National Library of Energy BETA

Sample records for main heating fuel

  1. ,"Maine Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  2. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  3. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect (OSTI)

    Irawan, B.

    1995-12-01

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  4. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic(Million::6)

  5. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic(Million::6)May-15

  6. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOE Patents [OSTI]

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  7. Alternative Fuels Data Center: Maine Fleets Make Progress with Propane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoansAFDCHydrogeninReduceRefuseElectricMaine

  8. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1Total ConsumptionMaine Natural

  9. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  10. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012...

  11. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

  12. Microfabricated fuel heating value monitoring device

    DOE Patents [OSTI]

    Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  13. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  14. Multi-function fuel-fired heat pump CRADA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-function fuel-fired heat pump CRADA 2014 Building Technologies Office Engine-driven heat Peer Review pump provides cooling, heating, water heating, and electrical power CRADA...

  15. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  16. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  17. Alternative Fuels Data Center: Maine Transportation Data for Alternative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools FirstIdleofAlternative FuelsFuels

  18. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  19. Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland ConservesElectricSurpassesPropane Buses

  20. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand(Million Cubic Feet)

  1. Maine Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR: JOHN CONTIPeterFeet)Input

  2. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan FebYear(Million Cubic Feet) Year

  3. Maine Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1Total Consumption

  4. Fuel cells: providing heat and power in the urban environment

    E-Print Network [OSTI]

    Watson, Andrew

    Fuel cells: providing heat and power in the urban environment Jim Halliday, Alan Ruddell, Jane;Fuel cells: providing heat and power in the urban environment Tyndall Centre Technical Report No. 32 efficiencies, and therefore reduced CO2 emissions, compared to conventional centralised generation. Fuel cell

  5. Refundable Clean Heating Fuel Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  6. Wood Heating Fuel Exemption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE.ProjectsLeaders |3RadjaWende

  7. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The value of the tax credit is $0.01/gallon for each percent of biodiesel blended with conventional home heating oil, up to a maximum of $0.20/ gallon. In other words, the purchaser of a mixture ...

  8. Winter Heating Fuels - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldieselgasolinemonthlysummer1Net

  9. EIA-877 WINTER HEATING FUELS TELEPHONE SURVEY

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecast forEmail:56,U.S. ENERGY

  10. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  11. York Electric Cooperative- Dual Fuel Heat Pump Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    York Electric Cooperative, Inc. (YEC) offers a $200 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residences, commercial, and industrial...

  12. Multi-Function Fuel-Fired Heat Pump | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Function Fuel-Fired Heat Pump Multi-Function Fuel-Fired Heat Pump Multi-Function Fuel-Fired Heat Pump prototype showing generator for auxiliary system power Top: 24V DC to...

  13. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office...

  14. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification Explores...

  15. The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes

    SciTech Connect (OSTI)

    Monti, S.; Toti, A.

    2013-07-01

    The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

  16. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  17. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  18. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  19. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Office of Environmental Management (EM)

    natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power More...

  20. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect (OSTI)

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  1. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition Ping Hu October 2010 Keywords: Zinc ferrite Fuel additive Heat treatment Phase composition a b s t r a c considered the influence of fuel additives and heat treatment conditions on the phase composition

  2. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  3. Fuel Accident Condition Simulator (FACS) Furnace for Post-Irradiation Heating Tests of VHTR Fuel Compacts

    SciTech Connect (OSTI)

    Paul A Demkowicz; Paul Demkowicz; David V Laug

    2010-10-01

    Abstract –Fuel irradiation testing and post-irradiation examination are currently in progress as part of the Next Generation Nuclear Plant Fuels Development and Qualification Program. The PIE campaign will include extensive accident testing of irradiated very high temperature reactor fuel compacts to verify fission product retention characteristics at high temperatures. This work will be carried out at both the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory, beginning with accident tests on irradiated fuel from the AGR-1 experiment in 2010. A new furnace system has been designed, built, and tested at INL to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000°C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, Eu, and I) and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator (FACS) furnace system, as well as preliminary system calibration results.

  4. Experimental study of the deformation of Zircaloy PWR fuel rod cladding under mainly convective cooling

    SciTech Connect (OSTI)

    Hindle, E.D.; Mann, C.A.

    1982-01-01

    Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 915 degree C in flowing steam at atmospheric pressure. Internal test pressures were in the range 0.69 to 11.0 MPa. The length of cladding strained 33 percent or more was greatest (about 20 times the original diameter) when the initial pressure was 1.38/plus or minus/0.17MPa. This results from oxidation strengthening of the surface layers acting as an additional mechanism for stabilizing the deformation or partial superplastic deformation, or both. For adjacent rods in a fuel assembly not to touch at any temperature, the pressure would have to be less than about 1 MPa. These results are compared with those form multirod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behavior of fuel elements in a loss-of-coolant accident are outlined. 37 refs.

  5. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  6. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect (OSTI)

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  7. Aalborg Universitet HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery. Department of Energy Technology Heat Recovery Xin Gao Dissertation submitted to the Faculty of Engineering and Science at Aalborg

  8. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water treatment gas for hydrogen production at UC...

  9. Two-phase microfluidics, heat and mass transport in direct methanol fuel cells

    E-Print Network [OSTI]

    CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

  10. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

  11. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Broader source: Energy.gov (indexed) [DOE]

    fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions. Fuel-Flexible Microturbine and Gasifier...

  12. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  13. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification

    Broader source: Energy.gov [DOE]

    Explores in-cylinder mechanisms by which fuel reactivity stratification via a two fuel system affects premixed charge compression ignition heat release rate to achieve diesel-like efficiency

  14. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    Broader source: Energy.gov [DOE]

    With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

  15. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartment of EnergyConversion to

  16. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microturbine and Gasifier System for Combined Heat and Power Operating a Gas Turbine CHP System on Syngas from Biomass Gasification This project will develop and demonstrate a...

  17. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubic Foot) DecadeBarrels) + LeaseProved07,2430 20132

  18. ,"Maine Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry NaturalGas, Wet After LeaseConsumed"

  19. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR: JOHN CONTIPeter Gross

  20. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |AdministrationStanfordLabMailCharles

  1. GenSys Blue: Fuel Cell Heating Appliance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashersGenSys Blue: Fuel Cell Heating

  2. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text

    SciTech Connect (OSTI)

    DeLuchi, M.A. [California Univ., Davis, CA (United States)

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

  3. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  4. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  5. Fuel cell entropy production with ohmic heating and diffusive polarization

    E-Print Network [OSTI]

    Naterer, Greg F.

    transportation. But a key challenge for fuel cells is their overall efficiency. Bossel [1] has reported an alternative entropy based method for systematically improving efficiency of fuel cells. In addition to relatively low efficiencies, a key challenge of automotive fuel cells is quick start-up capabilities in cold

  6. Multi-Function Fuel-Fired Heat Pump

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX F WetlandsofOpen-AccessMotor SystemsMr.5, 2013 Ms.DEC

  7. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2010-12-01

    The purpose of this report is to describe the methods commonly used to measure heat flux in fire applications at Sandia National Laboratories in both hydrocarbon (JP-8 jet fuel, diesel fuel, etc.) and propellant fires. Because these environments are very severe, many commercially available heat flux gauges do not survive the test, so alternative methods had to be developed. Specially built sensors include 'calorimeters' that use a temperature measurement to infer heat flux by use of a model (heat balance on the sensing surface) or by using an inverse heat conduction method. These specialty-built sensors are made rugged so they will survive the environment, so are not optimally designed for ease of use or accuracy. Other methods include radiometers, co-axial thermocouples, directional flame thermometers (DFTs), Sandia 'heat flux gauges', transpiration radiometers, and transverse Seebeck coefficient heat flux gauges. Typical applications are described and pros and cons of each method are listed.

  8. Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout

    SciTech Connect (OSTI)

    Smart, John P.; Patel, Rajeshriben; Riley, Gerry S. [RWEnpower, Windmill Hill Business Park, Whitehill Way, Swindon, Wiltshire SN5 6PB, England (United Kingdom)

    2010-12-15

    This paper focuses on results of co-firing coal and biomass under oxy-fuel combustion conditions on the RWEn 0.5 MWt Combustion Test Facility (CTF). Results are presented of radiative and convective heat transfer and burnout measurements. Two coals were fired: a South African coal and a Russian Coal under air and oxy-fuel firing conditions. The two coals were also co-fired with Shea Meal at a co-firing mass fraction of 20%. Shea Meal was also co-fired at a mass fraction of 40% and sawdust at 20% with the Russian Coal. An IFRF Aerodynamically Air Staged Burner (AASB) was used. The thermal input was maintained at 0.5 MWt for all conditions studied. The test matrix comprised of varying the Recycle Ratio (RR) between 65% and 75% and furnace exit O{sub 2} was maintained at 3%. Carbon-in-ash samples for burnout determination were also taken. Results show that the highest peak radiative heat flux and highest flame luminosity corresponded to the lowest recycle ratio. The effect of co-firing of biomass resulted in lower radiative heat fluxes for corresponding recycle ratios. Furthermore, the highest levels of radiative heat flux corresponded to the lowest convective heat flux. Results are compared to air firing and the air equivalent radiative and convective heat fluxes are fuel type dependent. Reasons for these differences are discussed in the main text. Burnout improves with biomass co-firing under both air and oxy-fuel firing conditions and burnout is also seen to improve under oxy-fuel firing conditions compared to air. (author)

  9. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduce carbon dioxide (CO 2 ) emissions by approximately 50% compared to a simple cycle gas turbine. Because of the electrochemical nature of fuel cells, emissions of criteria...

  10. Combined Heat and Power Market Potential for Opportunity Fuels...

    Office of Environmental Management (EM)

    Plants: Market Opportunities Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Barriers to CHP with Renewable Portfolio Standards,...

  11. Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram |(Upstate104-113] |DepartmentSecurity |

  12. An Assessment of Heating Fuels And Electricity Markets During the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y AEfficiencyEnergy 2:00PM EDTPerformance ||An

  13. EIA-877 WINTER HEATING FUELS TELEPHONE SURVEY INSTRUCTIONS

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecast forEmail:56,U.S. ENERGY7,

  14. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  15. An investigation into fuel poverty and heat demand throughout Scotland 

    E-Print Network [OSTI]

    Hale, Heather

    2015-11-26

    % of Scottish residents are living in fuel poverty. Recent studies, undertaken by the British Geological Survey have identified the possibility to utilise geothermal energy within the Midland Valley of Scotland to contribute up to 27% of Scotland’s renewable...

  16. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Broader source: Energy.gov (indexed) [DOE]

    combination of the Native Village of Tellers limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the...

  17. EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic (wood) extract.

  18. Northeast Heating Fuel Market The, Assessment and Options

    Reports and Publications (EIA)

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  19. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  20. Cycle simulation of coal-fueled engines utilizing low heat rejection concepts 

    E-Print Network [OSTI]

    Roth, John M.

    1988-01-01

    variation of cylinder wall temperatures. The heat transfer model was coupled to an engine cycle simulation capable of predicting engine performance for either diesel or coal-water slurry fuels. This coupling enabled investigation of insulation strategies... conclusions of this work were: 1) Under full load conditions, the effec of reducing heat rejection on engine performance was small for both diesel and coal-water slurry. For reductions in heat transfer which are possible in practice, a relative (to...

  1. The effect of drying on the heating value of biomass fuels 

    E-Print Network [OSTI]

    Rodriguez, Pablo Gregorio

    1994-01-01

    There has been some speculation as to whether or not biomass fuels (such as feedlot manure) may lose volatile matter during the drying process. Since current standards state that heating value analysis may be performed before or after drying...

  2. EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at...

  3. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight

    Broader source: Energy.gov [DOE]

    Did you know 50 percent of the energy generated annually from all sources is lost as waste heat? What scientists are doing to take advantage of this opportunity to save money and new developments in harvesting fuel through photosynthesis.

  4. Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization 

    E-Print Network [OSTI]

    Hencey, S.; Hinkle, B.; Limaye, D. R.

    1980-01-01

    This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

  5. Fuel Ion Ratio Measurements in NBI Heated Deuterium Tritium Fusion Plasmas at JET using Neutron Emission Spectrometry

    E-Print Network [OSTI]

    Fuel Ion Ratio Measurements in NBI Heated Deuterium Tritium Fusion Plasmas at JET using Neutron Emission Spectrometry

  6. Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)

    SciTech Connect (OSTI)

    Norton, W.; McGough, M. S.

    2002-02-26

    The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

  7. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize:4Fuel CellandFact

  8. Alternative Fuels Data Center: The Heat Is on in St. Louis Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is on in St. Louis Buses to

  9. Accidental Burning of a Fuel Layer on a Waterbed: A Scale Analysis Study of the Heat Transfer Models Predicting the pre-Boilover Time and Scaling to Published Data 

    E-Print Network [OSTI]

    Hristov, J; Planas, E; Arnaldos, J; Casal, J

    The paper concerns the heat transfer models of liquid fuel bed burning on water sublayer. The main efforts are stressed on the qualitative assessment of models available and their adequacy as well as on the prediction of ...

  10. Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power

    E-Print Network [OSTI]

    Victoria, University of

    Determining the quality and quantity of heat produced by proton exchange membrane fuel cells Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application). The experiments and simulations focused on the air-cooled Ballard Nexa fuel cell. The experimental

  11. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  12. A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

  13. Aalborg Universitet Influence of anodic gas recirculation on solid oxide fuel cells in a micro combined heat

    E-Print Network [OSTI]

    Berning, Torsten

    combined heat and power system Liso, Vincenzo; Nielsen, Mads Pagh; Kær, Søren Knudsen Published in fuel cells in a micro combined heat and power system Vincenzo Liso , Mads Pagh Nielsen, Søren Knudsen. (2014). Influence of anodic gas recirculation on solid oxide fuel cells in a micro combined heat

  14. High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News

    E-Print Network [OSTI]

    South Bohemia, University of

    times the forecast average price for home heating with natural gas ($804), it's no wonder New Englanders heating fuel--often in modern energy-saving pellet stoves. Only 6 percent of U.S. households depend connection to far cheaper natural gas, the heating fuel of choice for more than half of American homes

  15. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  16. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  17. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2005-12-01

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  18. Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System for Shipboard Applications

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Dynamics, Optimization and Control of a Fuel Cell Based Combined Heat Power (CHP) System, a natural gas fuel processor system (FPS), a proton exchange membrane fuel cell (PEM-FC) and a catalytic) systems based on fuel cells and fuel processing technologies have great potential for future shipboard

  19. Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels

    E-Print Network [OSTI]

    Jawitz, James W.

    million barrels, and nearly 9 million of that is gasoline. With fuel prices rising, consumers are lookingConverting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary

  20. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per

  1. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  2. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  3. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  4. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  5. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  6. A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

  7. Carbonaceous material for production of hydrogen from low heating value fuel gases

    DOE Patents [OSTI]

    Koutsoukos, Elias P. (Los Angeles, CA)

    1989-01-01

    A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

  8. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  9. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  10. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  11. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

  12. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  13. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  14. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    SciTech Connect (OSTI)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

  15. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  16. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  17. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    DOE Patents [OSTI]

    Haltiner, Jr., Karl J.; Kelly, Sean M.

    2005-11-22

    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  18. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

  19. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    SciTech Connect (OSTI)

    Shurygin, R. V., E-mail: regulxx@rambler.ru; Morozov, D. Kh. [National Research Centre Kurchatov Institute (Russian Federation)

    2014-12-15

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li{sup 0} atoms and Li{sup +1} ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li{sup +1} ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li{sup 0} atoms and Li{sup +1} ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li{sup 0} atoms on the wall are obtained. The calculations show that the presence of Li{sup +1} ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li{sup +1} density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of radiative cooling of the near-wall plasma layer becomes appreciable when the near-wall density of neutral lithium atoms exceeds 7 × 10{sup 11} cm{sup ?3}. In this case, the density of radiative loss power in the center of the layer is estimated to be about 500–600 kW/m{sup 3}.

  20. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  1. Performance of AGR-1 High-Temperature Reactor Fuel During Post-Irradiation Heating Tests

    SciTech Connect (OSTI)

    Morris, Robert Noel [ORNL; Baldwin, Charles A [ORNL; Hunn, John D [ORNL; Demkowicz, Paul [Idaho National Laboratory (INL); Reber, Edward [Idaho National Laboratory (INL)

    2014-01-01

    The fission product retention of irradiated low-enriched uranium oxide/uranium carbide TRISO fuel compacts from the AGR-1 experiment has been evaluated at temperatures of 1600 1800 C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4 to 19.1% FIMA have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 10-6 after 300 h at 1600 C or 100 h at 1800 C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 C, and 85Kr release was very low during the tests (particles with breached SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.

  2. Modeling of fuel-to-steel heat transfer in core disruptive accidents

    E-Print Network [OSTI]

    Smith, Russell Charles

    1980-01-01

    A mathematical model for direct-contact boiling heat transfer between immiscible fluids was developed and tested experimentally. The model describes heat transfer from a hot fluid bath to an ensemble of droplets of a cooler ...

  3. Steam Technical Brief: Industrial Heat Pumps for Steam and Fuel Savings

    SciTech Connect (OSTI)

    2010-06-25

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  4. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process water heating Mechanical Compression, Closed cycle Wood Products Pulp manufacturing Concentration of black liquor Mechanical Vapor Compression, Open cycle...

  5. Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

  6. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  7. Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus

    Broader source: Energy.gov [DOE]

    This project proposes to heat and cool planned 500-bed apartment-style student housing with closed loop vertical bore geothermal heat pump system installation.

  8. Prospects for increased low-grade bio-fuels use in home and commercial heating applications

    E-Print Network [OSTI]

    Pendray, John Robert

    2007-01-01

    Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives today for niche markets. The easiest fossil fuels to ...

  9. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuelDepartmentUnveiledof| Department

  10. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Method of Test for Integrated Heat Pump - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Buildings Performance Database -...

  11. Using Heat and Chemistry to Make Products, Fuels, and Power: Thermochemical Conversion

    SciTech Connect (OSTI)

    2010-09-01

    Information about the Biomass Program's collaborative projects exploring thermochemical conversion processes that use heat and chemistry to convert biomass into a liquid or gaseous intermediate.

  12. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01

    of space heating to air conditioning choice; 3) explicitthe presence of central air conditioning, it seems unwise tonot to have central air conditioning. Statistical evidence

  13. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    improvements tot he RFHP consisting of construction and operation of an onsite woodchip fuel storage silo and an expansion of woodchip fuel sources to a regional scale....

  14. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Departmentof5.4.407.Cascade reactionsUsing anCase Study: Fuel Cells

  15. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5 BUDGETU S DEPARTMENTJuneDesignCarmine DifiglioCasa

  16. Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSites KDF Social Media Energy |of

  17. Load Preheating Using Flue Gases from a Fuel-Fired Heating System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.Leadership on CleanUpList of EERE Waivers

  18. Assessment of Heating Fuels and Electricity Markets During the Winters of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | DepartmentPeer Review | Department of

  19. RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011REMSViewEnergy RTP Green Fuel: A Proven Path

  20. Ultra Efficient Combined Heat, Hydrogen, and Power System- Presentation by FuelCell Energy, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  1. An experiment to simulate the heat transfer properties of a dry, horizontal spent nuclear fuel assembly

    E-Print Network [OSTI]

    Lovett, Phyllis Maria

    1991-01-01

    Nuclear power reactors generate highly radioactive spent fuel assemblies. Initially, the spent fuel assemblies are stored for a period of several years in an on-site storage facility to allow the radioactivity levels of ...

  2. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  3. Aalborg Universitet Initial experiments with a Pt based heat exchanger methanol reformer for a HTPEM fuel

    E-Print Network [OSTI]

    Andreasen, Søren Juhl

    for a HTPEM fuel cell system Andreasen, Søren Juhl Publication date: 2007 Document Version Author final reformer for a HTPEM fuel cell system. Poster session presented at HyFC Seminar 2007, Svendborg, Denmark exchanger methanol reformer for a HTPEM fuel cell system Søren Juhl Andreasen* Institute of Energy

  4. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect (OSTI)

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  5. Fossil Fuel-fired Peak Heating for Geothermal Greenhouses | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jump to: navigation, searchInformation

  6. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements ofCOMPOSITION OF VAPORSSeries) |Replace Fossil Fuels, Final

  7. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collider TestspolycarbonateArticle) |034Replace Fossil Fuels, Final

  8. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2E:\BILLS\H6.PP91:Finding ofAssessmentRenewable

  9. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of¡High HIGHof Energy

  10. An Assessment of Heating Fuels And Electricity Markets During the Winters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslieAlgae BiomassServicesWindAmy Kidd About Usof

  11. Proposed Design and Operation of a Heat Pipe Reactor using the Sandia National Laboratories Annular Core Test Facility and Existing UZrH Fuel Pins

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Pandya, Tara; Peters, Curtis [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2005-02-06

    Heat Pipe Reactors (HPR) for space power conversion systems offer a number of advantages not easily provided by other systems. They require no pumping, their design easily deals with freezing and thawing of the liquid metal, and they can provide substantial levels of redundancy. Nevertheless, no reactor has ever been operated and cooled with heat pipes, and the startup and other operational characteristics of these systems remain largely unknown. Signification deviations from normal reactor heat removal mechanisms exist, because the heat pipes have fundamental heat removal limits due to sonic flow issues at low temperatures. This paper proposes an early prototypic test of a Heat Pipe Reactor (using existing 20% enriched nuclear fuel pins) to determine the operational characteristics of the HPR. The proposed design is similar in design to the HOMER and SAFE-300 HPR designs (Elliot, Lipinski, and Poston, 2003; Houts, et. al, 2003). However, this reactor uses existing UZrH fuel pins that are coupled to potassium heat pipes modules. The prototype reactor would be located in the Sandia Annular Core Research Reactor Facility where the fuel pins currently reside. The proposed reactor would use the heat pipes to transport the heat from the UZrH fuel pins to a water pool above the core, and the heat transport to the water pool would be controlled by adjusting the pressure and gas type within a small annulus around each heat pipe. The reactor would operate as a self-critical assembly at power levels up to 200 kWth. Because the nuclear heated HPR test uses existing fuel and because it would be performed in an existing facility with the appropriate safety authorization basis, the test could be performed rapidly and inexpensively. This approach makes it possible to validate the operation of a HPR and also measure the feedback mechanisms for a typical HPR design. A test of this nature would be the world's first operating Heat Pipe Reactor. This reactor is therefore called 'HPR-1'.

  12. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Envergent Technologies 2009 Envergent Technologies 2009 Renewable Fuel Oil - A Commercial Perspective Steve Lupton Technical Information Exchange on Pyrolysis Oil: Potential for...

  13. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01

    Data. Both fuel prices and capital costs are taken for the2 Price, Income, and Capital Cost Elasticities for Marketby operating and capital costs (or which are otherwise

  14. Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption 

    E-Print Network [OSTI]

    Kramm, D. J.

    1982-01-01

    kiln, it is possible to save hundreds of thousands of dollars in fuel annually by paying attention to the proper operating details....

  15. Fundamentals of Understanding & Collecting data for SHOPPs EIA-877 Winter Heating Fuels Survey

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved ReservesYearperData Collection

  16. Sandia Energy - From Compost to Sustainable Fuels: Heat-Loving Fungi Are

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULIColinEnergy Policy Experts

  17. Multi-Function Fuel-Fired Heat Pump | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment of Energy Motion to Mr. Daniel CohenJUN 1 1Function

  18. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew JerseyEnergybenefits of61075 LisaLaboratory,

  19. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Systems

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew JerseyEnergybenefits of61075 LisaLaboratory,Gökhan

  20. Industrial Heat Pumps for Steam and Fuel Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers to Industrial Energy Efficiencyintroduces

  1. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide toIMPROVEMENT OFBarriers toDepartment13571installing

  2. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof theActionDepartment ofUpdates| Department

  3. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  4. Economic analysis of using excess renewable electricity to displace heating fuels

    E-Print Network [OSTI]

    Firestone, Jeremy

    -penetration renewable electricity systems, it is less expensive to install higher capacity of renewables and to allow cases, a natural gas fired boiler (NGB) was modeled to be installed in the building for back-up heat for human related activities (the solar radiation alone on the earth's surface is more than three orders

  5. CECG Maine, LLC (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT Jump to:CBDCenter ofSolarCECG

  6. Effects of Zircaloy oxidation and steam dissociation on PWR core heat-up under conditions simulating uncovered fuel rods

    SciTech Connect (OSTI)

    Viskanta, R.; Mohanty, A.K.

    1986-04-01

    The studies described in this report identify the regimes of slow transients in a partially uncovered core of a PWR. The threshold height and onset time for oxidation of the cladding of a fuel rod have been evaluated. The effects of oxidation in increasing the decay heat load, component temperature, reduction of cladding thickness and generation of hydrogen have been estimated. The condition for steam starvation has been determined. At high uncovered core heights, typically say 2.8 m for a geometry simulating the TMI-2 type of reactor, the solid and coolant temperatures can reach the limits of steam dissociation. The effects of radiation heat exchange between cladding and coolant, Zircaloy oxidation, steam dissociation, gap conductance between fuel and cladding and system pressure on the heatup of fuel rods have been investigated. The time for uncovering a certain core height is taken as the independent parameter. It is seen that if the uncovering process is allowed to continue beyond 9 minutes corresponding to an uncovered height of 1.9 m, onset of cladding oxidation can be a reality. These values provide a guideline for the response time of the emergency core cooling systems. 10 refs., 22 figs.

  7. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Fuel Cell Technologies Publication and Product Library (EERE)

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

  8. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Broader source: Energy.gov (indexed) [DOE]

    to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit The high concentrations of sulfur species in the biogas (up to 1.5%...

  9. fuel

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  10. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    by crediting against full fuel cycle emissions from theuse” process fuel -- is the full fuel cycle emission factor,where the full fuel cycle includes emissions from

  11. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  12. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  13. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  14. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  15. Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1995-09-01

    This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

  16. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  17. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies |ReviewsAnalogues

  18. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies |ReviewsAnalogues& JA

  19. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    C (data from DME, 2001). EF E = the fuel cycle emissionDME = dimethyl ether. The feedstocks from which the fuels

  20. Nonlinear Electron Heat Conduction Equation and Self similar method for 1-D Thermal Waves in Laser Heating of Solid Density DT Fuel

    E-Print Network [OSTI]

    A. Mohammadian Pourtalari; M. A. Jafarizadeh; M. Ghoranneviss

    2011-11-23

    Electron heat conduction is one of the ways that energy transports in laser heating of fusible target material. The aim of Inertial Confinement Fusion (ICF) is to show that the thermal conductivity is strongly dependent on temperature and the equation of electron heat conduction is a nonlinear equation. In this article, we solve the one-dimensional (1-D) nonlinear electron heat conduction equation with a self-similar method (SSM). This solution has been used to investigate the propagation of 1-D thermal wave from a deuterium-tritium (DT) plane source which occurs when a giant laser pulse impinges onto a DT solid target. It corresponds to the physical problem of rapid heating of a boundary layer of material in which the energy of laser pulse is released in a finite initial thickness.

  1. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Presented...

  2. Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-04-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

  3. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

  4. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect (OSTI)

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  5. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  6. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

    2011-08-16

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  7. Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode

    SciTech Connect (OSTI)

    Grew, Kyle N.; Izzo, Jr., John R.; Chiu, W. K. S.

    2011-01-01

    The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC’s performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell’s microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

  8. Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of

    E-Print Network [OSTI]

    Keeling, Stephen L.

    #12;Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of this report, the other people in the Peak Oil Netherlands Foundation for their work, peakoil.com & the oildrum

  9. Proceedings of the joint contractors meeting: FE/EE Advanced Turbine Systems conference FE fuel cells and coal-fired heat engines conference

    SciTech Connect (OSTI)

    Geiling, D.W.

    1993-08-01

    The joint contractors meeting: FE/EE Advanced Turbine Systems conference FEE fuel cells and coal-fired heat engines conference; was sponsored by the US Department of Energy Office of Fossil Energy and held at the Morgantown Energy Technology Center, P.O. Box 880, Morgantown, West Virginia 26507-0880, August 3--5, 1993. Individual papers have been entered separately.

  10. EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1)

    Broader source: Energy.gov [DOE]

    Draft Supplemental Environmental Assessment This EA will evaluate the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources.

  11. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    S and a reference ultra-low-sulfur diesel (ULSD) with 5 ppmof the reference ultra-low-sulfur diesel (5 ppm). SF CD =diesel fuel (CD), ultra-low-sulfur diesel fuel (ULSD),

  12. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    = distillate fuel; ULSD = ultra-low-sulfur distillate fuel;ppm S and a reference ultra-low-sulfur diesel (ULSD) with 5content of the reference ultra-low-sulfur diesel (5 ppm). SF

  13. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    Motor-vehicle flows Uranium enrichment Agriculture Fuel production Nitrogen deposition Multi-modal emissions Corn-ethanol

  14. An inverted hydride-fueled pressurized water reactor concept

    E-Print Network [OSTI]

    Ferroni, Paolo, Ph. D. Massachusetts Institute of Technology

    2010-01-01

    Previous studies conducted at MIT showed that power performance of typical pin geometry PWRs are limited by three main constraints: core pressure drop, critical heat flux (CHF) and fretting phenomena of the fuel rods against ...

  15. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    n.e. RFG n.e. dist. n.e. ULSD n.e. fuel oil n.e. LPG n.e.dist. = distillate fuel; ULSD = ultra-low-sulfur distillateultra-low-sulfur diesel (ULSD) with 5 ppm S, then weights

  16. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    However, in the case of biomass feedstocks and fuels, LNG,NGL57/LRG43 LDVs, biomass feedstocks (versus 26 mpg LDGV)NGL57/LRG43 HDVs, biomass feedstocks (versus 6 mpg HDDV)

  17. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  18. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  19. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. Clean Cities: Maine Clean Communities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  1. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,035 1,030 1,025 1,022 1,020 1,020 2013-2015...

  2. Maine Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,046 1,044 1,047 1,032 1,030 1,029 2007-2014...

  3. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  4. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  5. Evaluation and Analysis of an Integrated PEM Fuel Cell with Absorption Cooling and Water Heating System for Sustainable Building Operation 

    E-Print Network [OSTI]

    Gadalla, M.; Ratlamwala, T.; Dincer, I.

    2010-01-01

    In this paper, a parametric study of a PEM fuel cell integrated with a double effect absorption system is carried out in order to study the effect of different operating conditions on the efficiency of the PEM fuel cell, utilization factor...

  6. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  7. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  8. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  9. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  10. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  11. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    SciTech Connect (OSTI)

    None

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilled—making the fuel-production process more efficient. The microorganisms don’t require light, so they can be grown anywhere—inside a dark reactor or even in an underground facility.

  12. Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.

    SciTech Connect (OSTI)

    Colella, Whitney G.

    2010-06-01

    Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

  13. Alexandra Main CV 1 ALEXANDRA MAIN

    E-Print Network [OSTI]

    Oviedo, Néstor J.

    Alexandra Main CV 1 ALEXANDRA MAIN CURRICULUM VITAE JULY 15, 2014 Email: amain@ucmerced.edu School-REVIEWED PUBLICATIONS Main, A., Wiebe, D. J., Croom, A. R., Sardone, K., Godbey, E., Tucker, C., & White, P. C. (in and depressive symptoms in Latino and Caucasian youth. Journal of Pediatric Psychology. #12;Alexandra Main CV 2

  14. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  15. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    operating solar heating and cooling systems covering a widepractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  16. Biomass Derivatives Competitive with Heating Oil Costs.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

  17. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  18. Preliminaries Main Theorem

    E-Print Network [OSTI]

    Nevins, Monica

    Preliminaries Main Theorem W-Graphs and their -Invariants Proof of the Main Theorem Type;Preliminaries Main Theorem W-Graphs and their -Invariants Proof of the Main Theorem Type An The other classical Jackson Todor MilevTau Signatures and Characters of Weyl Groups #12;Preliminaries Main Theorem W

  19. Census Snapshot: Maine

    E-Print Network [OSTI]

    Romero, Adam P; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

    2008-01-01

    MAINE Adam P. Romero, Public Policy Fellow Clifford J.sex couples raising children in Maine. We compare same-sex “sex married couples in Maine. 1 JUNE 2008 In many ways, the

  20. Introduction Main Result

    E-Print Network [OSTI]

    Yan, Catherine Huafei

    Introduction Main Result Enumeration Crossings and Nestings of Two Edges in Set Partitions Yan Crossings and Nestings of Set Partitions #12;Introduction Main Result Enumeration Definition} Catherine Yan Crossings and Nestings of Set Partitions #12;Introduction Main Result Enumeration Definition

  1. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  2. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  3. Definitions Main Result

    E-Print Network [OSTI]

    Heubach, Silvia

    Background Definitions Main Result Special Types of Patterns Summary Avoidance of partially ordered Avoidance of partially ordered patterns in compositions #12;Background Definitions Main Result Special Types of Patterns Summary Outline 1 Background 2 Definitions 3 Main Result Preliminaries Main Result 4 Special Types

  4. Residential Wood Heating Fuel Exemption

    Broader source: Energy.gov [DOE]

    The New York Department of Taxation and Finance publishes a variety of sales tax reports detailing local tax rates and exemptions, including those for residential energy services. The residential...

  5. Webster, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to: navigation, searchNebraska:Maine: Energy

  6. Whitney, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:Meadow Lake,Maine: Energy Resources Jump to:

  7. Windham, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPowerPortal HomeWindfarmMaine:

  8. Woolwich, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power PtyOhio: EnergyWoolwich, Maine: Energy

  9. Stetson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) JumpandStereo Satellite Imagery JumpStetson, Maine: Energy

  10. Hampden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: Energy Resources Jump to:Maine: Energy Resources Jump

  11. Hermon, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation,NavigationIndiana:HeraldHermon, Maine: Energy

  12. Freeport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorth Carolina:Arizona:Freeport, Maine:

  13. Dixmont, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOEDixmont, Maine: Energy Resources Jump to:

  14. Energy Incentive Programs, Maine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona Energy IncentiveLouisiana Energy IncentiveMaine

  15. Monson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004)Michigan: Energy ResourcesMaine: Energy

  16. Bradley, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:OpenBradfordwoods,

  17. Cumberland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton,DevelopingMaine: Energy Resources Jump to:

  18. Chester, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:West Virginia: Energy Resources

  19. Main Title 32pt

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S.LeadershipLumiledsof EnergyMagnetocaloricMagnolia LNG

  20. Camden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information(RedirectedEnterprise JumpMissouri:Maine:

  1. Bradford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:Open EnergyBradbury,Florida:Maine: Energy

  2. Brewer, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy ResourcesCounty, Texas:Brewer, Maine: Energy Resources Jump

  3. Brownville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergy InformationKansas:Brownville, Maine: Energy

  4. Burlington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergyOhio:Information PartnershipIllinois: EnergyMaine:

  5. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  6. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine

    Broader source: Energy.gov [DOE]

    Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

  7. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  8. Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:Open Energy Information Space Heating

  9. Old Main - 82 

    E-Print Network [OSTI]

    Unknown

    2006-01-01

    One of the most important properties of a sustainable building is to provide thermal comfort conditions for users with a minimum heating and cooling energy consumption. Therefore, primary design parameters of building should be developed...

  10. PP-12 Maine

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes have a moreINCREASES | DepartmentPOlicyPP-118

  11. PP-20 Eastern Maine

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes have a moreINCREASES |PP-177 Burke-Divide8

  12. PP-81 Maine Public

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuilding energy codes have a moreINCREASES5-246 Bonneville6477079 San

  13. mapr_main.mxd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3 RacetrackseGallon1 Department` [ ` [

  14. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOE Patents [OSTI]

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  15. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  16. Insight From Efficiency Maine

    Broader source: Energy.gov [DOE]

    Presents an in-depth look at Efficiency Maine's transition to weatherization financing, its PowerSaver program, and much more.

  17. DC Circuits - Main Menu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding inCustomer-Comments Sign InTAMUiv e in663 DARHTJDA7:530 By

  18. Maine Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 4.235,382 6,358 (Million Cubic Feet)

  19. main.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named|Got Solitons? S andia's JuanLearn morellnl

  20. Maine Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR: JOHNThousand Cubic Feet)Imports

  1. Maine Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1 Year-2CommercialThousand7.25

  2. main.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterialsmFUSE: Function Sequencer ,- . .,

  3. main.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterialsmFUSE: Function Sequencer ,- .

  4. main.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterialsmFUSE: Function Sequencer ,-

  5. main.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterialsmFUSE: Function Sequencer ,-€Ã ÖÓ

  6. main.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryM aterialsmFUSE: Function Sequencer ,-€Ã

  7. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internetMagneticPlasma ·

  8. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internetMagneticPlasma ·· SSL: The

  9. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internetMagneticPlasma ·· SSL:

  10. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internetMagneticPlasma ··

  11. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |AdministrationStanfordLabMail

  12. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |AdministrationStanfordLabMailCharles Hanley 1 ,

  13. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |AdministrationStanfordLabMailCharles Hanley 1

  14. Electric Resistance Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in homes or...

  15. Low-Cost Microchannel Heat Exchanger

    Office of Environmental Management (EM)

    corrosion resistant alloys construction Oil and gas platform processes, separators, LNG processing, chillers, heat pumps, fuels reforming, waste heat power systems and...

  16. Sandia Energy - Heat-Exchanger Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat-Exchanger Development Home Stationary Power Nuclear Fuel Cycle Advanced Nuclear Energy Nuclear Energy Systems Laboratory (NESL) Brayton Lab Heat-Exchanger Development...

  17. Low Temperature Heat Release Behavior of Conventional and Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a...

  18. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price turbines. This second effect is the primary use of the fuel price forecast for the Council's Fifth Power

  19. Spring 2014 Heat Transfer -1

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 1 Heat Transfer - 1 Consider a cylindrical nuclear fuel rod of length L and diameter df and the tube at a rate m , and the outer surface of the tube is well insulated. Heat generation occurs within. The specific heat of water pc , and the thermal conductivity of the fuel rod fk are constants. The system

  20. Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling

    E-Print Network [OSTI]

    Mattson, Jonathan Michael Stearns

    2013-08-31

    The increasing dependency of the global economy on mineral fuels necessitates the investigation and future implementation of renewable fuels. Within the spectrum of compression ignition engines, this requires an understanding of the differences...

  1. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatClean

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNatural Gas

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNatural

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNaturalAlternative

  6. NA57 main results

    E-Print Network [OSTI]

    G. E. Bruno; for the NA57 Collaboration

    2007-10-15

    The CERN NA57 experiment was designed to study the production of strange and multi-strange particles in heavy ion collisions at SPS energies; its physics programme is essentially completed. A review of the main results is presented.

  7. An Investigation of Surface and Crown Fire Dynamics in Shrub Fuels

    E-Print Network [OSTI]

    Lozano, Jesse Sandoval

    2011-01-01

    the convective and radiation heat transfer for pre-heatingthe solid fuel and radiation heat transfer between solid andflame and ember radiation heat transfer, convective heat

  8. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  9. Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working...

  10. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  11. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    SciTech Connect (OSTI)

    NONE

    1997-07-01

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  12. Westbrook, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy ResourcesTurin, New York:Westbrook Center,Maine: Energy

  13. Union, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S.UnifinPark, Florida: Energy ResourcesMaine:

  14. Warren, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana: Energy Resources Jump to:Maine:

  15. Washington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park,|Information 6thMaine: Energy Resources

  16. Greenville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to: navigation,Capital AdvisorsSteamMaine: Energy

  17. Guilford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERC Hydroelectric Projects | Open EnergyProcessMaine:

  18. Holden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: Energy ResourcesHoboken,Holden, Maine: Energy

  19. Hope, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHomaHometown,(CTI PFAN)Solar JumpMaine:

  20. Friendship, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorthIdaho: EnergyTexas:Maine: Energy

  1. Eastport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, Rhode Island:Connecticut: Energy ResourcesMaine:

  2. Edinburg, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico: Energy Resources JumpEdinburg, Maine:

  3. Etna, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power CorpEnergy InformationMaine: Energy Resources

  4. Exeter, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers JumpinUSFS1988Exeter, Maine:

  5. Falmouth, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||NewFale-Safe,Maine: Energy Resources

  6. Springfield, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill PreventionJump to: navigation, searchMaine:

  7. Medford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop, IncSouthVirginia:Medford, Maine: Energy

  8. Milford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump to: navigation,MikeCenter, Ohio:Maine:

  9. Kenduskeag, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeith County,Kenduskeag, Maine: Energy Resources

  10. Kingsbury, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformation Kilauea SouthwestofKings RiverKingsbury, Maine:

  11. Lincoln, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy Resources Jump to:Heights, Ohio:California:Maine:

  12. Naples, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: Energy Resources Jump to:

  13. Direct Energy Services (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergieSize HomeDirect EnergyMaine)

  14. Dominion Retail Inc (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the National Climate Change Policy | OpenMaine) Jump to:

  15. Eastern Maine Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek EuropeEPG|Elec Pwr Assn JumpMaine

  16. Brunswick, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: Energy Resources Jump to:

  17. CECG Maine, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT Jump to:CBDCenter

  18. University of Maine Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed JumpAlberta JumpLisbon Jump to:Maine

  19. Argyle, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuleta County,Argillic-AdvancedArgyle, Maine: Energy

  20. Ashland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelonMaine: Energy Resources

  1. Atkinson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio:Atchison-Holt ElectricAthol,AtkinsonMaine:

  2. Baldwin, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels BrasilMaine: Energy Resources Jump to:

  3. Carroll, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:Fund forCarnegieIndiana:NewCarrollMaine: Energy

  4. Casco, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:FundMichigan:NorthCasasCasco, Maine: Energy

  5. Bowerbank, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia

  6. Bridgton, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy ResourcesCounty, Texas:Brewer,Iowa: EnergySustainable

  7. Corinna, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon:Volcano, Hawaii | OpenCorinna, Maine:

  8. Charleston, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: Energy Resources Jump to: navigation, search

  9. Maine Public Service Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|Soda LakeMahoningMountainMaine

  10. Augusta, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|LineMaine: Energy Resources Jump to: navigation,

  11. Yarmouth, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPupingYanyuan LujiangMaine: Energy

  12. Acton, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)dataSuccessful SmartAcomita Lake,Acton, California:Maine:

  13. Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels

    E-Print Network [OSTI]

    generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp z ETHANOL z WASTE METHANE z BIOGASz BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency ­ High

  14. James Kidder Main Library

    E-Print Network [OSTI]

    James Kidder Main Library Box 2008 Bldg. 4500N MS-6191 865-576-0535 kidderjh@ornl.gov Environmental Sciences Publications--Calendar Year 2008 Compiled January 11, 2009 Citation Total: 180 Books Sections and Functions at Interfaces. In L. Liang, R. Rinaldi & H. Schnober (Eds.), Neutron Applications in Earth, Energy

  15. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    by electricity generation/CHP facilities by distillate fuelFossil Fuel Consumption for Electricity and Heat GenerationFossil Fuel Consumption for Electricity and Heat Generation

  16. Maine coast winds

    SciTech Connect (OSTI)

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  17. Check Heat Transfer Services; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the result of: * Low air:fuel ratios * Improper fuel preparation * Malfunctioning burners * Oxidation of heat transfer surfaces in high temperature applications * Corrosive...

  18. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  19. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  20. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

  1. Maine Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1Total ConsumptionMaine

  2. Maine Green Power Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy This Revision 3Federal EnergyMaine -- SEP,<

  3. Maine PACE Loans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy This Revision 3Federal EnergyMaine --

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNaturalAlternative Fuel

  5. Fuel Cell Animation- Chemical Process (Text Version)

    Broader source: Energy.gov [DOE]

    This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

  6. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  7. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  8. Maine’s Beginning with Habitat program and transportation partnership

    E-Print Network [OSTI]

    Bostwick, Richard; Charry, Barbara

    2005-01-01

    He has worked for the Maine Department of Transportation inanimal-vehicle crash study for the Maine DOT. On the Road toof Field Studies, Maine Department of Transportation, 16

  9. DOE Zero Energy Ready Home Case Study 2014: Near Zero Maine Home II, Vassalboro, Maine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9.New Town BuildersHealthyNear Zero Maine

  10. 2009 Fuel Cell Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  11. Replace Fossil Fuels, Final Technical Report Roberts, William...

    Office of Scientific and Technical Information (OSTI)

    Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Roberts, William L 09 BIOMASS FUELS biofuels, glycerin, glycerol,...

  12. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeachDevelopmentWater Heating Water

  13. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatClean CitiesWhichApril

  14. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatClean CitiesWhichApril

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatClean CitiesWhichAprilNatural

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNatural Gas Vehicle (NGV)

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNatural Gas Vehicle

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNatural GasNatural Gas Tax

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNatural GasNatural Gas

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNatural GasNatural

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNatural GasNaturalPolicies

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe HeatCleanNaturalAlternativeElectric

  3. March 29, 2008 Operating Systems: Main Memory 1 Main Memory

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 Operating Systems: Main Memory 1 Main Memory Chapter 8 #12;March 29, 2008 Operating Systems: Main Memory 2 Chapter Outline Background Contiguous Memory Allocation Paging Structure of the Page Table Segmentation #12;March 29, 2008 Operating Systems: Main Memory 3 Objectives To provide

  4. Steam reforming of fuel to hydrogen in fuel cells

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  5. Steam reforming of fuel to hydrogen in fuel cell

    DOE Patents [OSTI]

    Young, J.E.; Fraioli, A.V.

    1983-07-13

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  6. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  7. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    SciTech Connect (OSTI)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  8. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  9. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  10. University of Maine Cooperative Extension

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    University of Maine Cooperative Extension Hand Signals Useful for Farmers Bulletin #2335 by Dawna L of Congress of May 8 and June 30, 1914, by the University of Maine Cooperative Extension, Vaughn H. Holyoke, Director for the University of Maine Cooperative Extension, the Land Grant University of the state of Maine

  11. Travel Pcard Reconciliation Main Campus

    E-Print Network [OSTI]

    New Mexico, University of

    Travel Pcard Reconciliation Manual Main Campus Version 1.0 January 2015 Contact Information Unrestricted Accounting ­ Main Campus MSC 01 1260 STAFF: Lisa Wirth-Fiscal Services Tech Ph. # 277-2019 wirthl accounting offices (Contracts and Grants-Main Campus, Unrestricted Accounting-Main Campus, Contracts

  12. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    SciTech Connect (OSTI)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  13. Cermet fuel thermal conductivity 

    E-Print Network [OSTI]

    Alvis, John Mark

    1988-01-01

    VITA 36 37 40 40 40 40 44 45 47 48 LIST OF FIGURES Figure Unit cell for derivation of model Page Heat Conduction Solution 22 3 Fission Gas Release Model 26 4A Metal Matrix Thermal Conductivity 4B Ceramic Fuel Thermal Conductivity 5... is based on the simple heat conduction equation. It is assumed that there is a uniform distribution of fuel particles in a regular array. A unit cell consists of a cube of matrix material of side length L, containing a spherical fuel particle of radius, r...

  14. Process Heating Assessment and Survey Tool | Department of Energy

    Energy Savers [EERE]

    methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity,...

  15. Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by...

  16. Use Feedwater Economizers for Waste Heat Recovery, Energy Tips...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use Feedwater Economizers for Waste Heat Recovery A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler...

  17. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  18. A GUIDE TO FUEL PERFORMANCE

    SciTech Connect (OSTI)

    LITZKE,W.

    2004-08-01

    Heating oil, as its name implies, is intended for end use heating consumption as its primary application. But its identity in reference name and actual chemical properties may vary based on a number of factors. By name, heating oil is sometimes referred to as gas oil, diesel, No. 2 distillate (middle distillate), or light heating oil. Kerosene, also used as a burner fuel, is a No. 1 distillate. Due to the higher heat content and competitive price in most markets, No. 2 heating oil is primarily used in modern, pressure-atomized burners. Using No. 1 oil for heating has the advantages of better cold-flow properties, lower emissions, and better storage properties. Because it is not nearly as abundant in supply, it is often markedly more expensive than No. 2 heating oil. Given the advanced, low-firing rate burners in use today, the objective is for the fuel to be compatible and achieve combustion performance at the highest achievable efficiency of the heating systems--with minimal service requirements. Among the Oil heat industry's top priorities are improving reliability and reducing service costs associated with fuel performance. Poor fuel quality, fuel degradation, and contamination can cause burner shut-downs resulting in ''no-heat'' calls. Many of these unscheduled service calls are preventable with routine inspection of the fuel and the tank. This manual focuses on No. 2 heating oil--its performance, properties, sampling and testing. Its purpose is to provide the marketer, service manager and technician with the proper guidelines for inspecting the product, maintaining good fuel quality, and the best practices for proper storage. Up-to-date information is also provided on commercially available fuel additives, their appropriate use and limitations.

  19. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE. regulators02-03Heat Management Options

  20. York County, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, New York: EnergyYoakumYonkers,Maine:

  1. Hancock County, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: Energy ResourcesMaine: Energy Resources Jump to:

  2. Calpine Power America LLC (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information

  3. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

    1996-01-01

    A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

  4. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  5. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  6. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  7. Radiant Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices |ProjectKnow Your PowerWeatherize » InsulationHeat

  8. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016Study (CHAPS)Archive CampaignListAtmospheric Heat

  9. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAward |Electron CorrelationHeat Transport

  10. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015Administration (EIA) ‹heating

  11. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015Administration (EIA)heating oil

  12. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015Administration (EIA)heating

  13. Maine - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009 2010 2011Year Jan Feb Mar AprperRenato2007Maine Maine

  14. MAIN CHAMBER NEUTRAL PRESSURE IN

    E-Print Network [OSTI]

    Pitcher, C. S.

    MAIN CHAMBER NEUTRAL PRESSURE IN ALCATOR C-MOD AND JET C S Pitcher, S K Erents*, W Fundamenski*, B on Controlled Fusion and Plasma Physics 18 ­ 22 June 1999, Madeira, Portugal MAIN CHAMBER NEUTRAL PRESSURE Science Centre, Abingdon, Oxon OX14 3DB,UK #12;(1) Introduction · main chamber gas can have a number

  15. EXPLORATORY FISHING FOR MAINE HERRING

    E-Print Network [OSTI]

    463 EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith Marine Biolcgica! Labcratory Ul a R AR. McKernan, Director EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith International;#12;EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith Base Director, Exploratory Fishing Base Bureau

  16. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur (Marietta, GA)

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  17. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  18. Aviation fuels technology

    SciTech Connect (OSTI)

    Goodger, E.; Vere, R.

    1985-01-01

    This book presents the current specifications for aviation gasolines and turbine fuels, with descriptions of the method of test for each property, and of the main production processes to achieve the specified standards. The possibilities of supplemental fuels derived from alternative sources are discussed. The availability, properties and performance of a range of substitute fuels, together with the energy economy of the production and use of these alternatives are also examined. Topics covered include: current aero engine types; current aviation fuel types; production; specification test methods; operational handling; fuel characteristics within air-craft fuel systems; fuel combustion performance; development of specifications; relaxation of specifications; aviation fuels from alternative sources; aviation fuels substitutes; and fuels for high performance aircraft.

  19. Geothermal Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information ResourcesHeatGenericExplorationHeat Pumps

  20. Energy Efficient Design of a Waste Heat Rejection System 

    E-Print Network [OSTI]

    Mehta, P.

    2000-01-01

    , and oil preheaters. The heating requirements for these heat sinks are generally met by burning fossil fuels or even by using electric heaters while available waste heat is rejected to the surrounding environment using devices such as cooling towers...

  1. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  7. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  8. main campus self guided campus tour

    E-Print Network [OSTI]

    Le Roy, Robert J.

    in Canada. It will contain a garden, a wetland, and in-floor heating using recycled heat from computers. tat

  9. The Analysis and Assessment on Heating Energy Consumption of SAT 

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  10. Residuals, Sludge, and Composting (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage,...

  11. Low Level Heat Recovery Technology 

    E-Print Network [OSTI]

    O'Brien, W. J.

    1982-01-01

    With today's high fuel prices, energy conservation projects to utilize low level waste heat have become more attractive. Exxon Chemical Company Central Engineering has been developing guidelines and assessing the potential for application of low...

  12. National Fuel Cell Research Center

    E-Print Network [OSTI]

    Mease, Kenneth D.

    National Fuel Cell Research Center www.nfcrc.uci.edu SOFC AND PEMFC COMPARISON Efficiency ­ Higher FOR OPTIMIZATION · Fuel Cell · Compressor · Combustor · Turbine · Storage Tank · Heat Exchanger·Battery · Motor of the system. · Operating characteristics of fuel cells at pressures less than 1 atm are largely unknown

  13. Water Heating Requirements Overview Page 5-1 5 Water Heating Requirements

    E-Print Network [OSTI]

    Water Heating Requirements ­ Overview Page 5-1 5 Water Heating Requirements 5.1 Overview 5.1.1 Water Heating Energy Water heating energy use is an important end use in low-rise residential buildings. Roughly 90 percent of California households use natural gas fueled water heaters, typically storage gas

  14. Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumps An error occurred. Try watching this video

  15. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural Gas Monthly Electricity data - Electricity Data Browser Presentations Propane update March 18, 2015...

  16. Combustion & Fuels Waste Heat Recovery & Utilization Project

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  17. UC Santa Cruz Main Entrance

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UC Santa Cruz West Entrance Em pire Grade Main Entrance HagarDrive Coolid geDrive P Sinsheimer Labs be purchased at the main entrance kiosk or at the TAPS Sales Office (located in the H Barn at the base

  18. Some Main Title Goes Here

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C. Temperature and energySolving the Unsovlable:

  19. Network_Plan_2008_Main

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA.MOXAdministrationOfficialsA 1 1 1Nature

  20. Resource Program (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultiday ProductionDesigning Resilient

  1. Power Contracts (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day PiSafety PrintableScientificJuly 16,Regional

  2. Secondary fuel delivery system

    DOE Patents [OSTI]

    Parker, David M. (Oviedo, FL); Cai, Weidong (Oviedo, FL); Garan, Daniel W. (Orlando, FL); Harris, Arthur J. (Orlando, FL)

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  3. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  4. Evaluation of fuel rod characterization for transient fuel modeling 

    E-Print Network [OSTI]

    Bechler, Eric Wayne

    1989-01-01

    Design parameters for Maine Yankee Unit I and Oconee Unit 2 fuel rods 23 Zircaloy cladding properties for Maine Yankee Unit I and Oconee Unit 2 fuel rods 26 Integral fission gas release of Maine Yankee Unit 1 and Oconee Unit 2 fuel rods 29 Cladding... parameters from COMETHE III-L steady state analyses for transient FREY-01 calculations 48 14 End-of-life fission gas release results for the Over-Ramp test fuel rodlet A20/3 49 15 Description of fuel diametral changes during the base irradiation...

  5. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry (Rochester, NY)

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  6. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  7. Collector main replacement at Indianapolis Coke

    SciTech Connect (OSTI)

    Sickle, R.R. Van

    1997-12-31

    Indianapolis Coke is a merchant coke producer, supplying both foundry and blast furnace coke to the industry. The facility has three coke batteries: two 3 meter batteries, one Wilputte four divided and one Koppers Becker. Both batteries are underjet batteries and are producing 100% foundry coke at a net coking time of 30.6 hours. This paper deals with the No. 1 coke battery, which is a 72 oven, gun fired, 5 meter Still battery. No. 1 battery produces both foundry and blast furnace coke at a net coking rate of 25.4 hours. No. 1 battery was commissioned in 1979. The battery is equipped with a double collector main. Although many renovations have been completed to the battery, oven machinery and heating system, to date no major construction projects have taken place. Deterioration of the collector main was caused in part from elevated levels of chlorides in the flushing liquor, and temperature fluctuations within the collector main. The repair procedures are discussed.

  8. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat recuperator for a high-temperature fuel cell system. This technology increases the efficiency of fuel cells and improves their performance in distributed energy...

  9. The Business Case for Fuel Cells 2011: Energizing America's Top...

    Energy Savers [EERE]

    a fuel cell's unique benefits, especially for powering forklifts and providing combined heat and power to their stores and headquarters. The Business Case for Fuel Cells 2011:...

  10. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    developed an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system. This technology increases the efficiency of fuel cells and improves...

  11. A Cross-Flow Ceramic Heat Recuperator for Industrial Heat Recovery 

    E-Print Network [OSTI]

    Gonzalez, J. M.; Cleveland, J. J.; Kohnken, K. H.; Rebello, W. J.

    1980-01-01

    With increasing fuel costs, the efficient use of fuel is very important to the U.S. process heat industries. Increase in fuel usage efficiency can be obtained by transferring the waste exhaust heat to the cold combustion air. The metallic...

  12. Winter Fuels Season is Right Around the Corner

    Broader source: Energy.gov [DOE]

    Weather changes have an impact on the way our nation uses our energy resources, particularly heating fuels.

  13. MotorWeek Fuel Cell Video

    Broader source: Energy.gov [DOE]

    Learn how fuel cells are being used in specialty vehicles, auxiliary power, standby power generators, and for supplying power and heat to buildings and warehouse operations.

  14. Efficiency Maine Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Maine offers rebates for the purchase of ENERGY STAR certified room air purifiers, clothes washers, and dehumidifiers. Purchases must be made between November 1, 2014 and June 30, 2015....

  15. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-03

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  16. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-17

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  17. DYNAMIC MODELING FUEL PROCESSORS

    E-Print Network [OSTI]

    Mease, Kenneth D.

    turbine module (compressor and turbine sub-modules) Catalytic oxidizer Combustor module Heat exchanger, PEM, Gas Turbine General Model Assumptions · 1D process flow · Well-stirred within nodal volume · Slow reactants #12;Steam Reformation ­ Occurs in Reformer and Fuel Cells Methane reformation reaction Water Gas

  18. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    freezing and about a hundred freeze-thaw cycles, there is no change in fuel cellfuel cell is operating, it generates more than enough heat to prevent water and moisture from freezingfuel cell system, because in the present design the flow fields and manifolds would be damaged by the freezing-

  19. LIQUID PHASE FISCHER-TROPSCH (III & IV) DEMONSTRATION IN THE LAPORTE ALTERNATIVE FUELS DEVELOPMENT UNIT. Final Topical Report. Volume I/II: Main Report. Task 1: Engineering Modifications (Fischer-Tropsch III & IV Demonstration) and Task 2: AFDU Shakedown, Operations, Deactivation (Shut-Down) and Disposal (Fischer-Tropsch III & IV Demonstration).

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1999-06-01

    Slurry phase Fischer-Tropsch technology was successfully demonstrated in DOE's Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. Earlier work at LaPorte, with iron catalysts in 1992 and 1994, had established proof-of-concept status for the slurry phase process. The third campaign (Fischer-Tropsch III), in 1996, aimed at aggressively extending the operability of the slurry reactor using a proprietary cobalt catalyst. Due to an irreversible plugging of catalyst-wax separation filters as a result of unexpected catalyst fines generation, the operations had to be terminated after seven days on-stream. Following an extensive post-run investigation by the participants, the campaign was successfully completed in March-April 1998, with an improved proprietary cobalt catalyst. These runs were sponsored by the U. S. Department of Energy (DOE), Air Products & Chemicals, Inc., and Shell Synthetic Fuels, Inc. (SSFI). A productivity of approximately 140 grams (gm) of hydrocarbons (HC)/ hour (hr)-liter (lit) of expanded slurry volume was achieved at reasonable system stability during the second trial (Fischer-Tropsch IV). The productivity ranged from 110-140 at various conditions during the 18 days of operations. The catalyst/wax filters performed well throughout the demonstration, producing a clean wax product. For the most part, only one of the four filter housings was needed for catalyst/wax filtration. The filter flux appeared to exceed the design flux. A combination of use of a stronger catalyst and some innovative filtration techniques were responsible for this success. There was no sign of catalyst particle attrition and very little erosion of the slurry pump was observed, in contrast to the Fischer-Tropsch III operations. The reactor operated hydrodynamically stable with uniform temperature profile and gas hold-ups. Nuclear density and differential pressure measurements indicated somewhat higher than expected gas hold-up (45 - 50 vol%) during Fischer-Tropsch IV operations. The high gas hold-up was confirmed by a dynamic gas disengagement test conducted at the end of the run. Heat transfer in the reactor was better than expected. Heat, mass and elemental balance calculations indicated excellent closure. After the initial learning curve with system dynamics, the plant was restarted very quickly (24 hours and 17 hours) following two plant trips. This demonstrates the ease and flexibility of the slurry technology. In-situ reduction of catalyst pre-cursor was completed successfully during F-T IV operations. Water measurements proved to be inaccurate due to wax/oil contamination of the analytical system. However, the reduction appeared to proceed well as close to expected syngas conversion was obtained at the beginning of the run. The selectivity to wax was lower than expected, with higher methane selectivity. Returning to the baseline condition indicated a productivity decline from 135-140 to 125-130 gm HC/hr-lit. of reactor volume in two weeks of operation. This may be a result of some catalyst loss from the reactor as well as initial catalyst deactivation. Significant quantities of product and samples were collected for further processing and analysis by the participants. Gas, liquid and solid phase mixing were studied as planned at two operating conditions using radioactive materials. A large amount of data were collected by ICI Tracerco using 43 detectors around the reactor. The data are being analyzed by Washington University as part of the Hydrodynamic Program with DOE.

  20. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  1. Control technology of vinyl chloride in EDC-VCM and PVC plants at main source points and fugitive emissions 

    E-Print Network [OSTI]

    Parra, Dario Antonio

    1983-01-01

    of the great quantities of dilute gas in EDC-VCN and PVC plants, the combustion system cannot be self-supported and therefore additional fuel is necessary, resulting in a waste of combustibles and heat. 3. Due to the flame, flares need to be located away...CONTROL TECHNOLOGY OF VINYL CHLORIDE IN EDC-VCM AND PVC PLANTS AT MAIN SOURCE POINTS AND FUGITIVE EMISSIONS A Thesis by DARIO ANTONIO PARRA Submitted to the Graduate College of Texas A6M University in partial fulfillment of the requirements...

  2. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  3. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  4. Franklin County, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLC Jumpwells,Maine: Energy Resources Jump to:

  5. East Central Penobscot, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcarePenobscot, Maine: Energy Resources

  6. South Eliot, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy IncAshburnham,BoundChicagoEl Monte,Eliot, Maine:

  7. St. George, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid, Arizona: Energy ResourcesMaine: Energy

  8. Kennebec County, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeith County,Kenduskeag, Maine:New

  9. Lake View, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources Jump to: navigation,Utah: EnergyMaine: Energy

  10. New Gloucester, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: Energy ResourcesCorporationGloucester, Maine:

  11. North Yarmouth, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source HistoryRoyalton,Yarmouth, Maine: Energy

  12. Old Town, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillionEdisonOkmulgeeSaybrook,Town, Maine:

  13. Constellation NewEnergy, Inc (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordia ElectricConstellation NewEnergy, Inc Place: Maine

  14. American PowerNet (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation, search Name:AmbataSkiesPowerNet (Maine) Jump

  15. Town of Madison, Maine (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformationLaverne, Oklahoma (Utility Company)Lucama,Maine

  16. Suez Energy Resources North America (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBeforeCreekSingle-WellofMaine) Jump to:

  17. Widget:MainPageHelper | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What IsLogoCloud Jump to: navigation,MainPageHelper Jump

  18. Androscoggin County, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,InofMill,Androscoggin County, Maine:

  19. Brunswick Station, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergy InformationKansas:Brownville,BrunsVirginia:

  20. Central Maine Power Company Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo EnergyOhio: EnergyFalls,IndianaEnergyMaine

  1. Chebeague Island, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: Energy ResourcesTennessee: EnergyNewChebeague

  2. Fallon-Main Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal JumpFallon-Main Geothermal Project

  3. MHK Projects/Maine 1 Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 JumpCoos Bay OPTHalf| Open EnergyMaine 1 Project

  4. MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED1,400 Jobs |Inc. |Energy MAINE MULTIFAMILY

  5. 2008 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  6. Fuel-Flexible Microturbine and Gasifier System

    SciTech Connect (OSTI)

    2009-12-01

    This factsheet describes a project that will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  7. Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, Adam Z.

    2008-01-01

    Proton Exchange Membrane Fuel Cell , Numerical Heat Transferof Polymer Electrolyte Fuel Cells Using a Two-EquationLayers for Proton Exchange Membrane Fuel Cells 2. Absolute

  8. Using a Quasipotential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells

    E-Print Network [OSTI]

    Weber, Adam Z.

    2008-01-01

    Proton Exchange Membrane Fuel Cell , Numerical Heat Transferof Polymer Electrolyte Fuel Cells Using a Two-EquationExchange Membrane Fuel Cells 2. Absolute Permeability ,

  9. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  10. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  11. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  12. Library Site Finder MAIN LIBRARY

    E-Print Network [OSTI]

    Sidorov, Nikita

    Library Site Finder MAIN LIBRARY Burlington Street Tel: 0161 275 3751 THE ALAN GILBERT LEARNING COMMONS Oxford Road Tel: 0161 306 4306 ART & ARCHAEOLOGY LIBRARY Mansfield Cooper Building Tel: 0161 275 3657 BRADDICK LIBRARY School of Physics & Astronomy Brunswick Street Tel: 0161 275 4078 EDDIE DAVIES

  13. Classical exponential inequalities Main results

    E-Print Network [OSTI]

    Bercu, Bernard

    on left or on right A keystone lemma New exponential inequalities 3 Statistical application B. Bercu and A results Heavy on left or on right A keystone lemma New exponential inequalities 3 Statistical application~na's inequalities 2 Main results Heavy on left or on right A keystone lemma New exponential inequalities 3

  14. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-07-16

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  15. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-04-22

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  16. Heat recovery | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation, search Equivalent|CornHeat recovery Jump to:

  17. Winters fuels report

    SciTech Connect (OSTI)

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  18. Hog Fuel Drying Using Vapour Recompression 

    E-Print Network [OSTI]

    Azarniouch, M. K.; MacEachen, I.

    1984-01-01

    A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

  19. Fuel axial relocation in ballooning fuel rods. [PWR; BWR

    SciTech Connect (OSTI)

    Siefken, L.J.

    1983-01-01

    Fuel movement, in the longitudinal direction in ballooning fuel rods, shifts the position of heat generation and may cause an increase in cladding temperature in the ballooning region. This paper summarizes the axial fuel relocation data obtained in fuel rod tests conducted in the United States and the Federal Republic of Germany, describes a model for calculating fuel axial relocation, and gives a quantitative analysis of the impact of fuel relocation on cladding temperature. The amount of fuel relocation in 18 ballooned fuel rods was determined from neutron radiographs, niobium gamma decay counts, and photomicrographs. The fuel rods had burnups in the range of 0 to 35,000 MWd/t and cladding hoop strains varying from 0 to 72%.

  20. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation of the DH plant Imanta · Selection of the heat pump/chiller · Operation of the heat pump/chiller · Summary

  1. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect (OSTI)

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  2. LMFBR fuel assembly design for HCDA fuel dispersal

    DOE Patents [OSTI]

    Lacko, Robert E. (North Huntingdon, PA); Tilbrook, Roger W. (Monroeville, PA)

    1984-01-01

    A fuel assembly for a liquid metal fast breeder reactor having an upper axial blanket region disposed in a plurality of zones within the fuel assembly. The characterization of a zone is dependent on the height of the axial blanket region with respect to the active fuel region. The net effect of having a plurality of zones is to establish a dispersal flow path for the molten materials resulting during a core meltdown accident. Upward flowing molten material can escape from the core region and/or fuel assembly without solidifying on the surface of fuel rods due to the heat sink represented by blanket region pellets.

  3. Alternative Fuels Data Center: Vehicle Conversion Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is on in St.

  4. Alternative Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures |1UsHeat

  5. Maine Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011 High EnergyJanuaryLawrenceof Science (SC)Maine

  6. PP-43 Maine Electric Power Company, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926FamiliesBritishPresidentialPermit authorizingMaine

  7. PP-62 Central Maine Power Company | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential Permit authorizing Rio GrandeCentral Maine Power Company to

  8. Maine Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)Price (Dollars per Thousand Cubic Feet) Maine Natural Gas

  9. Maine Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)Price (Dollars per Thousand Cubic Feet) Maine

  10. Heat Management Strategy Trade Study

    SciTech Connect (OSTI)

    Nick Soelberg; Steve Priebe; Dirk Gombert; Ted Bauer

    2009-09-01

    This Heat Management Trade Study was performed in 2008-2009 to expand on prior studies in continued efforts to analyze and evaluate options for cost-effectively managing SNF reprocessing wastes. The primary objective was to develop a simplified cost/benefit evaluation for spent nuclear fuel (SNF) reprocessing that combines the characteristics of the waste generated through reprocessing with the impacts of the waste on heating the repository. Under consideration were age of the SNF prior to reprocessing, plutonium and minor actinide (MA) separation from the spent fuel for recycle, fuel value of the recycled Pu and MA, age of the remaining spent fuel waste prior to emplacement in the repository, length of time that active ventilation is employed in the repository, and elemental concentration and heat limits for acceptable glass waste form durability. A secondary objective was to identify and qualitatively analyze remaining issues such as (a) impacts of aging SNF prior to reprocessing on the fuel value of the recovered fissile materials, and (b) impact of reprocessing on the dose risk as developed in the Yucca Mountain Total System Performance Assessment (TSPA). Results of this study can be used to evaluate different options for managing decay heat in waste streams from spent nuclear fuel.

  11. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  12. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea: PADD 1 to PADDFuelFuelFuel

  13. Flavor ofmaine 4 Maine Sardine Pizza

    E-Print Network [OSTI]

    Flavor of maine #12;Flavor ofmaine 4 Maine Sardine Pizza Maine Tomato Surprise French Toasted Sardine Sandwich 6 Sardines on a Roll Maine Sardine Olive Sandwich Sardine Skyscraper Sandwich 7 Maine Sardine Submarine Sandwich Mustard Sauce 8 Bohemian Salad Marinade Maine Sardine Cole Slaw Cole Slaw

  14. Solar Thermal Process Heat | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium deEnergyCompany Limited SPCSolar Thermal Process Heat

  15. Waste Heat Recovery Opportunities for Thermoelectric Generators |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE. regulators02-03Heat Management

  16. Heat Pump Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS Policy HQDepartmentHeat Pump

  17. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS Policy HQDepartmentHeatofHeating

  18. Home Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMSHome EnergyHeating Systems Home

  19. One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Energy Homes

    E-Print Network [OSTI]

    California at Davis, University of

    One Machine for Heating Cooling & Domestic Hot Water: Multi-Function Heat Pumps to Enable Zero Net Dakin, Davis Energy Group Michael Koenig, American Honda Motor Company ABSTRACT The evolution of heat-pump design uses multiple systems and fuels to provide thermal services, the emerging generation of heat-pump

  20. Fuel for Galaxy Disks

    E-Print Network [OSTI]

    M. E. Putman; J. Grcevich; J. E. G. Peek

    2008-04-04

    Halo clouds have been found about the three largest galaxies of the Local Group and in the halos of nearby spirals. This suggests they are a relatively generic feature of the galaxy evolution process and a source of fuel for galaxy disks. In this review, two main sources of disk star formation fuel, satellite material and clouds condensing from the hot halo medium, are discussed and their contribution to fueling the Galaxy quantified. The origin of the halo gas of M31 and M33 is also discussed.