National Library of Energy BETA

Sample records for magpie hartland beicegel

  1. magpie

    Energy Science and Technology Software Center (OSTI)

    2013-09-05

    Magpie is a set of scripts to allow users to run Hadoop jobs on generic clusters rather than require users to build Hadoop specific clusters.

  2. Ward Co. Dunn Co. McLean Co. McHenry Co. Mountrail Co. McKenzie Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    WHISKEY JOE WHITE ASH SPRING COULEE DES LACS MAGPIE HARTLAND BEICEGEL CREEK RANCH COULEE WINNER CRAZY MAN CREEK GROS VENTRE BANK W BULLSNAKE UPLAND COULEE REFUGE LARSON GARNET ALKALI CREEK PLUMER RATTLESNAKE POINT ELLSWORTH CHURCH BORDER HANSON GROVER HULSE COULEE SAKAKAWEA AURELIA ROUND TOP BUTTE GORHAM BUTTE W MARMON MANITOU SHEALEY CLAYTON SERGIS N SADDLE BUTTE HAYLAND CEDAR COULEE BOWLINE LITTLE BUTTE LONG CREEK RHOADES HEDBERG FILLMORE EIDSVOLD FAIRFIELD WOLF BAY TOBACCO GARDEN N SPRING

  3. Monochromatic radiography of high energy density physics experiments on the MAGPIE generator

    SciTech Connect (OSTI)

    Hall, G. N. Burdiak, G. C.; Suttle, L.; Stuart, N. H.; Swadling, G. F.; Lebedev, S. V.; Smith, R. A.; Patankar, S.; Suzuki-Vidal, F.; Grouchy, P. de; Harvey-Thompson, A. J.; Bennett, M.; Bland, S. N.; Pickworth, L.; Skidmore, J.

    2014-11-15

    A monochromatic X-ray backlighter based on Bragg reflection from a spherically bent quartz crystal has been developed for the MAGPIE pulsed power generator at Imperial College (1.4 MA, 240ns) [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (2005)]. This instrument has been used to diagnose high energy density physics experiments with 1.865 keV radiation (Silicon He-?) from a laser plasma source driven by a ?7 J, 1 ns pulse from the Cerberus laser. The design of the diagnostic, its characterisation and performance, and initial results in which the instrument was used to radiograph a shock physics experiment on MAGPIE are discussed.

  4. Hartland, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Connecticut.1 References US Census Bureau Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:...

  5. Hartland Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Type Commercial Scale Wind Facility Status Proposed Developer Denali Energy Inc.Montgomery Energy Partners LP Location Ward ND Coordinates 48.556661, -101.7777865 Show Map...

  6. Magpie | Open Energy Information

    Open Energy Info (EERE)

    Place: Denver, CO Zip: 80234 Region: Rockies Area Sector: Services Product: Customer Software Development Services for Independent Software Vendors, System Integrators and their...

  7. Product equation of state for polysulfone

    SciTech Connect (OSTI)

    Ticknor, Christopher

    2015-09-30

    Here we review the new polysulfone product equation of state (EOS) made with magpie, a chemical equilibrium code.

  8. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are some specific sites on Pulsed Power MAGPIE Pulsed Power Facility, Imperial College NIF Naval Research Laboratory, Plasma Physics Division Reviews of U.S. Fusion Policy UKAEA...

  9. Use of spherically bent crystals to diagnose wire array z pinches

    SciTech Connect (OSTI)

    Shelkovenko, T.A.; Pikuz, S.A.; Hammer, D.A.; Ampleford, D.J.; Bland, S.N.; Bott, S.C.; Chittenden, J.P.; Lebedev, S.V.

    2004-10-01

    Spherically bent mica and quartz crystals have provided time-integrated spectra and monochromatic images in self-radiation of wire array z-pinch implosions on the MAGPIE generator (1 MA, 240 ns) at Imperial College. Diagnostics based on spherically bent crystals offer higher efficiencies than those based on flat or convex dispersion elements, allowing positioning far from the pinch with good debris shielding. A mica crystal spectrometer produced an image of the pinch in each emission line with about 100 {mu}m axial resolution. Combining the results of monochromatic imaging and spectra confirmed the presence of bright spots, probably generated by energetic electrons inside the pinch.

  10. Structure of Stagnated Plasma in Aluminium Wire Array Z-pinches

    SciTech Connect (OSTI)

    Hall, G.N.; Bland, S.N.; Lebedev, S.V.; Ampleford, D.J.; Palmer, J.B.A.; Bott, S.C.; Rapley, J.; Chittenden, J.P.; Pikuz, S.A.; Shelkovenko, T.A.

    2006-01-05

    Experiments with aluminium wire array Z-pinches have been carried out on the MAGPIE generator (1MA, 240ns) at Imperial College London. It has been shown that in these arrays there are two intense sources of radiation during stagnation: line emission from a precursor-sized object and continuum radiation from bright-spots of significantly higher temperature randomly distributed around this object such as to produce a hollow emission profile. Spatially resolved spectra produced by spherically-bent crystals were recorded, both time-integrated and time-resolved, and were used to show that these two sources of radiation peak at the same time.

  11. Ablation dynamics in coiled wire-array Z-pinches

    SciTech Connect (OSTI)

    Hall, G. N.; Lebedev, S. V.; Suzuki-Vidal, F.; Swadling, G.; Chittenden, J. P.; Bland, S. N.; Harvey-Thompson, A.; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Blesener, K. S.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2013-02-15

    Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell University's Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.

  12. Structure of stagnated plasma in aluminum wire array Z pinches

    SciTech Connect (OSTI)

    Hall, G. N.; Pikuz, S. A.; Shelkovenko, T. A.; Bland, S. N.; Lebedev, S. V.; Ampleford, D. J.; Palmer, J. B. A.; Bott, S. C.; Rapley, J.; Chittenden, J. P.; Apruzese, J. P.

    2006-08-15

    Experiments with aluminum wire array Z pinches have been carried out on the mega-ampere generator for plasma implosion experiments (MAGPIE) at Imperial College London [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (1996)]. It has been shown that in these arrays, there are two intense sources of radiation during stagnation; Al XII line emission from a precursor-sized object, and both continuum and Al XIII radiation from bright spots of either significantly higher temperature or density randomly distributed around this object so as to produce a hollow emission profile. Spatially resolved spectra produced by spherically bent crystals were recorded, both time-integrated and time-resolved, and were used to show that these two sources of radiation peak at the same time.

  13. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)

    SciTech Connect (OSTI)

    Swadling, G. F. Lebedev, S. V.; Hall, G. N.; Patankar, S.; Stewart, N. H.; Smith, R. A.; Burdiak, G. C.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Suzuki-Vidal, F.; Bland, S. N.; Kwek, K. H.; Pickworth, L.; Bennett, M.; Hare, J. D.; Harvey-Thompson, A. J.; Rozmus, W.; Yuan, J.

    2014-11-15

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.