between SwRI{reg_sign} and CSM relating to PdCu stoichiometry by preparing a range of PdCu membranes with compositions from {approx}58-65 at% Pd (bal. Cu). While some difficulties in cutting and sealing these thin membranes at CSM continue, some progress has been made in identifying improved membrane support materials. We have also completed an initial cost analysis for large-scale vacuum deposition and fabrication of thin Pd ally membranes and project that the process can meet DOE cost targets. Minimal progress was made in the past quarter relating to the testing of prototype membrane modules at Idatech. In the past quarter Idatech was acquired by a UK investment firm, which we believe may have impacted the ability of key technical personnel to devote sufficient time to support this effort. We are hopeful their work can be completed by the end of the calendar year.

  7. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2013-01-01T23:59:59.000Z

    inclusion of the social cost of carbon impact the evaluationinclusion of the social cost of carbon impact the evaluation

  8. Efficiency, capacity, compensation, maintenance, plasticity: emerging

    E-Print Network [OSTI]

    . · Toestablishoneormoresatellitecenterstoservedifferentregionsofthecountryfor efficientachievementoftheobjectivesoftheCenter. · Tocollect

  9. Federal Indirect Costs Program Definition of the indirect costs of research

    E-Print Network [OSTI]

    Doedel, Eusebius

    Federal Indirect Costs Program Definition of the indirect costs of research Concordia University defines "Indirect Costs" as costs which cannot be associated specifically with a particular research program or other activity. Indirect costs include the provision and maintenance of physical space

  10. Scheduling predictive maintenance in flow-shop Christophe Varnier, Noureddine Zerhouni

    E-Print Network [OSTI]

    Boyer, Edmond

    . Predictive maintenance is an answer to prevent equipment from risk of breakdowns while minimizing, for each machine, the control mode and if necessary the preventive maintenance plan. I. INTRODUCTION to prevent equipment from risk of breakdowns while minimizing the maintenance costs. Nevertheless, conflicts

  11. Condition based maintenance model for a production deteriorating Phuc Do Van and Christophe Berenguer

    E-Print Network [OSTI]

    Boyer, Edmond

    significantly and the system might not be able to cope with demand. In many preventive maintenance policiesCondition based maintenance model for a production deteriorating system Phuc Do Van and Christophe both maintenance cost and production capacity aspects for a single unit production system whose

  12. Optimisation par algorithme gntique de la maintenance prventive dans un contexte de modlisation par modles

    E-Print Network [OSTI]

    Boyer, Edmond

    would be to apply a preventive maintenance in order to limit or even prevent system breakdowns (failures). But if the preventive maintenance is not properly regulated, we risk to face excessive costs and unnecessary system downtime. Given this situation, we should so consider establishing preventive maintenance strategies

  13. Operations and Maintenance Program Structure

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program recommends Federal operations and maintenance (O&M) programs comprise of five distinct functions: operations, maintenance, engineering, training, and...

  14. O&M Best Practices - A Guide to Achieving Operational Efficiency (Release 2.0)

    SciTech Connect (OSTI)

    Sullivan, Gregory P.; Pugh, Ray; Melendez, Aldo P.; Hunt, W. D.

    2004-07-31T23:59:59.000Z

    This guide, sponsored by DOE's Federal Energy Management Program, highlights operations and maintenance (O&M) programs targeting energy efficiency that are estimated to save 5% to 20% on energy bills without a significant capital investment. The purpose of this guide is to provide the federal O&M energy manager and practitioner with useful information about O&M management, technologies, energy efficiency and cost-reduction approaches.

  15. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 19, NO. 2, MAY 2004 919 DEA Efficiency for the Determination of the

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    of the Latin American countries have made drastic transformations to their elec- trical power sectors both and operates under an optimal operational plan. In dis- tribution tariff fixation, the efficient firm model in power and energy; and c) stan- dard investment, maintenance, and operation costs associated

  16. Maintenance implementation plan for the B Plant/WESF. Revision 4

    SciTech Connect (OSTI)

    Tritt, S.E.; Lueck, B.H.

    1996-01-01T23:59:59.000Z

    This Maintenance Implementation Plan (MIP) has been developed for maintenance functions associated with the B Plant/WESF (Waste Encapsulation Storage Facility) complex. The objective of this plan is to provide baseline information for establishing and identifying WHC conformance programs and policies applicable to implementation of DOE order 4330.4B guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at B Plant/WESF. The B Plant WESF facility complex consists of three main facilities and several support structures located in the 200 East Area of the Hanford site. B Plant is a transition facility that is required to ensure safe storage and management of WESF (operating facility) cesium and strontium capsules. B Plant/WESF also contains substantial radiological inventory from previous campaigns. There are no production activities at B Plant, but several of its operating systems are required to accomplish the current B Plant/WESF mission. B Plant/WESF are each considered a nuclear facility due to the storage of cesium and strontium capsules at WESF and the large radiological inventory from past processing.

  17. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2012-04-01T23:59:59.000Z

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a Power-Take-Off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drive train, power generator and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency, low maintenance and cost with a low impact on the device Cost-of-Energy (CoE).

  18. Marine Hydrokinetic Turbine Power-Take-Off Design for Optimal Performance and Low Impact on Cost-of-Energy: Preprint

    SciTech Connect (OSTI)

    Beam, M.; Kline, B.; Elbing, B.; Straka, W.; Fontaine, A.; Lawson, M.; Li, Y.; Thresher, R.; Previsic, M.

    2013-02-01T23:59:59.000Z

    Marine hydrokinetic devices are becoming a popular method for generating marine renewable energy worldwide. These devices generate electricity by converting the kinetic energy of moving water, wave motion or currents, into electrical energy through the use of a power-take-off (PTO) system. Most PTO systems incorporate a mechanical or hydraulic drivetrain, power generator, and electric control/conditioning system to deliver the generated electric power to the grid at the required state. Like wind turbine applications, the PTO system must be designed for high reliability, good efficiency, and long service life with reasonable maintenance requirements, low cost, and an appropriate mechanical design for anticipated applied steady and unsteady loads. The ultimate goal of a PTO design is high efficiency and low maintenance and cost, with a low impact on the device cost-of-energy (CoE).

  19. Study of Possible Applications of Currently Available Building Information Modeling Tools for the Analysis of Initial Costs and Energy Costs for Performing Life Cycle Cost Analysis 

    E-Print Network [OSTI]

    Mukherji, Payal Tapandev

    2011-02-22T23:59:59.000Z

    Technology BLCC Building Life Cycle Cost DOE Department of Energy BIPV Building Integrated Photovoltaic Systems BEES Building for Environmental And Economic Sustainability HVAC Heating, Ventilation and Air-Conditioning SMACNA Sheet Metal and Air..., Fee Costs Construction Costs Other Costs Financing Costs Operation Costs (Energy, water, utilities, energy price, energy price projections etc.) Maintenance Costs Initial Costs (Purchase and Acquisition) Owner?s Total Costs Residual...

  20. Proactive maintenance initiatives at Argonne National Laboratory-West

    SciTech Connect (OSTI)

    Duckwitz, N.R.; Duncan, L.W.; Whipple, J.J.

    1995-06-01T23:59:59.000Z

    In the late 1980`s, ANL-W Management foresaw a need to provide dedicated technical support for maintenance supervisors. Maintenance supervisors were facing increased challenges to ensure all environmental, safety, and waste management regulations were followed in daily maintenance activities. This increased burden was diverting supervisory time away from on-the-job supervision. Supervisors were finding less time for their ``mentor`` roles to ensure maintenance focused on finding and correcting root causes. Additionally the traditional maintenance organization could not keep up with the explosion in predictive maintenance technologies. As a result, engineers were tasked to provide direct technical support to the maintenance organization. Today the maintenance technical support group consists of two mechanical engineers, two electrical engineers and an I&C engineer. The group provides a readily available, quick response resource for crafts people and their supervisors. They can and frequently do ask the support group for help to determine the root cause and to effect permanent fixes. Crafts and engineers work together informally to make an effective maintenance team. In addition to day-to-day problem solving, the technical support group has established several maintenance improvement programs for the site. This includes vibration analysis of rotating machinery, testing of fuel for emergency diesel generators, improving techniques for testing of high efficiency particulate air (HEPA) filters, and capacity testing of UPS and emergency diesel starting batteries. These programs have increased equipment reliability, reduced conventional routine maintenance, reduced unexpected maintenance, and improved testing accuracy. This paper will discuss the interaction of the technical support group within the maintenance department. Additionally the maintenance improvement programs will be presented along with actual cases encountered, the resolutions and lessons learned.

  1. A formal ontology for industrial maintenance

    E-Print Network [OSTI]

    Boyer, Edmond

    strategies (preventive maintenance, predictive maintenance, corrective maintenance), to managing operators1 A formal ontology for industrial maintenance Authors: 1- Dr. Mohamed Hedi KARRAY, LGP The rapid advancement of information and communication technologies has resulted in a variety of maintenance

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    opportunities, recommend energy efficiency actions, developand sequence them more efficiently. In addition, the systemCouncil for an Energy-Efficient Economy, Washington, D.C.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    V. (2001). Optimize energy efficiency of HRSG. Hydrocarbonper Year with Energy-Efficient Motors. Copper Developmentto Promote Energy-Efficient Motor Systems in North America’s

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    V. (2001). Optimize energy efficiency of HRSG. HydrocarbonCEC (2001). 2001 Energy Efficiency Standards for Residential2002. Consortium for Energy Efficiency (CEE), 2007. Motor

  5. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    31, 2010. ) U.S. DOE Energy Efficiency & Renewable Energy (3, 2010. ) Northwest Energy Efficiency Alliance, ElectricEPRI. 1997. Quality Energy Efficiency Retrofits for Water

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    opportunities, recommend energy efficiency actions, developSummer Study on Energy efficiency in Industry. AmericanACEEE Summer Study on Energy Efficiency in Industry, ACEEE,

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    rule of thumb is that boiler efficiency can be increased bytemperature, and boiler efficiency. They are a recommendedresult is improved boiler efficiency. Turbulator installers

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    7.1 summarizes the boiler efficiency measures, while Tablerule of thumb is that boiler efficiency can be increased by2001). Boilers and Heaters, Improving Energy Efficiency.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    V. (2001). Optimize energy efficiency of HRSG. HydrocarbonACEEE Summer Study on Energy Efficiency in Industry, ACEEE,American Council for an Energy Efficiency Economy, Berkeley,

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    London, England. Good Practice Guide 149. Energy EfficiencyLondon, England. Good Practice Guide 279. Energy EfficiencyLondon, England. Good Practice Guide 279. Energy Efficiency

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry: An ENERGY STAR? Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brush, Adrian

    2014-01-01T23:59:59.000Z

    London, England. Good Practice Guide 279. Energy EfficiencyLondon, England. Good Practice Guide 279. Energy EfficiencyLondon, England. Good Practice Guide 302. Energy Efficiency

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Costs Reduced by Automatic Control System. Case Study 137.Air Costs Reduced by Automatic Control System. Case studyrefined by automatic control systems and transfer machines,

  14. Operation and Maintenance

    E-Print Network [OSTI]

    van Hemmen, J. Leo

    in this Publication is provided as is and has been prepared solely for the purpose of evaluating data center designOperation and Maintenance InRow® RD Air Cooled ACRD100 ACRD101 #12;This manual is available assumes no liability for damages, violations of codes, improper installation, system failures, or any

  15. CH Packaging Maintenance Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2002-01-02T23:59:59.000Z

    This procedure provides instructions for performing inner containment vessel (ICV) and outer containment vessel (OCV) maintenance and periodic leakage rate testing on the following packaging seals and corresponding seal surfaces using a nondestructive helium (He) leak test. In addition, this procedure provides instructions for performing ICV and OCV structural pressure tests.

  16. Study of Possible Applications of Currently Available Building Information Modeling Tools for the Analysis of Initial Costs and Energy Costs for Performing Life Cycle Cost Analysis

    E-Print Network [OSTI]

    Mukherji, Payal Tapandev

    2011-02-22T23:59:59.000Z

    The cost of design, construction and maintenance of facilities is on continual rise. The demand is to construct facilities which have been designed by apply life cycle costing principles. These principles have already given strong decision making...

  17. Just In-Time Maintenance of Nuclear Power Plants

    SciTech Connect (OSTI)

    DR. Alexander G. Parlos

    2002-01-22T23:59:59.000Z

    The goal of this project has been to develop and demonstrate the feasibility of a new technology for maintenance engineering: a Just-In-Time Maintenance (JITM) system for rotating machines. The JITM system is based on several key developments at Texas A and M over the past ten years in emerging intelligent information technologies, which if integrated into a single system could provide a revolutionary approach in the way maintenance is performed. Rotating machines, such as induction motors, range from a few horse power (hp) to several thousand hp in size, and they are widely used in nuclear power plants and in other industries. Forced outages caused by induction motor failures are the reason for as much as 15% - 40% of production costs to be attributable to maintenance, whereas plant shutdowns caused by induction motor failures result in daily financial losses to the utility and process industries of $1 M or more. The basic components of the JITM system are the available machine sensors, that is electric current sensors and accelerometers, and the computational algorithms used in the analysis and interpretation of the occurring incipient failures. The JITM system can reduce the costs attributable to maintenance by about 40% and it can lower the maintenance budgets of power and process plants by about 35%, while requiring no additional sensor installation. As a result, the JITM system can improve the competitiveness of US nuclear utilities at minimal additional cost.

  18. Robust Maintenance Policies in Asset Management

    E-Print Network [OSTI]

    Kuhn, Kenneth D.; Madanat, Samer M.

    2005-01-01T23:59:59.000Z

    Madanat, S. , ‘Optimal Maintenance and Repair Policies inROBUST MAINTENANCE POLICIES IN ASSET MANAGEMENT Kenneth D.approach may reduce maintenance and rehabilitation (M&R)

  19. Major NERSC Maintenance Tuesday November 11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major NERSC Maintenance Tuesday November 11 Major NERSC Maintenance Tuesday November 11 October 31, 2014 by Francesca Verdier (0 Comments) There will be a major NERSC maintenance...

  20. Operations and Maintenance Best Practices Guide | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of Maintenance Programs Chapter 6: Predictive Maintenance Technologies Chapter 7: Commissioning Existing Buildings Chapter 8: Metering for Operations and Maintenance Chapter 9:...

  1. Startup Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

  2. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    Council for an Energy Efficient Economy (ACEEE). ReportS. Nadel. 2002. Energy-Efficient Motor Systems: A HandbookCouncil for an Energy-Efficient Economy. Washington, D.C.

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    Council for an Energy-Efficient Economy, Washington, D.C.Council for an Energy-Efficient Economy, Washington, D.C.EEBPP) (2000b). Energy Efficient Refrigeration Technology –

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    American Council for an Energy Efficient Economy, WashingtonCashes in on Energy Efficient Inverter Technology. National$200,000 per Year with Energy-Efficient Motors. Case Study

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    saves $200,000 per Year with Energy-Efficient Motors. Copper2000). Emerging Energy-Efficient Industrial Technologies.Council for an Energy-Efficient Economy, Washington, DC,

  6. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    American Council for an Energy Efficient Economy (ACEEE).and S. Nadel. 2002. Energy-Efficient Motor Systems: ACouncil for an Energy-Efficient Economy. Washington, D.C.

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    often used is that boiler efficiency can be increased by 1%flue gas by 1% increases boiler efficiency by 2.5%. Boiler -Conservation and Boiler Plant Efficiency Advancements. In:

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    design teams for energy-efficient building design. FinancialHVAC Systems Energy-efficient system design Fan modificationHVAC Systems Energy-efficient system design. The greatest

  9. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Early Station Costs Questionnaire

    E-Print Network [OSTI]

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Early Station Costs Questionnaire the hydrogen community and government agencies by increasing awareness of the status of refueling

  10. NREL is a na*onal laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. A Survey of State-Level Cost and

    E-Print Network [OSTI]

    of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. A Survey of State-Level Cost and Benefit Es7mates. Download report: hSp://www.nrel.gov/docs/fy14os*/61042.pdf or hSp://emp.lbl.gov/publica*ons/survey

  11. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-01-01T23:59:59.000Z

    Canadian Industry Program for Energy Conservation (CIPEC). (2001a). Boilers and Heaters, Improving Energy Efficiency.Resources Canada, Office of Energy Efficiency. August.

  12. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    in flue gas oxygen, boiler efficiency is increased by 2.5% (50 Boiler Energy Efficiencyin Chapter 13. Boiler Energy Efficiency Measures The boiler

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdimprove the awareness of personnel with regard to energy use

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency createdimprove the awareness of personnel with regard to energy use

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Raising Awareness Awareness of energy efficiency createdExternal Recognition Awareness of energy efficiency created1996). Energy Saved by Raising Employees’ Awareness. Case

  16. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2013-01-01T23:59:59.000Z

    heating and space heating, for which cost data were not available, and the specificity of the marketheating and space heating, for which cost data were not available, and the specificity of the market

  17. Proposed SOLCOST maintenance activities

    SciTech Connect (OSTI)

    none,

    1980-01-01T23:59:59.000Z

    This document provides a short description of work that has been accomplished to date and work in progress. A discussion of the program status as it is currently configured follows and finally proposed work by Solar Environmental Engineering Company (SEEC) in its most recently signed contract with the Department of Energy (DOE) is given. Early statements are designed to give the reader a good background so that the suggested SOLCOST maintenance activities will be more easily understood.

  18. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect (OSTI)

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael

    2012-06-30T23:59:59.000Z

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawai�¢����i and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.

  19. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  20. Nitrous Oxide Systems Maintenance in Clinical Areas

    E-Print Network [OSTI]

    Jia, Songtao

    . It specifically speaks to maintenance of nitrous oxide delivery systems, preventive maintenance for house. Arrange with Facilities for regular preventive maintenance and annual performance check of ventilation). b. Provides preventive maintenance on ventilation system as necessary. c. Coordinates annual

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    Australia. Heat was recovered at relatively high efficiencies, although it is not specified how much energy

  3. Scheduling with Fixed Maintenance, Shared Resources and ...

    E-Print Network [OSTI]

    2015-02-07T23:59:59.000Z

    Nov 17, 2014 ... maintenance constraints, blending and shared resources. ...... tegrated fixed time interval preventive maintenance and production for schedul-.

  4. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming Maintenance and Management...

  5. Scheduling Flexible Maintenance Activities subject to Job ...

    E-Print Network [OSTI]

    2010-04-14T23:59:59.000Z

    Apr 3, 2010 ... models by allowing a flexible maintenance schedule. Specifically, under restrictions determined by the respective setting, maintenance ...

  6. Lawn Maintenance Safety

    E-Print Network [OSTI]

    Smith, David

    2005-07-12T23:59:59.000Z

    debris and noise. ? Allow the engine to cool before returning it to a storage shed. ? Turn the power off and disconnect the spark plug wire before cleaning, inspecting, adjusting or repairing the cutting blade. Lawn Maintenance Safety ? Don?t run a... as possible to avoid being hit by passing vehicles. ? Never leave an electric- or gas-powered edger plugged in or running while unattended. ? Unplug or turn off an electric or gas-powered edger before inspecting, cleaning, adjusting or replacing the blade...

  7. Applicability of Operational Research Techniques in CANDU Nuclear Plant Maintenance

    SciTech Connect (OSTI)

    Doyle, E. Kevin [Bruce Power LP, Box 4000B12, Tiverton, Ont., N0G2T0 (Canada)

    2002-07-01T23:59:59.000Z

    As previously reported at ICONE 6 in New Orleans, 1996, and ICONE 9 in Niece, 2001, the use of various maintenance optimization techniques at Bruce has lead to cost effective preventive maintenance applications for complex systems. Innovative practices included greatly reducing Reliability Centered Maintenance (RCM) costs while maintaining the accuracy of the analysis. The optimization strategy has undergone further evolution and at the present an Integrated Maintenance Program (IMP) is being put in place. Further cost refinement of the station preventive maintenance strategy whereby decisions are based on statistical analysis of historical failure data is being evaluated. A wide range of Operational Research (OR) literature was reviewed for implementation issues and several encouraging areas were found that will assist in the current effort of evaluating maintenance optimization techniques for nuclear power production. The road ahead is expected to consist first of resolving 25 years of data issues and preserving the data via appropriate knowledge system techniques while post war demographics permit experts to input into the system. Subsequent analytical techniques will emphasize total simplicity to obtain the requisite buy in from Corporate Executives who possibly are not trained in Operational Research. Case studies of containment airlock seal failures are used to illustrate the direct applicability of stochastic processes. Airlocks and transfer chambers were chosen as they have long been known as high maintenance items. Also, the very significant financial consequences of this type of failure will help to focus the attention of Senior Management on the effort. Despite substantial investment in research, improvement in the design of the seal material or configuration has not been achieved beyond the designs completed in the 1980's. Overall, the study showed excellent agreement of the relatively quick stochastic methods with the maintenance programs produced at great cost over years of trial and error. The pivotal role of expert opinion via experienced users/problem owners/maintenance engineers in all phases of the method and its application was noted and will be explored in subsequent efforts. The results are displayed via economic alternatives to more easily attract the attention of Maintenance Managers. Graphical overviews of the data demonstrated that substantial insight can be gained by simply organizing the data into statistically meaningful arrays such as histograms. The conclusions highlight several very positive avenues to evaluate at this particular juncture in time. (author)

  8. HFIR Plant Maintenance - August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plasma electrons - Effects back on helicon plasma production - Neutral and plasma density control - RF power-to-plasma heat flux efficiency - Effects of plasma and impurity...

  9. Life-Cycle Cost Reduction for High Speed Turbomachinery Utilizing Aerothermal - Mechanical Conditioning Monitoring Techniques

    E-Print Network [OSTI]

    Boyce, M. P.; Meher-Homji, C.; Bowman, J. C.

    1982-01-01T23:59:59.000Z

    The Life Cycle Costs (LCC) for high performance, centrifugal and axial flow turbomachinery such as gas turbines, compressors and pumps is very strongly influenced by fuel (energy) consumption and by maintenance costs. Additionally, the penalty costs...

  10. The Cost of Heat Exchanger Fouling in the U. S. Industries 

    E-Print Network [OSTI]

    Rebello, W. J.; Richlen, S. L.; Childs, F.

    1988-01-01T23:59:59.000Z

    Fouling of heat exchangers costs the U.S. industries hundreds of millions of dollars every year in increased equipment costs, maintenance costs, energy losses and losses in production. The designer of heat exchangers usually allows for fouling...

  11. Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

    1983-06-30T23:59:59.000Z

    A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

  12. Cost analysis guidelines

    SciTech Connect (OSTI)

    Strait, R.S.

    1996-01-10T23:59:59.000Z

    The first phase of the Depleted Uranium Hexafluoride Management Program (Program)--management strategy selection--consists of several program elements: Technology Assessment, Engineering Analysis, Cost Analysis, and preparation of an Environmental Impact Statement (EIS). Cost Analysis will estimate the life-cycle costs associated with each of the long-term management strategy alternatives for depleted uranium hexafluoride (UF6). The scope of Cost Analysis will include all major expenditures, from the planning and design stages through decontamination and decommissioning. The costs will be estimated at a scoping or preconceptual design level and are intended to assist decision makers in comparing alternatives for further consideration. They will not be absolute costs or bid-document costs. The purpose of the Cost Analysis Guidelines is to establish a consistent approach to analyzing of cost alternatives for managing Department of Energy`s (DOE`s) stocks of depleted uranium hexafluoride (DUF6). The component modules that make up the DUF6 management program differ substantially in operational maintenance, process-options, requirements for R and D, equipment, facilities, regulatory compliance, (O and M), and operations risk. To facilitate a consistent and equitable comparison of costs, the guidelines offer common definitions, assumptions or basis, and limitations integrated with a standard approach to the analysis. Further, the goal is to evaluate total net life-cycle costs and display them in a way that gives DOE the capability to evaluate a variety of overall DUF6 management strategies, including commercial potential. The cost estimates reflect the preconceptual level of the designs. They will be appropriate for distinguishing among management strategies.

  13. Production Costing (Chapter 8 of W&W) 1.0 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    and branch limits. Locational marginal prices: LMPs may be computed. Maintenance schedules: Maintenance. For example, the Midwest ISO used a production cost program to understand the effect on energy prices

  14. Risk-based maintenance modeling. Prioritization of maintenance importances and quantification of maintenance effectiveness

    SciTech Connect (OSTI)

    Vesely, W.E.; Rezos, J.T. [Science Applications International Corp., Dublin, OH (United States)

    1995-09-01T23:59:59.000Z

    This report describes methods for prioritizing the risk importances of maintenances using a Probabilistic Risk Assessment (PRA). Approaches then are described for quantifying their reliability and risk effects. Two different PRA importance measures, minimal cutset importances and risk reduction importances, were used to prioritize maintenances; the findings show that both give similar results if appropriate criteria are used. The justifications for the particular importance measures also are developed. The methods developed to quantify the reliability and risk effects of maintenance actions are extensions of the usual reliability models now used in PRAs. These extended models consider degraded states of the component, and quantify the benefits of maintenance in correcting degradations and preventing failures. The negative effects of maintenance, including downtimes, also are included. These models are specific types of Markov models. The data for these models can be obtained from plant maintenance logs and from the Nuclear Plant Reliability Data System (NPRDS). To explore the potential usefulness of these models, the authors analyzed a range of postulated values of input data. These models were used to examine maintenance effects on a components reliability and performance for various maintenance programs and component data. Maintenance schedules were analyzed to optimize the component`s availability. In specific cases, the effects of maintenance were found to be large.

  15. Sustainability of green space maintenance

    E-Print Network [OSTI]

    Nomura, Wataru

    2011-01-01T23:59:59.000Z

    In Japan, recent changes in socio-economic and political structures -- decreasing tax revenue, declining communication among community members, and privatization of public services-- have influenced existing maintenance ...

  16. Operations and Maintenance Program Implementation

    Broader source: Energy.gov [DOE]

    Implementing an effective operations and maintenance (O&M) program requires patience and persistence. This is especially true since no universal plan fits all Federal agencies.

  17. ASSESSING EFFORT ESTIMATION MODELS FOR CORRECTIVE MAINTENANCE THROUGH

    E-Print Network [OSTI]

    Bae, Doo-Hwan

    maintenance activities and performing cost/benefits analysis 2007-04-11 3/24Software Engineering Lab, KAIST) 2007-04-11 Software Engineering Lab, KAIST #12;Contents Introduction Overall Approach Empirical project Related Works Conclusion and Discussion 2007-04-11 2/24Software Engineering Lab, KAIST #12

  18. Operating Costs Estimates Cost Indices

    E-Print Network [OSTI]

    Boisvert, Jeff

    to update costs of specific equipment, raw material or labor or CAPEX and OPEX of entire plants Cost Indices

  19. Evolving Utility Cost-Effectiveness Test Criteria

    Broader source: Energy.gov [DOE]

    Presents an overview of tests done to evaluate the cost-effectiveness of energy efficiency program benefits.

  20. Outsourcing transportation infrastructure maintenance : a theoretical approach with application to JR East

    E-Print Network [OSTI]

    Hirano, Jun, 1974-

    2004-01-01T23:59:59.000Z

    In transportation agencies, how to reduce maintenance and operation cost is one of the biggest and most common concerns, because their revenue is not expected to increase drastically in the future. One of the solutions ...

  1. Sandia National Laboratories: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Down the Costs of Efficient LED Lighting On February 14, 2013, in Energy, Energy Efficiency, Materials Science, Partnership, Research & Capabilities, Solid-State Lighting Solid...

  2. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    industry is refrigeration, which is used for process cooling, cold storage,Cold Storage Facilities. Proceedings of the 2005 ACEEE Summer Study on Energy Efficiency in Industry,

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (1999). Rebuilding steam turbine generator reduces costscan be driven by a steam turbine or an electric motor. Hot

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $demand. Back-pressure steam turbines which may be used to

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2011-01-01T23:59:59.000Z

    Natural gas expansion turbine Steam Distribution SystemNath (2000). Improve Steam Turbine Efficiency. Hydrocarbona steam boiler and steam turbine (back pressure turbine) to

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Masanet, Eric

    2008-01-01T23:59:59.000Z

    Characterization: Steam Turbines. Arlington, Virginia.scale CHP systems use steam turbines. Switching to naturalsystem efficiency of a steam turbine-based CHP system (80%

  7. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Neelis, Maarten

    2008-01-01T23:59:59.000Z

    Steam expansion turbines Steam Distribution Systems andNath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $

  8. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2013-01-01T23:59:59.000Z

    Retail Data Brazil – International Energy Initiative Life-business as usual Brazil Bottom-Up Energy Analysis Systemfor setting energy efficiency standards in Brazil:The case

  9. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    representatives. Next Steps Energy Awareness None conducted.PowerPoint presentation on energy awareness and Excel filesdegree Occasional energy efficiency awareness campaigns.

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01T23:59:59.000Z

    with absorption cooling District heating Alternative fuelsvery efficiently. District heating or a locally producedcooling (DOE, 2003b). District heating. District heating

  11. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Brown, Moya Melody, Camilla Dunham Whitehead, Rich

    2011-01-01T23:59:59.000Z

    MGD)—Weighted Average Total Use Treatment electricity costelectricity cost Units kWh kW kWh kW Source Water (by MGD)—Weighted Averagecosts are for electricity (EPRI, 2002). ? Groundwater systems use an average

  12. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    E-Print Network [OSTI]

    Letschert, Virginie E.

    2013-01-01T23:59:59.000Z

    systems for which heat pump water heaters are found to beachieved by 2030. Heat-pump water heaters, which represent aU.S. and the EU. Heat-pump water heaters have a high cost

  13. A cask maintenance facility feasibility study

    SciTech Connect (OSTI)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1989-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, ''green field'' facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. Fleet servicing facility studies, operational studies from current cask system operators, a definition of the CMF system requirements, and the experience of others in the radioactive waste transportation field were used as a basis for the feasibility study. In addition, several cask handling facilities were visited to observe and discuss cask operations to establish the functions and methods of cask maintenance expected to be used in the facility. Finally, a peer review meeting was held at Oak Ridge, Tennessee in August, 1988, in which the assumptions, design, layout, and functions of the CMF were significantly refined. Attendees included representatives from industry, the repository and transportation operations.

  14. Asphalt, Concrete, and Turf Maintenance and Preservation

    E-Print Network [OSTI]

    Minnesota, University of

    preventive maintenance, pavement distress and identification, and best practices for the maintenance Consultant WSB and Associates, Inc. 763-287-7184 jstewart@wsbeng.com #12;2 Preventive Maintenance Preventive maintenance and minor rehab, and is often used to repair environmental damage. Preventive maintenance narrows

  15. Optimal scheduling of fighter aircraft maintenance

    E-Print Network [OSTI]

    Cho, Philip Y

    2011-01-01T23:59:59.000Z

    The effective scheduling of fighter aircraft maintenance in the Air Force is crucial to overall mission accomplishment. An effective maintenance scheduling policy maximizes the use of maintenance resources and aircraft ...

  16. LEDs for Energy Efficient Greenhouse Lighting

    E-Print Network [OSTI]

    Singh, Devesh; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2014-01-01T23:59:59.000Z

    Light energy is an important factor for plant growth. In regions where the natural light source, i.e. solar radiation, is not sufficient for growth optimization, additional light sources are being used. Traditional light sources such as high pressure sodium lamps and other metal halide lamps are not very efficient and generate high radiant heat. Therefore, new sustainable solutions should be developed for energy efficient greenhouse lighting. Recent developments in the field of light source technologies have opened up new perspectives for sustainable and highly efficient light sources in the form of light-emitting diodes, i.e. LEDs, for greenhouse lighting. This review focuses on the potential of LEDs to replace traditional light sources in the greenhouse. In a comparative economic analysis of traditional vs. LED lighting, we show that the introduction of LEDs allows reduction of the production cost of vegetables in the long-run of several years, due to the high energy efficiency, low maintenance cost and lon...

  17. Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons

    E-Print Network [OSTI]

    A. Moujahid; A. d'Anjou; F. J. Torrealdea

    2012-03-05T23:59:59.000Z

    The use of spikes to carry information between brain areas implies complete or partial synchronization of the neurons involved. The degree of synchronization reached by two coupled systems and the energy cost of maintaining their synchronized behaviour is highly dependent on the nature of the systems. For non-identical systems the maintenance of a synchronized regime is energetically a costly process. In this work, we study conditions under which two non-identical electrically coupled neurons can reach an efficient regime of synchronization at low energy cost. We show that the energy consumption required to keep the synchronized regime can be spontaneously reduced if the receiving neuron has adaptive mechanisms able to bring its biological parameters closer in value to the corresponding ones in the sending neuron.

  18. Building Energy Efficient Schools

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.

    1985-01-01T23:59:59.000Z

    Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

  19. Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production

    SciTech Connect (OSTI)

    Albright, S.P.; Ackerman, B.; Chamberlin, R.R.; Jordan, J.F. (Photon Energy, Inc., El Paso, TX (United States))

    1992-04-01T23:59:59.000Z

    This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.

  20. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  1. ExxonMobil Olefins Plant Projects, Maintenance and Optimizations

    E-Print Network [OSTI]

    Neely, M. M.

    2014-01-01T23:59:59.000Z

    ExxonMobil Olefins Plant Projects, Maintenance and Optimizations Matt Neely Utilities Coordinator ExxonMobil Baytown Olefins Plant 2014 IETC May 21, 2014 ESL-IE-14-05-02 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... Orleans, LA. May 20-23, 2014 • ExxonMobil Approach to Energy Management • Baytown Complex • Steam Cracking 101 • Energy Efficiency Improvement Approach • Energy Efficiency Improvements Overview Baytown Olefins Plant ESL-IE-14-05-02 Proceedings...

  2. Renewable Energy Journal 2004, vol. 29, pp. 369-376. page 1 of 6 EVALUATION OF THE COST EFFICIENCY OF AN

    E-Print Network [OSTI]

    Gieseler, Udo D. J.

    of Building Physics and Solar Energy Walter-Flex-Str. 3, D-57068 Siegen, Germany http://nesa1.uni costs of the investment into advanced sustainable building. INTRODUCTION For cold and moderate climates, which is a pre-requisite for the usage of renewable energy sources like solar radiation. Moreover

  3. Predictive maintenance: Waterwall wastage

    SciTech Connect (OSTI)

    Rich, J.T.; Bilmanis, A. Jr.; Gandhi, R. [Potomac Electric Power Company, Washington, DC (United States)

    1996-07-01T23:59:59.000Z

    With the installation and use of burner systems to minimize NO, emissions, boiler waterwall wastage has become a more significant issue. This paper provides a description of an established inspection program to monitor waterwall wastage and other furnace issues that has now been developed into a predictive maintenance and condition-monitoring tool. This allows plant personnel to forecast the need for waterwall replacement activities and provides a basis for determining the effects of modifying boiler operating parameters affecting wastage. Potomac Electric Power Company (PEPCO), Washington, DC, has performed waterwall inspections of its boilers during planned overhauls for several years. These inspections consist of visual and ultrasonic thickness inspections of waterwall tubes at selected locations in the boiler. The ultrasonic thickness data collected is used to calculate current wastage rates, and to extrapolate tube wall thickness to the next planned outage. This information, along with the visual inspection data and panel replacement/repair history is used to select replacement and repair locations for the current outage, and to plan the replacement strategy for the next planned outage. A computer program has been developed to aid in the analysis of the data, and to provide plots of waterwall repair/replacement history as well as wall thickness and wastage rate information. The principal goals driving this program are to: (1) eliminate tube leaks between planned overhauls; (2) provide data to the outage managers for use in making replacement decisions; (3) determine wastage patterns; (4) forecast future replacement and repair needs; and (5) determine effect of changes to operating parameters on tube life. The waterwall condition monitoring program employed by PEPCO has proven to be successful in achieving its goals over the years. It must be emphasized that NDE is only one aspect of the program.

  4. Considerations for efficient airflow design in cleanrooms

    SciTech Connect (OSTI)

    Xu, Tengfang

    2004-07-29T23:59:59.000Z

    A high-performance cleanroom should provide efficient energy performance in addition to effective contamination control. Energy-efficient designs can yield capital and operational cost savings, and can be part of a strategy to improve productivity in the cleanroom industry. Based upon in-situ measurement data from ISO Class 5 clean rooms, this article discusses key factors affecting cleanroom air system performance and benefits of efficient airflow design in clean rooms. Cleanroom HVAC systems used in the semiconductor, pharmaceutical, and healthcare industries are very energy intensive, requiring large volumes of cleaned air to remove or dilute contaminants for satisfactory operations. There is a tendency, however, to design excessive airflow rates into cleanroom HVAC systems, due to factors such as design conservatism, lack of thorough understanding of airflow requirements, concerns about cleanliness reliability, and potential design and operational liabilities. Energy use of cleanroom environmental systems varies with system type and design, cleanroom functions, and the control of critical parameters such as temperature and humidity. In particular, cleanroom cleanliness requirements specified by cleanliness class have an impact on overall energy use. A previous study covering Europe and the US reveals annual cleanroom electricity usage for cooling and fan energy varies significantly depending on cleanliness class, and may account for up to three-quarters of total annual operating costs. A study on a semiconductor cleanroom in Japan found air delivery systems account for more than 30% of total power consumption. It is evident that the main factors dictating cleanroom operation energy include airflow rates and HVAC system efficiency. Improving energy efficiency in clean rooms may potentially contribute to significant savings in the initial costs of the facilities as well as operation and maintenance costs. For example, energy consumption by a typical chip manufacturer can be cut 40% or more, and the associated greenhouse emissions even more. Cleanroom HVAC systems provide huge opportunities for energy savings in the semiconductor industry. In addition to direct cost reductions in cleanroom investment and operation, energy-efficient designs can reduce maintenance costs, increase power reliability, improve time-to-market in cleanroom production, and improve environmental quality. Companies that use energy efficiency to lower costs and increase productivity can gain a competitive advantage and achieve a higher return on investment. In addition, energy-efficient cleanroom systems conserve energy and natural resources, heightening the company's reputation as an environmentally conscious leader in the community and the industry. A significant portion of energy use in cleanroom environmental systems is associated with recirculating air systems. We will review and analyze design factors and operational performance of airflow systems in ISO Class 5 clean rooms. We will also discuss benefits of efficient cleanroom airflow designs in conjunction with effective cleanroom contamination control. We will consider the following common recirculating air system designs: fan-tower (FT) with pressurized-plenum; distributed air handler unit (AHU); and fan-filter unit (FFU).

  5. Operations and Maintenance Program Management

    Broader source: Energy.gov [DOE]

    Effective management is critical to any operations and maintenance (O&M) program. The management function should bind the distinct parts of the O&M program into a cohesive entity.

  6. Operations and Maintenance Management Support

    Broader source: Energy.gov [DOE]

    Federal operations and maintenance (O&M) programs must gain full support from management to succeed. Management understanding and buying into the program elevates O&M importance and allows...

  7. Genetic variation and its maintenance

    SciTech Connect (OSTI)

    Roberts, D.F.; De Stefano, G.F.

    1986-01-01T23:59:59.000Z

    This book contains several papers divided among three sections. The section titles are: Genetic Diversity--Its Dimensions; Genetic Diversity--Its Origin and Maintenance; and Genetic Diversity--Applications and Problems of Complex Characters.

  8. Maintenance Practices for LED Streetlights

    Broader source: Energy.gov [DOE]

    This April 14, 2014 webinar answered important questions about the maintenance and reliability of LED streetlights, and how to take these issues into account when planning and preparing for a...

  9. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01T23:59:59.000Z

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  10. Contract and beyond GEMnet status and accomplishments: GSA's energy and maintenance network

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kinney, Satkartar; Levi, Mark; McBride, David; May, Stephen

    2002-05-01T23:59:59.000Z

    The U.S. General Services Administration Pacific Rim Region (Region 9), manages over 20 million gross square feet of federally owned office space, plus additional leased office space, for the federal government in California, Nevada, Arizona, Hawaii and the Pacific territories. To assist in this real estate management the Pacific Rim Region is developing the GSA Energy and Maintenance Network, or GEMnet. GEMnet is a collection of information technology initiatives, including remote monitoring and control to reduce operational costs by improving energy efficiency, reducing peak demand, and optimizing maintenance in buildings. Ultimately the various systems use a common database platform. This paper describes the status and plans for GEMnet, focusing on how it compares with related monitoring and information technology currently used in nonresidential buildings. This paper will also report on recent activities within the GEMnet purview, demand-shedding and retro-commissioning. For example, two large GSA office buildings in the San Francisco Bay Area participated in the California Independent System Operator (ISO) demand relief program (DRP) during the summer of 2001, shedding nearly 1 MW when called upon. In conjunction with the fielding of GEMnet related programs, a series of retro-commissioning projects is being implemented, scoped to the needs of particular buildings. Details on the BAS retro-commissioning at one building is presented.

  11. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    SciTech Connect (OSTI)

    Beardwood, E.S.

    1999-07-01T23:59:59.000Z

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  12. Substantial Maintenance Practices for Bridges on the Kansas State Highway System

    E-Print Network [OSTI]

    Hurt, Mark Anthony

    2013-05-31T23:59:59.000Z

    its existing infrastructure as efficiently as possible. This is particularly true in regard to its inventory of bridges. This project examines KDOT's practices for substantial maintenance of bridges in its inventory and, specifically, the work...

  13. Effects of Dietary Energy Density and Intake on Maintenance Energy Requirements in Beef Cows

    E-Print Network [OSTI]

    Trubenbach, Levi Anthony

    2014-12-11T23:59:59.000Z

    nutritional manipulation strategies to optimize cow efficiency. An experiment was conducted to analyze the effects of dietary energy density and intake on maintenance energy requirements in beef cows. In a 2 x 2 factorial treatment arrangement, thirty...

  14. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect (OSTI)

    Fatemi, H.

    2012-07-01T23:59:59.000Z

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  15. Energy cost reduction in the synchronization of a pair of nonidentical coupled Hindmarsh-Rose neurons

    E-Print Network [OSTI]

    A. Moujahid; A. D'Anjou; F. J. Torrealdea; C. Sarasola

    2012-04-17T23:59:59.000Z

    Many biological processes involve synchronization between nonequivalent systems, i.e, systems where the difference is limited to a rather small parameter mismatch. The maintenance of the synchronized regime in this cases is energetically costly \\cite{1}. This work studies the energy implications of synchronization phenomena in a pair of structurally flexible coupled neurons that interact through electrical coupling. We show that the forced synchronization between two nonidentical neurons creates appropriate conditions for an efficient actuation of adaptive laws able to make the neurons structurally approach their behaviours in order to decrease the flow of energy required to maintain the synchronization regime.

  16. Energy cost reduction in the synchronization of a pair of nonidentical coupled Hindmarsh-Rose neurons

    E-Print Network [OSTI]

    Moujahid, A; Torrealdea, F J; Sarasola, C; 10.1007/978-3-642-12433-4_77

    2012-01-01T23:59:59.000Z

    Many biological processes involve synchronization between nonequivalent systems, i.e, systems where the difference is limited to a rather small parameter mismatch. The maintenance of the synchronized regime in this cases is energetically costly \\cite{1}. This work studies the energy implications of synchronization phenomena in a pair of structurally flexible coupled neurons that interact through electrical coupling. We show that the forced synchronization between two nonidentical neurons creates appropriate conditions for an efficient actuation of adaptive laws able to make the neurons structurally approach their behaviours in order to decrease the flow of energy required to maintain the synchronization regime.

  17. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs cfdblastfurnace.pdf More...

  18. Module 10: Maintenance and Fueling Guidelines

    Broader source: Energy.gov [DOE]

    This course covers safety guidelines for hydrogen, safe maintenance facilities, safety guidelines for hydrogen fueling facilities

  19. Dynamic Scheduling of Maintenance Activities Under Uncertainties

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the required treatment. There are mainly two types of maintenance activities: the preventive maintenance, whoseDynamic Scheduling of Maintenance Activities Under Uncertainties Fran¸cois Marmier, Christophe in maintenance services field where the different practical knowledges or skills are their working tools. We

  20. Operations and Maintenance Manual for Large Aperture Scanner System

    SciTech Connect (OSTI)

    Jones, Anthony M.; Hall, Thomas E.

    2010-04-08T23:59:59.000Z

    Operations and maintenance manual includes detailed instructions for system assembly, use, and maintenance.

  1. NATIONAL CENTRE FOR BIOLOGICAL SCIENCES Annual Maintenance Contract for Electrical Systems in

    E-Print Network [OSTI]

    Udgaonkar, Jayant B.

    Maintenance Contract for Electrical systems including substations in Mandara hostel-CB site, NCBS : Rs.47,729.00 4. COST OF TENDER DOCUMENT : Rs. 500/- 5. SALE PERIOD : 13/12/2013 TO 23/12/2013 6. TIME:________________DATE:____________ __________________________________ FOR A SUM OF RS. ________________ TOWARDS __________________________________THE COST OF TENDER DOCUMENT

  2. A Study of the Key Variables Affecting Bus Replacement Age Decisions and1 Total Costs2

    E-Print Network [OSTI]

    Bertini, Robert L.

    A Study of the Key Variables Affecting Bus Replacement Age Decisions and1 Total Costs2 3 Jesse operational3 and maintenance (O&M) per-mile costs increase as buses age. From a purely economic4 perspective, there is a cost tradeoff between the lower O&M costs of newer fleets and their5 higher initial capital costs

  3. Operating Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

  4. Development of Methodology for Determination of Energy efficient and Cost effective Measures in Existing Single-family Residential Buildings using Easy-to-use Simulation

    E-Print Network [OSTI]

    Kim, K.H; Haberl, J.S.

    by estimating the 1 Corresponding author. Tel.: +82-10-4642-6290; Email address: keehankim@outlook.com (K.H. Kim) ESL-PA-14-07-02 2 energy savings and cost effectiveness of each measure [2... of the potential ECMs, which includes a calculation of annual energy savings and pay-back period of the potential ECMs. At first, in order to model a standard house that is compliant with the 2009 IECC using the DDP, the performance path alternative provided...

  5. Decommissioning Unit Cost Data

    SciTech Connect (OSTI)

    Sanford, P. C.; Stevens, J. L.; Brandt, R.

    2002-02-26T23:59:59.000Z

    The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

  6. Breckinridge Project, initial effort. Report IX. Operating cost estimate

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Operating costs are normally broken into three major categories: variable costs including raw materials, annual catalyst and chemicals, and utilities; semi-variable costs including labor and labor related cost; and fixed or capital related charges. The raw materials and utilities costs are proportional to production; however, a small component of utilities cost is independent of production. The catalyst and chemicals costs are also normally proportional to production. Semi-variable costs include direct labor, maintenance labor, labor supervision, contract maintenance, maintenance materials, payroll overheads, operation supplies, and general overhead and administration. Fixed costs include local taxes, insurance and the time value of the capital investment. The latter charge often includes the investor's anticipated return on investment. In determining operating costs for financial analysis, return on investment (ROI) and depreciation are not treated as cash operating costs. These costs are developed in the financial analysis; the annual operating cost determined here omits ROI and depreciation. Project Annual Operating Costs are summarized in Table 1. Detailed supporting information for the cost elements listed below is included in the following sections: Electrical, catalyst and chemicals, and salaries and wages.

  7. Opportune maintenance and predictive maintenance decision support douard Thomas, ric Levrat, Benoit Iung, Pierre Cocheteux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : When to perform a particular maintenance action? What components should benefit from a preventive maintenance action? Which components should first benefit from a preventive maintenance interventionOpportune maintenance and predictive maintenance decision support Ã?douard Thomas, Ã?ric Levrat

  8. Airline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches

    E-Print Network [OSTI]

    -based. The preventative alternative involves the transmission of maintenance data to maintenance personnel whenAirline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches Mike Dupuy, Dan Wesely, Cody Jenkins Abstract ­ Airline maintenance is a significant contributor

  9. Development of low-maintenance end treatment for concrete barriers

    E-Print Network [OSTI]

    Sicking, Dean

    1987-01-01T23:59:59.000Z

    . Ross, Jr. A low maintenance crash cushion end treatment for concrete safety shaped barriers was developed. The cushion has no sacrificial elements and utilizes rubber cylinders for impact attenuation cells. A prototype design was subjected to six... full scale crash tests and was shown to meet nationally recognized impact performance standards. Costs and labor required to restore the end treatment after most impacts will be considerably less than any other operational end treatment. Various...

  10. Assessment of light water reactor power plant cost and ultra-acceleration depreciation financing

    E-Print Network [OSTI]

    El-Magboub, Sadek Abdulhafid.

    Although in many regions of the U.S. the least expensive electricity is generated from light-water reactor (LWR) plants, the fixed (capital plus operation and maintenance) cost has increased to the level where the cost ...

  11. Kissimmee Utility Authority- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kissimmee Utility Authority (KUA) offers several rebates to commercial customers for energy efficiency improvements. Rebates are available for HVAC maintenance, heat pumps, duct leak repairs,...

  12. Best Management Practice #5: Water-Efficient Irrigation

    Broader source: Energy.gov [DOE]

    Water efficiency must be considered from the initial irrigation system design phase through installation to ensure optimal performance. Consistent management and maintenance is also essential.

  13. Best Practices Implementation for Hydropower Efficiency and Utilization Improvement

    SciTech Connect (OSTI)

    Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

    2012-01-01T23:59:59.000Z

    By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

  14. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  15. Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs

    E-Print Network [OSTI]

    Viar, W. L.

    1979-01-01T23:59:59.000Z

    . It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors...

  16. On the development of a low-cost lithographic interferometer

    E-Print Network [OSTI]

    Korre, Hasan

    2010-01-01T23:59:59.000Z

    Interference lithography is a technique for making one- and two-dimensional periodic nanostructures using interference of two coherent light beams. Despite their successes, the size, maintenance, and cost of interference ...

  17. Iron production maintenance effectiveness system

    SciTech Connect (OSTI)

    Augstman, J.J. [Dofasco Inc., Hamilton, Ontario (Canada)

    1996-12-31T23:59:59.000Z

    In 1989, an internal study in the Coke and Iron Maintenance Department identified the opportunities available to increase production, by decreasing unscheduled maintenance delays from 4.6%. A five year front loaded plan was developed, and presented to the company president. The plan required an initial investment of $1.4 million and a conservative break-even point was calculated to be 2.5 years. Due to budget restraints, it would have to be self-funded, i.e., generate additional production or savings, to pay for the program. The program began in 1991 at number 2 coke plant and the blast furnaces. This paper will describe the Iron Production Maintenance Effectiveness System (ME), which began with the mechanical and pipefitting trades.

  18. A Predictive Maintenance Policy Based on the Blade of Offshore Wind Wenjin Zhu, Troyes University of Technology

    E-Print Network [OSTI]

    McCalley, James D.

    A Predictive Maintenance Policy Based on the Blade of Offshore Wind Turbine Wenjin Zhu, Troyes onshore to offshore locations [1]. As offshore wind turbines are located at remote sites withlimited]. Operation and maintenance (O&M) costs of off-shore wind turbines contribute about 25-30% to the total energy

  19. Treatment Resin Reduces Costs, Materials in Hanford Groundwater...

    Office of Environmental Management (EM)

    Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than 6 million in cost savings, 3 million in annual savings Treatment Resin...

  20. HTGR Cost Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01T23:59:59.000Z

    The High Temperature Gas-Cooler Reactor (HTGR) Cost Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Cost Model calculates an estimate of the capital costs, annual operating and maintenance costs, and decommissioning costs for a high-temperature gas-cooled reactor. The user can generate these costs for multiple reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for a single or four-pack configuration; and for a reactor size of 350 or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Cost Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Cost Model. This model was design for users who are familiar with the HTGR design and Excel. Modification of the HTGR Cost Model should only be performed by users familiar with Excel and Visual Basic.

  1. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    SciTech Connect (OSTI)

    None

    2010-09-14T23:59:59.000Z

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10 times smaller than existing chargers.

  2. Commercialization of High Efficiency Low Cost CIGS Technology Based on Electroplating: Final Technical Progress Report, 28 September 2007 - 30 June 2009

    SciTech Connect (OSTI)

    Basol, B.

    2010-08-01T23:59:59.000Z

    This report describes SoloPower's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. The project focused on SoloPower's electrodeposition-based copper indium gallium (di)selenide (CIGS) technology. Under this subcontract, SoloPower improved the quality of its flexible metal substrates, increased the size of its solar cells from 0.5 cm2 to 120 cm2, increased the small-area cell efficiencies from near 11% to near 14%, demonstrated large-area cells, and developed a module manufacturing process.

  3. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

  4. Life Cycle Cost Analysis for Sustainable Buildings

    Broader source: Energy.gov [DOE]

    To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments.

  5. Maintenance FUSION IGNITION RESEARCH EXPERIMENT

    E-Print Network [OSTI]

    Insulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex

  6. Surveillance & Maintenance: The Requirements Based Surveillance and Maintenance Review Process (RBSM)

    Broader source: Energy.gov [DOE]

    Overall direction for surveillance and maintenance of excess facilities is addressed in DOE G 430.1-2, IMPLEMENTATION GUIDE FOR SURVEILLANCE AND MAINTENANCE DURING FACILITY TRANSITION AND...

  7. Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology. Annual subcontract report, 1 August 1991--31 July 1992

    SciTech Connect (OSTI)

    Vernon, S.M. [Spire Corp., Bedford, MA (United States)

    1993-04-01T23:59:59.000Z

    This report describes work to develop technology to deposit GaAs on Si using a nucleation layer of atomic-layer-epitaxy-grown GaAs or AlAs on Si. This ensures two-dimensional nucleation and should lead to fewer defects in the final GaAs layer. As an alternative, we also developed technology for depositing GaAs on sawtooth-patterned Si. Preliminary studies showed that this material can have a very low defect density, {approximately} 1 {times} 10{sup 5} cm{sup {minus}5}, as opposed to our conventionally grown GaAs on SL which has a typical defect density of over 1 {times}10{sup 7} cm{sup {minus}2}. Using these two now methods of GaAs-on-Si material growth, we made solar cells that are expected to show higher efficiencies than those of previous cells.

  8. Efficient Phase-Change Materials: Development of a Low-Cost Thermal Energy Storage System Using Phase-Change Materials with Enhanced Radiation Heat Transfer

    SciTech Connect (OSTI)

    None

    2011-12-05T23:59:59.000Z

    HEATS Project: USF is developing low-cost, high-temperature phase-change materials (PCMs) for use in thermal energy storage systems. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Most PCMs do not conduct heat very well. Using an innovative, electroless encapsulation technique, USF is enhancing the heat transfer capability of its PCMs. The inner walls of the capsules will be lined with a corrosion-resistant, high-infrared emissivity coating, and the absorptivity of the PCM will be controlled with the addition of nano-sized particles. USF’s PCMs remain stable at temperatures from 600 to 1,000°C and can be used for solar thermal power storage, nuclear thermal power storage, and other applications.

  9. Public release of optimization of metallization scheme for thin emitter wrap-through solar cells for higher efficiency, reduced precious metal costs, and reduced stress.

    SciTech Connect (OSTI)

    Ruby, Douglas Scott; Murphy, Brian (Advent Solar, Inc., Albuquerque, NM); Meakin, David (Advent Solar, Inc., Albuquerque, NM); Dominguez, Jason (Advent Solar, Inc., Albuquerque, NM); Hacke, Peter (Advent Solar, Inc., Albuquerque, NM)

    2008-08-01T23:59:59.000Z

    Back-contact crystalline-silicon photovoltaic solar cells and modules offer a number of advantages, including the elimination of grid shadowing losses, reduced cost through use of thinner silicon substrates, simpler module assembly, and improved aesthetics. While the existing edge tab method for interconnecting and stringing edge-connected back contact cells is acceptably straightforward and reliable, there are further gains to be exploited when you have both contact polarities on one side of the cell. In this work, we produce 'busbarless' emitter wrap-through solar cells that use 41% of the gridline silver (Ag) metallization mass compared to the edge tab design. Further, series resistance power losses are reduced by extraction of current from more places on the cell rear, leading to a fill factor improvement of about 6% (relative) on the module level. Series resistance and current-generation losses associated with large rear bondpads and busbars are eliminated. Use of thin silicon (Si) wafers is enabled because of the reduced Ag metallization mass and by interconnection with conductive adhesives leading to reduced bow. The busbarless cell design interconnected with conductive adhesives passes typical International Electrotechnical Commission damp heat and thermal cycling test.

  10. ENTRY LOBBY ENERGY EFFICIENCY

    E-Print Network [OSTI]

    Escher, Christine

    ENTRY LOBBY ENERGY EFFICIENCY Clerestory windows provide natural day-lighting.· Exterior roof SUSTAINABILITY FEATURES #12;ADMINISTRATION ENERGY EFFICIENCY High performance window glazing· minimizes heat gain. Skylights provide natural day-lighting.· High-efficiency lighting reduces energy· costs and heat gain

  11. Improving maintenance work flow processes in a volatile assembly factory environment : maintenance people and processes, spares inventory, and equipment reliability

    E-Print Network [OSTI]

    Chase, H. Ryan (Harold Ryan)

    2005-01-01T23:59:59.000Z

    Many manufacturing companies face significant challenges in maintaining their factory equipment in a cost efficient manner so as to provide reliable production capacity. CEI (Consumer Electronics, Inc., a pseudonym for an ...

  12. Contracting with reading costs and renegotiation costs

    E-Print Network [OSTI]

    Brennan, James R.

    2007-01-01T23:59:59.000Z

    Reading Costs, Competition, and ContractReading Costs . . . . . . . . . . . . . . . . C. EquilibriumUnconscionability A?ect Reading Costs . . . . . . . . . .

  13. National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    SciTech Connect (OSTI)

    Thornton, Brian; Halverson, Mark A.; Myer, Michael; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-11-30T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  14. Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007

    SciTech Connect (OSTI)

    Thornton, Brian A.; Halverson, Mark A.; Myer, Michael; Cho, Hee Jin; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

    2013-06-18T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

  15. Idaho Power- Irrigation Efficiency Rewards Rebate Program

    Broader source: Energy.gov [DOE]

    Through Idaho Power's Irrigation Efficiency Rewards program, agricultural irrigation customers qualify to receive an incentive for a portion of the cost to install a new, more efficient irrigation...

  16. Modeling and Simulation of HVAC Faulty Operations and Performance Degradation due to Maintenance Issues

    SciTech Connect (OSTI)

    Wang, Liping; Hong, Tianzhen

    2013-01-01T23:59:59.000Z

    Almost half of the total energy used in the U.S. buildings is consumed by heating, ventilation and air conditionings (HVAC) according to EIA statistics. Among various driving factors to energy performance of building, operations and maintenance play a significant role. Many researches have been done to look at design efficiencies and operational controls for improving energy performance of buildings, but very few study the impacts of HVAC systems maintenance. Different practices of HVAC system maintenance can result in substantial differences in building energy use. If a piece of HVAC equipment is not well maintained, its performance will degrade. If sensors used for control purpose are not calibrated, not only building energy usage could be dramatically increased, but also mechanical systems may not be able to satisfy indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, improve occupant comfort, and prolong equipment service life. In the paper, maintenance practices for HVAC systems are presented based on literature reviews and discussions with HVAC engineers, building operators, facility managers, and commissioning agents. We categorize the maintenance practices into three levels depending on the maintenance effort and coverage: 1) proactive, performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) reactive, unplanned or no maintenance. A sampled list of maintenance issues, including cooling tower fouling, boiler/chiller fouling, refrigerant over or under charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters are investigated in this study using field survey data and detailed simulation models. The energy impacts of both individual maintenance issue and combined scenarios for an office building with central VAV systems and central plant were evaluated by EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 2) using the energy management system feature of EnergyPlus, and 3) modifying EnergyPlus source code. The results demonstrated the importance of maintenance for HVAC systems on energy performance of buildings. The research is intended to provide a guideline to help practitioners and building operators to gain the knowledge of maintaining HVAC systems in efficient operations, and prioritize HVAC maintenance work plan. The paper also discusses challenges of modeling building maintenance issues using energy simulation programs.

  17. Improving maintenance operation through transformational outsourcing

    E-Print Network [OSTI]

    Ye, Jacqueline Ming-Shih

    2007-01-01T23:59:59.000Z

    Outsourcing maintenance to third-party contractors has become an increasingly popular option for manufacturers to achieve tactical and/or strategic objectives. Though simple in concept, maintenance outsourcing is difficult ...

  18. Information Technology for Energy and Maintenance Management 

    E-Print Network [OSTI]

    Villafana, L.; Federspiel, C.

    2003-01-01T23:59:59.000Z

    and control systems (EMCS) to recommend what maintenance personnel should do in response to a maintenance service request. MORE integrates text descriptions of problems with sensor information related to the problem. After work orders are closed, MORE uses...

  19. Information Technology for Energy and Maintenance Management

    E-Print Network [OSTI]

    Villafana, L.; Federspiel, C.

    2003-01-01T23:59:59.000Z

    and control systems (EMCS) to recommend what maintenance personnel should do in response to a maintenance service request. MORE integrates text descriptions of problems with sensor information related to the problem. After work orders are closed, MORE uses...

  20. Low Cost High Efficiency InP-Based Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-09-344

    SciTech Connect (OSTI)

    Wanlass, M.

    2012-07-01T23:59:59.000Z

    NREL will develop a method of growing and fabricating single junction InP solar cells on 2-inch InP substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 4-inch InP substrates. NREL will develop a method of growing and fabricating single junction InP solar cells, including a metamorphic layer, on 2-inch GaAs substrates on which a release layer has been deposited by MicroLink Devices. NREL will transfer to MicroLink the details of the InP solar cell layer structure and test results in order that the 2-inch results can be replicated on 6-inch GaAs substrates. NREL will perform characterization measurements of the solar cells, including I-V and quantum efficiency measurements at AM1.5 1-sun.

  1. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    E-Print Network [OSTI]

    Lu, Jun; Wang, Jinsu; Suda, Tatsuya

    2007-01-01T23:59:59.000Z

    an ef- ficient coverage maintenance protocol for distributedArticle Scalable Coverage Maintenance for Dense Wirelessbattery energy. Coverage maintenance schemes can e?ectively

  2. Adolescents' Maintenance of Family Connectedness in Their Everyday Lives

    E-Print Network [OSTI]

    Tsai, Kim M

    2014-01-01T23:59:59.000Z

    may challenge adolescents’ maintenance of leisure time withLos Angeles Adolescents’ Maintenance of Family ConnectednessAdolescents’ Maintenance of Family Connectedness in Their

  3. Mechanisms Regulating Specification and Maintenance of Pancreatic Cell Fate

    E-Print Network [OSTI]

    Kanji, Murtaza Shabbir

    2013-01-01T23:59:59.000Z

    et al. , SOX9 is required for maintenance of the pancreaticstem cells for tissue maintenance? Cell Cycle, 2004. 3(9):cell specification and maintenance. ” Larry Hillblom Islet

  4. Dialect Contact, Convergence, and Maintenance in Oregon Athabaskan

    E-Print Network [OSTI]

    Spence, Justin

    2013-01-01T23:59:59.000Z

    Contact, Convergence, and Maintenance in Oregon AthabaskanContact, Convergence, and Maintenance in Oregon Athabaskan Jcases of dialect maintenance presented in §5 show that not

  5. USE OF EMBEDDED MICROCOMPUTERS IN SYSTEM DEBUGGING AND MAINTENANCE

    E-Print Network [OSTI]

    Meng, John

    2014-01-01T23:59:59.000Z

    IN SYSTEM DEBUGGING AND MAINTENANCE John Meng and Dan WeaverIN SYSTEM DEBUGGING AND MAINTENANCE John Meng and Dan Weaverflexible debugging and maintenance devices by switching in

  6. Robust Maintenance Policies for Markovian Systems under Model Uncertainty

    E-Print Network [OSTI]

    Kuhn, Kenneth D.; Madanat, Samer M.

    2005-01-01T23:59:59.000Z

    Robust Maintenance Policies for Markovian Systems underWu, M.I. (1987), Optimal maintenance decisions for pavementapproach may reduce maintenance and rehabilitation (M&R)

  7. WSDOT highway maintenance: environmental compliance for protected terrestrial species

    E-Print Network [OSTI]

    O’Brien, Tracie; Carey, Marion; Forrester, Bret

    2005-01-01T23:59:59.000Z

    of the WSDOT Highway Maintenance: Environmental Complianceand the Highway Maintenance Manual for Terrestrial Species.to impacts from routine maintenance activities. In response

  8. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes.

    E-Print Network [OSTI]

    Walthers, Christopher

    2014-01-01T23:59:59.000Z

    smooth muscle cell maintenance by basic fibroblast growthsmooth muscle cell maintenance by basic fibroblast growthsmooth muscle cell maintenance by basic fibroblast growth

  9. Robust maintenance policies for Markovian systems under model uncertainty

    E-Print Network [OSTI]

    Kuhn, K D; Madanat, S M

    2006-01-01T23:59:59.000Z

    Robust Maintenance Policies for Markovian Systems underWu, M.I. (1987), Optimal maintenance decisions for pavementapproach may reduce maintenance and rehabilitation (M&R)

  10. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

  11. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    E. and Galitsky, C. , 2004. Energy-efficiency improvementL. , 2008 , Energy-efficiency improvement opportunities forMasanet, E. , 2010. Energy-efficiency Improvement and Cost

  12. Thermodynamics, Entropy, Information and the Efficiency of Solar Cells

    E-Print Network [OSTI]

    Abrams, Zeev R.

    2012-01-01T23:59:59.000Z

    Generation Photovoltaics: Ultra-High Conversion EfficiencyPhotovoltaics, as a Function of Cost and Efficiency. The ‘EFFICIENCY OF A LATERALLY ENGINEERED ARCHITECTURE FOR PHOTOVOLTAICS,

  13. Energy Efficiency Country Study: Republic Of South Africa

    E-Print Network [OSTI]

    Can, Stephane de la Rue du

    2014-01-01T23:59:59.000Z

    Rules for Energy Efficiency and Demand Side Management (to support the Energy Efficiency and Demand Side Management,costs for DSM, energy efficiency and demand- reduction

  14. STANDARD OPERATING PROCEDURES Annual Site Maintenance

    E-Print Network [OSTI]

    Fischer, Emily V.

    IMPROVE STANDARD OPERATING PROCEDURES SOP 226 Annual Site Maintenance Date Last Modified Modified This standard operating procedure (SOP) describes the procedures for annual maintenance of equipment Sampler Operation Manual #12;SOP 226: Annual Site Maintenance 3 1.0 PURPOSE AND APPLICABILITY

  15. Maintenance and Prevention: Formalization and Fixpoint Characterization

    E-Print Network [OSTI]

    Maintenance and Prevention: Formalization and Fixpoint Characterization Munindar P. Singh Maintenance and prevention are important concepts in the science of intel­ ligent systems, yet serious research attention. Maintenance and prevention are duals of each other, but cannot be reduced

  16. ROBUSTNESS MEASURE FOR FUZZY MAINTENANCE ACTIVITIES SCHEDULE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    activities: the preventive maintenance, whose activities can be long term planned, and the correctiveROBUSTNESS MEASURE FOR FUZZY MAINTENANCE ACTIVITIES SCHEDULE François MARMIER , Christophe VARNIER. Especially in the field of maintenance services where the different practical knowledge or skills

  17. Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing

    E-Print Network [OSTI]

    Marcus, Steven I.

    1 Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Xiaodong Yao, Emmanuel on Control Applications in 2001. #12;2 Abstract Preventive Maintenance (PM) scheduling is a very challenging schedule with that of a baseline reference schedule are also presented. Index Terms preventive maintenance

  18. Prognostics for the Maintenance of Distributed Systems

    E-Print Network [OSTI]

    Pencolé, Yannick

    but also higher level function prognosis. I. INTRODUCTION In the classical case, preventive maintenance of preventive maintenance for complex systems. In this sense, a distributed system can be split down into a setPrognostics for the Maintenance of Distributed Systems Pauline Ribot, Yannick Pencol´e and Michel

  19. Preventative Maintenance (PM) Policy Outline the policy regarding preventative vehicle maintenance on University of Michigan (U-

    E-Print Network [OSTI]

    Kirschner, Denise

    Preventative Maintenance (PM) Policy Objective Outline the policy regarding preventative vehicle maintenance on University of Michigan (U- M) vehicles. Policy 1. All maintenance performed on U-M vehicles their own campus maintenance facility to repair their fleet vehicles. 2. To ensure proper stewardship of U

  20. Vehicle Maintenance Policy Outline the policy regarding vehicle maintenance at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Maintenance Policy Objective Outline the policy regarding vehicle maintenance at University of Michigan (U-M). Policy 1. All maintenance performed on U-M vehicles must be coordinated through Garage to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine maintenance

  1. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    photovoltaics which has long realized the importance of scalability and the interplay between cost/m 2 , efficiency,

  2. Indexing Methods for Efficient Parsing Cosmin Munteanu

    E-Print Network [OSTI]

    Toronto, University of

    lengthy train- ing phases. Our goal is to obtain a reliable method that exhibits an optimal efficiency/cost

  3. THE UNIVERSITY OF WISCONSIN-MILWAUKEE FACILITIES AND ADMINISTRATIVE (INDIRECT) COSTS POLICY

    E-Print Network [OSTI]

    Saldin, Dilano

    THE UNIVERSITY OF WISCONSIN-MILWAUKEE FACILITIES AND ADMINISTRATIVE (INDIRECT) COSTS POLICY Facilities and Administrative (Indirect) costs are real costs that provide reimbursement for actual or contract. The costs result from shared services such as libraries, plant operation and maintenance, utility

  4. A Low-Cost Distributed Instrumentation System for Monitoring, Identifying and Diagnosing Irregular Patterns of Behavior in Critical ITS Components

    E-Print Network [OSTI]

    Havlicek, Joebob

    to the unacceptably high cost of ITS equipment failures, preventative maintenance and dense operational testing and execution of ITS equipment maintenance plans. In Oklahoma, information acquired by the DIS has been successfully integrated into a wide range of operation and maintenance (O&M) planning, which has led

  5. High Efficiency Fans and High Efficiency Electrical Motors

    E-Print Network [OSTI]

    Breedlove, C. W.

    Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin...

  6. Improve Your Boiler's Combustion Efficiency

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. Optimal Joint Preventive Maintenance and Production Policies* Xiaodong Yao

    E-Print Network [OSTI]

    Marcus, Steven I.

    Optimal Joint Preventive Maintenance and Production Policies* Xiaodong Yao SAS Institute Inc. Cary preventive maintenance (PM) and production policies for an unreliable production-inventory system in which to establish some additional structural properties. Keywords: optimal preventive maintenance, joint maintenance

  8. Pacific Northwest Laboratory Maintenance Implementation plan

    SciTech Connect (OSTI)

    Bright, J.D.

    1992-06-01T23:59:59.000Z

    This Maintenance Implementation plan has been developed for Pacific Northwest Laboratory`s (PNL) Nuclear Facilities: 306W, 324, 325, 327 and 329NMF. It is based on a graded approach, self-assessment of the existing maintenance program(s) per the requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter II, Change {number_sign}3. The results of this assessment were evaluated to determine needed improvements in PNL Craft Services` current maintenance program. The objective of this implementation plan is to provide baseline information for compliance to the DOE 4330.4A, and for needed improvements. The prime consideration in applying a graded approach to the Order has been to maintain safe and reliable operations, environmental compliance, safeguards and security, programmatic mission, facility preservation, and/or other facility-specific requirements. Using the results of the self-assessment, PNL has selected nine of the 18 elements of the Maintenance Program defined by DOE Order 4330.4A for improvement. The elements selected for improvement are Training and Qualification of Maintenance Personnel; Maintenance Procedures; Planning, Scheduling, and Coordination of Maintenance; Control of Maintenance Activities; Post-Maintenance Testing; Facility Condition Inspection; Management Involvement; Maintenance History; and Additional Maintenance Requirements. Based upon graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

  9. Pacific Northwest Laboratory Maintenance Implementation plan

    SciTech Connect (OSTI)

    Bright, J.D.

    1992-06-01T23:59:59.000Z

    This Maintenance Implementation plan has been developed for Pacific Northwest Laboratory's (PNL) Nuclear Facilities: 306W, 324, 325, 327 and 329NMF. It is based on a graded approach, self-assessment of the existing maintenance program(s) per the requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter II, Change {number sign}3. The results of this assessment were evaluated to determine needed improvements in PNL Craft Services' current maintenance program. The objective of this implementation plan is to provide baseline information for compliance to the DOE 4330.4A, and for needed improvements. The prime consideration in applying a graded approach to the Order has been to maintain safe and reliable operations, environmental compliance, safeguards and security, programmatic mission, facility preservation, and/or other facility-specific requirements. Using the results of the self-assessment, PNL has selected nine of the 18 elements of the Maintenance Program defined by DOE Order 4330.4A for improvement. The elements selected for improvement are Training and Qualification of Maintenance Personnel; Maintenance Procedures; Planning, Scheduling, and Coordination of Maintenance; Control of Maintenance Activities; Post-Maintenance Testing; Facility Condition Inspection; Management Involvement; Maintenance History; and Additional Maintenance Requirements. Based upon graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

  10. Performance Contracting and Energy Efficiency in the State Government Market

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Goldman, Charles; Gilligan, Donald; Singer, Terry E.; Birr, David; Donahue, Patricia; Serota, Scott

    2008-11-14T23:59:59.000Z

    There is growing interest in energy efficiency (EE) among state policymakers as a result of increasing environmental concerns, rising electricity and natural gas prices, and lean economic times that motivate states to look more aggressively for cost-saving opportunities in public sector buildings. One logical place for state policymakers to demonstrate their commitment to energy efficiency is to 'lead by example' by developing and implementing strategies to reduce the energy consumption of state government facilities through investments in energy efficient technologies. Traditionally, energy efficiency improvements at state government facilities are viewed as a subset in the general category of building maintenance and construction. These projects are typically funded through direct appropriations. However, energy efficiency projects are often delayed or reduced in scope whereby not all cost-effective measures are implemented because many states have tight capital budgets. Energy Savings Performance Contracting (ESPC) offers a potentially useful strategy for state program and facility managers to proactively finance and develop energy efficiency projects. In an ESPC project, Energy Service Companies (ESCOs) typically guarantee that the energy and cost savings produced by the project will equal or exceed all costs associated with implementing the project over the term of the contract. ESCOs typically provide turnkey design, installation, and maintenance services and also help arrange project financing. Between 1990 and 2006, U.S. ESCOs reported market activity of {approx}$28 Billion, with about {approx}75-80% of that activity concentrated in the institutional markets (K-12 schools, colleges/universities, state/local/federal government and hospitals). In this study, we review the magnitude of energy efficiency investment in state facilities and identify 'best practices' while employing performance contracting in the state government sector. The state government market is defined to include state offices, state universities, correctional facilities, and other state facilities. This study is part of a series of reports prepared by Lawrence Berkeley National Laboratory (LBNL) and the National Association of Energy Services Companies (NAESCO) on the ESCO market and industry trends. The scope of previous reports was much broader: Goldman et al. (2002) analyzed ESCO project costs and savings in public and private sector facilities, Hopper et al. (2005) focused on ESCO project activity in all public and institutional sectors, while Hopper et al (2007) provided aggregate results of a comprehensive survey of ESCOs on current industry activity and future prospects. We decided to focus the current study on ESCO and energy efficiency activity and potential market barriers in the state government market because previous studies suggested that this institutional sector has significant remaining energy efficiency opportunities. Moreover, ESCO activity in the state government market has lagged behind other institutional markets (e.g., K-12 schools, local governments, and the federal market). Our primary objectives were as follows: (1) Assess existing state agency energy information and data sources that could be utilized to develop performance metrics to assess progress among ESPC programs in states; (2) Conduct a comparative review of the performance of selected state ESPC programs in reducing energy usage and costs in state government buildings; and (3) Delineate the extent to which state government sector facilities are implementing energy efficiency projects apart from ESPC programs using other strategies (e.g. utility ratepayer-funded energy efficiency programs, loan funds).

  11. Electric Motor Maintenance & Repair for Long Term Efficiency

    E-Print Network [OSTI]

    Brithinee, W. P.

    the assembled motor to operate cooler, thus reducing stator and rotor conductor losses. At full load, these are the majority of losses. Dynamic balancing of the rotor to minimize vi bration is always recommended. The energy produc ing vibration... ing be no greater than the current density of the origi nal winding. If winding and connection patterns are the same, that means specifying that the conductor cross-sectional area not be reduced. And, if original windings have aluminum conductors...

  12. Efficiency Lighting & Maintenance Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcology &Edisto Electric

  13. Engineering Fundamentals of Energy Efficiency

    E-Print Network [OSTI]

    Cullen, Jonathan M

    2010-03-16T23:59:59.000Z

    Using energy more efficiently is essential if carbon emissions are to be reduced. According to the International Energy Agency (IEA), energy efficiency improvements represent the largest and least costly savings in carbon emissions, even when...

  14. FY 2012 Real Property Deferred, Actual, and Required Maintenance...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FY 2013 Real Property Deferred, Actual, and Required Maintenance Reporting Requirement Real Property Maintenance Reporting Requirement Memorandum...

  15. CRAD, Maintenance - Los Alamos National Laboratory Waste Characterizat...

    Office of Environmental Management (EM)

    Maintenance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Maintenance - Los Alamos National Laboratory Waste Characterization,...

  16. Maintenance Assessment Plan - Developed By NNSA/Nevada Site Office...

    Broader source: Energy.gov (indexed) [DOE]

    MAINTENANCE Assessment Plan NNSANevada Site Office Facility Representative Division Performance Objective: An effective facilities maintenance program should optimize the material...

  17. Planning and Reporting for Operations and Maintenance in Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Maintenance Manual for ECMs including: New written operations procedures; Preventive maintenance work procedures and checklists. Project Acceptance IDIQ Attachment...

  18. A Study of Maintenance Contribution to a Joint Production and Preventive maintenance Scheduling Problem in the Robustness

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Study of Maintenance Contribution to a Joint Production and Preventive maintenance Scheduling production and Preventive Maintenance (PM) scheduling problem in the robustness framework. The contributions equipment reliability and performance loss under disruption Key words: Production, Preventive maintenance

  19. Application of Target Value Design to Energy Efficiency Investments

    E-Print Network [OSTI]

    Lee, Hyun Woo

    2012-01-01T23:59:59.000Z

    analyzing business operating costs (including energy costs)s business case for an energy retrofit project, the costBusiness Case for Enhancing Energy Efficiency .24 Reducing Energy Costs .

  20. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining% accuracy. ­ 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive ­ Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships · Capital Costs (or

  1. Second Line of Defense: Electronic Maintenance Reports, Local Maintenance Provider User Guide, Rev. 3

    SciTech Connect (OSTI)

    Leigh, Richard J.

    2012-09-01T23:59:59.000Z

    The Electronic Maintenance Report forms allow Local Maintenance Providers (LMP) and other program staff to enter maintenance information into a simple and secure system. This document describes the features and information required to complete the Maintenance Report forms. It is expected that all Corrective Maintenance Reports from LMPs will be submitted electronically into the SLD Portal. As an exception (e.g., when access to the SLD Portal is unavailable), Maintenance Reports can be submitted via a secure Adobe PDF form available through the Sustainability Manager assigned to each country.

  2. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    SciTech Connect (OSTI)

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31T23:59:59.000Z

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.

  3. BPAT Systems Maintenance - April 10, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: BPAT Systems Maintenance Posted Date: 4102015 BPAT's e-Tag and OASIS software vendor will be performing...

  4. BPAT Systems Maintenance - May 6, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notices Rates Standards of Conduct Tariff TF Web Based Training BPAT Systems Maintenance Posted date: 562015 BPAT's e-Tag and OASIS software vendor will be performing...

  5. BPAT Systems Maintenance - May 14, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notices Rates Standards of Conduct Tariff TF Web Based Training BPAT Systems Maintenance Posted Date: 5142015 BPAT's e-Tag and OASIS software vendor will be performing...

  6. BPAT Systems Maintenance - April 21, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notices Rates Standards of Conduct Tariff TF Web Based Training BPAT Systems Maintenance Posted Date: 4212015 BPAT's e-Tag and OASIS software vendor will be performing...

  7. BPAT Systems Maintenance - May 13, 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: BPAT Systems Maintenance Posted Date: 5132015 BPAT's e-Tag and OASIS software vendor will be performing...

  8. Sandia National Laboratories: Operations and Maintenance Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) The 2013 PV Operations and Maintenance Workshop, hosted by Sandia National...

  9. Risk-based budgeting for maintenance dredging

    SciTech Connect (OSTI)

    Walsh, M.R.; Moser, D.A. [Army Corps of Engineers, Ft. Belvoir, VA (United States). Inst. for Water Resources

    1994-12-31T23:59:59.000Z

    The US Army Corps of Engineers must estimate the budget required to conduct maintenance dredging at hundreds of sites across the country. The amount of funds needed to do the maintenance dredging is highly uncertain and there are risks associated with overestimates and underestimates. A risk-based approach to the budgeting process for maintenance dredging can help identify the uncertainty and assess and manage the associated risk. A concept and preliminary plan for a risk-based approach for developing budgets for maintenance dredging is presented.

  10. Scheduling with Fixed Maintenance, Shared Resources and ...

    E-Print Network [OSTI]

    Christina N Burt

    2014-11-30T23:59:59.000Z

    Nov 30, 2014 ... Scheduling with Fixed Maintenance, Shared Resources and Nonlinear Feedrate Constraints: a Mine Planning Case Study. Christina N Burt ...

  11. Optimization Online - Optimizing Preventive Maintenance Models

    E-Print Network [OSTI]

    Michael Bartholomew-Biggs

    2004-06-29T23:59:59.000Z

    Jun 29, 2004 ... Abstract: We deal with the problem of scheduling preventive maintenance (PM) by minimizing a performance function which reflects repair and ...

  12. Sandia National Laboratories: PV Reliability Operations Maintenance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintenance database Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid...

  13. Government-University-Industrial Collaborations for Energy Efficiency and a Better Environment

    E-Print Network [OSTI]

    Phillips, W. C.

    professors... they will incorporate the lessons learned from their "real world" experiences, even if only subconsciously. In fact, academic courses at both graduate and undergraduate levels in the areas ofenergy, the environment, preventive maintenance... or are unduly intimidated by the corrosion problem. COMPUTERIZED PREVENTIVE MAINTENANCE- An effective preventive maintenance program can help a facility substantially reduce both energy and operating costs, and a computerized preventive maintenance system...

  14. Risk Based Maintenance Optimization using Probabilistic Maintenance Quantification Models of Circuit Breaker

    E-Print Network [OSTI]

    Natti, Satish

    2010-01-14T23:59:59.000Z

    New maintenance techniques for circuit breakers are studied in this dissertation by proposing a probabilistic maintenance model and a new methodology to assess circuit breaker condition utilizing its control circuit data. A risk-based decision...

  15. Section 6 -Facilities Usage and Maintenance A. Facilities Usage and Maintenance

    E-Print Network [OSTI]

    Pantaleone, Jim

    Section 6 - Facilities Usage and Maintenance A. Facilities Usage and Maintenance 1 be held financially responsible. Financial responsibility extends to abandoned belongings, excessive is not permitted under any circumstances. Storage facilities are provided in most student housing units for storing

  16. How to avoid common mistakes in energy efficiency projects

    SciTech Connect (OSTI)

    Stein, J. [E-Cube, Inc., Boulder, CO (United States)

    1996-12-01T23:59:59.000Z

    Over the course of nearly 20 years in the energy efficiency industry, the author has participated in a wide variety of projects. These projects included analyses of buildings and industrial processes to identify energy efficiency measures and estimate their cost-effectiveness, as well as analyses of energy efficiency measures that were implemented to estimate how much energy was actually saved. This work was carried out at the behest of utility energy conservation departments, properly managers, and energy service companies. Based on this experience, the author has identified a list of 14 common mistakes that are frequently repeated during energy efficiency projects: (1) inadequate definition of purpose; (2) selection of inappropriate analysis tools; (3) poor data collection practices; (4) inadequate definition of baseline for savings; (5) inadequate reporting; (6) insufficient analyst involvement in the design process; (7) limited or inappropriate solutions; (8) unnecessarily constrained economic analysis; (9) neglect of interactions between building systems; (10) loss of consistency during the design and installation phases; (11) failure to verify and report on results; (12) failure to test unfamiliar technologies; (13) pool planning for monitoring exercises; and (14) inadequate operation and maintenance of efficiency measures. These are discussed within.

  17. How to avoid common mistakes in energy efficiency projects

    SciTech Connect (OSTI)

    Stein, J. [E-Cube Inc., Boulder, CO (United States)

    1996-12-31T23:59:59.000Z

    Over the course of nearly 20 years in the energy efficiency industry, the author has participated in a wide variety of projects. These projects included analyses of buildings and industrial processes to identify energy efficiency measures and estimate their cost-effectiveness, as well as analyses of energy efficiency measures that were implemented to estimate how much energy was actually saved. This work was carried out at the behest of utility energy conservation departments, property managers, and energy service companies. Based on this experience, the author has identified a list of 14 common mistakes that are frequently repeated during energy efficiency projects: (1) Inadequate definition of purpose, (2) Selection of inappropriate analysis tools, (3) Poor data collection practices, (4) Inadequate definition of baseline for savings, (5) Inadequate reporting, (6) Insufficient analyst involvement in the design process, (7) Limited or inappropriate solutions, (8) Unnecessarily constrained economic analysis, (9) Neglect of interactions between building systems, (10) Loss of consistency during the design and installation phases, (11) Failure to verify and report on results, (12) Failure to test unfamiliar technologies, (13) Poor planning for monitoring exercises, and (14) Inadequate operation and maintenance of efficiency measures. This paper is concerned with the first 6 items on this list. The sections of this paper describe these errors in detail, explain the consequences of making them, give examples, and provide suggestions on how to avoid them.

  18. Lighting energy efficiency opportunities at Cheyenne Mountain Air Station

    SciTech Connect (OSTI)

    Molburg, J.C.; Rozo, A.J.; Sarles, J.K.; Haffenden, R.A.; Thimmapuram, P.R.; Cavallo, J.D.

    1996-06-01T23:59:59.000Z

    CMAS is an intensive user of electricity for lighting because of its size, lack of daylight, and 24-hour operating schedule. Argonne National Laboratory recently conducted a lighting energy conservation evaluation at CMAS. The evaluation included inspection and characterization of existing lighting systems, analysis of energy-efficient retrofit options, and investigation of the environmental effects that these lighting system retrofits could have when they are ready to be disposed of as waste. Argonne devised three retrofit options for the existing lighting systems at various buildings: (1) minimal retrofit--limited fixture replacement; (2) moderate retrofit--more extensive fixture replacement and limited application of motion detectors; and (3) advanced retrofit--fixture replacement, reduction in the number of lamps, expansion of task lighting, and more extensive application of motion detectors. Argonne used data on electricity consumption to analyze the economic and energy effects of these three retrofit options. It performed a cost analysis for each retrofit option in terms of payback. The analysis showed that lighting retrofits result in savings because they reduce electricity consumption, cooling load, and maintenance costs. The payback period for all retrofit options was found to be less than 2 years, with the payback period decreasing for more aggressive retrofits. These short payback periods derived largely from the intensive (24-hours-per-day) use of electric lighting at the facility. Maintenance savings accounted for more than half of the annual energy-related savings under the minimal and moderate retrofit options and slightly less than half of these savings under the advanced retrofit option. Even if maintenance savings were excluded, the payback periods would still be impressive: about 4.4 years for the minimal retrofit option and 2 years for the advanced option. The local and regional environmental impacts of the three retrofit options were minimal.

  19. Costing of Joining Methods -Arc Welding Costs

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Costing of Joining Methods - Arc Welding Costs ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 #12;OverviewOverview · Cost components · Estimation of costsEstimation of costs · Examples ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 2 #12;Cost

  20. Types of Costs Types of Cost Estimates

    E-Print Network [OSTI]

    Boisvert, Jeff

    05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main classes of capital costs: 1. Depreciable Investment: · Investment allocated

  1. Evaluating High Efficiency Motor Retrofit 

    E-Print Network [OSTI]

    Evans, T. A.

    1984-01-01T23:59:59.000Z

    OPERATING COST Although It would seem that most peoPlel un derstand the re I atlonsh I p beneen the fIrst cost and operating cost for motors, that's not the case. The purchase price of a standard efficIency 50 HP enclosed motor I s about $2000. Operatl...Ife, the energy efficIent motor will save about $7100 - assum f ng power costs grow as forecasted. That's why the co nom J cs of Energy $aver motors are so attractIve. The savIngs, assuming continuous operatIon at a 5i/kWh power cost, range from $300 per year...

  2. Vehicle Maintenance Procedure Outline the procedure for vehicle maintenance at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Maintenance Procedure Objective Outline the procedure for vehicle maintenance at University of Michigan (U-M). Procedure 1. Your U-M vehicle has a mechanical and/or safety issue. 2. Contact Garage of the vehicle or if needed, have the vehicle towed to the maintenance facility. 4. If a loaner is needed while

  3. Void Fraction Instrument operation and maintenance manual

    SciTech Connect (OSTI)

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01T23:59:59.000Z

    This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.

  4. Automatic Generation and Maintenance of Correct Spreadsheets

    E-Print Network [OSTI]

    Erwig, Martin

    of "spreadsheet maintenance safety": Up- date operations that are generated from a type-correct tem- plateAutomatic Generation and Maintenance of Correct Spreadsheets Martin Erwig School of EECS Oregon descriptors: D.2.2 [Software Engineering]: Design Tools and Techniques; D.2.7 [Soft- ware Engineering

  5. Maintenance Guide for Microirrigation Systems in the

    E-Print Network [OSTI]

    Maintenance Guide for Microirrigation Systems in the Southern Region By The Irrigation Water-monitoring devices to evaluate cleaning 5. Remedial maintenance for micro-irrigation systems affected by scaling are technically more complex than overhead sprinkler or flood irrigation systems. They require significant

  6. Project Profile: Development and Productization of High-Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells Project Profile: Development and Productization of High-Efficiency, Low-Cost...

  7. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  8. National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1

    SciTech Connect (OSTI)

    Fewell, N.

    1993-12-01T23:59:59.000Z

    The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

  9. Economics of Online Structural Health Monitoring of Wind Turbines: Cost Benefit Analysis

    E-Print Network [OSTI]

    McCalley, James D.

    Economics of Online Structural Health Monitoring of Wind Turbines: Cost Benefit Analysis Jeremy Van monitoring (OSHM) and condition-based maintenance (CBM) of wind turbine blades has the potential to reduce O cost of energy (LCOE) [1]. The costs required to keep wind turbines working in extreme temperatures

  10. Cost Improvements, Returns to Scale, and Cost Inefficiencies for Real Estate Investment Trusts*

    E-Print Network [OSTI]

    Ahmad, Sajjad

    ) operating efficiencies. We estimate stochastic-frontier, panel-data models specifying a translog cost of the competitive advantage include economies of scale, lower capital costs, and superior sources of capital. Specifying a translog cost function and using 1995 to 2003 data, we estimate a stochastic-frontier panel

  11. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    SciTech Connect (OSTI)

    England, Jeffery L. [Savannah River National Laboratory, Aiken, South Carolina (United States)] [Savannah River National Laboratory, Aiken, South Carolina (United States); Adams, Karen; Maxted, Maxcine; Ruff Jr, Clarence [U.S. Department of Energy, Savannah River Site, Aiken, SC (United States)] [U.S. Department of Energy, Savannah River Site, Aiken, SC (United States); Albenesius, Andrew; Bowers, Mark D.; Fountain, Geoffrey; Hughes, Michael [Savannah River Nuclear Solutions, Aiken, SC (United States)] [Savannah River Nuclear Solutions, Aiken, SC (United States); Gordon, Sydney [National Security Technologies, LLC, Las Vegas, NV (United States)] [National Security Technologies, LLC, Las Vegas, NV (United States); O'Connor, Stephen [U.S. Department of Energy, HQ DOE, EM-33, Germantown MD (United States)] [U.S. Department of Energy, HQ DOE, EM-33, Germantown MD (United States)

    2013-07-01T23:59:59.000Z

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow for efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose of packagings on a project-by-project basis. This initiative provides significant savings in packaging costs and acceleration of project schedules. In addition to certified packaging, the PSMC would be well suited for select designs of 7A Type A packaging and Industrial Packaging. (authors)

  12. Cost Sharing What is Cost Sharing?

    E-Print Network [OSTI]

    Tsien, Roger Y.

    sharing using various data fields (bin, fund, PI, index, etc.) x Create a Bin Generate a bin where cost;3 Cost Sharing Steps Search for & Create a Bin Search Results Display Select AWARD Type the correct data1 Cost Sharing What is Cost Sharing? x Cost sharing is a commitment to use university resources

  13. The role of Dynamin in muscle remodeling and maintenance

    E-Print Network [OSTI]

    Nguyen, Jennifer Kim Thu

    2011-01-01T23:59:59.000Z

    muscle attachment and maintenance. PLoS Genet 7, e1001295.in Muscle Remodeling and Maintenance A Thesis submitted inMuscle Remodeling and Maintenance by Jennifer Kim Thu Nguyen

  14. Maintenance scheduling for modular systems-models and algorithms

    E-Print Network [OSTI]

    Zarybnisky, Eric J. (Eric Jack), 1979-

    2011-01-01T23:59:59.000Z

    Maintenance scheduling is an integral part of many complex systems. For instance, without effective maintenance scheduling, the combined effects of preventative and corrective maintenance can have severe impacts on the ...

  15. Optimization models for improving periodic maintenance schedules by utilizing opportunities

    E-Print Network [OSTI]

    Patriksson, Michael

    to this as preventive maintenance activities at an oppor- tunity. The original opportunistic replacement problemOptimization models for improving periodic maintenance schedules by utilizing opportunities Torgny of Technology Abstract We present mathematical models for finding optimal opportunistic maintenance schedules

  16. Modelling maintenance for components under competing risk Helge Langseth

    E-Print Network [OSTI]

    Langseth, Helge

    preventively maintained. The preventive maintenance (PM) is performed periodically with some period , but PMModelling maintenance for components under competing risk Helge Langseth Norwegian University the mathematical modelling of imperfect maintenance of a system under competing risk. The model we propose

  17. Condition-Based Maintenance via Simulation and a Targeted Bayesian

    E-Print Network [OSTI]

    Ben-Gal, Irad E.

    malfunctioning. Accordingly, it is essential to undertake an effective preventive maintenance (PM) policyCondition-Based Maintenance via Simulation and a Targeted Bayesian Network Metamodel Aviv Gruber, Israel ABSTRACT Condition-based maintenance (CBM) is increasingly applied to operational systems

  18. Integrated Energy Efficiency 

    E-Print Network [OSTI]

    Heins, S.

    2007-01-01T23:59:59.000Z

    6 Customer Story Bemis Manufacturing Sheboygan Falls, WI Before After Energy & Financial Impacts Annual Energy Savings $317,897 Maintenance Savings $63,579 Payback Period Less than 2 years Annual Displaced Energy 6,300,289 kWh Displaced Capacity 731... 10 Off The Grid Sensor Integration Natural Daylight Base and Peak Energy Reduction 11 Lowest Cost Renewable Solar Integrated Lighting $1.0 million/MW $6 – 9 million/MW Wind $1.3 - 1.9 million/MW Biomass $1.5 – 2.5 million/MW Geothermal $1.6 million...

  19. Building America Efficient Solutions for Existing Homes Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit of 1910 House, Portland, Oregon This case study lists project information, cost and energy efficiency performance data, energy efficiency measures and lessons...

  20. How to Determine and Verify Operating and Maintenance Savings...

    Energy Savers [EERE]

    How to Determine and Verify Operating and Maintenance Savings in Federal Energy Savings Performance Contracts How to Determine and Verify Operating and Maintenance Savings in...