National Library of Energy BETA

Sample records for main heating equipment

  1. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  2. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.

    SciTech Connect (OSTI)

    KRISHNA,C.R.

    2001-12-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

  3. Optimizing PT Arun LNG main heat exchanger

    SciTech Connect (OSTI)

    Irawan, B.

    1995-12-01

    The capacity of a LNG liquefaction unit has been increased by upgrading the refrigeration system, without making changes to the main heat exchanger (MHE). It is interesting, that after all modifications were completed, a higher refrigerant circulation alone could not increase LNG production. However, by optimizing the refrigerant component ratio, the UA of the MHE increased and LNG production improved. This technical evaluation will provide recommendations and show how the evaluation of the internal temperature profile helped optimize the MHE operating conditions.

  4. Recovering the Heat Dissipated by the Digital Switching Equipment 

    E-Print Network [OSTI]

    Karasseferian, V. V.; Desjardins, R.

    1983-01-01

    With the advent of the Digital Switching Equipment, came the need for year round cooling due to its high heat density. This meant the need for independent systems of heating and cooling within the same building, one consuming energy for heating...

  5. Heat exchanger for power generation equipment

    DOE Patents [OSTI]

    Nirmalan, Nirm Velumylm; Bowman, Michael John

    2005-06-14

    A heat exchanger for a turbine is provided wherein the heat exchanger comprises a heat transfer cell comprising a sheet of material having two opposed ends and two opposed sides. In addition, a plurality of concavities are disposed on a surface portion of the sheet of material so as to cause hydrodynamic interactions and affect a heat transfer rate of the turbine between a fluid and the concavities when the fluid is disposed over the concavities.

  6. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Rice, C Keith [ORNL] [ORNL

    2014-01-01

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  7. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  8. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  9. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    E-Print Network [OSTI]

    2004-01-01

    of Commercial and Residential Air Conditioning and HeatingOF COMMERCIAL AND RESIDENTIAL AIR-CONDITIONING AND HEATINGand residential air-conditioning and heating equipment.

  10. DOE Publishes Notice of Proposed Rulemaking for Direct Heating Equipment and Pool Heater Test Procedures

    Broader source: Energy.gov [DOE]

    The Department of Energy has published a notice of proposed rulemaking regarding test procedures for direct heating equipment and pool heaters.

  11. Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment. In a Ground Coupled Heat Pump (GCHP) system a length of pipe is buried in the ground and the ground acts as a reservoir to store the heat

  12. Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Consumer Products: Energy Conservation Standards for Direct Heating Equipment and Pool Heaters, Request for Information

  13. Reduce Radiation Losses from Heating Equipment; Industrial Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in which opening size cannot be reduced, you can use flexible materials such as ceramic strips, chains, or ceramic textiles as "curtains." These generally reduce heat loss...

  14. 2014-02-21 Issuance: Test Procedure for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency (February 21, 2014).

  15. Heating and Cooling System Support Equipment Basics | Department...

    Office of Environmental Management (EM)

    thermostats can store and repeat multiple daily settings. Users can adjust the times heating or air-conditioning is activated according to a pre-set schedule. Visit the Energy...

  16. Commercial HVAC and Water-Heating Equipment Minimum Efficiency Standards in the United States

    SciTech Connect (OSTI)

    Nasseri, Cyrus H.; Somasundaram, Sriram

    2001-08-01

    ABSTRACT In 1992, Federal legislation mandated that the U.S. Department of Energy (DOE) set the efficiency levels in the then-current ASHRAE Standard 90.1 as mandatory minimums for heating, ventilating, and air-conditioning (HVAC) and service water-heating (SWH) equipment sold in the U.S. market, as well as a process for revising the minimum equipment efficiency standards to comply with requirements in an updated Standard 90.1. Because Standard 90.1 was updated in October 1999 (Standard 90.1-1999), DOE is now undertaking a rulemaking process for these equipment categories. In January 2001, DOE published a final rule adopting Standard 90.1-1999 levels as uniform national standards for 18 product categories of commercial HVAC and SWH equipment. For 11 other categories of commercial products, DOE has signaled its intention to consider more stringent standards than those adopted by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE). DOE has now initiated a formal rulemaking process to further analyze these equipment categories.

  17. Occupational exposure assessment of magnetic fields generated by induction heating equipment--the role of spatial averaging

    E-Print Network [OSTI]

    Ljubljana, University of

    heating equipment is a source of strong and nonhomogeneous magnetic fields, which can exceed occupationalOccupational exposure assessment of magnetic fields generated by induction heating equipment for more Home Search Collections Journals About Contact us My IOPscience #12;IOP PUBLISHING PHYSICS

  18. ISSUANCE 2014-12-23: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters, Final Rule

  19. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    SciTech Connect (OSTI)

    Somasundaram, Sriram; Armstrong, Peter R.; Belzer, David B.; Gaines, Suzanne C.; Hadley, Donald L.; Katipumula, S.; Smith, David L.; Winiarski, David W.

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equip-ment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  20. Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment ofCommercialEnergyDepartment ofHeating and Water

  1. 2014-10-10 Issuance: Energy Conservation Standards for Commercial Water Heating Equipment; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding energy conservation standards for commercial water heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on October 10, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  2. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces, Supplemental Notice of Proposed Rulemaking

  3. ISSUANCE 2015-12-17: Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment and Commercial Warm Air Furnaces

  4. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding certification of commercial heating, ventilation, and air-conditioning, water-heating, and refrigeration equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  5. Screening Analysis for EPACT-Covered Commercial HVAC and Water-Heating Equipment

    SciTech Connect (OSTI)

    Somasundaram, Sriram; Armstrong, Peter R; Belzer, David B; Gaines, Suzanne C; Hadley, Donald L; Smith, David L; Winiarski, David W

    2000-04-25

    The Energy Policy and Conservation Act (EPCA) as amended by the Energy Policy Act of 1992 (EPACT) establishes that the U.S. Department of Energy (DOE) regulate efficiency levels of certain categories of commercial heating, cooling, and water-heating equipment. EPACT establishes the initial minimum efficiency levels for products falling under these categories, based on ASHRAE/IES Standard 90.1-1989 requirements. EPCA states that, if ASHRAE amends Standard 90.1-1989 efficiency levels, then DOE must establish an amended uniform national manufacturing standard at the minimum level specified in the amended Standard 90.1 and that it can establish higher efficiency levels if they would result in significant additional energy savings. 011Standard 90.1-1999 increases minimum efficiency levels for some of the equipment categories covered by EPCA 92. DOE conducted a screening analysis to determine the energy-savings potential for EPACT-covered products meet and exceeding these levels. This paper describes the methodology, data assumptions, and results of the analysis.

  6. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  7. Technical Subtopic 2.1: Modeling Variable Refrigerant Flow Heat Pump and Heat Recovery Equipment in EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard; Nigusse, Bereket; Domitrovic, Ron

    2013-09-30

    The University of Central Florida/Florida Solar Energy Center, in cooperation with the Electric Power Research Institute and several variable-refrigerant-flow heat pump (VRF HP) manufacturers, provided a detailed computer model for a VRF HP system in the United States Department of Energy's (U.S. DOE) EnergyPlus? building energy simulation tool. Detailed laboratory testing and field demonstrations were performed to measure equipment performance and compare this performance to both the manufacturer's data and that predicted by the use of this new model through computer simulation. The project goal was to investigate the complex interactions of VRF HP systems from an HVAC system perspective, and explore the operational characteristics of this HVAC system type within a laboratory and real world building environment. Detailed laboratory testing of this advanced HVAC system provided invaluable performance information which does not currently exist in the form required for proper analysis and modeling. This information will also be useful for developing and/or supporting test standards for VRF HP systems. Field testing VRF HP systems also provided performance and operational information pertaining to installation, system configuration, and operational controls. Information collected from both laboratory and field tests were then used to create and validate the VRF HP system computer model which, in turn, provides architects, engineers, and building owners the confidence necessary to accurately and reliably perform building energy simulations. This new VRF HP model is available in the current public release version of DOE?s EnergyPlus software and can be used to investigate building energy use in both new and existing building stock. The general laboratory testing did not use the AHRI Standard 1230 test procedure and instead used an approach designed to measure the field installed full-load operating performance. This projects test methodology used the air enthalpy method where relevant air-side parameters were controlled while collecting output performance data at discreet points of steady-state operation. The primary metrics include system power consumption and zonal heating and cooling capacity. Using this test method, the measured total cooling capacity was somewhat lower than reported by the manufacturer. The measured power was found to be equal to or greater than the manufacturers indicated power. Heating capacity measurements produced similar results. The air-side performance metric was total cooling and heating energy since the computer model uses those same metrics as input to the model. Although the sensible and latent components of total cooling were measured, they are not described in this report. The test methodology set the thermostat set point temperature very low for cooling and very high for heating to measure full-load performance and was originally thought to provide the maximum available capacity. Manufacturers stated that this test method would not accurately measure performance of VRF systems which is now believed to be a true statement. Near the end of the project, an alternate test method was developed to better represent VRF system performance as if field installed. This method of test is preliminarily called the Load Based Method of Test where the load is fixed and the indoor conditions and unit operation are allowed to fluctuate. This test method was only briefly attempted in a laboratory setting but does show promise for future lab testing. Since variable-speed air-conditioners and heat pumps include an on-board control algorithm to modulate capacity, these systems are difficult to test. Manufacturers do have the ability to override internal components to accommodate certification procedures, however, it is unknown if the resulting operation is replicated in the field, or if so, how often. Other studies have shown that variable-speed air-conditioners and heat pumps do out perform their single-speed counterparts though these field studies leave as many questions as they do provide answers. The measure

  8. ISSUANCE 2015-12-11: Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

    Broader source: Energy.gov [DOE]

    Final Rule Regarding Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment

  9. A study of aggregation bias in estimating the market for home heating and cooling equipment

    SciTech Connect (OSTI)

    Wood, D.J.; Ruderman, H.; McMahon, J.E.

    1989-05-01

    Econometricians frequently propose parametric models which are contingent on an underlying assumption of rational economic agents maximizing their utility. Accurate estimation of the parameters of these models depends on using data disaggregated to the level of the actual agents, usually individual consumers or firms. Using data at some other level of aggregation introduces bias into the inferences made from the data. Unfortunately, properly disaggregated data is often unavailable, or at least, much more costly to obtain than aggregate data. Research on consumer choice of home heating equipment has long depended on state-level cross-sectional data. Only recently have investigators been able to build up and successfully use data on consumer attributes and choices at the household level. A study estimated for the Electric Power Research Institute REEPS model is currently one of the best of these. This paper examines the degree of bias that would be introduced in that study if only average data across SMSAs or states were used at several points in the investigation. We examine the market shares and elasticities estimated from that model using only the mean values of the exogenous variables, and find severe errors to be possible. However, if the models were calibrated on only aggregate data originally, we find that proper treatment allows market shares and elasticities to be found with little error relative to the disaggregate models. 22 refs., 4 figs., 10 tabs.

  10. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect (OSTI)

    Li Wei [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Peng Jinhui [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)], E-mail: jhpeng_ok@yeah.net; Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  11. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment

  12. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment6 2008

  13. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment6

  14. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment68

  15. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential5 Commercial Equipment689

  16. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562 Main

  17. ISSUANCE 2015-04-29: Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters Notice of petition to extend test procedure compliance date and request for comment

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products: Test Procedures for Direct Heating Equipment and Pool Heaters; Notice of petition to extend test procedure compliance date and request for comment.

  18. ISSUANCE 2015-07-27: Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Small, Large, and Very Large Air-Cooled Commercial Package Air Conditioning and Heating Equipment, Notice of Proposed Rulemaking

  19. Transferring Capital Equipment To Surplus First you need to find the asset you wish to surplus. On the Main Menu screen under the Lookup and Maintenance box

    E-Print Network [OSTI]

    . On the Main Menu screen under the Lookup and Maintenance box in the middle of the screen look under

  20. 2014-12-22 Issuance: Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Final Rule

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, refrigeration, and water heating equipment , as issued by the Deputy Assistant Secretary for Energy Efficiency on December 22, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  1. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  2. Technical Feasibility Study for Deployment of Ground-Source Heat Pump Systems: Portsmouth Naval Shipyard -- Kittery, Maine

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2014-11-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reduction goals.

  3. Energy Conservation Program for Certain Industrial Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards and Test Procedures for Commercial Heating, Air- Conditioning, and Water-Heating Equipment AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  4. Behavior of lithium ions in the turbulent near-wall tokamak plasma under heating of ions and electrons of the main plasma

    SciTech Connect (OSTI)

    Shurygin, R. V., E-mail: regulxx@rambler.ru; Morozov, D. Kh. [National Research Centre Kurchatov Institute (Russian Federation)

    2014-12-15

    Turbulent dynamics of the near-wall tokamak plasma is simulated by numerically solving the nonlinear reduced Braginskii magnetohydrodynamic equations with allowance for a lithium ion admixture. The effects of turbulence and radiation of the admixture are analyzed in the framework of a self-consistent approach. The radial distributions of the radiative loss power and the density of Li{sup 0} atoms and Li{sup +1} ions are obtained as functions of the electron and ion temperatures of the main plasma in the near-wall layer. The results of numerical simulations show that supply of lithium ions into the low-temperature near-wall plasma substantially depends on whether the additional power is deposited into the electron or ion component of the main plasma. If the electron temperature in the layer increases (ECR heating), then the ion density drops. At the same time, an increase in the temperature of the main ions (ICR heating) leads to an increase in the density of Li{sup +1} ions. The results of numerical simulations are explained by the different influence of the electron and ion temperatures on the atomic processes governing the accumulation and loss of particles in the balance equations for neutral Li{sup 0} atoms and Li{sup +1} ions in the admixture. The radial profile of the electron temperature and the corresponding distribution of the radiative loss power for different densities of neutral Li{sup 0} atoms on the wall are obtained. The calculations show that the presence of Li{sup +1} ions affects turbulent transport of the main ions. In this case, the electron heat flux increases by 20–30% with increasing Li{sup +1} density, whereas the flux of the main ions drops by nearly the same amount. The radial profile of the turbulent flux of lithium ions is obtained. It is demonstrated that the appearance of the pinch effect is related to the positive density gradient of lithium ions across the calculation layer. For the parameters of the T-10 tokamak, the effect of radiative cooling of the near-wall plasma layer becomes appreciable when the near-wall density of neutral lithium atoms exceeds 7 × 10{sup 11} cm{sup ?3}. In this case, the density of radiative loss power in the center of the layer is estimated to be about 500–600 kW/m{sup 3}.

  5. Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus

    Broader source: Energy.gov [DOE]

    This project proposes to heat and cool planned 500-bed apartment-style student housing with closed loop vertical bore geothermal heat pump system installation.

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  8. 1999 Commercial Buildings Characteristics--Glossary--Space-Heating...

    U.S. Energy Information Administration (EIA) Indexed Site

    Space-Heating Equipment Glossary-Space-Heating Equipment Boiler: A type of space-heating equipment consisting of a vessel or tank where heat produced from the combustion of such...

  9. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Energy Savers [EERE]

    degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum pumps, ice machines, x-ray equipment, and air conditioners. To remove the same heat...

  10. Materials Selection Considerations for Thermal Process Equipment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    productivity and operating cost of the equipment. These materials are used in burners, electrical heating elements, material handling, load support, and heater tubes, etc....

  11. Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant

    SciTech Connect (OSTI)

    A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok

    2007-01-15

    Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

  12. 2014-09-18 Issuance: Energy Conservation Standard for Alternative Efficiency Determination Methods, Basic Model Definition, and Compliance for Commercial HVAC, Refrigeration, and Water Heating Equipment; Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding energy conservation standards for alternative efficiency determination methods, basic model definition, and compliance for commercial HVAC, Refrigeration, and Water Heating Equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on September 18, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  13. 2014-11-25 Issuance: Energy Conservation Standards for Small, Large, and Very Large Air-cooled Commercial Package Air Conditioning and Heating Equipment; Extension of Public Comment Period

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of the public comment period regarding energy conservation standards for small, large and very large air-cool commercial package air conditioning and heating equipment, as issued by the Deputy Assistant Secretary for Energy Efficiency on November 25, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  14. Maine coast winds

    SciTech Connect (OSTI)

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  15. Process Heating Assessment and Survey Tool | Department of Energy

    Energy Savers [EERE]

    methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity,...

  16. Efficiency Maine Business Programs (Unitil Gas) - Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Other EE Food Service Equipment Program Info Sector Name Utility Administrator Efficiency Maine Website http:www.efficiencymaine.comat-worknatural-gas-program State...

  17. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System

    SciTech Connect (OSTI)

    Farmer, J C

    2007-11-26

    By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  19. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  20. Anne Arundel County- Solar and Geothermal Equipment Property Tax Credits

    Broader source: Energy.gov [DOE]

    Anne Arundel County offers a one-time credit from county property taxes on residential dwellings that use solar and geothermal energy equipment for heating and cooling, and solar energy equipment...

  1. Philadelphia Gas Works- Residential and Small Business Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Residential Heating Equipment rebates are available to all PGW residential or small business customers installing high efficiency boilers and furnaces, and programma...

  2. ORNL MAXLAB occupied, nearing fully equipped status | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wall assemblies and a low-bay area housing a heating, ventilation, and air-conditioning laboratory. Equipment installation began in early January. Both suites should be...

  3. Collector main replacement at Indianapolis Coke

    SciTech Connect (OSTI)

    Sickle, R.R. Van

    1997-12-31

    Indianapolis Coke is a merchant coke producer, supplying both foundry and blast furnace coke to the industry. The facility has three coke batteries: two 3 meter batteries, one Wilputte four divided and one Koppers Becker. Both batteries are underjet batteries and are producing 100% foundry coke at a net coking time of 30.6 hours. This paper deals with the No. 1 coke battery, which is a 72 oven, gun fired, 5 meter Still battery. No. 1 battery produces both foundry and blast furnace coke at a net coking rate of 25.4 hours. No. 1 battery was commissioned in 1979. The battery is equipped with a double collector main. Although many renovations have been completed to the battery, oven machinery and heating system, to date no major construction projects have taken place. Deterioration of the collector main was caused in part from elevated levels of chlorides in the flushing liquor, and temperature fluctuations within the collector main. The repair procedures are discussed.

  4. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  5. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    Feb-15 Mar-15 Apr-15 May-15 Jun-15 Jul-15 View History Delivered to Consumers 1,035 1,030 1,025 1,022 1,020 1,020 2013-2015...

  6. Maine Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2009 2010 2011 2012 2013 2014 View History Delivered to Consumers 1,046 1,044 1,047 1,032 1,030 1,029 2007-2014...

  7. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic(Million::6)

  8. Maine Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic(Million::6)May-15

  9. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 3, Water heaters, pool heaters, direct heating equipment, and mobile home furnaces

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This is Volume 3 in a series of documents on energy efficiency of consumer products. This volume discusses energy efficiency of water heaters. Water heaters are defined by NAECA as products that utilize oil, gas, or electricity to heat potable water for use outside the heater upon demand. These are major appliances, which use a large portion (18% on average) of total energy consumed per household (1). They differ from most other appliances in that they are usually installed in obscure locations as part of the plumbing and are ignored until they fail. Residential water heaters are capable of heating water up to 180{degrees}F, although the setpoints are usually set lower.

  10. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  11. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  12. Waste Heat Utilization System Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Waste heat utilization systems are facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elect...

  13. Alexandra Main CV 1 ALEXANDRA MAIN

    E-Print Network [OSTI]

    Oviedo, Néstor J.

    Alexandra Main CV 1 ALEXANDRA MAIN CURRICULUM VITAE JULY 15, 2014 Email: amain@ucmerced.edu School-REVIEWED PUBLICATIONS Main, A., Wiebe, D. J., Croom, A. R., Sardone, K., Godbey, E., Tucker, C., & White, P. C. (in and depressive symptoms in Latino and Caucasian youth. Journal of Pediatric Psychology. #12;Alexandra Main CV 2

  14. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01

    operating solar heating and cooling systems covering a widepractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  15. Workshop on Condensing Heating and Water Heating Equipment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.Energy WindWorkplace Charging Success:DepartmentWorkshop

  16. Energy Audit Equipment 

    E-Print Network [OSTI]

    Phillips, J.

    2012-01-01

    The tools (equipment) needed to perform an energy audit include those items which assist the auditor in measuring the energy used by equipment or lost in inefficiency. Each tool is designed for a specific measurement. They can be inexpensive simple...

  17. Power equipment applications

    SciTech Connect (OSTI)

    Seeley, R.S. (Consultant, Bridgewater, NJ (United States))

    1993-11-01

    Many considerations are taken into account in selecting equipment for power projects. The project often becomes a proving ground, benefiting equipment suppliers and developers. In designing and building power generation projects, developers and engineering and construction firms must go through the process of choosing the right equipment for the job. In doing so, a number of considerations regarding the benefits of selection and ease of installation must be taken into account. Understanding the selection process demonstrates how the independent power generation industry becomes a proving ground for different applications of power equipment. In turn, this adds more innovation and versatility to the entire power generation industry. It also provides lenders with examples of proven equipment that will more readily lead to successful financing in the future. Several developers and equipment vendors recently talked about how and why the choices were made for equipment like gas turbines, fluidized bed boilers, water treatment, power cooling equipment, and instruments and controls. 3 figs.

  18. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Broader source: Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  19. 2014-02-07 Issuance: Certification of Commercial Heating, Ventilation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certification of Commercial Heating, Ventilation, and Air-conditioning, Water Heating, and Refrigeration Equipment; Notice of Proposed Rulemaking 2014-02-07 Issuance: Certification...

  20. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  1. Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain

    E-Print Network [OSTI]

    Hughes, Douglas E.

    2010-12-17

    Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

  2. Preliminaries Main Theorem

    E-Print Network [OSTI]

    Nevins, Monica

    Preliminaries Main Theorem W-Graphs and their -Invariants Proof of the Main Theorem Type;Preliminaries Main Theorem W-Graphs and their -Invariants Proof of the Main Theorem Type An The other classical Jackson Todor MilevTau Signatures and Characters of Weyl Groups #12;Preliminaries Main Theorem W

  3. Census Snapshot: Maine

    E-Print Network [OSTI]

    Romero, Adam P; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

    2008-01-01

    MAINE Adam P. Romero, Public Policy Fellow Clifford J.sex couples raising children in Maine. We compare same-sex “sex married couples in Maine. 1 JUNE 2008 In many ways, the

  4. Introduction Main Result

    E-Print Network [OSTI]

    Yan, Catherine Huafei

    Introduction Main Result Enumeration Crossings and Nestings of Two Edges in Set Partitions Yan Crossings and Nestings of Set Partitions #12;Introduction Main Result Enumeration Definition} Catherine Yan Crossings and Nestings of Set Partitions #12;Introduction Main Result Enumeration Definition

  5. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  6. Definitions Main Result

    E-Print Network [OSTI]

    Heubach, Silvia

    Background Definitions Main Result Special Types of Patterns Summary Avoidance of partially ordered Avoidance of partially ordered patterns in compositions #12;Background Definitions Main Result Special Types of Patterns Summary Outline 1 Background 2 Definitions 3 Main Result Preliminaries Main Result 4 Special Types

  7. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect (OSTI)

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used with data center energy use modeling software to estimate overall site energy use. These estimates show that an overall data center energy savings of approximately 20 percent can be expected if a center is retrofitted as specified in the models used. Increasing the portion of heat captured by this technology is an area suggested for further development.

  8. Waste Heat Utilization System Income Tax Deduction (Personal)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  9. Waste Heat Utilization System Income Tax Deduction (Corporate)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Waste heat utilization system means facilities and equipment for the recovery of waste heat generated in the process of generating electricity and the use of such heat to generate additional elec...

  10. Identification of existing waste heat recovery and process improvement technologies

    SciTech Connect (OSTI)

    Watts, R.L.; Dodge, R.E.; Smith, S.A.; Ames, K.R.

    1984-03-01

    General information is provided on waste heat recovery opportunities. The currently available equipment for high- and low-temperature applications are described. Other equipment related to wasteheat recovery equipment such as components, instruments and controls, and cleaning equipment is discussed briefly. A description of the microcomputer data base is included. Suppliers of waste heat equipment are mentioned throughout the report, with specific contacts, addresses, and telephone numbers provided in an Appendix.

  11. Design of Heat Exchanger for Heat Recovery in CHP Systems 

    E-Print Network [OSTI]

    Kozman, T. A.; Kaur, B.; Lee, J.

    2009-01-01

    . Before the design process can begin, product specifications, such as steam or water pressures and temperatures, and equipment, such as absorption chillers and heat exchangers, need to be identified and defined. The Energy Engineering Laboratory...

  12. Early Equipment Management

    E-Print Network [OSTI]

    Schlie, Michelle

    2007-05-18

    Installed .................................................40 Exhibit 11: 400 Gallon Tank and K-Tron Feeder................................................42 Exhibit 12: Cardboard Box Layout of First Floor Equipment ..............................43... Exhibit 13: Continuous Mixer .............................................................................43 Exhibit 14: Gantry Palletizer...............................................................................44 Page 4 Acknowledgements I...

  13. Laboratory Equipment Donation Program - Equipment List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley LablooksEquipment List

  14. MAIN APPLICATIONS Spot welding

    E-Print Network [OSTI]

    De Luca, Alessandro

    and speed over the entire working envelope. Adaptability IRB 6400 is designed to be compact with a small interference radius to ensure flexible installations in areas with high density of production equipment a quick return to full production. Reliability and safety IRB 6400 features robust all-steel construction

  15. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine

    Broader source: Energy.gov [DOE]

    Case study describing a single-story, 1,200-sq. ft. home in Maine with double shell walls, triple-pane windows, ductless heat pump, solar hot water, HERS 35 eithout PV, HERS 11 with PV

  16. Old Main - 82 

    E-Print Network [OSTI]

    Unknown

    2006-01-01

    One of the most important properties of a sustainable building is to provide thermal comfort conditions for users with a minimum heating and cooling energy consumption. Therefore, primary design parameters of building should be developed...

  17. CECG Maine, LLC (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT Jump to:CBDCenter ofSolarCECG

  18. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  19. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  20. Insight From Efficiency Maine

    Broader source: Energy.gov [DOE]

    Presents an in-depth look at Efficiency Maine's transition to weatherization financing, its PowerSaver program, and much more.

  1. Equipment Operational Requirements

    SciTech Connect (OSTI)

    Greenwalt, B; Henderer, B; Hibbard, W; Mercer, M

    2009-06-11

    The Iraq Department of Border Enforcement is rich in personnel, but poor in equipment. An effective border control system must include detection, discrimination, decision, tracking and interdiction, capture, identification, and disposition. An equipment solution that addresses only a part of this will not succeed, likewise equipment by itself is not the answer without considering the personnel and how they would employ the equipment. The solution should take advantage of the existing in-place system and address all of the critical functions. The solutions are envisioned as being implemented in a phased manner, where Solution 1 is followed by Solution 2 and eventually by Solution 3. This allows adequate time for training and gaining operational experience for successively more complex equipment. Detailed descriptions of the components follow the solution descriptions. Solution 1 - This solution is based on changes to CONOPs, and does not have a technology component. It consists of observers at the forts and annexes, forward patrols along the swamp edge, in depth patrols approximately 10 kilometers inland from the swamp, and checkpoints on major roads. Solution 2 - This solution adds a ground sensor array to the Solution 1 system. Solution 3 - This solution is based around installing a radar/video camera system on each fort. It employs the CONOPS from Solution 1, but uses minimal ground sensors deployed only in areas with poor radar/video camera coverage (such as canals and streams shielded by vegetation), or by roads covered by radar but outside the range of the radar associated cameras. This document provides broad operational requirements for major equipment components along with sufficient operational details to allow the technical community to identify potential hardware candidates. Continuing analysis will develop quantities required and more detailed tactics, techniques, and procedures.

  2. Ris Energy Report 6 Summary, main conclusions and recommendations 2 Summary, main conclusions

    E-Print Network [OSTI]

    energy. IPCC states that CO2 must peak soon In its Fourth Assessment Report the Intergovernmental Panel of long-term variability. It is feasible to save more energy Even though energy efficiency has improved-through. They will be used in three main applications: stationary power generation, transport, and portable equipment. Solar

  3. Emergency Facilities and Equipment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

  4. Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997

    SciTech Connect (OSTI)

    1997-10-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

  5. Combined Flue Gas Heat Recovery and Pollution Control Systems 

    E-Print Network [OSTI]

    Zbikowski, T.

    1979-01-01

    in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

  6. NA57 main results

    E-Print Network [OSTI]

    G. E. Bruno; for the NA57 Collaboration

    2007-10-15

    The CERN NA57 experiment was designed to study the production of strange and multi-strange particles in heavy ion collisions at SPS energies; its physics programme is essentially completed. A review of the main results is presented.

  7. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  8. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  9. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  10. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  11. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies |ReviewsAnalogues

  12. Main Title 32pt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologies |ReviewsAnalogues& JA

  13. James Kidder Main Library

    E-Print Network [OSTI]

    James Kidder Main Library Box 2008 Bldg. 4500N MS-6191 865-576-0535 kidderjh@ornl.gov Environmental Sciences Publications--Calendar Year 2008 Compiled January 11, 2009 Citation Total: 180 Books Sections and Functions at Interfaces. In L. Liang, R. Rinaldi & H. Schnober (Eds.), Neutron Applications in Earth, Energy

  14. China production equipment sourcing strategy

    E-Print Network [OSTI]

    Chouinard, Natalie, 1979-

    2009-01-01

    This thesis recommends a China business and equipment strategy for the Controls Conveyor Robotics Welding (CCRW) group at General Motors. The current strategy is to use globally common equipment through predetermined global ...

  15. DOE Publishes Notice of Proposed Rulemaking for Direct Heating...

    Broader source: Energy.gov (indexed) [DOE]

    direct heating equipment and pool heaters. 78 FR 63410 (October 24, 2013). Find more information on the rulemaking, including milestones, statutory authority, rulemaking documents,...

  16. Save Energy Now in Your Process Heating Systems; Industrial Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    allow at least part of this energy to be reused. Along with making sure that burners and other combustion equipment are operating at peak efficiency, reducing heat losses...

  17. Cedarville School District Retrofit of Heating and Cooling Systems...

    Open Energy Info (EERE)

    - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by...

  18. Covered Product Category: Light Commercial Heating and Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives. This acquisition guidance applies to...

  19. UNIRIB: Equipment Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 - 19 Publications 1. Xie, Z.; Ma, L.;1Equipment

  20. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  1. CCHP System with Interconnecting Cooling and Heating Network 

    E-Print Network [OSTI]

    Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

    2006-01-01

    The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

  2. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant 

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    2008-01-01

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  3. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source:...

  4. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  5. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect (OSTI)

    Hemphill, Kevin P [Los Alamos National Laboratory

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  6. Water Heating Technologies Research and Development Roadmap ...

    Broader source: Energy.gov (indexed) [DOE]

    roadmap establishes a set of high-priority RD&D activities for water heating systems. The proposed activities address the major unfulfilled needs regarding the latest equipment and...

  7. Geothermal heat pumps for federal buildings

    SciTech Connect (OSTI)

    1999-09-02

    Geothermal heat pumps (GHPs) can provide significant energy savings to a wide range of Federal facilities. GHP equipment can be obtained and installed at no up-front cost through Energy Savings Performance Contracts (ESPCs) through energy service companies (ESCOs).

  8. Maine’s Beginning with Habitat program and transportation partnership

    E-Print Network [OSTI]

    Bostwick, Richard; Charry, Barbara

    2005-01-01

    He has worked for the Maine Department of Transportation inanimal-vehicle crash study for the Maine DOT. On the Road toof Field Studies, Maine Department of Transportation, 16

  9. INL '@work' heavy equipment mechanic

    SciTech Connect (OSTI)

    Christensen, Cad

    2008-01-01

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  10. INL '@work' heavy equipment mechanic

    ScienceCinema (OSTI)

    Christensen, Cad

    2013-05-28

    INL's Cad Christensen is a heavy equipment mechanic. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  11. MERIT Equipment MERIT Video Conference

    E-Print Network [OSTI]

    McDonald, Kirk

    of Energy MERIT Equipment Dismantlement 1 Sept 2010 #12;What's Left · Hydraulic Power Unit (HPU disposal Sept 2010 (estimated) 2 Managed by UT-Battelle for the U.S. Department of Energy MERIT Equipment secondary containmentco ta e t · Hydraulic fluid drained & cylinders removed& cy de s e o ed 3 Managed by UT

  12. UCI Equipment Management Peter's Exchange

    E-Print Network [OSTI]

    Wood, Marcelo A.

    the Asset Retirement Global document available in KFS under KFS Capital Asset Management (as the EIMR formUCI Equipment Management Peter's Exchange (UCI Surplus Sales) SURPLUS PICK-UP REQUEST Department) Phone: (949) 824-6111, 6447, 6519, 6100 Fax this form to (949) 824-4115, or e-mail Equipment-Management

  13. March 29, 2008 Operating Systems: Main Memory 1 Main Memory

    E-Print Network [OSTI]

    Adam, Salah

    March 29, 2008 Operating Systems: Main Memory 1 Main Memory Chapter 8 #12;March 29, 2008 Operating Systems: Main Memory 2 Chapter Outline Background Contiguous Memory Allocation Paging Structure of the Page Table Segmentation #12;March 29, 2008 Operating Systems: Main Memory 3 Objectives To provide

  14. Reduce Radiation Losses from Heating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service of ColoradoHybrid andof

  15. Heating Equipment Checklist for Winter Comfort and Efficiency | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS Policy HQDepartmentHeatof

  16. Heating and Cooling System Support Equipment Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS Policyand Cooling System Support

  17. University of Maine Cooperative Extension

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    University of Maine Cooperative Extension Hand Signals Useful for Farmers Bulletin #2335 by Dawna L of Congress of May 8 and June 30, 1914, by the University of Maine Cooperative Extension, Vaughn H. Holyoke, Director for the University of Maine Cooperative Extension, the Land Grant University of the state of Maine

  18. Travel Pcard Reconciliation Main Campus

    E-Print Network [OSTI]

    New Mexico, University of

    Travel Pcard Reconciliation Manual Main Campus Version 1.0 January 2015 Contact Information Unrestricted Accounting ­ Main Campus MSC 01 1260 STAFF: Lisa Wirth-Fiscal Services Tech Ph. # 277-2019 wirthl accounting offices (Contracts and Grants-Main Campus, Unrestricted Accounting-Main Campus, Contracts

  19. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01

    AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows in an indus trial process.... First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert heat to shaft power...

  20. Origins of Eponymous Orthopaedic Equipment

    E-Print Network [OSTI]

    Meals, Clifton; Wang, Jeffrey

    2010-01-01

    equipment named for their inventors and in the broadest useof dermatology and a proli?c inventor. He produced a single-Foley’s described the inventor as having a ‘‘great presence

  1. Water-Using Equipment: Domestic

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water management is an important aspect of energy engineering. This article addresses water-using equipment primarily used for household purposes, including faucets, showers, toilets, urinals, dishwashers, and clothes washers, and focuses on how the equipment can be optimized to save both water and energy. Technology retrofits and operation and maintenance changes are the primary methods discussed for water and energy conservation. Auditing to determine current consumption rates is also described for each technology.

  2. MAIN CHAMBER NEUTRAL PRESSURE IN

    E-Print Network [OSTI]

    Pitcher, C. S.

    MAIN CHAMBER NEUTRAL PRESSURE IN ALCATOR C-MOD AND JET C S Pitcher, S K Erents*, W Fundamenski*, B on Controlled Fusion and Plasma Physics 18 ­ 22 June 1999, Madeira, Portugal MAIN CHAMBER NEUTRAL PRESSURE Science Centre, Abingdon, Oxon OX14 3DB,UK #12;(1) Introduction · main chamber gas can have a number

  3. EXPLORATORY FISHING FOR MAINE HERRING

    E-Print Network [OSTI]

    463 EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith Marine Biolcgica! Labcratory Ul a R AR. McKernan, Director EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith International;#12;EXPLORATORY FISHING FOR MAINE HERRING by Keith A. Smith Base Director, Exploratory Fishing Base Bureau

  4. Summary of Construction Equipment Tests and Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Equipment Tests A series of tests were conducted by the APS Construction Vibration Measurement Task Force using various pieces of construction equipment at the APCF...

  5. Adaptive Optimization of Central Chiller Plant Equipment Sequencing 

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1987-01-01

    the optimal sequence of central refrigeration equipment (chillers, cooling towers, pumps) to operate in an industrial plant. The control algorithm adapts the optimal equipaent sequence to reflect changes in the plant's cooling load and outside air... primary pumps totaling 625 horsepower and two chilled water booster pumps totaling 200 horsepower. Heat rejected by the chillers' vapor-compression cycles is rejected to the atmosphere by five cooling towers totaling 4,335 tons of refrigeration...

  6. GEA Heat Exchangers GEA Searle Cooler and Condensing Unit Ranges

    E-Print Network [OSTI]

    Frandsen, Søren

    process cooling, combined heat and power installations and air-conditioning equip- ment for hospitalsGEA Heat Exchangers GEA Searle Cooler and Condensing Unit Ranges Top-level engineering solutions,Eurovent verification and many more. GEA is one of the longest established and principal manufacturers of heat exchange

  7. FY 2005/06 Accomplishment Eastern Maine Medical Center (EMMC) Receives

    E-Print Network [OSTI]

    Pennycook, Steve

    FY 2005/06 Accomplishment Eastern Maine Medical Center (EMMC) Receives "Critical Power Reliability capability (natural gas or oil) to greatly improve its ability to operate under any condition. The following on medical equipment and f

  8. 5 Questions for an Expert: Bob Gemmer on Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    work experience in batteries, heating and cooling applications, boilers, water treatment, furnace equipment, and more. Looking back on where I'm at now, although the...

  9. On Variations of Space-heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2014-01-01

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  10. An in-depth Analysis of Space Heating Energy Use in Office Buildings

    E-Print Network [OSTI]

    Lin, Hung-Wen

    2013-01-01

    space temperature, occupant thermal comfort, cooling and heating loads, HVAC equipment sizes, energy consumption, utility cost, air emissions, water usage, renewable

  11. Waste Heat to Power Market Assessment

    SciTech Connect (OSTI)

    Elson, Amelia; Tidball, Rick; Hampson, Anne

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  17. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  18. main campus self guided campus tour

    E-Print Network [OSTI]

    Le Roy, Robert J.

    in Canada. It will contain a garden, a wetland, and in-floor heating using recycled heat from computers. tat

  19. Calibrating Pesticide Application Ground Equipment 

    E-Print Network [OSTI]

    Shaw, Bryan W.

    2000-07-05

    - pose of rinse water as hazardous waste. Clean and lubricate the pump. Equipment used to apply certain pesticides should not be used to apply others. Do not use equipment to apply 2,4-D, MCPA, 2,4-DP, MCPP, and 2,4- DB for any other purpose because... or a commercial decontaminate for- mulation. Most contain a combination of soda ash, detergent and alkaline chlorine. Rinse thoroughly with clean water. Remove nozzles to clean screens and tips. Apply rinse water to a field per label requirements or dis...

  20. Residuals, Sludge, and Composting (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage,...

  1. Building Equipment Technologies | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water heating systems Multi-zone heating, ventilation, and air conditioning systems Wireless communications, sensors, controls, fault detection and diagnostics Combined Heating...

  2. UC Santa Cruz Main Entrance

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UC Santa Cruz West Entrance Em pire Grade Main Entrance HagarDrive Coolid geDrive P Sinsheimer Labs be purchased at the main entrance kiosk or at the TAPS Sales Office (located in the H Barn at the base

  3. APPROVED MATERIALS FOR ALSEP EQUIPMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    expanding Section I and Section II and adding Section III. New materials added in this revision are: 211 212#12;#12;: : . APPROVED MATERIALS FOR ALSEP EQUIPMENT NO. REV. NO. ATM 242 E PAGE COVER OF 54 DATE 213 322 323 324 417 418 419 612 613 806 1111 Materials reinstated (clarified type no.): 1009 Prepared

  4. Cleaning Mechanised Pesticide Spray Equipment

    E-Print Network [OSTI]

    , hoses, nozzles, valves and pumps of mechanised spraying equipment can contaminate operators and possibly bowls, hoses, tanks and pumps retain the most solution. This Technical Note sets out the procedures label for any special cleaning instructions. · Wear the protective clothing described on the pesticide

  5. Indexes for selected equipment show moderate increase

    SciTech Connect (OSTI)

    Farrar, G.

    1997-04-07

    Costs for six selected equipment items used in refining construction operations have been surveyed for the 3 years, 1994--1996. The accompanying table shows Nelson-Farrar equipment indexes for these items of equipment. The six categories of equipment tracked are bubble trays, fractionating towers, tube stills, valves and fittings, tanks and pressure vessels, and non-metallic building materials. Tables also present data on operating costs for materials, labor, and equipment.

  6. Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  7. Used energy-related laboratory equipment grant program for institutions of higher learning. Eligible equipment catalog

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This is a listing of energy related equipment available through the Energy-Related Laboratory Equipment Grant Program which grants used equipment to institutions of higher education for energy-related research. Information included is an overview of the program, how to apply for a grant of equipment, eligibility requirements, types of equipment available, and the costs for the institution.

  8. Efficiency Maine Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Maine offers rebates for the purchase of ENERGY STAR certified room air purifiers, clothes washers, and dehumidifiers. Purchases must be made between November 1, 2014 and June 30, 2015....

  9. Application of industrial heat pumps Proven applications in 2012 for Megawatt+

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Application of industrial heat pumps Proven applications in 2012 for Megawatt+ Heatpumps within a technical, commercial and sustainable framework Application of industrial heat pumps Proven applications;5 Where's the value for Industrial Heat Pumps ?Where's the value for Industrial Heat Pumps ? Equipment

  10. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    SciTech Connect (OSTI)

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

  11. Covered Product Category: Light Commercial Heating and Cooling

    Broader source: Energy.gov [DOE]

    Federal purchases of light commercial heating and cooling equipment must be ENERGY STAR®–qualified. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. This product overview explains how to meet energy-efficiency requirements for Federal purchases of light commercial heating and cooling equipment and how to maximize energy savings throughout products' useful lives.

  12. Development of a gas-fired absorption heat pump

    SciTech Connect (OSTI)

    Ohuchi, Y.

    1985-01-01

    A new absorbent-refrigerant pair suitable for heat pump heating and air-cooled cooling has been developed. Water has been selected as the refrigerant, mainly from the viewpoint of high cycle efficiency and safety, while a 1:1 mixture of lithium bromide (LiBr) and zinc chloride (ZnCl/sub 2/) by weight has been chosen as the absorbent in view of its higher solubility and affinity for water. Based on thermodynamic analysis with experimental data on properties, the new absorbent solution will give a heating COP of 1.57 and a cooling COP of 1.00 as gross values of double-effect absorption cycles, including a boiler efficiency of 80%. As a result of an experimental investigation on corrosiveness and corrosion inhibitors, promising equipment materials and inhibitors have been discovered. Prototypical units of 3.5kw (1-ton) and 35kw (10-ton) have been installed and are undergoing demonstration testing in the laboratory.

  13. Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  14. Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application

    SciTech Connect (OSTI)

    Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

    2014-01-01

    In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

  15. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  16. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Operations and Maintenance for Major Equipment Types

    Broader source: Energy.gov [DOE]

    Equipment lies at the heart of all operations and maintenance (O&M) activities. This equipment varies greatly across the Federal sector in age, size, type, model, condition, etc.

  18. Asset Management Equipment Disposal Form -Refrigerant Recovery

    E-Print Network [OSTI]

    Sin, Peter

    EPA's rule, equipment that is typically dismantled on site before disposal (e.g., retail food vacuum, and for small appliances the recover equipment performance requirements are 90 percent efficiency

  19. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  20. Library Site Finder MAIN LIBRARY

    E-Print Network [OSTI]

    Sidorov, Nikita

    Library Site Finder MAIN LIBRARY Burlington Street Tel: 0161 275 3751 THE ALAN GILBERT LEARNING COMMONS Oxford Road Tel: 0161 306 4306 ART & ARCHAEOLOGY LIBRARY Mansfield Cooper Building Tel: 0161 275 3657 BRADDICK LIBRARY School of Physics & Astronomy Brunswick Street Tel: 0161 275 4078 EDDIE DAVIES

  1. Classical exponential inequalities Main results

    E-Print Network [OSTI]

    Bercu, Bernard

    on left or on right A keystone lemma New exponential inequalities 3 Statistical application B. Bercu and A results Heavy on left or on right A keystone lemma New exponential inequalities 3 Statistical application~na's inequalities 2 Main results Heavy on left or on right A keystone lemma New exponential inequalities 3

  2. Fire suppression and detection equipment

    SciTech Connect (OSTI)

    E.E. Bates [HSB Professional Loss Control, Lexington, KY (United States)

    2006-01-15

    Inspection and testing guidelines go beyond the 'Code of Federal Regulation'. Title 30 of the US Code of Federal Regulations (30 CFR) contains requirements and references to national standards for inspection, testing and maintenance of fire suppression and detection equipment for mine operators. However, federal requirements have not kept pace with national standards and best practices. The article lists National Fire Protection (NFPA) standards that are referenced by the US Mine Safety and Health Administration (MSHA) in 30 CFR. It then discusses other NFPA Standards excluded from 30 CFR and explains the NFPA standard development process. 2 refs., 3 tabs., 5 photos.

  3. Equipment Certification | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power Corp Jump to:SIBR JV JumpCertificationEquipment

  4. Agricultural Equipment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodynall Countriescapital GmbH JumpEquipment Jump

  5. Equipment Insulation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, IncsourceEnginuityBusinessEnviva MaterialsEquipment

  6. Equipment Listing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesof Energy ServicesEnergy4th Quarter 2012 for Equipment

  7. Liquid-Liquid Extraction Equipment

    SciTech Connect (OSTI)

    Jack D. Law; Terry A. Todd

    2008-12-01

    Solvent extraction processing has demonstrated the ability to achieve high decontamination factors for uranium and plutonium while operating at high throughputs. Historical application of solvent extraction contacting equipment implies that for the HA cycle (primary separation of uranium and plutonium from fission products) the equipment of choice is pulse columns. This is likely due to relatively short residence times (as compared to mixer-settlers) and the ability of the columns to tolerate solids in the feed. Savannah River successfully operated the F-Canyon with centrifugal contactors in the HA cycle (which have shorter residence times than columns). All three contactors have been successfully deployed in uranium and plutonium purification cycles. Over the past 20 years, there has been significant development of centrifugal contactor designs and they have become very common for research and development applications. New reprocessing plants are being planned in Russia and China and the United States has done preliminary design studies on future reprocessing plants. The choice of contactors for all of these facilities is yet to be determined.

  8. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation of the DH plant Imanta · Selection of the heat pump/chiller · Operation of the heat pump/chiller · Summary

  9. Permit for Charging Equipment Installation: Electric Vehicle Supply Equipment (EVSE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Letter toTRUCKS ARECompliance

  10. Materials Selection Considerations for Thermal Process Equipment...

    Broader source: Energy.gov (indexed) [DOE]

    high-temperature metallic materials for use in process heating applications such as burners, electrical heating elements, material handling, load support, and heater tubes, etc....

  11. Consider Steam Turbine Drives for Rotating Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment...

  12. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect (OSTI)

    Goetzler, William; Gagne, Claire; Baxter, Van D; Lutz, James; Merrigan, Tim; Katipamula, Srinivas

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  13. Operational Experience and Research Directions in Military Night Vision Equipment Chris Johnson,

    E-Print Network [OSTI]

    Johnson, Chris

    to the human eye. Living and man-made objects tend to emit radiation, for instance in the form of heatOperational Experience and Research Directions in Military Night Vision Equipment Chris Johnson resolution. A second area of interest focuses on detecting electro-magnetic radiation that is not visible

  14. Flavor ofmaine 4 Maine Sardine Pizza

    E-Print Network [OSTI]

    Flavor of maine #12;Flavor ofmaine 4 Maine Sardine Pizza Maine Tomato Surprise French Toasted Sardine Sandwich 6 Sardines on a Roll Maine Sardine Olive Sandwich Sardine Skyscraper Sandwich 7 Maine Sardine Submarine Sandwich Mustard Sauce 8 Bohemian Salad Marinade Maine Sardine Cole Slaw Cole Slaw

  15. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion. Final report

    SciTech Connect (OSTI)

    Moriarty, M.P.

    1993-11-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  16. OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant; Gregory Nellis, Professor; Sanford Klein,

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    1 OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant, Madison, WI, United States Abstract: Hybrid ground-coupled heat pump systems (HyGCHPs) couple conventional ground- coupled heat pump (GCHP) equipment with supplemental heat rejection or extraction systems

  17. WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT

    E-Print Network [OSTI]

    Bhat, M.S.

    2011-01-01

    Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

  18. Healthcare Energy: Spotlight on Medical Equipment

    Broader source: Energy.gov [DOE]

    The Building Technologies Office conducted a healthcare energy end-use monitoring project for two sites. Read details about large medical imaging equipment energy results.

  19. Pollution Control Equipment Tax Deduction (Alabama)

    Broader source: Energy.gov [DOE]

    The Pollution Control Equipment Tax Deduction allows businesses to deduct from their Alabama net worth the net amount invested in all devices, facilities, or structures, and all identifiable...

  20. Commercial and Industrial Kitchen Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    NOTE: All equipment must be installed on or after January 1, 2015 through December 31, 2015. The documentation must be received no later than March 31, 2016. 

  1. PPP Equipment Corporation | Open Energy Information

    Open Energy Info (EERE)

    PPP Equipment Corporation Sector: Solar Product: PPP-E designs, produces and markets Chemical Vapor Deposition (CVD) reactors and converter systems producing high-purity...

  2. Better metallurgy for process equipment

    SciTech Connect (OSTI)

    Rayner, R.E.

    1994-01-01

    Metallurgy choices have expanded significantly for process equipment and pumps used for handling difficult corrosive fluids. If they have been specifying the austenitic AISI types 316, 316L, 317, 317L or the newer first generation alloy 329 in their pumps, there is a strong message in recent literature. Based on tests and experience there are better, often less costly alternatives. In the case of CD[sub 4]MCu, N08020 and 904L, there are lower-cost material alternatives for many applications. For SA S31254 and SA N08367, there are some less aggressive can be substituted. These alternatives are the new second generation duplex steels. The lower cost of the duplex alloys is a result of the reduced nickel content, which is about half that of the standard austenitics. Also, their carbon content is low; the same as 316L and 317L for most alloys, including S31803. The second generation duplex alloys offer significant value improvement in a vast majority of applications over the common austenitics and ferritics. Further, their improved resistance to corrosion and improved physical properties relative to the expensive. and in many cases proprietary, highly corrosion-resistant, super-ferritics and super-austenitics, means that they can and should be considered as an alternative for applications where those materials are now overqualified. Strength, toughness and wide corrosion resistance are all-important properties and considerations for process pump materials. Combine these with competitive cost and there is an opportunity that must be investigated.

  3. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ living --- HEATERâ??ACTIVE --- ACTIVATINGâ??HEATER --- HEATERâ??RUNNING ; #12; APPENDIX A. HEATING SYSTEM SPECIFICATION

  4. Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat conductive materials. This heating

    E-Print Network [OSTI]

    Subramaniam, Anandh

    Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat can be melted at a time. There are three main parts to the system: chiller, power unit and vacuum unit. The vacuum unit with rotary and diffusion pumps can attain a vacuum of 106 m bar. The power can deliver

  5. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 ............................................................2 Central Call Number Main Library Location Main Library Example: Main Library HQ1410 .U54 2009 See Center (ATC) Classroom 1575 Building Operations Main Entrance Map and Imagery Laboratory (MIL

  6. Inverse Spectral Problem Proof of Main Result

    E-Print Network [OSTI]

    Stanhope, Liz

    Inverse Spectral Problem Proof of Main Result Geodesics on Weighted Projective Spaces Zuoqin Wang of Main Result Inverse Spectral Geometry Main Result Inverse Spectral Geometry Manifold setting: (M, g Proof of Main Result Inverse Spectral Geometry Main Result Inverse Spectral Geometry Manifold setting

  7. Field monitoring of a variable-speed integrated heat pump/water-heating appliance

    SciTech Connect (OSTI)

    Fanney, A.H. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building and Fire Research Lab.

    1995-12-31

    A variable-speed integrated heat pump/water-heating appliance was monitored for two years while meeting the space-conditioning and water-heating needs of an occupied residence. Experimental results are presented that show the total energy consumed by the residence was significantly reduced compared to previous years in which electric base-board heat, a wood stove, and window air conditioners were used. During the two space-heating seasons, the variable-speed integrated heat pump/water-heating appliance used 60% less energy than would have been consumed by an electric furnace with the same air distribution system and a storage-type electric water heater. The monthly space-cooling-only coefficients of performance (COP) ranged from 2.50 to 4.03, whereas the monthly space-heating-only coefficients of performance ranged from a low of 0.91 to a high of 3.33. A proposed index to quantify the overall system performance of integrated water-heating/space-conditioning appliances, referred to as the combined performance factor, ranged from 1.55 to 3.50. The majority of larger values occurred during months in which space cooling dominated. The combined performance factor for the entire two-year study was 2.45. A conventional watt-hour meter supplied by the local electrical utility and an electronic digital power analyzer were used to measure the energy consumption of the variable-speed heat pump to discern if variable-speed equipment introduces errors in conventional utility metering equipment. Measurements made using the two instruments were in excellent agreement. The monthly energy consumption and peak electrical demands of the residence, integrated heat pump/water-heating appliance, supplemental space heater, and water heater are discussed. The influence of outdoor temperature on electrical power demand is presented.

  8. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  9. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  10. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  11. North American Overview - Heat Pumps Role in Buildings Energy Efficiency Improvement

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL; Bouza, Antonio [U.S. Department of Energy; Giguère, Daniel [Natural Resources Canada; Hosatte, Sophie [Natural Resources Canada

    2011-01-01

    A brief overview of the situation in North America regarding buildings energy use and the current and projected heat pump market is presented. R&D and deployment strategies for heat pumps, and the impacts of the housing market and efficiency regulations on the heating and cooling equipment market are summarized as well.

  12. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  13. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  14. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer equipment designs. All of the data discussed above were taken under forced convective conditions (both laminar and turbulent). Some recent data taken at ORNL under free convection conditions are also presented and results discussed. This data was taken using a simple crucible experiment with an instrumented nickel heater inserted in the salt to induce natural circulation within the crucible. The data was taken over a temperature range of 550oC to 650oC in FLiNaK salt. This data covers both laminar and turbulent natural convection conditions, and is compared to existing forms of natural circulation correlations.

  15. Automatic monitoring of vibration welding equipment

    DOE Patents [OSTI]

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  16. Equipment qualification research program: program plan

    SciTech Connect (OSTI)

    Dong, R.G.; Smith, P.D.

    1982-06-08

    The Lawrence Livermore National Laboratory (LLNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC) has developed this program plan for research in equipment qualification (EQA). In this report the research program which will be executed in accordance with this plan will be referred to as the Equipment Qualification Research Program (EQRP). Covered are electrical and mechanical equipment under the conditions described in the OBJECTIVE section of this report. The EQRP has two phases; Phase I is primarily to produce early results and to develop information for Phase II. Phase I will last 18 months and consists of six projects. The first project is program management. The second project is responsible for in-depth evaluation and review of EQ issues and EQ processes. The third project is responsible for detailed planning to initiate Phase II. The remaining three projects address specific equipment; i.e., valves, electrical equipment, and a pump.

  17. dieSel/heAvy equipMent College of Rural and Community Development

    E-Print Network [OSTI]

    Hartman, Chris

    credits The diesel and heavy equipment mechanics program offers the student training in the maintenance and repair of trucks, buses and heavy equip- ment. This one-year certificate program emphasizes hands of equipment problems and make nec- essary repairs and adjustments from tune-ups to complete engine

  18. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  19. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  20. Predicting yearly energy savings using BIN weather data with heat-pipe heat exchangers with indirect evaporative cooling

    SciTech Connect (OSTI)

    Mathur, G.D.

    1998-07-01

    Heat-Pipe Heat-Exchangers (HPHE) are passive systems that have recently seen application in energy recovery (Mathur, 1997). A HPHE consists of individual closed end heat pipe tubes that are charged with a suitable working fluid. In these systems, the working fluid evaporates on one side of the heat exchanger and condenses over the other end of the heat exchanger. The condensed fluid returns back to the evaporator section through the capillary action of the wick. The performance of a HPHE system can be improved by the raising the condenser portion of the heat exchanger which facilitates effective return of the condensate back to the evaporator. HPHE can be used with air conditioning systems as retrofits and in new applications. For retrofit applications, the operating costs are reduced because of the reduction in the energy (kWh) and peak demand (kW) consumptions. For new installations, the heating and cooling equipment can be of smaller capacity which will result in lower equipment and operating costs. During the summer season, indirect evaporative cooling can also be used to further enhance the performance of the air conditioning system. When operated during both the heating and cooling seasons, a HPHE yields four types of savings: (i) Heating equipment savings (ii) Cooling equipment savings (iii) Heating operating savings (iv) Cooling operating savings. Savings in the energy consumption for both heating and cooling were calculated with the HPHE for 30 cities with widely different climactic conditions. The payback periods for most of the cities were less than 1 year. If indirect evaporative cooling is used during the summer season, more energy savings would be realized on an yearly basis along with further reductions in the peak demand. In this paper, the author has simulated the performance of a HPHE with indirect evaporative cooling using the BIN weather data.

  1. Clean Cities: Maine Clean Communities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  2. West Virginia University -Main Campus Program Accreditations

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University - Main Campus Program Accreditations Updated 2013-14 School, College University - Main Campus Program Accreditations Updated 2013-14 School, College, or Program Accreditation

  3. Efficiency Maine Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The data dashboard for Efficiency Maine, a partner in the Better Buildings Neighborhood Program. Efficiency Maine Data Dashboard More Documents & Publications Washington -- SEP...

  4. Integrated heat pump and heat storage system

    SciTech Connect (OSTI)

    Katz, A.

    1983-09-13

    An integrated heat pump and heat storage system is disclosed comprising a heat pump, a first conduit for supplying return air from an enclosure to the heat pump, a second conduit for supplying heated air from the heat pump to the enclosure, heat storage apparatus. A first damper is operative in a first orientation to permit return air from the enclosure to enter the first conduit and to prevent return air from passing through the heat storage apparatus and operative in a second orientation to cause return air to pass through the heat storage apparatus for being heated thereby before entering the first conduit. A second damper is operative in a first orientation to cause heated air from the second conduit to pass through the heat storage apparatus for giving up a portion of its heat for storage and operative in a second orientation to prevent heated air from the second conduit from passing through the heat storage apparatus and to permit the heated air from the second conduit to reach the enclosure. The heat storage apparatus may comprise phase change materials.

  5. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect (OSTI)

    Horton, W. Travis; Groll, Eckhard A.; Braun, James E.

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested compression technologies is a lower discharge temperature, which allows for continued operation at lower ambient temperatures. A bin analysis of the vapor injected prototype cold climate heat pump predicts a 6% improvement in HSPF for Minneapolis. This improvement is mainly a result of the increased capacity of the system for active vapor injection. For the oil flooded system, a slightly larger performance improvement is predicted, in this case mostly caused by an increase in heating COP. Based on an economic analysis of these results, the maximum additional cost of the system changes, for the Minneapolis location, are $430 for the vapor injected system and $391 for the oil flooded system. These estimates assume that a 3-year simple payback period is accepted by the customer. For the hybrid flow control of evaporators, a new type of balancing valve was developed together with Emerson Climate technologies to reduce the cost of the control scheme. In contrast to conventional stepper motor valves, this valve requires less cables and can be driven by a cheaper output circuit on the control board. The correct valve size was determined in a dedicated test stand in several design iterations. The performance benefits of the hybrid control of the evaporator coil were determined for clean coil conditions as well as with partial blockage of the air inlet grille and under frosting conditions. For clean coil conditions, the benefits in terms of COP and capacity are negligible. However, significant benefits were noted for severely air-maldistributed operating conditions. For the H2-test, the maximum COP improvement of 17% along with a capacity improvement of nearly 40% was observed. Overall, the hybrid control scheme leads to a significant amount of performance improvement, if the air inlet conditions to the evaporator are maldistributed.

  6. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems. It is found that the floor-ceiling heating system has the lowest energy, exergy, CO2 emissions, operating and the surrounding areas, and the heat conduction between the floor and the ground. The main essence of the low

  7. TRANSPORT PATHWAYS OF THE MAINE COASTAL CURRENT

    E-Print Network [OSTI]

    TRANSPORT PATHWAYS OF THE MAINE COASTAL CURRENT Monica J. Holboke and Daniel R. Lynch September 1996 Abstract The Maine Coastal Current(MCC) is initiated off the eastern coast of Maine and circuits the Gulf of Maine in a counterclockwise direction transporting various nu­ trients, biological species

  8. The Maine Coastal Current: Spring Climatological Circulation

    E-Print Network [OSTI]

    The Maine Coastal Current: Spring Climatological Circulation Daniel R. Lynch, Monica J. Holboke in the Gulf of Maine, with special emphasis on its coastal current in the periods March­April and May of Maine cyclonic circulation is persistent, with significant bimonthly modulation of key Maine Coastal

  9. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 these from the library catalog: www.library.ucsb.edu/depts/access/howinprocess.html Main: Items located in the Main Library, Davidson Main Serials Reading Area: 2 North Map & Imagery Lab: 1 North Media Collection

  10. MAIN THEOREM OF COMPLEX MULTIPLICATION BRIAN CONRAD

    E-Print Network [OSTI]

    Conrad, Brian

    MAIN THEOREM OF COMPLEX MULTIPLICATION BRIAN CONRAD In [S, Ch. IV, §18] the Main Theorem of complex and abelian varieties. The aim of the Main Theorem is as follows. Let (A, i) be an abelian variety over Q Galois automorphisms. In these notes, we give a complete proof of the Main Theorem of complex

  11. Incidents of chemical reactions in cell equipment

    SciTech Connect (OSTI)

    Baldwin, N.M.; Barlow, C.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  12. Subsea equipment marriage is top ROV priority

    SciTech Connect (OSTI)

    Redden, J.

    1985-04-01

    Interfacing subsea equipment with remotely operated vehicles (ROV's) and the further development of arctic-class units are the primary challenges facing manufacturers. Worldwide use of the ROV for drilling support has exploded during this decade as oil companies continue their search in deeper waters. If the unmanned vehicles are to become an even more integral tool of the oilman, experts say they must be able to perform more complex tasks. The evolution of more multi-purpose ROVs, however, hinges on the redesigning of subsea equipment. The severe limitations on subsea support (by ROVs) is the obsolete design associated with the subsea equipment itself. These limitations are discussed.

  13. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  14. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  15. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 ���°C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination id

  16. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    SciTech Connect (OSTI)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North America. The second task dealt with a study of current lamination processes in the various laminate industries, and development of concepts for integrating RF lamination into new or existing processes. The third task explored the use of a non-destructive technique for analyzing laminate adhesion with the University of Illinois at Urbana-Champaign. The fourth task focused on developing concepts for curved glass lamination using RF lamination. The fifth and sixth tasks together comprised an analysis of laminate product markets, ranking for applicability and commercialization potential, and the development of commercialization strategies for those products. In addition, throughout the project as new experimental data and conventional process data were obtained, the benefits analysis of RF lamination was refined. The goals of the project described above were achieved, positioning RF lamination for the next stage growth envisioned in the original Industrial Grand Challenge proposal. Working with Pilkington North America, lamination of flat autoglass with PVB was achieved, meeting all 16 stringent industry tests. In particular, PVB laminates made with RF lamination passed environmental tests including the high temperature, 120 C bake test, without significant formation of bubbles (defects). The adhesion of PVB to glass was measured using the pummel method. Adhesion values ranging from 1 to 7 out of 10 were obtained. The significant process parameters affecting the environmental and adhesion performance were identified through a designed experiment. Pre-lamination process variables including PVB storage humidity and the de-airing process (vacuum or nip rolling) were significant, as well as the level of pressure applied to the laminate during the RF process. Analysis of manufacturing with RF lamination equipment, based on the processes developed indicated that 3 RF presses could replace a typical auto-industry autoclave to achieve equal or greater throughput with possibly less capital cost and smaller footprint. Concepts for curved lamination identifying castable molds for

  17. Consider Steam Turbine Drives for Rotating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on steam turbine drives for rotating equipment provides how-to advice for improving the system using low-cost, proven practices and technologies.

  18. An Approach to Evaluating Equipment Efficiency Policies 

    E-Print Network [OSTI]

    Newsom, D. E.; Evans, A. R.

    1980-01-01

    The National Energy Conservation Policy Act of 1978 authorized studies of several types of industrial equipment to evaluate the technical and economic feasibility of labeling rules and minimum energy efficiency standards. An approach...

  19. Industrial Equipment Demand and Duty Factors 

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    1998-01-01

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air ...

  20. Hot conditioning equipment conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  1. Solar Equipment Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4Energy SmoothEquipment Certification Solar Equipment

  2. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  3. Industrial Heat Pumps: Appropriate Placement and Sizing Using the Grand Composite 

    E-Print Network [OSTI]

    Ranade, S. M.; Hindmarsh, E.; Boland, D.

    1986-01-01

    . The most sophisticated equipment designs can do very little to improve the cost-effectiveness of inappropriately placed heat pumps. The practice of designing heat pumps to fit particular unit operations without regard to the thermodynamic... characteristics of the total process may result in inefficient designs and is detrimental to the "image" of industrial heat pumps. In this paper the heat pump placement is dis cussed in the context of the total process. The process grand composite curve...

  4. Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report and Appendices

    E-Print Network [OSTI]

    LBNL-45917 Electricity Used by Office Equipment and Network Equipment in the U.S.: Detailed Report..............................................................................................46 #12;#12;1 Electricity Used by Office Equipment and Network Equipment in the U.S. Kaoru Kawamoto and network equipment, there has been no recent study that estimates in detail how much electricity

  5. Improved Modeling of Residential Air Conditioners and Heat Pumps for Energy Calculations

    SciTech Connect (OSTI)

    Cutler, D.; Winkler, J.; Kruis, N.; Christensen, C.; Brendemuehl, M.

    2013-01-01

    This report presents improved air conditioner and heat pump modeling methods in the context of whole-building simulation tools, with the goal of enabling more accurate evaluation of cost effective equipment upgrade opportunities and efficiency improvements in residential buildings.

  6. West Virginia University -Main Campus Headcount Enrollment

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    West Virginia University - Main Campus Headcount Enrollment Comparison of Fall 2013 to Fall 2014's Student files submission *FTE includes courses taken by Main Campus Students at PSC West Virginia

  7. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  8. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    efficient use of renewable energy in district heating · individual heat pumps solar heating and wood pellets· individual heat pumps, solar heating and wood pellets 6Risø International Energy Conference 2009Heat Plan

  9. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  10. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump ...

  11. Greenbelt Homes Pilot Program. Summary of Building Envelope Retrofits, Planned HVAC Equipment Upgrades, and Energy Savings

    SciTech Connect (OSTI)

    Wiehagen, J.; Del Bianco, M.; Mallay, D.

    2015-05-22

    The U.S. Department of Energy Building America team Partnership for Home Innovation wrote a report on Phase 1 of the project that summarized a condition assessment of the homes and evaluated retrofit options within the constraints of the cooperative provided by GHI. Phase 2 was completed following monitoring in the 2013–2014 winter season; the results are summarized in this report. Phase 3 upgrades of heating equipment will be implemented in time for the 2014–2015 heating season and are not part of this report.

  12. Introduction to Heat Exchangers

    E-Print Network [OSTI]

    Heller, Barbara

    . Since, the effectiveness can be written in terms of heat capacitance rate [W/K], C, and change in temperature [K], . The heat capacitance rate is defined in terms of mass flow rate [kg/s], , and specific heat: ! ! ! " # = ! ! "# ! ! ! - ! ! ! ! ! ! = ! !! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! Heat%Capacitance%Rate % ! = ! !! ! ! Heat%Capacitance%Rate%[W % ! = ! ! ! ! ! ! ! = ! ! !! ! ! ! max

  13. THE UNIVERSITY OF EDINBURGH. ECA Main Building.

    E-Print Network [OSTI]

    Edinburgh, University of

    THE UNIVERSITY OF EDINBURGH. ECA Main Building. Lauriston Campus. A GUIDE TO ACCESS AND FACILITIES. Address. Edinburgh College of Art Main Building. University Of Edinburgh. Lauriston Place. Edinburgh. E,H,3, 9,D,F. Telephone. 0,1,3,1, 6,5,1, 5,9,0,0, Map Link. http://www.ed.ac.uk/maps/buildings/main

  14. Abatement of Air Pollution: Air Pollution Control Equipment and...

    Broader source: Energy.gov (indexed) [DOE]

    contain instructions for the operation and monitoring of air pollution control equipment, as well as comments on procedures in the event of equipment breakdown, failure, and...

  15. Early Markets: Fuel Cells for Material Handling Equipment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early Markets: Fuel Cells for Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment This fact sheet describes the use of hydrogen fuel cells to...

  16. Cold-Start Emissions Control in Hybrid Vehicles Equipped with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for Hydrocarbons and NOx Cold-Start Emissions Control in Hybrid Vehicles Equipped with a Passive Adsorber for...

  17. Data Center Efficiency and IT Equipment Reliability at Wider...

    Energy Savers [EERE]

    Data Center Efficiency and IT Equipment Reliability at Wider Operating Temperature and Humidity Ranges Data Center Efficiency and IT Equipment Reliability at Wider Operating...

  18. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  19. Guide to Low-Emission Boiler and Combustion Equipment Selection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emission Boiler and Combustion Equipment Selection Guide to Low-Emission Boiler and Combustion Equipment Selection The guide provides background information about various types...

  20. Saving Energy and Money with Appliance and Equipment Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Standards in the United States Overview Appliance and equipment efficien- cy standards have served as one of the nation's most effective policies for...

  1. Development of bonded composite doublers for the repair of oil recovery equipment.

    SciTech Connect (OSTI)

    Roach, David W.; Rackow, Kirk A.

    2005-06-01

    An unavoidable by-product of a metallic structure's use is the appearance of crack and corrosion flaws. Economic barriers to the replacement of these structures have created an aging infrastructure and placed even greater demands on efficient and safe repair methods. In the past decade, an advanced composite repair technology has made great strides in commercial aviation use. Extensive testing and analysis, through joint programs between the Sandia Labs FAA Airworthiness Assurance Center and the aviation industry, have proven that composite materials can be used to repair damaged aluminum structure. Successful pilot programs have produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. With this foundation in place, this effort is adapting bonded composite repair technology to civil structures. The use of bonded composite doublers has the potential to correct the difficulties associated with current repair techniques and the ability to be applied where there are no rehabilitation options. It promises to be cost-effective with minimal disruption to the users of the structure. This report concludes a study into the application of composite patches on thick steel structures typically used in mining operations. Extreme fatigue, temperature, erosive, and corrosive environments induce an array of equipment damage. The current weld repair techniques for these structures provide a fatigue life that is inferior to that of the original plate. Subsequent cracking must be revisited on a regular basis. The use of composite doublers, which do not have brittle fracture problems such as those inherent in welds, can help extend the structure's fatigue life and reduce the equipment downtime. Two of the main issues for adapting aircraft composite repairs to civil applications are developing an installation technique for carbon steel and accommodating large repairs on extremely thick structures. This study developed and proved an optimum field installation process using specific mechanical and chemical surface preparation techniques coupled with unique, in-situ heating methods. In addition, a comprehensive performance assessment of composite doubler repairs was completed to establish the viability of this technology for large, steel structures. The factors influencing the durability of composite patches in severe field environments were evaluated along with related laminate design issues.

  2. Replacing Inefficient Equipment - An Engineering Analysis to Justify Purchasing A More Efficient Chiller 

    E-Print Network [OSTI]

    Chen, H.; Deng, S.; Claridge, D. E.; Turner, W. D.; Bensouda, N.

    2005-01-01

    determinate of office building and chiller energy use, is the building schedule and office temperature that is maintained within the space. Thermostat control (day and night settings for cooling and heating within the terminal electronic controller...REPLACING INEFFICIENT EQUIPMENT --- AN ENGINEERING ANALYSIS TO JUSTIFY PURCHASING A MORE EFFICIENT CHILLER Hui Chen, P.E. Project Engineer W. D. Turner, Ph.D., P.E. Professor, Director Song Deng, P.E. Asst. Research Engineer...

  3. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  4. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  5. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating...

  6. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low...

  7. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  8. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  9. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  10. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  11. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  12. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    heat exchangers. These types of heat exchangers have limitedheat exchanger to solar collection systems that utilize linear trough- typenon-solar heat exchangers. These may be of the type used to

  13. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  14. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  15. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  17. 2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    pumps Condensing gas and oil boilers DHW tanks Solar panels Under floor heating Installation equipment#12;2 15.10.2013 Van D. BaxterVolker Weinmann Hybrid heat pump system as chance for the renovation market Dipl.-Ing. Volker Weinmann ROTEX Heating Systems GmbH #12;3 15.10.2013 Van D. Baxter

  18. Solar heating system installed at Jackson, Tennessee. Final report

    SciTech Connect (OSTI)

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  19. Protecting the Investment in Heat Recovery with Boiler Economizers 

    E-Print Network [OSTI]

    Roethe, L. A.

    1985-01-01

    THE INVESTMENT IN HEAT RECOVERY WITH BOILER ECONOMIZERS Lester A. Roethe, Consultant Kentube Division Tulsa, Oklahoma ABSTRACT Many people consider energy to be a crlS1S in re mission -- even with continuing high fuel costs. Some voice concern over... the long term security of an investment in flue gas heat recovery equipment. The concern generally involves the ability of an economizer or air heater to continue to perform efficiently without corrosion. The recognized economic advantages of an econo...

  20. Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995

    SciTech Connect (OSTI)

    1995-05-01

    The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

  1. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  2. Electrical Metering Equipment and Sensors Appendix D -Electrical Metering Equipment and Sensors

    E-Print Network [OSTI]

    Appendix D ­ Electrical Metering Equipment and Sensors #12;D.1 Appendix D - Electrical Metering Equipment and Sensors D.1 Controllable Electrical Panel Figure D.1. Square D Power Link Electrical Panel D.1.1 Schneider Electric/Square D Power Link G3 Control System The Square D Powerlink G3 offers programmable

  3. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  4. Field monitoring of a variable-speed integrated heat pump/water heating appliance

    SciTech Connect (OSTI)

    Fanney, A.H.

    1993-06-01

    The report describes the residence, heat pump system, and monitoring equipment. Results are presented which include comparison of the total electrical energy consumption of the residence prior to and after installation of the heat pump system, the portion of energy used by each end use within the residence, a comparison of the heat pump's energy consumption using a conventional watthour meter and an electronic digital power analyzer, and the hourly electrical demands imposed on the utility. The thermal performance of the heat pump system is reported on a monthly, seasonal, and annual basis using conventional performance indicators in addition to using an index, proposed by NIST, which quantifies the overall system performance of integrated appliances.

  5. intro, 2 bars main riff, 4 bars

    E-Print Network [OSTI]

    Reiners, Peter W.

    intro, 2 bars main riff, 4 bars verse riff 1: G G if you like to gamble, I tell you I'm your man G G you win some, loose some, it's all the same to me main riff with fill 1, 4 bars verse riff 2: D C the pleasure is to play it makes no difference what you say main riff with fill 1, 2 bars verse riff 2: D C I

  6. Maine Company Growing with Weatherization Work

    Broader source: Energy.gov [DOE]

    Maine's BIOSAFE Environmental Services expands into weatherization, assisting low-income families with their services and creating jobs as business grows.

  7. ,"Maine Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","0930...

  8. ,"Maine Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  9. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  10. ,"Maine Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015"...

  11. Air Permits, Licenses, Certifications (Maine) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Provider Department of Environmental Protection This program regulates and limits air emissions from a variety of sources within Maine through a statewide permitting program....

  12. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.; Kafka, Orion L.; Wenning, Thomas J.

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hot exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.

  13. ATLAS experimental equipment. November 1983 workshop and present status

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The latest workshop was held in November 1983 with the purpose of presenting an overview of the experimental stations planned for ATLAS, describing the current status of each individual apparatus, soliciting final input on devices of the first phase (i.e. on those that will be ready when beams from ATLAS become available in late Spring of 1985), and discussing and collecting new ideas on equipment for the second phase. There were short presentations on the status of the various projects followed by informal discussions. The presentations mainly concentrated on new equipment for target area III, but included some descriptions of current apparatus in target area II that might also be of interest for experiments with the higher-energy beams available in area III. The meeting was well attended with approx. 50 scientists, approximately half of them from institutions outside Argonne. The present proceedings summarize the presentations and discussions of this one-day meeting. In addition we take the opportunity to include information about developments since this meeting and an update of the current status of the various experimental stations. We would like to emphasize again that outside-user input is extremely welcome.

  14. APPROVED MATERIALS LIST FOR ALSEP EQUIPMENT

    E-Print Network [OSTI]

    Rathbun, Julie A.

    APPROVED MATERIALS LIST FOR ALSEP EQUIPMENT Addendum 1 ATU 242 I (E1) I PAGE-~ OF 39 DATE July 15, 1971 1. Amendment 1 to ATM 242 is issued to incorporate additional non-metallic materials which can operation and storage period. 2. Show alternate material designation for EPON adhesives made by Hysol after

  15. Engineering study of riser equipment contamination

    SciTech Connect (OSTI)

    BOGER, R.M.

    1999-08-25

    This Engineering Study was to evaluate the current equipment and operating procedures to determine if changes could be made to improve ALARA and evaluate the feasibility of implementing the proposed solutions. As part of this study input from the cognizant characterization engineers and operating sampling crews was obtained and evaluated for ALARA improvements.

  16. Research equipment: Surface Acoustic Wave (SAW) devices

    E-Print Network [OSTI]

    Gizeli, Electra

    Research equipment: Surface Acoustic Wave (SAW) devices: Operating frequencies @50MHz, 104MHz, 110 outputs measuring the real-time change of the phase and amplitude of the acoustic wave. More specifically with Dissipation monitoring (QCM-D): Qsense D-300 for real-time acoustic measurements at low frequencies (5-35MHz

  17. On Storage Operators LAMA -Equipe de Logique

    E-Print Network [OSTI]

    Nour, Karim

    On Storage Operators Karim NOUR LAMA - Equipe de Logique Universit´e de Savoie 73376 Le Bourget du Lac e-mail nour@univ-savoie.fr Abstract In 1990 Krivine (1990b) introduced the notion of storage shown that there is a very simple type in the AF2 type system for storage operators using Godel

  18. Test and Test Equipment Joshua Lottich

    E-Print Network [OSTI]

    Patel, Chintan

    Test and Test Equipment Joshua Lottich CMPE 640 11/23/05 #12;Testing Verifies that manufactured chip meets design specifications. Cannot test for every potential defect. Modeling defects as faults allows for passing and failing of chips. Ideal test would capture all defects and pass only chips

  19. Project Sponsor: An Original Equipment Manufacturer (confidential)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    transfer within the boiler while staying within the O2 concentration limits set by existing equipment high concentration of CO2 in the gas flowing through the boiler, the difference in physical properties air into the boiler, a downstream CO2purification step (cryogenic) is required to meet

  20. EQUIPMENT OR PROCESS UCLA/ACADEMIC

    E-Print Network [OSTI]

    Jalali. Bahram

    Cleanroom Usage $21 $58 0.1 2 AMAT 7830i - CD SEM $50 $110 0.5 3 ASML PAS 5500/200 - Stepper $50 $120 1 4 Monthly Minimum waved if no charges are accumulated in that month Cleanroom Usage Cap: Academic Cleanroom Usage capped at $1000/user per month Industry Cleanroom Usage capped $4000/user per month Equipment

  1. University of California Policy Personal Protective Equipment

    E-Print Network [OSTI]

    Aluwihare, Lihini

    and regulatory standards require the supervisor to select Personal Protective Equipment (PPE) for workers under is included in Appendix A. Laboratory/Technical Areas: For the purposes of this policy, a laboratory/technical, the default "supervisor" in laboratory/technical areas is the Principal Investigator. Use or Storage

  2. Safety Topic: Rota/ng Equipment

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Topic: Rota/ng Equipment Jus/n Kleingartner #12;Safety protocols for opera/ng a lathe · Dos: ­ Locate emergency stop bu?on before use ­ Be sure 2 #12;Safety protocols for opera/ng a lathe · Don'ts: ­ Do not wear gloves

  3. Right-Sizing Laboratory Equipment Loads

    SciTech Connect (OSTI)

    Frenze, David; Greenberg, Steve; Mathew, Paul; Sartor, Dale; Starr, William

    2005-11-29

    Laboratory equipment such as autoclaves, glass washers, refrigerators, and computers account for a significant portion of the energy use in laboratories. However, because of the general lack of measured equipment load data for laboratories, designers often use estimates based on 'nameplate' rated data, or design assumptions from prior projects. Consequently, peak equipment loads are frequently overestimated. This results in oversized HVAC systems, increased initial construction costs, and increased energy use due to inefficiencies at low part-load operation. This best-practice guide first presents the problem of over-sizing in typical practice, and then describes how best-practice strategies obtain better estimates of equipment loads and right-size HVAC systems, saving initial construction costs as well as life-cycle energy costs. This guide is one in a series created by the Laboratories for the 21st Century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  4. SONIC EQUIPMENT FOR TRACKING INDIVIDUAL FISH

    E-Print Network [OSTI]

    . The equipment can be used in varied hydraulic conditions and in fresh or salt water to track the movements of individual adult salmon in relation to Columbia River dams. Each dam on the Columbia River presents a chance for delay in migration with injurious consequences if the delay is prolonged. Since new dams are under

  5. Internal corrosion monitoring of subsea oil and gas production equipment

    SciTech Connect (OSTI)

    Joosten, M.W.; Fischer, K.P.; Lunden, K.C.

    1995-04-01

    Nonintrusive techniques will dominate subsea corrosion monitoring compared with the intrusive methods because such methods do not interfere with pipeline operations. The long-term reliability of the nonintrusive techniques in general is considered to be much better than that of intrusive-type probes. The nonintrusive techniques based on radioactive tracers (TLA, NA) and FSM and UT are expected to be the main types of subsea corrosion monitoring equipment in the coming years. Available techniques that could be developed specifically for subsea applications are: electrochemical noise, corrosion potentials (using new types of reference electrodes), multiprobe system for electrochemical measurements, and video camera inspection (mini-video camera with light source). The following innovative techniques have potential but need further development: ion selective electrodes, radioactive tracers, and Raman spectroscopy.

  6. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  7. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R. (Idaho Falls, ID)

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  8. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  9. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  10. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  11. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  12. Integrated heat pump system

    SciTech Connect (OSTI)

    Reedy, W.R.

    1988-03-01

    An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.

  13. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  14. Contactless heat flux control with photonic devices

    E-Print Network [OSTI]

    Ben-Abdallah, Philippe

    2015-01-01

    The ability to control electric currents in solids using diodes and transistors is undoubtedly at the origin of the main developments in modern electronics which have revolutionized the daily life in the second half of 20th century. Surprisingly, until the year 2000 no thermal counterpart for such a control had been proposed. Since then, based on pioneering works on the control of phononic heat currents new devices were proposed which allow for the control of heat fluxes carried by photons rather than phonons or electrons. The goal of the present paper is to summarize the main advances achieved recently in the field of thermal energy control with photons.

  15. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  16. "Table HC11.5 Space Heating Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,3.2,2.2,1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"N","N","N" "Central Warm-Air Furnace",2.3,"Q","Q","Q" "SteamHot Water...

  17. "Table HC13.5 Space Heating Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,8.5,3.9,2.2,2.4 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,0.4,0.3,"Q","N" "Central Warm-Air Furnace",2.3,0.7,0.3,0.2,"Q" "SteamHot...

  18. "Table HC10.5 Space Heating Usage Indicators by U.S. Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,3.2,6.9,8.5,6.1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"N","Q",0.4,"Q" "Central Warm-Air Furnace",2.3,"Q",0.9,0.7,0.6 "SteamHot...

  19. "Table HC14.5 Space Heating Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,6.1,2,4.1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"Q","N","Q" "Central Warm-Air Furnace",2.3,0.6,"Q",0.5 "SteamHot Water...

  20. "Table HC12.5 Space Heating Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Very Little or None",24.7,6.9,4.7,2.2 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"Q","Q","Q" "Central Warm-Air Furnace",2.3,0.9,0.5,0.3 "SteamHot Water...

  1. 1 Copyright 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    pressure drop is desired in the designing of the direct expansion ground source heat pumps systems1 Copyright © 2012 by ASME Proceedings of the ASME 2012 Summer Heat Transfer Conference HT2012 July pressure drop is of immense significance for proper sizing of industrial equipment and safety operations

  2. Requisition's, Donations, Gifts, Transfers of Equipment There are several ways the University acquires equipment.

    E-Print Network [OSTI]

    as either a Donation or a Transfer. The Property Management Office is re- sponsible for capturing the cost equipment received or purchased. 1 Issue 2 May 2014 The end is near! VOLUME 1 focusDE-MYSTIFYING CAPITA L

  3. Koch Institute Corners of Main/Vassar Streets and Main/Ames Streets

    E-Print Network [OSTI]

    Leiserson, Charles E.

    Brownfield redevelopment Storm water filtration system Reflective roof material which will reduce the heat island effect Heat recovery methods incorporated into HVAC systems VAV system and right sizing of HVAC energy A construction waste management plan that recycles and salvages waste Project Managers

  4. Not-In-Kind Technologies for Residential and Commercial Unitary Equipment

    SciTech Connect (OSTI)

    Fischer, S.K.

    2001-01-11

    This project was initiated by the Department of Energy in response to a request from the HVAC industry for consolidated information about alternative heating and cooling cycles and for objective comparisons of those cycles in space conditioning applications. Twenty-seven different heat pumping technologies are compared on energy use and operating costs using consistent operating conditions and assumptions about component efficiencies for all of them. This report provides a concise summary of the underlying principals of each technology, its advantages and disadvantages, obstacles to commercial development, and economic feasibility. Both positive and negative results in this study are valuable; the fact that many of the cycles investigated are not attractive for space conditioning avoids any additional investment of time or resources in evaluating them for this application. In other cases, negative results in terms of the cost of materials or in cycle efficiencies identify where significant progress needs to be made in order for a cycle to become commercially attractive. Specific conclusions are listed for many of the technologies being promoted as alternatives to electrically-driven vapor compression heat pumps using fluorocarbon refrigerants. Although reverse Rankine cycle heat pumps using hydrocarbons have similar energy use to conventional electric-driven heat pumps, there are no significant energy savings due to the minor differences in estimated steady-state performance; higher costs would be required to accommodate the use of a flammable refrigerant. Magnetic and compressor-driven metal hydride heat pumps may be able to achieve efficiencies comparable to reverse Rankine cycle heat pumps, but they are likely to have much higher life cycle costs because of high costs for materials and peripheral equipment. Both thermoacoustic and thermionic heat pumps could have lower life cycle costs than conventional electric heat pumps because of reduced equipment and maintenance costs although energy use would be higher. There are strong opportunities for gas-fired heat pumps to reduce both energy use and operating costs outside of the high cooling climates in the southeast, south central states, and the southwest. Diesel and IC (Otto) engine-driven heat pumps are commercially available and should be able to increase their market share relative to gas furnaces on a life cycle cost basis; the cost premiums associated with these products, however, make it difficult to achieve three or five year paybacks which adversely affects their use in the U.S. Stirling engine-driven and duplex Stirling heat pumps have been investigated in the past as potential gas-fired appliances that would have longer lives and lower maintenance costs than diesel and IC engine-driven heat pumps at slightly lower efficiencies. These potential advantages have not been demonstrated and there has been a low level of interest in Stirling engine-driven heat pumps since the late 1980's. GAX absorption heat pumps have high heating efficiencies relative to conventional gas furnaces and are viable alternatives to furnace/air conditioner combinations in all parts of the country outside of the southeast, south central states, and desert southwest. Adsorption heat pumps may be competitive with the GAX absorption system at a higher degree of mechanical complexity; insufficient information is available to be more precise in that assessment.

  5. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect (OSTI)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  6. Residential gas heat pump assessment: A market-based approach

    SciTech Connect (OSTI)

    Hughes, P.J.

    1995-09-01

    There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

  7. Omnibus Energy Bill of 2013 (Maine)

    Broader source: Energy.gov [DOE]

    An Act To Reduce Energy Costs, Increase Energy Efficiency, Promote Electric System Reliability and Protect the Environment became law on July 2, 2013. This act, also known as the 2013 Maine Omnibus...

  8. Dairy Manure Handling Systems and Equipment

    E-Print Network [OSTI]

    Sweeten, John M.

    1983-01-01

    Equipment Type System Tank Wagon, Surface spread' Tank Wagon , Surface spread' Tank Wagon, Soil injection' Irrigation , Stationary gun Irrigation , Traveling gun Irrigation, Traveling gun Nominal capacity 1,500 gal. 3,000 gal. 3,000 gal... wagon and 2000 It. haul distance labor. The total cost of pump, irrigation pipe, and traveling gun sprinkler is similar to the cost of a tank wagon system excluding the power unit (tractor) . Direct slurry irrigation systems can serve the dual...

  9. Laser alignment of rotating equipment at PNL

    SciTech Connect (OSTI)

    Berndt, R.H.

    1994-05-01

    Lateral vibration in direct-drive equipment is usually caused by misalignment. Over the years, because of the need to improve on techniques and ways of working more efficiently, various types of alignment methods have evolved. In the beginning, craftsmen used a straight-edge scale across the coupling with a feeler gauge measuring the misalignment error. This is still preferred today for aligning small couplings. The industry has since decided that alignment of large direct-drive equipment needed a more accurate type of instrumentation. Rim and face is another of the first alignment methods and is used on all sizes of equipment. A disadvantage of the rim and face method is that in most cases the coupling has to be disassembled. This can cause alignment problems when the coupling is reassembled. Also, the rim and face method is not fast enough to work satisfactorily on alignment of thermally hot equipment. Another concern is that the coupling has to be manufactured accurately for correct rim and face readings. Reverse dial alignment is an improvement over the rim and face method, and depending on the operator`s experience, this method can be very accurate. A good training program along with field experience will bring the operator to a proper level of proficiency for a successful program. A hand-held computer with reverse dial calculations in memory is a must for job efficiency. An advantage over the rim and face method is that the coupling is not disassembled and remains locked together. Reverse dial instrumentation measures from both shaft center lines, rather than the coupling surface so the machining of the coupling during manufacture is not a major concern.

  10. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  11. 1999 Commercial Buildings Characteristics--Cooling Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey Packaged air conditioning units were the main cooling system for 20,504 million square feet of cooled floorspace, more than twice the...

  12. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  13. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C. (Richland, WA)

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  14. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  15. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  16. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    SciTech Connect (OSTI)

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  17. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  18. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  19. Feasibility of Municipal Water Mains as Heat Sink for Residential Air-Conditioning 

    E-Print Network [OSTI]

    Vliet, G. C.

    1994-01-01

    become significant. The general conclusion is that, while the benefit to an individual using this concept may be positive, the impact on water temperature is excessive....

  20. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubic Foot) DecadeBarrels) + LeaseProved07,2430 20132

  1. ,"Maine Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry NaturalGas, Wet After LeaseConsumed"

  2. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR: JOHN CONTIPeter Gross

  3. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |AdministrationStanfordLabMailCharles

  4. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  5. 1 The Main Asteroid Belt Carolyn Crow: NASA's Dawn Mission The Main Asteroid Belt

    E-Print Network [OSTI]

    Waliser, Duane E.

    1 The Main Asteroid Belt Carolyn Crow: NASA's Dawn Mission The Main Asteroid Belt Written to the main asteroid belt to visit two of the largest protoplanets, Vesta and Ceres. Using sunlight, a mere accomplished by a spacecraft before. What compelled astronomers to send Dawn to the asteroid belt and what does

  6. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  7. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  8. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01

    influence on the heat transfer as the radiation. Since thethe heat transfer analysis, the difference of net radiationheat transfer involved i n this project were conduction, convection and radiation.

  9. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  10. Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF In reference...

  11. Optimal Deployment of Emissions Reduction Technologies for Construction Equipment

    E-Print Network [OSTI]

    Quadrifoglio, Luca

    Optimal Deployment of Emissions Reduction Technologies for Construction Equipment Muhammad Ehsanul The objective of this research was to develop a multiob- jective optimization model to deploy emissions reduction technologies for nonroad construction equipment to re- duce emissions in a cost

  12. Best Management Practice #12: Laboratory and Medical Equipment

    Broader source: Energy.gov [DOE]

    Equipment used in hospitals and laboratories can use significant amounts of water, offering the opportunity for substantial water savings by making a few small changes to how and when the water is used by the equipment.

  13. Equipment acquisition plans for the SSCL magnet excitation power system

    SciTech Connect (OSTI)

    Winje, R.

    1993-05-01

    This report gives a brief description of the major electrical technical equipment used in the Superconducting Super Collider accelerators systems and the present laboratory plans for the acquisition of the equipment.

  14. Balance-of-System Equipment Required for Renewable Energy Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Balance-of-System Equipment Required for Renewable Energy Systems Balance-of-System Equipment Required for Renewable Energy Systems July 2, 2012 - 8:21pm Addthis Both...

  15. Training Room Equipment Instructions Projector and TV Display

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Training Room Equipment Instructions Projector and TV Display The control panel on the wall are connected to a training room computer and room is equipped with a keyboard, mouse and clicker. Connect USB

  16. Data Network Equipment Energy Use and Savings Potential in Buildings

    E-Print Network [OSTI]

    Lanzisera, Steven

    2010-01-01

    separate router with combined wireless and wired capabilityrouter. The category of “Other Customer Premises Equipment” covers users of satellite, fixed wireless, androuters, firewalls, modems (service provider and customer premises equipment), network security appliances, and wireless

  17. Optimal Sequencing of Central Refrigeration Equipment in an Industrial Plant 

    E-Print Network [OSTI]

    Fiorino, D. P.; Priest, J. W.

    1986-01-01

    A model was developed to find a viable solution to the problem of selecting the optimal sequence of refrigeration equipment (chillers, cooling towers, pumps) to operate in a Central Utility Plant. The optimal equipment sequence is that sequence...

  18. Electrical Equipment Replacement: Energy Efficiency versus System Compatibility 

    E-Print Network [OSTI]

    Massey, G. W.

    2005-01-01

    Electrical equipment components are replaced every day because of failure, obsolescence, or upgrade. Because of technological gains, replacement components are typically more energy efficient than older equipment. Life cycle cost analyses encourage...

  19. Blue Stragglers After the Main Sequence

    E-Print Network [OSTI]

    Alison Sills; Amanda Karakas; John Lattanzio

    2008-11-18

    We study the post-main sequence evolution of products of collisions between main sequence stars (blue stragglers), with particular interest paid to the horizontal branch and asymptotic giant branch phases. We found that the blue straggler progeny populate the colour-magnitude diagram slightly blueward of the red giant branch and between 0.2 and 1 magnitudes brighter than the horizontal branch. We also found that the lifetimes of collision products on the horizontal branch is consistent with the numbers of so-called "evolved blue straggler stars" (E-BSS) identified by various authors in a number of globular clusters, and is almost independent of mass or initial composition profile. The observed ratio of the number of E-BSS to blue stragglers points to a main sequence lifetime for blue stragglers of approximately 1-2 Gyr on average.

  20. Main Coast Winds - Final Scientific Report

    SciTech Connect (OSTI)

    Jason Huckaby; Harley Lee

    2006-03-15

    The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

  1. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  2. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  3. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  4. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  5. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  6. Introduction of Heat Recovery Chiller Control and Water System Design 

    E-Print Network [OSTI]

    Jia, J.

    2006-01-01

    The styles, feature and main concerns of heat recovery water system are discussed, and the entering condenser water temperature control is recommended for higher chiller efficiency and reliable operation. Three optimized water system designs...

  7. DEVELOPMENT OF SOLAR DRIVEN ABSORPTION AIR CONDITIONERS AND HEAT PUMPS

    E-Print Network [OSTI]

    Dao, K.

    2013-01-01

    AIR CONDITIONERS AND HEAT PUMPS K. Dao, M. Wahlig, E. Wali,are liquid paths. DM: multistage pump driver, driven by highvapor. DW: main circulation pump driven by strong absorbent.

  8. Combined heat & Power (CHP), Federal Utility Partnership Working...

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat & Power (CHP) May 7, 2014 Pam Maines Who is Pepco Energy Services? ESCO Industry Leader Since 1995, and Pepco's UESC Representative HQ in Arlington, VA with MD,...

  9. Bunch coalescing in the Fermilab Main Ring

    SciTech Connect (OSTI)

    Wildman, D.; Martin, P.; Meisner, K.; Miller, H.W.

    1987-03-01

    A new rf system has been installed in the Fermilab Main Ring to coalesce up to 13 individual bunches of protons or antiprotons into a single high-intensity bunch. The coalescing process consists of adiabatically reducing the h = 1113 Main Ring rf voltage from 1 MV to less than 1 kV, capturing the debunched beam in a linearized h = 53 and h = 106 bucket, rotating for a quarter of a synchrotron oscillation period, and then recapturing the beam in a single h = 1113 bucket. The new system will be described and the results of recent coalescing experiments will be compared with computer-generated particle tracking simulations.

  10. Camden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information(RedirectedEnterprise JumpMissouri:Maine:

  11. Bradford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:Open EnergyBradbury,Florida:Maine: Energy

  12. Brewer, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy ResourcesCounty, Texas:Brewer, Maine: Energy Resources Jump

  13. Brownville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergy InformationKansas:Brownville, Maine: Energy

  14. Burlington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergyOhio:Information PartnershipIllinois: EnergyMaine:

  15. Geothermal Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in the summer to sub-zero cold in the winter—the ground a few feet below the earth's surface remains at a relatively constant temperature.

  16. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  17. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  18. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  19. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  20. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualN ATIONAL L ABORATORY Heat Recovery in Building Envelopes

  1. Heat Recovery in Building Envelopes

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2001-01-01

    Model For Infiltration Heat Recovery. Proceedings 21st AivcLBNL 47329 HEAT RECOVERY IN BUILDING ENVELOPES Max H.contribution because of heat recovery within the building

  2. Heat recovery in building envelopes

    E-Print Network [OSTI]

    Walker, Iain S.; Sherman, Max H.

    2003-01-01

    2003). Infiltration heat recovery – ASHRAE Research ProjectModel for Infiltration Heat Recovery, Proc. 21 st AnnualWalker, I.S. (2001). "Heat Recovery in Building Envelopes".

  3. association of companies and the Edison Electric Institute (1953). Their final report cites investigations from 1945 through 1953 and includes correlated information on coil data, heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    1953-01-01

    . The design (Fisher 1981) of the ground-coupled heat pump system called for a ground-coil pipe length of 700 investigations from 1945 through 1953 and includes correlated information on coil data, heat pump equipment, test of electricity has increased, interest has again been focused on the ground-coupled heat pump system. Metz (1979

  4. Organic rankine cycle waste heat applications

    DOE Patents [OSTI]

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  5. Solar pool heating | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment CoSolar pool heating Jump to:

  6. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect (OSTI)

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  7. Safe Operating Procedure LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    Safe Operating Procedure (5/11) LOCKOUT/TAGOUT FOR MACHINES & EQUIPMENT: SPECIAL CIRCUMSTANCES://ehs.unl.edu/) Introduction This SOP is intended to work in tandem with other EHS SOPs related to Lockout/Tagout (LO/TO): · Lockout/Tagout for Machines & Equipment: Program Overview · Lockout/Tagout for Machines & Equipment

  8. BCM 1 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1 Equipment

  9. BCM 2 Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and FuelsjBBEE Public1 Equipment2

  10. Cruising Equipment Company CECO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDPCross-LaminatedCruising Equipment Company

  11. LANSCE | Lujan Center | Instruments | ASTERIX | Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and Job Event InLANLRecoveryEquipment Surfaces

  12. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) DirectedEquipment & Supplies

  13. Laboratory Equipment Donation Program - Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScience (SC) DirectedEquipment &

  14. INL Equipment to Aid Regional Response Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch8 IEEEINL Equipment to Aid Regional

  15. Laboratory Equipment Donation Program - Guidelines/FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead Berkeley LablooksEquipment

  16. Instrumentation and Equipment for Three Independent Research Labs

    SciTech Connect (OSTI)

    Darlene Roth

    2012-03-29

    Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high rates of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The tw

  17. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  18. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  19. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  20. Semantic Web Research anno 2006: main streams,

    E-Print Network [OSTI]

    van Harmelen, Frank

    Semantic Web Research anno 2006: main streams, popular fallacies, current status and future. In this topical1 paper we try to give an analysis and overview of the current state of Semantic Web research. We point to different in- terpretations of the Semantic Web as the reason underlying many contro- versies

  1. Old Main Library Shih-Liang Hall

    E-Print Network [OSTI]

    Wu, Yih-Min

    Library Shih-Liang Hall Computer and Information Networking Center Audio-Visual Educational Center College of Engineering Bldg. E.E. Bldg. No. 2 Graduate Institute of National Development Graduate. of Library and Information Science Depot. of Atmospheric Sciences Main Library Dept. of Physics Center

  2. Layered Manufacturing Sara McMains

    E-Print Network [OSTI]

    McMains, Sara

    Grossman) #12;LM vs. Conventional Manufacturing · Subtractive · Net shape · Additive #12;Conventional · Molding · Casting #12;Conventional Manufacturing · Additive ­ Combine complex sub-units ­ E.g. · WeldingLayered Manufacturing Sara McMains #12;Layered Manufacturing (LM) a.k.a. Solid Freeform Fabrication

  3. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  4. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  5. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  6. Use of ATLAS Visual and Thermal Imagery to Study the Urban Heat Island Effect in San Juan, Puerto Rico

    E-Print Network [OSTI]

    Gilbes, Fernando

    Use of ATLAS Visual and Thermal Imagery to Study the Urban Heat Island Effect in San Juan, Puerto as Urban Heat Islands (UHI). The main scientific objective of this research is to investigate the impact was used as the main sensor for this study with the objective of investigating the Urban Heat Island (UHI

  7. Mixed Oxide Fresh Fuel Package Auxiliary Equipment

    SciTech Connect (OSTI)

    Yapuncich, F.; Ross, A. [AREVA Federal Services (AFS), Tacoma WA (United States); Clark, R.H. [Shaw AREVA MOX Services, Savannah River Site, Aiken, SC (United States); Ammerman, D. [Sandia National Laboratories, Albuquerque, NM (United States)

    2008-07-01

    The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It was necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)

  8. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01

    Pumps With Respect To Own Capital Cost. Table 2 Effect ofgas price of gas price of gas price of gas own capital costown capital cost household income disaggregated naive

  9. The Department of Energy Program for Development of Industrial Heat Recovery Equipment 

    E-Print Network [OSTI]

    Eustis, J. N.

    1979-01-01

    . The success of these ceramics recuperators has opened the door to a very high temper~ture burner-ducting -recuperator combination which will be discussed later. Another contractor is makingi modular units of ceramic materials to be utilized as recuperator... tested has encountered a material problem which maybe due to either through burning in the duct or flux carryover from the melt tank. The planning and initial work is underway on a burner-ducting-recuperator system. This combin~tion I I would provide...

  10. Table B37. Water Heating Equipment, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22Primary Consumption6.9.8..6.7.

  11. 01-02-2003 - Unattended Laboratory Heating Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentataboutScalable Framework forProtocols forUnattended

  12. Enforcement Policy Statement Consumer Water Heaters and Certain Commercial Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographiclighbulbs - high-resolution JPG20,1LLC | Department Consumer

  13. From: Sells_List_Server%DOELNC@DOE.GOV Subject: YELLOW/Caution: Unattended Laboratory Heating Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea: PADD 1 to PADD 2Fri, 0909,Wed, 08

  14. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456 U.S.

  15. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456 U.S.0

  16. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456

  17. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562

  18. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.332345624

  19. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456245

  20. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.33234562456

  1. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.332345624562

  2. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and6927Water3.3323456245623

  3. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential

  4. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  5. Radiant Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    across the room. When radiant heating is located in the floor, it is often called radiant floor heating or simply floor heating. Radiant heating has a number of advantages. It is...

  6. Energy transport, overshoot, and mixing in the atmospheres of M-type main- and pre-main-sequence objects

    E-Print Network [OSTI]

    H. -G. Ludwig; F. Allard; P. H. Hauschildt

    2006-08-12

    We constructed hydrodynamical model atmospheres for mid M-type main-, as well as pre-main-sequence (PMS) objects. Despite the complex chemistry encountered in these cool atmospheres a reasonably accurate representation of the radiative transfer is possible, even in the context of time-dependent and three-dimensional models. The models provide detailed information about the morphology of M-type granulation and statistical properties of the convective surface flows. In particular, we determined the efficiency of the convective energy transport, and the efficiency of mixing by convective overshoot. The convective transport efficiency was expressed in terms of an equivalent mixing-length parameter alpha in the formulation of mixing-length theory (MLT) given by Mihalas (1978). Alpha amounts to values around 2 for matching the entropy of the deep, adiabatically stratified regions of the convective envelope, and lies between 2.5 and 3.0 for matching the thermal structure of the deep photosphere. For current spectral analysis of PMS objects this implies that MLT models based on alpha=2.0 overestimate the effective temperature by 100 K and surface gravities by 0.25 dex. The average thermal structure of the formally convectively stable layers is little affected by convective overshoot and wave heating, i.e., stays close to radiative equilibrium conditions. Our models suggest that the rate of mixing by convective overshoot declines exponentially with geometrical distance to the Schwarzschild stability boundary. It increases at given effective temperature with decreasing gravitational acceleration.

  7. Emergency sacrificial sealing method in filters, equipment, or systems

    DOE Patents [OSTI]

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  8. Webster, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to: navigation, searchNebraska:Maine: Energy

  9. Whitney, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:Meadow Lake,Maine: Energy Resources Jump to:

  10. Windham, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPowerPortal HomeWindfarmMaine:

  11. Woolwich, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power PtyOhio: EnergyWoolwich, Maine: Energy

  12. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  13. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  14. The Advanced Photon Source main control room

    SciTech Connect (OSTI)

    Pasky, S.

    1998-07-01

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source built in the 1990s. Like the machine itself, the Main Control Room (MCR) employs design concepts based on today`s requirements. The discussion will center on ideas used in the design of the MCR, the comfort of personnel using the design, and safety concerns integrated into the control room layout.

  15. Stetson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) JumpandStereo Satellite Imagery JumpStetson, Maine: Energy

  16. Hampden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts: Energy Resources Jump to:Maine: Energy Resources Jump

  17. Hermon, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources Jump to: navigation,NavigationIndiana:HeraldHermon, Maine: Energy

  18. Freeport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorth Carolina:Arizona:Freeport, Maine:

  19. Dixmont, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOEDixmont, Maine: Energy Resources Jump to:

  20. Energy Incentive Programs, Maine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication3-EDepartment ofArizona Energy IncentiveLouisiana Energy IncentiveMaine

  1. Monson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004)Michigan: Energy ResourcesMaine: Energy

  2. Bradley, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to:OpenBradfordwoods,

  3. Cumberland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton,DevelopingMaine: Energy Resources Jump to:

  4. Chester, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:West Virginia: Energy Resources

  5. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  6. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  7. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  8. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  9. Maine -- SEP Summary of Reported Data | Department of Energy

    Office of Environmental Management (EM)

    Summary of Reported Data Maine -- SEP Summary of Reported Data The summary of reported data for Maine -- SEP, a partner in the Better Buildings Neighborhood Program. Maine -- SEP...

  10. EA-1792: University of Maine's Deepwater Offshore Floating Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind...

  11. MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY | Department...

    Energy Savers [EERE]

    MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY MAINE MULTIFAMILY BUILDING OWNERS TRUST IN EFFICIENCY Nearly 70% of...

  12. Efficiency Maine Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Summary of Reported Data Efficiency Maine Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Efficiency Maine. Efficiency Maine...

  13. Dismantling Structures and Equipment of the MR Reactor and its Loop Facilities at the National Research Center 'Kurchatov Institute' - 12051

    SciTech Connect (OSTI)

    Volkov, V.G.; Danilovich, A.S.; Zverkov, Yu. A.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Muzrukova, V.D.; Pavlenko, V.I.; Semenov, S.G.; Fadin, S.Yu.; Shisha, A.D.; Chesnokov, A.V.

    2012-07-01

    In 2008 a design of decommissioning of research reactors MR and RFT has been developed in the National research Center 'Kurchatov institute'. The design has been approved by Russian State Authority in July 2009 year and has received the positive conclusion of ecological expertise. In 2009-2010 a preparation for decommissioning of reactors MR and RFT was spent. Within the frames of a preparation a characterization, sorting and removal of radioactive objects, including the irradiated fuel, from reactor storage facilities and pool have been executed. During carrying out of a preparation on removal of radioactive objects from reactor sluice pool water treating has been spent. For these purposes modular installation for clearing and processing of a liquid radioactive waste 'Aqua - Express' was used. As a result of works it was possible to lower volume activity of water on three orders in magnitude that has allowed improving essentially of radiating conditions in a reactor hall. Auxiliary systems of ventilation, energy and heat supplies, monitoring systems of radiating conditions of premises of the reactor and its loop-back installations are reconstructed. In 2011 the license for a decommissioning of the specified reactors has been received and there are begun dismantling works. Within the frames of works under the design the armature and pipelines are dismantled in a under floor space of a reactor hall where a moving and taking away pipelines of loop facilities and the first contour of the MR reactor were replaced. A dismantle of the main equipment of loop facility with the gas coolant has been spent. Technologies which were used on dismantle of the radioactive contaminated equipment are presented, the basic works on reconstruction of systems of maintenance of on the decommissioning works are described, the sequence of works on the decommissioning of reactors MR and RFT is shown. Dismantling works were carried out with application of means of a dust suppression that, in aggregate with standard means at such works of individual protection of the personnel and devices of radiating control, has allowed to lower risk of action of radiation on the personnel, the population and environment at the expense of reduction of volume activity of radioactive aerosols in air. (authors)

  14. Using measured equipment load profiles to 'right-size' HVACsystems and reduce energy use in laboratory buildings (Pt. 2)

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve; Frenze, David; Morehead, Michael; Sartor, Dale; Starr, William

    2005-06-29

    There is a general paucity of measured equipment load datafor laboratories and other complex buildings and designers often useestimates based on nameplate rated data or design assumptions from priorprojects. Consequently, peak equipment loads are frequentlyoverestimated, and load variation across laboratory spaces within abuilding is typically underestimated. This results in two design flaws.Firstly, the overestimation of peak equipment loads results in over-sizedHVAC systems, increasing initial construction costs as well as energy usedue to inefficiencies at low part-load operation. Secondly, HVAC systemsthat are designed without accurately accounting for equipment loadvariation across zones can significantly increase simultaneous heatingand cooling, particularly for systems that use zone reheat fortemperature control. Thus, when designing a laboratory HVAC system, theuse of measured equipment load data from a comparable laboratory willsupport right-sizing HVAC systems and optimizing their configuration tominimize simultaneous heating and cooling, saving initial constructioncosts as well as life-cycle energy costs.In this paper, we present datafrom recent studies to support the above thesis. We first presentmeasured equipment load data from two sources: time-series measurementsin several laboratory modules in a university research laboratorybuilding; and peak load data for several facilities recorded in anational energy benchmarking database. We then contrast this measureddata with estimated values that are typically used for sizing the HVACsystems in these facilities, highlighting the over-sizing problem. Next,we examine the load variation in the time series measurements and analyzethe impact of this variation on energy use, via parametric energysimulations. We then briefly discuss HVAC design solutions that minimizesimultaneous heating and cooling energy use.

  15. Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in laminar and turbulent tube flows

    SciTech Connect (OSTI)

    Eiamsa-ard, Smith [Department of Mechanical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Seemawute, Panida [Department of Civil Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Wongcharee, Khwanchit [Department of Chemical Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand)

    2010-09-15

    Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests were performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime). (author)

  16. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  17. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  18. New Remote Method for Estimation of Contamination Levels of Reactor Equipment - 13175

    SciTech Connect (OSTI)

    Danilovich, Alexey; Ivanov, Oleg; Potapov, Victor; Semenov, Sergey; Semin, Ilya; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2013-07-01

    Projects for decommissioning of shutdown reactors and reactor facilities carried out in several countries, including Russia. In the National Research Centre 'Kurchatov Institute' decontamination and decommissioning of the research reactor MR (Material Testing Reactor) has been initiated. The research reactor MR has a long history and consists of nine loop facilities for experiments with different kinds of fuel. During the operation of main and auxiliary equipment of reactors it was subjected to strong radioactive contamination. The character of this contamination requires individual strategies for the decontamination work. This requires information about the character of the distribution of radioactive contamination of equipment in the premises. A detailed radiation survey of these premises using standard dosimetric equipment is almost impossible because of high levels of radiation and high-density of the equipment that does not allow identifying the most active fragments using standard tools of measurement. The problem can be solved using the method of remote measurements of distribution of radioactivity with help of the collimated gamma-ray detectors. For radiation surveys of the premises of loop installations remotely operated spectrometric collimated system was used [1, 2, 3]. As a result of the work, maps of the distribution of activity and dose rate for surveyed premises were plotted and superimposed on its photo. The new results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. (authors)

  19. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  20. Westbrook, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy ResourcesTurin, New York:Westbrook Center,Maine: Energy

  1. Union, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York: EnergyU.S.UnifinPark, Florida: Energy ResourcesMaine:

  2. Warren, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park, Indiana: Energy Resources Jump to:Maine:

  3. Washington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park,|Information 6thMaine: Energy Resources

  4. Maine PACE Program Final Technical Report

    SciTech Connect (OSTI)

    Fischer, Dana; Adamson, Joy M

    2015-01-30

    The ARRA EECBG BetterBuilding helped augment the existing Home Energy Savings Programs (HESP) and incentives with financing through a subordinate lien PACE and HUD PowerSaver programs. The program was designed to document innovative techniques to dramatically increase the number of homes participating in weatherization programs in participating towns. Maine will support new energy efficiency retrofit pilots throughout the state, designed to motivate a large number of homeowners to invest in comprehensive home energy efficiency upgrades to bring real solutions to market.

  5. Greenville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to: navigation,Capital AdvisorsSteamMaine: Energy

  6. Guilford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERC Hydroelectric Projects | Open EnergyProcessMaine:

  7. Holden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: Energy ResourcesHoboken,Holden, Maine: Energy

  8. Hope, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey: EnergyHollyHomaHometown,(CTI PFAN)Solar JumpMaine:

  9. Friendship, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistar LLCNorthIdaho: EnergyTexas:Maine: Energy

  10. Eastport, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, Rhode Island:Connecticut: Energy ResourcesMaine:

  11. Edinburg, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,New Mexico: Energy Resources JumpEdinburg, Maine:

  12. Etna, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power CorpEnergy InformationMaine: Energy Resources

  13. Exeter, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers JumpinUSFS1988Exeter, Maine:

  14. Falmouth, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative||NewFale-Safe,Maine: Energy Resources

  15. Springfield, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:Spill PreventionJump to: navigation, searchMaine:

  16. Medford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy Resources Jump to:Electric Coop, IncSouthVirginia:Medford, Maine: Energy

  17. Milford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPROLLC Jump to: navigation,MikeCenter, Ohio:Maine:

  18. Kenduskeag, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeith County,Kenduskeag, Maine: Energy Resources

  19. Kingsbury, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrderInformation Kilauea SouthwestofKings RiverKingsbury, Maine:

  20. Lincoln, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy Resources Jump to:Heights, Ohio:California:Maine:

  1. Naples, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: Energy Resources Jump to:

  2. Maine Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1Total ConsumptionMaine

  3. Direct Energy Services (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,Department ofEnergieSize HomeDirect EnergyMaine)

  4. Dominion Retail Inc (Maine) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the National Climate Change Policy | OpenMaine) Jump to:

  5. Eastern Maine Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of the NationalDynetek EuropeEPG|Elec Pwr Assn JumpMaine

  6. Brunswick, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine: Energy Resources Jump to:

  7. CECG Maine, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick, Maine:IAEAT Jump to:CBDCenter

  8. University of Maine Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZ ClimateFeed JumpAlberta JumpLisbon Jump to:Maine

  9. Argyle, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S JumpArchuleta County,Argillic-AdvancedArgyle, Maine: Energy

  10. Ashland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpen EnergyInformationAshkelonMaine: Energy Resources

  11. Atkinson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley, Ohio:Atchison-Holt ElectricAthol,AtkinsonMaine:

  12. Baldwin, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels BrasilMaine: Energy Resources Jump to:

  13. Carroll, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:Fund forCarnegieIndiana:NewCarrollMaine: Energy

  14. Casco, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas:FundMichigan:NorthCasasCasco, Maine: Energy

  15. Bowerbank, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia

  16. Bridgton, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: Energy ResourcesCounty, Texas:Brewer,Iowa: EnergySustainable

  17. Corinna, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon:Volcano, Hawaii | OpenCorinna, Maine:

  18. Charleston, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: Energy Resources Jump to: navigation, search

  19. Maine Green Power Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy This Revision 3Federal EnergyMaine -- SEP,<

  20. Maine PACE Loans | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Energy This Revision 3Federal EnergyMaine --