Powered by Deep Web Technologies
Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Property:Project Country | Open Energy Information  

Open Energy Info (EERE)

Project Country Project Country Property Type Page Pages using the property "Project Country" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + United Kingdom + MHK Projects/ADM 3 + Ireland + MHK Projects/ADM 4 + United Kingdom + MHK Projects/ADM 5 + Portugal + MHK Projects/AW Energy EMEC + United Kingdom + MHK Projects/AWS II + United Kingdom + MHK Projects/Admirality Inlet Tidal Energy Project + United States + MHK Projects/Agucadoura + Portugal + MHK Projects/Alaska 1 + United States + MHK Projects/Alaska 13 + United States + MHK Projects/Alaska 17 + United States + MHK Projects/Alaska 18 + United States + MHK Projects/Alaska 24 + United States + MHK Projects/Alaska 25 + United States + MHK Projects/Alaska 28 + United States +

2

Central Maine Power Company Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Maine Power Company Smart Grid Project Maine Power Company Smart Grid Project Jump to: navigation, search Project Lead Central Maine Power Company Country United States Headquarters Location Augusta, Maine Recovery Act Funding $95858307 Total Project Value $191716614 Coverage Area Coverage Map: Central Maine Power Company Smart Grid Project Coordinates 44.3106241°, -69.7794897° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

3

CCAP Developing Country Project | Open Energy Information  

Open Energy Info (EERE)

CCAP Developing Country Project CCAP Developing Country Project Jump to: navigation, search Name Developing Country Project Agency/Company /Organization Center for Clean Air Policy Sector Climate, Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.ccap.org/ Program Start 2006 Country Brazil, China, India, Indonesia, Mexico South America, Eastern Asia, Southern Asia, South-Eastern Asia, Central America References Developing Country Project[1] Developing Country Project Screenshot Contents 1 Overview 2 Brazil 3 China 4 India 5 Indonesia 6 Mexico 7 References Overview "As the United Nations Framework Convention on Climate Change (UNFCCC) moves forward, it is critical that developing countries are ready and able

4

India-CCAP Developing Country Project | Open Energy Information  

Open Energy Info (EERE)

India-CCAP Developing Country Project India-CCAP Developing Country Project Jump to: navigation, search Name India-Developing Country Project Agency/Company /Organization Center for Clean Air Policy Sector Climate, Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.ccap.org/ Program Start 2006 Country India Southern Asia References Developing Country Project[1] India-Developing Country Project Screenshot Contents 1 Overview 2 Brazil 3 China 4 India 5 Indonesia 6 Mexico 7 References Overview "As the United Nations Framework Convention on Climate Change (UNFCCC) moves forward, it is critical that developing countries are ready and able to make significant progress toward reducing greenhouse gas (GHG) emissions. CCAP is helping developing countries prepare for and participate

5

China-CCAP Developing Country Project | Open Energy Information  

Open Energy Info (EERE)

China-CCAP Developing Country Project China-CCAP Developing Country Project Jump to: navigation, search Name China-Developing Country Project Agency/Company /Organization Center for Clean Air Policy Sector Climate, Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.ccap.org/ Program Start 2006 Country China Eastern Asia References Developing Country Project[1] China-Developing Country Project Screenshot Contents 1 Overview 2 Brazil 3 China 4 India 5 Indonesia 6 Mexico 7 References Overview "As the United Nations Framework Convention on Climate Change (UNFCCC) moves forward, it is critical that developing countries are ready and able to make significant progress toward reducing greenhouse gas (GHG) emissions. CCAP is helping developing countries prepare for and participate

6

Brazil-CCAP Developing Country Project | Open Energy Information  

Open Energy Info (EERE)

Brazil-CCAP Developing Country Project Brazil-CCAP Developing Country Project Jump to: navigation, search Name Brazil-Developing Country Project Agency/Company /Organization Center for Clean Air Policy Sector Climate, Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.ccap.org/ Program Start 2006 Country Brazil South America References Developing Country Project[1] Brazil-Developing Country Project Screenshot Contents 1 Overview 2 Brazil 3 China 4 India 5 Indonesia 6 Mexico 7 References Overview "As the United Nations Framework Convention on Climate Change (UNFCCC) moves forward, it is critical that developing countries are ready and able to make significant progress toward reducing greenhouse gas (GHG) emissions. CCAP is helping developing countries prepare for and participate

7

MHK Projects/Maine 1 Project | Open Energy Information  

Open Energy Info (EERE)

1 Project 1 Project < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9062,"lon":-66.99,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

8

Fallon-Main Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Fallon-Main Geothermal Project Fallon-Main Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon-Main Geothermal Project Project Location Information Coordinates 39.425°, -118.70277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.425,"lon":-118.70277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

World Energy Projection System Plus Model Documentation: Main Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) Main Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Information Center

2011-01-20T23:59:59.000Z

10

Renewable Energy Projects in Indian Country | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Projects in Indian Country Renewable Energy Projects in Indian Country Renewable Energy Projects in Indian Country May 21, 2012 7:45AM MST to May 22, 2012 12:30PM MST Scottsdale, Arizona At the fifth annual Renewable Energy Projects in Indian Country Conference, tribal leaders and professionals will discuss the significant opportunities for energy development in Indian Country, as well as the barriers that tribes must overcome to bring energy projects to fruition. Discussions will include increasing access to private capital, feasibility studies, and how tribes can create sustainable and environmentally responsible economies for the future generations of Indian Country. DOE Office of Indian Energy Director Tracey LeBeau will give the keynote at the conference entitled: "The Next Generation of Indian Energy and

11

Renewable Energy Projects in Indian Country | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Projects in Indian Country Renewable Energy Projects in Indian Country Renewable Energy Projects in Indian Country March 5, 2012 - 6:27pm Addthis This event will take place May 21-22, 2012, in Scottsdale, Arizona. At the fifth annual Renewable Energy Projects in Indian Country Conference, tribal leaders and professionals will discuss the significant opportunities for energy development in Indian Country, as well as the barriers that tribes must overcome to bring energy projects to fruition. Discussions will include increasing access to private capital, feasibility studies, and how tribes can create sustainable and environmentally responsible economies for the future generations of Indian Country. Learn more and register on the Native Nation Events website. Addthis Related Articles Obama Administration Announces Additional $63,817,400 for Local Energy

12

Renewable Energy Projects in Indian Country | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Projects in Indian Country Renewable Energy Projects in Indian Country Renewable Energy Projects in Indian Country March 5, 2012 - 6:27pm Addthis This event will take place May 21-22, 2012, in Scottsdale, Arizona. At the fifth annual Renewable Energy Projects in Indian Country Conference, tribal leaders and professionals will discuss the significant opportunities for energy development in Indian Country, as well as the barriers that tribes must overcome to bring energy projects to fruition. Discussions will include increasing access to private capital, feasibility studies, and how tribes can create sustainable and environmentally responsible economies for the future generations of Indian Country. Learn more and register on the Native Nation Events website. Addthis Related Articles Obama Administration Announces Additional $63,817,400 for Local Energy

13

The AROUND project: Adapting robotic disaster response to developing countries  

E-Print Network (OSTI)

The AROUND project: Adapting robotic disaster response to developing countries Alain Boucher1 constraints of developing countries. Keywords: Disaster response, Multi-Robot Systems, Cheap robotics, Spatial, in terms of frequency and devastating power, of natural disasters (par- ticularly in developing countries

Paris-Sud XI, Université de

14

Maine biofuels project saves livelihood of town | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine biofuels project saves livelihood of town Maine biofuels project saves livelihood of town Maine biofuels project saves livelihood of town January 7, 2010 - 2:21pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Since 1860, the mill in Old Town, Maine, has been an economic mainstay of this small town. Over time, it's been a sawmill, a soda mill, a hardwood pulp mill and a paper mill. Through all these incarnations, it has grown and evolved, and it's provided for the workers of Old Town. The 8,000 residents have always looked to the mill as a source of pride - and income. When the mill faltered and closed in 2006, the town's future looked grim. But opportunities in the clean energy economy have given the employees of the mill a new life. "It was a typical mill town depending on a single company for its tax

15

Mexico-CCAP Developing Country Project | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Mexico-CCAP Developing Country Project Jump to: navigation, search Name Mexico-Developing Country Project Agency/Company /Organization Center for Clean Air Policy Sector Climate, Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.ccap.org/ Program Start 2006 Country Mexico Central America References Developing Country Project[1] Mexico-Developing Country Project Screenshot Contents 1 Overview 2 Brazil 3 China 4 India 5 Indonesia 6 Mexico 7 References Overview "As the United Nations Framework Convention on Climate Change (UNFCCC)

16

Microsoft Word - Longview_SewerMainProject_CX_2012.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Dawneen Dostert Project Manager - TERR-LMT Proposed Action: City of Longview Pump Stations and Force Main Project Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B4.9 - Multiple use of DOE powerline rights-of-way Location: Longview, Cowlitz County, Washington T7N, R2W, Section 5: T8N, R2W, Section 32: and T8N, R2W, Section 31 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to grant a multiple use request submitted by the City of Longview, Washington, to permanently install an underground sewer line and temporarily locate staging areas within a BPA transmission line right-of-way. The proposed

17

Brief description of the Developing Country Energy Project  

SciTech Connect

The objective of the project is to assess the role of new or adapted technologies in addressing the energy problems of developing countries. This objective is pursued through activities ranging from historical economic analyses of the role of energy in development to assessments of individual technologies carried out in support of research and development planning. The project, started in 1975, carries a particular emphasis on the energy problems and technologies appropriate to rural development. A firm tenet of the activity is, however, that the role of individual energy technologies can be understood only through an integrated view of the entire energy system and the way in which that system meshes with the economic and cultural structure of a society. The entire group of LDCs are being examined to develop a better understanding of the role of energy in development and to project the energy requirements of those countries under alternative growth patterns. Some representative countries were used as the basis for generic energy technology assessment. Seven countries were chosen as an initial set for analysis based on their representing a range of levels of development, climate, resource base, etc. These countries were India and Kenya (in the low, less than $200 per capita, income group) Ghana and South Korea (in the intermediate income group), and Chile, Brazil and Greece (in the upper, greater than $550 per capita, income group). In constructing energy supply-demand models for these countries, emphasis was placed on incorporating data on noncommercial energy use wherever such information was available. (MCW)

1976-10-01T23:59:59.000Z

18

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

19

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

20

Countries - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Search within Countries. Search By: Pick a date range: From: To: Search All Reports & Publications > Total Energy Available formats Regional ...

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

22

Maine Project Launches First Grid-Connected Offshore Wind Turbine in the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Launches First Grid-Connected Offshore Wind Turbine Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating platform wind turbine to be deployed in the world - strengthening American leadership in innovative clean energy technologies that diversify the nation's energy mix with more clean, domestic energy sources. "Developing America's vast renewable energy resources is an important part of the Energy Department's all-of-the-above strategy to pave the way

23

Regulation of Tidal and Wave Energy Projects (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tidal and Wave Energy Projects (Maine) Tidal and Wave Energy Projects (Maine) Regulation of Tidal and Wave Energy Projects (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection State regulation of tidal and wave energy projects is covered under the Maine Waterway Development and Conservation Act (MWDCA), and complements

24

Indian Country Energy & Infrastructure Working Group, Sept. 10-11, 2013, Portland, Maine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 10-11, 2013 September 10-11, 2013 DOUBLETREE HOTEL 363 Maine Mall Road Portland, Maine 207-775 6161 AGENDA TUESDAY, SEPTEMBER 10, 2013 CONFERENCE ROOM: WHALEBACK 9:00 - 9:30 a.m. REGISTRATION & BREAKFAST (Hot breakfast will be provided onsite.) 9:30 - 10:00 a.m. WELCOME & INTRODUCTIONS Opening Prayer by ICEIWG Tribal Leader Pilar Thomas, Acting Director, U.S. DOE Office of Indian Energy (IE) & DOE ICEIWG co-chair Chief Joseph Socobasin, Passamaquoddy Tribe at Indian Township, ICEIWG member and meeting co-host  Attendee Introductions  Overview of Agenda and Meeting Goals  Review of Past Meeting Summary and ICEIWG Accomplishments to Date 10:00 - 10:30 a.m. ICEIWG UPDATES AND GENERAL DISCUSSION  Individual ICEIWG Member Updates and Report-Out

25

Developing and Financing Renewable Energy Projects in Indian Country  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presenter: Presenter: Robert Springer, National Renewable Energy Laboratory (NREL) RES2012 CONFERENCE LAS VEGAS, NEVADA MARCH 1, 2012 Context Technically, Indian lands have enough renewable energy resource to produce:  1 billion megawatt-hours (MWh) of wind (about 148,000 homes)  7 billion MWh of solar photovoltaics (PV)  4 trillion MWh of biomass There are a number of barriers constraining this potential including: * Infrastructure and transmission; * Project development capacity; * Project financing options; * Permitting barriers; * Expertise; * Other Project Development & Finance Project Development & Project Finance Finance? "and then" Finance Or? Hey that doesn't make sense!

26

Design projections for a commuter ferry terminal and commercial pier in Portland, Maine's historic urban waterfront  

E-Print Network (OSTI)

The work is based on a design project: to connect the grid urban form, and its associated buildings, and their uses, to the larger Maine (natural) landscape, and its forms. These two contextual categories will strongly ...

Schmidt, Eric Paul

1981-01-01T23:59:59.000Z

27

Countries - Analysis & Projections - U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Current & Selected Reports Current & Selected Reports Most Requested Environment Other Energy Petroleum Total Energy Search within Countries Search By: Go Pick a date range: From: To: Go Search All Reports & Publications > WeeklyAvailable formats Today in Energy - Countries Short, timely articles with graphs about recent international energy issues and trends MonthlyAvailable formats Regional Analysis Briefs Regional Analysis Briefs (RABs) provide an overview of specific regions that play an important role in world energy markets, either directly or indirectly. These briefs cover areas that are currently major producers (Caspian Sea), have geopolitical importance (South China Sea), or may have future potential as producers or transit areas (East Africa, Eastern Mediterranean). Country Analysis Briefs

28

Goose River, Maine, demonstration project, January 1978-October 1978. Final report  

DOE Green Energy (OSTI)

The proposed Goose River Project is a commercial power development consisting of 4 power dams and one storage dam. All available energy is to be wholesaled to the Central Maine Power Company, the utility holding the franchise for the area. A description of the economic feasibility of the proposed project is presented.

Not Available

1978-11-24T23:59:59.000Z

29

EIA - Appendix F-Reference Case Projections by End-Use Sector and Country  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections by End-Use Sector and Country Grouping Data Tables (2005-2030) Reference Case Projections by End-Use Sector and Country Grouping Data Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections by End-Use Sector and Country Grouping Data Tables (2005-2030) Formats Data Table Titles (1 to 19 complete) Reference Case Projections by End-Use Sector and Country Gruping Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Projections of Nuclear Generating Capacity Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. F1 Total World Delivered Energy Consumption by End-Use Sector and Fuel Table F1. Total World Delivered Energy Consumption by End-Use Sector and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

30

A new Main Injector radio frequency system for 2.3 MW Project X operations  

SciTech Connect

For Project X Fermilab Main Injector will be required to provide up to 2.3 MW to a neutrino production target at energies between 60 and 120 GeV. To accomplish the above power levels 3 times the current beam intensity will need to be accelerated. In addition the injection energy of Main Injector will need to be as low as 6 GeV. The current 30 year old Main Injector radio frequency system will not be able to provide the required power and a new system will be required. The specifications of the new system will be described.

Dey, J.; Kourbanis, I.; /Fermilab

2011-03-01T23:59:59.000Z

31

Life Cycle Management Plan for Main Generator and Exciter at South Texas Project: Generic Version  

Science Conference Proceedings (OSTI)

As the electric power industry becomes more competitive, life cycle management (LCM) of systems, structures, and components (SSCs) becomes more important to keep nuclear power plants economically viable throughout their remaining licensed operating terms, whether 40 or 60 years. This report provides an optimized LCM plan for the main generators and exciters at the South Texas Project Power Plant.

2003-09-30T23:59:59.000Z

32

Project Rover: Main Series of Nuclear-Rocket Engines - NUCLEAR ROCKETS: To  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Rover: Main Series of Nuclear-Rocket Engines Project Rover: Main Series of Nuclear-Rocket Engines Kiwi-A Named after the large, flightless bird, Kiwi was the first phase of Project Rover. Kiwi consisted of eight reactors that scientists tested between 1959 and 1964. The first reactor, dubbed Kiwi-A, was fired for the first (and only) time on July 1, 1959, at Jackass Flats in the Nevada Test Site (now the Nevada National Security Site). Kiwi-B The Kiwi-B series increased power by ten-fold while maintaining the same size of the Kiwi-A series. The Kiwi-B reactors experienced a problem similar to Kiwi-A: Internal vibrations caused by dynamic flow instability fractured portions of the fuel elements. Scientists resolved this problem when they developed Kiwi-B4. Phoebus-1 During the 1960s, scientists developed the Phoebus series of nuclear

33

RECIPIENT:Maine PUC U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine PUC Maine PUC U.S. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION PROJECT TITLE: Large Project Impact Fund Grants· Verso Paper Page 1 of2 STATE: ME Funding Opportunity Announcement Number Procurement Instrumeot Number NEPA Control Numbtr C1D Number o Based on my review nrlbe information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I bave made the following detennination: ex, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders. owners, consultants, designers), organizations (such as utilities), and state

34

A comprehensive approach to the formulation of capital projects in developing countries : finance and implementation. Case study, Edendale, Kwazulu (housing)  

E-Print Network (OSTI)

This Thesis deals with capital project formulation in developing countries. The objective is to provide guidelines for the formulation of housing development projects, their implementation structures and financial plans ...

Davis, Trevor Paul

1983-01-01T23:59:59.000Z

35

Material and energy recovery in integrated waste management systems: Project overview and main results  

Science Conference Proceedings (OSTI)

Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

Consonni, Stefano, E-mail: stefano.consonni@polimi.it [Department of Energy, Politecnico di Milano, Via Lambruschini 4, 20156 Milan (Italy); Giugliano, Michele [DIIAR, Environmental Section, Politecnico di Milano, P.za L. Da Vinci 32, 20133 Milan (Italy); Massarutto, Antonio [Dse, Universita degli Studi di Udine and IEFE, Via Tomadini 30/a, 33100 Udine (Italy); Ragazzi, Marco [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Saccani, Cesare [DIEM, University of Bologna, Viale Risorgimento 2, 40136 Bologna (Italy)

2011-09-15T23:59:59.000Z

36

Report to Congress: Expressions of interest in commercial clean coal technology projects in foreign countries  

SciTech Connect

This report was prepared in response to the guidance provided by the Congress in the course of the Fiscal Year 1995 appropriations process for the Department of Energy`s (DOE) Office of Fossil Energy (FE). As described in detail below, DOE was directed to make the international dissemination of Clean Coal Technologies (CCTs) an integral part of its policy to reduce greenhouse gas emissions in developing countries. Congress directed DOE to solicit ``Statements of Interest`` in commercial projects employing CCTs in countries projected to have significant growth in greenhouse gas emissions. Additionally, DOE was asked to submit to the Congress a report that analyzes the information contained in the Statements of Interest, and that identifies the extent to which various types of Federal incentives would accelerate the commercial availability of these technologies in an international context. In response to DOE`s solicitation of 18 November 1994, 77 Statements of Interest were received from 33 companies, as well as five additional materials. The contents of these submittals, including the requested Federal incentives, the CCTs proposed, the possible host countries, and the environmental aspects of the Statements of Interest, are described and analyzed in the chapters that follow.

NONE

1995-06-01T23:59:59.000Z

37

Evaluation of local content strategies to plan large engineering projects in the oil & gas industry in high risk country areas  

Science Conference Proceedings (OSTI)

The Local content of a complex project is an important variable to create value and increase the overall sustainability of large engineering projects in the Oil & Gas industry, especially in the developing countries. The paper proposes a method to ... Keywords: causal knowledge map, large engineering projects, local content, scenario analysis

Troncone Enzo Piermichele; De Falco Massimo; Gallo Mos; Santillo Liberatina Carmela; Pier Alberto Viecelli

2012-01-01T23:59:59.000Z

38

Radiological characterization of main cooling reservoir bottom sediments at The South Texas Project Electrical Generating Station  

E-Print Network (OSTI)

The South Texas Project Electrical Generating Station (STPEGS operating license directs that an effective radiological environmental monitoring program be established. Site- specific data should then augment the generation of an accurate dose model. The purpose of this study was to accurately profile the radionuclide distribution of important gamma emitting nuclides and their concentrations in the bottom sediment of the STPEGS main cooling reservoir (MCR). A Loran-C navigation system was used in conjunction with a compass to locate sampling stations. A DietzLafond bottom sampler was used to collect 70 sediment samples from 56 stations with 14 stations being sampled in duplicate. Sample analysis utilized proven standardized procedures and conventional gamma spectroscopy techniques to analyze a typical 0.7 kg sample. Count times were 6-15 hrs depending on the measurability of the radionuclide of interest or the lower limit of detection (approximately 9 pCi/kg dry) for "58CO, '60CO, and 137Cs. An inventory of "58Co, 6OCo, and 137CS in the MCR was estimated from plant effluent release records. Comparisons were made between the release records and the totals derived from the analysis of the bottom sediment. A predictive model of MCR bottom sediment activity was made. The reservoir's '60Co inventory is predicted to increase to 9.2 Ci by the year 2029. The analysis of bottom sediments suggests that 42% of the 60Co is captured in the sediment; however, analysis of other MCR media (e.g., water, biologicals) suggests that the retention percentage is in fact significantly greater. The majority of the '60Co laden sediment is found in the regions of the MCR nearest the effluent release point (MCR circulation discharge facility). The predictive model shows that the 6OCo concentration will decay to current levels approximately 15 yrs after decommissioning. This situation can be induced earlier if the source term is reduced by implementing a successful cobalt reduction program and/or the liquid waste processing system. At no point during projected plant operations or post operation does 60Co in the MCR system result in a significant dose to the public.

Blankinship, David Randle

1993-01-01T23:59:59.000Z

39

Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report  

DOE Green Energy (OSTI)

Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

40

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - Curry Main - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 1 mile of 72" pipeline to replace a segment of the Curry Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,258 ac-ft of water per year and 1,092,823,269 BTUs (320,288 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $24.68 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0000598 per BTU ($0.204 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $27.49 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0000568 per BTU ($0.194 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.84.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - North Branch / East Main - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 4.83 miles of multi-size pipeline to replace a segment of the North Branch / East Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 48-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 5,838 ac-ft of water per year and 3,293,049,926 BTUs (965,138 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $15.58 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0000392 per BTU ($0.134 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $30.68 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0000544 per BTU ($0.186 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.58.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-10-01T23:59:59.000Z

42

Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District 72" and 54" Pipeline Replacing Main Canal Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Brownsville Irrigation District to the North American Development Bank (NADB) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 54" pipeline to replace 2.29 miles of the Main Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,844 ac-ft of water per year and 313,797,977 BTUs (91,969 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $24.70 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0001740 per BTU ($0.594 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $56.74 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0003335 per BTU ($1.138 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.46.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-07-01T23:59:59.000Z

43

Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District 72" and 48" Pipeline Replacing Main Canal Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Brownsville Irrigation District to the North American Development Bank (NADB) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 48" pipeline to replace 2.31 miles of the Main Canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,872 ac-ft of water per year and 318,479,103 BTUs (93,341 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $27.98 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0001933 per BTU ($0.660 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $58.60 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0003444 per BTU ($1.175 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.53.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-10-01T23:59:59.000Z

44

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as outstanding...

45

Projected refined product balances in key Latin American countries: A preliminary examination  

SciTech Connect

Over the years, the East-West Center (EWC) has developed considerable expertise in refinery modeling, especially in the area of forecasting product balances for countries, given planned capacity changes, changes in product demand, changes in crude slates, and changes in product specifications. This expertise has been applied on an ongoing basis to the major refiners in the Middle East and the Asia-Pacific region, along with the US West Coast as region in its own right. Refinery modeling in these three areas has been ongoing for nearly 15 years at the Center, and the tools and information sources are now well developed. To date, the EWC has not applied these tools to Latin America. Although research on Latin America has been an ongoing area of concern at the Center in recent years, the information gathered to date is still not of the level of detail nor quality available for other areas. The modeling efforts undertaken in this report are of a ``baseline`` nature, designed to outline the major issues, attempt a first cut at emerging product balances, and, above all, to elicit commentary from those directly involved in the oil industry in the key countries modeled. Our experience in other regions has shown that it takes a few years dialogue with refiners and government planner in individual countries to develop a reliable database, as well as the insights into operational constraints and practices that make accurate modeling possible. This report is no more than a first step down the road.

1996-06-01T23:59:59.000Z

46

Report No. 76114-MEN Regional Gas Trade Projects in Arab Countries  

E-Print Network (OSTI)

Middle East and North Africa Region (MNA) _______________ _ The findings, interpretations, and conclusions expressed in this report are entirely those of the authors and should not be attributed in any manner to the Public-Private Infrastructure Advisory Facility (PPIAF) or to the World Bank, its affiliated organizations, or members of its Board of Executive Directors or the countries they represent. Neither PPIAF nor the World Bank guarantees the accuracy of the data included in this publication or accepts responsibility for any consequence of their use. The boundaries, colors, denominations, and other information shown on any map in this report do not imply on the part of PPIAF or the World Bank Group any judgment on the legal status of any territory or the endorsement or

unknown authors

2013-01-01T23:59:59.000Z

47

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine May 27, 2011 EA-1792: DOE...

48

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine September 26, 2011 EA-1792:...

49

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects. May 31, 2013 Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Energy Department-Supported Project Deploys First of its Kind...

50

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Rehabilitation of Alamo Main Canal - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a two-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, to the U. S. Bureau of Reclamation (USBR). The proposed project primarily consists of relining the Alamo Main canal and installing a flow-management system in the Alamo Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 876 ac-ft of water per year and 331,389,647 BTUs (97,125 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $201.50 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0005592 per BTU ($1.908 per kwh). In addition, expected real (vs nominal) values are indicated for the USBRs three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $182.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004837 per BTU ($1.650 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -20.74.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2005-04-01T23:59:59.000Z

51

Economic and Conservation Evaluation of Capital Renovation Projects: Maverick County Water Control and Improvement District No. 1 (Eagle Pass) Lining Main Canal Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a capital renovation project proposed by Maverick County Water Control and Improvement District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves lining 3 miles of the Main Canal with a urethane lining and a concrete anchor and ballast system. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 8,084 ac-ft of water per year and 2,041,095,338 BTUs (598,211 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $33.37 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0001322 per BTU ($0.451 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $25.97 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001029 per BTU ($0.351 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -13.65.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2004-01-01T23:59:59.000Z

52

Economic and Conservation Evaluation of Capital Renovation Projects: Maverick County Water Control and Improvement District No. 1 (Eagle Pass) Lining Main Canal Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a capital renovation project proposed by Maverick County Water Control and Improvement District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves lining 3 miles of the Main Canal with a urethane lining and a concrete anchor and ballast system. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 8,084 ac-ft of water per year and 2,041,095,338 BTUs (598,211 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $33.37 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0001322 per BTU ($0.451 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamations three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $25.97 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001029 per BTU ($0.351 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -13.65.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2004-04-01T23:59:59.000Z

53

Assessing alignment of an e-government project in the context of a developing country: a Heideggerian perspective  

Science Conference Proceedings (OSTI)

E-Government has increasingly become an alternative for enabling public governance at various. The situation is especially poignant in developing countries where there are increasing calls to improve governance for improved national development. This ... Keywords: Kenya, actor-network, drifting, e-government, hospitality, technocracy

Nixon Muganda

2009-10-01T23:59:59.000Z

54

Project identification and evaluation techniques for transportation infrastructure : assessing their role in metropolitan areas of developing countries  

E-Print Network (OSTI)

Project identification and evaluation of transportation infrastructure play a vital role in shaping and sustaining the forms of cities all over the world. These cities differ substantially in character and urban form and ...

Kumar, Vimal, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

55

Main Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice Definitions Up: APS Storage Ring Parameters Previous: APS Storage Ring Parameters Main Parameters Storage Ring Parameters Notation Model Value General Parameters Nominal...

56

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) Rehabilitation of Main Canal, Laterals, and Diversion Pump Station Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by the United Irrigation District to the U.S. Bureau of Reclamation (USBR). The proposed project involves: installing 4.66 miles of pipeline in the Main Canal and Lateral 7N, installing 13.46 miles of pipeline in several laterals and sub-laterals, and rehabilitating the Districts Rio Grande diversion pumping plant. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all three components. Sensitivity results for both the cost of saving water and the cost of saving energy are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,522 ac-ft of water per year and 3,520,302,471 BTUs (1,031,742 kwh) of energy per year. The calculated economic and financial cost of saving water is estimated to be $341.51 per ac-ft. The calculated economic and financial cost of saving energy is estimated at $0.0001574 per BTU ($0.537 per kwh). In addition, real (vs. nominal) values are estimated for the USBRs three principal evaluation measures specified in the U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water savings measure is $359.42 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0003468 per BTU ($1.183 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.551.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2006-03-01T23:59:59.000Z

57

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) - Rehabilitation of Main Canal, Laterals, and Diversion Pump Station - Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by the United Irrigation District to the U.S. Bureau of Reclamation (USBR). The proposed project involves: installing 4.66 miles of pipeline in the Main Canal and Lateral 7N, installing 13.46 miles of pipeline in several laterals and sub-laterals, and rehabilitating the Districts Rio Grande diversion pumping plant. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all three components. Sensitivity results for both the cost of saving water and the cost of saving energy are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,409 ac-ft of water per year and 4,506,882,727 BTUs (1,320,892 kwh) of energy per year. The calculated economic and financial cost of saving water is estimated to be $325.20 per ac-ft. The calculated economic and financial cost of saving energy is estimated at $0.0001113 per BTU ($0.380 per kwh). In addition, real (vs. nominal) values are estimated for the USBRs three principal evaluation measures specified in the U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water savings measure is $354.30 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0003376 per BTU ($1.152 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.442.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2005-09-01T23:59:59.000Z

58

Maine Profile  

U.S. Energy Information Administration (EIA)

Alternative Fueled Vehicles in Use : 3,111 vehicles 0.3% 2011 find more: Ethanol Plants ... Electric Power Industry Emissions: Maine: Share of U.S. Period: find more:

59

Main Title  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

50 State Street, Suite 3 50 State Street, Suite 3 Montpelier, VT 05602 Phone: 802-223-8199 web: www.raponline.org Roadmap 2050: A practical guide to a prosperous, low-carbon Europe A project of the European Climate Foundation Presentation to the U.S. Department of Energy Electricity Advisory Committee Michael Hogan, Senior Advisor, RAP 12 July 2011 Month dd, yyyy The objective was to develop a fact based report - supported by key stakeholders and feeding directly into EU decision making 2 Key deliverables ▪ A set of plausible and visionary emissions pathways with an 80% reduction across the EU-27 below 1990 levels by 2050 ▪ Deep dive on the decarbonization of the power sector ▪ Implications on strategic options for the EU ▪ A related set of policy options highlighting poten-

60

Maine coast winds  

DOE Green Energy (OSTI)

The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

Avery, Richard

2000-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

projects  

Science Conference Proceedings (OSTI)

... Hamon Transfer Methods; Transverse Motion of the Main Induction Coil in the Electronic Kilogram Experiment; Design and ...

2010-12-09T23:59:59.000Z

62

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

63

Maine Waterway Development and Conservation Act (MWDCA) (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Waterway Development and Conservation Act requires a permit to be obtained prior to starting any hydropower project that may alter water levels or water flow. The Act functions as a...

64

How Much Wood Would a North Country School Chip | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Much Wood Would a North Country School Chip How Much Wood Would a North Country School Chip How Much Wood Would a North Country School Chip November 3, 2011 - 11:19am Addthis This is the North Country School's 32,000-square-foot main building. Aligning with the school's commitment to a simple, sustainable lifestyle, the school is heated with a wood chip boiler that uses wood sourced from their sustainably managed woodlot and local forests. | Courtesy of North Country School This is the North Country School's 32,000-square-foot main building. Aligning with the school's commitment to a simple, sustainable lifestyle, the school is heated with a wood chip boiler that uses wood sourced from their sustainably managed woodlot and local forests. | Courtesy of North Country School Alice Dasek Project Officer, Department of Energy State Energy Program

65

How Much Wood Would a North Country School Chip | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Much Wood Would a North Country School Chip How Much Wood Would a North Country School Chip How Much Wood Would a North Country School Chip November 3, 2011 - 11:19am Addthis This is the North Country School's 32,000-square-foot main building. Aligning with the school's commitment to a simple, sustainable lifestyle, the school is heated with a wood chip boiler that uses wood sourced from their sustainably managed woodlot and local forests. | Courtesy of North Country School This is the North Country School's 32,000-square-foot main building. Aligning with the school's commitment to a simple, sustainable lifestyle, the school is heated with a wood chip boiler that uses wood sourced from their sustainably managed woodlot and local forests. | Courtesy of North Country School Alice Dasek Project Officer, Department of Energy State Energy Program

66

Main results of study on the interaction between the corium melt and steel in the VVER-1000 reactor vessel during a severe accident performed under the MASCA project  

Science Conference Proceedings (OSTI)

The interactions that take place in the corium melt in the reactor vessel in the case of a severe accident at a nuclear power plant were investigated in accordance with the MASCA international program. Results of the interaction between the oxide melt and iron (steel), partition of the main components [U, Zr, Fe (stainless steel)] between the oxide and the metal phases of the melt, partition of low-volatile simulators of fission products between the phases of the stratified core melt pool, and impact of the oxidizing atmosphere on the melt stratification are presented. The results obtained were used for prediction of thermodynamic properties of the melts belonging to the U-Zr-Fe-O system.

Asmolov, V. G.; Zagryazkin, V. N.; Tsurikov, D. F. [Russian Research Center Kurchatov Institute (Russian Federation); Vishnevsky, V. Yu.; D'yakov, Ye. K.; Kotov, A. Yu.; Repnikov, V. M. [Research Institute Scientific Production Association Lutch (Russian Federation)

2010-12-15T23:59:59.000Z

67

Efficiency Maine Residential Lighting Program (Maine) | Open...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Efficiency Maine Residential Lighting Program (Maine) This is the approved revision of this page, as well as being the most...

68

Northern Maine Independent System Administrator (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Northern Maine Independent System Administrator (NMISA) is a non-profit entity responsible for the administration of the northern Maine transmission system and electric power markets in...

69

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

EV Project charging units may be used by vehicles that are not part of the EV Project. Likewise, EV Project vehicles may connect to non-EV Project charging units. Therefore...

70

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

71

EA-1792: University of Maine's Deepwater Offshore Floating Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's...

72

ESIF Project Proposal Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration Project Submittal Form Title of Project: Date Submitted: Name of PI at NREL: Name of PI: InstituteEmployer: Phone: Fax: Street Address: City: State: Country:...

73

Revision to the Canada Country Analysis Brief  

U.S. Energy Information Administration (EIA)

Revision to the Canada Country Analysis Brief. December 10, 2012. Text incorrectly implied that Encana is developing another major natural gas project off ...

74

Recovery Act State Memos Maine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

75

Efficiency Maine - Replacement Heating Equipment Program (Maine...  

Open Energy Info (EERE)

announced its closure November 2011. According to Efficiency Maine, almost 2,600 homeowners participated in the program trading in older, less-efficient space andor water...

76

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed...

77

Profiles for Countries  

Reports and Publications (EIA)

Data by country, region, and commercial group (OECD, OPEC) for 215 countries including production, consumption, U.S. oil imports and CO2 emissions. Forecasts for selected countries for total oil production and consumption. Analysis by country (Country Analysis Briefs)

Joe Ayoub

2009-05-15T23:59:59.000Z

78

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar thermal rebate program maintains a list of Efficiency Maine registered vendorsinstallers. July 12, 2013 Solar Easements Maine allows for the creation of easements to...

79

The Challenge of Limiting Greenhouse Gas Emissions Through Activities implemented Jointly in Developing Countries: A Brazilian Perspective  

SciTech Connect

This paper addresses, from the Brazilian perspective, the main problems with Joint Implementation/Activities Implemented Jointly (JI/AIJ) between industrialized (Annex I) and developing (non-Annex I) countries, as defined by the United Nations Framework Convention on Climate Change (UNFCCC). Four possible GHG emissions abatement measures are presented for Brazil: forest protection, reforestation projects for carbon sequestration or charcoal manufacturing, use of ethanol produced from sugar cane as a car fuel, and electrical energy conservation through an increase in end-use efficiencies. These four case studies form the basis of a discussion regarding the validity of developing countries' concerns about JI/AIJ. Recommendations are offered for overcoming the present shortcomings of JI/AIJ in developing countries. The primary conclusion is that Annex I countries' funding of JI/AIJ projects in developing countries in return for GHG emissions credits is not the best means to implement the UNFCCC. However, JI/AIJ projects can be a productive means of preventing global climate change if combined with other measures, including GHG emissions reduction targets for all countries involved in JI/AIJ projects and limits on the percentage of industrialized countries' emissions reductions that can be met through projects in developing countries.

La Rovere, E.L.

1998-11-01T23:59:59.000Z

80

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

date through December 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh)...

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

82

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

83

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2011 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ...

84

Property:Main Overseeing Organization | Open Energy Information  

Open Energy Info (EERE)

Main Overseeing Organization Main Overseeing Organization Jump to: navigation, search Pages using the property "Main Overseeing Organization" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Aquamarine Power + MHK Projects/ADM 3 + Wavebob + MHK Projects/ADM 4 + Wavebob + MHK Projects/ADM 5 + Wavebob + MHK Projects/AW Energy EMEC + AW Energy + MHK Projects/AWS II + AWS Ocean Energy formerly Oceanergia + MHK Projects/Admirality Inlet Tidal Energy Project + Public Utility District No 1 of Snohomish County + MHK Projects/Agucadoura + Pelamis Wave Power formerly Ocean Power Delivery + MHK Projects/Alaska 1 + Hydro Green Energy + MHK Projects/Alaska 13 + Hydro Green Energy + MHK Projects/Alaska 17 + Hydro Green Energy + MHK Projects/Alaska 18 + Hydro Green Energy +

85

Sustainable energy for developing countries : modelling transitions to renewable and clean energy in rapidly developing countries.  

E-Print Network (OSTI)

??The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions (more)

Urban, Frauke

2009-01-01T23:59:59.000Z

86

Maine Natural Gas Summary  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

87

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Heat Pump Program (Maine) Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps...

88

,"Maine Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

89

2020 Vision Project Summary  

Science Conference Proceedings (OSTI)

Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceived computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.

Gordon, K.W.; Scott, K.P.

2000-11-01T23:59:59.000Z

90

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 45 Reporting period: October...

91

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 809 Reporting period: July 2012...

92

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

number of charging events per day when the vehicle was driven 1.5 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 1895 Reporting period: April...

93

_MainReportGM  

NLE Websites -- All DOE Office Websites (Extended Search)

Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity Consumed (AC MWh) Phoenix, AZ Metropolitan Area 915 169,414 1,259.24 Tucson,...

94

Efficiency Maine Business Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Business Program Efficiency Maine Business Program Efficiency Maine Business Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $50,000 Program Info State Maine Program Type State Rebate Program Rebate Amount Retrofits: up to 35% of total project cost New construction/Major renovations/Failed equipment replacement: 75% of incremental cost Custom: $0.14/kWh Provider Efficiency Maine The Efficiency Maine Business Program provides cash incentives and free, independent technical advice to help non-residential electric customers

95

Country Analysis Briefs  

Reports and Publications (EIA)

An ongoing compilation of country energy profiles. EIA maintains Country Analysis Briefs (CABs) for specific countries that are important to world energy markets, including members of the Organization of the Petroleum Exporting Countries (OPEC), major non-OPEC oil producers, major energy transit countries, major energy consumers, and other areas of current interest to energy analysts and policy makers.

Joe Ayoub

96

Climate Action Plan (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan with the goal of reducing greenhouse gas (GHG)...

97

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2010 CX-001188: Categorical Exclusion Determination Deep C Wind Consortium National Research Program CX(s) Applied: B3.1 Date: 03212010 Location(s): Maine Office(s): Energy...

98

Maine Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

99

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Golden Field Office May 18, 2010 CX-002374: Categorical Exclusion Determination Maine Tidal Power Initiative CX(s) Applied: B3.1, B3.3, B3.6, A9 Date: 05182010 Location(s):...

100

Main Generator Rotor Maintenance  

Science Conference Proceedings (OSTI)

Main generator rotors are constructed and designed to provide decades of reliable and trouble-free operation. However, a number of incidences have occurred over the years that can adversely impact reliable operation of generator rotors and, ultimately, production of electrical power. This report is a guide for power plant personnel responsible for reliable operation and maintenance of main generators. As a guide, this report provides knowledge and experience from generator experts working at power plants...

2006-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Maine.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

102

Mitigation of Climate Change in Agriculture (MICCA) Project | Open Energy  

Open Energy Info (EERE)

Climate Change in Agriculture (MICCA) Project Climate Change in Agriculture (MICCA) Project Jump to: navigation, search Name Mitigation of Climate Change in Agriculture (MICCA) Project Agency/Company /Organization Food and Agriculture Organization of the United Nations Sector Land Focus Area Agriculture Topics Policies/deployment programs Website http://www.fao.org/climatechan Program Start 2010 References Mitigation of Climate Change in Agriculture (MICCA) Project[1] "The main goal of this project is to support efforts to mitigate climate change through agriculture in developing countries and move towards carbon friendly agricultural practices. The aim of the project is to help realise the substantial mitigation potential of agriculture, especially that of smallholders in developing countries. If the right changes are implemented in production systems,

103

United Nations geothermal activities in developing countries  

SciTech Connect

The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

Beredjick, N.

1987-07-01T23:59:59.000Z

104

Main Title 32pt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Energy Storage Joint Energy Storage Initiative November 2, 2010 Georgianne Huff Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Cooperation on ESS projects in New York * Demonstrate electric energy storage for increasing reliability and for electric energy management to be: - technically viable - cost-effective - broadly applicable Start: FY2005 DOE/NYSERDA MOU DOE/Sandia Activities * Assist in project selection process * Data Acquisition System Management - - EnerNex * Data and Economic Analysis - - Distributed Utilities Associates

105

Main Page - NWChem  

NLE Websites -- All DOE Office Websites (Extended Search)

Log in / create account Log in / create account Search Go Search Navigation Main page Science Benchmarks Download Code Documentation News Community Developers SEARCH TOOLBOX LANGUAGES Forum Menu Page Discussion View source History modified on 17 May 2013 at 21:51 *** 6,254,554 views Main Page From NWChem Jump to: navigation, search NWChem: Delivering High-Performance Computational Chemistry caption NWChem aims to provide its users with computational chemistry tools that are scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources from high-performance parallel supercomputers to conventional workstation clusters. NWChem software can handle Biomolecules, nanostructures, and solid-state From quantum to classical, and all combinations

106

Central Maine Power Co | Open Energy Information  

Open Energy Info (EERE)

Central Maine Power Co Central Maine Power Co Place Augusta, Maine Service Territory Maine Website www.cmpco.com/ Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 3266 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Maine Power Company Smart Grid Project was awarded $95,858,307 Recovery Act Funding with a total project value of $191,716,614. Utility Rate Schedules

107

Countries - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Nuclear Electricity Consumption Total Energy. Topics Analysis & Projections Environment Markets & Finance Today in Energy. Geography States Countries Maps. Tools A-Z ...

108

Central Maine Power Co | Open Energy Information  

Open Energy Info (EERE)

Central Maine Power Co Central Maine Power Co (Redirected from Central Maine Power Company) Jump to: navigation, search Name Central Maine Power Co Place Augusta, Maine Service Territory Maine Website www.cmpco.com/ Green Button Reference Page www.whitehouse.gov/sites/ Green Button Committed Yes Utility Id 3266 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] SGIC[3] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Central Maine Power Company Smart Grid Project was awarded $95,858,307

109

REACTOR MAIN COOLANT LOOP  

SciTech Connect

A parametric study was made for the POPR with temperature gradients of 610 to 670 deg F and 6l0 to 684.5 deg F at organic flow rates of 17.8 x l0/sup 6/ and l4.4 x l0/sup 6/ lbs/hr, respectively; and steam turbine conditions at the throttle of 600 and 650 deg F at 800 to l200 psig. The study was made to obtain the most economical layout of the main heat transfer loop system. (B.O.G.)

Terpe, G.R.; Katz, B.

1961-08-01T23:59:59.000Z

110

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

704 704 0 438 0 3,142 Number of charging events² 159,225 0 6,372 0 165,597 Electricity consumed (AC MWh) 1,253.63 0.00 41.42 0.00 1,295.06 Percent of time with a vehicle connected to charging unit 32% 0% 6% 0% 29% Percent of time with a vehicle drawing power from charging unit 6% 0% 2% 0% 6% Max electricity demand across all days Min electricity demand across all days Electricity demand on single calendar day with highest peak Max percentage of charging units connected across all days Min percentage of charging units connected across all days Percentage of charging units connected on single calendar day with peak electricity demand Region: ALL Report period: October 2011 through December 2011 Number of EV Project vehicles in region: 2690 2/2/2012 12:48:34 PM INL/MIS-10-19479

111

Low Carbon Growth Country Studies Program | Open Energy Information  

Open Energy Info (EERE)

Country Studies Program Country Studies Program Jump to: navigation, search Name Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Climate, Energy Focus Area Buildings, Energy Efficiency, Industry, Transportation Topics Background analysis, Baseline projection, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/esmap/ Country Poland, Republic of Macedonia UN Region Northern Europe References ESMAP-Macedonia-Low Carbon Growth Country Studies Program[1] References ↑ "ESMAP-Macedonia-Low Carbon Growth Country Studies Program" Retrieved from "http://en.openei.org/w/index.php?title=Low_Carbon_Growth_Country_Studies_Program&oldid=576259"

112

Country Analysis Briefs  

Reports and Publications (EIA)

An ongoing compilation of country background information profiles. Country Analysis Briefs (CABs) for specific countries or geographical areas that are important to world energy markets are maintained, including members of the Organization of Petroleum Exporting Countries (OPEC), major nonOPEC oil producers (i.e., the North Sea, Russia), major energy transit areas (i.e., Ukraine), and other areas of current interest to energy analysts and policy makers.

Joe Ayoub

113

Country Analysis Briefs, 1994  

Reports and Publications (EIA)

An ongoing compilation of country background information profiles. Country Analysis Briefs (CABs) for specific countries or geographical areas that are important to world energy markets are maintained, including members of the Organization of Petroleum Exporting Countries (OPEC), major nonOPEC oil producers (i.e., the North Sea, Russia), major energy transit areas (i.e., Ukraine), and other areas of current interest to energy analysts and policy makers.

Information Center

1995-05-01T23:59:59.000Z

114

Better Buildings Neighborhood Program: Maine  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Maine on Twitter Bookmark Better Buildings Neighborhood Program: Maine on Google Bookmark Better Buildings Neighborhood Program: Maine on Delicious Rank Better...

115

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

55 55 Overall electrical energy consumption (AC Wh/mi) 242 Number of trips¹ 147,886 Total distance traveled (mi) 1,184,265 Avg trip distance (mi) 8.0 Avg distance traveled per day when the vehicle was driven (mi) 39.6 Avg number of trips between charging events 3.2 Avg distance traveled between charging events (mi) 26.0 Avg number of charging events per day when the vehicle was driven 1.5 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 408 Reporting period: April 2012 through June 2012 Charging Location and Type Home charging location² Away-from- home charging locations³ Unknown charging locations Number of charging events 36,015 6,374 3,179 Percent of all charging events 79% 14% 7% 1 A trip is defined as all the driving done between consecutive "key-on" and "key-off" events when some distance was traveled.

116

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

26 26 Overall electrical energy consumption (AC Wh/mi) 253 Number of trips¹ 526,156 Total distance traveled (mi) 4,369,753 Avg trip distance (mi)² 8.2 Avg distance traveled per day when the vehicle was driven (mi) 39.4 Avg number of trips between charging events 3.4 Avg distance traveled between charging events (mi) 27.9 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 Charging Location Home charging location³ Away-from-home charging locations Unknown charging locations Total number of charging events 124,954 21,973 7,718 Percent of all charging events 81% 14% 5% 1 A trip is defined as all the driving done between consecutive "key-on" and "key-off" events when some distance was traveled.

117

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

26 26 Overall electrical energy consumption (AC Wh/mi) 229 Number of trips¹ 369,118 Total distance traveled (mi) 3,001,976 Avg trip distance (mi) 8.1 Avg distance traveled per day when the vehicle was driven (mi) 40.5 Avg number of trips between charging events 3.5 Avg distance traveled between charging events (mi) 28.2 Avg number of charging events per day when the vehicle was driven 1.4 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 1021 Reporting period: October 2012 through December 2012 Charging Location and Type Home charging location² Away-from- home charging locations³ Unknown charging locations Number of charging events 86,264 13,547 6,698 Percent of all charging events 81% 13% 6% 1 A trip is defined as all the driving done between consecutive "key-on" and "key-off" events when some distance was traveled.

118

EA-1792-S1: University of Maine's Deepwater Offshore Floating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site EA-1792-S1:...

119

Maine's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Maine's 1st congressional district: Energy Resources Maine's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Maine. Contents 1 US Recovery Act Smart Grid Projects in Maine's 1st congressional district 2 Registered Energy Companies in Maine's 1st congressional district 3 Registered Financial Organizations in Maine's 1st congressional district 4 Utility Companies in Maine's 1st congressional district US Recovery Act Smart Grid Projects in Maine's 1st congressional district Central Maine Power Company Smart Grid Project Registered Energy Companies in Maine's 1st congressional district Ascendant Energy Company Inc Criterium Engineers International WoodFuels LLC

120

Annex B Countries List  

NLE Websites -- All DOE Office Websites (Extended Search)

Annex B Countries Australia Austria Belgium Bulgaria Canada Croatia Czech Republic Denmark Estonia Finland France (including Monaco) Germany Greece Hungary Iceland Ireland Italy...

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LUCF Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

122

Geothermal development opportunities in developing countries  

DOE Green Energy (OSTI)

This report is the proceedings of the Seminar on geothermal development opportunities in developing countries, sponsored by the Geothermal Division of the US Department of Energy and presented by the National Geothermal Association. The overall objectives of the seminar are: (1) Provide sufficient information to the attendees to encourage their interest in undertaking more geothermal projects within selected developing countries, and (2) Demonstrate the technological leadership of US technology and the depth of US industry experience and capabilities to best perform on these projects.

Kenkeremath, D.C.

1989-11-16T23:59:59.000Z

123

Efficiency Maine Residential Appliance Program (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Program (Maine) Appliance Program (Maine) Efficiency Maine Residential Appliance Program (Maine) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Water Heating Program Info Funding Source Efficiency Maine Start Date 10/01/2012 Expiration Date 06/30/2014 State Maine Program Type State Rebate Program Rebate Amount Ductless Heat Pumps: $500 Heat pump water heaters: $300 Provider Efficiency Maine Efficiency Maine offers rebates for the purchase of Energy Star certified water heaters, and ductless heat pumps. Purchases must be made between September 1, 2013 and June 30, 2014. See the program web site for the mail-in rebate forms and to locate a participating retailer. In addition, in partnership with Maine Libraries, Efficiency Maine has made

124

RTE 5 - Main Task Guidelines RTE-5 MAIN TASK ...  

Science Conference Proceedings (OSTI)

... T4: Russia doesn't excel in auto manufacturing, but it is tops in other areas. The country's great wealth in oil, natural gas, and metals, in addition to ...

2009-03-20T23:59:59.000Z

125

EEnergy Project "MeRegio" (Smart Grid Project) (Baden-Wrttemberg...  

Open Energy Info (EERE)

Baden-Wrttemberg, Germany) Jump to: navigation, search Project Name EEnergy Project "MeRegio" Country Germany Headquarters Location Baden-Wrttemberg, Germany Coordinates...

126

Main  

NLE Websites -- All DOE Office Websites (Extended Search)

Way, Berkeley, CA Reception (SSL Addition Lobby and Conference Room) THEMIS Spacecraft Tour Saturday, June 3, 2006 8:30 AM Pers Hall; 50A-5132; 50B-4205; Pers Hall Annex; 2-100B...

127

Project information  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Information Amistad Project (Texas) Collbran Project (Colorado) Colorado River Storage Project Dolores Project (Colorado) Falcon Project (Texas) Provo River Project (Utah)...

128

Maine Mountain Power | Open Energy Information  

Open Energy Info (EERE)

Maine Mountain Power Maine Mountain Power Place Yarmouth, Maine Zip 4096 Sector Wind energy Product Wind farm development company focused on projects in Maine. It is a subsidiary of Endless Energy Corporation. Coordinates 41.663318°, -70.198987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.663318,"lon":-70.198987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Countries Australia Overview  

U.S. Energy Information Administration (EIA)

The Australian government projects that the natural ... The Department of Resources ... the National Offshore Petroleum Safety and Environmental Manag ...

130

Mitigation Action Implementation Network (MAIN) | Open Energy Information  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Mitigation Action Implementation Network (MAIN) Jump to: navigation, search Name Mitigation Action Implementation Network (MAIN) Year founded 2011 Website http://www.ccap.org/index.php? References MAIN[1] LinkedIn Connections "CCAP is working in collaboration with the World Bank Institute (WBI) and INCAE Business School to support the design and implementation of Nationally Appropriate Mitigation Actions (NAMAs) and Low-Carbon Development (LCD) strategies in developing countries through regionally based dialogues, web-based exchanges, and practitioner networks. Recent UNFCCC negotiations have made it clear that climate protection will depend on actions on the ground in both developing and developed countries. In recent years, developing countries have shown a significant commitment to

131

Establishing Ergonomics in Industrially Developing Countries  

SciTech Connect

The introduction of ergonomics is an ongoing effort in industrially developing countries and will ultimately require an organized, programmatic approach spanning several countries and organizations. Our preliminary efforts with our partner countries of Viet Nam, Thailand, and Nicaragua have demonstrated that a one-time course is just the first step in a series of necessary events to provide skills and create an infrastructure that will have lasting impact for the host country. To facilitate that any sort of training has a lasting impact, it is recommended that host countries establish a 'contract' with class participants and the guest instructors for at least one follow-up visit so instructors can see the progress and support the participants in current and future efforts. With repeated exchanges, the class participants can become the 'in country experts' and the next generation of ergonomic trainers. Additionally, providing participants with an easy to use hazard assessment tool and methods for evaluating the financial impact of the project (cost/benefit analysis) will assist increase the likelihood of success and establish a foundation for future projects. In the future, developing trade and regionally/culturally specific 'ergonomics toolkits' can help promote broader implementation, especially where training resources may be limited.

Stewart, K; Silverstein, B; Kiefer, M

2005-08-29T23:59:59.000Z

132

Kenya SWERA-Country Report.pdf  

Open Energy Info (EERE)

KENYA COUNTRY REPORT KENYA COUNTRY REPORT SOLAR AND WIND ENERGY RESOURCE ASSESSMENT Nairobi, 23 May 2008 i ii Disclaimer This report is a compilation of information relating to the Solar and Wind Energy Resource Assessment Project (SWERA) including data capturing and analysis, computation and mapping using GIS and other technologies to produce a national solar and wind atlases for Kenya. The contents of this report do not necessarily reflect the views of the United Nations Environment Programme, Government of Kenya, Practical Action or any other party or organizations and countries involved in the SWERA project. Any omissions or alteration of the intended meaning and discrepancies are highly regretted. Daniel Theuri Lead Implementer SWERA National Team Nairobi, 23 May 2008 iii ACKNOWLEDGMENTS

133

Environmental Management Completed Projects 2005-Present  

Energy.gov (U.S. Department of Energy (DOE))

This document provides thelist of completed EM cleanup projects from various sites across the country from 2005 topresent, along with the each projects performance related to cost, schedule, and...

134

EERE News: Maine Project Launches First Grid-Connected Offshore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to be deployed in the world-strengthening American leadership in innovative clean energy technologies that diversify the nation's energy mix with more clean, domestic energy...

135

Jefferson Lab's Workbench Projects - Go Far Car Ramps - Main...  

NLE Websites -- All DOE Office Websites (Extended Search)

Go Far Car Ramps | Background | Overview | Component List | Ramp Construction | Support Arm Preparation | | Base Board Preparation | Top Board Preparation | Support Frame Assembly...

136

Main Coast Winds - Final Scientific Report  

DOE Green Energy (OSTI)

The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

Jason Huckaby; Harley Lee

2006-03-15T23:59:59.000Z

137

countries | OpenEI  

Open Energy Info (EERE)

97 97 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281497 Varnish cache server countries Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB)

138

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

139

Bicycle-powered attachments : designing for developing countries  

E-Print Network (OSTI)

There are 550 million smallholder farmers around the world who earn less than $1/day who could benefit from pedal-powered attachments. This project discusses factors to consider in designing for developing countries and ...

Wu, Jodie (Jodie Z.)

2009-01-01T23:59:59.000Z

140

Spectral Distribution of Solar Radiation in the Nordic Countries  

Science Conference Proceedings (OSTI)

In 1977 a cooperative research project between the Nordic countries (Denmark, Finland, Iceland, Norwayand Sweden) was started. The objective was to chart the spectral distribution of solar radiation in the Nordicarea with a view to furnish ...

G. Kvifte; K. Hegg; V. Hansen

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Telecommunications in developing countries  

Science Conference Proceedings (OSTI)

This paper brings out the rationale for and the course of abolition of monopolies in telecommunications, the emergence of independent regulation, competition and markets determining prices for Telecom and Information services in developed countries and ... Keywords: access, competition, convergence, corporatisation, degovernmentalisation, demonopolisation, internet cafes, public telephones, regulation, telecommunications, universal service/

T. H. Chowdary

2002-07-01T23:59:59.000Z

142

Transportation in Developing Countries  

E-Print Network (OSTI)

Africa that produces synthetic oil from coal, starts to use natural gas as feedstock in the production, natural gas, and petroleum into liquid fuels and chemicals. Sasol is now a privately owned companysolutions+ + + + Transportation in Developing Countries Greenhouse Gas Scenarios for South Africa

Delucchi, Mark

143

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

144

Microsoft Word - maine.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

145

Microsoft Word - maine.doc  

Gasoline and Diesel Fuel Update (EIA)

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

146

IEA Renewables in Southeast Asian Countries: Trends and Potentials | Open  

Open Energy Info (EERE)

Southeast Asian Countries: Trends and Potentials Southeast Asian Countries: Trends and Potentials Jump to: navigation, search Name IEA Renewables in Southeast Asian Countries: Trends and Potentials Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Biomass, Transportation Topics Market analysis, Policies/deployment programs Resource Type Publications Website http://www.iea.org/papers/2010 Country Indonesia, Thailand, Philippines, Vietnam, Singapore, Malaysia, Brunei, Cambodia, Laos, Myanmar UN Region South-Eastern Asia References IEA Renewables in Southeast Asian Countries: Trends and Potentials[1] "A main focus of the report investigates the potentials and barriers for scaling up market penetration of renewable energy technologies (RETs) in

147

International Workshop on Small Scale Wind Energy for Developing Countries  

Open Energy Info (EERE)

Scale Wind Energy for Developing Countries Scale Wind Energy for Developing Countries Jump to: navigation, search Name International Workshop on Small Scale Wind Energy for Developing Countries Agency/Company /Organization Risoe DTU Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Technology characterizations Resource Type Workshop, Training materials, Lessons learned/best practices Website http://www.risoe.dtu.dk/~/medi References International Workshop on Small Scale Wind Energy for Developing Countries[1] Background "The workshop covers the following main themes: Wind energy technologies, their perspectives and applications in developing countries. Reliability of wind turbines, lifetime and strength of wind turbine components. Low cost and natural materials for wind turbines.

148

ISO New England, Incorporated Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Incorporated Smart Grid Project Incorporated Smart Grid Project Jump to: navigation, search Project Lead ISO New England, Incorporated Country United States Headquarters Location Holyoke, Massachusetts Additional Benefit Places Connecticut, Maine, New Hampshire, Rhode Island, Vermont Recovery Act Funding $7993714 Total Project Value $18087427 Coverage Area Coverage Map: ISO New England, Incorporated Smart Grid Project Coordinates 42.2042586°, -72.6162009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

150

DSOPilot project Automatic receipt of short circuiting indicators...  

Open Energy Info (EERE)

Project Name DSOPilot project Automatic receipt of short circuiting indicators Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"...

151

Emobility (Smart Grid Project) (Milan, Italy) | Open Energy Informatio...  

Open Energy Info (EERE)

Emobility (Smart Grid Project) (Milan, Italy) Jump to: navigation, search Project Name Emobility Country Italy Headquarters Location Milan, Italy Coordinates 45.46368, 9.188171...

152

ORNL Global Change and Developing Country Programs | Open Energy  

Open Energy Info (EERE)

ORNL Global Change and Developing Country Programs ORNL Global Change and Developing Country Programs (Redirected from Global Change and Developing Country Programs) Jump to: navigation, search Logo: Global Change and Developing Country Programs Name Global Change and Developing Country Programs Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Website http://www.esd.ornl.gov/eess/g References Global Change [1] "For more than twenty years, ORNL has been active in energy and environmental collaborations with developing countries. Projects have involved more than forty countries in Africa, Asia, Eastern Europe, Latin America and the Caribbean, and the Middle East; and they have included every major kind of energy technology and policy, along with a wide range of environmental technologies and policies." [1]

153

Lessons for Developing Countries  

E-Print Network (OSTI)

Argentina was one of the first countries in the world to implement a comprehensive reform of its electricity sector in the recent period. Among developing countries only Chile has had a comparably comprehensive and successful reform. This paper traces the history of the Argentine reform, which began in 1992, and assesses its progress and its lessons. We conclude that the reform was very successful prior to the collapse of the Argentine peso in early 2002. We suggest lessons for the generation, transmission and distribution sectors, as well as the economic regulation of electricity and the general institutional environment favourable to reform. We note that the achievements of the sector are now threatened by the delays in tackling the financial consequences of the peso devaluation.

Michael G. Pollitt; Michael Pollitt

2004-01-01T23:59:59.000Z

154

Main Results of Grossversuch IV  

Science Conference Proceedings (OSTI)

The main results of a randomized hail suppression experiment, Grossversuch IV, are presented in this paper. Grossversuch IV tested the Soviet hail prevention method during five years (197781). The field experiment took place in central ...

B. Federer; A. Waldvogel; W. Schmid; H. H. Schiesser; F. Hampel; Marianne Schweingruber; W. Stahel; J. Bader; J. F. Mezeix; Nadie Doras; G. D'Aubigny; G. DerMegreditchian; D. Vento

1986-07-01T23:59:59.000Z

155

Preliminary working paper: satellite power system and lesser developed countries  

DOE Green Energy (OSTI)

The objective of this report is to screen selected countries that, by geographical location, might be appropriate sites for the rectenna system and for which technical, environmental, social, demographic, political, and economic factors make a Satellite Power System (SPS) project appear possible. The study focused on countries that are referred to as Lesser Developed Countries (LDCs). Of 130 countries, sovereignties, and dependencies classified by the United Nations as less developed, thirteen countries were selected for study. The countries in the Americas are Mexico, Colombia, Venezuela, and Brazil. On the African continent, the countries are Algeria, Senegal, Gambia, Zaire, and Kenya. The countries in Asia and Oceania are The People's Republic of China, India, Thailand, and Indonesia. Certain general conclusions can be drawn from this study. Countries that might be able to support or contribute to SPS are the established, major energy exporters. The consumption of countries that export some energy virtually matches production. They may be able to pay for SPS in the years 2000 or 2025, but increased economic development and diversification of exports will need to be implemented first. Finally, those countries that import energy do not have an economic base by which they could support SPS unaided, but require energy. All thirteen nations could benefit from SPS. SPS could prove invaluable to these countries with sensitive economies. The added electrical energy could bolster their economies and provide for increased development so that the nations could suppport or contribute to SPS.

Oliver, T.E.; Ventry, L.T.; DuBois, C.; Dhanda, R.

1980-02-03T23:59:59.000Z

156

High Country Energy | Open Energy Information  

Open Energy Info (EERE)

High Country Energy High Country Energy Place Kasson, Minnesota Zip MN 55944 Sector Wind energy Product Developing a planned 300MW wind project in Dodge and Olmsted countries, Minnesota. Coordinates 44.02676°, -92.748254° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02676,"lon":-92.748254,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Maine Maritime Academy | Open Energy Information  

Open Energy Info (EERE)

Academy Academy Jump to: navigation, search Name Maine Maritime Academy Address Engineering Department Pleasant Street Place Castine Zip 4420 Sector Marine and Hydrokinetic Phone number 207-326-2365 Website http://http://www.mainemaritim Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Castine Harbor Badaduce Narrows Tidal Energy Device Evaluation Center TIDEC This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Maine_Maritime_Academy&oldid=678366" Categories: Clean Energy Organizations Companies Organizations Stubs

158

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network (OSTI)

2030 . 257 APP countries through the year 2030. Overall, the savingsbe 1.7 thousand TWh or 21% of the 2030 projected base case

McNeil, MIchael

2011-01-01T23:59:59.000Z

159

Countries - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Nuclear Electricity Consumption Total Energy. Topics Analysis & Projections Environment Markets & Finance Today in Energy. Geography States Countries Maps. Tools A-Z ...

160

Maine Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Recovery Act State Memo Maine Recovery Act State Memo Maine Recovery Act State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maine are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind. Through these investments, Maine's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Maine to play an important role in the new energy economy of the future. Maine Recovery Act State Memo More Documents & Publications Slide 1 District of Columbia Recovery Act State Memo

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ecofys-Country Fact Sheets | Open Energy Information  

Open Energy Info (EERE)

Ecofys-Country Fact Sheets Ecofys-Country Fact Sheets (Redirected from Ecofys Country Fact Sheets) Jump to: navigation, search Tool Summary Name: Ecofys Country Fact Sheets Agency/Company /Organization: Ecofys Sector: Energy, Land Topics: Background analysis, Baseline projection, GHG inventory, Policies/deployment programs Website: www.ecofys.com/files/files/ecofys_2011_country_factsheets_update.pdf Country: Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Colombia, Croatia, Cyprus, Czech Republic, Denmark, Estonia, European Union, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Iran, Ireland, Italy, Japan, Kazakhstan, South Korea, Latvia, Liechtenstein, Lithuania, Luxembourg, Malaysia, Malta, Mexico, Monaco, Netherlands, New Zealand, Nigeria, Norway, Pakistan, Papua New Guinea, Peru, Poland, Portugal, Romania, Russia, Saudi Arabia, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, United States, Venezuela

162

ORNL Global Change and Developing Country Programs | Open Energy  

Open Energy Info (EERE)

Change and Developing Country Programs Change and Developing Country Programs Jump to: navigation, search Logo: Global Change and Developing Country Programs Name Global Change and Developing Country Programs Agency/Company /Organization Oak Ridge National Laboratory Sector Energy Website http://www.esd.ornl.gov/eess/g References Global Change [1] "For more than twenty years, ORNL has been active in energy and environmental collaborations with developing countries. Projects have involved more than forty countries in Africa, Asia, Eastern Europe, Latin America and the Caribbean, and the Middle East; and they have included every major kind of energy technology and policy, along with a wide range of environmental technologies and policies." [1] References ↑ 1.0 1.1 Global Change Retrieved from

163

Energy Crossroads: Utility Energy Efficiency Programs Maine ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Central Maine Power...

164

Efficiency Maine Trust - Renewable Resource Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund < Back Eligibility Institutional Nonprofit Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for renewable energy was established as part of the state's electric-industry restructuring legislation, enacted in May 1997. The law directed the Maine Public Utilities Commission (PUC) to develop a voluntary program allowing customers to contribute to a fund that supports renewable-energy projects. This fund was originally known as the Renewable Resource Fund (now it is part of Efficiency Maine Trust).

165

THE NATIONAL BASIN DELINEATION PROJECT  

Science Conference Proceedings (OSTI)

The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and ...

Ami T. Arthur; Gina M. Cox; Nathan R. Kuhnert; David L. Slayter; Kenneth W. Howard

2005-10-01T23:59:59.000Z

166

YNPS main coolant system decontamination  

SciTech Connect

The Yankee Nuclear Power Station (YNPS) located in Rowe, Massachusetts, is a four-loop pressurized water reactor that permanently ceased power operation on February 26, 1992. Decommissioning activities, including steam generator removal, reactor internals removal, and system dismantlement, have been in progress since the shutdown. One of the most significant challenges for YNPS in 1996 was the performance of the main coolant system chemical decontamination. This paper describes the objectives, challenges, and achievements involved in the planning and implementation of the chemical decontamination.

Metcalf, E.T. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

167

Wind Energy in Indian Country: Turning to Wind for the Seventh Generation  

E-Print Network (OSTI)

Wind Energy in Indian Country: Turning to Wind for the Seventh Generation by Andrew D. Mills: ___________________________________________ Jane Stahlhut Date #12;Wind Energy in Indian Country A.D. Mills Abstract - ii - Abstract Utility for the purpose of economic development. The aim of this project is to show how wind energy projects on tribal

Kammen, Daniel M.

168

Quantifying the Main Battle Tank's architectural trade space using Bayesian Belief Network  

E-Print Network (OSTI)

The design and development of a Main Battle Tank can be characterized as a technically challenging and organizationally complex project. These projects are driven not only by the essential engineering and logistic tasks; ...

Lee, Keen Sing, 1972-

2004-01-01T23:59:59.000Z

169

The Convective Storm Initiation Project  

Science Conference Proceedings (OSTI)

The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is ...

Keith A. Browning; Cyril J. Morcrette; John Nicol; Alan M. Blyth; Lindsay J. Bennett; Barbara J. Brooks; John Marsham; Stephan D. Mobbs; Douglas J. Parker; Felicity Perry; Peter A. Clark; Sue P. Ballard; Mark A. Dixon; Richard M. Forbes; Humphrey W. Lean; Zhihong Li; Nigel M. Roberts; Ulrich Corsmeier; Christian Barthlott; Bernhard Deny; Norbert Kalthoff; Samiro Khodayar; Martin Kohler; Christoph Kottmeier; Stephan Kraut; Michael Kunz; Jrgen Lenfant; Andreas Wieser; Judith L. Agnew; Dave Bamber; James McGregor; Karl M. Beswick; Malcolm D. Gray; Emily Norton; Hugo M. A. Ricketts; Andrew Russell; Geraint Vaughan; Ann R. Webb; Mark Bitter; Thomas Feuerle; Rolf Hankers; Helmut Schulz; Karen E. Bozier; Chris G. Collier; Fay Davies; Catherine Gaffard; Tim J. Hewison; Darcy N. Ladd; Elizabeth C. Slack; Joe Waight; Markus Ramatschi; David P. Wareing; Robert J. Watson

2007-12-01T23:59:59.000Z

170

Maine/Incentives | Open Energy Information  

Open Energy Info (EERE)

Maine/Incentives Maine/Incentives < Maine Jump to: navigation, search Contents 1 Financial Incentive Programs for Maine 2 Rules, Regulations and Policies for Maine Download All Financial Incentives and Policies for Maine CSV (rows 1 - 91) Financial Incentive Programs for Maine Download Financial Incentives for Maine CSV (rows 1 - 25) Incentive Incentive Type Active Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Utility Rebate Program Yes Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) Performance-Based Incentive Yes Efficiency Maine - Home Appliance Rebate Program (Maine) State Rebate Program No Efficiency Maine - Home Energy Savings Program (Maine) State Rebate Program No Efficiency Maine - Replacement Heating Equipment Program (Maine) State Rebate Program No

171

An Act to Facilitate Testing and Demonstration of Renewable Ocean Energy Technology (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This law streamlines and coordinates State permitting and submerged lands leasing requirements for renewable ocean energy demonstration projects, aiding Maine's goal to become an international...

172

Building MRV Standards and Capacity in Key Countries | Open Energy  

Open Energy Info (EERE)

MRV Standards and Capacity in Key Countries MRV Standards and Capacity in Key Countries Jump to: navigation, search Name Building MRV Standards and Capacity in Key Countries Agency/Company /Organization World Resources Institute (WRI) Sector Climate Focus Area Renewable Energy Topics Implementation Website http://www.wri.org/topics/mrv Program Start 2011 Program End 2014 Country Brazil, Colombia, Ethiopia, India, South Africa, Thailand South America, South America, Eastern Africa, Southern Asia, Southern Africa, South-Eastern Asia References World Resources Institute (WRI)[1] Program Overview Developing countries will be required to measure, report, and verify (MRV) mitigation actions according to international guidelines, but few have the capacity to do so. The goal of this project is to build the capacity of a

173

Ecofys-Country Fact Sheets | Open Energy Information  

Open Energy Info (EERE)

Ecofys-Country Fact Sheets Ecofys-Country Fact Sheets Jump to: navigation, search Tool Summary Name: Ecofys Country Fact Sheets Agency/Company /Organization: Ecofys Sector: Energy, Land Topics: Background analysis, Baseline projection, GHG inventory, Policies/deployment programs Website: www.ecofys.com/files/files/ecofys_2011_country_factsheets_update.pdf Country: Argentina, Australia, Austria, Belarus, Belgium, Brazil, Bulgaria, Canada, China, Colombia, Croatia, Cyprus, Czech Republic, Denmark, Estonia, European Union, Finland, France, Germany, Greece, Hungary, Iceland, India, Indonesia, Iran, Ireland, Italy, Japan, Kazakhstan, South Korea, Latvia, Liechtenstein, Lithuania, Luxembourg, Malaysia, Malta, Mexico, Monaco, Netherlands, New Zealand, Nigeria, Norway, Pakistan, Papua New Guinea, Peru, Poland, Portugal, Romania, Russia, Saudi Arabia, Slovakia, Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, Ukraine, United Kingdom, United States, Venezuela

174

The energy situation in five Central American countries  

DOE Green Energy (OSTI)

This study describes the energy resources and the changes that have taken place in energy supply and demand in five Central American countries between 1970 and 1984. Economic changes are also reviewed because they influence and are affected by changes in the energy sector. The work was performed under the auspices of the US Agency for International Development. The Central American countries of Costa Rica, El Salvador, Guatemala, Honduras, and Panama are highly dependent on fuel wood as a source of energy, particularly in the residential sector. They also rely upon imported oil products to supply a growing modern sector. Most countries have significant hydroelectric and geothermal resources, and most countries produce a large portion of their electricity from hydroelectric projects. Demand for electricity has grown rapidly. Relative shares of primary versus secondary energy in the five countries vary significantly and strongly correlate with average per capita income. Consumption of secondary energy has declined during the recent economic recession suffered by the region.

Trocki, L.; Booth, S.R.; Umana Q, A.

1987-06-01T23:59:59.000Z

175

Project Submission Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Cooperation International Cooperation Project Title: Country/Organizations: Foreign: Foreign POC: U.S: U.S. POC: Technology Area: Scope of Collaborative Research and Development: Justification of Approach: Work Completed to Date: Overview of Proposed Scope for FY12: Summary Brief Description of Specific Project(s): Timeline: Estimated Cost: Status: CONTINUATION or NEW? Type of Contracting Instrument: (Int'l agreements, lab-lab agreement, etc) Participant Organizations General Scope Budget Foreign (Technical Scope) US (Overhead rate) (Technical Scope) TOTAL Budget Breakdown: Overhead rates and experimental work: APPROVE ____________________ DISAPPROVE ____________________ Approving Official: Associate PDAS, Alice Williams, EM-2.1

176

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart: project timeline - Project Milestones - Budget - Bibliography * Thank you 29 30 Organization Chart * Project team: Purdue University - Dr. Brenda B. Bowen: PI, student...

177

Countries - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

This report examines a variety of energy-related national- and regional-level indicators between 1980 and 2001. U.S. and World Energy ... U.S. Departm ...

178

Countries - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... two cases which investigate the use of an oil import tariff to achieve a target reduction in the oil imports.

179

Countries - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in ... PDF Policies to Promote Non-Hydro Renewable Energy in the United States ... PDF Worldwide Natural Gas Supply and Demand ...

180

Countries - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual Energy Outlook ... based on historical estimates and forecasts from the latest EIA Short-Term Energy Outlook.

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Salt River Project Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Salt River Project Smart Grid Project Salt River Project Smart Grid Project Jump to: navigation, search Project Lead Salt River Project Country United States Headquarters Location Tempe, Arizona Recovery Act Funding $56,859,359.00 Total Project Value $114,003,719.00 Coverage Area Coverage Map: Salt River Project Smart Grid Project Coordinates 33.414768°, -111.9093095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

182

Maine Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

MaineGasPrices.com (Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Maine Gas Prices (Ciudades Selectas) - GasBuddy.com Maine Gas Prices (Organizado por Condado) -...

183

MHK Projects/Alaska 1 | Open Energy Information  

Open Energy Info (EERE)

{"text":"","title":"","link":null,"lat":64.7881,"lon":-141.199,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]} {"text":"","title":"","link":null,"lat":64.7881,"lon":-141.199,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]} Project Profile Project Start Date 1/1/2007 Project City Eagle, AK Project State/Province Alaska Project Country United States Coordinates 64.7881°, -141.199° Project Phase Phase 0 Main Overseeing Organization Hydro Green Energy Project Licensing Environmental Monitoring and Mitigation Efforts See Tethys << Return to the MHK database homepage

184

Maine/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources/Full Version < Maine‎ | Wind Resources Jump to: navigation, search Print PDF Maine Wind Resources MaineMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

185

Advancing Next-Generation Energy in Indian Country (Fact Sheet)  

SciTech Connect

This fact sheet provides information on Tribes in the lower 48 states selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

2012-08-01T23:59:59.000Z

186

Advancing Next-Generation Energy in Indian Country (Fact Sheet)  

SciTech Connect

This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

Not Available

2012-08-01T23:59:59.000Z

187

Advancing Next-Generation Energy in Indian Country (Fact Sheet)  

SciTech Connect

This fact sheet provides information on the Alaska Native governments selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

2012-08-01T23:59:59.000Z

188

Advancing Energy Development in Indian Country (Fact Sheet)  

SciTech Connect

This fact sheet provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

2013-03-01T23:59:59.000Z

189

Adirondack North Country Association | Open Energy Information  

Open Energy Info (EERE)

Adirondack North Country Association Adirondack North Country Association Jump to: navigation, search Name Adirondack North Country Association Address 67 Main Street, Suite 201 Place Saranac Lake, New York Zip 12946 Region Northeast - NY NJ CT PA Area Number of employees 1-10 Year founded 1954 Phone number 518 891 6200 Website http://www.adirondack.org Coordinates 44.326363°, -74.132012° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.326363,"lon":-74.132012,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

190

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Company Smart Grid Project Baltimore Gas Company Smart Grid Project Baltimore Gas and Electric Company Smart Grid Project Baltimore Maryland Black Hills Power Inc Smart Grid Project Black Hills Power Inc Smart Grid Project Rapid City South Dakota North Dakota Minnesota Black Hills Colorado Electric Utility Co Smart Grid Project Black Hills Colorado Electric Utility Co Smart Grid Project Pueblo Colorado CenterPoint Energy Smart Grid Project CenterPoint Energy Smart Grid Project Houston Texas Central Maine Power Company Smart Grid Project Central Maine Power Company Smart Grid Project Augusta Maine Cheyenne Light Fuel and Power Company Smart Grid Project Cheyenne Light Fuel and Power Company Smart Grid Project Cheyenne Wyoming City of Fulton Missouri Smart Grid Project City of Fulton Missouri

191

Bringing a Range of Supported Mitigation Activities in Selected Countries  

Open Energy Info (EERE)

Bringing a Range of Supported Mitigation Activities in Selected Countries Bringing a Range of Supported Mitigation Activities in Selected Countries to the Next Level Jump to: navigation, search Name Bringing a Range of Supported Mitigation Activities in Selected Countries to the Next Level Agency/Company /Organization Energy Research Centre of the Netherlands (ECN), Ecofys Sector Climate Focus Area Renewable Energy, Agriculture, People and Policy Topics Low emission development planning, Policies/deployment programs Website http://www.ecn.nl/docs/library Program Start 2011 Program End 2014 Country Chile, Indonesia, Kenya, Peru, Tunisia South America, South-Eastern Asia, Eastern Africa, South America, Northern Africa References ECN[1] Ecofys[2] Program Overview This project runs from March 2012 to December 2014, and is a collaboration

192

Efficiency Maine Trust | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Trust Efficiency Maine Trust Efficiency Maine Trust < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for energy efficiency was authorized originally in 1997 by the state's electric-industry restructuring legislation. Under the initial arrangement, the administration of certain efficiency programs was divided among the State Planning Office (SPO), the state's electric utilities and the Maine Public Utilities Commission (PUC). However, general dissatisfaction by the Maine Legislature (and many other stakeholders) with the administration of the fund prompted revisions in

193

Alternative Fuels Data Center: Maine Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Information to Maine Information to someone by E-mail Share Alternative Fuels Data Center: Maine Information on Facebook Tweet about Alternative Fuels Data Center: Maine Information on Twitter Bookmark Alternative Fuels Data Center: Maine Information on Google Bookmark Alternative Fuels Data Center: Maine Information on Delicious Rank Alternative Fuels Data Center: Maine Information on Digg Find More places to share Alternative Fuels Data Center: Maine Information on AddThis.com... Maine Information This state page compiles information related to alternative fuels and advanced vehicles in Maine and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

194

Forestry Policies (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Forestry Policies (Maine) < Back Eligibility Commercial Agricultural Program Info State Maine Program Type Environmental Regulations Provider Maine Forest Service Maine has diverse forest lands which support a diverse and strong forest products industry. The vast majority of forest lands in the state are privately owned. The Maine Forest Service completed its State Forest Assessment and Strategy in 2010, a plan that includes the goal of enhanced benefit from the production of renewable energy using wood and wood wastes. The combination of markets including a growing biomass energy industry and increased wood heating have created significant demand for wood material in Maine. The Maine Forest Service together with the University of Maine issued its "Woody Biomass Retention Guidelines" in 2010. This document

195

Pollution Control: Storm Water Management (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Control: Storm Water Management (Maine) Pollution Control: Storm Water Management (Maine) Pollution Control: Storm Water Management (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection A person may not construct, or cause to be constructed, a project that

196

REDD Country Activity Database | Open Energy Information  

Open Energy Info (EERE)

REDD Country Activity Database REDD Country Activity Database Jump to: navigation, search Tool Summary Name: REDD Country Activity Database Agency/Company /Organization: Global Canopy Programme, Forum on Readiness for REDD Sector: Land Focus Area: Forestry Topics: Background analysis Resource Type: Dataset, Case studies/examples User Interface: Website Website: www.theredddesk.org/countries Country: Brazil, Cameroon, Vietnam, Guyana, Tanzania, Indonesia Cost: Free UN Region: Southern Africa, South America, South-Eastern Asia REDD Country Activity Database Screenshot References: REDD Country Activity Database[1] Logo: REDD Country Activity Database The REDD Countries Database is a centralised and collaborative database of the diverse and rapidly evolving range of ongoing REDD activities in

197

Battleground Energy Recovery Project  

Science Conference Proceedings (OSTI)

In October 2009, the project partners began a 36-month effort to develop an innovative, commercial-scale demonstration project incorporating state-of-the-art waste heat recovery technology at Clean Harbors, Inc., a large hazardous waste incinerator site located in Deer Park, Texas. With financial support provided by the U.S. Department of Energy, the Battleground Energy Recovery Project was launched to advance waste heat recovery solutions into the hazardous waste incineration market, an area that has seen little adoption of heat recovery in the United States. The goal of the project was to accelerate the use of energy-efficient, waste heat recovery technology as an alternative means to produce steam for industrial processes. The project had three main engineering and business objectives: Prove Feasibility of Waste Heat Recovery Technology at a Hazardous Waste Incinerator Complex; Provide Low-cost Steam to a Major Polypropylene Plant Using Waste Heat; and ? Create a Showcase Waste Heat Recovery Demonstration Project.

Daniel Bullock

2011-12-31T23:59:59.000Z

198

Radiation Embrittlement Archive Project  

SciTech Connect

The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

Klasky, Hilda B [ORNL; Bass, Bennett Richard [ORNL; Williams, Paul T [ORNL; Phillips, Rick [ORNL; Erickson, Marjorie A [ORNL; Kirk, Mark T [ORNL; Stevens, Gary L [ORNL

2013-01-01T23:59:59.000Z

199

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine Categorical Exclusion Determinations: Maine Location Categorical Exclusion Determinations issued for actions in Maine. DOCUMENTS AVAILABLE FOR DOWNLOAD February 4, 2013 CX-010231: Categorical Exclusion Determination Hywind Maine CX(s) Applied: A9, B3.1, B3.6 Date: 02/04/2013 Location(s): Maine Offices(s): Golden Field Office January 17, 2013 CX-009915: Categorical Exclusion Determination The University of Maine's "New England Aqua Ventus I" Program CX(s) Applied: A9, B3.6 Date: 01/17/2013 Location(s): Maine Offices(s): Golden Field Office November 5, 2012 CX-009425: Categorical Exclusion Determination Partial Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.3, B3.16, B5.18 Date: 11/05/2012 Location(s): Maine

200

Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ukraine-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Ukraine-World Bank Climate Projects AgencyCompany Organization World Bank Sector Energy Focus Area Energy Efficiency Topics Background analysis Country Ukraine Eastern Europe...

202

FAO Global Inventory of Agricultural Mitigation Projects in Developing...  

Open Energy Info (EERE)

FAO Global Inventory of Agricultural Mitigation Projects in Developing Countries Jump to: navigation, search Tool Summary Name: FAO Global Inventory of Agricultural Mitigation...

203

Georgia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Bank Climate Projects AgencyCompany Organization World Bank Focus Area Renewable Energy, Hydro Topics Background analysis Website http:web.worldbank.orgexter Country...

204

Maine PACE Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine PACE Loans Maine PACE Loans Maine PACE Loans < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Buying & Making Electricity Wind Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 04/04/2011 State Maine Program Type PACE Financing Provider Efficiency Maine Note: Maine's PACE program is accepting applications from homeowners in participating municipalities. Applications are submitted online. Property-Assessed Clean Energy (PACE) financing allows property owners to

205

Pecan Street Project, Inc. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Project, Inc. Smart Grid Demonstration Project Project, Inc. Smart Grid Demonstration Project Jump to: navigation, search Project Lead Pecan Street Project, Inc. Country United States Headquarters Location Austin, Texas Recovery Act Funding $10,403,570.00 Total Project Value $24,656,485.00 Coordinates 30.267153°, -97.7430608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

206

Vineyard Energy Project Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Smart Grid Project Smart Grid Project Jump to: navigation, search Project Lead Vineyard Energy Project Country United States Headquarters Location West Tisbury, Massachusetts Recovery Act Funding $787,250.00 Total Project Value $1,574,500.00 Coverage Area Coverage Map: Vineyard Energy Project Smart Grid Project Coordinates 41.3812245°, -70.6744723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

207

Project 244  

NLE Websites -- All DOE Office Websites (Extended Search)

PROJECT PARTNER Advanced Technology Systems, Inc. Pittsburgh, PA PROJECT PARTNERS Ohio University Athens, OH Texas A&M University-Kingsville Kingsville, TX WEBSITES http:...

208

Projects | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and Conferences Supporting Organizations Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Projects Projects 1-10 of 180 Results Prev...

209

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit...

210

Problems with packaged sources in foreign countries  

SciTech Connect

The Global Threat Reduction Initiative's (GTRI) Off-Site Source Recovery Project (OSRP), which is administered by the Los Alamos National Laboratory (LANL), removes excess, unwanted, abandoned, or orphan radioactive sealed sources that pose a potential threat to national security, public health, and safety. In total, GTRI/OSRP has been able to recover more than 25,000 excess and unwanted sealed sources from over 825 sites. In addition to transuranic sources, the GTRI/OSRP mission now includes recovery of beta/gamma emitting sources, which are of concern to both the U.S. government and the International Atomic Energy Agency (IAEA). This paper provides a synopsis of cooperative efforts in foreign countries to remove excess and unwanted sealed sources by discussing three topical areas: (1) The Regional Partnership with the International Atomic Energy Agency; (2) Challenges in repatriating sealed sources; and (3) Options for repatriating sealed sources.

Abeyta, Cristy L [Los Alamos National Laboratory; Matzke, James L [Los Alamos National Laboratory; Zarling, John [Los Alamos National Laboratory; Tompkin, J. Andrew [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

211

Biofuel Feedstock Assessment For Selected Countries  

SciTech Connect

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

2008-02-01T23:59:59.000Z

212

Biofuel Feedstock Assessment for Selected Countries  

DOE Green Energy (OSTI)

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as available for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

2008-02-18T23:59:59.000Z

213

Contextuality of participation in IS design: a developing country perspective  

Science Conference Proceedings (OSTI)

Participatory approaches to information systems design have evolved over approximately the last three decades, mainly in Scandinavia, Europe, and lately in the US. However there has been limited and peripheral research and debates over participatory ... Keywords: community IS, developing countries, health information systems, participatory design

S. K. Puri; Elaine Byrne; Jose Leopoldo Nhampossa; Zubeeda B. Quraishi

2004-07-01T23:59:59.000Z

214

Soalr cooking in developing countries  

SciTech Connect

Solar cooking must overcome a number of obstacles to realize its potential to improve the lives of women in developing countries. Unlike historical interest in solar cooking, current interest derives from vital environmental and human needs. Deforestation and reliance on wood for cooking lead to many hardships, especially for women, and women in developing countries need access to technology and funding. If the woman builds the oven herself, it notonly makes her more willing to use it but the process empower her with new knowledge and kills. The physical design of the oven must be adapted to local conditions and materials for the oven should be inexpensive and locally available.

Stone, L.

1994-11-01T23:59:59.000Z

215

Maine Yankee steam generator tube modification from a radiobiological prospective  

SciTech Connect

Maine Yankee installed permanent sleeving in the primary secondary interface tubing of their steam generators. This repair was necessary because of numerous defects approaching or exceeding technical specification requirements. This project was accomplished under budget, and for a radiation exposure of 141.974 person-rem. This paper addresses the ALARA considerations, temporary lead shielding, mockup training, radiation worker training, radiological initiatives, and lessons learned.

Heath, E.; Granados, B. [Maine Yankee, Wiscasset, MA (United States)

1996-06-01T23:59:59.000Z

216

Main Injector Particle Production Experiment (MIPP) at Fermilab  

Science Conference Proceedings (OSTI)

The Main Injector Particle Production Experiment at Fermilab uses particle beams of charged pions kaons proton and anti?proton with beam momenta of 5 to 90 GeV/c and thin targets spanning the periodic table from (liquid) hydrogen to uranium to measure particle production cross sections in a full acceptance spectrometer with charged particle identification for particles from 0.1 to 120 GeV/c using Time Projection Chamber

Sonam Mahajan; The MIPP Collaboration

2011-01-01T23:59:59.000Z

217

Productivity Differences Between and Within Countries  

E-Print Network (OSTI)

We document substantial within-country (cross-municipality) differences in incomes for a large number of countries in the Americas. A significant fraction of the within-country differences cannot be explained by observed ...

Acemoglu, Daron

218

Better Buildings Neighborhood Program: Maine - SEP  

NLE Websites -- All DOE Office Websites (Extended Search)

- SEP to - SEP to someone by E-mail Share Better Buildings Neighborhood Program: Maine - SEP on Facebook Tweet about Better Buildings Neighborhood Program: Maine - SEP on Twitter Bookmark Better Buildings Neighborhood Program: Maine - SEP on Google Bookmark Better Buildings Neighborhood Program: Maine - SEP on Delicious Rank Better Buildings Neighborhood Program: Maine - SEP on Digg Find More places to share Better Buildings Neighborhood Program: Maine - SEP on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY NC | OH | OR | PA | SC TN | TX | VT | VI | VA WA | WI Maine - SEP Maine Makes Multifamily Units Energy-Efficient and Cost-Effective

219

Directory of financing sources for foreign energy projects  

SciTech Connect

The Office of National Security Policy has produced this Directory of Financing Sources for Foreign Energy Projects. The Directory reviews programs that offer financing from US government agencies, multilateral organizations, public, private, and quasi-private investment funds, and local commercial and state development banks. The main US government agencies covered are the US Agency for International Development (USAID), the Export-Import Bank of the US (EXIM Bank), Overseas Private Investment Corporation (OPIC), US Department of Energy, US Department of Defense, and the US Trade and Development Agency (TDA). Other US Government Sources includes market funds that have been in part capitalized using US government agency funds. Multilateral organizations include the World Bank, International Finance Corporation (IFC), Asian Development Bank (ADB), European Bank for Reconstruction and Development (EBRD), and various organizations of the United Nations. The Directory lists available public, private, and quasi-private sources of financing in key emerging markets in the Newly Independent States and other developing countries of strategic interest to the US Department of Energy. The sources of financing listed in this directory should be considered indicative rather than inclusive of all potential sources of financing. Initial focus is on the Russian Federation, Ukraine, india, China, and Pakistan. Separate self-contained sections have been developed for each of the countries to enable the user to readily access market-specific information and to support country-specific Departmental initiatives. For each country, the directory is organized to follow the project life cycle--from prefeasibility, feasibility, project finance, cofinancing, and trade finance, through to technical assistance and training. Programs on investment and export insurance are excluded.

La Ferla, L. [La Ferla Associates, Washington, DC (United States)

1995-09-01T23:59:59.000Z

220

Prospects for the power sector in nine developing countries  

Science Conference Proceedings (OSTI)

Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Countries Last Updated: July 22, 2013  

U.S. Energy Information Administration (EIA)

Countries Last Updated: July 22, 2013 full report EIA estimates that Organization of the Petroleum Exporting Countries (OPEC), not including Iran, earned about $ ...

222

Country Energy Profile, South Africa  

Science Conference Proceedings (OSTI)

This country energy profile provides energy and economic information about South Africa. Areas covered include: Economics, demographics, and environment; Energy situation; Energy structure; Energy investment opportunities; Department of Energy (DOE) programs in South Africa; and a listing of International aid to South Africa.

NONE

1995-08-01T23:59:59.000Z

223

Earn recognition for your commercial construction project | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

across the country to see who submits the most projects that achieve Designed to Earn the ENERGY STAR. The project's region will be determined by zip code for one of three U.S...

224

Climate Action Plan (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Climate Action Plan (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Climate Policies Provider Department of Environmental Protection In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan

225

Energy Incentive Programs, Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine Energy Incentive Programs, Maine October 29, 2013 - 11:29am Addthis Updated December 2012 What public purpose-funded energy efficiency programs are available in my state? Maine's restructuring law provides for energy efficiency programs through a statewide charge of up to 1.5 mills per kWh. These costs are included in the rates of the local electric distribution utilities. Almost $25 million was spent in 2011 on electric and gas energy efficiency programs. These funds were augmented, starting in 2009, by Maine's portion of proceeds from the northeastern states' Regional Greenhouse Gas Initiative (RGGI). Efficiency Maine , a state-chartered corporation under direction from the Efficiency Maine Trust, administers efficiency programs for businesses and

226

Maine's Weatherization Milestones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine's Weatherization Milestones Maine's Weatherization Milestones Maine's Weatherization Milestones August 24, 2010 - 5:44pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Thanks to $41.9 million in funding from the Recovery Act, the state of Maine expects to weatherize more than 4,400 homes Maine's state motto - "dirigo," Latin for "I lead," - is very fitting, especially when it comes to weatherization. With the help of nearly $41.9 million in funding from the Recovery Act, the state expects to weatherize more than 4,400 homes - creating jobs, reducing carbon emissions, and saving money for Maine's low-income families. Cathy Zoi, DOE's Assistant Secretary for Energy Efficiency and Renewable Energy and Maine's Governor John Baldacci spoke on a conference call last

227

Maine's Weatherization Milestones | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine's Weatherization Milestones Maine's Weatherization Milestones Maine's Weatherization Milestones August 24, 2010 - 5:44pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Thanks to $41.9 million in funding from the Recovery Act, the state of Maine expects to weatherize more than 4,400 homes Maine's state motto - "dirigo," Latin for "I lead," - is very fitting, especially when it comes to weatherization. With the help of nearly $41.9 million in funding from the Recovery Act, the state expects to weatherize more than 4,400 homes - creating jobs, reducing carbon emissions, and saving money for Maine's low-income families. Cathy Zoi, DOE's Assistant Secretary for Energy Efficiency and Renewable Energy and Maine's Governor John Baldacci spoke on a conference call last

228

Widget:MainPageGallery | Open Energy Information  

Open Energy Info (EERE)

MainPageGallery MainPageGallery Jump to: navigation, search This widget displays a gallery of images for the main page. Dependencies: /w/skins/openei/js/jquery/jquery-galleryview-1.1/* The Siemens Velero high-speed train High-Speed Rail Florida will develop the first high-speed rail corridor in the U.S., from Tampa to Orlando, eventually connecting to Miami. The Ecobuild America conference Ecobuild America The Ecobuild America conference will feature leading Japanese smart grid companies. Chu announces white house solar roof White House solar roof U.S. Department of Energy Secretary Steven Chu announces plans for solar installation on the White House roof. A view of a resident's smart meter Smart Water Meters The city of Dubuque, Iowa is engaging in a pilot project with I.B.M. to see

229

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Ocean Renewable Power Company Maine, LLC Cobscook Bay 16: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

230

EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay 1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine EA-1916: Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot Project, Cobscook in Washington County, Maine Summary This EA evaluates the environmental impacts of a project that would use the tidal currents of Cobscook Bay to generate electricity via cross-flow Kinetic System turbine generator units (TGU) mounted on the seafloor. The TGUs would capture energy from the flow in both ebb and flood directions. Public Comment Opportunities None available at this time. Documents Available for Download March 19, 2012 EA-1916: Finding of No Significant Impact Ocean Renewable Power Company Maine, LLC Cobscook Bay Tidal Energy Pilot

231

Poland-Low Carbon Growth Country Studies Program | Open Energy Information  

Open Energy Info (EERE)

Poland-Low Carbon Growth Country Studies Program Poland-Low Carbon Growth Country Studies Program Jump to: navigation, search Name Poland-Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Climate, Energy Focus Area Buildings, Energy Efficiency, Industry, Transportation Topics Background analysis, Baseline projection, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/esmap/ Country Poland UN Region Northern Europe References ESMAP-Macedonia-Low Carbon Growth Country Studies Program[1] References ↑ "ESMAP-Macedonia-Low Carbon Growth Country Studies Program" Retrieved from "http://en.openei.org/w/index.php?title=Poland-Low_Carbon_Growth_Country_Studies_Program&oldid=700210"

232

Republic of Macedonia-Low Carbon Growth Country Studies Program | Open  

Open Energy Info (EERE)

Republic of Macedonia-Low Carbon Growth Country Studies Program Republic of Macedonia-Low Carbon Growth Country Studies Program Jump to: navigation, search Name Republic of Macedonia-Low Carbon Growth Country Studies Program Agency/Company /Organization Energy Sector Management Assistance Program of the World Bank Sector Climate, Energy Focus Area Buildings, Energy Efficiency, Industry, Transportation Topics Background analysis, Baseline projection, Low emission development planning, Policies/deployment programs Website http://www.esmap.org/esmap/ Country Republic of Macedonia UN Region Northern Europe References ESMAP-Macedonia-Low Carbon Growth Country Studies Program[1] References ↑ "ESMAP-Macedonia-Low Carbon Growth Country Studies Program" Retrieved from "http://en.openei.org/w/index.php?title=Republic_of_Macedonia-Low_Carbon_Growth_Country_Studies_Program&oldid=700212

233

DSOpilot project (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

DSOpilot project (Smart Grid Project) DSOpilot project (Smart Grid Project) Jump to: navigation, search Project Name DSOpilot project Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

ADELE Project AACAES (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

ADELE Project AACAES (Smart Grid Project) ADELE Project AACAES (Smart Grid Project) Jump to: navigation, search Project Name ADELE Project AACAES Country Germany Coordinates 51.165691°, 10.451526° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.165691,"lon":10.451526,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Demonstration project Smart Charging (Smart Grid Project) | Open Energy  

Open Energy Info (EERE)

project Smart Charging (Smart Grid Project) project Smart Charging (Smart Grid Project) Jump to: navigation, search Project Name Demonstration project Smart Charging Country Netherlands Headquarters Location Noord-Brabant, Netherlands Coordinates 51.482655°, 5.232169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.482655,"lon":5.232169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

DataHub project (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

DataHub project (Smart Grid Project) DataHub project (Smart Grid Project) Jump to: navigation, search Project Name DataHub project Country Denmark Headquarters Location Fredericia, Denmark Coordinates 55.570332°, 9.746595° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.570332,"lon":9.746595,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

ESB Smart Meter Projects (Smart Grid Project) (Limerick, Ireland) | Open  

Open Energy Info (EERE)

Projects (Smart Grid Project) (Limerick, Ireland) Projects (Smart Grid Project) (Limerick, Ireland) Jump to: navigation, search Project Name ESB Smart Meter Projects Country Ireland Headquarters Location Limerick, Ireland Coordinates 52.663857°, -8.626773° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.663857,"lon":-8.626773,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

238

Countries Commit to White Roofs, Potentially Offsetting the Emissions of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Countries Commit to White Roofs, Potentially Offsetting the Countries Commit to White Roofs, Potentially Offsetting the Emissions of Over 300 Power Plants Countries Commit to White Roofs, Potentially Offsetting the Emissions of Over 300 Power Plants April 8, 2011 - 4:26pm Addthis Dr. Art Rosenfeld Distinguished Scientist Emeritus at Lawrence Berkeley National Laboratory What does this project do? Builds energy savings. Promotes heat island mitigation and public health benefits. Encourages global cooling. I am delighted to learn that India, Mexico, and the United States have signed up to join the Cool Roofs Working Group, announced yesterday at the second Clean Energy Ministerial in Abu Dhabi. This working group was offered as part of the Clean Energy Ministerial, which is a high-level global forum to promote policies and programs that advance clean energy

239

Wastewater Discharge Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

240

Small Generator Aggregation (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generator Aggregation (Maine) Generator Aggregation (Maine) Small Generator Aggregation (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Green Power Purchasing Provider Public Utilities Commission This section establishes requirements for electricity providers to purchase

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Maine Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

242

TREC 2007 Legal Track: Main Task Glossary  

Science Conference Proceedings (OSTI)

TREC 2007 Legal Track: Main Task Glossary. Revision History. 2007 Oct 2: st: first draft. qrelsL07.normal. The qrelsL07.normal ...

243

Green Power Purchasing (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine Name Green Power Purchasing Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Biomass, Fuel Cells, Fuel Cells using Renewable...

244

Intermediary Relending Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

subordinate financing for certain businesses activities. The loan will not exceed 75% of project costs, with the maximum loan amount being 150,000. The term depends on the type...

245

Secondary Market Taxable Bond Program (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Secondary Market Taxable Bond Program provides tax-exempt interest rate bond financing for real estate and machinery and equipment acquisitions. Up to 90% of the project debt may be financed,...

246

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

247

Alaska Renewable Energy Project | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Project Renewable Energy Project Jump to: navigation, search Logo: Renewable Energy Alaska Project Name Renewable Energy Alaska Project Agency/Company /Organization Executive Director Chris Rose Partner native, municipal, state, and federal coalition Sector Energy Focus Area Renewable Energy Topics Background analysis Website http://alaskarenewableenergy.o Country United States Northern America References Renewable Energy Alaska Project homepage[1] The Renewable Energy Alaska Project is a coalition of small and large Alaska utilities, businesses, consumer and conservation groups, Alaska native organizations, and municipal, state, and federal partners with an interest in developing Alaska's renewable energy resources.[2] REAP's mission is increase the development of renewable energy resources,

248

Science Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

249

Clean Cities: Maine Clean Communities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Clean Communities Coalition Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Maine Clean Communities coalition Contact Information Steven Linnell 207-774-9891 slinnell@gpcog.org Coalition Website Clean Cities Coordinator Steven Linnell Photo of Steven Linnell Steven Linnell has been the coordinator of the statewide Maine Clean Communities coalition since its designation in 1997. The coalition's greatest achievement so far has been helping the Greater Portland METRO build the first fast-fill compressed natural gas (CNG) fueling infrastructure in the state, which currently serves 13 CNG transit buses and four CNG school buses. The coalition has also played a role in shaping

250

Wind Energy Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Act (Maine) Wind Energy Act (Maine) Wind Energy Act (Maine) < Back Eligibility Developer Utility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Access Policy Siting and Permitting The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the regulatory process for

251

The First Telemedicine Project Kazakhstan  

Science Conference Proceedings (OSTI)

The main goal of the project is to demonstrate improved access to health care services and health information at rural primary health care levels through creation of telemedicine program. The program will establish telemedicine services in 128 sustainable ...

Dana Sharman; Boulat Alibekov; Talgat Soultanov; Shamshiddin Balgimbekov

2004-06-01T23:59:59.000Z

252

Global Energy Transfer - Feed-in Tariffs for Developing Countries | Open  

Open Energy Info (EERE)

Energy Transfer - Feed-in Tariffs for Developing Countries Energy Transfer - Feed-in Tariffs for Developing Countries Jump to: navigation, search Tool Summary Name: Global Energy Transfer - Feed-in Tariffs for Developing Countries Agency/Company /Organization: Deutsche Bank Group Sector: Energy Focus Area: Renewable Energy Topics: Finance Resource Type: Publications Website: www.dbcca.com/dbcca/EN/investment-research/investment_research_2347.js References: Get FiT Program[1] This report provides information on best practices for adapting the design of feed-in tariffs in developing countries. Chapters The challenge of renewable energy in the developing world: A project level perspective.............................................................. 11 The GET FiT Solution...................................................................

253

The requirements and challenges in energy policy formulation for selected OIC countries  

Science Conference Proceedings (OSTI)

Energy poverty is one of the main obstacles for developing of Low income OIC countries. It is widely recognized that adequate, reliable and relevant information on energy requirements, primary energy supply and end use, and energy conservation is not ... Keywords: energy, low income OIC countries, policy, renewable energy

N. Asim; A. Zaharim; K. Sopian

2011-07-01T23:59:59.000Z

254

Countries - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Bold* indicates a country with a Country Analysis Brief. Asterisk only indicates Country Analysis Note. All countries listed below have data. North America. Bermuda

255

Biofuel Feedstock Assessment For Selected Countries  

SciTech Connect

Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

2008-02-01T23:59:59.000Z

256

Fermilab | Science at Fermilab | Experiments & Projects | Intensity...  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content Science at Fermilab Frontiers of Particle Physics Experiments & Projects Energy Frontier Tevatron at Fermilab Fermilab and the LHC Intensity Frontier Cosmic...

257

President Roosevelt Establishes Manhattan Project | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

to the main content Facebook Flickr RSS Twitter YouTube President Roosevelt Establishes Manhattan Project | National Nuclear Security Administration Our Mission Managing the...

258

Fermilab | Science at Fermilab | Experiments & Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

main content Science at Fermilab Frontiers of Particle Physics Experiments & Projects Energy Frontier Tevatron at Fermilab Fermilab and the LHC Intensity Frontier Cosmic Frontier...

259

Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.253783,"lon":-69.4454689,"alt":0,"address":"Maine","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Perspectives on the institutional needs of joint implementation projects for China, Egypt, India, Mexico, and Thailand  

SciTech Connect

One avenue for reducing the net emissions of greenhouse gases (GHG) under the Framework Convention on Climate Change (FCCC) is the joint implementation (JI) of policies and projects to the Convention. Although debate on the practical aspects of JI projects is relatively young, it already includes issues concerning the ability of governments to accept JI projects as well as the project participants` capacity to monitor, evaluate, and verify the financial and GHG benefits. The focus of this paper is an in-depth, country-by-country analysis of current and conceivable institutions in potential host countries. To understand these concerns better, in August 1994 the authors asked colleagues in five developing countries to evaluate their countries` institutional capacity for JI projects. Their perspectives are presented here as individual country case studies. The five countries--Mexico, Egypt, Thailand, India, and China--were chosen because each has significant potential for JI projects.

Mabel, M.; Watt, E.; Sathaye, J. [eds.] [and others

1995-10-01T23:59:59.000Z

262

Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

263

Direct Energy Services (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine) Maine) Jump to: navigation, search Name Direct Energy Services Place Maine Utility Id 54820 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.1070/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Direct_Energy_Services_(Maine)&oldid=412516" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

264

CECG Maine, LLC | Open Energy Information  

Open Energy Info (EERE)

search Name CECG Maine, LLC Place Maryland Utility Id 4166 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861...

265

Linked Investment Program for Commercial Enterprises (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Linked Investment Program for Commercial Enterprises reduces a borrowers interest rate. The Maine State Treasurer makes a certificate of deposit at up to 2% less than the prevailing rate on...

266

Main Street Loan Program (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Main Street Loan Program loans of up to $24,999 through the Certified Development Corporation (CDC) in participation with local lenders or economic development organizations for small...

267

Main Injector Particle Production Experiment (MIPP) at Fermilab  

DOE Green Energy (OSTI)

The Main Injector Particle Production Experiment at Fermilab uses particle beams of charged pions, kaons, proton and anti-proton with beam momenta of 5 to 90 GeV/c and thin targets spanning the periodic table from (liquid) hydrogen to uranium to measure particle production cross sections in a full acceptance spectrometer with charged particle identification for particles from 0.1 to 120 GeV/c using Time Projection Chamber, Time of Flight, multicell Cherenkov, and Ring Imaging Cherenkov detectors and Calorimeter for neutrons. Particle production using 120 GeV/c protons from Main Injector on the MINOS target was also measured. We describe the physics motivation to perform such cross section measurements and highlight the impact of hadronic interaction data on neutrino physics. Recent results on forward neutron cross sections and analysis of MINOS target data are also presented.

Mahajan, Sonam; /Panjab U. /Fermilab

2010-12-09T23:59:59.000Z

268

The institutional needs of joint implementation projects  

SciTech Connect

In this paper, the authors discuss options for developing institutions for joint implementation (JI) projects. They focus on the tasks which are unique to JI projects or require additional institutional needs--accepting the project by the host and investor countries and assessing the project`s greenhouse gas (GHG) emission reduction or sequestration--and they suggest the types of institutions that would enhance their performance. The evaluation is based on four sets of governmental and international criteria for JI projects, the experiences of ten pilot JI projects, and the perspectives of seven collaborating authors from China, Egypt, India, Mexico, and Thailand, who interviewed relevant government and non-government staff involved in JI issue assessment in their countries. After examining the roles for potential JI institutions, they present early findings arguing for a decentralized national JI structure, which includes: (1) national governmental panels providing host country acceptance of proposed JI projects; (2) project parties providing the assessment data on the GHG reduction or sequestration for the projects; (3) technical experts calculating these GHG flows; (4) certified verification teams checking the GHG calculations; and (5) members of an international JI Secretariat training and certifying the assessors, as well as resolving challenges to the verifications. 86 refs.

Watt, E.; Sathaye, J. [Lawrence Berkeley Lab., CA (United States); Buen, O. de; Masera, O. [National Univ. of Mexico, Mexico City (Mexico); Gelil, I.A. [Organization of Energy Conservation and Planning, Cairo (Egypt); Ravindranath, N.H. [Indian Inst. of Science, Bangalore (India); Zhou, D.; Li, J. [Energy Research Inst., Beijing (China); Intarapravich, D. [Thailand Environmental Inst., Bangkok (Thailand)

1995-10-21T23:59:59.000Z

269

The Kyoto Protocol and developing countries  

E-Print Network (OSTI)

Under the Kyoto Protocol, the world's wealthier countries assumed binding commitments to reduce greenhouse gas emissions. The agreement requires these countries to consider ways to minimize adverse effects on developing ...

Babiker, Mustafa H.M.; Reilly, John M.; Jacoby, Henry D.

270

Derisking Renewable Energy Investments in Developing Countries...  

NLE Websites -- All DOE Office Websites (Extended Search)

of renewable energy technologies and attract large scale private investment into these technologies in developing countries. Attachment: applicationpdf icon Speaker's...

271

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

272

Non Annex B Countries List  

NLE Websites -- All DOE Office Websites (Extended Search)

Non Annex B Countries A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, Y, Z A Afghanistan (1949-2007) Albania (1933-2007) Algeria (1900-2007) American Samoa (1954-2007) Angola (1950-2007) Antarctic Fisheries (1970-2007) Antigua & Barbuda (1957-2007) Argentina (1887-2007) Armenia (1992-2007) Aruba (1986-2007) Azerbaijan (1992-2007) B Bahamas (1950-2007) Bahrain (1933-2007) Bangladesh (1972-2007) Barbados (1928-2007) Belarus (1992-2007) Belize (1950-2007) Benin (1958-2007) Bermuda (1950-2007) Bhutan (1970-2007) Bolivia (1928-2007) Bosnia-Herzegovinia (1992-2007) Botswana (1950-2007) Brazil (1901-2007) British Virgin Islands (1957-2007) Brunei (Darussalam) (1930-2007) Burkina Faso (1958-2007) Burundi (1962-2007) C Cambodia (1955-2007) Cameroon (1950-2007)

273

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

274

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

275

Project 364  

NLE Websites -- All DOE Office Websites (Extended Search)

765-494-5623 lucht@purdue.edu DEVELOPMENT OF NEW OPTICAL SENSORS FOR MEASUREMENT OF MERCURY CONCENTRATIONS, SPECIATION, AND CHEMISTRY Project Description The feasibility of...

276

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State...

277

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

278

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

279

Project 283  

NLE Websites -- All DOE Office Websites (Extended Search)

NJ 07039 973-535 2328 ArchieRobertson@fwc.com Sequestration ADVANCED CO 2 CYCLE POWER GENERATION Background This project will develop a conceptual power plant design...

280

Project 197  

NLE Websites -- All DOE Office Websites (Extended Search)

will bring economic value to both the industrial customers and to the participating companies. * Complete project by June 2006. Accomplishments A ceramic membrane and seal...

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh,...

282

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford...

283

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for...

284

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* Concrete products in this project * Standard 8" concrete blocks * Standard 4' x 8' fiber-cement boards CO 2 The Goals * Maximizing carbon uptake by carbonation (at least...

285

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Evaluating Potential Groundwater Impacts and Natural Geochemical...

286

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date...

287

Project 252  

NLE Websites -- All DOE Office Websites (Extended Search)

Stanford Global Climate Energy Project Terralog Technologies TransAlta University of Alaska Fairbanks Washington State Department of Natural Resources Western Interstate...

288

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

research partnership to improve the understanding of CO 2 within coal and shale reservoirs. 2 2 3 Presentation Outline * Program Goal and Benefits Statement * Project...

289

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

mechanistic insights 5 Project Overview: Scope of work * Task 1 - Pipeline and Casing Steel Corrosion Studies * Evaluate corrosion behavior of pipeline steels in CO 2 mixtures...

290

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project Program Goals * Technical...

291

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

* This project pinpoints the critical catalyst features necessary to promote carbon dioxide conversion to acrylate, validate the chemical catalysis approach, and develop an...

292

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources...

293

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number...

294

Maine/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources < Maine Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

295

Chile-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Jump to: navigation, search Name Chile-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy Topics Background analysis Resource Type Dataset Country Chile South America References World Bank Project Database - Chile[1] Contents 1 World Bank Active Climate Projects in Chile 1.1 CL Securitization and Carbon Sinks Project 1.2 Chile Santiago Composting Project 1.3 Chile Quilleco Hydropower Project 1.4 Chile Hornitos Project (Chacabuquito II) 1.5 Sustainable Transport and Air Quality for Santiago (GEF) 1.6 Chile Sustainable Land Management Project 2 References World Bank Active Climate Projects in Chile CL Securitization and Carbon Sinks Project Chile Santiago Composting Project Chile Quilleco Hydropower Project

296

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 9, 2010 September 9, 2010 CX-003770: Categorical Exclusion Determination Maine-County-York CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 09/09/2010 Location(s): York County, Maine Office(s): Energy Efficiency and Renewable Energy September 9, 2010 CX-003713: Categorical Exclusion Determination Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 09/09/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 23, 2010 CX-003544: Categorical Exclusion Determination Environmental Impact Protocols for Tidal Power CX(s) Applied: A9, B3.1, B3.3, B3.6 Date: 08/23/2010 Location(s): Cobscook Bay, Maine Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

297

Waste: main source of sustainable energy  

E-Print Network (OSTI)

Waste: main source of sustainable energy Dr. K.D. van der Linde President of Afval Energie Bedrijf ­ Waste and Energy Company City of Amsterdam Institute of Physics, London, 16th March 2005 #12;March, 16th 2005 Afval Energie Bedrijf 2 Afval Energie Bedrijf (AEB)Afval Energie Bedrijf (AEB) for wastefor waste

Columbia University

298

LBNL Developing Countries Studies | Open Energy Information  

Open Energy Info (EERE)

LBNL Developing Countries Studies LBNL Developing Countries Studies (Redirected from Developing Countries Studies) Jump to: navigation, search Logo: Developing Countries Studies at LBNL Name Developing Countries Studies at LBNL Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics GHG inventory, Resource assessment, Background analysis Resource Type Dataset, Software/modeling tools, Presentation Website http://ies.lbl.gov/node/251 References Lawrence Berkeley [1] Abstract LBNL's International Energy Studies Group is involved in a number of activities relating to energy use in developing countries and climate change. LBNL's International Energy Studies Group is involved in a number of activities relating to energy use in developing countries and climate

299

US Country Studies Program | Open Energy Information  

Open Energy Info (EERE)

Country Studies Program Country Studies Program Jump to: navigation, search Name US Country Studies Program Agency/Company /Organization United States Government Sector Energy, Land Website http://www.gcrio.org/CSP/ Program Start 1993 References US Country Studies Program[1] From: http://www.gcrio.org/CSP/ap.html The U.S. Country Studies Program provides financial and technical assistance to developing and transition countries for climate change studies. The program was announced by the President prior to the United Nations Conference on Environment and Development (UNCED) in Brazil in 1992. The first round of two-year studies began in October 1993, and a second round followed in October 1994. Fifty-six countries on five continents currently participate in the program. Regional and sectoral

300

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

302

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

303

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

304

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

305

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

306

Project title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

307

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

308

International Research Reactor Decommissioning Project  

SciTech Connect

Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

Leopando, Leonardo [Philippine Nuclear Research Institute, Quezon City (Philippines); Warnecke, Ernst [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

309

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

310

Solar Resources By Class Per Country | OpenEI  

Open Energy Info (EERE)

Resources By Class Per Country Resources By Class Per Country Dataset Summary Description These estimates are derived from the best available solar resource datasets available to NREL by country. These vary in spatial resolution from 1 km to 1 degree (approximately 100 km) depending on the data source. High spatial resolution datasets (1 km to 40 km cells) were modeled to support country or regional projects. Where high resolution datasets were not available, data from NASA's Surface Meteorology and Solar Energy (SSE) version 6 database were used. The data represents total potential solar energy per year as a function of land area per solar class (KWh/m²/day). Each solar class correlates to a specific 0.5 kWh/m²/day range. Energy is calculated by multiplying the productive land by the class, conversion efficiency and number of days per year. In this case, a standard calendar year of 365 days was used. The conversion efficiency rate applied was 10%. (E = Productive Land * kWh/m²/day * 365 days * 10% efficiency). The solar data has been derived from solar data measured or modeled between 1961 and 2008, depending on the dataset.

311

INTERNATIONAL FUTURES PROGRAMME PROJECT ON STRATEGIC TRANSPORT INFRASTRUCTURE TO 2030 PENSION FUNDS INVESTMENT IN INFRASTRUCTURE  

E-Print Network (OSTI)

growing importance of investment needs to 2030 for infrastructure in telecommunication, electricity, water and transport, while highlighting at the same time the notion of an emerging infrastructure gap. To bridge this infrastructure gap institutional investors were identified as one of the most promising candidates and it was decided to further review opportunities and barriers to investment in infrastructure from the standpoint of pension funds. A survey of a sample of the most significant actors was then launched by the OECD within the framework of the OECD Project on Transcontinental Infrastructure 2030-2050. The main countries

A Survey

2011-01-01T23:59:59.000Z

312

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

313

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

314

Eastern Maine Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Eastern Maine Electric Coop Place Maine Utility Id 5609 Utility Location Yes Ownership C NERC Location NPCC NERC NPCC Yes ISO Other Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Industrial Service Industrial Large Commercial Commercial Residential Residential Seasonal Residential Residential Average Rates Residential: $0.0909/kWh Commercial: $0.0771/kWh Industrial: $0.0620/kWh

315

Sebago, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebago, Maine: Energy Resources Sebago, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8917267°, -70.6709435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8917267,"lon":-70.6709435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Bradley, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bradley, Maine: Energy Resources Bradley, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9209017°, -68.6280864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9209017,"lon":-68.6280864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Naples, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Naples, Maine: Energy Resources Naples, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.971739°, -70.6092258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.971739,"lon":-70.6092258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Camden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2098011°, -69.0647593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2098011,"lon":-69.0647593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Stacyville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stacyville, Maine: Energy Resources Stacyville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8636618°, -68.5053088° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.8636618,"lon":-68.5053088,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Kingsbury, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kingsbury, Maine: Energy Resources Kingsbury, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1194988°, -69.6492194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1194988,"lon":-69.6492194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Prentiss, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Prentiss, Maine: Energy Resources Prentiss, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4917309°, -68.081681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4917309,"lon":-68.081681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Brewer, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brewer, Maine: Energy Resources Brewer, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7967378°, -68.7614246° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7967378,"lon":-68.7614246,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Lee, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3600615°, -68.2864076° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3600615,"lon":-68.2864076,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Hampden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hampden, Maine: Energy Resources Hampden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7445159°, -68.836982° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7445159,"lon":-68.836982,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Guilford, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Guilford, Maine: Energy Resources Guilford, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1689426°, -69.3844921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1689426,"lon":-69.3844921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Maine Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Maine Tow Tank Overseeing Organization University of Maine Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 2.4 Depth(m) 1.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Simulated beach is framed with PVC/mesh. Has a 4:9 slope. Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

327

Newport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newport, Maine: Energy Resources Newport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8353424°, -69.2739365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8353424,"lon":-69.2739365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

Categorical Exclusion Determinations: Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2, 2010 March 2, 2010 CX-001043: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Jay) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Jay, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001042: Categorical Exclusion Determination Verso Paper Corporation Waste Energy Recovery (Bucksport) CX(s) Applied: B1.24, B5.1 Date: 03/02/2010 Location(s): Bucksport, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 21, 2010 CX-002154: Categorical Exclusion Determination Recovery Act: DeepCwind Consortium National Research Program: Validation of Coupled Models and Optimization of Materials for Offshore Wind Structures CX(s) Applied: B3.1, B3.3, B3.6, A9

329

Maine Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

330

Orono, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8831249°, -68.671977° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8831249,"lon":-68.671977,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Patten, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Patten, Maine: Energy Resources Patten, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9964392°, -68.4461424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.9964392,"lon":-68.4461424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Levant, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Levant, Maine: Energy Resources Levant, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8692358°, -68.9347611° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8692358,"lon":-68.9347611,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Woolwich, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woolwich, Maine: Energy Resources Woolwich, Maine: Energy Resources (Redirected from Woolwich, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9186904°, -69.8011576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9186904,"lon":-69.8011576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Sangerville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sangerville, Maine: Energy Resources Sangerville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1647763°, -69.356436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1647763,"lon":-69.356436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Orrington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Orrington, Maine: Energy Resources Orrington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7311829°, -68.8264258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7311829,"lon":-68.8264258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Passadumkeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Passadumkeag, Maine: Energy Resources Passadumkeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1853362°, -68.6166937° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1853362,"lon":-68.6166937,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Bridgton, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bridgton, Maine: Energy Resources Bridgton, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0547926°, -70.7128399° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0547926,"lon":-70.7128399,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Milford, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.946179°, -68.6439202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.946179,"lon":-68.6439202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Sebec, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sebec, Maine: Energy Resources Sebec, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2714408°, -69.1167087° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2714408,"lon":-69.1167087,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

340

Corinna, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Corinna, Maine: Energy Resources Corinna, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.921174°, -69.2617131° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.921174,"lon":-69.2617131,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Veazie, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Veazie, Maine: Energy Resources Veazie, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8386814°, -68.7053114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8386814,"lon":-68.7053114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

Westbrook, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maine: Energy Resources Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6770252°, -70.3711617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6770252,"lon":-70.3711617,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Eastport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eastport, Maine: Energy Resources Eastport, Maine: Energy Resources (Redirected from Eastport, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9061906°, -66.9899785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9061906,"lon":-66.9899785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

Newburgh, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Newburgh, Maine: Energy Resources Newburgh, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7249508°, -69.0157987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7249508,"lon":-69.0157987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Gorham, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gorham, Maine: Energy Resources Gorham, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6795245°, -70.4442186° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6795245,"lon":-70.4442186,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Brunswick, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brunswick, Maine: Energy Resources Brunswick, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9145244°, -69.9653278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9145244,"lon":-69.9653278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Howland, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Howland, Maine: Energy Resources Howland, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2386668°, -68.6636391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2386668,"lon":-68.6636391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

Glenburn, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glenburn, Maine: Energy Resources Glenburn, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9168455°, -68.8536313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9168455,"lon":-68.8536313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

349

Seboeis, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Seboeis, Maine: Energy Resources Seboeis, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3631091°, -68.7111424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3631091,"lon":-68.7111424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Rockport, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rockport, Maine: Energy Resources Rockport, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1845236°, -69.0761491° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1845236,"lon":-69.0761491,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Milo, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Milo, Maine: Energy Resources Milo, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2536633°, -68.9858713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2536633,"lon":-68.9858713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Maine Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

353

Abbot, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Abbot, Maine: Energy Resources Abbot, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1976844°, -69.458819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1976844,"lon":-69.458819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Standish, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Standish, Maine: Energy Resources Standish, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7359114°, -70.5519993° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7359114,"lon":-70.5519993,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Warren, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Warren, Maine: Energy Resources Warren, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1203577°, -69.2400452° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1203577,"lon":-69.2400452,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Eddington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eddington, Maine: Energy Resources Eddington, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8261817°, -68.6933667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8261817,"lon":-68.6933667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Harpswell, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Harpswell, Maine: Energy Resources Harpswell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.7560618°, -69.9645482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7560618,"lon":-69.9645482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Stetson, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Stetson, Maine: Energy Resources Stetson, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8917325°, -69.1428215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8917325,"lon":-69.1428215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Twombly, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Twombly, Maine: Energy Resources Twombly, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2748647°, -68.237681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.2748647,"lon":-68.237681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Corinth, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Corinth, Maine: Energy Resources Corinth, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0002251°, -69.0340404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0002251,"lon":-69.0340404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Kenduskeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenduskeag, Maine: Energy Resources Kenduskeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9195128°, -68.9317049° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9195128,"lon":-68.9317049,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Kingman, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kingman, Maine: Energy Resources Kingman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5495057°, -68.1994627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5495057,"lon":-68.1994627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Maxfield, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maxfield, Maine: Energy Resources Maxfield, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3076853°, -68.7532578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3076853,"lon":-68.7532578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Mattawamkeag, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mattawamkeag, Maine: Energy Resources Mattawamkeag, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5136701°, -68.3544669° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5136701,"lon":-68.3544669,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Casco, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casco, Maine: Energy Resources Casco, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0067388°, -70.5228358° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0067388,"lon":-70.5228358,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Criehaven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Criehaven, Maine: Energy Resources Criehaven, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8339726°, -68.889201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8339726,"lon":-68.889201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Charleston, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Charleston, Maine: Energy Resources Charleston, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0850615°, -69.0405949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0850615,"lon":-69.0405949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Brownville, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brownville, Maine: Energy Resources Brownville, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3069957°, -69.0333737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3069957,"lon":-69.0333737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Parkman, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Parkman, Maine: Energy Resources Parkman, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1336651°, -69.4331038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1336651,"lon":-69.4331038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Drew, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Drew, Maine: Energy Resources Drew, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6013167°, -68.0942848° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.6013167,"lon":-68.0942848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

University of Maine Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website http://gradcatalog.umaine.edu/ Coordinates 44.9024546°, -68.6638413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9024546,"lon":-68.6638413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Scarborough, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Scarborough, Maine: Energy Resources Scarborough, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.597774°, -70.331846° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.597774,"lon":-70.331846,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Pownal, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pownal, Maine: Energy Resources Pownal, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9087662°, -70.1821738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9087662,"lon":-70.1821738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Hermon, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hermon, Maine: Energy Resources Hermon, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.81007°, -68.9133724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.81007,"lon":-68.9133724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Holden, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Holden, Maine: Energy Resources Holden, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7528499°, -68.6789218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.7528499,"lon":-68.6789218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Dixmont, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dixmont, Maine: Energy Resources Dixmont, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.6803471°, -69.1628221° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6803471,"lon":-69.1628221,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Lowell, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lowell, Maine: Energy Resources Lowell, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1878373°, -68.4677999° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1878373,"lon":-68.4677999,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

WIPP SEIS-II - Main Menu  

NLE Websites -- All DOE Office Websites (Extended Search)

Start Here Start Here Volume III Comment Response Document Summary Supplement Volume I Volume I Chapters Supplement Volume II Volume II Appendices MAIN MENU To view a particular volume of the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement, click on the corresponding box. NOTE Volume III, the Comment Response Document, contains links to original comments and to DOE responses. Tips for using those links are contained in a note represented by the following icon: When you see this icon, double-click on it to read the tips. To return to this menu at any time, click on the first bookmark called "Main Menu" in every volume. To return to the "Start Here" file, which contains instructions for navigating through Acrobat Reader, click here

379

Gray, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gray, Maine: Energy Resources Gray, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.885632°, -70.3317195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.885632,"lon":-70.3317195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Castine, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Castine, Maine: Energy Resources Castine, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3878547°, -68.7997522° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3878547,"lon":-68.7997522,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Greenbush, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Greenbush, Maine: Energy Resources Greenbush, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0803409°, -68.6508635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0803409,"lon":-68.6508635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Lubec, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lubec, Maine: Energy Resources Lubec, Maine: Energy Resources (Redirected from Lubec, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8606355°, -66.9841453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8606355,"lon":-66.9841453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Vinalhaven, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vinalhaven, Maine: Energy Resources Vinalhaven, Maine: Energy Resources (Redirected from Vinalhaven, ME) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0481374°, -68.8316985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0481374,"lon":-68.8316985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Edinburg, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edinburg, Maine: Energy Resources Edinburg, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1650821°, -68.6751748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1650821,"lon":-68.6751748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Winn, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Winn, Maine: Energy Resources Winn, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4856144°, -68.372245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.4856144,"lon":-68.372245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Lagrange, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lagrange, Maine: Energy Resources Lagrange, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1667248°, -68.844479° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.1667248,"lon":-68.844479,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Main dimensions of human practical directives system  

SciTech Connect

A hypothesis is made that due to the uncertainty and complexity of the practical inference schemes, the acting subject exerts his/her own system of beliefs about efficient ways of attaining the given goals. These beliefs are termed here: Practical Directives, and their system: Practical Attitude. An attempt was made to reconstruct such a system and its main dimensions. To this end, an instrument was constructed: the Questionnaire of Practical Directives (QPD), which is meant as an operational definition of Practical Attitude. A group of 218 subjects was tested with the aid of QPD and the factor analysis of the results revealed nine factors interpreted as main dimensions of the system of Practical Directives. 19 refs.

Lewicka-Strzalecka, A.

1992-12-31T23:59:59.000Z

388

Armenia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

World Bank Climate Projects World Bank Climate Projects Jump to: navigation, search Name Armenia-World Bank Climate Projects Agency/Company /Organization World Bank Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Geothermal Topics Background analysis Website http://web.worldbank.org/exter Country Armenia Western Asia References World Bank-Armenia [1] Contents 1 World Bank Active Climate Projects in Armenia 1.1 GEOFUND 2: Armenia Geothermal Project 1.2 Renewable Energy Project 1.3 Renewable Energy GEF Project 2 References World Bank Active Climate Projects in Armenia GEOFUND 2: Armenia Geothermal Project Renewable Energy Project Renewable Energy GEF Project GEOFUND 2: Armenia Geothermal Project "The objective of the Second GeoFund Geothermal Project for Armenia is to

389

Ris Energy Report 6 Summary, main conclusions and recommendations 2 Summary, main conclusions  

E-Print Network (OSTI)

in the last few years as a serious option for large scale CO2 emissions mitigation. Wind energy has seen. European countries are leaders in the deployment of wind energy: half of all the new wind turbines liquid transport fuels are biodiesel, synthetic gasoline and diesel produced from gasified biomass

390

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

391

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

392

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

393

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

394

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

395

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

396

EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

92-S1: University of Maine's Deepwater Offshore Floating Wind 92-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project - Castine Harbor Test Site SUMMARY This Supplemental EA in a evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine, Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792). PUBLIC COMMENT OPPORTUNITIES No public comment opportunities at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD

397

Renovation project for Restaurant No. 1  

E-Print Network (OSTI)

This document describes the proposed renovation project for the Restaurant in the main building. The total cost of the project will be about 4 000 000 Swiss francs shared between NOVAE and the Organization as explained under item 4. The Finance Committee is invited to approve this project and the proposed funding arrangements.

2005-01-01T23:59:59.000Z

398

FAO Global Inventory of Agricultural Mitigation Projects in Developing  

Open Energy Info (EERE)

FAO Global Inventory of Agricultural Mitigation Projects in Developing FAO Global Inventory of Agricultural Mitigation Projects in Developing Countries Jump to: navigation, search Tool Summary Name: FAO Global Inventory of Agricultural Mitigation Projects in Developing Countries Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Agriculture Topics: Resource assessment, Background analysis Website: www.fao.org/climatechange/micca/en/ References: FAO Global Inventory of Agricultural Mitigation Projects in Developing Countries[1] "The aim of the project is to help realise the substantial mitigation potential of agriculture, especially that of smallholders in developing countries. If the right changes are implemented in production systems, emissions can be reduced and sinks created in biomass and soils while

399

EIA - International Energy Outlook 2007-Liquids Production Projections  

Gasoline and Diesel Fuel Update (EIA)

Liquids Production Projection Tables (1990-2030) Liquids Production Projection Tables (1990-2030) International Energy Outlook 2007 Liquids Production Projections Tables (1990-2030) Formats Data Table Titles (1 to 19 complete) Liquids Production Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Liquids Production Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table G1 World Total Liquids Production by Region and Country, Reference Case Table G1. World Total Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800. Table G2 World Conventional Liquids Production by Region and Country, Reference Case Table G2. World Conventional Liquids Production by Region and Country, Reference Case. Need help, contact the National Energy Information Center at 202-586-8800.

400

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project Title:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

402

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

403

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of CO 2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural- Genetic Algorithm Project DE FE0009284 Boyun Guo, Ph.D. University of...

404

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

405

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

406

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

407

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

408

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

409

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

410

Project 265  

NLE Websites -- All DOE Office Websites (Extended Search)

The goal of this project is to develop an on-line instrument using multi- wavelength lasers that is capable of characterizing particulate matter (PM) generated in fossil energy...

411

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

"Carbonsheds" as a Framework for Optimizing US CCS Pipeline Transport on a Regional to National Scale DOE-ARRA Project Number DE-FE0001943 Lincoln Pratson Nicholas School of the...

412

Project 114  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototech Company SRI International Kellogg, Brown, and Root ChevronTexaco Sd-Chemie, Inc. COST Total Project Value 20,320,372 DOENon-DOE Share 15,326,608 4,993,764...

413

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

414

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Laboratory U.S. Department of Energy Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

415

Project 134  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Goal To demonstrate a "whole plant" approach using by-products from a coal-fired power plant to sequester carbon in an easily quantifiable and verifiable form. Objectives...

416

MANHATTAN PROJECT  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy traces its origins to World War II and the Manhattan Project effort to build the first atomic bomb. As the direct descendent of the Manhattan Engineer District, the...

417

Project 310  

NLE Websites -- All DOE Office Websites (Extended Search)

carbohydrate generated from agricultural enterprises in the U.S., such as corn wet-milling. This project is studying the production of a suite of specialty chemicals by...

418

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

G., 2011, Design and package of a 14CO2 field analyzer: the Global Monitor Platform (GMP). Proceedings of SPIE, v 8156, p. 81560E 17 DOE-NETL PROJECT REVIEW MEETING 08-21-2012...

419

Project 297  

NLE Websites -- All DOE Office Websites (Extended Search)

of this project is to utilize pure oxygen at a feed rate of less than 10% of the stoichiometric requirement in demonstrating the use of oxygen-enhanced combustion in meeting...

420

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D...

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D....

422

LBNL Developing Countries Studies | Open Energy Information  

Open Energy Info (EERE)

Countries Studies Countries Studies Jump to: navigation, search Logo: Developing Countries Studies at LBNL Name Developing Countries Studies at LBNL Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics GHG inventory, Resource assessment, Background analysis Resource Type Dataset, Software/modeling tools, Presentation Website http://ies.lbl.gov/node/251 References Lawrence Berkeley [1] Abstract LBNL's International Energy Studies Group is involved in a number of activities relating to energy use in developing countries and climate change. LBNL's International Energy Studies Group is involved in a number of activities relating to energy use in developing countries and climate change. Developed international energy use data and emissions scenarios for

423

Country Report on Building Energy Codes in China  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

2009-04-15T23:59:59.000Z

424

Country Report on Building Energy Codes in India  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

2009-04-07T23:59:59.000Z

425

Country Report on Building Energy Codes in Korea  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

2009-04-17T23:59:59.000Z

426

Country Report on Building Energy Codes in Australia  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

2009-04-02T23:59:59.000Z

427

Country Report on Building Energy Codes in Japan  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

Evans, Meredydd; Shui, Bin; Takagi, T.

2009-04-15T23:59:59.000Z

428

Country Report on Building Energy Codes in Canada  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

Shui, Bin; Evans, Meredydd

2009-04-06T23:59:59.000Z

429

Country Report on Building Energy Codes in the United States  

SciTech Connect

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

Halverson, Mark A.; Shui, Bin; Evans, Meredydd

2009-04-30T23:59:59.000Z

430

Future of photovoltaic energy conversion in developing countries  

DOE Green Energy (OSTI)

Recent studies reveal that photovoltaic energy conversion will be economically viable for usage in developing countries. An overview of programs designed to lower the costs of such conversion systems is presented. Government goals are reviewed, as well as application projects relative to rural usage. A summary of the state-of-the-art in both advanced research and commercially available technology is presented. It is concluded that with the range of the work being done, such systems will be viable for many rural applications within 5 years.

Hogan, S.

1980-04-01T23:59:59.000Z

431

Finished Motor Gasoline Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

432

Liquefied Petroleum Gases Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

433

Fuel Ethanol (Renewable) Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

434

Sustainable development of hydropower in third countries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

&8220;Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development,...

435

Residual Fuel Oil Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

436

U.S. Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

437

Derisking Renewable Energy Investments in Developing Countries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Derisking Renewable Energy Investments in Developing Countries: A Means to Attract Private Capital and Reduce CO 2 Abatement Costs Tobias S. Schmidt ETH Zurich 1 Group for...

438

BIOMASS PRODUCTION FOR ENERGY IN DEVELOPING COUNTRY.  

E-Print Network (OSTI)

?? Most developing countries of the world still uses biomass for domestic energy, this is mostly used in the rural areas and using our case (more)

Liu, Xiaolin

2012-01-01T23:59:59.000Z

439

Countries Russia Background - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Countries Russia Last Updated: September 18, 2012 full report Background Russia holds the world's largest natural gas reserves, the second-largest coal reserves, and

440

Petroleum Coke Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Category:Smart Grid Investment Grant Projects | Open Energy Information  

Open Energy Info (EERE)

Investment Grant Projects Investment Grant Projects Pages in category "Smart Grid Investment Grant Projects" The following 98 pages are in this category, out of 98 total. A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project American Transmission Company LLC II Smart Grid Project American Transmission Company LLC Smart Grid Project Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project B Baltimore Gas and Electric Company Smart Grid Project Black Hills Power, Inc. Smart Grid Project Black Hills/Colorado Electric Utility Co. Smart Grid Project Burbank Water and Power Smart Grid Project C CenterPoint Energy Smart Grid Project Central Lincoln People's Utility District Smart Grid Project Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project

442

Slip stacking experiments at Fermilab main injector  

SciTech Connect

In order to achieve an increase in proton intensity, Fermilab Main Injector will use a stacking process called ''slip stacking''. The intensity will be doubled by injecting one train of bunches at a slightly lower energy, another at a slightly higher energy, then bringing them together for the final capture. Beam studies have started for this process and we have already verified that, at least for a low beam intensity, the stacking procedure works as expected. For high intensity operation, development work of the feedback and feedforward systems is under way.

Kiyomi Koba et al.

2003-06-02T23:59:59.000Z

443

BLM Color Country District Office | Open Energy Information  

Open Energy Info (EERE)

Color Country District Office Jump to: navigation, search Name BLM Color Country District Office Parent Organization BLM Place Cedar City, Utah References BLM Color Country...

444

Project Project HQ City HQ State ARRA Funding Total Value Additional  

Open Energy Info (EERE)

Carolinas LLC Smart Grid Project Duke Energy Carolinas Carolinas LLC Smart Grid Project Duke Energy Carolinas LLC Smart Grid Project Charlotte North Carolina Entergy Services Inc Smart Grid Project Entergy Services Inc Smart Grid Project New Orleans Louisiana ISO New England Incorporated Smart Grid Project ISO New England Incorporated Smart Grid Project Holyoke Massachusetts Connecticut Maine New Hampshire Rhode Island Vermont Midwest Energy Inc Smart Grid Project Midwest Energy Inc Smart Grid Project Hays Kansas Midwest Independent Transmission System Operator Smart Grid Project Midwest Independent Transmission System Operator Smart Grid Project Carmel Indiana Iowa Illinois Michigan Minnesota Missouri Montana North Dakota Ohio Pennsylvania South Dakota Wisconsin New York Independent System Operator Inc Smart Grid Project New York

445

Green Schools Project Final Report  

SciTech Connect

The Alliance to Save Energy has responded to interest in the Green Schools concept from the New England states of Maine, New Hampshire and Vermont. The Alliance conducted a train-the-trainers workshop in Augusta, Maine March 17--18, 1999. This work is part of a Green Schools replication project leveraged by funds from another source, NORDAX, which contributed $80,000 to provide partial support to staff at the Maine Energy Education Project (MEEP), Vermont Energy Education Program (VEEP), and New Hampshire Governor's Office to develop Green Schools Projects. DOE funds were used to conduct training, develop a network of state and local government, business and school partners to support school efficiency activities in those three states.

Verdict, M.

2000-09-27T23:59:59.000Z

446

Developing Government Renewable Energy Projects  

DOE Green Energy (OSTI)

The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INLs renewable energy experiences date back to the 1980s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the dos and donts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

2012-07-01T23:59:59.000Z

447

Maine Public Service Co | Open Energy Information  

Open Energy Info (EERE)

Public Service Co Public Service Co Place Maine Utility Id 11522 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Produce Storage Rate (F) Commercial Backup and Maintenance Service-Primary (B) Commercial Backup and Maintenance Service-Secondary (B) Commercial Backup and Maintenance Service-Sub-Transmission(B) Commercial Backup and Maintenance Service-Transmission(B) Commercial General service (C) Commercial Large Power service - Primary-Time of use (E-P-T) Industrial

448

SOAJ Search : Main View : Deep Federated Search  

Office of Scientific and Technical Information (OSTI)

SOAJ Search SOAJ Search Search Powered By Deep Web Technologies New Search Preferences Powered by Deep Web Technologies HOME ABOUT ADVANCED SEARCH CONTACT US HELP Science Open Access Journals (SOAJ) Science Open Access Journals Main View This view is used for searching all possible sources. Additional Information Keyword: Title: Additional Information Author: Fields to Match: All Any Field(s) Additional Information Date Range: Beginning Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 toEnding Date Range Pick Year 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 DWT Logo Search Clear All Help Simple Search Select All

449

Intensity Limitations in Fermilab Main Injector  

SciTech Connect

The design beam intensity of the FNAL Main Injector (MI) is 3 x 10{sup 13} ppp. This paper investigates possible limitations in the intensity upgrade. These include the space charge, transition crossing, microwave instability, coupled bunch instability, resistive wall, beam loading (static and transient), rf power, aperture (physical and dynamic), coalescing, particle losses and radiation shielding, etc. It seems that to increase the intensity by a factor of two from the design value is straightforward. Even a factor of five is possible provided that the following measures are to be taken: an rf power upgrade, a {gamma}{sub t}-jump system, longitudinal and transverse feedback systems, rf feedback and feedforward, stopband corrections and local shieldings.

Chan, W.

1997-06-01T23:59:59.000Z

450

Wind Energy Developments: Incentives In Selected Countries  

Reports and Publications (EIA)

This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

Information Center

1999-02-01T23:59:59.000Z

451

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

452

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

453

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

454

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

455

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

456

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

457

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

458

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

459

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

460

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

462

Project Homepage  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

463

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

464

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

465

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

466

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

467

Research projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

468

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

469

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

470

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

471

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

472

India-TERI Projects | Open Energy Information  

Open Energy Info (EERE)

TERI Projects TERI Projects Jump to: navigation, search Name India-TERI Projects Agency/Company /Organization The Energy and Resources Institute (TERI) Sector Energy, Land Topics Background analysis Website http://www.teriin.org/index.ph Country India UN Region Southern Asia References TERI Project Database[1] "Over the last three decades or so, TERI has completed more than 2600 projects and has 200 ongoing projects. The projects range from providing environment-friendly solutions to rural energy problems to helping shape the development of the Indian oil and gas sector; from tackling global climate change issues across many continents to enhancing forest conservation efforts among local communities; from advancing solutions to growing urban transport and air pollution problems to promoting energy

473

Kenya-GEF Projects | Open Energy Information  

Open Energy Info (EERE)

GEF Projects GEF Projects Jump to: navigation, search Name Kenya-GEF Projects Agency/Company /Organization Global Environment Facility Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry, Agriculture Topics Background analysis Country Kenya Eastern Africa References GEF Project database[1] GEF Climate Projects in Kenya 1780 Kenya Joint Geophysical Imaging (JGI) Methodology for Geothermal Reservoir Assessment Climate Change UNEP Medium Size Project, GEF Grant-979,059.000, Co-financing total-1,754,264.0 IA Approved 2870 Kenya Market Transformation for Efficient Biomass Stoves for Institutions and Small and Medium-Scale Enterprises Climate Change UNDP Medium Size Project GEF Grant-975,000.000 Co-financing total-5,646,467.0 IA Approved 3249 Kenya Adaptation to Climate Change in Arid Lands (KACCAL)

474

State Energy Program Assurances - Maine Governor Baldacci | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Energy Program Assurances - Maine Governor Baldacci State Energy Program Assurances - Maine Governor Baldacci Letter from Maine Governor Baldacci Rounds providing Secretary...

475

PP-43 Maine Electric Power Company, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Maine Electric Power Company, Inc. PP-43 Maine Electric Power Company, Inc. Presidential Permit authorizing Maine Electric Power Company, Inc. to construct, operate, and maintain...

476

PP-32 Eastern Maine Electric Cooperative Inc | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 Eastern Maine Electric Cooperative Inc PP-32 Eastern Maine Electric Cooperative Inc Presidential permit authorizing Eastern Maine Electric Cooperative Inc to construct, operate,...

477

Tropical Africa: Total Forest Biomass (By Country)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tropical Africa: Total Forest Biomass (By Country) Tropical Africa: Total Forest Biomass (By Country) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Calculated Actual Aboveground Live Biomass in Forests (1980) Maximum Potential Biomass Density Land Use (1980) Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By County) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit)

478

Strategies of Asian oil-importing countries  

SciTech Connect

Various strategies are used by oil-importing countries to reduce their economic dependence on imported oil: national oil production, energy conservation, and the change of economic structures from high energy intensity sectors to low ones. In this article, the roles of these different strategies have been identified for 10 selected oil-importing countries in Asia: Bangladesh, India, Nepal, Pakistan, Sri Lanka, the Philippines, Thailand, Hong Kong, R.O Korea, and Taiwan. The results show that most of the selected countries (although Hong Kong and Taiwan are independent economic entities, for simplicity, the author refers to them as countries) have succeeded in reducing their national economy dependence on imported oil since 1973. Hong Kong, Sri Lanka, Thailand, and India are among the most successful countries, with more than 40% reduction in their economic dependence on imported oil.

Yang, M. [Asian Inst. of Tech., Bangkok (Thailand)

1997-04-01T23:59:59.000Z

479

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

480

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

Note: This page contains sample records for the topic "maine project country" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

482

Hallmark Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

483

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

484

DOE/EA-1792 FINAL ENVIRONMENTAL ASSESSMENT FOR UNIVERSITY OF MAINE'S  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINAL FINAL ENVIRONMENTAL ASSESSMENT FOR UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT GULF OF MAINE U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office SEPTEMBER 2011 DOE/EA-1792 FINAL ENVIRONMENTAL ASSESSMENT FOR UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT GULF OF MAINE U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office SEPTEMBER 2011 DOE/EA-1792 iii September 2011 ACRONYMS AND ABBREVIATIONS APE area of potential effects CFR Code of Federal Regulations dBA decibel on the A-weighted scale, used to approximate the human ear's response to sound

485

NIST ICDB: Select Countries from which to Download ...  

Science Conference Proceedings (OSTI)

... Select Countries for Document Download for Electricity & Magnetism. Below is an alphabetical list of all of the countries ...

486

Corruption and energy efficiency in OECD countries: Theory and evidence  

E-Print Network (OSTI)

We investigate the effect of corruption and industry sector size on energy policy outcomes. The main predictions of our theory are that: (i) greater corruptibility of policy makers reduces energy policy stringency; (ii) greater lobby group coordination costs (increased industry sector size) results in more stringent energy policy; and (iii) workers and capital owners lobbying efforts on energy policy are negatively related. These predictions are tested using a unique panel data set on the energy intensity of 11 sectors in 14 OECD countries for years 1982-1996. The evidence generally supports the predictions.

Per G. Fredriksson; Herman R. J. Vollebergh; Elbert Dijkgraaf

2004-01-01T23:59:59.000Z

487

Mercury concentrations in Maine sport fishes  

Science Conference Proceedings (OSTI)

To assess mercury contamination of fish in Maine, fish were collected from 120 randomly selected lakes. The collection goal for each lake was five fish of the single most common sport fish species within the size range commonly harvested by anglers. Skinless, boneless fillets of fish from each lake were composited, homogenized, and analyzed for total mercury. The two most abundant species, brook trout Salvelinus fontinalis and smallmouth bass Micropterus dolomieu, were also analyzed individually. The composite fish analyses indicate high concentrations of mercury, particularly in large and long-lived nonsalmonid species. Chain pickerel Esox niger, smallmouth bass, largemouth bass Micropterus salmoides, and white perch Morone americana had the highest average mercury concentrations, and brook trout and yellow perch Perca flavescens had the lowest. The mean species composite mercury concentration was positively correlated with a factor incorporating the average size and age of the fish. Lakes containing fish with high mercury concentrations were not clustered near known industrial or population centers but were commonest in the area within 150 km of the seacoast, reflecting the geographical distribution of species that contained higher mercury concentrations. Stocked and wild brook trout were not different in length or weight, but wild fish were older and had higher mercury concentrations. Fish populations maintained by frequent introductions of hatchery-produced fish and subject to high angler exploitation rates may consist of younger fish with lower exposure to environmental mercury and thus contain lower concentrations than wild populations.

Stafford, C.P. [Univ. of Maine, Orono, ME (United States); Haines, T.A. [Geological Survey, Orono, ME (United States)

1997-01-01T23:59:59.000Z

488

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. A prototype system was built for low-pressure cast-iron mains and tested in a spider- and serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The prototype unit combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-slave architecture to collect data from a distributed spider-arrangement, and in a master-repeater-slave configuration in serial or ladder-network arrangements. It was found that the system was capable of performing all data-sampling and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and valuable data was collected in order to determine how to improve on range and data-quality in the future.

Hagen Schempf, Ph.D.

2003-02-27T23:59:59.000Z

489