Powered by Deep Web Technologies
Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Novel Simulation System for Marine Main Diesel Propulsion Remote Control  

Science Journals Connector (OSTI)

The purpose of the paper is to develop a novel simulation system for ship propulsion plant. The nonlinear mathematical model of main propulsion system of a large container ship is established, consisting of the large low speed two-stroke diesel engine, ... Keywords: simulation system, large-scale low-speed two-stroke diesel engine, marine main diesel propulsion

Yang Yang; Chen Guo; Jian-bo Sun; De-wen Yan

2011-11-01T23:59:59.000Z

2

Lithium/iron sulfide batteries for electric-vehicle propulsion and other applications. Progress report, October 1979-March 1980  

SciTech Connect (OSTI)

The research and development activities of the program at Argonne National Laboratory (ANL) on lithium/iron sulfide batteries during the period October 1979-March 1980 is described. Although the major emphasis is currently on batteries for electric-vehicle propulsion, stationary energy-storage applications are also under investigation. The individual battery cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with two or more positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KCl electrolyte. The ANL program consists of cell chemistry studies, materials engineering, and component and auxiliary systems development. Important elements of this program are studies of the effects of design modifications on cell performance and post-test examinations of cells. During the reporting period, cell and battery development work has been aimed primarily at the first phase of the Mark II electric-vehicle battery program, which consists of an effort to develop high-reliability cells having boron nitride felt separators. Later in the Mark II program, the cells will be tested in 10-cell modules. Work on stationary energy-storage batteries during this period has consisted mainly of conceptual design studies. 23 figures, 9 tables.

None

1980-08-01T23:59:59.000Z

3

Batteries and fuel cell research Sri Narayan worked for 20 years at NASA's Jet Propulsion Laboratory (JPL) where he led the  

E-Print Network [OSTI]

Batteries and fuel cell research Sri Narayan worked for 20 years at NASA's Jet Propulsion California Los Angeles, CA 90089-1661 The USC Power Research Workshop, November 18, 2011 Batteries and Fuel Laboratory (JPL) where he led the fuel cell research activities for over 15 years and also headed

Levi, Anthony F. J.

4

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

5

A general purpose diagnostic technique for marine diesel engines – Application on the main propulsion and auxiliary diesel units of a marine vessel  

Science Journals Connector (OSTI)

Diesel engines are widely used in marine applications (i.e. propulsion and auxiliaries) except from a few cases where gas or steam turbines are used. This is the result of their high efficiency, power concentration and reliability compared to other compatible or alternative power sources. The proper and efficient operation of the engines (main engine and diesel generator units) in marine applications is critical, and therefore techniques or systems that determine engine current condition and detect potential faults are extremely important. Furthermore, it is advantageous when such techniques can be applied on different engine configurations and provide reliable results, because on a vessel usually exist diesel engines of different type, i.e. the main propulsion unit is a large low-speed two-stroke diesel engine while the diesel generators are four-stroke medium or high speed engines. In the present work is described and evaluated for the first time the application of an improved diagnostic technique, developed by the authors, on both the main engine and the auxiliary units of a commercial marine vessel. The diagnostic technique is based on a thermodynamic simulation model. The simulation model embedded in the technique has been modified, namely an existing two-zone model is replaced by a multi-zone one. With this modification it is avoided model constant tuning with the operating conditions. This is extremely important for the diagnostic philosophy of the proposed technique. Using data from engine shop tests, the simulation model is calibrated (i.e. model constants are determined) and the engine reference condition is obtained. The simulation model is then used to estimate the current engine condition, using field measurements (i.e. cylinder pressure measurements, periphery data, etc.). From the results it is revealed that the diagnosis method provides detailed information for the operating condition of both engines and the values of parameters that cannot be measured on the field. To further evaluate the diagnostic procedure, results of the diagnosis analysis are compared with respective readings from existing instrumentation (i.e. brake power output, etc.), showing good agreement. From the investigation it is shown that the diagnostic technique can be applied on both engine types without modifications providing a useful integrated solution for the entire vessel power plant. This is extremely important because conventional systems are usually suitable only for the main engine even though auxiliary units are of significant importance.

V.T. Lamaris; D.T. Hountalas

2010-01-01T23:59:59.000Z

6

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

7

Electric Propulsion  

Science Journals Connector (OSTI)

...is clear. The long-t?me continuous operation is required for electric propulsion pri-marily...travel against a small voltage to the cold element. The cell thereby produces an...concentrate and focus the solar rays on a heater. Little, if any, decrease in specific...

W. E. Moeckel

1963-10-11T23:59:59.000Z

8

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

9

Advanced Propulsion Technology Strategy  

Broader source: Energy.gov (indexed) [DOE]

Unit Charge Port CHARGING AND INFRASTRUCTURE ELECTRIC MOTORS POWER CONTROL BATTERIES FUEL CELLS POWERTRAIN ELECTRIFICATION GLOBAL BATTERY SYSTEMS LAB BROWNSTOWN TOWNSHIP...

10

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

11

A design for the interface between a battery storage and charging unit, and a medium voltage DC (MVDC) bus, as part of an integrated propulsion system (IPS) in the all electric ship (AES)  

Science Journals Connector (OSTI)

In this paper we present the design of a rechargeable battery storage device for use in an all-electric ship. The purpose of this device is to provide power of predictable quality to selected equipment. In addition a recharging unit is proposed for recharging ... Keywords: electric ship, energy storage, medium voltage DC (MVDC), pulse load

T. A. Trapp; P. Prempraneerach; C. Chryssostomidis; J. L. Kirtley, Jr.; G. E. Karniadakis

2011-06-01T23:59:59.000Z

12

Polymeric batteries. (Latest citations from the INSPEC database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the development, models, and evaluation of polymer electrolyte batteries and fuel cells. The design and fabrication of polymeric materials for lithium and solid-state batteries are discussed. Applications in marine electric propulsion, electric vehicles, and microelectronics are examined. (Contains 250 citations and includes a subject term index and title list.)

NONE

1995-03-01T23:59:59.000Z

13

Polymeric batteries. (Latest citations from the INSPEC database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the development, models, and evaluation of polymer electrolyte batteries and fuel cells. The design and fabrication of polymeric materials for lithium and solid-state batteries are discussed. Applications in marine electric propulsion, electric vehicles, and microelectronics are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-09-01T23:59:59.000Z

14

Efficiency of Fish Propulsion  

E-Print Network [OSTI]

It is shown that the system efficiency of a self-propelled flexible body is ill-defined unless one considers the concept of quasi-propulsive efficiency, defined as the ratio of the power needed to tow a body in rigid-straight condition over the power it needs for self-propulsion, both measured for the same speed. Through examples we show that the quasi-propulsive efficiency is the only rational non-dimensional metric of the propulsive fitness of fish and fish-like mechanisms. Using two-dimensional viscous simulations and the concept of quasi-propulsive efficiency, we discuss the efficiency two-dimensional undulating foils. We show that low efficiencies, due to adverse body-propulsor hydrodynamic interactions, cannot be accounted for by the increase in friction drag.

Maertens, A P; Yue, D K P

2014-01-01T23:59:59.000Z

15

Maine Rivers Policy (Maine)  

Broader source: Energy.gov [DOE]

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

16

Marine Nuclear Propulsion  

Science Journals Connector (OSTI)

... June 30 about 95 qualified scientists and engineers were engaged on research and development on marine nuclear ... nuclear propulsion within his Department, including the Atomic Energy Authority and the Ship Research Association. This ...

1965-07-31T23:59:59.000Z

17

Boosting batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

18

Batteries - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

19

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

20

E-Print Network 3.0 - advanced propulsion concepts Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the field emission principle... advanced technology in power conversion. The main advantages of a propulsion system based on the field emis... AS THRUSTERS FOR ELECTRIC SPACE...

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Induction-drive magnetohydrodynamic propulsion  

Science Journals Connector (OSTI)

The use of magnetohydrodynamic propulsion for marine applications is reviewed with emphasis on induction- ... . Comparisons are made with direct-drive MHD propulsion systems. Application to pumps for hazardous fl...

D. L. Mitchell; D. U. Gubser

1993-08-01T23:59:59.000Z

22

A new marine propulsion system  

Science Journals Connector (OSTI)

A new marine propulsion system is proposed. A small liquid sodium ... thruster combined with spray-water thruster works as propulsion. The configuration and characteristics of this system are described. Such a nu...

Wei-shi Han; Tao Liu

2003-06-01T23:59:59.000Z

23

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

materials, although electro-active compounds containing these metals exist. Today’s technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

24

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

25

Thermodynamics and rocket propulsion  

Science Journals Connector (OSTI)

Thermodynamics and rocket propulsion ... This paper outlines the application of the principles of chemical thermodynamics to a comparison of the merit of one rocket propellant (fuel plus oxidizer) with that of another fuel-oxidizer pair for liquid-fueled rocket motors. ... Thermodynamics ...

Frank H. Verhoek

1969-01-01T23:59:59.000Z

26

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

27

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

28

Diesel-electric marine propulsion grows in popularity  

SciTech Connect (OSTI)

A recent conference on electric ship propulsion held in London highlighted the big strides made in this field in the last few years. What has given the technology a tremendous fillip in recent years is the new generation of ac/ac electrical drives resulting from the development of reliable high-power semiconductor devices and their associated control systems. Diesel-electric propulsion systems provide flexibility both for the operation of the vessel and in the layout of the main components - gen-sets, converters, switchgear and propulsion motors, for example. Furthermore, the system enables the `power station` philosophy to be applied, with propulsion and all ship`s services being supplied from one power source. This paper discusses the main diesel electric systems available today.

Mullins, P.

1996-03-01T23:59:59.000Z

29

Hypersonic missile propulsion system  

SciTech Connect (OSTI)

Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technology base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.

Kazmar, R.R.

1998-11-01T23:59:59.000Z

30

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

31

Vehicle Technologies Office: Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

32

Vehicle Battery Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

33

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

34

‘Optimal’ vortex rings and aquatic propulsion mechanisms  

Science Journals Connector (OSTI)

...vortex rings and aquatic propulsion mechanisms P. F. Linden...fluid mechanics behind these propulsion mechanisms and show that...over the cycle. 4. FISH PROPULSION BY UNDULATORY SWIMMING Most marine organisms have only discrete...

2004-01-01T23:59:59.000Z

35

‘‘Fast Track’’ nuclear thermal propulsion concept  

Science Journals Connector (OSTI)

The objective of the Space Exploration Initiative (‘‘America at the Threshold... ’’ 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA ‘‘Fast Track’’ approach (NASA?LeRC Presentation 1992) could accelerate the manned exploration of Mars to 2007. NERVA?derived nuclear propulsion represents a viable near?term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL?6 for the man?rateable system by 1999 (2) a robotic lunar mission by 2000 (3) the first cargo mission to Mars by 2005 and (4) the piloted Mars mission in 2007. The Rocketdyne?Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state?of?the?art hardware designs from hydrogen?fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

Richard A. Johnson; Herbert R. Zweig; Martin H. Cooper; Jack Wett Jr.

1993-01-01T23:59:59.000Z

36

Fast Track'' nuclear thermal propulsion concept  

SciTech Connect (OSTI)

The objective of the Space Exploration Initiative ( America at the Threshold...,'' 1991) is the exploration of Mars by man in the second decade of the 21st century. The NASA Fast Track'' approach (NASA-LeRC Presentation, 1992) could accelerate the manned exploration of Mars to 2007. NERVA-derived nuclear propulsion represents a viable near-term technology approach to accomplish the accelerated schedule. Key milestones in the progression to the manned Mars mission are (1) demonstration of TRL-6 for the man-rateable system by 1999, (2) a robotic lunar mission by 2000, (3) the first cargo mission to Mars by 2005, and (4) the piloted Mars mission in 2007. The Rocketdyne-Westinghouse concept for nuclear thermal propulsion to achieve these milestones combines the nuclear reactor technology of the Rover/NERVA programs and the state-of-the-art hardware designs from hydrogen-fueled rocket engine successes like the Space Shuttle Main Engine (SSME).

Johnson, R.A.; Zweig, H.R. (Rocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States)); Cooper, M.H.; Wett, J. Jr. (Westinghouse Electric Corporation, Post Office Box 158, Madison, Pennsylvania 15663 (United States))

1993-01-10T23:59:59.000Z

37

Life Cycle Modeling of Propulsion Materials  

Broader source: Energy.gov (indexed) [DOE]

propulsion materials manufacturing technologies with an emphasis on aluminum, magnesium, titanium, and ceramics * Advanced propulsion materials' potential in heavy-duty...

38

Advanced Propulsion Technology Strategy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Propulsion Technology Strategy Advanced Propulsion Technology Strategy GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their...

39

Iron-air battery development program  

SciTech Connect (OSTI)

The progress and status of the research and development program on the iron-air advanced technology battery system at the Westinghouse Electric Corporation during the period June 1978-December 1979 are described. This advanced battery system is being developed for electric vehicle propulsion applications. Testing and evaluation of 100 cm/sup 2/ size cells was undertaken while individual iron and air electrode programs continued. Progress is reported in a number of these study areas. Results of the improvements made in the utilization of the iron electrode active material coupled with manufacturing and processing studies related to improved air electrodes continue to indicate that a fully developed iron-air battery system will be capable of fulfilling the performance requirements for commuter electric vehicles.

Buzzelli, E.S.; Liu, C.T.; Bryant, W.A.

1980-05-01T23:59:59.000Z

40

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Materials as a Key to Electro-Mobility with Rechargeable LI Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials as a Key to Electro-Mobility with Rechargeable LI Batteries Materials as a Key to Electro-Mobility with Rechargeable LI Batteries Speaker(s): Martin Winter Date: February 11, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Robert Kostecki The lithium ion technology is playing a key role in the electrification of the propulsion system in hybrid electric vehicles (HEVs) and in pure electric vehicles (EVs). The chemist and materials scientists faces this challenge, which derives from the demands for large-scale energy storage and conversion devices for electric propulsion purposes, by development and application of innovative battery components and concepts. The lithium ion battery has been introduced into the market by 1990/1991 and only by the mid 1990ies significant numbers of batteries have been produced. Within a

42

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

43

Combination of Lightweight Elements and Nanostructured Materials for Batteries  

Science Journals Connector (OSTI)

His research expertise is energy storage & conversion with batteries, fuel cells, and solar cells. ... (2) The main issues facing various current batteries are the slow electrode-process kinetics with large polarization and low rate of ionic diffusion/migration, resulting in limited practical energy output and battery performance. ...

Jun Chen; Fangyi Cheng

2009-04-08T23:59:59.000Z

44

COGAS propulsion for LNG ships  

Science Journals Connector (OSTI)

Propulsion of liquefied natural gas (LNG) ships is undergoing significant change. The traditional steam plant is losing favor because of its low cycle efficiency. Medium-speed diesel-electric and slow-speed di...

Edwin G. Wiggins

2011-06-01T23:59:59.000Z

45

Strategic Technology JET PROPULSION LABORATORY  

E-Print Network [OSTI]

Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

Waliser, Duane E.

46

Nuclear Propulsion in Space (1968)  

ScienceCinema (OSTI)

Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

None

2014-06-17T23:59:59.000Z

47

Nuclear Propulsion in Space (1968)  

SciTech Connect (OSTI)

Project NERVA was an acronym for Nuclear Engine for Rocket Vehicle Application, a joint program of the U.S. Atomic Energy Commission and NASA managed by the Space Nuclear Propulsion Office (SNPO) at the Nuclear Rocket Development Station in Jackass Flats, Nevada U.S.A. Between 1959 and 1972, the Space Nuclear Propulsion Office oversaw 23 reactor tests, both the program and the office ended at the end of 1972.

None

2012-06-23T23:59:59.000Z

48

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

49

E-Print Network 3.0 - acid storage batteries Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electric power applications Summary: expensive. Pneumatic storage technology's main advantages over the lead-acid batteries are (a) unlimited... . . . . . . . . . . . . . . . . ....

50

Vent construction for batteries  

SciTech Connect (OSTI)

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

51

Full Fuel-Cycle Comparison of Forklift Propulsion Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Full Fuel-Cycle Comparison of Forklift Propulsion Systems Full Fuel-Cycle Comparison of Forklift Propulsion Systems This report examines forklift propulsion systems and addresses...

52

Wind Turbines for Marine Propulsion  

Science Journals Connector (OSTI)

ABSTRACT The design and construction of an horizontal axis wind turbine drive for a small yacht is described. This system has been designed to test the performance of this novel type of propulsion for use in commercial shipping, the fisheries industry and for the recreational market. The use of wind turbines to harness the power available from the wind for propulsion purposes offers a number of distinct advantages over other wind propulsion systems. Propulsion is achieved in all directions of travel relative to the wind. Complete control of the system can be arranged from a remote control position such as the ships bridge. This control can be achieved with a small crew because of the opportunities for applying powered and automated control systems. The way in which each of these features is achieved, together with details of the rotor, shafting and gear-train arrangements are described here. An indication is given of the theoretical performance of the yacht under this form of propulsion.

N. Bose; R.C. McGregor

1984-01-01T23:59:59.000Z

53

Safety Hazards of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

54

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

55

Elastic tail propulsion at low Reynolds number  

E-Print Network [OSTI]

A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive flexible filament. Here we present a macroscopic experimental investigation of such a propulsive mechanism. A robotic swimmer ...

Yu, Tony S. (Tony Sheung)

2007-01-01T23:59:59.000Z

56

Numerical study on active wave devouring propulsion  

Science Journals Connector (OSTI)

The possibility of extracting energy from gravity waves for marine propulsion was numerically studied by a two-dimensional...

Liyanarachchi Waruna Arampath De Silva…

2012-09-01T23:59:59.000Z

57

Portable Energy and Propulsion Technologies  

Science Journals Connector (OSTI)

An electro-dynamic flywheel device or “mechanical battery” is a ... everyone’s garage by electricity from the power grid. In such a direct electricity-to-electricity ... chemical or electrochemical storage system...

Jeff W. Eerkens

2010-01-01T23:59:59.000Z

58

The Progress of Marine Propulsion  

Science Journals Connector (OSTI)

... ships. Inventions, improvements, innovations have followed in rapid succession, and the history of marine engineering presents an endless and bewildering variety of engines and boilers which have been adopted ... so many rival methods of driving ships as they have to-day, each method of propulsion making by its performance or promise some claim to consideration. Modern ...

EDGAR C. SMITH

1929-03-09T23:59:59.000Z

59

PROPULSION AND ENERGY Terrestrial energy  

E-Print Network [OSTI]

PROPULSION AND ENERGY Terrestrial energy On the morning of Monday, August 29, Hurri- cane Katrina dependence we all have on power and energy systems. Nine major oil re- fineries in Louisiana and Mississippi- trial energy community is the question of why alternative energy sources, such as coal, solar, wind

Aggarwal, Suresh K.

60

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect (OSTI)

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

APPLICATIONS – PORTABLE | Military: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Electrical power supply is a critical issue for all parts of modern armies, including today's and future foot soldiers. Batteries are the fundamental source of energy supply. However, where today mainly primary batteries are used in battlefield operations, future scenarios will more likely use secondary batteries in combination with fuel cells for recharging. Thereby, two lines of development are currently being pursued: larger recharging units in the range of 250 W carried by entire squads and smaller fuel cells in the range of 25 W carried by individual soldiers most likely as part of a soldier energy network.

C. Cremers; J. Tübke; M. Krausa

2009-01-01T23:59:59.000Z

62

Modeling & Simulation - Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

63

Batteries and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

64

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

65

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

66

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

67

One-Step Synthesis of Graphene/Polypyrrole Nanofiber Composites as Cathode Material for a Biocompatible Zinc/Polymer Battery  

Science Journals Connector (OSTI)

One-Step Synthesis of Graphene/Polypyrrole Nanofiber Composites as Cathode Material for a Biocompatible Zinc/Polymer Battery ... Miniature or flexible aqueous metal–air batteries are currently considered to be one of the most promising candidates for powering mIMDs, which mainly include the zinc–air battery system and the magnesium–air battery system. ...

Sha Li; Kewei Shu; Chen Zhao; Caiyun Wang; Zaiping Guo; Gordon Wallace; Hua Kun Liu

2014-09-08T23:59:59.000Z

68

HybriDrive Propulsion System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HybriDrive HybriDrive ® Propulsion System Cleaner, smarter power for transit DOE/FTA Fuel Cell Research Priorities Workshop Washington, DC 7 June 2010 Bart W. Mancini Sr. Principal Systems Engineer BAE Systems Ph: 607-770-4103 bart.mancini@baesystems.com 2 Overview 3 * BAE Systems FC Experience / Deployments * Technology gaps/barriers to full commercialization of fuel cell buses * Well-to-wheels energy efficiency and emissions * Cost metrics * Bus integration issues * Fuel cell bus R&D needs * Future plans BAE Systems FC Experience / Deployments 4 * 1998 - Georgetown/FTA/DOE Fuel Cell Bus #1 (still serviceable) * UTC 100 kW Phosphoric Acid FC using on-board Methanol Reformate, Hybrid propulsion & Electric accessories * 2000 - Georgetown/FTA/DOE Fuel Cell Bus #2 (retired) *

69

Centenary of Practical Marine Screw Propulsion  

Science Journals Connector (OSTI)

... To mark the centenary of practical marine screw ... screw propulsion, a special exhibit was opened at the Science Museum, South Kensington, on February ...

1937-02-13T23:59:59.000Z

70

Low Cost Titanium ? Propulsion Applications | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Applications Low Cost Titanium Propulsion Applications 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

71

Propulsive performance from oscillating propulsors with spanwise flexibility  

Science Journals Connector (OSTI)

...dimensional oscillating foil propulsion. M.Eng. thesis...Bose, N. 1991 Propulsion from an oscillating...planform. In Proc. Marine Dynamics Conf. 1991...Hydromechanics of swimming propulsion. Part 1. Swimming...Canada, Institute of Marine Dynamics report, no...

1997-01-01T23:59:59.000Z

72

Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

73

Stochastic reconstruction and electrical transport studies of porous cathode of Li-ion batteries  

E-Print Network [OSTI]

of the Li-ion batteries through developing electrode materials [1e5], reducing size [6] and optimizing shape,13], as one of the main factors limiting Li-ion battery performance, has not been resolved. Fundamental the ulti- mate performance and stability. Theoretical work of Li-ion batteries has focused on macroscopic

Liu, Fuqiang

74

Self Excited Vibration in a Specialised Electric Propulsion System  

Science Journals Connector (OSTI)

Special marine propulsion applications demand efficient manoeuvrability under extreme conditions. ... , vibration resonance and radiated noise from the propulsion shafting system must be kept to a ... purpose ves...

Don Chool Lee; Ronald D. Barro

2014-09-01T23:59:59.000Z

75

Vehicle Technologies Office: 2012 Propulsion Materials R&D Annual...  

Broader source: Energy.gov (indexed) [DOE]

Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report Low-Cost Direct Bonded Aluminum (DBA) Substrates...

76

Enabling Green Energy and Propulsion Systems via Direct Noise...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research...

77

DOE Scientist Earns Chairman's Award from Propulsion and Power...  

Broader source: Energy.gov (indexed) [DOE]

Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance DOE Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance October 2, 2009 - 1:00pm...

78

Principles of Jet Propulsion and Gas Turbines  

Science Journals Connector (OSTI)

... the presentation of the basic theory of jet propulsion and the thermodynamics of the gas-turbine and rocket types of engine. The layout follows a logical sequence, on the whole ... reader is treated to the now well-known thermodynamic analysis of the power-producing gas turbine cycle, which seems rather misplaced in a book dealing with jet propulsion. In his ...

S. J. MOYES

1949-08-06T23:59:59.000Z

79

Cover: Mariner 9 spacecraft. JET PROPULSION  

E-Print Network [OSTI]

#12;Cover: Mariner 9 spacecraft. #12;JET PROPULSION LABORATORY 1971 ANNUAL REPORT A descrtptlon Jet Propulsion Laboratory CALIFORNIA INSTITUTE OF TECHNOLOGY 4800 OAK GROVE DRIVE PASADENA, CALIFORNIA 91103 #12;#12;DIRECTOR'S MESSAGE The successful orbiting of Mariner 9 around the planet Mars

Waliser, Duane E.

80

Batteries Breakout Session  

Broader source: Energy.gov (indexed) [DOE]

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

82

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

83

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

84

Feasibility of MHD submarine propulsion  

SciTech Connect (OSTI)

This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

1992-09-01T23:59:59.000Z

85

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

86

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

87

Recent advances in lithium–sulfur batteries  

Science Journals Connector (OSTI)

Abstract Lithium–sulfur (Li–S) batteries have attracted much attention lately because they have very high theoretical specific energy (2500 Wh kg?1), five times higher than that of the commercial LiCoO2/graphite batteries. As a result, they are strong contenders for next-generation energy storage in the areas of portable electronics, electric vehicles, and storage systems for renewable energy such as wind power and solar energy. However, poor cycling life and low capacity retention are main factors limiting their commercialization. To date, a large number of electrode and electrolyte materials to address these challenges have been investigated. In this review, we present the latest fundamental studies and technological development of various nanostructured cathode materials for Li–S batteries, including their preparation approaches, structure, morphology and battery performance. Furthermore, the development of other significant components of Li–S batteries including anodes, electrolytes, additives, binders and separators are also highlighted. Not only does the intention of our review article comprise the summary of recent advances in Li–S cells, but also we cover some of our proposals for engineering of Li–S cell configurations. These systematic discussion and proposed directions can enlighten ideas and offer avenues in the rational design of durable and high performance Li–S batteries in the near future.

Lin Chen; Leon L. Shaw

2014-01-01T23:59:59.000Z

88

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

89

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

90

Integrated Modular Propulsion and Regenerative Electro-energy Storage System (IMPRESS) for small satellites  

SciTech Connect (OSTI)

The IMPRESS is a significant advancement in space system technology as it is able to operate alternately as a fuel cell to produce electrical power from stored hydrogen and oxygen and as a water electrolyzer using electrical power to produce hydrogen and oxygen from stored water. The electrolysis of a controllable fraction of stored water can provide high Isp rocket propellants on demand. The heart of the IMPRESS is the Unitized Regenerative Fuel Cell (URFC), which produces power and electrolytically regenerates its reactants using a single stack of reversible cells. This integrated approach has several significant advantages over separate (battery) power and propulsion systems.

Mitlitsky, F. [Lawrence Livermore National Lab., CA (United States); de Groot, W. [Nyma, Inc., Brook Park, OH (United States); Butler, L.; McElroy, J. [United Technologies Corp., Windsor Locks, CT (United States). Hamilton Standard Div.

1996-09-01T23:59:59.000Z

91

Solar thermal propulsion status and future  

SciTech Connect (OSTI)

The status of solar absorber/thruster research is reviewed, and potential future applications and advanced solar thermal propulsion concepts are discussed. Emphasis is placed on two concepts, the windowless heat exchanger cavity and the porous material absorption concepts. Mission studies demonstrate greater than 50 percent increase in payload compared to chemical propulsion for a LEO-to-GEO mission. Alternative missions that have been considered for this concept include the Thousand Astronomical Unit mission, LEO-to-lunar orbit, and other SEI missions. It is pointed out that solar thermal propulsion is inherently simple and capable of moderate-to-high engine performance at moderate-to-low thrust levels. 15 refs.

Shoji, J.M.; Frye, P.E.; Mcclanahan, J.A. (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA (United States))

1992-03-01T23:59:59.000Z

92

Integration of Electric Propulsion Systems with Spacecraft An Overview  

E-Print Network [OSTI]

electric propulsion systems are currently being developed ­ ranging from high-power (i.e., >10 kW) systems-propulsion systems to be used on small satellites? In the context of direct-drive electric propulsion? 1 Research1 Integration of Electric Propulsion Systems with Spacecraft ­ An Overview Thomas M. Liu1

Walker, Mitchell

93

Development of a Plasma Probe Positioner Positioner for Propulsion Research  

E-Print Network [OSTI]

(real-time, no delay) electric motor that divides a full rotation into a large number of steps1. #12 Advisor: Dr. Edgar Choueiri Mentor: Luke Uribarri #12;PPDyL 2 Outline Spacecraft Propulsion Electric vs. Chemical Propulsion How Electric Propulsion uses Plasma Problem with Electric Propulsion : Onset Solution

Petta, Jason

94

Experimental confirmation of the propulsion of marine vessels employing guided flexural waves in attached elastic fins  

Science Journals Connector (OSTI)

This paper describes the results of the first experimental verification of the idea of wave-like aquatic propulsion of manned marine vessels first published by the first author in 1994. The idea is based on employing the unique type of guided flexural elastic waves propagating along edges of immersed wedge-like structures attached to a body of a small ship or a submarine as keels or wings and used for the propulsion. The principle of employing such guided flexural waves as a source of aquatic propulsion is similar to that used in nature by stingrays. It is vitally important for the application of this idea to manned vessels that, in spite of vibration of the fins, the main body of the craft remains undisturbed as the energy of guided elastic waves is concentrated away from it. The main expected advantages of this new propulsion method over the existing ones, e.g. jets and propellers, are the following: it is quiet, and it is environmentally friendly and safe for people and wildlife. To verify the idea experimentally, the first working prototype of a small catamaran using the above-mentioned wave-like propulsion via the attached rubber keel has been built and tested. The test results have shown that the catamaran was propelled efficiently and could achieve the speed of 36 cm/s, thus demonstrating that the idea of wave-like propulsion of manned craft is viable. The reported proof of the viability of this idea may open new opportunities for marine craft propulsion, which can have far-reaching implications.

V.V. Krylov; G.V. Pritchard

2007-01-01T23:59:59.000Z

95

Integrated Design Platform for Marine Electric Propulsion System  

Science Journals Connector (OSTI)

As the modern vessels have become more complex comprising an increasing number of heterogeneous interdependent subsystems. This increased complexity requires new methods for the design and operation of these marine systems. An integrated design platform for marine electric propulsion system which aims to characteristic analysis of plants and systems, DCS control algorithm trim, intelligent control strategy develop of automation and operation is presented in this paper. The design process and thoughts is described in details, and the current work is introduced. The main focus of this paper is in the development of marine integrated design platform which seeks to shift ship design to a distribution, intelligent control architecture through increased automation.

Chen Yutao; Zeng Fanming; Wu Jiaming

2012-01-01T23:59:59.000Z

96

Marine Nuclear Propulsion for the United Kingdom  

Science Journals Connector (OSTI)

... the Government in an adjournment debate in the House of Commons on March 21 on marine nuclear ... nuclear propulsion, the Joint Parliamentary Secretary to the Ministry of Transport, Mr. John Hay, said ...

1960-04-09T23:59:59.000Z

97

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

98

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

99

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

100

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

102

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

103

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

104

Design methodology based on H? control theory for marine propulsion system with bumpless transfer function  

Science Journals Connector (OSTI)

In this paper we propose a control system design methodology which has two main objectives: the first one is to achieve control system specifications for a local H? controller designed for a given operation condition, and the second ... Keywords: H controller, bumpless transfer, ship propulsion system

M. J. Lopez; L. Garcia; J. Lorenzo; A. Consegliere

2010-03-01T23:59:59.000Z

105

Temperature maintained battery system  

SciTech Connect (OSTI)

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

106

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

107

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

108

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

109

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

110

Main Title 32pt  

Broader source: Energy.gov (indexed) [DOE]

Electroactive Ionic Liquids: Electroactive Ionic Liquids: A New Approach to Flow Batteries 2. Gallium Nitride Substrates for Power Electronics: Electrochemical Solution Growth Karen Waldrip, PhD Advanced Power Sources R&D Sandia National Labs, Albuquerque, NM knwaldr@sandia.gov Sandia National Laboratories' Programs Electroactive Ionic Liquids: A New Approach To Flow Batteries Date Travis Anderson David Ingersoll Chad Staiger Karen Waldrip Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Flow Batteries *No cross contamination *Flexible layout *High cycle life *Large, tunable capacity *Low maintenance vanadium redox couples are

111

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the “nucleus” of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

112

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

113

Three Main Subsystems: I. Centerpiece (Linear Actuation)  

E-Print Network [OSTI]

Systems Two Main Subsystems: I. Solar Panels Four 100 W high efficiency solar panels were installed symmetrically atop the canopy. The panels were wired in parallel to a deep cycle solar battery. In full sunlight- Monocrystalline-Solar-Panel-4-Pack-GS-S-250- Fab5x4/202960000?N=8p9Z5yc1v Left Bottom: Wind Blue Power LLC. (2014

Provancher, William

114

Nuclear electric propulsion : assessing the design of Project Prometheus.  

E-Print Network [OSTI]

The high fuel efficiency of electric propulsion makes it a viable alternative for long-distance space travel. Project Prometheus was a NASA-led project that sought to demonstrate that distant electric propulsion missions ...

Goycoolea, Martin

2013-01-01T23:59:59.000Z

115

Power balance in a helicon plasma source for space propulsion  

E-Print Network [OSTI]

Electric propulsion systems provide an attractive option for various spacecraft propulsion applications due to their high specific impulse. The power balance of an electric thruster based on a helicon plasma source is ...

White, Daniel B., Jr

2008-01-01T23:59:59.000Z

116

Large eddy simulation modelling of combustion for propulsion applications  

Science Journals Connector (OSTI)

...but also for power generation and for marine applications. The current trend is to...travel are the vehicle design and the propulsion system, and how to integrate them. Two types of propulsion systems, ramjets (Fry 2004) and scramjets...

2009-01-01T23:59:59.000Z

117

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

118

Batteries - EnerDel Lithium-Ion Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

119

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

SciTech Connect (OSTI)

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

120

H? controller and bumpless transfer design for marine propulsion system  

Science Journals Connector (OSTI)

A method for controller design and switching controller without bump effect has been proposed for a marine propulsion system with diesel engine used as propeller prime-mover. Due to different regimens operation of ship propulsion, it is common practice ... Keywords: H controller, bumpless transfer, ship propulsion system

M. J. Lopez; L. Garcia; J. Lorenzo; A. Consegliere

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GLC Analysis of Organic Chelating Agents in Steam Propulsion Systems  

Science Journals Connector (OSTI)

......Chelating Agents in Steam Propulsion Systems by Paul J. Sniegoski...iminodi- acetic acid) in steam propulsion systems. For chromatogra...as an addi- tive to steam propulsion systems to prevent build-up...Fourth Internaval Conference on Marine Cor- rosion, Naval Research......

Paul J. Sniegoski; David L. Venezky

1974-06-01T23:59:59.000Z

122

Beamed Core Antimatter Propulsion: Engine Design and Optimization  

E-Print Network [OSTI]

A conceptual design for beamed core antimatter propulsion is reported, where electrically charged annihilation products directly generate thrust after being deflected and collimated by a magnetic nozzle. Simulations were carried out using the Geant4 (Geometry and tracking) software toolkit released by the CERN accelerator laboratory for Monte Carlo simulation of the interaction of particles with matter and fields. Geant permits a more sophisticated and comprehensive design and optimization of antimatter engines than the software environment for simulations reported by prior researchers. The main finding is that effective exhaust speeds Ve ~ 0.69c (where c is the speed of light) are feasible for charged pions in beamed core propulsion, a major improvement over the Ve ~ 0.33c estimate based on prior simulations. The improvement resulted from optimization of the geometry and the field configuration of the magnetic nozzle. Moreover, this improved performance is realized using a magnetic field on the order of 10 T at the location of its highest magnitude. Such a field could be produced with today's technology, whereas prior nozzle designs anticipated and required major advances in this area. The paper also briefly reviews prospects for production of the fuel needed for a beamed core engine.

Ronan Keane; Wei-Ming Zhang

2012-05-16T23:59:59.000Z

123

Current balancing for battery strings  

DOE Patents [OSTI]

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

124

Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion  

Science Journals Connector (OSTI)

Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

George R. Schmidt; David H. Manzella; Hani Kamhawi; Tibor Kremic; Steven R. Oleson; John W. Dankanich; Leonard A. Dudzinski

2010-01-01T23:59:59.000Z

125

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

126

JET PROPULSION LABORATORY 1979 Annual Report  

E-Print Network [OSTI]

, is the most active and complex volcanic body in our solar system and has a surface composed primarily of Technology and the National Aeronautics and Space Administration for the period January 1 to December 31 JPL Technology Institutional Activities JET PROPULSION LABORATORY California Institute of Technology

Waliser, Duane E.

127

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

128

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

129

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

130

Full Fuel-Cycle Comparison of Forklift Propulsion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401

131

Main Title 32pt  

Broader source: Energy.gov (indexed) [DOE]

Peer Peer Review November 2 - 4, 2010 Washington, DC Presented by: Tom Hund, and Wes Baca Sandia National Laboratories Albuquerque, NM (505) 844-8627 tdhund@sandia.gov Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL) Historical Sandia Battery Testing Introduction (2002 - 2010) ESMA Supercapacitors Maxwell Supercaps NessCap Supercaps East Penn lead-acid/carbon (ALABC) Sandia Battery Testing Introduction FY-10 Testing: * The large format (1,000 Ah) Furukawa and East Penn Ultrabattery

132

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

133

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

134

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers  

E-Print Network [OSTI]

Rack PDU BackupMain Bus-type power network Utility Diesel Generator ATS PDU Server Rack Server RackDistributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power

Simunic, Tajana

135

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

136

Fluidic electrodynamics: Approach to electromagnetic propulsion  

SciTech Connect (OSTI)

We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

2009-03-16T23:59:59.000Z

137

Interplanetary space transport using inertial fusion propulsion  

SciTech Connect (OSTI)

In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

Orth, C.D.

1998-04-20T23:59:59.000Z

138

Pivotal air induction for marine propulsion device  

SciTech Connect (OSTI)

This patent describes a marine propulsion device comprising a mounting bracket assembly, a propulsion unit including an internal combustion engine and being rotatably connected to the mounting bracket assembly for rotation relative to the mounting bracket assembly about a generally vertical steering axis. A shroud substantially encloses the engine and has therein a combustion air opening centered on the steering axis, and rigid duct means having opposite first and second ends. The first end communicates with the opening and being rotatably connected to the shroud for rotation about the steering axis, and the second end being adapted for connection and for communication through the transom of a boat to enable the engine to draw combustion air from the interior of the boat.

Ferguson, A.R.

1986-11-18T23:59:59.000Z

139

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

140

United States Advanced Battery Consortium  

Broader source: Energy.gov (indexed) [DOE]

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

142

Advanced battery modeling using neural networks  

E-Print Network [OSTI]

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

143

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

144

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

145

Simplest AB-Thermonuclear Space Propulsion and Electric Generator  

E-Print Network [OSTI]

The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

Alexander Bolonkin

2007-01-19T23:59:59.000Z

146

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

147

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

148

Batteries lose in game of thorns | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

149

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

150

Hierarchically Structured Materials for Lithium Batteries. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

151

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

152

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

153

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

154

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

155

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

156

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

157

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

158

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

159

Upgrading the Vanadium Redox Battery | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

160

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Using coke-battery flue gas to dry coal batch before coking  

Science Journals Connector (OSTI)

The utilization of heat from coke-battery flue gases and other potential secondary energy resources in drying coal batch prior to coking is considered. The main factors that influence ... . The reduction in moist...

A. Ya. Eremin; V. G. Mishchikhin; S. G. Stakheev; R. R. Gilyazetdinov…

2011-03-01T23:59:59.000Z

162

Integrated Mathematical Modeling Software Series of Vehicle Propulsion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mathematical Modeling Software Series of Vehicle Propulsion System: (1) Tractive Effort (T sub ew) of Vehicle Road WheelTrack Sprocket Integrated Mathematical Modeling Software...

163

Electric Motors for Vehicle Propulsion; Elektriska motorer för fordonsframdrivning.  

E-Print Network [OSTI]

?? This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by first… (more)

Larsson, Martin

2014-01-01T23:59:59.000Z

164

Advances in Diode Laser Absorption Sensors for Combustion and Propulsion  

Science Journals Connector (OSTI)

Progress is reported in the evolution of diode laser sensors for combustion and propulsion systems. Applications are diverse, ranging from IC engines and gas turbine combustors to...

Hanson, Ronald K

165

Optimal trajectories with solar electric propulsion and gravity assisted maneuver.  

E-Print Network [OSTI]

??The future interplanetary missions will probably use the conventional chemical rockets to leave the sphere of influence of the Earth, and solar electric propulsion (SEP)… (more)

Denilson Paulo Souza dos Santos

2009-01-01T23:59:59.000Z

166

Enabling Green Energy and Propulsion Systems via Direct Noise...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Umesh Paliath, GE Global Research; Joe Insley, Argonne National Laboratory Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI...

167

Large-Eddy Simulation for Green Energy and Propulsion Systems...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large-Eddy Simulation for Green Energy and Propulsion Systems PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: General Electric Allocation Program: INCITE Allocation...

168

Propulsion Materials R&D | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Propulsion Materials Propulsion Materials SHARE Propulsion Materials Improve Powertrains Oak Ridge National Laboratory's transportation research and development in the area of Propulsion Materials is designed to identify and develop advanced materials and processes that improve powertrain system efficiency and reduce emissions. Cutting-edge materials research is crucial to enabling new vehicle technologies that are reliable, fuel efficient, and clean. ORNL researchers, in close collaboration with US industry, are focusing on materials for advanced engines, hybrid and electric drive systems, and vehicle exhaust systems. These materials promote a variety of performance benefits, including lightweighting, higher temperature capabilities, emissions reduction, thermal management, and corrosion mitigation.

169

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

170

Lithium batteries for pulse power  

SciTech Connect (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

171

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

172

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

173

The Gasdynamic Mirror Fusion Propulsion System -- Revisited  

SciTech Connect (OSTI)

Many of the previous studies assessing the capability of the gasdynamic mirror (GDM) fusion propulsion system employed analyses that ignored the 'ambipolar' potential. This electrostatic potential arises as a result of the rapid escape of the electrons due to their small mass. As they escape, they leave behind an excess positive charge which manifests itself in an electric field that slows down the electrons while speeding up the ions until their respective axial diffusions are equalized. The indirect effect on the ions is that their confinement time is reduced relative to that of zero potential, and hence the plasma length must be increased to accommodate that change. But as they emerge from the thruster mirror - which serves as a magnetic nozzle - the ions acquire an added energy equal to that of the potential energy, and that in turn manifests itself in increased specific impulse and thrust. We assess the propulsive performance of the GDM thruster, based on the more rigorous theory, by applying it to a round trip Mars mission employing a continuous burn acceleration/deceleration type of trajectory. We find that the length of the device and travel time decrease with increasing plasma density, while the total vehicle mass reaches a minimum at a plasma density of 3 x 1016 cm-3. At such a density, and an initial DT ion temperature of 10 keV, a travel time of 60 days is found to be achievable at GDM propulsion parameters of about 200,000 seconds of specific impulse and approximately 47 kN of thrust.

Kammash, Terry [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109 (United States); Tang, Ricky [Department of Aerospace Engineering, University Michigan, 1320 Beal Ave, Ann Arbor, MI 48109 (United States)

2005-02-06T23:59:59.000Z

174

CMC intake ramp for hypersonic propulsion systems  

SciTech Connect (OSTI)

An alternative technology to produce CMC structural components with lower costs and shorter manufacturing times has been developed at the DLR. The process is based on liquid silicon infiltration (LSI) into porous carbon/carbon resulting in a C/C-SiC material whereby the load carrying fibres are internally protected against oxidation by SiC. The material`s adequate strength levels and the high reproducibility of the state-of-the-art process now allows the realization of CMC components. Representing a very complex structure of high integrity, an intake ramp for a hypersonic propulsion system has been designed, manufactured and tested, which is described in this paper.

Kochendoerfer, R.; Krenkel, W. [Institute of Structures and Design, Stuttgart, (Germany)

1995-12-01T23:59:59.000Z

175

On self-propulsion of $N$-sphere micro-robot  

E-Print Network [OSTI]

The aim of this paper is to describe the self-propulsion of a micro-robot (or micro-swimmer) consisting of $N$ spheres moving along a fixed line. The spheres are linked to each other by arms with the lengths changing periodically. For the derivation, we use the asymptotic procedure containing the two-timing method and a distinguished limit. We show that in the main approximation, the self-propulsion velocity appears as a linear combination of velocities of all possible triplets of spheres. Velocities and efficiencies of three-, four-, and five-swimmers are calculated. The paper is devoted to H.K.Moffatt, who initiated the author's interests in low-Reynolds-number fluid dynamics.

Vladimir A. Vladimirov

2012-09-02T23:59:59.000Z

176

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

177

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

178

High performance path following for marine vehicles using azimuthing podded propulsion .  

E-Print Network [OSTI]

??Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis… (more)

Greytak, Matthew B. (Matthew Bardeen)

2006-01-01T23:59:59.000Z

179

E-Print Network 3.0 - accent propulsion lander Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vehicle design and operations, propulsion, orbital mechanics, spacecraft... on hypersonic flight and electric rocket propulsion. Dr. Erwin teaches two lower-division...

180

Swimming dynamics and propulsive efficiency of squids throughout ontogeny  

E-Print Network [OSTI]

Swimming dynamics and propulsive efficiency of squids throughout ontogeny Ian K. Bartol,1,� Paul S and propulsive efficiency change throughout ontogeny, digital particle image velocimetry (DPIV) and kinematic Lolliguncula brevis swimming in a holding chamber or water tunnel (Re ¼ 20­20 000). Jet and fin wake bulk

Hynes, Wayne L.

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A modelling approach for the overall ship propulsion plant simulation  

Science Journals Connector (OSTI)

In the present paper, a modelling approach for the simulation of the overall ship propulsion plant is presented. A cycle mean value model with differential equations for the calculation of the engine crankshaft and turbocharger shaft speeds is used for ... Keywords: MATLAB Simulink®, marine diesel engine, ship propulsion plant, simulation

G. P. Theotokatos

2007-11-01T23:59:59.000Z

182

CHAPTER 14 - Future of Solid Rocket Propulsion  

Science Journals Connector (OSTI)

Publisher Summary The technological progress of propulsion systems using solid propellants has so far been possible because of the expression of new requirements and the emergence of diversified applications. The search for optimal propellant performance—specific impulse Is and volumetric specific impulse Is ?—continues to be the most important research mission, coupled with other expected technological progress. For composite propellants, revolutionary progress has been achieved only through extensive modifications of the active parts of the manufacturing process. So far, the difficulties facing this development do not involve basic issues such as mechanical components; rather they involve variety of issues ranging from the amount of precision required in the continuous feeding of raw materials and the high level of sensitivity of the propellants to minute variations in the amounts of crosslinking agent or catalyst. The technology of the ramjets and ramrockets is relevent to numerous applications to missiles. The range of systems from several hundred kilometers to several thousand kilometers is a possibility that is being investigated. The development of this type of propulsion is going to take several directions. Beyond applications to high-performance military missiles, the emphasis is placed on costs, particularly for mass industrial productions and very large missiles. This emphasis is not only on the production costs but also on the development costs, implying significant changes in the methods of development.

ALAIN DAVENAS

1993-01-01T23:59:59.000Z

183

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

184

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

185

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

186

Recent advances in nuclear powered electric propulsion for space exploration  

Science Journals Connector (OSTI)

Nuclear and radioisotope powered electric thrusters are being developed as primary in space propulsion systems for potential future robotic and piloted space missions. Possible applications for high-power nuclear electric propulsion include orbit raising and maneuvering of large space platforms, lunar and Mars cargo transport, asteroid rendezvous and sample return, and robotic and piloted planetary missions, while lower power radioisotope electric propulsion could significantly enhance or enable some future robotic deep space science missions. This paper provides an overview of recent US high-power electric thruster research programs, describing the operating principles, challenges, and status of each technology. Mission analysis is presented that compares the benefits and performance of each thruster type for high priority NASA missions. The status of space nuclear power systems for high-power electric propulsion is presented. The paper concludes with a discussion of power and thruster development strategies for future radioisotope electric propulsion systems.

R. Joseph Cassady; Robert H. Frisbee; James H. Gilland; Michael G. Houts; Michael R. LaPointe; Colleen M. Maresse-Reading; Steven R. Oleson; James E. Polk; Derrek Russell; Anita Sengupta

2008-01-01T23:59:59.000Z

187

Battery SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

188

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

189

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

190

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

191

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

192

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

193

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

194

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

195

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

196

EV Everywhere Battery Workshop Introduction | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

197

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

198

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

199

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

200

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

202

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

203

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Broader source: Energy.gov [DOE]

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

204

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Broader source: Energy.gov [DOE]

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

205

Radiofrequency in propulsion application to commercial satellites  

SciTech Connect (OSTI)

Application of the RITA ion propulsion system for the Eureca and SAT-2 missions is considered. In the RITA-10 system, xenon is stored at 50-60 bar in a pressure tank, a pressure reduction device reduces the variable high pressure to a constant pressure of 1.5 bar, and a single unit controls the mass flow independently for both the thruster and the neutralizer. The present thruster does not employ isolators between the discharge chamber and the structure, and it achieves thrust level variation by variation of the RF power at constant exhaust velocity. The RF ionizaton system does not require constant generation of electrons during discharge operation. For SAT-2, the requirements are for a thrust level of 15 mN + or - 5 percent and a lifetime of 7000 hours per thruster.

Bassner, H.F.; Berg, H.P.; Kukies, R.

1989-01-01T23:59:59.000Z

206

Propulsion airframe aeroacoustics practices at Honeywell  

Science Journals Connector (OSTI)

Honeywell has been developing and applying acoustic models of propulsion airframe aeroacoustic phenomena for over 20 years. The initial application of a wing?shielding model was developed for the NASA General Aviation Synthesis Program in 1982. Since that time more sophisticated models of wing shielding and reflection have been developed with internal and NASA funding. Recent work has involved models of wing shielding for aft mounted engines and wing reflection for wing mounted engines. These methods are described in the presentation. Comparisons with the Raynoise Code by LMS and measured aircraft fly over noise data are made to show the effectiveness of the model. The attenuation of the inlet noise by the wing of an aft mounted engine and the amplification of the noise by wing mounted engines are evaluated.

2004-01-01T23:59:59.000Z

207

2007 Propulsion Materials Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle t echnologies Progra M Less dependence on foreign oil today, and transition to a petroleum-free, emissions-free vehicle tomorrow. 2 0 0 7 a n n u a l p r o g r e s s r e p o r t U.S. Department of Energy Office of Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2007 Progress Report for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle Technologies Advanced Materials Technologies Edward J. Wall Program Manager, OVT Rogelio A. Sullivan Advanced Materials Technologies Team Leader Jerry L. Gibbs Technology Manager January 2008 CONTENTS INTRODUCTION..................................................................................................................................... 1 PROJECT 18518 - MATERIALS FOR HIGH EFFICIENCY ENGINES......................................... 9

208

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

209

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

210

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

211

Heatpipe space power and propulsion systems  

SciTech Connect (OSTI)

Safe, reliable, low-mass space power and propulsion systems could have numerous civilian and military applications. This paper discusses two fission-powered concepts: the Heatpipe Power System (HPS) that provides power only, and the Heatpipe Bimodal System (HBS) that provides both power and thermal propulsion. Both concepts have 10 important features. First, only existing technology and recently tested fuel forms are used. Second, fuel can be removed whenever desired, greatly facilitating system fabrication and handling. Third, full electrically heated system testing is possible, with minimal operations required to replace the heaters with fuel and ready the system for launch. Fourth, the systems are passively subcritical during launch accidents. Fifth, a modular approach is used, and most technical issues can be resolved with inexpensive module tests. Sixth, bonds between dissimilar metals are minimized. Seventh, there are no single point failures during power mode operation. Eighth, fuel burnup rate is quite low to help ensure greater than 10-year system life. Ninth, there are no pumped coolant loops, and the systems can be shut down and restarted without coolant freeze/thaw concerns. Finally, a full ground nuclear test is not needed, and development costs will be low. The baseline HPS uses SNAP-10A-style thermoelectric power converters to produce 5 kWe at a system mass of about 500 kg. The unicouple thermoelectric converters have a hot shoe temperature of 1275 K and reject waste heat at 775 K. This type of thermoelectric converter has been used extensively by the space program, demonstrating an operational lifetime of decades. At higher thermal power, the same core can produce over 10 kWe using thermoelectric converters, and over 50 kWe using advanced power conversion systems.

Houts, M.G.; Poston, D.I.; Ranken, W.A.

1995-07-01T23:59:59.000Z

212

Torque-Power-Speed Hybrid Control of Marine Electric Propulsion System  

Science Journals Connector (OSTI)

The conventional electric propulsion system is usually aimed at controlling the shaft speed only, without taking advantages of the electric propulsion motor into control strategies. This paper designs a SSP for marine electric propulsion system with ... Keywords: control, ship, marine electric propulsion, hybrid control

Guichen Zhang; Jie Ma

2010-05-01T23:59:59.000Z

213

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials  

Broader source: Energy.gov [DOE]

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and Gaps for Lightweight and Propulsion Materials

214

DOE Scientist Earns Chairman's Award from Propulsion and Power Systems  

Broader source: Energy.gov (indexed) [DOE]

Scientist Earns Chairman's Award from Propulsion and Power Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance DOE Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance October 2, 2009 - 1:00pm Addthis Washington, DC - A researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been presented with the Chairman's Award by the Propulsion and Power Systems Alliance (PPSA). Mary Anne Alvin, a physical scientist in NETL's Office of Research and Development, was recognized for her lead role in revitalizing the PPSA Materials Technical Area Team. This prestigious award is only given during a year when outstanding service is observed. The PPSA was formed in 1999 with the mission of improving coordination and collaboration among government agencies to better leverage existing federal

215

Design of repeating projectile toy based on bistable spring propulsion  

E-Print Network [OSTI]

Recently, bistable springs have been proven as a viable propulsion method for the standard 1.75" foam balls used in Nerf® projectile toys. This technology was developed at M.I.T. by William Fienup and Barry Kudrowitz, who ...

Blanco, Matthew C. (Matthew Corwin)

2007-01-01T23:59:59.000Z

216

Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions  

Science Journals Connector (OSTI)

Solar sails enable a wide range of high- ... system. They are also an enabling propulsion technology for two types of deep-space missions ... and the large-scale gravitational field of the solar system: the first...

Bernd Dachwald; Wolfgang Seboldt; Claus Lammerzahl

2008-01-01T23:59:59.000Z

217

Propulsion devices for locomotion at low-Reynolds number  

E-Print Network [OSTI]

We have designed, built, and tested three novel devices that use low-Reynolds number flows for self propulsion. The three-link swimmer is designed to swim through in a free viscous fluid using cyclic flipping motion of two ...

Chan, Brian, 1980-

2004-01-01T23:59:59.000Z

218

A Policy for Nuclear-Powered Marine Propulsion  

Science Journals Connector (OSTI)

... DISCUSSING the technical situation in its report, Nuclear Power for Ship Propulsion *, the Padmore Working Group on ... *, the Padmore Working Group on Marine Reactor Research points out that the U.S. Administration has already built an experimental ...

1964-06-27T23:59:59.000Z

219

Performance of a boundary layer ingesting propulsion system  

E-Print Network [OSTI]

This thesis presents an assessment of the aerodynamic performance of an aircraft propulsion system, with embedded engines, in the presence of aircraft fuselage boundary layer ingestion (BLI). The emphasis is on defining ...

Plas, Angélique (Angélique Pascale)

2006-01-01T23:59:59.000Z

220

Porous material and process development for electrospray propulsion applications  

E-Print Network [OSTI]

Ion electrospray propulsion devices rely on the transportation of ionic liquid propellant to emission regions where ions are extracted at high velocities. One such method involves the use of porous substrates to passively ...

Arestie, Steven Mark

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Application of ion electrospray propulsion to lunar and interplanetary missions  

E-Print Network [OSTI]

High specific impulse electric propulsion systems enable ambitious lunar and interplanetary missions that return a wealth of scientific data. Many of these technologies are difficult to scale down, meaning the spacecraft ...

Whitlock, Caleb W. (Caleb Wade)

2014-01-01T23:59:59.000Z

222

A doubly-fed machine for propulsion applications  

E-Print Network [OSTI]

A doubly fed machine for propulsion applications is proposed, which, given the presence of AC and DC power sources, can be utilized in order to improve efficiency, weight, volume, and sizing of the rotor power electronics. ...

Tomovich, Michael S. (Michael Stephen)

2014-01-01T23:59:59.000Z

223

Assessment of propfan propulsion systems for reduced environmental impact  

E-Print Network [OSTI]

Current aircraft engine designs tend towards higher bypass ratio, low-speed fan designs for improved fuel burn, reduced emissions and noise. Alternative propulsion concepts include counter-rotating propfans (CRPs) which ...

Peters, Andreas, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

224

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

225

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

226

'Thirsty' Metals Key to Longer Battery Lifetimes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

227

Vehicle Technologies Office: Exploratory Battery Materials Research  

Broader source: Energy.gov [DOE]

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

228

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

229

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

230

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

231

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

232

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. es001barnett2010o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV...

233

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

234

Design tool needs for space nuclear propulsion systems  

SciTech Connect (OSTI)

The interest in a return trip for humans to the moon and a pioneering voyage to Mars has rekindled interest in the use of nuclear reactors to provide propulsion for both piloted and robotic space vehicles. Two types of nuclear reactor-based propulsion systems are currently envisioned: nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The former relies on the direct heating and exhaust of a propellant within the core of the reactor, while the latter utilizes ion thruster engines for propulsion, and the nuclear reactor supplies the large amount of electrical power required to drive the engines. Another direct contrast between the NTP and NEP concepts is the length of reactor operation. The NTP nuclear rocket core is required to produce large amounts of thermal power for relatively short bursts (on the order of minutes to hours), and the NEP reactor core operates for a much longer period of time (on the order of days to months) with a steady-state electrical power output. The design of these types of nuclear reactor systems requires the use of specific analysis tools, some of which already exist and others that need considerable development. The general areas in which design tools are needed in the development of systems for space nuclear propulsion include the following: (1) neutronics design - both steady-state and transient applications including thermal feedback effects; (2) thermal-hydraulics design - again, both steady-state and transient applications with coupling to and from the neutronics design codes; (3) materials analysis tools - due to the high temperatures and high stresses required for efficient propulsion operation, increased importance will be placed on understanding the material responses; and (4) systems analysis - these codes allow optimizaiton of the entire propulsion system.

Klein, A.C. (Oregon State Univ., Corvallis (United States)); Lewis, B.R. (Atom Analysis, Inc., Portland, OR (United States))

1992-01-01T23:59:59.000Z

235

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

236

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

237

Maine.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maine Maine www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

238

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

239

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

240

Wearable Textile Battery Rechargeable by Solar Energy  

Science Journals Connector (OSTI)

Wearable Textile Battery Rechargeable by Solar Energy ... Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. ... Other groups(17-20) have also developed flexible conductive substrates by engaging carbon nanomaterials, such as graphene paper, for demonstration of similar wearable energy storage devices. ...

Yong-Hee Lee; Joo-Seong Kim; Jonghyeon Noh; Inhwa Lee; Hyeong Jun Kim; Sunghun Choi; Jeongmin Seo; Seokwoo Jeon; Taek-Soo Kim; Jung-Yong Lee; Jang Wook Choi

2013-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microbial battery for efficient energy recovery  

Science Journals Connector (OSTI)

...used for decades in batteries (19). This couple...condition in Ag 2 O/Ag batteries, the overpotential...or carbon nanotube/graphene-coated macroporous substrate, such...silver oxide-zinc batteries . Ind Eng Chem Prod Res Dev...23 Xie X ( 2012 ) Graphene-sponge as high-performance...

Xing Xie; Meng Ye; Po-Chun Hsu; Nian Liu; Craig S. Criddle; Yi Cui

2013-01-01T23:59:59.000Z

242

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

243

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

244

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

245

Electric propulsion motor for marine vehicles  

SciTech Connect (OSTI)

An electric propulsion motor for marine vehicles is described comprising: a disk-shaped rotor and two coaxial disk-shaped stators, the rotor being separated from each of the stators in an axial direction by an air gap; the rotor including a plurality of permanent magnets that produce a first magnetic field; each stator comprising an armature winding that is connected to a source of electrical current to produce a second magnetic field, the first and second magnetic fields being capable of interacting to create an electromagnetic torque; means for coupling the rotor to a propeller shaft for transferring the torque from the rotor to the shaft, and means for detecting the angle of the shaft; a current control means for receiving a current control signal and for employing pulse width modulation to control the source of electrical current; the current control means including means for storing compensation information related to torque variations that are a function of shaft angle; the current control means further including means connected and responsive to the shaft angle detecting means for selecting the compensation information as a function of shaft angle and means for combining the compensation information with the current control signal to control the source of electrical current such that the torque variations that are a function of shaft angle are minimized; and wherein the means for coupling the rotor to the propeller shaft includes means within the motor for isolating the shaft from sound produced by the motor.

Dade, T.B.; Leiding, K.W.; Mongeau, P.P.; Piercey, M.S.

1993-07-20T23:59:59.000Z

246

MAIN APPLICATIONS Spot welding  

E-Print Network [OSTI]

IRB 6400 MAIN APPLICATIONS Spot welding Press tending Material handling Machine tending Palletizing with high material strength. The arms are mechanically balanced and equipped with double bearings. Advanced DATA, IRB 6400 INDUSTRIAL ROBOT WORKING RANGE AND LOAD DIAGRAM IRB 6400PE IRB 6400R IRB 6400S PR10036EN

De Luca, Alessandro

247

40th Joint Propulsion Conference, Fort Lauderdale, FL, July 11-14, 2004 Effect of Segmented Anodes On the Beam Profile of a  

E-Print Network [OSTI]

40th Joint Propulsion Conference, Fort Lauderdale, FL, July 11-14, 2004 Effect of Segmented Anodes was investigated. A BPT-2000 magnetic circuit was retrofitted with a segmented anode with thermal measurement capabilities. Current was shared between shims and main anode by changing the voltage on the shim. A Faraday

King, Lyon B.

248

Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility  

SciTech Connect (OSTI)

This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)

1992-09-01T23:59:59.000Z

249

Main Page - NWChem  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Log in / create account Log in / create account Search Go Search Navigation Main page Science Benchmarks Download Code Documentation News Community Developers SEARCH TOOLBOX LANGUAGES Forum Menu Page Discussion View source History modified on 17 May 2013 at 21:51 *** 6,254,554 views Main Page From NWChem Jump to: navigation, search NWChem: Delivering High-Performance Computational Chemistry caption NWChem aims to provide its users with computational chemistry tools that are scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources from high-performance parallel supercomputers to conventional workstation clusters. NWChem software can handle Biomolecules, nanostructures, and solid-state From quantum to classical, and all combinations

250

Maine coast winds  

SciTech Connect (OSTI)

The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

Avery, Richard

2000-01-28T23:59:59.000Z

251

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

252

Advanced batteries for electric vehicle applications  

SciTech Connect (OSTI)

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

253

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

254

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

255

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

256

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E°=–3.045 V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

257

ESS 2012 Peer Review - Iron-Air Rechargeable Battery for Grid-Scale Energy Storage - Sri Narayan, USC  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Lead: University of Southern California, Loker Hydrocarbon Research Institute Sub-Awardee: Jet Propulsion Laboratory, California Institute of Technology ARPA-E GRIDS Program Advantages of the Iron-Air Battery * Extremely Low Cost Materials * Environmentally friendly * Abundant raw materials all over the world * High Theoretical Specific Energy, 764 Wh/kg * Iron electrode is robust to cycling Desired Characteristic State-of-Art Performance Target Round trip energy efficiency 50% 80% Cycle life, cycles 1000-2000 5000 Year Key Milestones & Deliverables Year 1 *Complete design of iron electrode *Demonstrate feasibility bi-functional air electrode materials Year 2 *Complete selection of additives and catalysts *Complete characterization of CO

258

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

259

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect (OSTI)

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

260

Numerical Investigation of Laser Propulsion for Transport in Water Environment  

SciTech Connect (OSTI)

Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. The numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.

Han Bing; Li Beibei; Zhang Hongchao; Chen Jun; Shen Zhonghua; Lu Jian; Ni Xiaowu [Department of Science, Nanjing University of Science and Technology, Nanjing 210094 (China)

2010-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Batteries - Next-generation Li-ion batteries Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

262

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

263

FY2001 Progress Report for Automotive Propulsion Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AUTOMOTIVE PROPULSION AUTOMOTIVE PROPULSION MATERIALS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., and Oak Ridge National Laboratory, for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Propulsion Materials

264

Self-propulsion of V-shape micro-robot  

E-Print Network [OSTI]

In this paper we study the self-propulsion of a symmetric V-shape micro-robot (or V-robot) which consists of three spheres connected by two arms with an angle between them; the arms' lengths and the angle are changing periodically. Using an asymptotic procedure containing two-timing method and a distinguished limit, we obtain analytic expressions for the self-propulsion velocity and Lighthill's efficiency. The calculations show that a version of V-robot, aligned perpendicularly to the direction of self-swimming, is both the fastest one and the most efficient one. We have also shown that such $V$-robot is faster and more efficient than a linear three-sphere micro-robot. At the same time the maximal self-propulsion velocity of V-robots is significantly smaller than that of comparable microorganisms.

Vladimir A. Vladimirov

2012-09-13T23:59:59.000Z

265

Australian Science and Technology with Relevance to Beamed Energy Propulsion  

SciTech Connect (OSTI)

Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.

Froning, H. David Jr [PO Box 180, Gumeracha SA 5233 (Australia)

2008-04-28T23:59:59.000Z

266

Photon Tools for Fuel Spray Studies in Aerospace Propulsion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools for Fuel Spray Studies in Aerospace Tools for Fuel Spray Studies in Aerospace Propulsion Systems Kuo-Cheng Lin, 1 Campbell D. Carter, 2 and Stephen A. Schumaker 3 1 Taitech, Inc., 1430 Oak Court, Suite 301, Beavercreek, OH 45430, USA; 2 Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA; 3 Air Force Research Laboratory, Edwards Air Force Base, CA 93524, USA Fuel injection plays an important role in establishing stable and efficient combustion inside the combustor of a liquid-fueled aerospace propulsion system. Depending on the application of interest, fuel injection conditions range from high-speed crossflows in the air-breathing propulsion systems to quiescent environments with extremely high pressures in the rocket engines. In addition to the typical liquid

267

Synthesis of lithium intercalation materials for rechargeable battery  

Science Journals Connector (OSTI)

Lithium-based oxides (LiMOx, where M=Ni, Co, Mn) are attractive for electrode materials, because they are capable of reversibly intercalating lithium ions for rechargeable battery without altering the main unit. We developed a novel solution-based route for the synthesis of these lithium intercalation oxides, using acetates or oxides as precursors for lithium, manganese, nickel, and cobalt, respectively with proper organic solvents. The evolution of crystal structure of these materials was analyzed by X-ray diffraction. Further analysis of LiMn2O4 samples were carried out using impedance spectroscopy and Raman spectroscopy. These studies indicate that this synthetic route, without using expensive alkoxides of sol–gel process, produces high-quality lithium-based oxides useful for cathode in lithium-ion rechargeable battery.

S. Nieto-Ramos; M.S. Tomar

2001-01-01T23:59:59.000Z

268

Shunt current loss of the vanadium redox flow battery  

Science Journals Connector (OSTI)

The shunt current loss is one of main factors to affect the performance of the vanadium redox flow battery, which will shorten the cycle life and decrease the energy transfer efficiency. In this paper, a stack-level model based on the circuit analog method is proposed to research the shunt current loss of the vanadium redox flow battery, in which the SOC (state of charge) of electrolyte is introduced. The distribution of shunt current is described in detail. The sensitive analysis of shunt current is reported. The shunt current loss in charge/discharge cycle is predicted with the given experimental data. The effect of charge/discharge pattern on the shunt current loss is studied. The result shows that the reduction of the number of single cells in series, the decrease of the resistances of manifold and channel and the increase of the power of single cell will be the further development for the VRFB stack.

Feng Xing; Huamin Zhang; Xiangkun Ma

2011-01-01T23:59:59.000Z

269

High performance path following for marine vehicles using azimuthing podded propulsion  

E-Print Network [OSTI]

Podded propulsion systems offer greater maneuvering possibilities for marine vehicles than conventional shaft and rudder systems. As the propulsion unit rotates about its vertical axis to a specified azimuth angle, the ...

Greytak, Matthew B. (Matthew Bardeen)

2006-01-01T23:59:59.000Z

270

JOURNAL OF PROPULSION AND POWER Vol. 20, No. 5, SeptemberOctober 2004  

E-Print Network [OSTI]

turbines used in power plants and aircraft and marine propulsion. Another im- portant applicationJOURNAL OF PROPULSION AND POWER Vol. 20, No. 5, September­October 2004 Modeling of Surge in Free

Gravdahl, Jan Tommy

271

FY2003 Progress Report for Automotive Propulsion Materials Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FreedomCAR and Vehicle Technologies FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 CONTENTS 1. INTRODUCTION ........................................................................................................... 1

272

Life cycle considerations in propulsion alternatives for fast vessels  

SciTech Connect (OSTI)

Fast vessels are being built and operated for a large range of passenger-carrying applications. Fast cargo-carrying vessels are being considered in a variety of sizes as well. A major decision in design and construction of these vessels is the propulsion system; this decision has major impacts on the operation economics as well as the operational capabilities of the vessels. Factors involved in consideration of propulsion alternatives for fast vessels are examined, with emphasis upon the total life cycle operating implications of these factors. A methodology for considering the factors is suggested, and an example is presented with results of the consideration tradeoffs.

Luck, D.L. [General Electric Co., Evendale, OH (United States). GE Marine and Industrial Engines

1996-07-01T23:59:59.000Z

273

Tutorial on nuclear thermal propulsion safety for Mars  

SciTech Connect (OSTI)

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-01-01T23:59:59.000Z

274

Tutorial on nuclear thermal propulsion safety for Mars  

SciTech Connect (OSTI)

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-08-01T23:59:59.000Z

275

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

277

Electrolytes for lithium ion batteries  

SciTech Connect (OSTI)

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

278

Battery system with temperature sensors  

SciTech Connect (OSTI)

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

279

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

280

E-Print Network 3.0 - ab-thermonuclear space propulsion Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermonuclear space propulsion Search Powered by Explorit Topic List Advanced Search Sample search results for: ab-thermonuclear...

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

282

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

283

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

284

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

285

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

286

NO. REV. NO. LSPE THERMAL BATTERY TEST  

E-Print Network [OSTI]

NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

Rathbun, Julie A.

287

Effect of chordwise flexibility and depth of submergence on an oscillating plate underwater propulsion system  

E-Print Network [OSTI]

by fish and some other marine animals. The primary attention was the propulsive characteristics propulsion system by Oleksandr Barannyk B.Sc. in Mathematics and Computer Sciences, Poltava State University underwater propulsion system by Oleksandr Barannyk B.Sc. in Mathematics and Computer Sciences, Poltava State

Victoria, University of

288

Epitaxial Single Crystal Nanostructures for Batteries & PVs ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

289

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

290

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

291

NREL: Energy Storage - Battery Materials Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

292

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

293

Ambient Operation of Li/Air Batteries  

SciTech Connect (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

294

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

295

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

296

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

297

Celgard and Entek - Battery Separator Development  

Broader source: Energy.gov (indexed) [DOE]

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

298

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

299

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

300

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

302

Batteries as they are meant to be seen | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries as they are meant to be seen Batteries as they are meant to be seen The search for long-lasting, inexpensive rechargeable batteries Researchers have developed a way to...

303

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Broader source: Energy.gov [DOE]

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

304

Challenges and Prospects of Lithium–Sulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

305

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network [OSTI]

operation and thermal management of battery modules may alsoneed for careful thermal ment of battery modules. manage~ Atfor precise thermal management of LiAl/FeS battery modules.

Pollard, Richard

2012-01-01T23:59:59.000Z

306

Thermal behavior simulation of Ni/MH battery  

Science Journals Connector (OSTI)

Thermal behavior of overcharged Ni/MH battery is studied with microcalorimeter. The battery is installed in a special device in ... Quantity of heat and heat capacity of the battery charged at different state of ...

DaHe Li; Kai Yang; Shi Chen; Feng Wu

2009-05-01T23:59:59.000Z

307

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network [OSTI]

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

308

State of Detonation Stability Theory and Its Application to Propulsion  

E-Print Network [OSTI]

State of Detonation Stability Theory and Its Application to Propulsion D. Scott Stewart University, Massachusetts 02139 DOI: 10.2514/1.21586 We present an overview of the current state of detonation stability or asymptotic treatments of detonations, including various asymptotic limits that appear in the literature

Kasimov, Aslan

309

Maneuverability and smoke emission constraints in marine diesel propulsion  

Science Journals Connector (OSTI)

A multivariable control scheme is designed that reduces smoke generation on an experimental marine diesel engine equipped with a variable geometry turbocharger. The variable geometry turbocharger allows the improvement of the steady-state ship hydrodynamic and propulsion characteristics and requires coordination with the injected mass fuel to achieve a good transient performance.

Anna Stefanopoulou; Roy Smith

2000-01-01T23:59:59.000Z

310

March 29, 2008 Operating Systems: Main Memory 1 Main Memory  

E-Print Network [OSTI]

March 29, 2008 Operating Systems: Main Memory 1 Main Memory Chapter 8 #12;March 29, 2008 Operating Systems: Main Memory 2 Chapter Outline Background Contiguous Memory Allocation Paging Structure of the Page Table Segmentation #12;March 29, 2008 Operating Systems: Main Memory 3 Objectives To provide

Adam, Salah

311

Efficiency Maine Residential Appliance Program (Maine) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Appliance Program (Maine) Appliance Program (Maine) Efficiency Maine Residential Appliance Program (Maine) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Water Heating Program Info Funding Source Efficiency Maine Start Date 10/01/2012 Expiration Date 06/30/2014 State Maine Program Type State Rebate Program Rebate Amount Ductless Heat Pumps: $500 Heat pump water heaters: $300 Provider Efficiency Maine Efficiency Maine offers rebates for the purchase of Energy Star certified water heaters, and ductless heat pumps. Purchases must be made between September 1, 2013 and June 30, 2014. See the program web site for the mail-in rebate forms and to locate a participating retailer. In addition, in partnership with Maine Libraries, Efficiency Maine has made

312

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

313

Building Technologies Office: Battery Chargers and External Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

314

Department of Energy Will Hold a Batteries and Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

315

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

316

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

317

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

318

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

319

Overview of the Batteries for Advanced Transportation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the...

320

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

322

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

323

Overview and Progress of the Batteries for Advanced Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT)...

324

NREL: Transportation Research - Innovative Way to Test Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Way to Test Batteries Fills a Market Niche A square piece of machinery with a lid that opens upwards NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by...

325

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Broader source: Energy.gov (indexed) [DOE]

R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes 2012 DOE Hydrogen...

326

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

327

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

328

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

329

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2009 DOE...

330

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

331

By losing their shape, material fails batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

By losing their shape, material fails batteries By losing their shape, material fails batteries Too many electrons at the lithiation front in silicon are a problem Molecular...

332

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

333

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

334

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

335

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

336

Reality Check: Cheaper Batteries are GOOD for America's Electric...  

Energy Savers [EERE]

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

337

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

338

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

339

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

340

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Overview and Progress of the Battery Testing, Analysis, and Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

342

Energy Management Strategies for Fast Battery Temperature Rise...  

Broader source: Energy.gov (indexed) [DOE]

Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature...

343

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

344

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

345

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Broader source: Energy.gov (indexed) [DOE]

Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 -...

346

Laboratory study on the behaviour of spent AA household alkaline batteries in incineration  

SciTech Connect (OSTI)

The quantitative evaluation of emissions from incineration is essential when Life Cycle Assessment (LCA) studies consider this process as an end-of-life solution for some wastes. Thus, the objective of this work is to quantify the main gaseous emissions produced when spent AA alkaline batteries are incinerated. With this aim, batteries were kept for 1 h at 1273 K in a refractory steel tube hold in a horizontal electric furnace with temperature control. At one end of the refractory steel tube, a constant air flow input assures the presence of oxygen in the atmosphere and guides the gaseous emissions to a filter system followed by a set of two bubbler flasks having an aqueous solution of 10% (v/v) nitric acid. After each set of experiments, sulphur, chlorides and metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were analyzed in both the solutions obtained from the steel tube washing and from the bubblers. Sulphur, chlorides and metals were quantified, respectively, using barium sulfate gravimetry, the Volhard method and atomic absorption spectrometry (AAS). The emissions of zinc, the most emitted metal, represent about 6.5% of the zinc content in the batteries. Emissions of manganese (whose oxide is the main component of the cathode) and iron (from the cathode collector) are negligible when compared with their amount in AA alkaline batteries. Mercury is the metal with higher volatility in the composition of the batteries and was collected even in the second bubbler flask. The amount of chlorides collected corresponds to about 36% of the chlorine in the battery sleeve that is made from PVC. A considerable part of the HCl formed in PVC plastic sleeve incineration is neutralized with KOH, zinc and manganese oxides and, thus, it is not totally released in the gas. Some of the emissions are predictable through a thermodynamic data analysis at temperatures in the range of 1200-1300 K taking into account the composition of the batteries. This analysis was done for most of potential reactions between components in the batteries as well as between them and the surrounding atmosphere and it reasonably agrees the experimental results. The results obtained show the role of alkaline batteries at the acid gases cleaning process, through the neutralization reactions of some of their components. Therefore, LCA of spent AA alkaline batteries at the municipal solid waste (MSW) incineration process must consider this contribution.

Almeida, Manuel F. [LEPAE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: mfa@fe.up.pt; Xara, Susana M.; Delgado, Julanda; Costa, Carlos A. [LEPAE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)

2009-01-15T23:59:59.000Z

347

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

348

Graphene/Li-ion battery  

Science Journals Connector (OSTI)

Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy spin polarization charge distribution electronic gap surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene doped by one Li atom is spin polarized so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable because it could improve grapheneLi-ion batteries; consequently the most proper graphene anode structure has been proposed.

Narjes Kheirabadi; Azizollah Shafiekhani

2012-01-01T23:59:59.000Z

349

Alloys of clathrate allotropes for rechargeable batteries  

SciTech Connect (OSTI)

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

350

Pioneering battery maker files for bankruptcy  

Science Journals Connector (OSTI)

... Ultimately, the fate of US battery makers will remain tied to that of the electric car itself. And for now, no battery technology can compete cost-wise with the internal ... cost-wise with the internal combustion engine. “The outlook in the near future for electric cars does not look that promising,” says Daniel Scherson, an electrochemist at Case Western ...

Devin Powell

2012-10-24T23:59:59.000Z

351

Battery Stack-on Process Improvement  

E-Print Network [OSTI]

Imagine yourself in a job in which you stack 10,000 batteries onto a conveyor for eight hours. Each battery weighs about 22 pounds. The work is completed in an acidic environment where temperatures can peak in the summer as high as 100 degrees...

Watkins, Robert E.

2011-12-16T23:59:59.000Z

352

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network [OSTI]

, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human (11), and solar cells (12­14). However, the battery, a key component in portable electronics, has

Cui, Yi

353

Energy Storage in Lead-Acid Batteries: The Faraday Way to Sustainability [and Discussion  

Science Journals Connector (OSTI)

15 July 1996 research-article Energy Storage in Lead-Acid Batteries: The Faraday Way...ability to continue supplying itself with the energy that it has grown to need. This energy is derived mainly from fossil fuels and must...

1996-01-01T23:59:59.000Z

354

Thermal study of organic electrolytes with fully charged cathodic materials of lithium-ion batteries  

Science Journals Connector (OSTI)

We systematically investigated thermal effects of organic electrolytes/organic solvents with...0.5CoO2) of Li-ion battery under rupture conditions by using oxygen bomb...3O4, CoO, and LiCoO2 were the main solid p...

Qian Huang; Manming Yan; Zhiyu Jiang

2008-06-01T23:59:59.000Z

355

Argonne Transportation - Lithium Battery Technology Patents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

356

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Towards Safer Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

358

The BATINTREC process for reclaiming used batteries  

SciTech Connect (OSTI)

The Integrated Battery Recycling (BATINTREC) process is an innovative technology for the recycling of used batteries and electronic waste, which combines vacuum metallurgical reprocessing and a ferrite synthesis process. Vacuum metallurgical reprocessing can be used to reclaim the mercury (Hg) in the dry batteries and the cadmium (Cd) in the Ni-Cd batteries. The ferrite synthesis process reclaims the other heavy metals by synthesizing ferrite in a liquid phase. Mixtures of manganese oxide and carbon black are also produced in the ferrite synthesis process. The effluent from the process is recycled, thus significantly minimizing its discharge. The heavy metal contents of the effluent could meet the Integrated Wastewater Discharge Standard of China if the ratio of the crushed battery scrap and powder to FeSO{sub 4}{center_dot}7H{sub 2}O is set at 1:6. This process could not only stabilize the heavy metals, but also recover useful resource from the waste.

Xia Yueqing; Li Guojian

2004-07-01T23:59:59.000Z

359

Multi-cell storage battery  

DOE Patents [OSTI]

A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

2000-01-01T23:59:59.000Z

360

Enabling Green Energy and Propulsion Systems via Direct Noise Computation |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-fidelity simulation of exhaust nozzle under installed configuration High-fidelity simulation of exhaust nozzle under installed configuration Umesh Paliath, GE Global Research; Joe Insley, Argonne National Laboratory Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research Allocation Program: INCITE Allocation Hours at ALCF: 105 Million Year: 2013 Research Domain: Engineering GE Global Research is using the Argonne Leadership Computing Facility (ALCF) to deliver significant improvements in efficiency, (renewable's) yield and lower emissions (noise) for advanced energy and propulsion systems. Understanding the fundamental physics of turbulent mixing has the potential to transform product design for components such as airfoils and

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The device concept is a converter of the vertical potential energy moving wave to push the boat on horizontal kinetic motion Optimum Marine/Riverline Conditions The device is compliant for boat navigating on sea and oceans or lakes when water levels are changing cyclicly waves Technology Dimensions Device Testing Date Submitted 18:32.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Wave_Energy_Propulsion&oldid=681483"

362

Learning Policies For Battery Usage Optimization in Electric Vehicles  

E-Print Network [OSTI]

algorithmic chal- lenge. 1 Introduction Electric vehicles, partially or fully powered by batteries, are oneLearning Policies For Battery Usage Optimization in Electric Vehicles Stefano Ermon, Yexiang Xue for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery

Bejerano, Gill

363

Understanding human-battery interaction on mobile phones  

Science Journals Connector (OSTI)

Mobile phone users have to deal with limited battery lifetime through a reciprocal process we call human-battery interaction (HBI). We conducted three user studies in order to understand HBI and discover the problems in existing mobile phone designs. ... Keywords: batteries, human-battery interaction, mobile phones, power management

Ahmad Rahmati; Angela Qian; Lin Zhong

2007-09-01T23:59:59.000Z

364

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

365

Aqueous Cathode for Next-Generation Alkali-Ion Batteries  

Science Journals Connector (OSTI)

The aqueous cathode in the flow-through mode can be individually stored in a “fuel” tank, which reduces the volume of the battery and increases the design flexibility of the battery structure, as shown in Figure 1. ... Unlike previous lithium?water batteries, the aqueous cathode is not plagued by H2 evolution from the solution, and the battery is efficiently rechargeable. ...

Yuhao Lu; John B. Goodenough; Youngsik Kim

2011-03-28T23:59:59.000Z

366

BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV  

E-Print Network [OSTI]

­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been for the broadband monitoring of a battery. Keywords-- battery impedance, spectroscopy, broadband signals, Li-ion system of EV and HEV. Li-ion battery technology is believed to be the most attractive

Paris-Sud XI, Université de

367

Scoping calculations of power sources for nuclear electric propulsion  

SciTech Connect (OSTI)

This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1994-05-01T23:59:59.000Z

368

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

369

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

370

Performance and Controllability of Pulsed Ion Beam Ablation Propulsion  

SciTech Connect (OSTI)

We propose novel propulsion driven by ablation plasma pressures produced by the irradiation of pulsed ion beams onto a propellant. The ion beam ablation propulsion demonstrates by a thin foil (50 {mu}mt), and the flyer velocity of 7.7 km/s at the ion beam energy density of 2 kJ/cm2 adopted by using the Time-of-flight method is observed numerically and experimentally. We estimate the performance of the ion beam ablation propulsion as specific impulse of 3600 s and impulse bit density of 1700 Ns/m2 obtained from the demonstration results. In the numerical analysis, a one-dimensional hydrodynamic model with ion beam energy depositions is used. The control of the ion beam kinetic energy is only improvement of the performance but also propellant consumption. The spacecraft driven by the ion beam ablation provides high performance efficiency with short-pulsed ion beam irradiation. The numerical results of the advanced model explained latent heat and real gas equation of state agreed well with experimental ones over a wide range of the incident ion beam energy density.

Yazawa, Masaru; Buttapeng, Chainarong; Harada, Nobuhiro [Nagaoka University of Technology, Department of Electrical Engineering, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi [Nagaoka University of Technology, Extreme Energy-Density Research Institute, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

2006-05-02T23:59:59.000Z

371

Argonne TTRDC - Publications - Transforum 10.2 - Battery Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Battery Facilities Will Help Accelerate Commercialization of Technologies New Battery Facilities Will Help Accelerate Commercialization of Technologies Gang Cheng tests batteries At existing Argonne battery testing labs, researcher Gang Cheng conducts an experiment to detect moisture in battery electrolytes. Moisture is detrimental to the performance and longevity of battery cells. Argonne will soon have three new battery facilities to bolster its research and development of battery materials and batteries for hybrid electric vehicles, plug-in hybrid electric vehicles and all other electric vehicles. The Lab was recently awarded $8.8 million in American Recovery and Reinvestment Act (ARRA) funding to build a Battery Prototype Cell Fabrication Facility, a Materials Production Scale-Up Facility and a Post-Test Analysis Facility.

372

Argonne TTRDC - APRF - Research Activities - Ultracapacitors with Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Combination of Ultracapacitors with Batteries for PHEVs Active Combination of Ultracapacitors with Batteries for PHEVs Ultracapacitors Ultracapacitors will dramatically boost the power of lithium-ion batteries, enabling plug-in vehicles to travel much further on a single charge. Lithium-ion battery The newest generation of lithium-ion battery (foreground) has an energy density three times that of the batteries in today's electric cars (background). Argonne researchers are investigating the benefits of combining ultracapacitors with lithium-ion batteries. This combination can dramatically boost the power of lithium-ion batteries, offering a potential solution to the battery-related challenges facing electric vehicles. This technology can: Exponentially increase the calendar and cycle lifetimes of lithium-ion batteries

373

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

374

Evolution of Strategies for Modern Rechargeable Batteries  

Science Journals Connector (OSTI)

(3) Electrochemical Energy Storage and Conversion: Interrupted by the first energy crisis and a move to the University of Oxford, England, he has used his experience with oxides to develop electrodes and solid electrolytes for rechargeable batteries and for the solid oxide fuel cell. ... The sodium–sulfur battery has also opened the door to consideration of other high-temperature battery configurations, viz. a gaseous fuel-cell/electrolysis-cell cycle via an Fe/FeOx oxidation/reduction, based on the solid-oxide fuel-cell technology. ... composites constitute flowable semi-solid fuels that are here charged and discharged in prototype flow cells. ...

John B. Goodenough

2012-07-02T23:59:59.000Z

375

Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

Malikopoulos, Andreas [ORNL

2014-01-01T23:59:59.000Z

376

Role of Recycling in the Life Cycle of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES ROLE OF RECYCLING IN THE LIFE CYCLE OF BATTERIES J.L. Sullivan, L. Gaines, and A. Burnham Argonne National Laboratory, Energy Systems Division Keywords: battery, materials, recycling, energy Abstract Over the last few decades, rechargeable battery production has increased substantially. Applications including phones, computers, power tools, power storage, and electric-drive vehicles are either commonplace or will be in the next decade or so. Because advanced rechargeable batteries, like those

377

EV Everywhere Batteries Workshop- Next Generation Lithium Ion Batteries Breakout Session Report  

Broader source: Energy.gov [DOE]

Breakout session presentation for the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

378

Development of Lithium?ion Battery as Energy Storage for Mobile Power Sources Applications  

Science Journals Connector (OSTI)

In view of the need to protect the global environment and save energy there has been strong demand for the development of lithium?ion battery technology as a energy storage system especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium?ion battery development is toward the high power and energy density cheaper in price and high safety standard. In our laboratory the research and development of lithium?ion battery technology was mainly focus to develop high power density performance of cathode material which is focusing to the Li?metal?oxide system LiMO 2 where M=Co Ni Mn and its combination. The nano particle size material which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition we also developed variety of sizes of lithium?ion battery prototype including (i) small size for electronic gadgets such as mobile phone and PDA applications (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC SIRIM Berhad will be discussed in this paper.

Mohd Ali Sulaiman; Hasimah Hasan

2009-01-01T23:59:59.000Z

379

Novel thermal management system design methodology for power lithium-ion battery  

Science Journals Connector (OSTI)

Abstract Battery packs conformed by large format lithium-ion cells are increasingly being adopted in hybrid and pure electric vehicles in order to use the energy more efficiently and for a better environmental performance. Safety and cycle life are two of the main concerns regarding this technology, which are closely related to the cell's operating behavior and temperature asymmetries in the system. Therefore, the temperature of the cells in battery packs needs to be controlled by thermal management systems (TMSs). In the present paper an improved design methodology for developing \\{TMSs\\} is proposed. This methodology involves the development of different mathematical models for heat generation, transmission, and dissipation and their coupling and integration in the battery pack product design methodology in order to improve the overall safety and performance. The methodology is validated by comparing simulation results with laboratory measurements on a single module of the battery pack designed at IK4-IKERLAN for a traction application. The maximum difference between model predictions and experimental temperature data is 2 °C. The models developed have shown potential for use in battery thermal management studies for EV/HEV applications since they allow for scalability with accuracy and reasonable simulation time.

Nerea Nieto; Luis Díaz; Jon Gastelurrutia; Francisco Blanco; Juan Carlos Ramos; Alejandro Rivas

2014-01-01T23:59:59.000Z

380

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

382

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

383

Maine | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

384

AEA Battery Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

AEA Battery Systems Ltd AEA Battery Systems Ltd Jump to: navigation, search Name AEA Battery Systems Ltd Place Caithness, United Kingdom Zip KW14 7XW Product Designs, manufactures and supplies specialist lithium-ion high performance cells and batteries. Coordinates 36.482929°, -94.323563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.482929,"lon":-94.323563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Coda Battery Systems | Open Energy Information  

Open Energy Info (EERE)

Coda Battery Systems Coda Battery Systems Jump to: navigation, search Name Coda Battery Systems Place Enfield, Connecticut Sector Vehicles Product Connecticut-based joint venture producing lithium-ion batteries for electric vehicles. Coordinates 36.181032°, -77.662805° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.181032,"lon":-77.662805,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Recycling of Li-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Linda Gaines Center for Transportation Research Argonne National Laboratory Recycling of Li-Ion Batteries Illinois Sustainable Technology Center University of Illinois We don't want to trade one crisis for another!  Battery material shortages are unlikely - We demonstrated that lithium demand can be met - Recycling mitigates potential scarcity  Life-cycle analysis checks for unforeseen impacts  We need to find something to do with the used materials - Safe - Economical 2 We answer these questions to address material supply issues  How many electric-drive vehicles will be sold in the US and world-wide?  What kind of batteries might they use? - How much lithium would each battery use?  How much lithium would be needed each year?

387

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

From corrosion to batteries: Electrochemical interface studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

389

Design of a thermophotovoltaic battery substitute  

Science Journals Connector (OSTI)

Many military platforms that currently use the BA-5590 primary battery or the BB-390A/U rechargeable battery are limited in performance by low storage capacity and long recharge times. Thermo Power Corporation with team members JX Crystals and Essential Research Inc. is developing an advanced thermophotovoltaic (TPV) battery substitute that will provide higher storage capacity lower weight and instantaneous recharging (by refueling). The TPV battery substitute incorporates several advanced design features including: an evacuated and sealed enclosure for the emitter and PV cells to minimize unwanted convection heat transfer from the emitter to PV cells; selective tungsten emitter with a well matched gallium antimonide PV cell receiver; optical filter to recycle nonconvertible radiant energy; and a silicon carbide thermal recuperator to recover thermal energy from exhaust gases.

Edward F. Doyle; Frederick E. Becker; Kailash C. Shukla; Lewis M. Fraas

1999-01-01T23:59:59.000Z

390

Studies On Advanced Lead-Acid Batteries.  

E-Print Network [OSTI]

??Subsequent to the studies on precursor lead-acid systems by Daniel, Grove and Sindesten, practical lead-acid batteries began with the research and inventions of Raymond Gaston… (more)

Martha, Surendra Kumar

2005-01-01T23:59:59.000Z

391

Sulphur back in vogue for batteries  

Science Journals Connector (OSTI)

... densities and relative safety are more important than the thousands of charge cycles a commercial electric car requires. Researchers do not expect to see a commercial lithium–sulphur battery before the ...

Richard Van Noorden

2013-06-26T23:59:59.000Z

392

Vehicle Technologies Office: Applied Battery Research  

Broader source: Energy.gov [DOE]

Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric...

393

Memorandum to DOE re Battery Chargers  

Broader source: Energy.gov [DOE]

We are following up on our meeting with DOE on August 7, 2014.  During the meeting, several topics were identified as warranting further investigation as related to battery chargers,  including...

394

Membrane-less hydrogen bromine flow battery  

E-Print Network [OSTI]

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

395

NREL: Energy Storage - Isothermal Battery Calorimeters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

100 Maximum Constant Heat Generation (W) 50 150 4,000 Working with Industry to Fine-Tune Energy Storage Designs The IBCs' capabilities make it possible for battery developers to...

396

A monolithically integrated thermo-adsorptive battery .  

E-Print Network [OSTI]

??A rechargeable thermal battery based on advanced zeolite or metal-organic framework water adsorbents promises extremely high capacity for both cooling (>800 kJ/L) and heating (>1150… (more)

McKay, Ian Salmon

2014-01-01T23:59:59.000Z

397

How Advanced Batteries Are Energizing the Economy  

Broader source: Energy.gov [DOE]

Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

398

Intercalation dynamics in lithium-ion batteries  

E-Print Network [OSTI]

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

399

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

400

USABC Battery Separator Development | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. es007smith2010o.pdf More Documents & Publications USABC Battery Separator Development Celgard...

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Washington: Battery Manufacturer Brings Material Production Home...  

Office of Environmental Management (EM)

Recovery and Reinvestment Act (ARRA) funds from EERE, built a new plant to produce nano-engineered carbon materials for batteries and other energy storage devices that can be...

402

Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles  

DOE Patents [OSTI]

This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

Rote, D.M.; He, Jianliang; Johnson, L.R.

1992-01-01T23:59:59.000Z

403

High-discharge-rate lithium ion battery  

DOE Patents [OSTI]

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

404

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

405

E-Print Network 3.0 - advanced space propulsion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: for space drilling. The Jet Propulsion Laboratory's (JPL) ultrasonicsonic drillercorer (USDC... 1 Design and Modeling of the NU Smart Space Drilling System (SSDS)...

406

Preliminary finite element modeling of a piezoelectric actuated marine propulsion fin.  

E-Print Network [OSTI]

??New technologies surrounding composite materials and autonomous underwater vehicle (AUV) design have led to numerous studies involving the marine propulsion for these AUVs. AUVs traditionally… (more)

Streett, Andrew

2006-01-01T23:59:59.000Z

407

Preliminary Finite Element Modeling of a Piezoelectric Actuated Marine Propulsion Fin.  

E-Print Network [OSTI]

?? New technologies surrounding composite materials and autonomous underwater vehicle (AUV) design have led to numerous studies involving the marine propulsion for these AUVs. AUVs… (more)

Streett, Andrew R.

2006-01-01T23:59:59.000Z

408

High Fidelity Radiative Thermal Transport Simulations of a Scramjet Propulsion System.  

E-Print Network [OSTI]

??Scramjets are a type of air breathing propulsion system that have the potential to efficiently provide thrust for atmospheric vehicles at high speeds. Defining the… (more)

Irvine, Adam Glenn

2013-01-01T23:59:59.000Z

409

E-Print Network 3.0 - advanced embedded propulsion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;EPA Sensor... inserts 72 layer drift tube created72 layer drift tube created 12;MicroMicro--Propulsion ... Source: Boise State University, Center for...

410

Gas Main Sensor and Communications Network System  

SciTech Connect (OSTI)

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the Northeast Gas Association (NGA), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. This projected was completed in April 2006, and culminated in the installation of more than 2 dozen GasNet nodes in both low- and high-pressure cast-iron and steel mains owned by multiple utilities in the northeastern US. Utilities are currently logging data (off-line) and monitoring data in real time from single and multiple networked sensors over cellular networks and collecting data using wireless bluetooth PDA systems. The system was designed to be modular, using in-pipe sensor-wands capable of measuring, flow, pressure, temperature, water-content and vibration. Internal antennae allowed for the use of the pipe-internals as a waveguide for setting up a sensor network to collect data from multiple nodes simultaneously. Sensor nodes were designed to be installed with low- and no-blow techniques and tools. Using a multi-drop bus technique with a custom protocol, all electronics were designed to be buriable and allow for on-board data-collection (SD-card), wireless relaying and cellular network forwarding. Installation options afforded by the design included direct-burial and external polemounted variants. Power was provided by one or more batteries, direct AC-power (Class I Div.2) and solar-array. The utilities are currently in a data-collection phase and intend to use the collected (and processed) data to make capital improvement decisions, compare it to Stoner model predictions and evaluate the use of such a system for future expansion, technology-improvement and commercialization starting later in 2006.

Hagen Schempf

2006-05-31T23:59:59.000Z

411

GAS MAIN SENSOR AND COMMUNICATIONS NETWORK SYSTEM  

SciTech Connect (OSTI)

Automatika, Inc. was contracted by the Department of Energy (DOE) and with co-funding from the New York Gas Group (NYGAS), to develop an in-pipe natural gas prototype measurement and wireless communications system for assessing and monitoring distribution networks. In Phase II of this three-phase program, an improved prototype system was built for low-pressure cast-iron and high-pressure steel (including a no-blow installation system) mains and tested in a serial-network configuration in a live network in Long Island with the support of Keyspan Energy, Inc. The experiment was carried out in several open-hole excavations over a multi-day period. The prototype units (3 total) combined sensors capable of monitoring pressure, flow, humidity, temperature and vibration, which were sampled and combined in data-packages in an in-pipe master-repeater-slave configuration in serial or ladder-network arrangements. It was verified that the system was capable of performing all data-sampling, data-storage and collection as expected, yielding interesting results as to flow-dynamics and vibration-detection. Wireless in-pipe communications were shown to be feasible and the system was demonstrated to run off in-ground battery- and above-ground solar power. The remote datalogger access and storage-card features were demonstrated and used to log and post-process system data. Real-time data-display on an updated Phase-I GUI was used for in-field demonstration and troubleshooting.

Hagen Schempf

2004-09-30T23:59:59.000Z

412

Microsoft Word - maine.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

413

Microsoft Word - maine.doc  

Gasoline and Diesel Fuel Update (EIA)

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

414

Main Injector power distribution system  

SciTech Connect (OSTI)

The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

Cezary Jach and Daniel Wolff

2002-06-03T23:59:59.000Z

415

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

416

Alternative Fuels Data Center: Battery Manufacturing Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Battery Manufacturing Battery Manufacturing Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Google Bookmark Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Delicious Rank Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Battery Manufacturing Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Battery Manufacturing Tax Incentives For taxation purposes, the taxable fair market value of manufacturing

417

Investigation of propulsion system for large LNG ships  

Science Journals Connector (OSTI)

Requirements to move away from coal for power generation has made LNG as the most sought after fuel source, raising steep demands on its supply and production. Added to this scenario is the gradual depletion of the offshore oil and gas fields which is pushing future explorations and production activities far away into the hostile environment of deep sea. Production of gas in such environment has great technical and commercial impacts on gas business. For instance, laying gas pipes from deep sea to distant receiving terminals will be technically and economically challenging. Alternative to laying gas pipes will require installing re-liquefaction unit on board FPSOs to convert gas into liquid for transportation by sea. But, then because of increased distance between gas source and receiving terminals the current medium size LNG ships will no longer remain economical to operate. Recognizing this business scenario shipowners are making huge investments in the acquisition of large LNG ships. As power need of large LNG ships is very different from the current small ones, a variety of propulsion derivatives such as UST, DFDE, 2-Stroke DRL and Combined cycle GT have been proposed by leading engine manufacturers. Since, propulsion system constitutes major element of the ship's capital and life cycle cost, which of these options is most suited for large LNG ships is currently a major concern of the shipping industry and must be thoroughly assessed. In this paper the authors investigate relative merits of these propulsion options against the benchmark performance criteria of BOG disposal, fuel consumption, gas emissions, plant availability and overall life cycle cost.

R P Sinha; Wan Mohd Norsani Wan Nik

2012-01-01T23:59:59.000Z

418

High power density propulsion/power system for underwater applications  

SciTech Connect (OSTI)

This patent describes a drive system for an underwater vehicle utilizing open Rankine thermodynamic cycle system having water as working fluid; steam generation means for receiving the working fluid and converting the working fluid to steam; an energy converter adapted to receive the steam and drive a propulsion means; a mixing condenser adapted to receive the steam exits the energy converter and condense the steam to a liquid; means for introducing water into the mixing condensers from a source external to the Rankine cycle, the water mixing with the working fluid to form mixed work fluid.

Blau, A.

1992-06-02T23:59:59.000Z

419

Propulsion and service power for New Orleans sternwheelers  

SciTech Connect (OSTI)

The spurt in designing and building casino and show boats for the U. S. inland waterways over the last few years opened up an opportunity for naval architects and marine engineers to work with a variety of imaginative boats. For example, on the newly built Grand Palais and Crescent City Queen, six 1200 r/min generator sets based on Caterpillar 3516TA engines and 1090 kW, 600-V Kato generators provide power to operate paddlewheels, Z-drives, and a complex of equipment. This paper describes the design, layout and electrical equipment and propulsion of the ships.

Clevenger, M.

1995-11-01T23:59:59.000Z

420

The Use of Steady and Pulsed Detonations for Propulsion Systems  

SciTech Connect (OSTI)

Objectives of the ODWE concept studies are: demonstrate the feasibility of the oblique detonation wave engine (ODWE) for hypersonic propulsion; demonstrate the existance and stability of an oblique detonation wave in hypersonic wind tunnels; develop engineering codes which predict the performance characteristics of the ODWE including specific impulse and thrust coefficients for various operating conditions; develop multi-dimensional computer codes which can model all aspects of the ODWE including fuel injection, mixing, ignition, combustion and expansion with fully detailed chemical kinetics and turbulence models; and validate the codes with experimental data use the simulations to predict the ODWE performance for conditions not easily obtained in wind tunnels.

Adelman, H.G.; Menees, G.P.; Cambier, J.L.; Bowles, J.V.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION  

SciTech Connect (OSTI)

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

R. C. O'Brien; S. D. Howe; J. E. Werner

2010-09-01T23:59:59.000Z

422

Making Li-air batteries rechargeable: material challenges  

SciTech Connect (OSTI)

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

423

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

of gel electrolyte based solid-state battery chemistry alsoproject, a solid-state rechargeable battery was developedsolid-state batteries, as discussed in this dissertation, has the potential to disrupt the current battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

424

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

425

Maine - SEP | Department of Energy  

Energy Savers [EERE]

by Building on Past Success Maine's aging multifamily housing stock can be expensive to heat and costly to maintain. It is not unusual to find buildings with little or no...

426

Recovery Act State Memos Maine  

Broader source: Energy.gov (indexed) [DOE]

Maine Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

427

Li?Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts  

Science Journals Connector (OSTI)

Li?Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts ... Aqueous Rechargeable Li and Na Ion Batteries ...

Eunjoo Yoo; Haoshen Zhou

2011-03-25T23:59:59.000Z

428

Fault detection and diagnosis of a gearbox in marine propulsion systems using bispectrum analysis and artificial neural networks  

Science Journals Connector (OSTI)

A marine propulsion system is a very complicated system composed ... to the impact of the other components in marine propulsion systems. To monitor the gear conditions, ... fault features of the vibrant signal of...

Zhixiong Li; Xinping Yan; Chengqing Yuan…

2011-03-01T23:59:59.000Z

429

2011 International Workshop on Detonation for Propulsion November 14-15, 2011  

E-Print Network [OSTI]

2011 International Workshop on Detonation for Propulsion November 14-15, 2011 Paradise Hotel, Busan, Korea Summary of Recent Research on Detonation Wave Engines at UTA Donald R. Wilson,* Frank K. Lu on detonation waves related to propulsion is presented in this paper. A brief historical review of the early

Texas at Arlington, University of

430

Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish  

E-Print Network [OSTI]

Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish Kyu and fabrica- tion of a centimeter-scale propulsion system for a robotic fish. The key to the design are customized to provide the necessary work output for the microrobotic fish. The flexure joints, electrical

Wood, Robert

431

The 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 15, 2011  

E-Print Network [OSTI]

The 32nd International Electric Propulsion Conference, Wiesbaden, Germany September 11 ­ 15, 2011 1 Electric Propulsion Conference, Wiesbaden · Germany September 11 ­ 15, 2011 K. Matyash1 , Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, D-17491, Germany R. Schneider2 , Greifswald

432

Design and Control of the Induction Motor Propulsion of an Electric Vehicle  

E-Print Network [OSTI]

Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

Brest, Université de

433

An Exoskeleton Using Controlled Energy Storage and Release to Aid Ankle Propulsion  

E-Print Network [OSTI]

An Exoskeleton Using Controlled Energy Storage and Release to Aid Ankle Propulsion M. Bruce Wiggin Mellon University Pittsburgh, PA, USA Abstract -- Symmetric ankle propulsion is the cornerstone of efficient human walking. The ankle plantar flexors provide the majority of the mechanical work for the step

Collins, Steven H.

434

ASPECTS OF SENSORY CUES AND PROPULSION IN MARINE ZOOPLANKTON HYDRODYNAMIC DISTURBANCES  

E-Print Network [OSTI]

ASPECTS OF SENSORY CUES AND PROPULSION IN MARINE ZOOPLANKTON HYDRODYNAMIC DISTURBANCES A Thesis Institute of Technology December 2009 #12;ASPECTS OF SENSORY CUES AND PROPULSION IN MARINE ZOOPLANKTON Peterson and his colleagues at the Hatfield Marine Station for collection and care of the Euphausia

435

RESEARCH TRAINING GROUP GRK 1095/1: "AERO-THERMODYNAMIC DESIGN OF A SCRAMJET PROPULSION SYSTEM"  

E-Print Network [OSTI]

RESEARCH TRAINING GROUP GRK 1095/1: "AERO-THERMODYNAMIC DESIGN OF A SCRAMJET PROPULSION SYSTEM" U conception. In this context only the use of a scramjet-propulsion system meets all the aerodynamic it must be mentioned that scramjet-technologies are one of the key technologies for hypersonic flight

436

American Institute of Aeronautics and Astronautics Electrolysis Propulsion for CubeSat-Scale Spacecraft  

E-Print Network [OSTI]

is becoming clear. A water-electrolysis propulsion system for 3U CubeSats is proposed that could fill the gapAmerican Institute of Aeronautics and Astronautics 1 Electrolysis Propulsion for Cube as electrolyte. With over 1 km/s of V from 1 kg of water as propellant, sample missions include compensating

Peck, Mason A.

437

Hydrodynamic Efficiency of Ablation Propulsion with Pulsed Ion Beam  

SciTech Connect (OSTI)

This paper presents the hydrodynamic efficiency of ablation plasma produced by pulsed ion beam on the basis of the ion beam-target interaction. We used a one-dimensional hydrodynamic fluid compressible to study the physics involved namely an ablation acceleration behavior and analyzed it as a rocketlike model in order to investigate its hydrodynamic variables for propulsion applications. These variables were estimated by the concept of ablation driven implosion in terms of ablated mass fraction, implosion efficiency, and hydrodynamic energy conversion. Herein, the energy conversion efficiency of 17.5% was achieved. In addition, the results show maximum energy efficiency of the ablation process (ablation efficiency) of 67% meaning the efficiency with which pulsed ion beam energy-ablation plasma conversion. The effects of ion beam energy deposition depth to hydrodynamic efficiency were briefly discussed. Further, an evaluation of propulsive force with high specific impulse of 4000s, total impulse of 34mN and momentum to energy ratio in the range of {mu}N/W was also analyzed.

Buttapeng, Chainarong; Yazawa, Masaru; Harada, Nobuhiro [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka 940-2188 (Japan); Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi [Extreme Energy-Density Research Institute, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka 940-2188 (Japan)

2006-05-02T23:59:59.000Z

438

Air spring vibration isolation technology for ship propulsion engine  

Science Journals Connector (OSTI)

Propulsion engine (PE) is one of the most dominant noise sources of ship. Due to the imposed requirement of keeping alignment with propulsion shaft during operation the effective vibration isolation of PE using low frequency mount is difficult to implement as is often adopted by other onboard machinery. In this paper a low frequency air spring vibration isolation system (ASVIS) with alignment control strategy for PE is conceived and introduced. The application of ASVIS to PE presents both advantages and challenges which are discussed detailedly in the paper as well as the feasibility of the ASVIS concept. A systematic design method of ASVIS for PE is established with focus on the system mechanical behavior optimization and automatic alignment control algorithm development. An ASVIS prototype is designed and manufactured using the proposed method. The performance of the prototype is tested by a series of experiments including alignment control precision and isolation efficiency. Experimental results show that using ASVIS the vibration of PE can be attenuated to a satisfactory level with the alignment between PE and shaft being maintained in the safe range.

He Lin; Xu Wei; Shuai Changgeng

2012-01-01T23:59:59.000Z

439

NREL: Continuum Magazine - Electric Vehicle Battery Development Gains  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Battery Development Gains Momentum Electric Vehicle Battery Development Gains Momentum Issue 5 Print Version Share this resource Electric Vehicle Battery Development Gains Momentum CAEBAT collaboration targets EDV batteries with longer range and lifespan, at a lower cost. A photo of two men silhouetted in front of six back-lit display screens showing battery models, located in a dark room (22008). Enlarge image NREL's modeling, simulation, and testing activities include battery safety assessment, next-generation battery technologies, material synthesis and research, subsystem analysis, and battery second use studies. Photo by Dennis Schroeder, NREL "When people get behind the wheel of an electric car, it should be a great driving experience. Period." Dr. Taeyoung Han, GM technical fellow, said,

440

Ultralife Corporation formerly Ultralife Batteries Inc | Open Energy  

Open Energy Info (EERE)

Corporation formerly Ultralife Batteries Inc Corporation formerly Ultralife Batteries Inc Jump to: navigation, search Name Ultralife Corporation (formerly Ultralife Batteries Inc.) Place Newark, New Jersey Zip NY 14513 Product New Jersey-based developer and manufacturer of standard and customised lithium primary, lithium ion and lithium polymer rechargeable batteries. References Ultralife Corporation (formerly Ultralife Batteries Inc.)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ultralife Corporation (formerly Ultralife Batteries Inc.) is a company located in Newark, New Jersey . References ↑ "Ultralife Corporation (formerly Ultralife Batteries Inc.)" Retrieved from "http://en.openei.org/w/index.php?title=Ultralife_Corporation_formerly_Ultralife_Batteries_Inc&oldid=352474"

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

BatPRO: Battery Manufacturing Cost Estimation | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BatPRO: Battery Manufacturing Cost Estimation BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO models a stiff prismatic pouch-type...

442

Design and fabrication of evaporators for thermo-adsorptive batteries  

E-Print Network [OSTI]

Current heating and cooling within electric vehicles places a significant demand on the battery, greatly reducing their potential driving range. An Advanced Thermo- Adsorptive Battery (ATB) reduces this load by storing ...

Farnham, Taylor A

2014-01-01T23:59:59.000Z

443

High Voltage Electrolytes for Li-ion Batteries | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

444

Shida Battery Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co, Ltd Place: China Product: Shida is a China-based maker of NiMH and Li-Poly batteries with applications that include e-bikes. References: Shida Battery Technology Co,...

445

Zhuhai Hange Battery Tech Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tech Co, Ltd Place: China Product: ZhuHai City - based maker of Lithium Polymer batteries. References: Zhuhai Hange Battery Tech Co, Ltd1 This article is a stub. You can...

446

NREL/CCSE PEV Battery Second Use Project (Presentation)  

SciTech Connect (OSTI)

This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

Neubauer, J.; Pesaran, A.

2011-09-01T23:59:59.000Z

447

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

448

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes  

E-Print Network [OSTI]

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes Huigang Zhang Supporting Information ABSTRACT: Silicon-based lithium ion battery anodes are attracting significant during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix

Braun, Paul

449

Meeting regarding DOE Energy Conservations Standards for Battery  

Broader source: Energy.gov [DOE]

Discussion points presented relating to the U.S. Department of Energy (DOE) Energy Conservation Standards for Battery Chargers.  The DOE battery charger efficiency regulations cover only consumer...

450

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

451

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network [OSTI]

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

452

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

453

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Abuse Testing of High Power Batteries Abuse Testing of High Power Batteries Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25,...

454

Graphene-Based Composite Anodes for Lithium-Ion Batteries  

Science Journals Connector (OSTI)

Graphene has emerged as a novel, highly promising ... . As an anode material for lithium-ion batteries, it was shown that it cannot be ... cycling that leads to the failure of the batteries. To resolve this probl...

Nathalie Lavoie; Fabrice M. Courtel…

2013-01-01T23:59:59.000Z

455

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

456

Efficient Lithium-Ion Battery Pack Electro-Thermal Simulation  

Science Journals Connector (OSTI)

A methodology to derive a computational efficient electro-thermal battery pack model is showed. It is taken ... up of three orders of magnitude for the thermal part. The electrical battery model is implemented an...

L. Kostetzer

2014-01-01T23:59:59.000Z

457

Determining the environmental and thermal characteristics of coke oven batteries  

Science Journals Connector (OSTI)

A method is proposed for assessing the environmental and thermal characteristics of coke oven batteries and is tested for coke oven batteries 1 and 5 at OAO Zaporozhkoks. On ... the basis of data for the environm...

E. I. Toryanik; A. L. Borisenko; A. S. Malysh; A. A. Lobov…

2009-12-01T23:59:59.000Z

458

Thermophysical Properties of Lithium Alloys for Thermal Batteries  

Science Journals Connector (OSTI)

Thermal batteries are electrochemical systems primarily used in defense ... . The current state-of-the art for thermal batteries relies upon the Li/FeS2...couple for power generation with the anode typically an L...

Geoffrey A. Swift

2011-10-01T23:59:59.000Z

459

Thermal runaway of valve-regulated lead-acid batteries  

Science Journals Connector (OSTI)

Valve-regulated lead-acid (VRLA) batteries that have aged on a float charge at constant voltage occasionally suffer from thermal runaway. Operating conditions for a VRLA battery have been simulated by changing th...

Junmei Hu; Yonglang Guo; Xuechou Zhou

2006-10-01T23:59:59.000Z

460

Thermal Behavior and Modeling of Lithium-Ion Cuboid Battery  

Science Journals Connector (OSTI)

Thermal behaviour and model are important items should be considered when designing a battery pack cooling system. Lithium-ion battery thermal behaviour and modelling method are investigated in this paper. The te...

Hongjie Wu; Shifei Yuan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Rechargeable lithium battery energy storage systems for vehicular applications.  

E-Print Network [OSTI]

??Batteries are used on-board vehicles for broadly two applications – starting-lighting-ignition (SLI) and vehicle traction. This thesis examines the suitability of the rechargeable lithium battery… (more)

HURIA, TARUN

2012-01-01T23:59:59.000Z

462

Modeling the operating voltage of liquid metal battery cells  

E-Print Network [OSTI]

A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

Newhouse, Jocelyn Marie

2014-01-01T23:59:59.000Z

463

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

A new cathode material for batteries of high energy density.high-energy cathode for rechargeable lithium batteries. Advanced Materialsmaterials are promising cathodes, as they can provide high power and high energy,

Zhu, Jianxin

2014-01-01T23:59:59.000Z

464

Microfabricated thin-film batteries : technology and potential applications  

E-Print Network [OSTI]

High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

Greiner, Julia

2006-01-01T23:59:59.000Z

465

Water and Gold: A Promising Mix for Future Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

466

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

467

Overview of Battery R&D Activities | Department of Energy  

Energy Savers [EERE]

of Battery R&D Activities Overview of Battery R&D Activities 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

468

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

469

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

470

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

471

Battery Park Industries Inc formerly Moltech Power Systems Inc | Open  

Open Energy Info (EERE)

Battery Park Industries Inc formerly Moltech Power Systems Inc Battery Park Industries Inc formerly Moltech Power Systems Inc Jump to: navigation, search Name Battery Park Industries Inc (formerly Moltech Power Systems, Inc) Place Gainesville, Florida Product Bundled rechargeable battery manufacturing assets of Moltech Power Systems, following that company's bankruptcy. References Battery Park Industries Inc (formerly Moltech Power Systems, Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Battery Park Industries Inc (formerly Moltech Power Systems, Inc) is a company located in Gainesville, Florida . References ↑ "Battery Park Industries Inc (formerly Moltech Power Systems, Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Battery_Park_Industries_Inc_formerly_Moltech_Power_Systems_Inc&oldid=342547"

472

Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Battery and Vehicle Battery and Engine Research Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Google Bookmark Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Delicious Rank Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Vehicle Battery and Engine Research Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

473

Lithium-Thionyl Chloride Batteries for the Mars Pathfinder Microrover  

SciTech Connect (OSTI)

A discussion of the power requirements for the Mars Pathfinder Mission is given. Topics include: battery requirements; cell design; battery design; test descriptions and results. A summary of the results is also included.

Deligiannis, F.; Frank, H.; Staniewicz, R.J.; Willson, J. [SAFT America, Inc., Cockeysville, MD (United States)

1996-02-01T23:59:59.000Z

474

NREL: News Feature - NREL Battery Testing Capabilities Get a...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery module consisting of 12 cylindrical lithium ion cells. The unit was tested for Saft America as part of a DOEFreedomCAR project. Credit: Pat Corkery The battery research...

475

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

476

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd | Open Energy  

Open Energy Info (EERE)

Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Optimum Battery Co Ltd formerly L K Battery Tech Co Ltd Jump to: navigation, search Name Optimum Battery Co, Ltd (formerly L&K Battery Tech Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518118 Sector Services, Solar Product Shenzhen-based science and hi-tech company engaged in research development, manufacturing and sales of all types of batteries from cell to the finished product that services the power, telecommunications, electric appliance, UPS, and solar energy. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Batteries and Energy Storage | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

478

Batteries - Beyond Lithium Ion Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BEYOND LITHIUM ION BREAKOUT BEYOND LITHIUM ION BREAKOUT Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - Zn-Air possible either w/ or w/o electric-hybridization; also possible with a solid electrolyte variant * 2 - Multivalent systems (e.g Mg), potentially needing hybrid-battery * 3 - Advanced Li-ion with hybridization @ cell / molecular level for high-energy and high- power * 4 - MH-air, Li-air, Li-S, all show promise * 5 - High-energy density (e.g. Na-metal ) flow battery can meet power and energy goals * 6 - Solid-state batteries (all types) * 7 - New cathode chemistries (beyond S) to increase voltage * 8 - New high-voltage non-flammable electrolytes (both li-ion and beyond li-ion) * 9 - Power to energy ratio of >=12 needed for fast charge (10 min)  So liquid refill capable

479

Battery Chargers | Electrical Power Conversion and Storage  

Broader source: Energy.gov (indexed) [DOE]

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

480

Composite Battery Boost | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Like Properties of Soft Nanoparticle Suspensions Water-Like Properties of Soft Nanoparticle Suspensions Real-Time Capture of Intermediates in Enzymatic Reactions A New Multilayer-Based Grating for Hard X-ray Grating Interferometry The Most Detailed Picture Yet of a Key AIDS Protein Superconductivity with Stripes Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Composite Battery Boost December 2, 2013 Bookmark and Share Normalized XANES spectra of Li/Se cell during cycling. Black line is the battery voltage profile. New composite materials based on selenium (Se) sulfides that act as the positive electrode in a rechargeable lithium-ion (Li-ion) battery could boost the range of electric vehicles by up to five times, according to

Note: This page contains sample records for the topic "main propulsion battery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2014-07-01T23:59:59.000Z

482

High-energy metal air batteries  

DOE Patents [OSTI]

Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

2013-07-09T23:59:59.000Z

483

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

484

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

485

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Vehicle Technologies Office Merit Review 2014: Development of...

486

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Broader source: Energy.gov (indexed) [DOE]

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

487

Abuse Testing of High Power Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

roth.pdf More Documents & Publications Abuse Tolerance Improvement Abuse Testing of High Power Batteries USABC Program Highlights...

488

Manufacturing of Protected Lithium Electrodes for Advanced Batteries  

Broader source: Energy.gov [DOE]

Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries

489

NREL Battery Thermal and Life Test Facility (Presentation)  

SciTech Connect (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

490

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov (indexed) [DOE]

complete Timeline Budget Barriers Partners Overview * Barriers addressed: - A. Battery cost - C. Performance: Energy Density - E. Lifetime * Targets - prototype cells...

491

Battery Calendar Life Estimator Manual Modeling and Simulation  

SciTech Connect (OSTI)

The Battery Life Estimator (BLE) Manual has been prepared to assist developers in their efforts to estimate the calendar life of advanced batteries for automotive applications. Testing requirements and procedures are defined by the various manuals previously published under the United States Advanced Battery Consortium (USABC). The purpose of this manual is to describe and standardize a method for estimating calendar life based on statistical models and degradation data acquired from typical USABC battery testing.

Jon P. Christophersen; Ira Bloom; Ed Thomas; Vince Battaglia

2012-10-01T23:59:59.000Z

492

Making better batteries with metal oxide & graphene composites  

ScienceCinema (OSTI)

Learn how PNNL and Princeton scientists create better materials for batteries, materials that assemble on their own into durable nanocomposites.

None

2012-12-31T23:59:59.000Z

493

Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity  

Broader source: Energy.gov [DOE]

Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt...

494

October 29 ESTAP Webinar: Flow Battery Basics (Part 2)  

Broader source: Energy.gov [DOE]

On Wednesday, October 29, 2014 from 1 - 2:30 p.m. ET, Clean Energy State Alliance will host the second in a series of webinars on flow batteries. OE's Imre Gyuk, Energy Storage Program Manager, will present an introduction to flow battery technology, and Dan Borneo of Sandia National Laboratories will discuss flow battery testing and technological readiness.

495

High performance batteries with carbon nanomaterials and ionic liquids  

DOE Patents [OSTI]

The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

Lu, Wen (Littleton, CO)

2012-08-07T23:59:59.000Z

496

Three-dimensional batteries using a liquid cathode  

E-Print Network [OSTI]

of 3D battery fabrication using (a) a solid-state LiCoO 2of 3D battery fabrication using (a) a solid-state LiCoO 2a solid-state silica matrix, which means that more battery

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

497

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...long research and development path. Fig. 4...the anode and a cathode consisting of...lithium battery cathodes . J. Electrochem...tetrahydroxybenzoquinone: Toward the development of a sustainable...battery research and development . J. Electrochem...Rechargeable alkali-ion cathode-flow battery...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

498

Lithium Ion Batteries DOI: 10.1002/anie.201103163  

E-Print Network [OSTI]

Lithium Ion Batteries DOI: 10.1002/anie.201103163 LiMn1Ã?xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh- Rate-Performance Lithium Ion Batteries** Hailiang Wang, Yuan Yang, Yongye Liang, Li-Feng Cui cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent

Cui, Yi

499

Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries  

Science Journals Connector (OSTI)

Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. ... New developments in the chem. of secondary and flow batteries as well as regenerative fuel cells are also considered. ...

Richard Y. Wang; Colin D. Wessells; Robert A. Huggins; Yi Cui

2013-10-22T23:59:59.000Z

500

Materials Challenges and Opportunities of Lithium Ion Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for lithium ion batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium–sulfur (Li–S) batteries with a high theoretical energy density of ?2500 Wh kg–1 are considered as one promising rechargeable battery chemistry for next-generation energy storage. ...

Arumugam Manthiram

2011-01-10T23:59:59.000Z