Powered by Deep Web Technologies
Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total U.S. Main Space Heating Fuel Used U.S. Using Any Households ...  

U.S. Energy Information Administration (EIA)

Average Heating Degree Days by Main Space Heating Fuel Used, ... 2005 Residential Energy Consumption Survey: ... Any Fuel Natural Gas Fuel Oil Age of Main Heating ...

2

Table WH10. Consumption Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (physical units/number of household members) Electricity Table WH10. Consumption Intensity by Main Water Heating Fuel Used, 2005

3

Table WH11. Expenditures Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (Dollars/number of household members) Electricity Table WH11. Expenditures Intensity by Main Water Heating Fuel Used, 2005

4

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

5

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

6

Efficiency Maine - Replacement Heating Equipment Program (Maine...  

Open Energy Info (EERE)

announced its closure November 2011. According to Efficiency Maine, almost 2,600 homeowners participated in the program trading in older, less-efficient space andor water...

7

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

8

Alternative Fuels Data Center: Maine Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Information to Maine Information to someone by E-mail Share Alternative Fuels Data Center: Maine Information on Facebook Tweet about Alternative Fuels Data Center: Maine Information on Twitter Bookmark Alternative Fuels Data Center: Maine Information on Google Bookmark Alternative Fuels Data Center: Maine Information on Delicious Rank Alternative Fuels Data Center: Maine Information on Digg Find More places to share Alternative Fuels Data Center: Maine Information on AddThis.com... Maine Information This state page compiles information related to alternative fuels and advanced vehicles in Maine and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

9

Wood Heating Fuel Exemption  

Energy.gov (U.S. Department of Energy (DOE))

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

10

Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

11

Alternative Fuels Data Center: Maine Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

12

Fuel gas main replacement at Acme Steel's coke plant  

SciTech Connect

ACME Steel's Chicago coke plant consists of two 4-meter, 50-oven Wilputte underjet coke-oven batteries. These batteries were constructed in 1956--1957. The use of blast furnace gas was discontinued in the late 1960's. In 1977--1978, the oven walls in both batteries were reconstructed. Reconstruction of the underfire system was limited to rebuilding the coke-oven gas reversing cocks and meter in orifices. By the early 1980's, the 24-in. diameter underfire fuel gas mains of both batteries developed leaks at the Dresser expansion joints. These leaks were a result of pipe loss due to corrosion. Leaks also developed along the bottoms and sides of both mains. A method is described that permitted pushing temperatures to be maintained during replacement of underfire fuel gas mains. Each of Acme's two, 50-oven, 4-metric Wilputte coke-oven, gas-fired batteries were heated by converting 10-in. diameter decarbonizing air mains into temporary fuel gas mains. Replacement was made one battery at a time, with the temporary 10-in. mains in service for five to eight weeks.

Trevino, O. (Acme Steel Co., Chicago, IL (United States). Chicago Coke Plant)

1994-09-01T23:59:59.000Z

13

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Laws and Maine Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Maine. Your Clean Cities coordinator at

14

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Buses Shuttle Propane Buses Shuttle Visitors in Maine to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Google Bookmark Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Delicious Rank Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on Digg Find More places to share Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine on AddThis.com... Oct. 13, 2012 Propane Buses Shuttle Visitors in Maine W atch how travelers in Bar Harbor, Maine, rely on propane-powered shuttle buses. For information about this project, contact Maine Clean Communities.

15

Alternative Fuels Data Center: Maine Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Points of Maine Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Maine Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Maine Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Maine Points of Contact on Google Bookmark Alternative Fuels Data Center: Maine Points of Contact on Delicious Rank Alternative Fuels Data Center: Maine Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Maine Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Points of Contact The following people or agencies can help you find more information about Maine's clean transportation laws, incentives, and funding opportunities.

16

Alternative Fuels Data Center: Maine Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives Listed below are the summaries of all current Maine laws, incentives, regulations, funding opportunities, and other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. You

17

Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Taxes to someone by E-mail Fuel Taxes to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Taxes on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Fuel Taxes The list below contains summaries of all Maine laws and incentives related

18

Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Hydrogen Fuel Cells

19

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

20

Alternative Fuels Data Center: Maine Laws and Incentives for Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Grants to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Grants on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Grants The list below contains summaries of all Maine laws and incentives related

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

22

Alternative Fuels Data Center: Maine Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for NEVs The list below contains summaries of all Maine laws and incentives related to NEVs.

23

Alternative Fuels Data Center: Maine Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Other The list below contains summaries of all Maine laws and incentives related

24

Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Ethanol The list below contains summaries of all Maine laws and incentives related

25

Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Exemptions The list below contains summaries of all Maine laws and incentives related

26

Alternative Fuels Data Center: Maine Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for EVs The list below contains summaries of all Maine laws and incentives related to EVs. State Incentives

27

Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Biodiesel The list below contains summaries of all Maine laws and incentives related

28

Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Vehicle Owner/Driver

29

Alternative Fuels Data Center: Maine Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Driving / Idling

30

Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fueling / TSE Infrastructure Owner on AddThis.com...

31

Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

32

Alternative Fuels Data Center: Maine Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

33

Alternative Fuels Data Center: Maine Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section... Federal State

34

Alternative Fuels Data Center: Maine Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Climate Change Energy Initiatives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Climate Change Energy Initiatives on Facebook Tweet...

35

Heating subsurface formations by oxidizing fuel on a fuel carrier  

SciTech Connect

A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

Costello, Michael; Vinegar, Harold J.

2012-10-02T23:59:59.000Z

36

State of Maine residential heating oil survey 2001-02 season summary [SHOPP  

Science Conference Proceedings (OSTI)

This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

Elder, Betsy

2002-05-22T23:59:59.000Z

37

Balance of heating fuels varies regionally  

U.S. Energy Information Administration (EIA)

... announced a plan to expand natural gas distribution networks Consumers are also supplementing liquid heating fuels with wood and electricity –wood pellet use ...

38

State of Maine residential heating oil survey: 1994--1995 Season summary  

Science Conference Proceedings (OSTI)

The 1994--95 heating season approached with more attention to petroleum products than experienced in some time. This year, however, the focus was on transportation fuels with the introduction of reformulated gasolines scheduled for the first of 1995. Last year transportation fuels had been in the spotlight in the Northeast as well, for the ills experienced with a new winter mix for diesel fuel. Would RFG have the same dubious entrance as diesel`s winter mix? Would RFG implementation work and what effect would the change in stocks have on the refineries? With worries related to transportation fuels being recognized, would there be reason for concern with heating fuels? As the new year approached, the refineries seemed to have no problem with supplies and RFG stocks were eased in about the second week of December. In Maine, the southern half of the state was effected by the gasoline substitution but seven of Maine`s sixteen counties were directed to follow the recommended criteria. Since the major population concentration lies in the southern three counties, concern was real. Attention paid to emission testing had come to a head in the fall, and RFG complaints were likely. There have been years when snow and cold arrived by Thanksgiving Day. In northern Maine, snow easily covers the ground before the SHOPP survey begins. The fall slipped by with no great shocks in the weather. December was more of the same, as the weather continued to favor the public. Normally the third week in January is considered the coldest time in the year, but not this year. By the end of January, two days were recorded as being more typical of winter. By March and the end of the survey season, one could only recognize that there were perhaps a few cold days this winter. Fuel prices fluctuated little through the entire heating season. There were no major problems to report and demand never placed pressure on dealers.

NONE

1995-04-01T23:59:59.000Z

39

Heating Fuel Comparision Calculator - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

HEAT CONTENT PRICES INSTRUCTIONS CALCULATOR Fuel Heat Content Per Unit (Btu) Fuel Type Electricity Propane Kerosene Gallon Cord Ton AFUE Natural Gas COP Geothermal ...

40

Native Village of Teller Addresses Heating Fuel Shortage, Improves...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012...

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EA-1887: Renewable Fuel Heat Plant Improvements at the National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOEEA-1573-S1) EA-1887: Renewable Fuel Heat Plant Improvements at the...

42

Heated transportable fuel cell cartridges  

DOE Patents (OSTI)

A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

Lance, Joseph R. (N. Huntingdon, PA); Spurrier, Francis R. (Whitehall, PA)

1985-01-01T23:59:59.000Z

43

Maine Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Weekly Heating Oil and Propane Prices (October - March) (Dollars per Gallon Excluding Taxes) ... History; Residential Heating Oil: 3.569: 3.575: 3.559: 3.561: 3.559 ...

44

Heat exchanger for fuel cell power plant reformer  

DOE Patents (OSTI)

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

45

Spent Fuel Disposal Trust Fund (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Type Safety and Operational Guidelines Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund...

46

Fuel cell system with combustor-heated reformer  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

47

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

48

Ceramic fuel pellets for isotopic heat sources  

DOE Green Energy (OSTI)

The General-Purpose Heat Source (GPHS) will supply power for future space missions. The GPHS fuel pellets are fabricated by hot pressing a blended mixture of /sup 238/PuO/sub 2/ granules prepared from calcined plutonium oxalate. Results of a test program which led to the development of the production process are described.

Rankin, D.T.; Congdon, J.W.; Livingston, J.T.; Duncan, N.D.

1980-01-01T23:59:59.000Z

49

Maine Public Service Company- Residential and Small Commercial Heat Pump Program (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Public Service Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps are eligible for a rebate of $600, as well as a loan to cover...

50

EIA Outlook for U.S. Heating Fuels  

U.S. Energy Information Administration (EIA)

EIA Outlook for U.S. Heating Fuels State Heating Oil and Propane Program Conference North Falmouth, Massachusetts Laurie Falter Industry Economist

51

Method and apparatus for fuel gas moisturization and heating  

SciTech Connect

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

52

Microfabricated fuel heating value monitoring device  

DOE Patents (OSTI)

A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

2010-05-04T23:59:59.000Z

53

Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Propane (LPG) The list below contains summaries of all Maine laws and incentives related

54

Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Maine laws and incentives related

55

Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Natural Gas The list below contains summaries of all Maine laws and incentives related

56

Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Idle Reduction

57

Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Tax Incentives

58

Advanced Nuclear Fuel Cycles -- Main Challenges and Strategic Choices  

Science Conference Proceedings (OSTI)

This report presents the results of a critical review of the technological challenges to the growth of nuclear energy, emerging advanced technologies that would have to be deployed, and fuel cycle strategies that could conceivably involve interim storage, plutonium recycling in thermal and fast reactors, reprocessed uranium recycling, and transmutation of minor actinide elements and fission products before eventual disposal of residual wastes.

2010-09-02T23:59:59.000Z

59

Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

60

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

62

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 systems per household Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $400/system Provider York Electric Cooperative, Inc York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and industrial locations. The incentive is for the property owner only, meaning that renters/tenants are not

63

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

64

EA-1887: Renewable Fuel Heat Plant Improvements at the National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of...

65

Spent Fuel and High-Level Waste Requirements (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission All proposed nuclear power generation facilities must be certified by the Public Utilities Commission under this statute prior to construction and

66

Evaluation of Fuel Quality Impacts on Heat Rate  

Science Conference Proceedings (OSTI)

The drive to leverage fuel switching to meet more stringent SO2 and NOX emissions requirements has led to both a reduction in power station efficiency and a poorer net plant heat rate (NPHR) in many cases. The root causes include higher fuel moisture content, lower fuel energy content, poorer combustion efficiency, increased station service, and decreased unit capability. This report demonstrates the sensitivity of the key metrics of power station efficiency and heat rate to coal quality parameters, vari...

2010-12-09T23:59:59.000Z

67

Refundable Clean Heating Fuel Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refundable Clean Heating Fuel Tax Credit (Personal) Refundable Clean Heating Fuel Tax Credit (Personal) Refundable Clean Heating Fuel Tax Credit (Personal) < Back Eligibility Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $0.20/gallon Program Info Start Date 01/01/2008 (2008 reinstatement) Expiration Date 12/31/2016 State New York Program Type Personal Tax Credit Rebate Amount $0.01/gallon for each percent of biodiesel Provider New York State Department of Taxation and Finance The state of New York began offering a personal income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized for only one year from July 1, 2006 to June 30, 2007. However, in 2008 the law was amended to reinstate the credit for purchases made between January 1, 2008 and

68

Refundable Clean Heating Fuel Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refundable Clean Heating Fuel Tax Credit (Corporate) Refundable Clean Heating Fuel Tax Credit (Corporate) Refundable Clean Heating Fuel Tax Credit (Corporate) < Back Eligibility Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate 0.20/gallon Program Info Start Date 01/01/2008 (2008 reinstatement) Expiration Date 12/31/2016 State New York Program Type Corporate Tax Credit Rebate Amount 0.01/gallon for each percent of biodiesel Provider New York State Department of Taxation and Finance The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized for only one year from July 1, 2006 to June 30, 2007. However, in 2008 the law was amended to reinstate the credit for purchases made between January 1, 2008 and

69

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

70

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal ...

71

,"Maine Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sme_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sme_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

72

Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE  

Science Conference Proceedings (OSTI)

In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

Ade, Brian J [ORNL; Gauld, Ian C [ORNL

2011-10-01T23:59:59.000Z

73

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Industrial Consumers (Thousand Gallons)

74

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Commercial Consumers (Thousand Gallons)

75

Multi-Function Fuel-Fired Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Function Fuel-Fired Heat Pump Multi-Function Fuel-Fired Heat Pump CRADA Ed Vineyard Oak Ridge National Laboratory, Building Equipment Research vineyardea@ornl.gov, 865-576-0576 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: 55% residential building energy use for space conditioning & water heating; highly efficient systems needed to facilitate DOE/BTO goal for 50% reduction in building energy use by 2030 Impact of Project: Cumulative energy savings potential of 0.25 Quads

76

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

77

Residential Wood Heating Fuel Exemption (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Heating Fuel Exemption (New York) Wood Heating Fuel Exemption (New York) Residential Wood Heating Fuel Exemption (New York) < Back Eligibility Multi-Family Residential Residential Savings Category Bioenergy Maximum Rebate None Program Info State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider New York State Department of Taxation and Finance New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from local sales taxes. If a city with a population of 1 million or more chooses to grant the local exemption, it must enact a specific resolution that appears in the state law. Local sales tax rates in New York range from 1.5% to more than 4% in

78

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we ...

79

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

DOE Green Energy (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

80

How do I compare heating fuels? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How do I compare heating fuels? When choosing a heating system for a new home or replacing an existing system, consumers often want to compare the cost of heating fuels.

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Fuel demand is affected mainly by economic conditions, and for heating oil, the weather. ... How do I calculate diesel fuel surcharges? How do I compare heating fuels?

82

State of Maine residential heating oil survey: 1995--1996 season summary  

SciTech Connect

In Maine the cash price is surveyed, as opposed to lthe retail or charge price, as it has been identified as the price most often paid by Maine consumers. As one can see from the chart in this report, the 1995-1996 cash prices for No. 2 heating oil can be characterized as having an upward trend and much more fluctuation than last years` relatively flat line. The 1995-96 heating season started at the closing price of the previous season and for the first few weeks prices were lower than most of the 1994-95 trendline. When the weather became cooler, however, prices were on a steady incline until well into the winter. Prices leveled off for most of the rest of the season with a dramatic surge on the last week of the survey. The average statewide cash price for No. 2 heating oil this year was .861 1 cents, approximately ten cents higher than the average for 1994-1995 which was .7661 cents per gallon. It has been the observation of the SPO that during most of the 1995-1996 season, Maine`s prices showed a direct correspondence with New England rack or wholesale prices. It appeared that they never fluctuated more than 3-4 cents from each other.

Elder, B.

1996-05-01T23:59:59.000Z

83

MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT LADWP MAIN STREET SERVICE CENTER  

DOE Green Energy (OSTI)

The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Main Street 250kW MCFC power plant during its first year of operation from September 2003 to August 2004. The data for the month of September 2004 was not available at the time this report was prepared. An addendum to this report will be prepared and transmitted to the Department of Energy once this data becomes available. This fuel cell power plant was originally intended to be installed at an American Airlines facility located at Los Angeles International Airport, however, due to difficulties in obtaining a site, the plant was ultimately installed at the LADWP's Distributed Generation Test Facility at it's Main Street Service Center.

William W. Glauz

2004-09-10T23:59:59.000Z

84

Energy Basics: Heating Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of energy sources, including electricity, boilers, solar energy, and wood and pellet-fuel heating. Small Space Heaters Used when the main heating system is inadequate or when...

85

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

86

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

87

Fossil fuel-fired peak heating for geothermal greenhouses  

SciTech Connect

This report examines the capital and operating costs for fossil fuel-fired peak heating systems in geothermally (direct use) heated greenhouses. Issues covered include equipment capital costs, fuel requirements, maintenance and operating costs, system control and integration into conventional hot water greenhouse heating systems. Annual costs per square foot of greenhouse floor area are developed for three climates: Helena, MT; Klamath Falls, OR and San Bernardino, CA, for both boiler and individual unit heater peaking systems. In most applications, peaking systems sized for 60% of the peak load are able to satisfy over 95% of the annual heating requirements and cost less than $0.15 per square foot per year to operate. The propane-fired boiler system has the least cost of operation in all but Helena, MT climate.

Rafferty, K.

1996-12-01T23:59:59.000Z

88

Table WH3. Total Consumption for Water Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Table WH3. Total Consumption for Water Heating by Major Fuels Used, 2005 Physical Units Electricity (billion kWh) Natural Gas (billion cf) Fuel Oil

89

Table WH5. Total Expenditures for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Total Table WH5. Total Expenditures for Water Heating by Major Fuels Used, 2005 Billion Dollars Electricity Natural Gas Fuel Oil LPG U.S. Households

90

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

91

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

92

Table SH3. Total Consumption for Space Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Natural Gas (billion cf) Major Fuels Used 4 (physical units) Table SH3. Total Consumption for Space Heating by Major Fuels Used, 2005 Physical Units

93

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery  

SciTech Connect

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

None

2011-12-19T23:59:59.000Z

94

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

95

Availability of wood as a heating fuel for Colorado  

SciTech Connect

As Colorado homeowners turn to wood as an alternative space-heating fuel, supplies--particularly along the heavily populated Front Range--dwindle. The report reexamines the resource base and presents alternatives to wood in the event of a shortage (for instance, many wood stoves can burn coal as well).

1982-01-01T23:59:59.000Z

96

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

97

How do I compare heating fuels? - FAQ - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... What is the outlook for home heating fuel prices this winter? Last updated: June 5, 2013 .

98

Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat.  

E-Print Network (OSTI)

, combined heat and power, materials handling, and backup power. Power Generation & Electric Grid support· Hydrogen is a clean fuel. When used in fuel cells, the only byproducts are water and heat The demand for multi-megawatt (MW) fuel cell systems for power generation and utility grid support applica

99

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to Commercial Consumers (Thousand Gallons)

100

An analysis of heating fuel market behavior, 1989--1990  

SciTech Connect

The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

1990-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Function Multi-Function Fuel-Fired Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Google Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Delicious Rank Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities

102

High Performance Catalytic Heat Exchanger for SOFC Systems - FuelCell Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Heat Catalytic Heat Exchanger for SOFC Systems-FuelCell Energy Background In a typical solid oxide fuel cell (SOFC) power generation system, hot (~900 °C) effluent gas from a catalytic combustor serves as the heat source within a high-temperature heat exchanger, preheating incoming fresh air for the SOFC's cathode. The catalytic combustor and the cathode air heat exchanger together represent the largest opportunity for cost

103

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

104

Table WH6. Average Consumption for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Major Fuels Used 5 (physical units of consumption per household using the fuel as a water heating source) Electricity (kWh) Table WH6. Average Consumption for Water ...

105

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

106

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network (OSTI)

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application, the coolant is pumped to a heat recovery system. A water-to-air heat exchange system or water-to-water heat

Victoria, University of

107

Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel  

SciTech Connect

The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

Litzke, Wai-Lin

1992-12-01T23:59:59.000Z

108

Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report  

DOE Green Energy (OSTI)

Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

109

EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

573-S1: Proposed Renewable Fuel Heat Plant Improvements at the 573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO DOE's Golden Field Office has prepared a draft Supplemental Environmental Assessment (SEA) for proposed improvements to the Renewable Fuel Heat Plant (RFHP) at the National Renewable Energy Laboratory's South Table Mountain site. The SEA analyzes the potential environmental impacts associated with the proposed improvements tot he RFHP consisting of construction and operation of an onsite woodchip fuel storage silo and an expansion of woodchip fuel sources to a regional scale.

110

Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout  

Science Conference Proceedings (OSTI)

This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

2010-12-15T23:59:59.000Z

111

Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)  

Science Conference Proceedings (OSTI)

The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

Norton, W.; McGough, M. S.

2002-02-26T23:59:59.000Z

112

Fuel cells: providing heat and power in the urban environment  

E-Print Network (OSTI)

for CHP systems include Proton exchange membrane (PEMFC) and solid oxide (SOFC), however both require which operate at high temperatures, such as the MCFC and SOFC, reforming can take place within the fuel applications. PAFC Phospheric acid fuel cell MCFC Molten carbonate fuel cell SOFC Solid oxide fuel cell PEMFC

Watson, Andrew

113

Maine Profile  

U.S. Energy Information Administration (EIA)

Alternative Fueled Vehicles in Use : 3,111 vehicles 0.3% 2011 find more: Ethanol Plants ... Electric Power Industry Emissions: Maine: Share of U.S. Period: find more:

114

Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight 5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight May 20, 2011 - 5:53pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? 50 percent of the energy generated annually from all sources is lost as waste heat. Scientists have developed a high-efficiency thermal waste heat energy converter that actively cools electronic devices, photovoltaic cells, computers and other large industrial systems while generating electricity. Scientists have linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen -- research that will help scientists harvest light with solar fuels. Thanks to scientists at Oak Ridge National Laboratory (ORNL), the billions

115

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Research Center, 2012 1/22 National Fuel Cell Research Center, 2012 1/22 High Temperature Fuel Cell Tri-Generation of Power, Heat & H 2 from Biogas Jack Brouwer, Ph.D. June 19, 2012 DOE/ NREL Biogas Workshop - Golden, CO © National Fuel Cell Research Center, 2012 2/22 Outline * Introduction and Background * Tri-Generation/Poly-Generation Analyses * OCSD Project Introduction © National Fuel Cell Research Center, 2012 3/22 Introduction and Background * Hydrogen fuel cell vehicle performance is outstanding * Energy density of H 2 is much greater than batteries * Rapid fueling, long range ZEV * H 2 must be produced * energy intensive, may have emissions, fossil fuels, economies of scale * Low volumetric energy density of H 2 compared to current infrastructure fuels (@ STP)

116

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

Pond, R.B.; Matos, J.E.

1996-12-31T23:59:59.000Z

117

The Northeast heating fuel market: Assessment and options  

SciTech Connect

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

118

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

119

EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Fuel Heat Plant Improvements at the National Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) Summary This EA evaluates the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources. DOE/EA-1887 supplements a prior EA (DOE/EA-1573, July 2007) and is also referred to as DOE/EA-1573-S1. Public Comment Opportunities None available at this time. Documents Available for Download April 9, 2012 EA-1887: Finding of No Significant Impact

120

Fossil Fuel and Biomass Burning Effect on Climate—Heating or Cooling?  

Science Conference Proceedings (OSTI)

Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while ...

Yoram J. Kaufman; Robert S. Fraser; Robert L. Mahoney

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

What is the outlook for home heating fuel prices this winter ...  

U.S. Energy Information Administration (EIA)

What is the outlook for home heating fuel prices this winter? According to EIA's Short Term Energy Outlook released on August 6, 2013, the projections for U.S ...

122

Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.  

DOE Green Energy (OSTI)

The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

Nakos, James Thomas

2010-12-01T23:59:59.000Z

123

Computational analysis of heat and water transfer in a PEM fuel cell  

Science Conference Proceedings (OSTI)

Proton exchange membrane (PEM) fuel cells are promising power-generation sources for mobile and stationary applications. In this paper a non-isothermal, single-domain and two-dimensional computational fluid dynamics model is presented to investigate ... Keywords: CFD, PEM fuel cell, heat, non-isothermal, single-domain

Ebrahim Afshari; Seyed Ali Jazayeri

2008-02-01T23:59:59.000Z

124

Small oil-fired heating equipment: The effects of fuel quality  

SciTech Connect

The physical and chemical characteristics of fuel can affect its flow, atomization, and combustion, all of which help to define the overall performance of a heating system. The objective of this study was to evaluate the effects of some important parameters of fuel quality on the operation of oil-fired residential heating equipment. The primary focus was on evaluating the effects of the fuel`s sulfur content, aromatics content, and viscosity. Since the characteristics of heating fuel are generally defined in terms of standards (such as ASTM, or state and local fuel-quality requirements), the adequacy and limitations of such specifications also are discussed. Liquid fuels are complex and their properties cannot generally be varied without affecting other properties. To the extent possible, test fuels were specially blended to meet the requirements of the ASTM limits but, at the same time, significant changes were made to the fuels to isolate and vary the selected parameters over broad ranges. A series of combustion tests were conducted using three different types of burners -- a flame-retention head burner, a high static-pressure-retention head burner, and an air-atomized burner. With some adjustments, such modern equipment generally can operate acceptably within a wide range of fuel properties. From the experimental data, the limits of some of the properties could be estimated. The property which most significantly affects the equipment`s performance is viscosity. Highly viscous fuels are poorly atomizated and incompletely burnt, resulting in higher flue gas emissions. Although the sulfur content of the fuel did not significantly affect performance during these short-term studies, other work done at BNL demonstrated that long-term effects due to sulfur can be detrimental in terms of fouling and scale formation on boiler heat exchanger tubes.

Litzke, W.

1993-08-01T23:59:59.000Z

125

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

of biomass (lignin) and biogas for process heat. TheyBTU-lignin/BTU-fuel) and emission factors for biogas (g/BTU-gas) by biogas-use factors (BTU-gas/BTU-fuel). The emission

Delucchi, Mark

2003-01-01T23:59:59.000Z

126

Spent Nuclear Fuel project photon heat deposition calculation for hygrogen generation within MCO  

DOE Green Energy (OSTI)

Three types of water conditions are analyzed for nuclear heat deposition in a MCO: fully flooded, thick film, and thin film. These heat deposition rates within water can be used to determine gas generation during the different phases of Spent Fuel removal and processing for storage.

Lan, J.S.

1996-08-01T23:59:59.000Z

127

Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods  

Science Conference Proceedings (OSTI)

A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

Donald Olander

2005-08-24T23:59:59.000Z

128

Northeast Heating Fuel Market The, Assessment and Options  

Reports and Publications (EIA)

In response to the President's request, this study examineshow the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential,commercial, industrial, and electricity generation sectorconsumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

Joan Heinkel

2000-05-01T23:59:59.000Z

129

Heating Fuels and Diesel Update - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

130

EIA-877 WINTER HEATING FUELS TELEPHONE SURVEY INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

designed to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during ... New Jersey NY - New York NC - North Carolina

131

Household heating fuels vary across the country - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

132

Heating fuel choice shows electricity and natural gas roughly ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

133

The effect of drying on the heating value of biomass fuels  

E-Print Network (OSTI)

There has been some speculation as to whether or not biomass fuels (such as feedlot manure) may lose volatile matter during the drying process. Since current standards state that heating value analysis may be performed before or after drying, and volatile matter analysis can only be performed after drying, and since many fuel suppliers are paid on a heating value basis of the fuel, there has been some controversy in this matter. Furthermore, it is known that if manure is left out at ambient temperatures over long periods of time, the heating value decreases as well. It is therefore the objective of this work to ascertain if in fact volatile matter is lost during the drying or aging process and, if so, to find an optimum aging and /or drying time and to model the loss of volatile matter. It has been found that, if indeed there is volatile matter loss over the drying process, then it is so small as to be negligible. Furthermore, no appreciable amount of volatile loss occurs even if the fuel is dried for extensive amounts of time as are generally needed to obtain constant weight in the fuel sample. It has also been found that heating value decreases with aging time (falling even after only one to two days at atmospheric conditions), yet the heating value of an initial (undried) fuel sample increases with aging time. This is because moisture is lost as well as combustibles so the heat produced by the fuel will increase with a decrease in moisture even though volatiles are lost.

Rodriguez, Pablo Gregorio

1994-01-01T23:59:59.000Z

134

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

135

EIA Outlook for U.S. Heating Fuels  

Reports and Publications (EIA)

This presentation at the 2006 State Heating Oil and Propane Program Conference in North Falmouth, Massachusetts, outlined EIA's current forecast for U.S. crude oil, distillate, propane and gasoline supply, demand, and markets over the coming winter season.

Information Center

2006-08-07T23:59:59.000Z

136

First university owned district heating system using biomass heat  

E-Print Network (OSTI)

Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

137

The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels  

SciTech Connect

In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

Harkreader, S.A.; Hattrup, M.P.

1988-09-01T23:59:59.000Z

138

Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.  

DOE Green Energy (OSTI)

Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

2010-11-01T23:59:59.000Z

139

Biomass potential for heat, electricity and vehicle fuel in Sweden.  

E-Print Network (OSTI)

??The main objective of this thesis was to determine how far a biomass quantity, equal to the potential produced within the Swedish borders, could cover… (more)

Hagström, Peter

2006-01-01T23:59:59.000Z

140

Maine Rivers Policy (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

142

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

143

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

144

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

145

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

146

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Heat Pump Program (Maine) Bangor Hydro Electric Company offers a two-tiered incentive program for residential and small commercial customers. Mini-Split Heat Pumps...

147

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

148

Development program for heat balance analysis fuel to steam efficiency boiler and data wireless transfer  

Science Conference Proceedings (OSTI)

This research aim to improve a combustion system of boiler within increase combustion efficiency and use all out of the energy. The large boilers were used in the industrial factories which consume a lot of energy for production. By oil and gas fuel ... Keywords: boiler, cogeneration energy, heat balance, steam efficiency, wireless data transfer

Nattapong Phanthuna; Warunee Srisongkram; Sunya Pasuk; Thaweesak Trongtirakul

2009-02-01T23:59:59.000Z

149

On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures  

Science Conference Proceedings (OSTI)

A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen ...

Sprinkle Danny R.; Chaturvedi Sushil K.; Kheireddine Ali

1996-03-01T23:59:59.000Z

150

Low Mode Control of Cryogenic ICF Fuel Layers Using Infrared Heating  

DOE Green Energy (OSTI)

Infrared heating has been demonstrated as an effective technique to smooth solid hydrogen layers inside transparent cryogenic inertial confinement fusion capsules. Control of the first two Legendre modes of the fuel thickness perturbations using two infrared beams injected into a hohlraum was predicted by modeling and experimentally demonstrated. In the current work, we use coupled ray tracing and heat transfer simulations to explore a wider range of control of long scale length asymmetries. We demonstrate several scenarios to control the first four Legendre modes in the fuel layer using four beams. With such a system, it appears possible to smooth both short and long scale length fuel thickness variations in transparent indirect drive inertial confinement fusion targets.

London, R A; Kozioziemski, B J; Marinak, M M; Kerbel, G D; Bittner, D N

2005-07-06T23:59:59.000Z

151

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

152

General-purpose heat source: Research and development program. Process evaluation, fuel pellet GF-47  

DOE Green Energy (OSTI)

The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because the potential for a launch abort or return from orbit exists for any space mission, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions has documented the response of the GPHS heat source to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. Although heat sources for previous missions were fabricated by the Westinghouse Savannah River Company (WSRC), GPHS fueled-clads required for the Cassini mission to Saturn will be fabricated by Los Alamos National Laboratory (LANL). This evaluation is part of an ongoing program to determine the similarity of GPHS fueled clads and fuel pellets fabricated at LANL to those fabricated at WSRC. Pellet GF-47, which was fabricated at LANL in late 1994, was submitted for chemical and ceramographic analysis. The results indicated that the pellet had a chemical makeup and microstructure within the range of material fabricated at WSRC in the early 1980s.

Reimus, M.A.H.; George, T.G.

1995-12-01T23:59:59.000Z

153

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

154

Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.  

SciTech Connect

The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

Nakos, James Thomas

2005-12-01T23:59:59.000Z

155

HEAT-TRANSFER EXPERIMENTS ON A PROPOSED FUEL ASSEMBLY FOR THE EXPERIMENTAL GAS COOLED REACTOR. SECTION II FO FUEL-ASSEMBLY HEAT-TRANSFER AND CHANNEL PRESSURE-DROP EXPERIMENT FOR THE EGCR RESEARCH AND DEVELOPMENT PROGRAM  

SciTech Connect

Heat-transfer data are presented for the Experimental Gas Cooled Reactor Title I seven-rod fuel-assembly design. The effect on heat transfer of (1) the radial location of the outer six rods of the seven-fuel-rod cluster and of (2) the addition of helical-finned spacers at the midpoint of each of the seven fuel rods is discussed. The heattransfer data were obtained to verify preliminary general assumptions pertaining to the heat-transfer characteristics of the seven- rod fuel-assembly design and to obtain local heat-transfer correlations. The heat-transfer tests were performed at near-atmospheric pressure using air as the coolant medium. Plots and equations of heattransfer correlations over a Reynolds Number range from 12,000 to 80,000 are included. The test set-up and test procedure are also described. (auth)

Beaudoin, C.L.; Higgins, R.M.

1960-04-12T23:59:59.000Z

156

Specific Heat Measurements and Post-Test Characterization of Irradiated and Unirradiated Urania and Gadolinia Doped Fuel  

Science Conference Proceedings (OSTI)

In pursuit of higher burnups at nuclear plants, fuel designers have introduced the use of 'advanced' fuel types, including doped fuels. Completing a systematic program to acquire data on the basic properties of these fuels, this project measured the specific heat and density of high burn-up UO2 and (U, Gd)O2 using irradiated materials of the same origin as those on which thermal diffusivity measurements had previously been made and thermal recovery phenomena investigated.

2000-12-31T23:59:59.000Z

157

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

158

Towards CFD Modelling of Critical Heat Flux in Fuel Rod Bundles  

SciTech Connect

The paper describes actual CFD approaches to subcooled boiling and investigates their capability to contribute to fuel assembly design. In a prototype version of the CFD code CFX a wall boiling model is implemented based on a wall heat flux partition algorithm. It can be shown, that the wall boiling model is able, to calculate the cross sectional averaged vapour volume fraction with good agreement to published measurements. The most sensitive parameters of the model are identified. Needs for more detailed experiments are established which are necessary to support further model development. Nevertheless in the paper the model is applied for the investigation of the phenomena inside a hot channel in a fuel assembly. Here the essential parameter is the critical heat flux. Although subcooled boiling represents only a preliminary state toward critical heat flux essential parameters like the swirl, the cross flow between adjacent channels and concentration regions of bubbles can be determined. By calculating the temperature at the rod surface the critical regions can be identified which might later on lead to departure from nucleate boiling and possible damage of the fuel pin. The application of up-to-date CFD with a subcooled boiling model for the simulation of a hot channel enables the comparison and the evaluation of different geometrical designs of the spacer grids of a fuel rod bundle. (authors)

Krepper, Eckhard [Forschungszentrum Rossendorf e.V., Institute of Safety Research, D-01314 Dresden, POB 510119 (Germany); Egorov, Yury [ANSYS Germany GmbH Staudenfeldweg 12, D-83624 Otterfing (Germany); Koncar, Bostjan ['Jozef Stefan' Institute Jamova 39, 1000 Ljubljana (Slovenia)

2006-07-01T23:59:59.000Z

159

Market share elasticities for fuel and technology choice in home heating and cooling  

Science Conference Proceedings (OSTI)

A new technique for estimating own- and cross-elasticities of market share for fuel and technology choices in home heating and cooling is presented. We simulate changes in economic conditions and estimate elasticities by calculating predicted changes in fuel and technology market shares. Elasticities are found with respect to household income, equipment capital cost, and equipment capital cost, and equipment operating cost (including fuel price). The method is applied to a revised and extended version of a study by the Electric Power Research Institute (EPRI). Data for that study are drawn primarily from the 1975--1979 Annual Housing Surveys. Results are generally similar to previous studies, although our estimates of elasticities are somewhat lower. We feel the superior formulation of consumer choice and the currency of data in EPRI's work produce reliable estimates of market share elasticities. 18 refs., 1 fig., 6 tabs.

Wood, D.J.; Ruderman, H.; McMahon, J.E.

1989-05-01T23:59:59.000Z

160

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

DOE Green Energy (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network (OSTI)

The escalating energy prices and the increasing environmental impact posed by the industrial usage of energy have spurred industry to adopt various approaches to conserving energy and mitigating negative environmental impact. This work aims at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels, process waste heat) to guarantee providing a stable energy supply, as industrial process energy sources must be a stable and reliable system. The thermal energy transform systems (turbines, refrigerators, heat exchangers) must be selected and designed carefully to provide the energy demand at the different forms (heat, cool, power). This dissertation introduces optimization-based approaches to address the following problems: • Design of cogeneration systems with solar and fossil systems • Design and integration of solar-biofuel-fossil cogeneration systems • Design of solar-assisted absorption refrigeration systems and integration with the processing facility • Development of thermally-coupled dual absorption refrigeration systems, and • Design of solar-assisted trigeneration systems Several optimization formulations are introduced to provide methodical and systematic techniques to solve the aforementioned problems. The approach is also sequenced into interacting steps. First, heat integration is carried out to minimize industrial heating and cooling utilities. Different forms of external-energy sources (e.g., solar, biofuel, fossil fuel) are screened and selected. To optimize the cost and to overcome the dynamic fluctuation of the solar energy and biofuel production systems, fossil fuel is used to supplement the renewable forms of energy. An optimization approach is adopted to determine the optimal mix of energy forms (fossil, bio fuels, and solar) to be supplied to the process, the system specifications, and the scheduling of the system operation. Several case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. The results show that solar trigeneration systems have higher overall performance than the solar thermal power plants. Integrating the absorption refrigerators improves the energy usage and it provides the process by its cooling demand. Thermal coupling of the dual absorption refrigerators increases the coefficient of performance up to 33 percent. Moreover, the process is provided by two cooling levels.

Tora, Eman

2010-12-01T23:59:59.000Z

162

Purification of {sup 238}PuO{sub 2} scrap for heat source fuel  

SciTech Connect

The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover and purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of {sup 238}PuO{sub 2} fuel by HNO{sub 3}/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing {sup 238}PuO{sub 2} fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. A sufficient quantity of purified {sup 238}PuO{sub 2} fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments on neutralized solutions of plutonium-238 resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost effective, and environmentally acceptable methods to recover and purify {sup 238}PuO{sub 2} fuel.

Schulte, L.D.; Purdy, G.M.; Jarvinen, G.D.; Ramsey, K.; Silver, G.L.; Espinoza, J.; Rinehart, G.H.

1997-10-01T23:59:59.000Z

163

1985 primary heating fuel use and switching: Assessment of the market for conservation in the Northwest: Phase 2  

SciTech Connect

This report presents information on the types of primary heating fuels used in residences in the Pacific Northwest region and how the heating fuels affect the level of investment in energy conservation measures (ECMs) by occupants of the residences. The types of heating fuel switching that occurred during the past two years (1983-1985) is also presented. The information was collected from random telephone surveys of households in Idaho, Oregon, Washington, and western Montana. The Pacific Northwest Laboratory (PNL) conducted analyses of the survey results for the Bonneville Power Administration (BPA) to obtain a better understanding of consumer attitudes and behaviors and to facilitate conservation program planning, design, and marketing. This report covers the following hypotheses: (1) there is no relationship between investing in ECMs and the type of primary heating fuel used in a residence; and (2) there is no relationship between the decision to switch to a new primary heating fuel during 1983-1985 and the original type of primary heating fuel used in the residence.

Hattrup, M.P.; Nordi, R.T.; Ivey, D.L.

1987-05-01T23:59:59.000Z

164

User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text  

DOE Green Energy (OSTI)

A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

Huber, H.D.; Brown, D.R.; Reilly, R.W.

1982-04-01T23:59:59.000Z

165

Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell  

DOE Green Energy (OSTI)

The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

Not Available

1991-09-01T23:59:59.000Z

166

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

167

Oxygen reduction in PEM fuel cell conditions: Heat-treated macrocycles and beyond  

NLE Websites -- All DOE Office Websites (Extended Search)

reduction in PEM fuel cell conditions: reduction in PEM fuel cell conditions: Heat-treated macrocycles and beyond J. P. Dodelet INRS-Énergie et Matériaux C. P. 1020, Varennes, Québec, Canada, J3X 1S2 dodelet@inrs-ener.uquebec.ca Collaborators Michel Lefèvre (INRS) Sébastien Marcotte (INRS) Frédéric Jaouen (Royal Inst. of Technology, Sweden) Prof. Patrick Bertrand (Université Catholique de Louvain, Belgium) Prof. Göran Lindbergh (Royal Inst. Of Technology, Sweden) New Orleans workshop March 21 03. DODELET, J. P. ; New Orleans, March 21, 03 1 PEM Fuel Cells Anode : 2 H 2 → 4 H + + 4 e - Electrolyte : Perfluorinated polymer - SO 3 H Cathode : O 2 + 4 H + + 4 e - → 2 H 2 O Acidic Medium ( pH ~ 1 ) Low Temperature Fuel Cell (80°C) ↓ Pt- based Anode and Cathode Catalysts Pt is not abundant and expensive

168

Carbonaceous material for production of hydrogen from low heating value fuel gases  

DOE Patents (OSTI)

A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

Koutsoukos, Elias P. (Los Angeles, CA)

1989-01-01T23:59:59.000Z

169

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

170

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

DOE Green Energy (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

171

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

172

Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization  

E-Print Network (OSTI)

This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation for the Missouri Division of Energy, identifies and evaluates technological options and describes the current status of various energy resource conservation technologies applicable industry and the economic, institutional and regulatory factors which could affect the implementation and use of these energy technologies. An industrial energy manual has been prepared, identifying technologies with significant potential for application in a specific company or plant. Six site-specific industrial case studies have been performed for industries considered suitable for cogeneration, waste heat recovery or alternative fuel use. These case studies, selected after a formal screening process, evaluate actual plant conditions and economics for Missouri industrial establishments. It is hoped that these case studies will show, by example, some of the elements that make energy resource conservation technologies economically a technically feasible in the real world.

Hencey, S.; Hinkle, B.; Limaye, D. R.

1980-01-01T23:59:59.000Z

173

Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds  

DOE Green Energy (OSTI)

A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

Moyer, M.W.

2001-01-11T23:59:59.000Z

174

MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION  

SciTech Connect

In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

2010-07-18T23:59:59.000Z

175

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model  

SciTech Connect

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

2013-02-01T23:59:59.000Z

176

Heat and water transport in a polymer electrolyte fuel cell electrode  

SciTech Connect

In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

2010-01-01T23:59:59.000Z

177

Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; George, T.G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States); Moyer, M.W. [Oak Ridge Y-12 Plant, Building 9203, MS-8084, Oak Ridge, Tennessee 37831 (United States); Placr, A. [Westinghouse Savannah River Company, Building 305-A, Aiken, South Carolina 29808 (United States)

1998-01-01T23:59:59.000Z

178

Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results.

Reimus, M. A. H.; George, T. G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M. W.; Placr, A. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States); Oak Ridge Y-12 Plant, Building 9203, MS-8084, Oak Ridge, Tennessee 37831 (United States); Westinghouse Savannah River Company, Building 305-A, Aiken, South Carolina 29808 (United States)

1998-01-15T23:59:59.000Z

179

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Price Cap Cost Gas Heat Cap Cost Oil Heat Electric Share GasPrice Cap Cost Gas Heat Cap Cost Oil Heat 3. Summary of WorkEPRI [this study] Cap Cost Elec Heat Oil Price Income Gas

Wood, D.J.

2010-01-01T23:59:59.000Z

180

Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems. Final report  

DOE Green Energy (OSTI)

The overall objective of this project was to determine the best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program. TRACE is an energy and economic analysis program that has been developed by The Trane Company. Results are detailed. (WHK)

Mougin, L.J.

1983-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation  

E-Print Network (OSTI)

In this paper, a parametric study of a PEM fuel cell integrated with a double effect absorption system is carried out in order to study the effect of different operating conditions on the efficiency of the PEM fuel cell, utilization factor of the over all system, COPs of the double effect cooling and heating system, and power and heat output of the PEM fuel cell. It is found that the efficiency of the cell decreases, ranging from 46.2% to 24.4% with increase in membrane thickness and current density, and at the same time the COP increases ranging from 0.65 to 1.52. The heat and power output of the fuel cell decreases from 10.54 kW to 5.12 kW, and 9.12 kW to 6.99 kW, respectively for the increase in membrane thickness. However, when the temperature of the cell is increased the heat and power output increases from 5.12 kW to 10.54 kW, and 6.9 kW to 7.02 kW, respectively. The COP is found to be decreasing ranging from 1.53 to 0.33 with the increase in temperature of the cell and heat input to the HTG. As for the utilization factor, it increases ranging from 17% to 87% with increase in the temperature of the cell and heat input to the HTG. This study reveals that an integrated PEM fuel cell with a double effect absorption cooling systems has a very high potential to be an economical and environmental solution as compared with conventional systems of high electricity and natural gas prices which emit lots of harmful gasses and are not that efficient.

Gadalla, M.; Ratlamwala, T.; Dincer, I.

2010-01-01T23:59:59.000Z

182

Efficiency Maine Residential Appliance Program (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appliance Program (Maine) Appliance Program (Maine) Efficiency Maine Residential Appliance Program (Maine) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Water Heating Program Info Funding Source Efficiency Maine Start Date 10/01/2012 Expiration Date 06/30/2014 State Maine Program Type State Rebate Program Rebate Amount Ductless Heat Pumps: $500 Heat pump water heaters: $300 Provider Efficiency Maine Efficiency Maine offers rebates for the purchase of Energy Star certified water heaters, and ductless heat pumps. Purchases must be made between September 1, 2013 and June 30, 2014. See the program web site for the mail-in rebate forms and to locate a participating retailer. In addition, in partnership with Maine Libraries, Efficiency Maine has made

183

Why don't fuel prices change as quickly as crude oil prices? - FAQ ...  

U.S. Energy Information Administration (EIA)

Prices are determined by demand and supply in our market economy. Fuel demand is affected mainly by economic conditions, and for heating oil, the weather.

184

Table 2. Fuel Oil Consumption and Expeditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Consumption and Expeditures in U.S. Households ... Space Heating - Main or Secondary ... Forms EIA-457 A-G of the 2001 Residential Energy Consumption

185

Experiments in the ISX-B tokamak electron cyclotron heating, ripple studies, pellet fueling, impurity flow reversal and surface physics  

DOE Green Energy (OSTI)

The wide variety of experiments on the ISX-B tokamak includes electron cyclotron heating, ripple effects, hydrogen pellet fueling, impurity flow reversal mechanisms, plasma edge studies, and testing of limiter coatings. The most significant results in each of these areas are discussed.

Isler, R.C. [Oak Ridge National Laboratory (ORNL); Peng, Yueng Kay Martin [ORNL

1981-01-01T23:59:59.000Z

186

Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University  

Science Conference Proceedings (OSTI)

Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

Louay Chamra

2008-09-26T23:59:59.000Z

187

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

188

Near-field heat transfer at the spent fuel test-climax: a comparison of measurements and calculations  

Science Conference Proceedings (OSTI)

The Spent Fuel Test in the Climax granitic stock at the DOE Nevada Test Site is a test of the feasibility of storage and retrieval of spent nuclear reactor fuel in a deep geologic environment. Eleven spent fuel elements, together with six thermally identical electrical resistance heaters and 20 peripheral guard heaters, are emplaced 420 m below surface in a three-drift test array. This array was designed to simulate the near-field effects of thousands of canisters of nuclear waste and to evaluate the effects of heat alone, and heat plus ionizing radiation on the rock. Thermal calculations and measurements are conducted to determine thermal transport from the spent fuel and electrical resistance heaters. Calculations associated with the as-built Spent Fuel Test geometry and thermal source histories are presented and compared with thermocouple measurements made throughout the test array. Comparisons in space begin at the spent fuel canister and include the first few metres outside the test array. Comparisons in time begin at emplacement and progress through the first year of thermal loading in this multi-year test.

Patrick, W.C.; Montan, D.N.; Ballou, L.B.

1981-08-21T23:59:59.000Z

189

Prospects for increased low-grade bio-fuels use in home and commercial heating applications  

E-Print Network (OSTI)

Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

Pendray, John Robert

2007-01-01T23:59:59.000Z

190

Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

191

Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c  

Science Conference Proceedings (OSTI)

This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

192

Green Power Purchasing (Maine) | Open Energy Information  

Open Energy Info (EERE)

Maine Name Green Power Purchasing Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Biomass, Fuel Cells, Fuel Cells using Renewable...

193

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Choice in Home Heating and Cooling D.J. Wood, H. Ruderman,IN HOME HEATING AND COOLING* David J. Wood, Henry RudermanIN HOME HEATING AND COOLING David J. Wood, Henry Ruderman,

Wood, D.J.

2010-01-01T23:59:59.000Z

194

Main Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Lattice Definitions Up: APS Storage Ring Parameters Previous: APS Storage Ring Parameters Main Parameters Storage Ring Parameters Notation Model Value General Parameters Nominal...

195

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Own-Elasticities for Space Conditioning Equipment Equipmentthe choice of a space heat/air conditioning combination. Theutility from air conditioning and space heating alternative

Wood, D.J.

2010-01-01T23:59:59.000Z

196

Fuel Cell Technologies Program - Clean, Efficient, and Reliable Heat and Power for the 21st Century  

Fuel Cell Technologies Publication and Product Library (EERE)

This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential.

197

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

198

REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL  

E-Print Network (OSTI)

and energy balance, different types of fuel reforming including steam reforming, autothermal reforming technologies. Steam reforming, partial oxidation and autothermal reforming are the three major fuel of an activated carbon bed. Prior to enter the SOFC stack, the fuel is pre-reformed (methane is partially

Liso, Vincenzo

199

Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report  

SciTech Connect

The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

William L. ROberts

2012-10-31T23:59:59.000Z

200

Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.  

SciTech Connect

To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D simulations were performed to compare heat transfer predictions from CFD and the correlations. Section III of this document presents the results of this analysis.

Tzanos, C. P.; Dionne, B. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text  

DOE Green Energy (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

202

Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report  

DOE Green Energy (OSTI)

This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

Bhatt, B.L.

1995-09-01T23:59:59.000Z

203

STEO October 2012 - home heating use  

U.S. Energy Information Administration (EIA) Indexed Site

Last year's warm U.S. winter temperatures to give way to Last year's warm U.S. winter temperatures to give way to normal, increasing household heating fuel use U.S. households will likely burn more heating fuels to stay warm this winter compared with last year Average household demand for natural gas, the most common primary heating fuel, is expected to be up 14 percent this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. Demand for electricity will be up 8 percent. And demand for heating oil, used mainly in the Northeast, is expected to be 17 percent higher with propane, used mostly in rural areas, also up 17 percent. The primary reason for the boost in heating fuel demand is weather, which is expected to be 20 to 27 percent colder than last winter's unusually warm temperatures in regions of the country

204

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

SciTech Connect

The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

2003-06-01T23:59:59.000Z

205

Fuel cells for domestic heat and power: are they worth it?.  

E-Print Network (OSTI)

??Fuel cells could substantially decarbonise domestic energy production, but at what cost? It is known that these micro-CHP systems are expensive but actual price data… (more)

Staffell, Iain

2010-01-01T23:59:59.000Z

206

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

207

Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies  

SciTech Connect

As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

Pond, R.B.; Matos, J.E.

1996-05-01T23:59:59.000Z

208

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

209

Fuel Cell Combined Heat and Power Industrial Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kriston P. Brooks (Primary Contact), Siva P. Pilli, Dale A. King Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: (509) 372-4343 Email: kriston.brooks@pnnl.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Contract Number: DE-AC05-76RL01830 Subcontractor: ClearEdge Power, Portland, OR Project Start Date: May 2010 Project End Date: September 2012

210

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

Science Conference Proceedings (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

211

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

E STIMATES OF EMISSIONS FACTORS FOR ALCOHOL FUEL PRODUCTIONOF EMISSIONS FACTORS FOR ALCOHOL FUEL PRODUCTION PLANTS A.

Delucchi, Mark

2003-01-01T23:59:59.000Z

212

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

213

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

of space heating to air conditioning choice; 3) explicitthe presence of central air conditioning, it seems unwise tonot to have central air conditioning. Statistical evidence

Wood, D.J.

2010-01-01T23:59:59.000Z

214

What is the outlook for home heating fuel prices this winter ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

215

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office  

Fuel Cell Technologies Publication and Product Library (EERE)

This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

216

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

217

Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report  

DOE Green Energy (OSTI)

The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

Not Available

1991-09-01T23:59:59.000Z

218

An inverted hydride-fueled pressurized water reactor concept  

E-Print Network (OSTI)

Previous studies conducted at MIT showed that power performance of typical pin geometry PWRs are limited by three main constraints: core pressure drop, critical heat flux (CHF) and fretting phenomena of the fuel rods against ...

Ferroni, Paolo, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

219

Load Preheating Using Flue Gases from a Fuel-Fired Heating System  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by using the heat in furnace flue gases to preheat material coming into the furnace to improve combustion.

Not Available

2006-01-01T23:59:59.000Z

220

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

level, the choice alternatives are cooling and no cooling.to zero in central cooling alternative Income ($1000) in airalternatives are conventional air conditioning and heat pump, given the cooling

Wood, D.J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Home Heating Anderson [21 Oil Price Electric Share Gas ShareBaughman and Joskow [3] Oil Price Gas Price Lin, Hirst,and Cohn [10] Gas Price Oil Price Hartman and Hollyer [8] (

Wood, D.J.

2010-01-01T23:59:59.000Z

222

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

223

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

treatment emissions from corn/ethanol and wood bio- fuelMulti-modal emissions Corn-ethanol production, energy use:biodiesel fuel cycles, and corn/ ethanol fuel cycles. GHGCH

Delucchi, Mark

2003-01-01T23:59:59.000Z

224

Maine PACE Loans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine PACE Loans Maine PACE Loans Maine PACE Loans < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Other Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Buying & Making Electricity Wind Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 04/04/2011 State Maine Program Type PACE Financing Provider Efficiency Maine Note: Maine's PACE program is accepting applications from homeowners in participating municipalities. Applications are submitted online. Property-Assessed Clean Energy (PACE) financing allows property owners to

225

Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors  

Science Conference Proceedings (OSTI)

A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

Dawn Scates

2010-10-01T23:59:59.000Z

226

A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields  

SciTech Connect

In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

Zigh, Ghani; Solis, Jorge; Fort, James A.

2011-01-14T23:59:59.000Z

227

Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources  

DOE Green Energy (OSTI)

This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

Not Available

2008-06-01T23:59:59.000Z

228

Heat and mass transfer design issues in PEM fuel cell hardware  

DOE Green Energy (OSTI)

Dynamic moisture transport within polymeric electrolytes influences PEM fuel cell performance. Lowering electrolyte moisture content leads to decreased ionic transport rates, and other long term effects including polymer degradation. Results illustrate anode dehydration, the effect of water transport concurrent with the proton flux, is significant in single cells at current densities exceeding 500 ma/cm{sup 2}, and at higher temperatures. Evaporation and condensation to and from the gas phase contribute significantly to the cell thermal flows. Several strategies for successful high current density operation of these devices are presented. 9 refs., 7 figs.

Nguyen, Trung; Hedstrom, J.C.; Vanderborgh, N.E. (Los Alamos National Lab., NM (USA))

1989-01-01T23:59:59.000Z

229

An experimental investigation of an air cooling scheme for removing environmentally imposed heat loads from the multiplicity and vertex detector`s main enclosure  

SciTech Connect

This report presents a summary of an experimental investigation of a closed loop air cooling system designed to control the temperature and humidity in the main enclosure of the multiplicity and vertex detector (MVD). Measurements of the cooling air flow rate, the humidity levels inside and outside of the MVD, and the cooling air temperatures were used to assess the performance of the system and to characterize the system limitations and potential assembly problems. The results of the study indicate that several design changes are needed in the final design to meet the temperature and humidity operating requirements. A thorough set of design change recommendations that satisfy these operating criteria completes this report.

Cunningham, R.; Bernardin, J.D.; Simon-Gillo, J.

1997-11-01T23:59:59.000Z

230

Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference  

SciTech Connect

The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

Geiling, D.W. [ed.

1993-08-01T23:59:59.000Z

231

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

fuel or power generation (coal, natural gas, fuel oil,generation mix for power used to compress fossil natural gas.power (% of electricity generation [EVs, hydrogen vehicles]) NGL = natural gas

Delucchi, Mark

2003-01-01T23:59:59.000Z

232

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

produced, is estimated as: DCW = AF ? AW ? ( 1+ FGD ) ? ( 1BTU / TM eq. 98 where: DCW = diesel fuel consumed to

Delucchi, Mark

2003-01-01T23:59:59.000Z

233

Microsoft Word - maine.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

234

Microsoft Word - maine.doc  

Gasoline and Diesel Fuel Update (EIA)

Maine Maine NERC Region(s) ....................................................................................................... NPCC Primary Energy Source........................................................................................... Gas Net Summer Capacity (megawatts) ....................................................................... 4,430 42 Electric Utilities ...................................................................................................... 19 49 Independent Power Producers & Combined Heat and Power ................................ 4,410 25 Net Generation (megawatthours) ........................................................................... 17,018,660 43 Electric Utilities ...................................................................................................... 1,759 49

235

REACTOR MAIN COOLANT LOOP  

SciTech Connect

A parametric study was made for the POPR with temperature gradients of 610 to 670 deg F and 6l0 to 684.5 deg F at organic flow rates of 17.8 x l0/sup 6/ and l4.4 x l0/sup 6/ lbs/hr, respectively; and steam turbine conditions at the throttle of 600 and 650 deg F at 800 to l200 psig. The study was made to obtain the most economical layout of the main heat transfer loop system. (B.O.G.)

Terpe, G.R.; Katz, B.

1961-08-01T23:59:59.000Z

236

Climate Action Plan (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Climate Action Plan (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Climate Policies Provider Department of Environmental Protection In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan

237

Maine/Incentives | Open Energy Information  

Open Energy Info (EERE)

Maine/Incentives Maine/Incentives < Maine Jump to: navigation, search Contents 1 Financial Incentive Programs for Maine 2 Rules, Regulations and Policies for Maine Download All Financial Incentives and Policies for Maine CSV (rows 1 - 91) Financial Incentive Programs for Maine Download Financial Incentives for Maine CSV (rows 1 - 25) Incentive Incentive Type Active Bangor Hydro Electric Company - Residential and Small Commercial Heat Pump Program (Maine) Utility Rebate Program Yes Community Based Renewable Energy Production Incentive (Pilot Program) (Maine) Performance-Based Incentive Yes Efficiency Maine - Home Appliance Rebate Program (Maine) State Rebate Program No Efficiency Maine - Home Energy Savings Program (Maine) State Rebate Program No Efficiency Maine - Replacement Heating Equipment Program (Maine) State Rebate Program No

238

General-purpose heat source: Research and development program. High-siliocon fuel characterization study: Half module impact tests 1 and 2  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because any space mission could experience a launch abort or return from orbit, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs to a variety of fragment-impact, aging, atmospheric reentry, and earth-impact conditions. The evaluations documented in this report are part of an ongoing program to determine the effect of fuel impurities on the response of the heat source to conditions baselined during the Galileo/Ulysses test program. In the first two tests in this series, encapsulated GPHS fuel pellets containing high levels of silicon were aged, loaded into GPHS module halves, and impacted against steel plates. The results show no significant differences between the response of these capsules and the behavior of relatively low-silicon fuel pellets tested previously.

Reimus, M.A.H.; George, T.G.

1996-03-01T23:59:59.000Z

239

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

240

Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

Colella, Whitney G.

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

242

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

relative to its "home charging location" is not known, due to GPS data anomalies. Electric Vehicle Mode (EV) Operation Gasoline fuel economy (mpg) No Fuel Used AC...

243

Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

Ulsh, M.; Wheeler, D.; Protopappas, P.

2011-08-01T23:59:59.000Z

244

Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode  

Science Conference Proceedings (OSTI)

The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

2011-08-16T23:59:59.000Z

245

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

provide the world’s uranium enrichment services. With theseenergy efficiency of uranium enrichment, in mWh-enrichment-gas Motor-vehicle flows Uranium enrichment Agriculture Fuel

Delucchi, Mark

2003-01-01T23:59:59.000Z

246

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

maximum, and restricts regenerative energy to be less thanthe extra energy made available by regenerative braking. Theregenerative braking (for fuel-cell vehicles without electro-chemical energy

Delucchi, Mark

2003-01-01T23:59:59.000Z

247

Efficiency Maine Business Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Business Program Efficiency Maine Business Program Efficiency Maine Business Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $50,000 Program Info State Maine Program Type State Rebate Program Rebate Amount Retrofits: up to 35% of total project cost New construction/Major renovations/Failed equipment replacement: 75% of incremental cost Custom: $0.14/kWh Provider Efficiency Maine The Efficiency Maine Business Program provides cash incentives and free, independent technical advice to help non-residential electric customers

248

Efficiency Maine Residential Lighting Program (Maine) | Open...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Efficiency Maine Residential Lighting Program (Maine) This is the approved revision of this page, as well as being the most...

249

Northern Maine Independent System Administrator (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Northern Maine Independent System Administrator (NMISA) is a non-profit entity responsible for the administration of the northern Maine transmission system and electric power markets in...

250

Small Generator Aggregation (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generator Aggregation (Maine) Generator Aggregation (Maine) Small Generator Aggregation (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Green Power Purchasing Provider Public Utilities Commission This section establishes requirements for electricity providers to purchase

251

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

septage, food waste, and wood wastes. The program also regulates facilities that compost, aerobically digest, anaerobically digest, air dry, heat dry, heat treat, lime...

252

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

change to “Ethanol, E85 corn, C0/NG50/B50”, where the “B50”on five fuels: RFG, M85, E85, LPG, and CNG. The vehicle wasPM E85 CNG LPG “Off-cycle” emissions,

Delucchi, Mark

2003-01-01T23:59:59.000Z

253

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

of charcoal from biomass combustion (g-CO 2 /bu-crop) WB,Aerosols from biomass combustion have constituents otheris about 0.06) Coke combustion Biomass fuel combustion

Delucchi, Mark

2003-01-01T23:59:59.000Z

254

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network (OSTI)

to the building below The sun's heat hits the roof surface A non-residential cool roof Coating for a low. These requirements apply only to buildings that are mechanically heated or cooled. What are the minimum requirementswhat is a cool roof? what is the solar reflectance index (sri)? SRI combines SR and TE

Choate, Paul M.

255

Geothermal Energy Market Study on the Atlantic Coastal Plain. A Review of Recent Energy Price Projections for Traditional Space Heating Fuel 1985-2000  

DOE Green Energy (OSTI)

In order to develop an initial estimate of the potential competitiveness of low temperature (45 degrees C to 100 degrees C) geothermal resources on the Eastern Coastal Plain, the Center for Metropolitant Planning and Research of The Johns Hopkins University reviewed and compared available energy price projections. Series of projections covering the post-1985 period have been made by the Energy Information Administration, Brookhaven National Laboratory, and by private research firms. Since low temperature geothermal energy will compete primarily for the space and process heating markets currently held by petroleum, natural gas, and electricity, projected trends in the real prices for these fuels were examined. The spread in the current and in projected future prices for these fuels, which often serve identical end uses, underscores the influence of specific attributes for each type of fuel, such as cleanliness, security of supply, and governmental regulation. Geothermal energy possesses several important attributes in common with electricity (e.g., ease of maintenance and perceived security of supply), and thus the price of electric space heating is likely to be an upper bound on a competitive price for geothermal energy. Competitiveness would, of course, be increased if geothermal heat could be delivered for prices closer to those for oil and natural gas. The projections reviewed suggest that oil and gas prices will rise significantly in real terms over the next few decades, while electricity prices are projected to be more stable. Electricity prices will, however, remain above those for the other two fuels. The significance of this work rests on the fact that, in market economies, prices provide the fundamental signals needed for efficient resource allocation. Although market prices often fail to fully account for factors such as environmental impacts and long-term scarcity value, they nevertheless embody a considerable amount of information and are the primary guideposts for suppliers and consumers.

Weissbrod, Richard; Barron, William

1979-03-01T23:59:59.000Z

256

Recovering heat when generating power  

Science Conference Proceedings (OSTI)

Intelligent use of heat-recovery stream generators (HRSGs) is vital for the efficient operation of cogeneration plants, which furnish both thermal energy (usually in the form of steam) and electric energy. HRSGs are similarly important in combined-cycle power plants, in which the thermal energy rejected from the primary electric-power-generation step is harnessed (as discussed below) to produce additional electrical energy. In these facilities, the HRSG is typically heated by gas-turbine exhaust. Natural gas is the fuel most widely used for gas turbines in the U.S., whereas fuel oil is the main fuel in other countries. Depending on the amount of steam to be produced, HRSGs for gas-turbine-exhaust applications may be unfired, supplementary-fired or furnace fired. The paper describes these three options; the pressure drop encountered in all three systems; the Cheng cycle; catalytic reduction of nitrogen oxides and CO; and performance testing.

Ganapathy, V.

1993-02-01T23:59:59.000Z

257

Better Buildings: Financing and Incentives: Spotlight on Maine...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Efficiency Maine program participants live in oil-heated homes. Average annual home heating oil consumption in the state is nearly 800 gallons, but early participants...

258

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

259

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials, APPENDIX A: Energy Use and Emissions from the Lifecycle of Diesel-Like Fuels Derived From Biomass  

E-Print Network (OSTI)

LIKE FUELS DERIVED FROM BIOMASS An Appendix to the Report, “LIKE FUELS DERIVED FROM BIOMASS An Appendix to the Report “AFUEL Transesterified, biomass-derived oil or biodiesel can

Delucchi, Mark; Lipman, Timothy

2003-01-01T23:59:59.000Z

260

Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea  

SciTech Connect

Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilled—making the fuel-production process more efficient. The microorganisms don’t require light, so they can be grown anywhere—inside a dark reactor or even in an underground facility.

2010-07-01T23:59:59.000Z

262

Heat Transfer Laboratory of the Savannah River Laboratory  

SciTech Connect

The Heat Transfer Laboratory, recently- constructed adjacent to the main Savannah River Laboratory building, was designed to mock up nuclear heating and cooling of reactor components under a variety- of conditions. Nuclear heating is simulated by electrical resistance heating of test sections with a 3 MW directcurrent power supply. Cooling is provided by water. Three test stations (A, B, and C) are available for testing full-size fuel assemblies, measuring flow instabilities, and for measuring burnout heat fluxes. Safeguards provided in the design of the facility and conservative operating procedures minimize or elimnate potential hazards. (auth)

Knoebel, D.H.; Harris, S.D.

1973-10-01T23:59:59.000Z

263

Ontario Power Generation's 250 kWe Class Atmospheric Solid Oxide Fuel Cell (SOFC): Combined Heat and Power (CHP) Power Plant  

Science Conference Proceedings (OSTI)

This case study documents the demonstration experiences and lessons learned from a 250 kW solid oxide fuel cell system in a combined heat and power demonstration operating on natural gas. The project was a collaboration initiative between Siemens Westinghouse Power Corporation (SWPC) and Ontario Power Generation (OPG) to install and test a first-of-a-kind SOFC system at OPG site in Toronto, Canada. This test and evaluation case study is one of several distributed generation project case studies under res...

2005-01-26T23:59:59.000Z

264

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2011-01-18T23:59:59.000Z

265

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D.; Dumesic, James A.

2013-04-02T23:59:59.000Z

266

Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions  

DOE Patents (OSTI)

A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

2012-04-10T23:59:59.000Z

267

Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors  

SciTech Connect

Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

WRIGHT,STEVEN A.; HOUTS,MICHAEL

2000-11-22T23:59:59.000Z

268

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

through December 2012 Vehicle Usage Overall fuel economy (mpg) 126 Overall electrical energy consumption (AC Whmi) 229 Number of trips 369,118 Total distance traveled (mi)...

269

$sup 238$Pu fuel form activities  

SciTech Connect

This report for STYPu Fuel Form Activities has one main section: SRP-PuFF Facility. The SRL portion of this program has been completed. The program status, budget information, and milestone schedules are discussed. The SRP portion of this report summarizes production of STYPuO2 fuel forms for use in radioisotopic thermoelectric generators (RTG's) in the Plutonium Fuel Form (Puff) Facility at the Savannah River Plant. The PuFF Facility has been placed in a production readiness mode of operation pending funding of additional heat source programs.

1987-06-01T23:59:59.000Z

270

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

271

FUEL ROD CLUSTERS  

DOE Patents (OSTI)

A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

Schultz, A.B.

1959-08-01T23:59:59.000Z

272

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar thermal rebate program maintains a list of Efficiency Maine registered vendorsinstallers. July 12, 2013 Solar Easements Maine allows for the creation of easements to...

273

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine May 27, 2011 EA-1792: DOE...

274

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine September 26, 2011 EA-1792:...

275

Microsoft PowerPoint - 2011WinterFuels_finalv3.pptx [Read-Only]  

Gasoline and Diesel Fuel Update (EIA)

Sh Sh t T d Wi t F l O tl k EIA Short-Term and Winter Fuels Outlook f for Winter Fuels Outlook Conference National Association of State Energy Officials (NASEO) O b 12 2011 | h C October 12, 2011 | Washington, DC by www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Howard Gruenspecht, Acting Administrator Overview * EIA expects higher average fuel bills this winter heating season for heating oil, propane, and natural gas, but little change in electricity bills. y * Higher fuel prices are the main driver - 10% higher heating oil prices (than last winter) g g p ( ) - 7% higher propane prices - 4% higher residential natural gas prices - 1% higher electricity prices * Projected average expenditures for heating oil users are at their highest level ever. 2 Howard Gruenspecht, Winter Fuels Outlook

276

White Pine Co. Public School System Biomass Conversion Heating Project  

DOE Green Energy (OSTI)

The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

Paul Johnson

2005-11-01T23:59:59.000Z

277

White Pine Co. Public School System Biomass Conversion Heating Project  

SciTech Connect

The White Pine County School District and the Nevada Division of Forestry agreed to develop a pilot project for Nevada using wood chips to heat the David E. Norman Elementary School in Ely, Nevada. Consideration of the project was triggered by a ''Fuels for Schools'' grant that was brought to the attention of the School District. The biomass project that was part of a district-wide energy retrofit, called for the installation of a biomass heating system for the school, while the current fuel oil system remained as back-up. Woody biomass from forest fuel reduction programs will be the main source of fuel. The heating system as planned and completed consists of a biomass steam boiler, storage facility, and an area for unloading and handling equipment necessary to deliver and load fuel. This was the first project of it's kind in Nevada. The purpose of the DOE funded project was to accomplish the following goals: (1) Fuel Efficiency: Purchase and install a fuel efficient biomass heating system. (2) Demonstration Project: Demonstrate the project and gather data to assist with further research and development of biomass technology; and (3) Education: Educate the White Pine community and others about biomass and other non-fossil fuels.

Paul Johnson

2005-11-01T23:59:59.000Z

278

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

279

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network (OSTI)

for Safety and Grid Interface Direct Fuel Cell Module: FuelCell Energy, the FuelCell Energy logo, Direct Fuel generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Power with biofuels ·Grid connected power generationgeneration ­High Efficiency Grid support

280

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network (OSTI)

- tions, distributed power generation, and cogeneration (in which excess heat released during electricity the imported petroleum we currently use in our cars and trucks. Why Fuel Cells? Fuel cells directly convert the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only

282

The potential for Eucalyptus as a wood fuel in the UK A.D. Leslie a,  

E-Print Network (OSTI)

The potential for Eucalyptus as a wood fuel in the UK A.D. Leslie a, , M. Mencuccini b,1 , M. Perks for utilising woody biomass, grown under short rotation forestry management systems, to produce electricity or heat. There are benefits to using biomass in generating heat and power the main environmental benefit

Mencuccini, Maurizio

283

Department of Energy - Maine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

approved by the authorized agency of the Federal Government. No nuclear fission thermal power plant licensee may store or maintain in on-site spent fuel element pools or...

284

Heating Oil and Propane Update  

Reports and Publications (EIA)

Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. )

Information Center

285

Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and  

E-Print Network (OSTI)

Performance comparison between partial oxidation and methane steam reforming processes for solid recirculation are used along with steam methane reforming. Further Steam Methane Reforming process produces Cell fueled by natural gas with two different types of pre-reforming systems, namely Steam Reforming

Liso, Vincenzo

286

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

287

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Nuclear Fuel ..to characterize the nuclear fuel cycle (Wu et al. Renewableby the heat content of nuclear fuel. In this analysis we use

Coughlin, Katie

2013-01-01T23:59:59.000Z

288

Natural Fueling of a Tokamak Fusion Reactor  

E-Print Network (OSTI)

A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is discussed. In H-mode plasmas dominated by ion- temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward towards the core. This mechanism is due to the quasi-neutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection or supersonic gas jets is augmented by an inward pinch of could DT fuel. The natural fueling mechanism is demonstrated using the three-dimensional toroidal electromagnetic gyrokinetic turbulence code GEM and is analyzed using quasilinear theory. Profiles similar to those used for conservative ITER transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rates and energy transport.

Wan, Weigang; Chen, Yang; Perkins, Francis W

2009-01-01T23:59:59.000Z

289

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

1996-01-01T23:59:59.000Z

290

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Overall AC electrical energy consumption (AC Wh/mi) 170 Average Trip Distance 12.4 Total distance traveled (mi) 2,041,556 Average Ambient Temperature (deg F) 64.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 345 Distance traveled (mi) 1,002,495 Percent of total distance traveled 49.1% Average driving style efficiency (distance weighted)¹ 80% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 1,039,061 Percent of total distance traveled 50.9% Average driving style efficiency (distance weighted)¹ 78% City³ Highway³ Percent of miles in EV operation (%) 66.2% 31.0% Percent Number of trips 86.0% 14.0% Average trip distance (mi)

291

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

1.1 1.1 Overall AC electrical energy consumption (AC Wh/mi) 182 Average Trip Distance 11.8 Total distance traveled (mi) 355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 416 Distance traveled (mi) 155,080 Percent of total distance traveled 43.7% Average driving style efficiency (distance weighted)¹ 69% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 34.4 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 199,978 Percent of total distance traveled 56.3% Average driving style efficiency (distance weighted)¹ 74% City³ Highway³ Percent of miles in EV operation (%) 60.5% 27.0% Percent Number of trips 86.3% 13.7% Average trip distance (mi)

292

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

6.6 6.6 Overall AC electrical energy consumption (AC Wh/mi) 171 Average Trip Distance 11.9 Total distance traveled (mi) 370,316 Average Ambient Temperature (deg F) 53.8 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 371 Distance traveled (mi) 170,860 Percent of total distance traveled 46.1% Average driving style efficiency (distance weighted)¹ 75% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 199,456 Percent of total distance traveled 53.9% Average driving style efficiency (distance weighted)¹ 77% City³ Highway³ Percent of miles in EV operation (%) 63.2% 28.1% Percent Number of trips 86.7% 13.3% Average trip distance (mi)

293

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Overall AC electrical energy consumption (AC Wh/mi) 157 Average Trip Distance 12.3 Total distance traveled (mi) 407,245 Average Ambient Temperature (deg F) 67.9 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 338 Distance traveled (mi) 189,426 Percent of total distance traveled 46.5% Average driving style efficiency (distance weighted)¹ 82% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.5 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 217,819 Percent of total distance traveled 53.5% Average driving style efficiency (distance weighted)¹ 79% City³ Highway³ Percent of miles in EV operation (%) 65.2% 28.3% Percent Number of trips 86.5% 13.5% Average trip distance (mi)

294

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

73.7 73.7 Overall AC electrical energy consumption (AC Wh/mi) 170 Average Trip Distance 12.6 Total distance traveled (mi) 370,987 Average Ambient Temperature (deg F) 71.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 341 Distance traveled (mi) 185,282 Percent of total distance traveled 49.9% Average driving style efficiency (distance weighted)¹ 83% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.9 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 185,705 Percent of total distance traveled 50.1% Average driving style efficiency (distance weighted)¹ 79% City³ Highway³ Percent of miles in EV operation (%) 68.0% 32.4% Percent Number of trips 85.4% 14.6% Average trip distance (mi)

295

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Overall AC electrical energy consumption (AC Wh/mi) 175 Average Trip Distance 12.2 Total distance traveled (mi) 272,366 Average Ambient Temperature (deg F) 54.1 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 368 Distance traveled (mi) 129,389 Percent of total distance traveled 47.5% Average driving style efficiency (distance weighted)¹ 75% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.0 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 142,977 Percent of total distance traveled 52.4% Average driving style efficiency (distance weighted)¹ 77% City³ Highway³ Percent of miles in EV operation (%) 65.1% 31.1% Percent Number of trips 85.5% 14.5% Average trip distance (mi)

296

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

2.5 2.5 Overall AC electrical energy consumption (AC Wh/mi) 166 Average Trip Distance 12.1 Total distance traveled (mi) 385,849 Average Ambient Temperature (deg F) 78.2 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 332 Distance traveled (mi) 193,336 Percent of total distance traveled 50.1% Average driving style efficiency (distance weighted)¹ 85% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.2 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 192,512 Percent of total distance traveled 49.9% Average driving style efficiency (distance weighted)¹ 79% City³ Highway³ Percent of miles in EV operation (%) 67.2% 31.5% Percent Number of trips 86.7% 13.3% Average trip distance (mi)

297

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

7.8 7.8 Overall AC electrical energy consumption (AC Wh/mi) 180 Average Trip Distance 12.8 Total distance traveled (mi) 346,409 Average Ambient Temperature (deg F) 51.5 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 384 Distance traveled (mi) 161,982 Percent of total distance traveled 46.8% Average driving style efficiency (distance weighted)¹ 74% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 36.1 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 184,427 Percent of total distance traveled 53.2% Average driving style efficiency (distance weighted)¹ 76% City³ Highway³ Percent of miles in EV operation (%) 63.8% 28.4% Percent Number of trips 85.7% 14.3% Average trip distance (mi)

298

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Overall AC electrical energy consumption (AC Wh/mi) 174 Average Trip Distance 12.6 Total distance traveled (mi) 1,243,988 Average Ambient Temperature (deg F) 63.2 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 352 Distance traveled (mi) 615,161 Percent of total distance traveled 49.5% Average driving style efficiency (distance weighted)¹ 80% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.4 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 628,828 Percent of total distance traveled 50.5% Average driving style efficiency (distance weighted)¹ 78% City³ Highway³ Percent of miles in EV operation (%) 66.8% 31.7% Percent Number of trips 85.5% 14.5% Average trip distance (mi)

299

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

71.0 71.0 Overall AC electrical energy consumption (AC Wh/mi) 169 Average Trip Distance 12.5 Total distance traveled (mi) 1,661,080 Average Ambient Temperature (deg F) 67.1 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Wh/mi) 340 Distance traveled (mi) 826,775 Percent of total distance traveled 49.8% Average driving style efficiency (distance weighted)¹ 81% Extended Range mode operation (ERM) Gasoline fuel economy (mpg) 35.7 AC electrical energy consumption (AC Wh/mi) No Elec. Used Distance traveled (mi) 834,306 Percent of total distance traveled 50.2% Average driving style efficiency (distance weighted)¹ 78% City³ Highway³ Percent of miles in EV operation (%) 66.9% 31.6% Percent Number of trips 85.8% 14.2% Average trip distance (mi)

300

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

302

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heating & Cooling Systems Water Heating Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood-...

303

Forestry Policies (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Forestry Policies (Maine) < Back Eligibility Commercial Agricultural Program Info State Maine Program Type Environmental Regulations Provider Maine Forest Service Maine has diverse forest lands which support a diverse and strong forest products industry. The vast majority of forest lands in the state are privately owned. The Maine Forest Service completed its State Forest Assessment and Strategy in 2010, a plan that includes the goal of enhanced benefit from the production of renewable energy using wood and wood wastes. The combination of markets including a growing biomass energy industry and increased wood heating have created significant demand for wood material in Maine. The Maine Forest Service together with the University of Maine issued its "Woody Biomass Retention Guidelines" in 2010. This document

304

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

DOE Green Energy (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

305

Alcohol fuel conversion apparatus  

Science Conference Proceedings (OSTI)

This patent describes an alcohol fuel conversion apparatus for internal combustion engines comprising: fuel storage means for containing an alcohol fuel; primary heat exchange means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchange means; a heat source for heating the primary heat exchange means; pressure relief valve means in closed fluid communication with the primary heat exchange means for releasing heated pressurized alcohol into an expansion chamber; converter means including the expansion chamber in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; fuel injection means in fluid communication with the converter means for injecting vaporized alcohol into the cylinders of an internal combustion engine for mixing with air within the cylinders for proper combustion; and pump means for pressurized pumping of alcohol from the 23 fuel storage means to the primary heat exchanger means, converter means, fuel injector means, and to the engine.

Carroll, B.I.

1987-12-08T23:59:59.000Z

306

Thermochemical Fuel Reformer Development Project  

Science Conference Proceedings (OSTI)

Thermochemical Fuel Reforming (TCFR) is the recovery of internal combustion engine exhaust heat to chemically convert natural gas into a higher calorific flow fuel stream containing a significant concentration of hydrogen. This technique of recycling the engine exhaust heat can reduce fuel use (heat rate). In addition, the hydrogen enhanced combustion also allows stable engine operation at a higher air-fuel ratio (leaner combustion) which results in very low NOx production. This interim report covers two...

2006-12-11T23:59:59.000Z

307

Clean Cities: Maine Clean Communities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Clean Communities Coalition Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Maine Clean Communities coalition Contact Information Steven Linnell 207-774-9891 slinnell@gpcog.org Coalition Website Clean Cities Coordinator Steven Linnell Photo of Steven Linnell Steven Linnell has been the coordinator of the statewide Maine Clean Communities coalition since its designation in 1997. The coalition's greatest achievement so far has been helping the Greater Portland METRO build the first fast-fill compressed natural gas (CNG) fueling infrastructure in the state, which currently serves 13 CNG transit buses and four CNG school buses. The coalition has also played a role in shaping

308

"Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Midwest Census Region, 2005" 4 Space Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N" "Have Main Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Main Space Heating Equipment",109.1,25.6,17.7,7.9 "Have Equipment But Do Not Use It",0.8,"N","N","N" "Main Heating Fuel and Equipment"

309

"Table HC14.4 Space Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by West Census Region, 2005" 4 Space Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Space Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Space Heating Equipment",1.2,0.7,"Q",0.7 "Have Main Space Heating Equipment",109.8,23.4,7.5,16 "Use Main Space Heating Equipment",109.1,22.9,7.4,15.4 "Have Equipment But Do Not Use It",0.8,0.6,"Q",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,14.7,4.6,10.1 "Central Warm-Air Furnace",44.7,11.4,4,7.4

310

Carbon footprints of heating oil and LPG heating systems  

SciTech Connect

For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

Johnson, Eric P., E-mail: ejohnson@ecosite.co.uk

2012-07-15T23:59:59.000Z

311

Maine Natural Gas Summary  

Annual Energy Outlook 2012 (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

312

,"Maine Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Prices",11,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

313

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

314

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

315

Natural Resources Protection Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protection Act (Maine) Protection Act (Maine) Natural Resources Protection Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection Maine's Department of Environmental Protection requires permits for most

316

EIA/NASEO Winter Fuels Conference - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Heating Fuel Stock Cycles. ... Retail Heating Oil Prices Should Be Lower This Year. Heating Degree-Days. Normal Weather Will Bring Higher Demand. Distillate Production.

317

Investigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical  

E-Print Network (OSTI)

The low-grade heat from the fuel cell is utilized at the domestic hot water storage tank with a double The low-grade fuel cell heat feeds a heat exchanger to supply domestic hot water requirementsInvestigation of Fuel Cell System Performance and Operation: A Fuel Cell as a Practical Distributed

318

Wastewater Discharge Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

319

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

320

Climate Action Plan (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

In June 2003, the Maine State Legislature passed a bill charging the Department of Environmental Protection (DEP) with developing an action plan with the goal of reducing greenhouse gas (GHG)...

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2010 CX-001188: Categorical Exclusion Determination Deep C Wind Consortium National Research Program CX(s) Applied: B3.1 Date: 03212010 Location(s): Maine Office(s): Energy...

322

Maine Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

323

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects. May 31, 2013 Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Energy Department-Supported Project Deploys First of its Kind...

324

Maine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Golden Field Office May 18, 2010 CX-002374: Categorical Exclusion Determination Maine Tidal Power Initiative CX(s) Applied: B3.1, B3.3, B3.6, A9 Date: 05182010 Location(s):...

325

Main Generator Rotor Maintenance  

Science Conference Proceedings (OSTI)

Main generator rotors are constructed and designed to provide decades of reliable and trouble-free operation. However, a number of incidences have occurred over the years that can adversely impact reliable operation of generator rotors and, ultimately, production of electrical power. This report is a guide for power plant personnel responsible for reliable operation and maintenance of main generators. As a guide, this report provides knowledge and experience from generator experts working at power plants...

2006-11-27T23:59:59.000Z

326

HEAT TRANSFER MEANS  

DOE Patents (OSTI)

A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

Fraas, A.P.; Wislicenus, G.F.

1961-07-11T23:59:59.000Z

327

_MainReport  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage Usage Overall fuel economy (mpg) 139 Overall electrical energy consumption (AC Wh/mi) 293 Number of trips¹ 76,425 Total distance traveled (mi) 609,737 Avg trip distance (mi) 8.0 Avg distance traveled per day when the vehicle was driven (mi) 36.4 Avg number of trips between charging events 3.0 Avg distance traveled between charging events (mi) 24.1 Avg number of charging events per day when the vehicle was driven 1.5

328

Fuel Cell 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell 101 Fuel Cell 101 Don Hoffman Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel Cell is an electrochemical power source * It supplies electricity by combining hydrogen and oxygen electrochemically without combustion. * It is configured like a battery with anode and cathode. * Unlike a battery, it does not run down or require recharging and will produce electricity and will produce electricity, heat and water as long as fuel is supplied. 2H + + 2e - O 2 + 2H + + 2e - 2H 2 O H 2 Distribution Statement A: Approved for public release; distribution is unlimited. 2 FUEL FUEL CONTROLS Fuel Cell System HEAT & WATER CLEAN CLEAN EXHAUST EXHAUST

329

Heat reclaimer  

SciTech Connect

An apparatus for reclaiming heat from the discharge gas from a combustion fuel heating unit, which has: inlet and outlet sections; an expansion section whose circumference gradually increases in the direction of flow, thereby providing an increased area for heat transfer; flow splitter plates which lie within and act in conjunction with the expansion section wall to form flow compartments, which flow splitter plates and expansion section wall have a slope, with respect to the centroidal axis of the flow compartment not exceeding 0.1228, which geometry prevents a separation of the flow from the enclosing walls, thereby increasing heat transfer and maintaining the drafting function; and a reduction section which converges the flow to the outlet section.

Horkey, E.J.

1982-06-29T23:59:59.000Z

330

Maine.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

331

Site Location of Development Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location of Development Act (Maine) Location of Development Act (Maine) Site Location of Development Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Site Location of Development Act regulates the locations chosen for

332

Mandatory Shoreland Zoning Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Shoreland Zoning Act (Maine) Mandatory Shoreland Zoning Act (Maine) Mandatory Shoreland Zoning Act (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Mandatory Shoreline Zoning Act functions as a directive for

333

Fuel selection study for Fort Leonard Wood, Missouri. Volume 2. Final report  

SciTech Connect

The objectives of the Fuel Selection Study for Fort Leonard Wood, Missouri were: (1) to evaluate specified sources of heating energy - electric or fuel oil, and the necessary associated conversion work for meeting the heating requirements of selected buildings at Fort Leonard Wood, Missouri; and (2) to determine the impact on energy usage and cost savings which would result from increasing insulation levels in the building under review. The buildings considered in this study included 2,862 family housing units, 5 Bachelor Officers' Quarters, an Enlisted Women's Barracks, the Medical Detachment Building, and the Heating Plant supporting the main Fort laundry.

1975-05-01T23:59:59.000Z

334

Fuel selection study for Fort Leonard Wood, Missouri. Volume 1. Final report  

SciTech Connect

The objectives of the Fuel Selection Study for Fort Leonard Wood, Missouri were: (1) to evaluate specified sources of heating energy - electric or fuel oil, and the necessary associated conversion work for meeting the heating requirements of selected buildings at Fort Leonard Wood, Missouri; and (2) to determine the impact on energy usage and cost savings which would result from increasing insulation levels in the building under review. The buildings considered in this study included 2,862 family housing units, 5 Bachelor Officers' Quarters, an Enlisted Women's Barracks, the Medical Detachment Building, and the Heating Plant supporting the main Fort laundry.

1975-05-01T23:59:59.000Z

335

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

336

Miniature ceramic fuel cell  

DOE Patents (OSTI)

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

337

High heating oil prices discourage heating oil supply contracts ...  

U.S. Energy Information Administration (EIA)

EIA's Short-Term Energy and Winter Fuels Outlook expects the U.S. home heating oil price will average $3.71 per gallon for the season, ...

338

Main Title 32pt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Risk Assessment and Consequence Analysis for Risk Assessment and Consequence Analysis for Routes from H.B. Robinson NPP, SC to Eccles, NV Dr. Ruth F. Weiner Sandia National Laboratories Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Additional Informative Viewgraphs Analysis of Incident-Free Routine Transportation * Dose to all rail crews passing consist = 0.018 - 0.026 Person-Rem Rail yard worker scenario: * 4 spent fuel rail cars all at the regulatory limit. * Stop in rail yard is for 10 hours. * Rail yard has 20 people. * All personnel are between 3 - 400 meters of cask.

339

"Table HC15.4 Space Heating Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Four Most Populated States, 2005" 4 Space Heating Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Space Heating Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Main Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Main Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have Equipment But Do Not Use It",0.8,"N","Q","N",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,3.8,0.4,3.8,8.4

340

"Table HC10.4 Space Heating Characteristics by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by U.S. Census Region, 2005" 4 Space Heating Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Main Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Main Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have Equipment But Do Not Use It",0.8,"N","N","Q",0.6 "Main Heating Fuel and Equipment" "Natural Gas",58.2,11.4,18.4,13.6,14.7

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cool Roofs and Heat Islands  

NLE Websites -- All DOE Office Websites (Extended Search)

(510) 486-7494 Links Heat Island Group The Cool Colors Project Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and...

342

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

343

Geothermal Energy Market Study on the Atlantic Coastal Plain: a review of recent energy price projections for traditional space and process heating fuels in the post-1985 period  

Science Conference Proceedings (OSTI)

The most recent price projections that have been published for distillate heating fuels, natural gas, and electricity are reviewed. The projections include those made by EIA, DOE, BNL, Foster Associates, and SRI International. Projected distillate prices for 1990 range from Brookhaven's worst case real price of $8.80 per million Btu's to EIA's most optimistic case of $4.10 for that year compared to $6.10 prevailing in September 1979. Natural gas prices projected for 1990 fall within a more narrow band ranging up to $4.50 (Brookhaven's basecase) compared to $4.20 in September 1979. Electricity prices projected for 1990 range to $17.00 per million Btu's compared to the September 1979 average price of $15.50. Regional price differentials show the Northeast paying above national average prices for oil, natural gas, and electricity. The West enjoys the lowest energy price levels overall. Oil prices are relatively uniform across the country, while natural gas and electricity prices may vary by more than 50% from one region to another.

Barron, W.

1980-04-01T23:59:59.000Z

344

Main Page - NWChem  

NLE Websites -- All DOE Office Websites (Extended Search)

Log in / create account Log in / create account Search Go Search Navigation Main page Science Benchmarks Download Code Documentation News Community Developers SEARCH TOOLBOX LANGUAGES Forum Menu Page Discussion View source History modified on 17 May 2013 at 21:51 *** 6,254,554 views Main Page From NWChem Jump to: navigation, search NWChem: Delivering High-Performance Computational Chemistry caption NWChem aims to provide its users with computational chemistry tools that are scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources from high-performance parallel supercomputers to conventional workstation clusters. NWChem software can handle Biomolecules, nanostructures, and solid-state From quantum to classical, and all combinations

345

Maine coast winds  

DOE Green Energy (OSTI)

The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

Avery, Richard

2000-01-28T23:59:59.000Z

346

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

347

Willamina Project Report : Indirect-Fired, Biomass-Fueled, Combined-Cycle, Gas Turbine Power Plant Using a Ceramic Heat Exchanger. Volume 1. Conceptual Plant Design and Analysis. Final report. [Contains Glossary  

SciTech Connect

A new technology for a wood-fueled electrical generation plant was evaluated. The proposed plant utilizes an indirectly fired gas turbine (IFGT) using a ceramic heat exchanger for high efficiency, due to its high temperature capability. The proposed plant utilizes a wood-fueled furnace with a ceramic heat exchanger to heat compressed air for a gas turbine. The configuration proposed is a combined cycle power plant that can produce 6 to 12 MW, depending upon the amount of wood used to supplementally fire a heat recovery steam generator (HRSG), which in turn powers a steam turbine. Drawings, specifications, and cost estimates based on a combined cycle analysis and wood-fired HRSG were developed. The total plant capital cost was estimated to be $13.1 million ($1640/kW). The heat rate for a 8-MW plant was calculated to be 10,965 Btu/kW when using wood residues with a 42% moisture content. Levelized electric energy costs were estimated to be 6.9 cents/kWh.

F.W. Braun Engineers.

1984-05-01T23:59:59.000Z

348

Spent Fuel Pool Accident Characteristics  

Science Conference Proceedings (OSTI)

Spent fuel pools (SFPs) at nuclear reactor sites contain used fuel assemblies, control rods, used radioactive sources, and used instrumentation. Cooling of the used fuel is required to remove the decay heat generated by radioactive decay.BackgroundThe SFPs include heat removal systems to provide methods to cool the used fuel and inventory makeup systems as backup methods to preserve water inventory if the SFP cooling system is ineffective. These two methods ...

2013-05-27T23:59:59.000Z

349

Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy  

E-Print Network (OSTI)

· Bottom-up R&D study financed by the district heating consumers · Prepared by an independent team increase of district heating · optimal zoning of district heating and natural gas networks based on overall · district heating shifts from fossil fuel boilers to CHP and renewable energy · This legislation ensures

350

Integrated fuel processor development.  

DOE Green Energy (OSTI)

The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed.

Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

2001-12-04T23:59:59.000Z

351

2009 Winter Fuels Outlook Conference  

U.S. Energy Information Administration (EIA)

Billion cubic feet Normal range Propane fuel bills expected to fall in all regions ... U.S. heating oil retail price forecast to average about the ...

352

Wind Energy Act (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Act (Maine) Wind Energy Act (Maine) Wind Energy Act (Maine) < Back Eligibility Developer Utility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Access Policy Siting and Permitting The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the regulatory process for

353

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

Total Fossil Fuels 6,7: ... 7 The fossil-fuels heat rate is used as the thermal conversion factor for ... approximate the quantity of fossil fuels replaced by these ...

354

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

355

Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells  

E-Print Network (OSTI)

Proton Exchange Membrane Fuel Cell , Numerical Heat Transferof Polymer Electrolyte Fuel Cells Using a Two-EquationExchange Membrane Fuel Cells 2. Absolute Permeability ,

Weber, Adam Z.

2008-01-01T23:59:59.000Z

356

Fuel Mix and Emissions Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure Eligibility Utility Program Information Maine Program Type Generation Disclosure Maine's 1997 restructuring...

357

Better Buildings Neighborhood Program: Maine  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Maine on Twitter Bookmark Better Buildings Neighborhood Program: Maine on Google Bookmark Better Buildings Neighborhood Program: Maine on Delicious Rank Better...

358

Active microchannel heat exchanger  

DOE Patents (OSTI)

The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The active microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

Tonkovich, Anna Lee Y. (Pasco, WA); Roberts, Gary L. (West Richland, WA); Call, Charles J. (Pasco, WA); Wegeng, Robert S. (Richland, WA); Wang, Yong (Richland, WA)

2001-01-01T23:59:59.000Z

359

The Fork+ Developmental Measurement Campaign at Maine Yankee  

Science Conference Proceedings (OSTI)

The use of burnup credit in the design of spent-fuel storage and transportation systems significantly reduces risks and decreases costs. However, approval of storage and transportation designs using burnup credit will likely require independent measurement of the spent-fuel assembly burnup. EPRI's Fork(plus) system has been designed for measuring spent-fuel burnup without recourse to reactor records. This report presents results from testing of the Fork(plus) system prototype at the Maine Yankee reactor ...

1999-06-22T23:59:59.000Z

360

BWR Fuel Crud Characteristics and Database  

Science Conference Proceedings (OSTI)

Excessive crud deposition on fuel rods can degrade heat transfer, and therefore fuel performance in light water reactors. Utilities have reported heavy crud deposition and crud-induced fuel failures in some BWRs. The EPRI Fuel Reliability Program (FRP) has funded several inspection campaigns to evaluate how changes in water chemistry, fuel design, and operational conditions impact fuel crud characteristics and performance. The extent of buildup and characteristics of crud on fuel rod surfaces correlates,...

2008-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gas Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Utilities (Maine) Gas Utilities (Maine) Gas Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Siting and Permitting Provider Public Utilities Commission Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one customer when any portion

362

Small Power Production and Cogeneration (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) Small Power Production and Cogeneration (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Generating Facility Rate-Making Provider Maine Public Utilities Commission Maine's Small Power Production and Cogeneration statute says that any small

363

Steam reforming of fuel to hydrogen in fuel cells  

DOE Patents (OSTI)

A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

1984-01-01T23:59:59.000Z

364

Steam reforming of fuel to hydrogen in fuel cell  

DOE Patents (OSTI)

A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Young, J.E.; Fraioli, A.V.

1983-07-13T23:59:59.000Z

365

Seventh Edition Fuel Cell Handbook  

DOE Green Energy (OSTI)

Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

NETL

2004-11-01T23:59:59.000Z

366

CONTROL SYSTEM FOR SOLAR HEATING and COOLING  

E-Print Network (OSTI)

the use of heat Heat exchangers between the collectors andlocated access hole. The heat exchanger for the domestic hotmains is preheated by a heat exchanger immersed in the main

Dols, C.

2010-01-01T23:59:59.000Z

367

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents (OSTI)

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

368

Equilibrium Modeling of Combined Heat and Power deployment in Philadelphia.  

E-Print Network (OSTI)

??Combined heat and power (CHP) generates electricity and heat from the same fuel source and can provide these services at higher equivalent conversion efficiency relative… (more)

Govindarajan, Anand

2013-01-01T23:59:59.000Z

369

Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Programs (Maine) Efficiency Maine Business Programs (Unitil Gas) - Commercial Energy Efficiency Programs (Maine) < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info State Maine Program Type Utility Rebate Program Rebate Amount Furnaces; $1000 Condensing Boilers: $1500 - $4500 Non-Condensing Boilers: $750-$3,000 Steam Boiler: $800 or $1/MBtuh Infrared Unit Heaters: $500 Natural Gas Warm-Air Unit Heaters: $600 Custom/ECM: Contact Unitil Cooking Equipment: $600-$2000 Provider Rebate Program Efficiency Maine offers natural gas efficiency rebates to Unitil customers.

370

Laser ablation based fuel ignition  

DOE Patents (OSTI)

There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

Early, J.W.; Lester, C.S.

1998-06-23T23:59:59.000Z

371

Fossil fuel combined cycle power generation method  

SciTech Connect

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D. (Knoxville, TN); Armstrong, Timothy R. (Clinton, TN); Judkins, Roddie R. (Knoxville, TN)

2008-10-21T23:59:59.000Z

372

Efficiency Maine Multifamily Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Multifamily Efficiency Program Efficiency Maine Multifamily Efficiency Program Efficiency Maine Multifamily Efficiency Program < Back Eligibility Multi-Family Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Maine Program Type State Rebate Program Rebate Amount Upon approval of Energy Reduction Plan: $100 prescriptive path per apartment unit; $200 modeling path per apartment unit Upon approval of installations: $1400 all paths or 50% of installed cost (whichever is less) Efficiency Maine's Multifamily Efficiency Program offers incentives to multifamily residency building owners for improving energy efficiency. Residencies must have 5 to 20 apartment units to qualify for this rebate.

373

Traditional vs. alternative energy house heating source  

Science Conference Proceedings (OSTI)

The article discusses the economic analysis of two different heating systems. The first uses fossil fuel (Liquidized naphtha gas- LNG) to heat the building and domestic hot water. The second uses geothermal energy to do the same job. In both systems ... Keywords: borehole heat exchanger, economic analysis, geothermal energy, heat pump, heating system, net present value

S. Poberžnik; D. Goricanec; J. Krope

2007-05-01T23:59:59.000Z

374

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

Not Available

2011-10-01T23:59:59.000Z

375

Efficiency Maine Business Program (Maine) | Open Energy Information  

Open Energy Info (EERE)

Eligible Technologies Central Air conditioners, Chillers, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Heat pumps, Lighting, Lighting ControlsSensors,...

376

Fuel cell gas management system  

SciTech Connect

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

377

Efficiency Maine Trust - Renewable Resource Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund Efficiency Maine Trust - Renewable Resource Fund < Back Eligibility Institutional Nonprofit Residential Rural Electric Cooperative Schools Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State Maine Program Type Public Benefits Fund Maine's public benefits fund for renewable energy was established as part of the state's electric-industry restructuring legislation, enacted in May 1997. The law directed the Maine Public Utilities Commission (PUC) to develop a voluntary program allowing customers to contribute to a fund that supports renewable-energy projects. This fund was originally known as the Renewable Resource Fund (now it is part of Efficiency Maine Trust).

378

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

379

Main  

NLE Websites -- All DOE Office Websites (Extended Search)

Way, Berkeley, CA Reception (SSL Addition Lobby and Conference Room) THEMIS Spacecraft Tour Saturday, June 3, 2006 8:30 AM Pers Hall; 50A-5132; 50B-4205; Pers Hall Annex; 2-100B...

380

International WoodFuels LLC | Open Energy Information  

Open Energy Info (EERE)

WoodFuels LLC WoodFuels LLC Jump to: navigation, search Name International WoodFuels LLC Place Portland, Maine Zip 4101 Product Maine-based pellet producer and installer of commercial wood pellet heating systems. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A GUIDE TO FUEL PERFORMANCE  

Science Conference Proceedings (OSTI)

Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

LITZKE,W.

2004-08-01T23:59:59.000Z

382

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

383

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

78 Overall DC electrical energy consumption (DC Whmi) 37 Total number of trips 1,084 Total distance traveled (mi) 9,876 Trips in Charge Depleting (CD) mode Gasoline fuel...

384

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

36 Overall DC electrical energy consumption (DC Whmi) 11 Total number of trips 1,083 Total distance traveled (mi) 12,432 Trips in Charge Depleting (CD) mode Gasoline fuel...

385

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

46 Overall DC electrical energy consumption (DC Whmi) 25 Total number of trips 1,425 Total distance traveled (mi) 15,478 Trips in Charge Depleting (CD) mode Gasoline fuel...

386

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

90 Overall DC electrical energy consumption (DC Whmi) 36 Total number of trips 700 Total distance traveled (mi) 6,684 Trips in Charge Depleting (CD) mode Gasoline fuel economy...

387

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

35 Overall DC electrical energy consumption (DC Whmi) 21 Total number of trips 1,492 Total distance traveled (mi) 14,935 Trips in Charge Depleting (CD) mode Gasoline fuel...

388

James Kidder Main Research Library  

E-Print Network (OSTI)

communities relevant to biofuels production, in: R. H. Baltz (Ed.), Manual of Industrial Microbiology on Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy. Biofuels, Bioproducts Water Recycle in Biorefineries Using Bioelectrochemical Cells. Biofuels, Bioproducts and Biorefining 5

389

Maine's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Maine's 1st congressional district: Energy Resources Maine's 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Maine. Contents 1 US Recovery Act Smart Grid Projects in Maine's 1st congressional district 2 Registered Energy Companies in Maine's 1st congressional district 3 Registered Financial Organizations in Maine's 1st congressional district 4 Utility Companies in Maine's 1st congressional district US Recovery Act Smart Grid Projects in Maine's 1st congressional district Central Maine Power Company Smart Grid Project Registered Energy Companies in Maine's 1st congressional district Ascendant Energy Company Inc Criterium Engineers International WoodFuels LLC

390

NEUTRONIC REACTOR FUEL ELEMENT  

DOE Patents (OSTI)

A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

Shackleford, M.H.

1958-12-16T23:59:59.000Z

391

The Analysis and Assessment on Heating Energy Consumption of SAT  

E-Print Network (OSTI)

The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using the regression analysis method. It also calculated the economization of the fuel, introduced the methods of economizing fuel and, made an assessment on it.

Zhang, J.

2006-01-01T23:59:59.000Z

392

Pollution Control: Erosion and Sedimentation Control (Maine) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Erosion and Sedimentation Control (Maine) Erosion and Sedimentation Control (Maine) Pollution Control: Erosion and Sedimentation Control (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Proection A person who conducts, or causes to be conducted, an activity that involves

393

Pollution Control: Storm Water Management (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Control: Storm Water Management (Maine) Pollution Control: Storm Water Management (Maine) Pollution Control: Storm Water Management (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection A person may not construct, or cause to be constructed, a project that

394

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

395

Maine Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.353therm. Electricity prices were set to 0.158kWh for space heating and 0.155kWh for air conditioning. Oil prices were set to 22.21MBtu. Energy...

396

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

397

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

398

Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090 5,138 4,996 6,505 5,264 5,580 6,835 5,939 5,217 2007 6,180 5,355 4,869 4,768 4,222 4,680 6,405 6,403 4,340 3,731 4,999 6,480 2008 6,142 5,066 5,389 5,928 5,679 4,545 6,177 5,002 5,965 5,812 6,785 6,712

399

Glass manufacturing is an energy-intensive industry mainly fueled ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

400

2008 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

402

PROCEEDINGS OF THE 2003 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, HELD AT THE 2003 NEW ENGLAND FUEL INSTITUTE CONVENTION AND 30TH NORTH AMERICAN HEATING AND ENERGY EXPOSITION, HYNES CONVENTION CENTER, PRUDENTIAL CENTER, BOSTON, MASSACHUSETTS, JUNE 9 - 10, 2003.  

SciTech Connect

This meeting is the sixteenth oilheat industry technology meeting held since 1984 and the third since the National Oilheat Research Alliance (NORA) was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Fuel Flexibility Program under the United States Department of Energy, Distributed Energy and Electricity Reliability Program (DEER). The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

2003-06-09T23:59:59.000Z

403

PROCEEDINGS OF THE 2003 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, HELD AT THE 2003 NEW ENGLAND FUEL INSTITUTE CONVENTION AND 30TH NORTH AMERICAN HEATING AND ENERGY EXPOSITION, HYNES CONVENTION CENTER, PRUDENTIAL CENTER, BOSTON, MASSACHUSETTS, JUNE 9 - 10, 2003.  

SciTech Connect

This meeting is the sixteenth oilheat industry technology meeting held since 1984 and the third since the National Oilheat Research Alliance (NORA) was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Fuel Flexibility Program under the United States Department of Energy, Distributed Energy and Electricity Reliability Program (DEER). The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

2003-06-09T23:59:59.000Z

404

Energy Saving Absorption Heat Pump Water Heater  

energy savings and can reduce the use of fossil fuels by buildings. While conventional heat pump water heater designs are limited to using toxic ammonia water ...

405

Residuals, Sludge, and Composting (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) Residuals, Sludge, and Composting (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage, food waste, and wood

406

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

407

Tips: Heating and Cooling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

408

Residential heating oil prices virtually unchanged  

Gasoline and Diesel Fuel Update (EIA)

to 3.95 per gallon. That's down 8-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

409

Energy Basics: Wood and Pellet Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Wood and Pellet Heating Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning...

410

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

53 53 Overall DC electrical energy consumption (DC Wh/mi)² 34 Total number of trips 1,515 Total distance traveled (mi) 15,617 Trips in Charge Depleting (CD) mode³ Gasoline fuel economy (mpg) 37 DC electrical energy consumption (DC Wh/mi) 65 Number of trips 739 Percent of trips city | highway 74% | 26% Distance traveled (mi) 4,915 Percent of total distance traveled 31% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 38 DC electrical energy consumption (DC Wh/mi) 58 Number of trips 93 Percent of trips city | highway 38% | 62% Distance traveled (mi) 2,842 Percent of total distance traveled 18% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 33 Number of trips 683 Percent of trips city | highway 72% | 28% Distance traveled (mi)

411

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

45 45 Overall DC electrical energy consumption (DC Wh/mi)² 29 Total number of trips 1,839 Total distance traveled (mi) 21,089 Trips in Charge Depleting (CD) mode³ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 61 Number of trips 654 Percent of trips city | highway 66% | 34% Distance traveled (mi) 5,717 Percent of total distance traveled 27% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 38 DC electrical energy consumption (DC Wh/mi) 57 Number of trips 117 Percent of trips city | highway 39% | 62% Distance traveled (mi) 3,683 Percent of total distance traveled 17% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 33 Number of trips 1,068 Percent of trips city | highway 71% | 30% Distance traveled (mi)

412

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

36 36 Overall DC electrical energy consumption (DC Wh/mi)² 18 Total number of trips 1,290 Total distance traveled (mi) 13,023 Trips in Charge Depleting (CD) mode³ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 58 Number of trips 432 Percent of trips city | highway 75% | 25% Distance traveled (mi) 2,835 Percent of total distance traveled 22% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 41 DC electrical energy consumption (DC Wh/mi) 48 Number of trips 52 Percent of trips city | highway 31% | 69% Distance traveled (mi) 1,613 Percent of total distance traveled 12% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 34 Number of trips 806 Percent of trips city | highway 73% | 27% Distance traveled (mi)

413

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

49 49 Overall DC electrical energy consumption (DC Wh/mi)² 27 Total number of trips 927 Total distance traveled (mi) 9,301 Trips in Charge Depleting (CD) mode³ Gasoline fuel economy (mpg) 39 DC electrical energy consumption (DC Wh/mi) 66 Number of trips 313 Percent of trips city | highway 68% | 32% Distance traveled (mi) 2,138 Percent of total distance traveled 23% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 41 DC electrical energy consumption (DC Wh/mi) 63 Number of trips 46 Percent of trips city | highway 30% | 70% Distance traveled (mi) 1,462 Percent of total distance traveled 16% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 34 Number of trips 568 Percent of trips city | highway 75% | 25% Distance traveled (mi)

414

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

50 50 Overall DC electrical energy consumption (DC Wh/mi)² 22 Total number of trips 730 Total distance traveled (mi) 9,164 Trips in Charge Depleting (CD) mode³ Gasoline fuel economy (mpg) 40 DC electrical energy consumption (DC Wh/mi) 61 Number of trips 225 Percent of trips city | highway 68% | 32% Distance traveled (mi) 1,768 Percent of total distance traveled 19% Trips in both Charge Depleting & Charge Sustaining (CD/CS) modes Gasoline fuel economy (mpg) 36 DC electrical energy consumption (DC Wh/mi) 53 Number of trips 40 Percent of trips city | highway 23% | 78% Distance traveled (mi) 1,638 Percent of total distance traveled 18% Trips in Charge Sustaining (CS) mode Gasoline fuel economy (mpg) 35 Number of trips 465 Percent of trips city | highway 70% | 30% Distance traveled (mi)

415

Distributed Energy Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

416

Fuel-Fired Furnaces  

Science Conference Proceedings (OSTI)

...Fuel must arrive at the burner in the correct quantity and at the correct time for safe combustion. Fuel pressure thus must be proven within an allowable range. Gas-pressure switches for both high and low gas limits are installed in the main gas

417

Qualifying RPS State Export Markets (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine) Maine) Qualifying RPS State Export Markets (Maine) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Maine as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

418

Major Business Expansion Bond Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expansion Bond Program (Maine) Expansion Bond Program (Maine) Major Business Expansion Bond Program (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Bond Program Provider Finance Authority of Maine The Major Business Expansion Bond Program provides long-term, credit-enhanced financing up to $25,000,000 at taxable bond rates for businesses creating or retaining at least 50 jobs; up to $10,000,000 is available for businesses which expand their manufacturing services. The bond proceeds may be used to acquire real estate, machinery, equipment, or rehabilitate or expand an existing facility. The interest rate is determined by market forces at the time of the bond sale

419

James Kidder Main Research Library  

E-Print Network (OSTI)

Books: Mielenz, J. (Ed.). (2009). Biofuels Methods and Protocols (Vol. 581). New Jersey: Humana Press for Biofuels, 2(1), Online. Borole, A. P., Hamilton, C. Y., Vishnivetskaya, T. A., Leak, D., & Andras, C. (2009 inhibitors in biorefinery water recycle using microbial fuel cells. Biotechnology for Biofuels, 2, 7

420

Breakout Group 5: Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

than 50 kW; do not restrict fuel choice o Combined heat and power applications maximize SOFC benefit of high grade waste heat o Critical and remote power are good early market...

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

1999-2000 Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

supplies of space-heating fuels are expected to be more than adequate to meet winter demand. ... Residential Heating Oil Prices: Weather Scenarios $0.00 $0.20 $0.40 $ ...

422

Maine | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Maine Maine Last updated on 2013-11-04 Commercial Residential Code Change Current Code ASHRAE Standard 90.1-2007 Amendments / Additional State Code Information As of September 28, 2011, municipalities over 4,000 in population were required to enforce the new code if they had a building code in place by August 2008. Municipalities under 4,000 are not required to enforce it unless they wish to do so and have the following options: 1. Adopt and enforce the Maine Uniform Building and Energy Code 2. Adopt and enforce the Maine Uniform Building Code (the building code without energy) 3. Adopt and enforce the Maine Uniform Energy Code (energy code only) 4. Have no code Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Maine (BECP Report, Sept. 2009)

423

Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery  

Science Conference Proceedings (OSTI)

In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulate and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.

Jun, Y.D.; Lee, K.B.; Islam, S.Z.; Ko, S.B. [Kongju National University, Kong Ju (Republic of Korea). Dept. for Mechanical Engineering

2008-07-01T23:59:59.000Z

424

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

425

Secondary fuel delivery system  

SciTech Connect

A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

Parker, David M. (Oviedo, FL); Cai, Weidong (Oviedo, FL); Garan, Daniel W. (Orlando, FL); Harris, Arthur J. (Orlando, FL)

2010-02-23T23:59:59.000Z

426

Handbook of fuel cell performance  

DOE Green Energy (OSTI)

The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

1980-05-01T23:59:59.000Z

427

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

last week to 3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

428

Residential heating oil prices increase  

Gasoline and Diesel Fuel Update (EIA)

last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

429

Home Heating | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by automatically setting back your thermostat when you are asleep or away. Read more Wood and Pellet Heating Wood and pellets are renewable fuel sources, and modern wood and...

430

national average for heating oil  

U.S. Energy Information Administration (EIA)

Propane Missouri North Dakota X South Dakota TOTAL List of States included on Winter Heating Fuels Survey (SHOPP) Release date: January 2012 22.00 24.00. Author: MRO

431

Incorporation of Hydride Nuclear Fuels in Commercial Light Water Reactors  

E-Print Network (OSTI)

conductivity and volumetric heat capacity . 3.1.1.2 HydrogenBottom: volumetric heat capacity of the U 0.31 ZrH x fuel asThe volumetric heat capacity has the same dependencies;

Terrani, Kurt Amir

2010-01-01T23:59:59.000Z

432

The Business Case for Fuel Cells 2013: Reliability, Resiliency...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cells also produce high quality heat. This is often captured and used for cogeneration (also called combined heat and power, or CHP), where the heat is used for facility...

433

Plasma as a Blast Furnace Supplement: An Evaluation of Thermal Plasma Energy to Heat Blast Air for Iron Productiion, CMP Report No. 89-1  

Science Conference Proceedings (OSTI)

This study evaluates the use of thermal plasma heat for blast superheating in iron blast furnace operation. The basic research for this technology was carried out in the 1970's, primarily by the Centre des Recherches Metallurgiques (CRM) in Belgium. The main impetus for development was to increase productivity and efficiency and to decrease coke consumption. This was achieved by replacing some coke fuel by alternative injectant fuels (CH4, oil, coal, etc.) and compensating for these injectants by increas...

1990-10-31T23:59:59.000Z

434

Heating oils, 1983  

Science Conference Proceedings (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

435

Fuel cell system combustor  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

Pettit, William Henry (Rochester, NY)

2001-01-01T23:59:59.000Z

436

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

Meadowcroft, Ronald Ross (Deep River, CA); Bain, Alastair Stewart (Deep River, CA)

1977-01-01T23:59:59.000Z

437

Integrated main rail, feed rail, and current collector  

DOE Patents (OSTI)

A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

1994-11-08T23:59:59.000Z

438

Integrated main rail, feed rail, and current collector  

DOE Patents (OSTI)

A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

Petri, Randy J. (Crete, IL); Meek, John (Downers Grove, IL); Bachta, Robert P. (Chicago, IL); Marianowski, Leonard G. (Mount Prospect, IL)

1994-01-01T23:59:59.000Z

439

Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) Seacoast Energy Initiative - Energy Efficiency Loan Program (Maine) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Commercial Heating & Cooling Heating & Cooling Solar Water Heating Maximum Rebate $15,000 Program Info Funding Source American Recovery and Reinvestment Act (ARRA) Start Date 07/27/2011 State Maine Program Type Local Loan Program Rebate Amount Up to $15,000 Provider The Goggin Company Homeowners in the towns of Eliot, Kittery, North Berwick, South Berwick, Ogunquit, and York (located in Southern York County) may be eligible a loan of up to $15,000 to make energy efficiency improvements in their homes.

440

Alcohol fuel conversion apparatus for internal combustion engines  

Science Conference Proceedings (OSTI)

An alcohol fuel conversion apparatus is described for internal combustion engines comprising: fuel storage means containing an alcohol fuel; primary heat exchanger means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchanger means; a heat source for heating the heat exchange means; pressure relief valve means, in closed fluid communication with the primary heat exchange means, operable to release heated pressurized alcohol into an expansion chamber; converter means, including the expansion chamber, in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; carburetor means in fluid communication with the converter means for metering and mixing vaporized alcohol with air for proper combustion and for feeding the mixture to an internal combustion engine; and pump means for pressurized pumping of alcohol from the fuel storage means to the heat exchanger means, converter means, carburetor means, and to the engine.

Carroll, B.I.

1987-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Home heating system  

SciTech Connect

A home heating system is disclosed that has a furnace with a combustion chamber for burning fuel and creating heat, and a chimney with a draft therein. An improvement is described that has an exhaust flue connected between the combustion chamber and the chimney for venting heated exhaust products from the furnace, a heat reclaimer connected into the exhaust flue between the combustion chamber and the chimney for reclaiming heat from the heated exhaust product, and an outside air line for supplying air from the outside of the house to the combustion chamber. A first flue portion of the exhaust flue is connected between the combustion chamber and the heat reclaimer, and a second insulated flue portion of the exhaust flue is connected between the heat reclaimer and the chimney. An outside air by-pass or balancing line is connected between the outside air line and the chimney for satisfying the chimney suction at flame-out. A flow sensing and regulating device may be connected into the outside air line for regulating the flow or air so that outside air is supplied to the furnace only when fuel is burned therein.

Bellaff, L.

1980-03-25T23:59:59.000Z

442

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

Steinfeld, G.; Meyers, S.J.; Lee, A.

1996-09-10T23:59:59.000Z

443

Coal-fueled diesel locomotive test  

DOE Green Energy (OSTI)

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

444

Maine Waterway Development and Conservation Act (MWDCA) (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Maine Waterway Development and Conservation Act requires a permit to be obtained prior to starting any hydropower project that may alter water levels or water flow. The Act functions as a...

445

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

446

STEO October 2012 - home heating supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas, propane, and electricity supplies seen plentiful Natural gas, propane, and electricity supplies seen plentiful this winter for U.S. home heating Supplies of the major heating fuels used by most U.S. households are expected to be plentiful this winter, with the possible exception of heating oil, which is consumed mostly by households in the Northeast. Heating oil stocks are expected to be low in the East Coast and Gulf Coast states. And with New York state requiring heating oil with lower sulfur levels for the first time, the heating oil market is expected to be tighter this winter, according to the U.S. Energy Information Administration's new winter fuels forecast. However, U.S. inventories of natural gas, the most common primary heating fuel used by households and a key fuel for electricity generation, is expected to reach 3.9 trillion cubic feet by

447

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Overall AC electrical energy consumption (AC Wh/mi)¹ 64 Overall DC electrical energy consumption (DC Wh/mi)² 31 Total number of trips 831 Total distance traveled (mi) 7,559 Trips in Charge Depleting (CD) mode³ Gasoline fuel economy (mpg) 35 DC electrical energy consumption (DC Wh/mi) 54 Number of trips 541 Percent of trips city | highway 79% | 21% Distance traveled (mi) 3,402 Percent of total distance traveled 45%

448

_MainReportPerVehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Overall AC electrical energy consumption (AC Wh/mi)¹ 45 Overall DC electrical energy consumption (DC Wh/mi)² 22 Total number of trips 1,585 Total distance traveled (mi) 14,910 Trips in Charge Depleting (CD) mode³ Gasoline fuel economy (mpg) 34 DC electrical energy consumption (DC Wh/mi) 49 Number of trips 883 Percent of trips city | highway 81% | 19% Distance traveled (mi) 4,778 Percent of total distance traveled 32%

449

Section 5.3.1 Heat-Recovery Water Heating: Greening Federal Facilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

heat pumps, chillers, steam condensate lines, hot air associated with kitchen and laundry facilities, power-generation equipment (such as microturbines or fuel cells), and...

450

Natural Gas Pipeline Utilities (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) Natural Gas Pipeline Utilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Public Utilities Commission These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the Public Utilities Commission with

451

Safety of Gas Transmission and Distribution Systems (Maine) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) Safety of Gas Transmission and Distribution Systems (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission These regulations describe requirements for the participation of natural gas utilities in the Underground Utility Damage Prevention Program,

452

Omnibus Energy Bill of 2013 (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Omnibus Energy Bill of 2013 (Maine) Omnibus Energy Bill of 2013 (Maine) Omnibus Energy Bill of 2013 (Maine) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Wind Program Info State Maine Program Type Climate Policies Generating Facility Rate-Making Green Power Purchasing Interconnection Line Extension Analysis Loan Program Public Benefits Fund Renewables Portfolio Standards and Goals

453

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network (OSTI)

commodity (e.g. , fuel oil for home heating; gasoline forthan does oil used for home heating (different commodity,derived from crude oil, such as home heating fuel. a) to f)

Delucchi, Mark

2005-01-01T23:59:59.000Z

454

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network (OSTI)

commodity (e.g. , fuel oil for home heating; gasoline forthan does oil used for home heating (different commodity,derived from crude oil, such as home heating fuel. a) to f)

Delucchi, Mark

2005-01-01T23:59:59.000Z

455

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

456

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

457

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

458

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

459

Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop  

SciTech Connect

The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

McCulloch, R.W.; MacPherson, R.E.

1983-03-01T23:59:59.000Z

460

Sale of Water Resource Land (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) Sale of Water Resource Land (Maine) < Back Eligibility Municipal/Public Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Siting and Permitting This rule requires an eight month advance notice period whenever a consumer-owned water utility intends to transfer water resource land, defined as any land or real property owned by a water utility for the purposes of providing a source of supply, storing water or protecting sources of supply or water storage, including reservoirs, lakes, ponds, rivers or streams, wetlands and watershed areas. The rule also provides an assignable right of first refusal to the municipality or municipalities

Note: This page contains sample records for the topic "main heating fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Small Enterprise Growth Fund (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Small Enterprise Growth Fund (Maine) Small Enterprise Growth Fund (Maine) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Equity Investment Provider Small Enterprise Growth Fund The Small Enterprise Growth Fund is a professionally-managed venture capital fund that invests in Maine companies which demonstrate high potential for growth and public benefit. The fund has received $13 million in capital contributions from the state and operates as a revolving fund. Companies in nearly any industry are eligible for funding, including seed and early stage companies. On average, $100,000 to $300,000 is invested per

462

Main Results of Grossversuch IV  

Science Conference Proceedings (OSTI)

The main results of a randomized hail suppression experiment, Grossversuch IV, are presented in this paper. Grossversuch IV tested the “Soviet” hail prevention method during five years (1977–81). The field experiment took place in central ...

B. Federer; A. Waldvogel; W. Schmid; H. H. Schiesser; F. Hampel; Marianne Schweingruber; W. Stahel; J. Bader; J. F. Mezeix; Nadie Doras; G. D'Aubigny; G. DerMegreditchian; D. Vento

1986-07-01T23:59:59.000Z

463

Fuel heater thermostat  

Science Conference Proceedings (OSTI)

A thermostat is described for fuel heaters wherein the fuel is heated by engine coolant and the thermostat comprises: a temperature sensing means for sensing the temperature of fuel in the fuel heater, the temperature sensing means in contacting relation with the first end of a coolant flow restricting piston, the piston having a second end in contacting relation with a pressure means wherein the temperature sensing means and the pressure means assert opposing forces against the piston and the piston in response to an increase in force from the temperature sensing means will restrict the flow of coolant through the fuel heater, and the piston further having a bleed port therein to allow coolant to flow to the first and second ends of the piston.

Ray, D.A.

1989-05-09T23:59:59.000Z

464

Alternative Fuels Data Center: Biogas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biogas to someone by Biogas to someone by E-mail Share Alternative Fuels Data Center: Biogas on Facebook Tweet about Alternative Fuels Data Center: Biogas on Twitter Bookmark Alternative Fuels Data Center: Biogas on Google Bookmark Alternative Fuels Data Center: Biogas on Delicious Rank Alternative Fuels Data Center: Biogas on Digg Find More places to share Alternative Fuels Data Center: Biogas on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Renewable Natural Gas (Biogas) Biogas-also known as biomethane, swamp gas, landfill gas, or digester gas-is the gaseous product of anaerobic digestion (decomposition without oxygen) of organic matter. In addition to providing electricity and heat, biogas is useful as a vehicle fuel. When processed to purity standards,

465

Integrated fuel processor development challenges.  

DOE Green Energy (OSTI)

In the absence of a hydrogen-refueling infrastructure, the success of the fuel cell system in the market will depend on fuel processors to enable the use of available fuels, such as gasoline, natural gas, etc. The fuel processor includes several catalytic reactors, scrubbers to remove chemical species that can poison downstream catalysts or the fuel cell electrocatalyst, and heat exchangers. Most fuel cell power applications seek compact, lightweight hardware with rapid-start and load- following capabilities. Although packaging can partially address the size and volume, balancing the performance parameters while maintaining the fuel conversion (to hydrogen) efficiency requires careful integration of the unit operations and processes. Argonne National Laboratory has developed integrated fuel processors that are compact and light, and that operate efficiently. This paper discusses some of the difficulties encountered in the development process, focusing on the factors/components that constrain performance, and areas that need further research and development.

Ahmed, S.; Pereira, Lee, S. H. D.; Kaun, T.; Krumpelt, M.

2002-01-09T23:59:59.000Z

466

Recovery Act State Memos Maine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Maine For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 4

467

The Experimental Study on the Optimization Control of Main Steam Pressure System in the Biomass Boiler  

Science Conference Proceedings (OSTI)

Combustion adjusting system in biomass fuel boiler is the research objective and its dynamic characteristics are also analyzed. The optimal control algorithm is provided, according to the main subsystem in main steam pressure control system of combustion ... Keywords: biomass fuel boiler, combustion control system, steam pressure control, fuzzy-SMITH

Junman Sun; Chun Huang; Junran Jin; Huijun Sun; Liping Li

2012-04-01T23:59:59.000Z

468

What are projected diesel fuel prices for 2013 and for 2014? - FAQ ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Why don't fuel prices change as quickly as crude oil prices? Why has diesel fuel been more expensive than gasoline?

469

Heat pipe heat amplifier  

SciTech Connect

In a heat pipe combination consisting of a common condenser section with evaporator sections at either end, two working fluids of different vapor pressures are employed to effectively form two heat pipe sections within the same cavity to support an amplifier mode of operation.

Arcella, F.G.

1978-08-15T23:59:59.000Z

470

EIA Short-Term Energy and Winter Fuels OutlookWinter Fuels Outlook  

U.S. Energy Information Administration (EIA)

Home heating oil retail price includes taxes. 16 Source: EIA Short-Term Energy Outlook, October 2012 Short-Term Energy and Winter Fuels Outlook October 10, 2012.

471

EIA Short-Term Energy and Winter Fuels OutlookWinter Fuels Outlook  

U.S. Energy Information Administration (EIA)

heating oil electricity South U.S. total wood kerosene/other/no heating 116 million homes 4 Short-Term Energy and Winter Fuels Outlook October 8, 2013

472

Toward alternative transportation fuels  

Science Conference Proceedings (OSTI)

At some time in the future the U.S. will make a transition to alternative fuels for transportation. The motivation for this change is the decline in urban air quality and the destruction of the ozone layer. Also, there is a need for energy independence. The lack of consensus on social priorities makes it difficult to compare benefits of different fuels. Fuel suppliers and automobile manufacturers would like to settle on a single alternative fuel. The factors of energy self-sufficiency, economic efficiency, varying anti-pollution needs in different locales, and global warming indicate a need for multiple fuels. It is proposed that instead of a Federal command-and-control type of social regulation for alternative fuels for vehicles, the government should take an incentive-based approach. The main features of this market-oriented proposal would be averaging automobile emission standards, banking automobile emissions reductions, and trading automobile emission rights. Regulation of the fuel industry would allow for variations in the nature and magnitude of the pollution problems in different regions. Different fuels or fuel mixture would need to be supplied for each area. The California Clean Air Resources Board recently adopted a fuel-neutral, market-oriented regulatory program for reducing emissions. This program will show if incentive-based strategies can be extended to the nation as a whole.

Sperling, D. (Univ. of California, Davis (USA))

1990-01-01T23:59:59.000Z

473

Radiant Heating  

Energy.gov (U.S. Department of Energy (DOE))

Radiant heating systems involve supplying heat directly to the floor or to panels in the walls or ceiling of a house. The systems depend largely on radiant heat transfer: the delivery of heat...