National Library of Energy BETA

Sample records for magnetotellurics z-axis tipper

  1. Z-Axis Tipper Electromagnetics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-Axis Tipper

  2. Z-Axis Tipper Electromagnetics At Silver Peak Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: EnergyYBR

  3. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems Intergrating Magnetotellurics, Soil...

  4. P-8 / D. R. Cairns P-8: Conductive and Adhesive Properties of Z-axis Adhesives for Tail

    E-Print Network [OSTI]

    Cairns, Darran

    P-8 / D. R. Cairns P-8: Conductive and Adhesive Properties of Z-axis Adhesives for Tail Bonding Abstract The change in resistance of an anisotropic conducting adhesive (Z-axis adhesive) solderless joint ageing at 85° C and 85 % Relative humidity for six days. The anisotropic conducting adhesive performs

  5. Raft River Idaho Magnetotelluric Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gregory Nash

    2015-05-13

    Raw magnetotelluric (MT) data covering the geothermal system at Raft River, Idaho. The data was acquired by Quantec Geoscience. This is a zipped file containing .edi raw MT data files.

  6. PROJECT COMPLETION REPORT MAGNETOTELLURICS -APPLICATION TO RESOURCE

    E-Print Network [OSTI]

    Harinarayana, T.

    AKOLA-SEHORE AND INDORE-JALGAON TRAVERSES IN CENTRAL INDIA. III. MARINE MAGNETOTELLURIC AND MARINE-Sehore and Indore- Jalgaon traverses in Central India Director General, Directorate General of Hydrocarbons, New

  7. Continuous profiling of magnetotelluric fields

    SciTech Connect (OSTI)

    Verdin, C.T.

    1991-05-01

    The magnetotelluric (MT) method of mapping ground electrical conductivity is traditionally based on measurement of the surface impedance at widely spaced stations to infer models of the subsurface through a suitable pseudo 1-D inverse or with linearized least-squares inversion for 2- or 3-D geoelectric media. It is well known that small near-surface inhomogeneities can produce spatial discontinuities in the measured electric fields over a wide frequency range and may consequently bias the impedance on a very local scale. Inadequate station spacing effectively aliases the electric field measurements and results in distortions that cannot be removed in subsequent processing or modelling. In order to fully exploit the benefits of magnetotellurics in complex geological environments, closely spaced measurements must be used routinely. This thesis entertains an analysis of MT data taken along continuous profiles and is a first step that will allow more encompassing 2-D sampling techniques to become viable in the years to come. The developments presented here are to a large extent motivated by the physical insight gained from low-contrast solutions to the forward MT problem. These solutions describe the relationship between a perturbation in the electrical conductivity of the subsurface and the ensuing perturbation of the MT response as the output of a linear system. Albeit strictly accurate in a limited subset of practical exploration problems, the linearized solutions allow one to pursue a model independent study of the response characteristics of MT data. In fact, these solutions yield simple expressions for 1-,2-, and 3-D resistivity models which are here examined in progressive sequence.

  8. Magnetotelluric investigations of the lithosphere beneath the central Rae craton, mainland

    E-Print Network [OSTI]

    Jones, Alan G.

    . The magnetotelluric (MT) method, a natural source electromagnetic technique used to image the electrical resistivity, Ontario, Canada, 3 Dublin Institute for Advanced Studies, Dublin, Ireland Abstract New magnetotelluric

  9. 3D Magnetotelluric Characterization Of The Geothermal Anomaly...

    Open Energy Info (EERE)

    3D Magnetotelluric Characterization Of The Geothermal Anomaly In The Llucmajor Aquifer System (Majorca, Spain) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  10. Magnetotellurics At Kilauea Southwest Rift And South Flank Area...

    Open Energy Info (EERE)

    Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea...

  11. MAGNETOTELLURIC INVESTIGATIONS ALONG AKOLA-SEHORE AND INDORE-JALGAON

    E-Print Network [OSTI]

    Harinarayana, T.

    MAGNETOTELLURIC INVESTIGATIONS ALONG AKOLA-SEHORE AND INDORE-JALGAON TRAVERSES IN CENTRAL INDIA INVESTIGATIONS ALONG AKOLA-SEHORE AND INDORE-JALGAON TRAVERSES IN CENTRAL INDIA PROJECT SUPPORTED by DIRECTORATE) HYDERABAD- 500 606, INDIA JANUARY, 2009 #12;MAGNETOTELLURIC INVESTIGATIONS ALONG AKOLA-SEHORE AND INDORE

  12. Audio-Magnetotellurics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece: Energy Resources JumpAudio-Magnetotellurics Jump

  13. Applications of Magnetotelluric Studies in India T. HARINARAYANA*

    E-Print Network [OSTI]

    Harinarayana, T.

    of the method Electromagnetic (EM) theory is originated from four fundamental equations proposed by James Clerk.com Abstract Electromagnetic (EM) induction technique is one of the most important geophysical techniques in understanding the subsurface structure. The theory of magnetotelluric (MT) method, the main branch of the EM

  14. MARINE MAGNETOTELLURIC AND MARINE SEISMIC STUDY IN GULF OF KUTCH REGION,

    E-Print Network [OSTI]

    Harinarayana, T.

    MARINE MAGNETOTELLURIC AND MARINE SEISMIC STUDY IN GULF OF KUTCH REGION, GUJARAT, INDIA PROJECT OF OCEANOGRAPHY Dona Paula, Goa­403 004, INDIA 2008 #12;Technical Report No: NGRI-2008-EXP-656 MARINE MAGNETOTELLURIC AND MARINE SEISMIC STUDY IN GULF OF KUTCH REGION, GUJARAT, INDIA Project Coordinator: Dr. T

  15. A magnetotelluric survey of the Nissyros Geothermal field (Greece)

    SciTech Connect (OSTI)

    Dawes, G.J.K. (Dept. of Geology and Geophysics, Univ. of Edinburgh (GB)); Lagios, E. (Dept. of Geophysics and Geothermy, Univ. of Athens (GR))

    1991-01-01

    This paper reports on a preliminary magnetotelluric study consisting of twenty measurements, in the frequency range 128-0.016 Hz, that was undertaken on the active volcanic island of Nissyros. Two boreholes identify the existence of high enthalpy manifestations. The results correlate well with the borehole logs and delineate, in a 1-D approximation, the existence and symmetry of a possible geothermal reservoir. Some of the main faulting features were detected as well as an inferred highly conductive zone at the center of the island.

  16. Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada

    SciTech Connect (OSTI)

    J.M. Williams; B.D. Rodriguez, and T. H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.

  17. u.s. DEPARThIENT OF ENERGY EERE PROJECT MANAG EMENT CENTER NFPA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. (BGI) would utilize DOE and cost share funds to (1) combine airborne full tensor gravity (FTG) and the z-axis tipper electromagnetic (ZTEM) deep penetrating, low frequency,...

  18. CX-007420: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. (BGI) would utilize DOE and cost share funds to (1) combine airborne full tensor gravity (FTG) and the z-axis tipper electromagnetic (ZTEM) deep penetrating, low frequency,...

  19. CX-008605: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. (BGI) would utilize DOE and cost share funds to (1) combine airborne full tensor gravity (FTG) and the z-axis tipper electromagnetic (ZTEM) deep penetrating, low frequency,...

  20. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near the southeastern RM-SM CAU boundary with the southwestern YF CAU, and also in the northern YF CAU. The purpose of this report is to release the MT data at those 14 stations shown in figure 1. No interpretation of the data is included here.

  1. Audio-magnetotelluric data collected in the area of Beatty, Nevada

    SciTech Connect (OSTI)

    Williams, J.M.

    1998-11-01

    In the summer of 1997, electrical geophysical data was collected north of Beatty, Nevada. Audio-magnetotellurics (AMT) was the geophysical method used to collect 16 stations along two profiles. The purpose of this data collection was to determine the depth to the alluvial basement, based upon the needs of the geologists requesting the data.

  2. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect (OSTI)

    Nutter, C.; Wannamaker, P.E.

    1980-11-01

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  3. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez; and Theodore H. Asch.

    2006-11-03

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas of the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards Shoshone Mountain, to Buckboard Mesa in the south, and onto Rainier Mesa in the north. Subsequent interpretation will include a three-dimensional (3-D) character analysis and a two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for the twenty-six stations shown in figure 1. No interpretation of the data is included here.

  4. Stochastic inversion of 2D magnetotelluric data using pixel-based parameterization Jinsong Chen*, Lawrence Berkeley National Laboratory, G. Michael Hoversten, Chevron Energy

    E-Print Network [OSTI]

    Chen, Jinsong

    Nordquist, Chevron Geothermal Services Company Summary We develop a Bayesian model to invert 2D magnetotelluric (MT) data using a pixel-based parameterization, and apply it to an active geothermal field of the resistivity and use gradient-based algorithms to draw MCMC samples. To shorten the burn-in time, we run

  5. Quantitative Fluorescence Microscopy autofocusing, z-axis calibration, image sensors, fluorescence lifetime imaging

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Prof. dr ir A. van den Bos, Technische Universiteit Delft Prof. dr H.J. Tanke, Rijksuniversiteit Leiden of ideas and concepts that other people have set out for you. Now it is your turn. You get to design lifetime calculation 124 Dual-lifetime estimators 127 Materials and methods 130 Calibration of the FLIM

  6. Structural and thermal modeling of a z-axis rate integrating gyroscope

    E-Print Network [OSTI]

    Painter, C C; Shkel, A M

    2003-01-01

    and Pisano A P 1998 Microelectromechanical ?lters for signaldevelopment of microelectromechanical (MEM) gyroscopes. By

  7. 3-D Magnetotelluric Investigations for geothermal exploration in Martinique (Lesser Antilles). Characteristic Deep Resistivity Structures, and Shallow Resistivity Distribution Matching Heliborne TEM Results

    E-Print Network [OSTI]

    Coppo, Nicolas; Girard, Jean-François; Wawrzyniak, Pierre; Hautot, Sophie; Tarits, Pascal; Jacob, Thomas; Martelet, Guillaume; Mathieu, Francis; Gadalia, Alain; Bouchot, Vincent; Traineau, Hervé

    2015-01-01

    Within the framework of a global French program oriented towards the development of renewable energies, Martinique Island (Lesser Antilles, France) has been extensively investigated (from 2012 to 2013) through an integrated multi-methods approach, with the aim to define precisely the potential geothermal ressources, previously highlighted (Sanjuan et al., 2003). Amongst the common investigation methods deployed, we carried out three magnetotelluric (MT) surveys located above three of the most promising geothermal fields of Martinique, namely the Anses d'Arlet, the Montagne Pel{\\'e}e and the Pitons du Carbet prospects. A total of about 100 MT stations were acquired showing single or multi-dimensional behaviors and static shift effects. After processing data with remote reference, 3-D MT inversions of the four complex elements of MT impedance tensor without pre-static-shift correction, have been performed for each sector, providing three 3-D resistivity models down to about 12 to 30 km depth. The sea coast effe...

  8. Magnetotellurics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation, search Name:Power Electronics Group Jump

  9. ZAP Latin America | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-Axis TipperLatin America

  10. ZEN Eaga Solar Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-Axis TipperLatin

  11. Continuous Profiling of Magnetotelluric Fields

    E-Print Network [OSTI]

    Verdin, C.T.

    2009-01-01

    those employed in seismic data interpretation under the nameseismic nature, these techniques power implicit in the at least two decades of continued field and interpretation

  12. Continuous Profiling of Magnetotelluric Fields

    E-Print Network [OSTI]

    Verdin, C.T.

    2009-01-01

    played an auxiliary exploration to approach with the seismicmake seismic methods impractical. In geothermal exploration,

  13. Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet Motor Corp

  14. Magnetotelluric Transect of Long Valley Caldera: Resistivity...

    Open Energy Info (EERE)

    to sample the important features of the upper crustal and deeper resistivity structures. Additional control on the shallowest resistivity is provided by a continuous...

  15. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    form View source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with...

  16. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Additional References Retrieved from "http:en.openei.orgwindex.php?titleMagne...

  17. Magnetotellurics At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, the authors make three estimates of...

  18. Magnetotellurics At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    low resistivity at the western edge of the caldera which may be associated with deep hot fluids. On the basis of geophysical and well data, the authors make three estimates of...

  19. Magnetotellurics (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet Motor CorpLaney,

  20. Category:Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to: navigation,Ground GravityLists forsource History

  1. Magnetotellurics (Muse, 1973) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(Held &(Muse, 1973)

  2. Electrical, electromagnetic, and magnetotelluric methods | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc Jump to:ElectraLinkof Mines andInformation

  3. Category:Audio-Magnetotellurics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia: Energy014771°,North Dakota:Bonn |NJ Jump

  4. Category:Magnetotellurics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County,Camilla, Georgia:Geothermal Regulatory RoadmapISGANLEDS

  5. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL8-02DepartmentInterconnection1705

  6. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance...

    Open Energy Info (EERE)

    of the (Unocal) Mammoth-1 well at Casa Diablo. This low resistivity region is unusually deep, extending into the pre-caldera basement to the northwest, and is roughly aligned with...

  7. MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL...

    Open Energy Info (EERE)

    in enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity...

  8. Further Analysis of 3D Magnetotelluric Measurements Over the...

    Open Energy Info (EERE)

    of enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity...

  9. Three-dimensional magnetotelluric characterization of the Coso...

    Open Energy Info (EERE)

    (3D) resistivity model. This model shows the controlling geological structures possibly influencing well production at Coso and correlations with mapped surface...

  10. A Systematic Approach to the Interpretation of Magnetotelluric...

    Open Energy Info (EERE)

    K. Park and Carlos Torres-Verdin Published Journal Journal of Geophysical Research, 1988 DOI 10.1029JB093iB11p13265 Online Internet link for A Systematic Approach to the...

  11. Three-Dimensional Inversion of Magnetotelluric Data on a PC,...

    Open Energy Info (EERE)

    speed Jacobian calculation through alternate means such as a good approximation using integral equations. Authors Maris, V.; Wannamaker, P.; Sasaki and Y. Published Geothermal...

  12. A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal...

    Open Energy Info (EERE)

    cover formations and of the intensity of the artificial disturbances from local power stations and distribution lines. Nevertheless it has been possible to obtain good...

  13. A magnetotelluric investigation of crustal structure in southeastern Arizona 

    E-Print Network [OSTI]

    Parizek, Daniel Joseph

    1983-01-01

    was difficult to investigate because of ground water complications and because of the large amount of volcanics present in the region. Two known geothermal resource areas (KGRA's), the Clifton KGRA and the Gillard KGRA, lie along the MT profile. The KGRA... area is reflected in the resistivity model by a shallow, very conductive (5 ohm-m) anomaly. This is the only such anomaly detected along the NT profile, suggesting that only the Clifton-Norenci area is of geothermal interest. DEDICATION To my...

  14. Audio-Magnetotellurics At Roosevelt Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    MT data. References S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan, J. R. Bowman (1978) A Summary of the...

  15. Geothermal significance of magnetotelluric sounding in the eastern...

    Open Energy Info (EERE)

    and fitted to geologic models. Authors Stanley, W.D.; Boehl, J.E.; Bostick, F.X.; Smith and H.W. Published Journal J. Geophys. Res., 6101977 DOI Not Provided Check for DOI...

  16. 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal...

    Open Energy Info (EERE)

    the inversion. Forward modeling was by the finite difference scheme. The sensitivity matrix was computed once for a homogeneous half space and used at all iterations to save the...

  17. Schlumberger soundings, audio-magnetotelluric soundings and telluric...

    Open Energy Info (EERE)

    Area (1977) DC Resistivity Survey (Schlumberger Array) At Coso Geothermal Area (1977) Direct-Current Resistivity Survey At Coso Geothermal Area (1977) Telluric Survey At Coso...

  18. Case History An audio-magnetotelluric investigation of the Otjiwarongo

    E-Print Network [OSTI]

    Jones, Alan G.

    covering an area that ex- ceeds 1,000,000 km2 (Jones et al., 2009b). The consortium mem- bers that formed

  19. A Target-Oriented Magnetotelluric Inversion Approach For Characterizin...

    Open Energy Info (EERE)

    drilled to establish an in situ laboratory to investigate the potential for geothermal energy production. Classical 2-D smooth inversion of the MT data, recorded along two...

  20. Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood...

    Open Energy Info (EERE)

    1.6 ohm-m. Both maps show a second low to the south apparently associated with the low-density Cenozoic sediments. Three telluric profiles across the KGRA also define a low of...

  1. Magnetotellurics At Akutan Fumaroles Area (Kolker, Et Al., 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet Motor

  2. Magnetotellurics At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2013)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet MotorEnergy| Open

  3. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2007)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet MotorEnergy| Open|

  4. Magnetotellurics At Grass Valley Area (Morrison, Et Al., 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet MotorEnergy|

  5. Magnetotellurics At Jemez Pueblo Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet MotorEnergy|Jemez

  6. Magnetotellurics At Kilauea East Rift Geothermal Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet

  7. Magnetotellurics At Long Valley Caldera Geothermal Area (Hermance, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) | Open Energy

  8. Magnetotellurics At Long Valley Caldera Geothermal Area (Nordquist, 1987) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) | Open

  9. Magnetotellurics At New River Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) | OpenNew

  10. Magnetotellurics At Newberry Caldera Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) |

  11. Magnetotellurics At Northern Basin & Range Region (Pritchett, 2004) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) |Energy

  12. Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) |Energy1978) |

  13. Magnetotellurics At Stillwater Area (Laney, 2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988) |Energy1978)

  14. Magnetotellurics At Valles Caldera - Redondo Geothermal Area (Wilt & Haar,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988)

  15. Magnetotellurics At Valles Caldera - Sulphur Springs Geothermal Area (Wilt

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet1988)& Haar,

  16. 3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu, Saudideveloperftft Wave FlumeEnergy

  17. 3D Magnetotelluric Characterization Of The Geothermal Anomaly In The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu, Saudideveloperftft Wave

  18. Schlumberger soundings, audio-magnetotelluric soundings and telluric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindISave Energy atScheringIdaho and

  19. Three-dimensional magnetotelluric characterization of the Coso geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to:ThousandThreeOpenfield | Open

  20. A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | Open EnergyEnergyEnergyEnergySeismic Response|

  1. A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergyEvaluation | OpenLow Carbon

  2. A Systematic Approach to the Interpretation of Magnetotelluric Data in

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |Recent ExplorationInformation Synthesis

  3. A Target-Oriented Magnetotelluric Inversion Approach For Characterizing The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram |Recent ExplorationInformation SynthesisLow

  4. An Audio-Magnetotelluric Investigation In Terceira Island (Azores) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation, searchEnergy Information

  5. Further Analysis of 3D Magnetotelluric Measurements Over the Coso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint VenturesColorado:Georgia: EnergyGeothermal Field |

  6. Geothermal significance of magnetotelluric sounding in the eastern Snake

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages Recent ChangesInformation energy potential

  7. Initial Results of Magnetotelluric Array Surveying at the Dixie Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei |sourceAnd CentralWorldInformaciónGeothermal Area,

  8. MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050 Jump to: navigation,Lyons, Colorado:M38 Jump

  9. Magnetotelluric Studies In Grass Valley, Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New

  10. Magnetotelluric Techniques At Mt Princeton Hot Springs Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(Held & Henderson,

  11. Magnetotelluric Transect of Long Valley Caldera: Resistivity Cross Section,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(Held &

  12. Magnetotellurics At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(Held &(Muse,

  13. Magnetotellurics At Brady Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(Held

  14. Magnetotellurics At Central Nevada Seismic Zone Region (Pritchett, 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(HeldOpen Energy

  15. Magnetotellurics At Coso Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(HeldOpen Energy4) Jump

  16. Magnetotellurics At Coso Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(HeldOpen Energy4)

  17. Magnetotellurics At Dixie Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(HeldOpenInformation

  18. Magnetotellurics At Dixie Valley Geothermal Area (Laney, 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump

  19. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy Information

  20. Magnetotellurics At Glass Mountain Area (Cumming And Mackie, 2007) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy

  1. Magnetotellurics At International Geothermal Area, Indonesia (Laney, 2005)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy| Open Energy

  2. Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy| Open Energy2005)

  3. Magnetotellurics At Mccoy Geothermal Area (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy| Open

  4. Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy| OpenMcgee

  5. Magnetotellurics At Raft River Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy|Information

  6. Magnetotellurics At Roosevelt Hot Springs Area (Combs 2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| OpenInformation Roosevelt

  7. Magnetotellurics At Salt Wells Area (Bureau of Land Management, 2009) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| OpenInformation

  8. Magnetotellurics At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| OpenInformationSilver

  9. Magnetotellurics At Socorro Mountain Area (Owens, Et Al., 2005) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|

  10. Magnetotellurics At Soda Lake Area (Combs 2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|Soda Lake Area (Combs 2006)

  11. Magnetotellurics At Truckhaven Area (Layman Energy Associates, 2010) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|Soda Lake Area (Combs

  12. Magnetotellurics At Truckhaven Area (Warpinski, Et Al., 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|Soda Lake Area

  13. Magnetotellurics At Walker-Lane Transitional Zone Region (Pritchett, 2004)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|Soda Lake AreaInformation|

  14. Audio-Magnetotellurics At Coso Geothermal Area (1977) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOilAtmautluakIndiana:1978)

  15. DETECTION OF GEOTHERMAL INTERFERENCE IN THE TUNNEL EXCAVATION USING MAGNETOTELLURICS TECHNIQUE

    E-Print Network [OSTI]

    Harinarayana, T.

    structure of the subsurface has been derived from 2-D modeling. To determine the strike direction we have to estimate the temperature at different depths from bore holes. Modeling study showed conductive feature. Due to acute power shortage in India it has become necessary to generate renewable sources of energy

  16. MAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS-PARBATI VALLEYS IN

    E-Print Network [OSTI]

    Harinarayana, T.

    Although, many countries are utiliszing the geothermal energy for power generation, India is yet to join) Acknowledgements iii) Contents 1. INTRODUCTION 1 1.1 What is Geothermal energy ? 1 1.2 Global Scenario 2 1.3 MTMAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS

  17. INTERPRETATION OF SHALLOW ELECTRICAL FEATURES FROM ELECTROMAGNETIC AND MAGNETOTELLURIC SURVEYS AT MOUNT HOOD, OREGON

    E-Print Network [OSTI]

    Wilt, M.

    2010-01-01

    INTRODUCTION As part of a geothermal energy assessment ofof Energy's Division of Geothermal Energy, Lawrence BerkeleyEnergy, Office of Renewable Technology, Division of Geothermal and

  18. 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets...

    Open Energy Info (EERE)

    smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D...

  19. 3-D Finite-Element Modelling of Magnetotelluric Data With a Static Divergence Correction

    E-Print Network [OSTI]

    Farquharson, Colin G.

    correction #12;Standard Finite-Element Modelling: Results 1e-14 1e-131e-13 1e-12 1e-11 1e-10 1e-09 1e-08 1e.1 Hz, without correction #12;Standard Finite-Element Modelling: Results 1e-14 1e-131e-13 1e-12 1e-11 1e-Element Modelling With Correction: Results 1e-14 1e-131e-13 1e-12 1e-11 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0

  20. Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site

    E-Print Network [OSTI]

    Chen, Jinsong

    and application to a geothermal site Jinsong Chen1 , G. Michael Hoversten2 , Kerry Key3 , Gregg Nordquist4 assumed that those variables are independent in the vertical direction and depen- dent along the lateral case that mimics a geothermal exploration scenario. Our results demonstrated that the de- veloped

  1. A Five-Component Magneto-Telluric Method In Geothermal Exploration...

    Open Energy Info (EERE)

    the five standard electromagnetic components quantitatively, and in particular the vertical magnetic component. The application of this method - named the M.T.-5-E.X. - to...

  2. Imaging fluids using magnetotellurics: Electrical conductivity as a proxy for viscosity?

    E-Print Network [OSTI]

    Jones, Alan G.

    method that can image lateral and vertical variations in electrical conductivity from the near kilometres (mineral exploration, geothermal exploration), the frequency band is typically 10 kHz ­ 10 Hz

  3. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    E-Print Network [OSTI]

    that electrically resistive features in the model are related to volcanic materials intruded within the rift basin basin, northwest Ethiopia is an uplifted dome possibly related to the Afar mantle plume (Pik et al

  4. INTERPRETATION OF SHALLOW ELECTRICAL FEATURES FROM ELECTROMAGNETIC AND MAGNETOTELLURIC SURVEYS AT MOUNT HOOD, OREGON

    E-Print Network [OSTI]

    Wilt, M.

    2010-01-01

    of a multichannel, spectrum analyzer (Morrison et al. ,rocessor-contro1led The spectrum analyzer stacked a BEe 770-link between the spectrum analyzer and a 0.01 ohm, 0.01%

  5. Magnetotelluric array data analysis from north-west Fennoscandia M. Cherevatova a,

    E-Print Network [OSTI]

    Jones, Alan G.

    2 University of Cologne, Germany 3 University of Oulu, Finland 4 Kiel University, Germany 5 of Finland, Finland 11 EPPO­Institute of Engineering Seismology and Earthquake Engineering, Greece a University of Oulu, Finland b Dublin Institute for Advanced Studies, Dublin, Ireland c Department of Earth

  6. 2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data...

    Open Energy Info (EERE)

    situated in a graben. The joint inverted models show a better definition of shallow and deep structures. The results show that the extension of the benefits using joint inversion...

  7. A Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa...

    Open Energy Info (EERE)

    that the Chipilapa and La Labor hot springs are supplied by two separate sources of hot fluids, one coming from the east and the other from the south or southwest. The...

  8. Area selection for diamonds using magnetotellurics: Examples from southern Africa Alan G. Jones a,

    E-Print Network [OSTI]

    Jones, Alan G.

    Bag X01, Southdale 2135, South Africa h Rio Tinto Mining and Exploration, 1 Research Avenue, Bundoora by iron content and composition, and is not controlled by contributions from interconnected conducting minor phases, such as graphite, sulphides, iron oxides, hydrous minerals, etc. This makes quantitative

  9. Station location map and audio-magnetotelluric data log for Rye...

    Open Energy Info (EERE)

    Chart Cartographers Long, C.L., and Batzle and M.L Published U S. Geological Survey, 1976 Report Number Open-File Report 76-700C DOI Not Provided Check for DOI availability:...

  10. Magnetotelluric and teleseismic study across the Snowbird Tectonic Zone, Canadian Shield: A Neoarchean mantle suture?

    E-Print Network [OSTI]

    Jones, Alan G.

    domains. The STZ thus records plate interactions in the Neoarchean comparable in scale with that of modern orogenic belts. INDEX TERMS: 0925 Exploration Geophysics: Magnetic and electrical methods; 7205 Seismology by the $2,000 km-long Snowbird tectonic zone (STZ), interpreted by Hoffman [1988] as a Paleoproterozoic

  11. Lithospheric architecture at the Rae-Hearne boundary revealed through magnetotelluric and seismic experiments1

    E-Print Network [OSTI]

    Jones, Alan G.

    ., Ottawa, Ontario, K1A 0E9, ajones@cg.nrcan.gc.ca David Eaton, Greg Clarke (University of Western Ontario to the south. In addition, there is identified an upper crustal boundary in electrical conductivity between the data files by requiring that source earthquakes be magnitude 5.0 or greater. Each event was processed

  12. Station location map and audio-magnetotelluric data log for Rye Patch known

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand Maintenance

  13. Magnetotellurics At Beowawe Hot Springs Area (Garg, Et Al., 2007) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky:York: EnergyMagnet MotorEnergy

  14. The Long Valley/Mono Basin Volcanic Complex: A Preliminary Magnetotelluric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/Wind Resources <forGermanInternationaland

  15. Three-Dimensional Inversion of Magnetotelluric Data on a PC, Methodology

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film Solar Technologies Jump to:ThousandThree Riversand

  16. 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets-

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas:V.S.A.Energy InformationResistivity

  17. 2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie,Information Skord, Et15: Leases7 CCR

  18. 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie,Information Skord, Et15: Leases7Indonesia |

  19. A Closely-Spaced Magnetotelluric Study Of The Ahuachapan-Chipilapa

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergy Information Of The Influx Of

  20. Application Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola onAperionCommission |Dispersion AndArea,

  1. Audio-Magnetotellurics At Chena Geothermal Area (Holdmann, Et Al., 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,Atlantisstrom JumpIllinois:

  2. Audio-Magnetotellurics At Roosevelt Hot Springs Geothermal Area (Ward, Et

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A SOpenAshley,Atlantisstrom JumpIllinois:Al., 1978) | Open

  3. Magnetotellurics At Cove Fort Area (Toksoz, Et Al, 2010) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump to:New(HeldOpen

  4. Magnetotellurics At Nw Basin & Range Region (Pritchett, 2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open Energy|

  5. Magnetotellurics At Rio Grande Rift Region (Aiken & Ander, 1981) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump| Open

  6. Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050EnermarGeneration Jump|Soda Lake AreaInformation

  7. Audio-Magnetotellurics At Baltazor Hot Springs Area (Isherwood & Mabey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOilAtmautluakIndiana:1978) | Open

  8. Audio-Magnetotellurics At Chena Area (Erkan, Et. Al., 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line SitingOilAtmautluakIndiana:1978) |

  9. Audio-Magnetotellurics At Raft River Geothermal Area (1978) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump|Line

  10. A Five-Component Magneto-Telluric Method In Geothermal Exploration- The

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data bookresult9) Jump to:13:28-07:00EboroNHawaii |

  11. Perception & Psychophysics 2003, ?? (?), ???-???

    E-Print Network [OSTI]

    Chun, Marvin M.

    mechanism needs to incorporate more sophisticated object-oriented components (Tipper, Driver, & Weaver, 1991 and Technology to M.-S.K. and, in part, by National Science Foundation Grant BCS-0096178 to M.M.C. We thank

  12. GEOPHYSICS, VOL. 63, NO. 3 (MAY-JUNE 1998); P. 826840, 22 FIGS. Marine magnetotellurics for petroleum exploration, Part II

    E-Print Network [OSTI]

    Constable, Steve

    errors in the locations of interfaces caused by neglecting velocity anisotropy in migration in the Gulf of Mexico. Deeper in the section where two-way times are on the order of 4 s, lateral position errors in migration become comparable to those of the MT inverse, whereas seismic vertical po- sition

  13. GEOPHYSICS, VOL. 63, NO. 3 (MAY-JUNE 1998); P. 816825, 10 FIGS. Marine magnetotellurics for petroleum exploration

    E-Print Network [OSTI]

    Key, Kerry

    for petroleum exploration Part I: A sea-floor equipment system Steven C. Constable, Arnold S. Orange, G. Michael for mapping conti- nental shelf structure at depths relevant to petroleum ex- ploration, however, MT to map sedimentary structure as an aid to petroleum exploration for several decades (e.g. Vozoff, 1972

  14. Electromagnetic images of colliding continents: a magnetotelluric survey of the Tsangpo Suture and surrounding regions of Tibet

    E-Print Network [OSTI]

    Jones, Alan G.

    recorded higher frequency data at the same locations and in between. The time series data from both systems. The responses have been analyzed for electric field distortions, dimensionality, and strike direction and their interpretation. Data Acquisition The main suture-crossing profile, the "100-line", extended across the Tsangpo

  15. Audio-magnetotellurics (AMT) for steeply-dipping mineral targets: importance of multi-component measurements at each site

    E-Print Network [OSTI]

    Jones, Alan G.

    Inc., 927 Raftsman Lane, Ottawa, Ontario, K1C 2V3, Canada (gmcneice@geosystem.net) Summary Steeply. The anomalous responses due to such targets are greater in the magnetic fields than in the electric fields of interconnected sulfides. On the Canadian Shield, at depths below about 500 m the advantages of controlled- source

  16. Trajectory-switching algorithm for a MEMS gyroscope

    E-Print Network [OSTI]

    Park, Sungsu; Horowitz, Roberto; Hong, Sung Kyung; Nam, Yoonsu

    2007-01-01

    control for a microelectromechanical-system z-axis gyroscoperoscope, microelectromechanical systems (MEMS), trajectoryI NTRODUCTION OST microelectromechanical-system (MEMS) gyro-

  17. Trajectory-switching algorithm for a MEMS gyroscope

    E-Print Network [OSTI]

    Park, Sungsu; Horowitz, Roberto; Hong, Sung Kyung; Nam, Yoonsu

    2007-01-01

    control for a microelectromechanical-system z-axis gyroscopecontrol, gy- roscope, microelectromechanical systems (MEMS),I NTRODUCTION OST microelectromechanical-system (MEMS) gyro-

  18. Geophysical Prospecting, 2015, 63, 12841310 doi: 10.1111/1365-2478.12278 Field test of sub-basalt hydrocarbon exploration with marine

    E-Print Network [OSTI]

    Constable, Steve

    -basalt hydrocarbon exploration with marine controlled source electromagnetic and magnetotelluric data G. Michael accepted January 2015 ABSTRACT The recent use of marine electromagnetic technology for exploration from 84 marine controlled source electromagnetic and magnetotelluric stations for imaging volcanic

  19. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    teaches modern geophysical exploration techniques: seismic reflection and refraction, gravity and magnetics, electromagnetics (including magnetotellurics), and electrical...

  20. About SAGE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teaches modern geophysical exploration techniques: seismic reflection and refraction, gravity and magnetics, electromagnetics (including magnetotellurics), and electrical...

  1. GEOPHYSICS, VOL. 65, NO. 5 (SEPTEMBER-OCTOBER 2000); P. 14761488, 17 FIGS. Marine magnetotellurics for base-of-salt mapping

    E-Print Network [OSTI]

    Key, Kerry

    for base-of-salt mapping: Gulf of Mexico field test at the Gemini structure G. Michael Hoversten, Steven C the Gemini subsalt petroleum prospect in the Gulf of Mexico (GOM) to demonstrate that the base of salt can the salt and the surrounding sediments pro- vides an excellent target for MMT. The Gemini salt body

  2. GEOPHYSICAL RESEARCH LETTERS, VOL. 23, NO. 17, PAGES 2275-2278, AUGUST 15, 1996 SeafloorMagnetotelluricSoundingAboveAxial Seamount

    E-Print Network [OSTI]

    Constable, Steve

    September,1994.TheGPS- determineddeploymentlocationsand depths(Plate 1) were for Pele45ø55.47' N, 129ø59.03' W (1550m), Macques45ø 57.48' N, 129ø58.98' W (1520 m) andUlysses45ø59.50' N, 129ø59.81' W (1490 m,whichwereswappedwithoneoftwoglassbuoyancy floatsin theE-field package.The three-componentring-core fluxgatesensorshada least-countof 0.1 nT anda

  3. Utility of Magnetotelluric Data in Unravelling the Stratigraphic-Structural Framework of the Nechako Basin (NTS 092N; 093C, B, G, H), South-Central

    E-Print Network [OSTI]

    Jones, Alan G.

    by the extrusion of basaltic lava in Eocene and Miocene times that forms a variably thick sheet, averaging 100 m metres of gas and a billion cubic metres of oil (Hannigan et al., 1994). The thick volcanic cover limits

  4. Geophysical Prospecting, 2013, 61 (Suppl. 1), 505532 doi: 10.1111/j.1365-2478.2012.01117.x Review paper: Instrumentation for marine magnetotelluric and

    E-Print Network [OSTI]

    Constable, Steve

    magnetometers have higher noise than induction coils at periods shorter than 500 s but can still be used exploits the natural variations in the Earth's magnetic field that induce electric currents and fields C

  5. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 94, NO. BIO, PAGES 14,111-14,125, OCTOBER 10,1989 Magnetotelluric Observations Across the Juan de Fuca Subduction System

    E-Print Network [OSTI]

    Jones, Alan G.

    interpretation. Broadband audiomagnetotelluric (AM1)/MT soundings (approx. 0.01-500 s period) were collectei~train upper crustal heterogeneity but sense also into the upper mantle. Fifteen long-period MT recordings, is continuous eastward from the seacoast and ends abruptly at the High Cascades. It signifies an electrically

  6. Direct numerical simulation of turbulent Taylor–Couette flow

    E-Print Network [OSTI]

    2007-08-23

    Brindley (1984) proposed a mathematical model by partitioning the flow into interior. (Taylor ... A comprehensive verification for several parameters was conducted, ... The cylinder axis is aligned with the z-axis of the coordinate system

  7. WABASH COLLEGE A LIBERAL ARTS COLLEGE FOR MEN

    E-Print Network [OSTI]

    Madsen, Martin John

    control using long-wavelength radiation. B-field [Tesla] z-axis [m] Strong Magnetic Field Gradient Ions MHz Q-factor: 150 ______________________ Isomet 8W Amplifier HP8640B Signal Generator Analog

  8. Innovative Computational Tools for Reducing Exploration Risk...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock Interactions and Magnetotelluric Surveys Innovative Computational Tools for Reducing Exploration...

  9. Session: Geothermal Research Volcanology Oral presentation

    E-Print Network [OSTI]

    Boyer, Edmond

    and magnetotelluric data acquired during the last 30 years. Oldest electric and magnetotelluric data were digitalizedSession: Geothermal Research ­ Volcanology Oral presentation Contribution of multi-methods geophysics to improve the regional knowledge of Bouillante geothermal Province (Guadeloupe) Lydie Gailler1

  10. Multi-criteria decision analysis for waste management in Saharawi refugee camps

    SciTech Connect (OSTI)

    Garfi, M. [DICMA, University of Bologna, Via Terracini 28, I-40131 Bologna (Italy)], E-mail: marianna.garfi@mail.ing.unibo.it; Tondelli, S. [DAPT, University of Bologna, Viale Risorgimento 4, I-40126 Bologna (Italy); Bonoli, A. [DICMA, University of Bologna, Via Terracini 28, I-40131 Bologna (Italy)

    2009-10-15

    The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders: The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.

  11. Method and apparatuses for ion cyclotron spectrometry

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID); Scott, Jill R. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID)

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  12. Actuator assembly including a single axis of rotation locking member

    DOE Patents [OSTI]

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  13. Geophys. J. Int. (2009) 176, 431442 doi: 10.1111/j.1365-246X.2008.03975.x GJIGeomagnetism,rockmagnetismandpalaeomagnetism

    E-Print Network [OSTI]

    Key, Kerry

    2009-01-01

    vertical magnetic field is well known as the geomagnetic coast effect, but the ocean-side consequences have a geothermal gradient of 25.4 ± 8 K km-1 . Key words: Electrical properties; Magnetotelluric; Marine

  14. The CAFE experiment : a joint seismic and MT investigation of the Cascadia subduction system

    E-Print Network [OSTI]

    McGary, R. Shane

    2013-01-01

    In this thesis we present results from inversion of data using dense arrays of collocated seismic and magnetotelluric stations located in the Cascadia subduction zone region of central Washington. In the migrated seismic ...

  15. J. Geophys. 48, 181-194, 1980 Geomagnetic Induction Studies in Scandinavia

    E-Print Network [OSTI]

    Jones, Alan G.

    between this ratio and the magnetotelluric impedance was shown by Schmucker (1970), Kuckes (1973a, b data by Kuckes (1973a), LiIley and Sloane (1976) and Woods and LiIIey (1979). The first two studies

  16. A Preparation Zone For Volcanic Explosions Beneath Naka-Dake...

    Open Energy Info (EERE)

    and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to...

  17. Meteoritics & Planetary Science 39, Nr 6, 787790 (2004) Abstract available online at http://meteoritics.org

    E-Print Network [OSTI]

    Claeys, Philippe

    2004-01-01

    exploratory program by PEMEX with intermittent core recovery and, more recently, by the National University, magnetotelluric and offshore seismic surveys, pre-existing boreholes of PEMEX and UNAM programs, site conditions

  18. The Eyjafjallajkull volcanic system, Iceland: insights from electromagnetic measurements

    E-Print Network [OSTI]

    Jones, Alan G.

    The Eyjafjallajökull volcanic system, Iceland: insights from electromagnetic measurements Journal; Iceland Geosurvey, Vilhjálmsson, Arnar; Iceland Geosurvey, Keywords: Magnetotellurics system, Iceland: insights from1 electromagnetic measurements2 Marion P. Miensopust1,2, , Alan G. Jones1

  19. 3106_TSS_baldridge.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    km depth. The latter estimate meets a criterion used to define high-grade enhanced geothermal systems. SAGE 2011 gravity and magnetotelluric (MT) measure- ments in the CDR were...

  20. J. Geomag. Geoelectr., 49, 727-737, 1997 Introduction to MT.,.DIW2 Special Issue

    E-Print Network [OSTI]

    Jones, Alan G.

    line, with 300 m dipoles. In-line electric fields only were recorded on this line. The four full 5, Downing Street, Cambridge, England, CB2 9EQ 1. Introduction The second Magnetotelluric Data Interpretation

  1. Electromagnetic images of the Earth from near-surface to deep within the mantle Alan G. Jones (Geological Survey of Canada)

    E-Print Network [OSTI]

    Jones, Alan G.

    @cg.nrcan.gc.ca The natural-source magnetotelluric (MT) technique has one major advantage over all other electrical (Geological Survey of Canada) 615 Booth St., Room 218, Ottawa, Ontario, K1A 0E9, ajones

  2. Continued on Page 21 20 CSEG RECORDER March, 2003

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    a wide range of studies that included potential fields (Garland), geochronology (Lipson), electromagnetic-1963 Keeva Vozoff Magnetotellurics 1958-1965 Joseph Lipson Geochronology 1957-1961 George Cumming Seismology/Geochronology

  3. Europe from the bottom up: A statistical examination of the central and northern European lithosphereasthenosphere boundary from comparing seismological

    E-Print Network [OSTI]

    Jones, Alan G.

    Europe from the bottom up: A statistical examination of the central and northern European: Lithosphere­asthenosphere boundary (LAB) Europe Seismology Magnetotellurics The Lithosphere, between the delineation of the LAB for Europe based on seismological and electromagnetic observations. We

  4. CSc-165 Spring 2015 Week 2 (d) 3D / Objects / Cameras

    E-Print Network [OSTI]

    Gordon, Scott

    Teapot(Color.blue); Matrix3D teaM = teap.getLocalTranslation(); teaM.translate(-1,1,-5); teap.setLocalTranslation(tea, xEnd, Color.red, 2); Line yAxis = new Line (origin, yEnd, Color.green, 2); Line zAxis = new Line

  5. JOURNAL DE PHYSIQUE Colloque C7, suppZ6ment au n07, Tome 40, JuiZlet 1979, page C7-43 ELECTRONSWARM HAVING A N ANISOTROPIC VELOCITY DISTRIBUTIONFUNCTION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    direction( z axis ), In recent years there has been a renewed we find the integrodifferential equation % the condition of one dimensional spatial Article published online by EDP Sciences and available at http. Figure 1 and 2 show each term of the energy distribution 4 *functions fR ( E ) = 7 g E( v

  6. Position Estimation Scheme for Lunar Rover Based on Integration of

    E-Print Network [OSTI]

    Kuroda, Yoji

    coordinate system at center of the Earth z-axis: north celestial pole x-axis: vernal equinox direction y-axis: vernal equinox direction y-axis: right-hand system of x-z origin: the Moon We can calculate the position

  7. Accurate Localization in Combination with Planet Observation and Dead Reckoning

    E-Print Network [OSTI]

    Kuroda, Yoji

    coordinates system at center of the earth Z-axis: north celestial pole X-axis: vernal equinox direction Y-axis: vernal equinox direction Y-axis: right-hand system of x-z Origin: the moon We can calculate the position

  8. excited a second time, all within 35 ps. We have estimated the value of p(2) and nd it to be less than 8 10-4

    E-Print Network [OSTI]

    LaBean, Thomas H.

    of the lateral peaks is the signature of the sub-poissonian statistics of the light emitted by our source is the variance of the distribution and nav is the average number of photons26 . At the highest pumping power-of-focus molecules or Raman scattering), reduced terrylene doping, pumping with z-axis polarized light, or use

  9. Design and fabrication of highly efficient electrooptic modulators using bragg grating reflectors 

    E-Print Network [OSTI]

    Kim, Ryoung-Han

    2006-04-12

    crystal if the light is incident along the optic z-axis. D. Electrooptic Effect The propagation of an electro-magnetic wave inside a medium is determined by the refractive index of the medium. The electrooptic effect is the change of refractive...

  10. November 15, 1996 / Vol. 21, No. 22 / OPTICS LETTERS 1803 Reconstruction of longitudinal distributed incoherent sources

    E-Print Network [OSTI]

    Rosen, Joseph

    distributed incoherent sources Joseph Rosen* and Amnon Yariv California Institute of Technology, M/S 128) function containing the information about the 3-D source in the same manner as appears in a coherently by a random light source distributed along the longitudinal z axis. If this degree of coherence is measured

  11. Control of the Pancharatnam phase of single q-bits

    E-Print Network [OSTI]

    Giraud, Olivier

    , Sohag University, Egypt #12;· Phase in quantum mechanics · Control of Pancharatnam phase with classical capacitors (not shown) connected to ground. The lower right portion of the figure shows the x-y electric to the ground. A static electric potential well is created (for positive ions) along the z axis by applying

  12. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C. (Port Jefferson, NY); Wang, Chengpu (Upton, NY)

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  13. Method and apparatus for ion cyclotron spectrometry

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID) [Idaho Falls, ID; Scott, Jill R. (Idaho Falls, ID) [Idaho Falls, ID; McJunkin, Timothy R. (Idaho Falls, ID) [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  14. ZEN International Production and Trade bvba | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-Axis

  15. ZebaSolar India Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF

  16. Zebulon, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPFZebulon, North

  17. Zecon Solar Semiconductor Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPFZebulon,

  18. Zeeland, Michigan: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPFZebulon,Michigan:

  19. SCHOOL OF MATHEMATICS AND STATISTICS Autumn Semester 20072008 Mechanics 2 hours

    E-Print Network [OSTI]

    x = r cos and y = r sin, show that I = a 0 =4 0 r3 cos2ddr: Hence nd I. (13 marks) AMA223 1 Turn is 1 4 mb2 . The lamina is rotating with angular speed ! about the z-axis, 0z. Find its kinetic energy) Using the results of part (i) and the energy conservation principle, deduce that the total energy E (i

  20. IDS120h AND IDS120i GEOMETRY. SIMULATIONS FOR 60%W+40%He SHIELDING WITH

    E-Print Network [OSTI]

    McDonald, Kirk

    THICK). MODIFIED Hg POOL EXTENTS FROM 86 cm TO ~300 cm ALONG THE z-AXIS AND UP ~50 cm RADIALLY SH1-->SH1 cm) 1 cm THICK STST WALLS USED FOR THE Hg POOL VESSEL #12;CENTER OF BEAM PROTONS TRAJECTORY FOR Hg(BLACK) AND Ga(RED) TARGETS. (POOL SURFACE IN FIRST PLOT IS AT y= - 15 cm BUT FOR SIMULATIONS y= - 20 cm) Y X XZ

  1. Laser accelerometer

    SciTech Connect (OSTI)

    Vescial, F.; Aronowitz, F.; Niguel, L.

    1990-04-24

    This patent describes a laser accelerometer. It comprises: an optical cavity characterizing a frame having an input axis (x), a cross axis (y) orthogonal to and co-planar with the input axis and a (z) axis passing through the intersection of the (x) and (y) axes, the (z) axis being orthogonal to the plane of the (x) and (y) axes; and (x) axis proof mass having a predetermined blanking surface; a flexible beam having a first end coupled to the (x) axis proof mass and a second end coupled to the frame, deflection of the flexible beams permitting a predetermined range of movement of the (x) proof mass on the input axis in a direction opposite to sensed acceleration of the frame; a laser light source having a mirror means within the cavity for providing a light ray coaxially aligned with the (z) axis; detector means having at least a first detector on a sensitive plane, the plane being normal to the (z) axis; bias and amplifier means coupled to the detector means for providing a bias current to the first detector and for amplifying the intensity signal; the (x) axis proof mass blanking surface being centrally positioned within and normal to the light ray null intensity region to provide increased blanking of the light ray in response to transverse movement of the mass on the input axis; control means responsive to the intensity signal for applying an (x) axis restoring force to restore the (x) axis proof mass to the central position and for providing an (x) axis output signal proportional to the restoring force.

  2. The one and a half monopoles solution of the SU(2) Yang–Mills–Higgs field theory

    SciTech Connect (OSTI)

    Teh, Rosy Ng, Ban-Loong; Wong, Khai-Ming

    2014-04-15

    Recently we have reported on the existence of finite energy SU(2) Yang–Mills–Higgs particle of one-half topological charge. In this paper, we show that this one-half monopole can co-exist with a ’t Hooft–Polyakov monopole. The magnetic charge of the one-half monopole is of opposite sign to the magnetic charge of the ’t Hooft–Polyakov monopole. However the net magnetic charge of the configuration is zero due to the presence of a semi-infinite Dirac string along the positive z-axis that carries the other half of the magnetic monopole charge. The solution possesses gauge potentials that are singular along the z-axis, elsewhere they are regular. The total energy is found to increase with the strength of the Higgs field self-coupling constant ?. However the dipole separation and the magnetic dipole moment decrease with ?. This solution is non-BPS even in the BPS limit when the Higgs self-coupling constant vanishes. -- Highlights: •This one-half monopole can co-exist with a ’t Hooft–Polyakov monopole. •The magnetic charge of the one-half monopole and one monopole is of opposite sign. •This solution is non-BPS. •The net magnetic charge of the configuration is zero. •This solution upon Cho decomposition is only singular along the negative z-axis.

  3. Improvement of a multigrid solver for 3D EM T. Jnsthvel

    E-Print Network [OSTI]

    Vuik, Kees

    as modern seismic exploration. Due 2 #12;to improvements in magnetotelluric (MT) data collection source to seismic exploration, EM methods become more widely used in hydrocarbon exploration. Just as in seismic exploration, EM methods can contribute to e¤ective hy- drocarbon exploration in two distinct ways

  4. Preliminary interpretation of the upper crustal structure beneath Prince Edward Island

    E-Print Network [OSTI]

    Jones, Alan G.

    during 1983 to aid in the assessment of the geothermal energy potential of the province. At ten locations. For the western part ofthe Island there is a resistive zone which can be identified from the borehole logs as pre gravity anomaly in the region. Key words: magnetotelluric method, geothermal energy, Prince Edward Island

  5. Geophysical Journal International Geophys. J. Int. (2014) 199, 11871204 doi: 10.1093/gji/ggu322

    E-Print Network [OSTI]

    Jones, Alan G.

    2014-01-01

    and vertical electrical resistivity variations. High quality magnetotelluric (MT) and transient EM data were, as seen previously for example at the Hengill geothermal region. A connection between those two conductive eruption) appear as vertical conductive structures. It is uncertain if the vertical connection is permanent

  6. Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton, South Africa

    E-Print Network [OSTI]

    Tommasi, Andrea

    root. The vertical variation in water contents in olivine observed in the Kaapvaal peridotites may with magnetotelluric electrical conductivity data suggests, however, that the observed vertical variation of water lithosphere with cold geotherms (Boyd et al., 1985; Chevrot and Zhao, 2007; Evans et al., 2011; Jaupart

  7. Crustal structure and apparent tectonic underplating from receiver function analysis in South Island, New Zealand

    E-Print Network [OSTI]

    Clayton, Robert W.

    ]. The convergence resulted in the uplift of the Southern Alps, with current uplift rates being 5­10 mm/a [Norris et can provide important information about mechanisms that control uplift, lithospheric deforma- tion Passive Source Experiment), magnetotelluric and electrical studies. Detailed two-dimensional lithospheric

  8. doi: 10.1098/rsta.1997.0008 , 233-2533551997Phil. Trans. R. Soc. Lond. A

    E-Print Network [OSTI]

    Constable, Steve

    of four major components: wide-angle seismic profiles using ocean bottom seismometers; seismic reflection profiles; controlled source electromagnetic sounding; and magneto-telluric sounding. Interpretation seismic P-wave velocity and electrical resistivity, and is associated with a seismic reflector

  9. Thomas G. Thompson TN121 23 February 12 March, 2001

    E-Print Network [OSTI]

    Key, Kerry

    transmitter broadcasts energy to seafloor electric field recorders, and magnetotelluric (MT) sounding on the transit back to San Diego (to evaluate the effect of the coast on the MT fields). These instruments will be recovered from the New Horizon in August 2001 during the second leg. Intermsofshipuseanddatacollection

  10. Method for determining depth and shape of a sub-surface conductive object

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, Jr.

    1984-06-27

    The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.

  11. Geophysical Research Abstracts Vol. 15, EGU2013-12978, 2013

    E-Print Network [OSTI]

    Jones, Alan G.

    (s) 2013. CC Attribution 3.0 License. IRETHERM: Magnetotelluric Assessment of Geothermal Energy Potential, with the overarching objective of developing a holistic understanding of Ireland's low-enthalpy geothermal energy for geothermal energy potential: 1. Rathlin Basin The only sedimentary strata in Ireland known to provide

  12. Internal structure of the western flank of the Cumbre Vieja volcano, La Palma, Canary Islands, from land

    E-Print Network [OSTI]

    Jones, Alan G.

    Palma, Canary Islands, from land magnetotelluric imaging X. Garcia1,2 and A. G. Jones1 Received 9 March on the island of La Palma (Canary Islands) provides an ideal setting to address fundamental questions about (2010), Internal structure of the western flank of the Cumbre Vieja volcano, La Palma, Canary Islands

  13. CX-011399: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Integrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High-Enthalpy, Extensional Geothermal Systems CX(s) Applied: A9, B3.1 Date: 12/19/2013 Location(s): Nevada Offices(s): Golden Field Office

  14. Geophys. 1. R. astr. Soc. (1987),89,7-18 MT and reflection: an essential combination

    E-Print Network [OSTI]

    Jones, Alan G.

    1987-01-01

    ) studies and seismic reflection profiles conducted. Unfortunately, over many more regions the seismic of the magnetotelluric (MT) technique as having a vertical resolution equivalent to the seismic refraction method, in almost every case, be made wherever a seismic reflection survey is undertaken. Examples are shown from

  15. 2005 Nature Publishing Group Crustal rheology of the Himalaya and Southern

    E-Print Network [OSTI]

    Jones, Alan G.

    ,8 . Magnetotelluric data can be used to image subsurface electrical resistivity, a parameter sensitive to the presence from the Tibetan­Himalayan orogen from 778 E to 928 E, which show that low resistivity, interpreted in Southern Tibet. The geology of southern Tibet clearly records the collision of India with Asia. The Indus

  16. The electrical structure of the Slave craton Alan G. Jonesa,*,1

    E-Print Network [OSTI]

    Jones, Alan G.

    The electrical structure of the Slave craton Alan G. Jonesa,*,1 , Pamela Lezaetab , Ian J of Canada, National Resources Canada, 615 Booth Street, Room 218, Ottawa, Ontario, Canada K1A 0E9 b Deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique

  17. TECTONOPHYSICS Waves of the future: Superior inferences from collocated seismic

    E-Print Network [OSTI]

    Jones, Alan G.

    . processing. ll111delling and inversion of particularly natural-source magnetotelluric (\\1TJ data in modelling and inversion. Also. laboratory measuremeilh of seismic. electrical and rheological properties nf a Southern BI itish Columhia California Alherta Ontano QueheL' and Ontario \\Vc....t ('oa~t Ncw Mexico Alilc

  18. Slave Electromagnetic studies Alan G. Jones1

    E-Print Network [OSTI]

    Jones, Alan G.

    and Jessica Spratt1,5 1 Geological Survey of Canada, 615 Booth St., Ottawa, Ontario, K1A 0E9, Canada. Email-probing electromagnetic surveys, using the nautral-source magnetotelluric (MT) technique, have recently been carried out. The former ensured low resistance ground contact for electric field measurements, and the latter avoided

  19. WRAP low level waste (LLW) glovebox acceptance test report

    SciTech Connect (OSTI)

    Leist, K.J.

    1998-02-17

    In June 28, 1997, the Low Level Waste (LLW) glovebox was tested using glovebox acceptance test procedure 13031A-85. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, lidder/delidder device and the supercompactor were also conducted. As of November 24, 1997, 2 of the 131 test exceptions that affect the LLW glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test Exceptions are provided as appendices to this report.

  20. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    SciTech Connect (OSTI)

    Shang, K; Wang, J; Liu, D; Li, R; Cao, Y; Chi, Z [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, CN, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Four hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is ?5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.

  1. ZOPF GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbH Jump to:

  2. ZT Plus | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbH Jump to:ZT

  3. Zachary, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbH Jump

  4. Zambia-EU-UNDP Low Emission Capacity Building Programme (LECBP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbH JumpEnergy

  5. Zambia-Pilot Program for Climate Resilience (PPCR) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbH

  6. Zap Youngman Automotive Group JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbHZap Youngman

  7. Zapata County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbHZap

  8. Zavala County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbHZapZavala

  9. Ze gen Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:WizardYates County, NewYorktownZ-AxisZOPF GmbHZapZavalagen

  10. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOE Patents [OSTI]

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  11. Multicomponent Signal Unmixing from Nanoheterostructures: Overcoming the Traditional Challenges of Nanoscale X?ray Analysis via Machine Learning

    E-Print Network [OSTI]

    Rossouw, David; Burdet, Pierre; de la Pen?a, Francisco; Ducati, Caterina; Knappett, Benjamin R.; Wheatley, Andrew E. H.; Midgley, Paul A.

    2015-03-11

    was obtained by collecting X-rays emitted from the local volume probed by the electron beam. The resulting EDX spectrum image was a three-dimensional data set whose (x, y) axes correspond to the position of the probe and whose z axis corresponds to the energy... of the detected X-ray. Spectrum images were acquired with a probe current of approximately 0.7 nA, an acceleration voltage of 200 kV, a spatial sampling of between 0.5 and 1 nm/pixel and 50? 100 ms/pixel dwell times. TIA software was used for acquisition and Hyper...

  12. Three Dimensional Speckle Imaging Employing a Frequency-Locked Tunable Diode Laser

    SciTech Connect (OSTI)

    Cannon, Bret D.; Bernacki, Bruce E.; Schiffern, John T.; Mendoza, Albert

    2015-09-01

    We describe a high accuracy frequency stepping method for a tunable diode laser to improve a three dimensional (3D) imaging approach based upon interferometric speckle imaging. The approach, modeled after Takeda, exploits tuning an illumination laser in frequency as speckle interferograms of the object (specklegrams) are acquired at each frequency in a Michelson interferometer. The resulting 3D hypercube of specklegrams encode spatial information in the x-y plane of each image with laser tuning arrayed along its z-axis. We present laboratory data of before and after results showing enhanced 3D imaging resulting from precise laser frequency control.

  13. A vision-based method for on-road truck height measurement in proactive prevention of collision with overpasses and tunnels

    E-Print Network [OSTI]

    Dai, Fei; Park, Man-Woo; Sandidge, Matthew; Brilakis, Ioannis

    2014-11-26

    of being hit or a small damage becomes a disadvantage of 89 this approach. Moreover, chains and metal strips may not provide an alarm loud enough to be heard inside 90 trucks [15]. A more preventive way is having a warning system that can detect an over... a vertical line (in z-axis 261 direction). It should be noted that the top boundary in Fig. 6(b) is a straight line in the same direction of 262 the principal axis (in vector image format) while the bottom one in Fig. 7(b) is winding (in raster...

  14. The effect of elastic strain on M-center distribution in LiF 

    E-Print Network [OSTI]

    Wolny, Richard Frank

    1962-01-01

    of lithium fluoride, illustrating the Seitz and Knox models of the M-center 3 2. A two dimensional lattice of lithium fluoride, illustrating the F and P -centers. 2 4 3. Prism sub]ected to torque about z-axis 4. Cross-section of a rectangular crystal... was to determine the influence of elastic strain on the production of M-centers in crystals of lithium fluoride. g secondary objective was to observe whether the amount of time that a crystal was strained had any effect on the M-center distribution. Data...

  15. Small Aperture BPM to Quadrupole Assembly Tolerance Study

    SciTech Connect (OSTI)

    Fong, K. W.

    2010-12-07

    The LCLS injector and linac systems utilize a series of quadrupole magnets with a beam position monitor (BPM) captured in the magnet pole tips. The BPM measures the electron beam position by comparing the electrical signal from 4 electrodes and interpolating beam position from these signals. The manufacturing tolerances of the magnet and BPM are critical in determining the mechanical precision of the electrodes relative to the nominal electron beam Z-axis. This study evaluates the statistical uncertainty of the electrodes center axis relative to the nominal electron beam axis.

  16. Exploration of the El Hoyo-Monte Galan Geothermal Concession. Final report

    SciTech Connect (OSTI)

    NONE

    1997-12-01

    In January 1996 Trans-Pacific Geothermal Corporation (TGC) was granted a geothermal concession of 114 square kilometers from the Instituto Nicaragueense de Energie (INE) for the purpose of developing between 50 and 150 MWe of geothermal electrical generating capacity. The Concession Agreement required TGC to perform geological, geophysical, and geochemical studies as part of the development program. TGC commenced the geotechnical studies in January 1996 with a comprehensive review of all existing data and surveys. Based on this review, TGC formulated an exploration plan and executed that plan commencing in April, 1996. The ground magnetic (GM), self potential (SP), magnetotelluric/controlled source audio magnetotelluric (MT/CSAMT) and one-meter temperature surveys, data integration, and synthesis of a hydrogeologic model were performed. The purpose of this report is to present a compilation of all data gathered from the geophysical exploration program and to provide an integrated interpretation of that data.

  17. Marine Controlled-Source Electromagnetic Responses of a Thin Hydrocarbon Reservoir beneath Anisotropic Overburden 

    E-Print Network [OSTI]

    Youn, Sangseok

    2014-08-07

    NOMENCLATURE MCSEM Marine Controlled-source Electromagnetic HED Horizontal electric dipole MT Magnetotellurics TX Transmitter RX Receiver EX Total electric field response EX-EX Total electric field response due to an x-directed HED source PDE.... ............................................................ 22 Figure 8. The isotropic EX-EX responses for an isotropic halfspace results, computed to validate the anisotropy modification of the SEATEM code. ........................ 24 Figure 9. EX-EX responses for different values of the z...

  18. Effect of sulfur loading on the desulfation chemistry of a commercial lean NOx trap catalyst

    SciTech Connect (OSTI)

    Kim, Do Heui; Yezerets, Aleksey; Li, Junhui; Currier, Neal; Chen, Haiying; Hess, Howard .; Engelhard, Mark H.; Muntean, George G.; Peden, Charles HF

    2012-12-15

    We investigate the effects of initial sulfur loadings on the desulfation chemistry and the subsequent final activity of a commercial LNT catalyst. Identical total amounts of SO2 are applied to the samples, albeit with the frequency of desulfation varied. The results indicate that performance is better with less frequent desulfations. The greater the amount of sulfur deposited before desulfation, the more amount of SO2 evolution before H2S is observed during desulfation, which can be explained by two sequential reactions; initial conversion of sulfate to SO2, followed by the reduction of SO2 to H2S. After completing all sulfation/desulfation steps, the sample with only a single desulfation results in a fairly uniform sulfur distribution along the z-axis inside of the monolith. We expect that the results obtained in this study will provide useful information for optimizing regeneration strategies in vehicles that utilize the LNT technology.

  19. Current initiation in low-density foam z-pinch plasmas

    SciTech Connect (OSTI)

    Derzon, M.; Nash, T.; Allshouse, G. [and others

    1996-07-01

    Low density agar and aerogel foams were tested as z-pinch loads on the SATURN accelerator. In these first experiments, we studied the initial plasma conditions by measuring the visible emission at early times with a framing camera and 1-D imaging. At later time, near the stagnation when the plasma is hotter, x-ray imaging and spectral diagnostics were used to characterize the plasma. Filamentation and arcing at the current contacts was observed. None of the implosions were uniform along the z-axis. The prime causes of these problems are believed to be the electrode contacts and the current return configuration and these are solvable. Periodic phenomena consistent with the formation of instabilities were observed on one shot, not on others, implying that there may be a way of controlling instabilities in the pinch. Many of the issues involving current initiation may be solvable. Solutions are discussed.

  20. LINE: a code which simulates spectral line shapes for fusion reaction products generated by various speed distributions

    SciTech Connect (OSTI)

    Slaughter, D.

    1985-03-01

    A computer code is described which estimates the energy spectrum or ''line-shape'' for the charged particles and ..gamma..-rays produced by the fusion of low-z ions in a hot plasma. The simulation has several ''built-in'' ion velocity distributions characteristic of heated plasmas and it also accepts arbitrary speed and angular distributions although they must all be symmetric about the z-axis. An energy spectrum of one of the reaction products (ion, neutron, or ..gamma..-ray) is calculated at one angle with respect to the symmetry axis. The results are shown in tabular form, they are plotted graphically, and the moments of the spectrum to order ten are calculated both with respect to the origin and with respect to the mean.

  1. Robust Repetitive Controller for Fast AFM Imaging

    E-Print Network [OSTI]

    Necipoglu, Serkan; Has, Yunus; Guvenc, Levent; Basdogan, Cagatay

    2012-01-01

    Currently, Atomic Force Microscopy (AFM) is the most preferred Scanning Probe Microscopy (SPM) method due to its numerous advantages. However, increasing the scanning speed and reducing the interaction forces between the probe's tip and the sample surface are still the two main challenges in AFM. To meet these challenges, we take advantage of the fact that the lateral movements performed during an AFM scan is a repetitive motion and propose a Repetitive Controller (RC) for the z-axis movements of the piezo-scanner. The RC utilizes the profile of the previous scan line while scanning the current line to achieve a better scan performance. The results of the scanning experiments performed with our AFM set-up show that the proposed RC significantly outperforms a conventional PI controller that is typically used for the same task. The scan error and the average tapping forces are reduced by 66% and 58%, respectively when the scan speed is increased by 7-fold.

  2. Raised land susceptibility of multifunctional epoxy/glass multilayer printed wiring boards

    SciTech Connect (OSTI)

    Lula, J.W.

    1992-03-01

    Three multifunctional epoxy/glass printed wiring board (PWB) laminates, along with standard FR4 laminate from production stores, were evaluated for their susceptibility to raised lands around the plated through-holes of PWBs. However, after thermal stress tests, the angles of the lands were measured in relation to the PWB surface, and the results were surprisingly similar. None of the materials that were tested stood out as being far better than the others in regard to reduced raised land susceptibility. Judging from the Z-axis thermal expansion curves, the similar average and angles measured after thermal stress tests, and rework simulation tests, it was not evident that any of these multifunctional epoxy systems would resolve the recurring problem of raised lands on channel-plated PWB product at Allied-Signal Inc., Kansas City Division. 2 refs.

  3. Raised land susceptibility of multifunctional epoxy/glass multilayer printed wiring boards. Final report

    SciTech Connect (OSTI)

    Lula, J.W.

    1992-03-01

    Three multifunctional epoxy/glass printed wiring board (PWB) laminates, along with standard FR4 laminate from production stores, were evaluated for their susceptibility to raised lands around the plated through-holes of PWBs. However, after thermal stress tests, the angles of the lands were measured in relation to the PWB surface, and the results were surprisingly similar. None of the materials that were tested stood out as being far better than the others in regard to reduced raised land susceptibility. Judging from the Z-axis thermal expansion curves, the similar average and angles measured after thermal stress tests, and rework simulation tests, it was not evident that any of these multifunctional epoxy systems would resolve the recurring problem of raised lands on channel-plated PWB product at Allied-Signal Inc., Kansas City Division. 2 refs.

  4. Application of the Huang-Hilbert transform and natural time to the analysis of seismic electric signal activities

    SciTech Connect (OSTI)

    Papadopoulou, K. A.; Skordas, E. S.

    2014-12-01

    The Huang method is applied to Seismic Electric Signal (SES) activities in order to decompose them into their components, named Intrinsic Mode Functions (IMFs). We study which of these components contribute to the basic characteristics of the signal. The Hilbert transform is then applied to the IMFs in order to determine their instantaneous amplitudes. The results are compared with those obtained from the analysis in a new time domain termed natural time, after having subtracted the magnetotelluric background from the original signal. It is shown that these instantaneous amplitudes, when combined with the natural time analysis, can be used for the distinction of SES from artificial noises.

  5. Value of Information spreadsheet

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trainor-Guitton, Whitney

    This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

  6. Value of Information spreadsheet

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trainor-Guitton, Whitney

    2014-05-12

    This spreadsheet represents the information posteriors derived from synthetic data of magnetotellurics (MT). These were used to calculate value of information of MT for geothermal exploration. Information posteriors describe how well MT was able to locate the "throat" of clay caps, which are indicative of hidden geothermal resources. This data is full explained in the peer-reviewed publication: Trainor-Guitton, W., Hoversten, G. M., Ramirez, A., Roberts, J., Júlíusson, E., Key, K., Mellors, R. (Sept-Oct. 2014) The value of spatial information for determining well placement: a geothermal example, Geophysics.

  7. Aufwind Schmack Asia Holding GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece: Energy Resources JumpAudio-Magnetotellurics

  8. MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I

    SciTech Connect (OSTI)

    Denison, K; Smith, S

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, which optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The DICOM Radiation Dose Structured Report (RDSR) generates a dose report at the conclusion of every examination. Dose Check preemptively notifies CT operators when scan parameters exceed user-defined dose thresholds. DoseWatch is an information technology application providing vendor-agnostic dose tracking and analysis for CT (and all other diagnostic x-ray modalities) SnapShot Pulse improves coronary CTA dose management. VolumeShuttle uses two acquisitions to increase coverage, decrease dose, and conserve on contrast administration. Color-Coding for Kids applies the Broselow-Luten Pediatric System to facilitate pediatric emergency care and reduce medical errors. FeatherLight achieves dose optimization through pediatric procedure-based protocols. Adventure Series scanners provide a child-friendly imaging environment promoting patient cooperation with resultant reduction in retakes and patient motion. Philips CT Dose Optimization Tools and Advanced Reconstruction Presentation Time: 11:45 ‘ 12:15 PM The first part of the talk will cover “Dose Reduction and Dose Optimization Technologies” present in Philips CT Scanners. The main Technologies to be presented include: DoseRight and tube current modulation (DoseRight, Z-DOM, 3D-DOM, DoseRight Cardiac) Special acquisition modes Beam filtration and beam shapers Eclipse collimator and ClearRay collimator NanoPanel detector DoseRight will cover automatic tube current selection that automatically adjusts the dose for the individual patient. The presentation will explore the modulation techniques currently employed in Philips CT scanners and will include the algorithmic concepts as well as illustrative examples. Modulation and current selection technologies to be covered include the Automatic Current Selection component of DoseRight, ZDOM longitudinal dose modulation, 3D-DOM (combination of longitudinal and rotational dose modulation), Cardiac Dose right (an ECG based dose modulation scheme), and the DoseRight Index (DRI) IQ index. The special acquisition modes covers acquisition techniques such as prospective gating that

  9. Deep Resistivity Structure of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Theodore H. Asch, Brian D. Rodriguez; Jay A. Sampson; Erin L. Wallin; and Jackie M. Williams.

    2006-09-18

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian – Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault structures such as the CP Thrust fault, the Carpetbag fault, and the Yucca fault that cross Yucca Flat are also discernable as are other smaller faults. The subsurface electrical resistivity distribution and inferred geologic structures determined by this investigation should help constrain the hydrostratigraphic framework model that is under development.

  10. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  11. Parameterization of geophysical inversion model using particle clustering

    E-Print Network [OSTI]

    Yang, Dikun

    2015-01-01

    This paper presents a new method of constructing physical models in a geophysical inverse problem, when there are only a few possible physical property values in the model and they are reasonably known but the geometry of the target is sought. The model consists of a fixed background and many small "particles" as building blocks that float around in the background to resemble the target by clustering. This approach contrasts the conventional geometric inversions requiring the target to be regularly shaped bodies, since here the geometry of the target can be arbitrary and does not need to be known beforehand. Because of the lack of resolution in the data, the particles may not necessarily cluster when recovering compact targets. A model norm, called distribution norm, is introduced to quantify the spread of particles and incorporated into the objective function to encourage further clustering of the particles. As proof of concept, 1D magnetotelluric inversion is used as example. My experiments reveal that the ...

  12. Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices

    SciTech Connect (OSTI)

    1985-05-01

    Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.

  13. Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis

    E-Print Network [OSTI]

    Sumintadireja, Prihadi; Irawan, Dasapta E; Irawan, Diky; Fadillah, Ahmad

    2015-01-01

    The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at prospect zones, which identified by the previous method, to have a more exact and in depth local scale structural interpretation. Both methods are directed to pin point appropriate locations for geothermal pilot hole drilling and testing. We used four scenes of Landsat Enhanced Thematic Mapper or ETM+ data to estimate the surface manifestation of a geothermal system. Temporal analysis of Land Surface Temperature or LST was applied and coupled with field temperature measurement at seven locations. By combining the TTM with ...

  14. MAP, MAC, and Vortex-rings Configurations in the Weinberg-Salam Model

    E-Print Network [OSTI]

    Rosy Teh; Ban-Loong Ng; Khai-Ming Wong

    2015-03-20

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)$\\times$U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the $\\phi$-winding number $n=1$, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the $z$-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number $n=3$. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of $4\\pi n/e$. In the MAP configurations, the monopole-antimonopole pair is bounded by the ${\\cal Z}^0$ field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges $\\pm\\frac{4\\pi n}{e}\\sin^2\\theta_W$ respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges $\\pm\\frac{4\\pi n}{e}$ respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant $0\\leq \\lambda\\leq 40$ at Weinberg angle $\\theta_W=\\frac{\\pi}{4}$.

  15. Path dependent scaling of geometric phase near a quantum multi-critical point

    E-Print Network [OSTI]

    Ayoti Patra; Victor Mukherjee; Amit Dutta

    2011-03-30

    We study the geometric phase of the ground state in a one-dimensional transverse XY spin chain in the vicinity of a quantum multi-critical point. We approach the multi-critical point along different paths and estimate the geometric phase by applying a rotation in all spins about z-axis by an angle $\\eta$. Although the geometric phase itself vanishes at the multi-critical point, the derivative with respect to the anisotropy parameter of the model shows peaks at different points on the ferromagnetic side close to it where the energy gap is a local minimum; we call these points `quasi-critical'. The value of the derivative at any quasi-critical point scales with the system size in a power-law fashion with the exponent varying continuously with the parameter $\\alpha$ that defines a path, upto a critical value $\\alpha = \\alpha_{c}=2$. For $\\alpha > \\alpha_{c}$, or on the paramagnetic side no such peak is observed. Numerically obtained results are in perfect agreement with analytical predictions.

  16. Cancellation of RF Coupler-Induced Emittance Due to Astigmatism

    E-Print Network [OSTI]

    Dowell, David H

    2015-01-01

    It is well-known that the electron beam quality required for applications such as FELs and ultra-fast electron diffraction can be degraded by the asymmetric fields introduced by the RF couplers of superconducting linacs. This effect is especially troublesome in the injector where the low energy beam from the gun is captured into the first high gradient accelerator section. Unfortunately modifying the established cavity design is expensive and time consuming, especially considering that only one or two sections are needed for an injector. Instead, it is important to analyze the coupler fields to understand their characteristics and help find less costly solutions for their cancellation and mitigation. This paper finds the RF coupler-induced emittance for short bunches is mostly due to the transverse spatial sloping or tilt of the field, rather than the field's time-dependence. It is shown that the distorting effects of the coupler can be canceled with a static (DC) quadrupole lens rotated about the z-axis.

  17. Increasing efficiency of a linear-optical quantum gate using an electronic feed forward

    E-Print Network [OSTI]

    Mikova, Martina; Straka, Ivo; Micuda, Michal; Jezek, Miroslav; Dusek, Miloslav

    2011-01-01

    We have successfully used a fast electronic feed forward to increase the success probability of a linear optical implementation of a programmable phase gate from 25% to its theoretical limit of 50%. The feed forward applies a conditional unitary operation which changes the incorrect output states of the data qubit to the correct ones. The gate itself rotates an arbitrary quantum state of the data qubit around the z-axis of the Bloch sphere with the angle of rotation being fully determined by the state of the program qubit. The gate implementation is based on fiber optics components. Qubits are encoded into spatial modes of single photons. The signal from the feed-forward detector is led directly to a phase modulator using only a passive voltage divider. We have verified the increase of the success probability and characterized the gate operation by means of quantum process tomography. We have demonstrated that the use of the feed forward does not affect either the process fidelity or the output-state fideliti...

  18. Increasing efficiency of a linear-optical quantum gate using an electronic feed forward

    E-Print Network [OSTI]

    Martina Mikova; Helena Fikerova; Ivo Straka; Michal Micuda; Miroslav Jezek; Miloslav Dusek

    2011-11-14

    We have successfully used a fast electronic feed forward to increase the success probability of a linear optical implementation of a programmable phase gate from 25% to its theoretical limit of 50%. The feed forward applies a conditional unitary operation which changes the incorrect output states of the data qubit to the correct ones. The gate itself rotates an arbitrary quantum state of the data qubit around the z-axis of the Bloch sphere with the angle of rotation being fully determined by the state of the program qubit. The gate implementation is based on fiber optics components. Qubits are encoded into spatial modes of single photons. The signal from the feed-forward detector is led directly to a phase modulator using only a passive voltage divider. We have verified the increase of the success probability and characterized the gate operation by means of quantum process tomography. We have demonstrated that the use of the feed forward does not affect either the process fidelity or the output-state fidelities.

  19. Hybrid Quantum Computation

    E-Print Network [OSTI]

    Arun Sehrawat; Daniel Zemann; Berthold-Georg Englert

    2010-09-25

    We present a hybrid model of the unitary-evolution-based quantum computation model and the measurement-based quantum computation model. In the hybrid model part of a quantum circuit is simulated by unitary evolution and the rest by measurements on star graph states, thereby combining the advantages of the two standard quantum computation models. In the hybrid model, a complicated unitary gate under simulation is decomposed in terms of a sequence of single-qubit operations, the controlled-Z gates, and multi-qubit rotations around the z-axis. Every single-qubit- and the controlled-Z gate are realized by a respective unitary evolution, and every multi-qubit rotation is executed by a single measurement on a required star graph state. The classical information processing in our model only needs an information flow vector and propagation matrices. We provide the implementation of multi-control gates in the hybrid model. They are very useful for implementing Grover's search algorithm, which is studied as an illustrating example.

  20. Transition between vortex rings and MAP solutions for electrically charged magnetic solutions

    SciTech Connect (OSTI)

    Wong, Khai-Ming; Soltanian, Amin; Teh, Rosy

    2014-03-05

    We consider the bifurcation and transition of axially symmetric monopole-antimonopole pair (MAP) and vortex ring solutions in the presence of electric charge for the SU(2) Yang-Mills-Higgs field theory. Here we investigate the properties of MAP/vortex ring solutions with n = 3,? = 0.65, for different Higgs field strength ?. For ? < 4.93, there is only one fundamental branch of vortex ring solution, but at the critical value of ?{sub b} = 4.93, branching happens and 2 sets of new solutions appeared. The new branch with less energy is a full MAP solution while the branch with higher energy contains MAP at the beginning and separation between poles of MAP on the z-axis reduces gradually and at another critical value of ?{sub t} = 14.852, they merge together at z = 0. Beyond this point the solutions change to the vortex ring solutions and a transitions between MAP and vortex ring solutions happens at this branch.

  1. An interchangeable scanning Hall probe/scanning SQUID microscope

    SciTech Connect (OSTI)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (?4 ?m), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup ?7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  2. Cosmic strings in $f\\left(R,L_m\\right)$ gravity

    E-Print Network [OSTI]

    Tiberiu Harko; Matthew J. Lake

    2015-09-27

    We consider Kasner-type static, cylindrically symmetric interior string solutions in the $f\\left(R,L_m\\right)$ theory of modified gravity. The physical properties of the string are described by an anisotropic energy-momentum tensor satisfying the condition $T_t^t=T_z^z$; that is, the energy density of the string along the $z$-axis is equal to minus the string tension. As a first step in our study we obtain the gravitational field equations in the $f\\left(R,L_m\\right)$ theory for a general static, cylindrically symmetric metric, and then for a Kasner-type metric, in which the metric tensor components have a power law dependence on the radial coordinate $r$. String solutions in two particular modified gravity models are investigated in detail. The first is the so-called "exponential" modified gravity, in which the gravitational action is proportional to the exponential of the sum of the Ricci scalar and matter Lagrangian, and the second is the "self-consistent model", obtained by explicitly determining the gravitational action from the field equations under the assumption of a power law dependent matter Lagrangian. In each case, the thermodynamic parameters of the string, as well as the precise form of the matter Lagrangian, are explicitly obtained.

  3. Quantum Field Effects in Stationary Electron Spin Resonance Spectroscopy

    E-Print Network [OSTI]

    Dmitri Yerchuck; Vyacheslav Stelmakh; Yauhen Yerchak; Alla Dovlatova

    2015-01-28

    It is proved on the example of electron spin resonance (ESR) studies of anthracites, that by strong electron-photon and electron-phonon interactions the formation of the coherent system of the resonance phonons takes place. The acoustic quantum Rabi oscillations were observed for the first time in ESR-spectroscopy. Its Rabi frequency value on the first damping stage was found to be equal 920.6 kHz, being to be independent on the microwave power level in the range 20 - 6 dB [0 dB corresponds to 100 mW]. By the subsequent increase of the microwave power the stepwise transition to the phenomenon of nonlinear quantum Rabi oscillations, characterised by splitting of the oscillation group of lines into two subgroups with doubling of the total lines' number takes place. Linewidth of an individual oscillation line becomes approximately the twofold narrower, being to be equal the only to $0.004 \\pm 0.001$ G. Along with the absorption process of EM-field energy the emission process was observed. It was found, that the emission process is the realization of the acoustic spin resonance, the source of acoustic wave power in which is the system of resonance phonons, accumulated in the samples by the registration with AFC. It has been found, that the lifetime of coherent state of a collective subsystem of resonance phonons in anthracites is very long and even by room temperature it is evaluated by the value exceeding 4.6 minutes. The model of new kinds of instantons was proposed. They are considered to be similar in the mathematical structure to Su-Schrieffer-Heeger solitons with "propagation" direction along time $t$-axis instead of space $z$-axis. The proof, that the superconductivity state in the anthracite samples studied is produced at the room temperature in ESR conditions in the accordance with the theory of the quantised acoustic field, has experimentally been obtained.

  4. Feasibility of Electromagnetic Transponder Use to Monitor Inter- and Intrafractional Motion in Locally Advanced Pancreatic Cancer Patients

    SciTech Connect (OSTI)

    Shinohara, Eric T.; Kassaee, Alireza; Mitra, Nandita; Vapiwala, Neha; Plastaras, John P.; Drebin, Jeff; Wan, Fei; Metz, James M.

    2012-06-01

    Purpose: The primary objective of this study was to determine the feasibility of electromagnetic transponder implantation in patients with locally advanced unresectable pancreatic cancer. Secondarily, the use of transponders to monitor inter- and intrafractional motion, and the efficacy of breath holding for limiting target motion, were examined. Methods and Materials: During routine screening laparoscopy, 5 patients without metastatic disease were implanted with transponders peri-tumorally. The Calypso System's localization and tracking modes were used to monitor inter- and intrafractional motion, respectively. Intrafractional motion, with and without breath holding, was also examined using Calypso tracking mode. Results: Transponder implantation was well tolerated in all patients, with minimal migration, aside from 1 patient who expulsed a single transponder. Interfractional motion based on mean shifts from setup using tattoos/orthogonal imaging to transponder based localization from 164 treatments was significant in all dimensions. Mean shift (in millimeters), followed by the standard deviation and p value, were as follows: X-axis: 4.5 mm (1.0, p = 0.01); Y axis: 6.4 mm (1.9, p = 0.03); and Z-axis 3.9 mm (0.6, p = 0.002). Mean intrafractional motion was also found to be significant in all directions: superior, 7.2 mm (0.9, p = 0.01); inferior, 11.9 mm (0.9, p < 0.01); anterior: 4.9 mm (0.5, p = 0.01); posterior, 2.9 mm (0.5, p = 0.02); left, 2.2 mm (0.4, p = 0.02); and right, 3.1 mm (0.6, p = 0.04). Breath holding during treatment significantly decreased tumor motion in all directions. Conclusions: Electromagnetic transponder implantation appears to be safe and effective for monitoring inter- and intrafractional motion. Based on these results a larger clinical trial is underway.

  5. Interpretation of 3D void measurements with Tripoli4.6/JEFF3.1.1 Monte Carlo code

    SciTech Connect (OSTI)

    Blaise, P.; Colomba, A.

    2012-07-01

    The present work details the first analysis of the 3D void phase conducted during the EPICURE/UM17x17/7% mixed UOX/MOX configuration. This configuration is composed of a homogeneous central 17x17 MOX-7% assembly, surrounded by portions of 17x17 1102 assemblies with guide-tubes. The void bubble is modelled by a small waterproof 5x5 fuel pin parallelepiped box of 11 cm height, placed in the centre of the MOX assembly. This bubble, initially placed at the core mid-plane, is then moved in different axial positions to study the evolution in the core of the axial perturbation. Then, to simulate the growing of this bubble in order to understand the effects of increased void fraction along the fuel pin, 3 and 5 bubbles have been stacked axially, from the core mid-plane. The C/E comparison obtained with the Monte Carlo code Tripoli4 for both radial and axial fission rate distributions, and in particular the reproduction of the very important flux gradients at the void/water interfaces, changing as the bubble is displaced along the z-axis are very satisfactory. It demonstrates both the capability of the code and its library to reproduce this kind of situation, as the very good quality of the experimental results, confirming the UM-17x17 as an excellent experimental benchmark for 3D code validation. This work has been performed within the frame of the V and V program for the future APOLL03 deterministic code of CEA starting in 2012, and its V and V benchmarking database. (authors)

  6. Orbital dynamics of three-dimensional bars: III. Boxy/Peanut edge-on profiles

    E-Print Network [OSTI]

    P. A. Patis; Ch. Skokos; E. Athanassoula

    2002-09-02

    We present families, and sets of families, of periodic orbits that provide building blocks for boxy and peanut (hereafter b/p) edge-on profiles. We find cases where the b/p profile is confined to the central parts of the model and cases where a major fraction of the bar participates in this morphology. A b/p feature can be built either by 3D families associated with 3D bifurcations of the x1 family, or, in some models, even by families related with the z-axis orbits and existing over large energy intervals. The {\\sf `X'} feature observed inside the boxy bulges of several edge-on galaxies can be attributed to the peaks of successive x1v1 orbits (Skokos et al. 2002a, hereafter paper I), provided their stability allows it. However in general, the x1v1 family has to overcome the obstacle of a S\\ar\\D\\ar S transition in order to support the structure of a b/p feature. Other families that can be the backbones of b/p features are x1v4 and z3.1s. The morphology and the size of the boxy or peanut-shaped structures we find in our models is determined by the presence and stability of the families that support b/p features. The present study favours the idea that the observed edge-on profiles are the imprints of families of periodic orbits that can be found in appropriately chosen Hamiltonian systems, describing the potential of the bar.

  7. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    SciTech Connect (OSTI)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  8. Rayleigh-Taylor stability of a strong vertical magnetic field at the Galactic center confined by a disk threaded with horizontal magnetic field

    E-Print Network [OSTI]

    Benjamin D. G. Chandran

    2002-02-13

    Observations of narrow radio-emitting filaments near the Galactic center have been interpreted in previous studies as evidence of a pervasive vertical (i.e. perpendicular to the Galactic plane) milliGauss magnetic field in the central 150 pc of the Galaxy. A simple cylindrically symmetric model for the equilibrium in this central region is proposed in which horizontal (i.e. parallel to the Galactic plane) magnetic fields embedded in an annular band of partially ionized molecular material of radius 150 pc are wrapped around vertical magnetic fields threading low-density hot plasma. The central vertical magnetic field, which has a pressure that significantly exceeds the thermal pressure of the medium, is confined by the weight of the molecular material. The stability of this equilibrium is studied indirectly by analyzing a uniformly rotating cylinder of infinite extent along the z axis in cylindrical coordinates (r,theta,z), with low-density plasma and an axial magnetic field at rfield at r> 150 pc, and a gravitational acceleration g* proportional to r directed in the negative-r-hat direction. The density profile and gravity tend to destabilize the plasma, but the plasma tends to be stabilized by rotation and magnetic tension--since the interface between the high and low-density plasmas can not be perturbed without bending either the horizontal or vertical field. It is shown analytically that when beta= 8(pi)p/B^2 is small and the dense plasma is supported against gravity primarily by rotation, the necessary and sufficient condition for stability to k_z=0 modes is |g| < (2|Omega| a), where g = g* - Omega^2 r is the effective gravity, Omega is the uniform angular velocity, and "a" is the sound speed in the dense plasma.

  9. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    SciTech Connect (OSTI)

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; USA, Richland Washington; Bonneville, Alain; USA, Richland Washington; Sullivan, E. Charlotte; USA, Richland Washington; Johnson, Tim C.; USA, Richland Washington; Spane, Frank A.; USA, Richland Washington; Gilmore, Tyler J.; USA, Richland Washington

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.

  10. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    SciTech Connect (OSTI)

    Strickland, Chris E. [Pacific Northwest National Laboratory; Richland Washington USA; Vermeul, Vince R. [Pacific Northwest National Laboratory; Richland Washington USA; Bonneville, Alain [Pacific Northwest National Laboratory; Richland Washington USA; Sullivan, E. Charlotte [Pacific Northwest National Laboratory; Richland Washington USA; Johnson, Tim C. [Pacific Northwest National Laboratory; Richland Washington USA; Spane, Frank A. [Pacific Northwest National Laboratory; Richland Washington USA; Gilmore, Tyler J. [Pacific Northwest National Laboratory; Richland Washington USA

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.

  11. Evaluation of hypotheses for the cause of the 1886 Charleston earthquake

    SciTech Connect (OSTI)

    White, R.M.; Long, L.T. (Law Environmental, Inc., Kennesaw, GA (USA); Georgia Inst. of Tech., Atlanta, GA (USA))

    1989-10-01

    This report describes a geophysical/geological investigation of the earth's crust at seismogenic depths in the Charleston, South Carolina area. This investigation was made for the purpose of narrowing the range of theories that have been used to explain the historic 1886 Charleston earthquake. Since a number of these theories are based on only a portion of the available data, we have established a comprehensive data set in order to allow these hypotheses to be subjected to the entire data set. Specifically, we combined existing and new gravity, magnetic and topographic data in grids of 128 km, 256 km and 1028 km on a side centered on Charleston. Seismic, geologic and drilling data were collected and summarized. A magnetotelluric survey consisting of 12 soundings interpreted to depths of over 40 kilometers defined the bottom of the rigid crust with assistance from seismic reflection and other data. A geologic model of the crust in the area of Charleston was constructed and it defined the locations of Triassic/Jurassic basins Paleozoic plutons in greater detail than has previously been achieved. 102 refs., 75 figs.

  12. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; USA, Richland Washington; Bonneville, Alain; USA, Richland Washington; Sullivan, E. Charlotte; USA, Richland Washington; Johnson, Tim C.; USA, Richland Washington; et al

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number ofmore »geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less

  13. Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada

    SciTech Connect (OSTI)

    Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

    1995-12-31

    In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

  14. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    SciTech Connect (OSTI)

    Carlisle, Derek; Adamson, Kate [Sellafield Ltd, Sellafield, Cumbria (United Kingdom)

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took over fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)

  15. Utilizing a simple CT dosimetry phantom for the comprehension of the operational characteristics of CT AEC systems

    SciTech Connect (OSTI)

    Tsalafoutas, Ioannis A.; Varsamidis, Athanasios; Thalassinou, Stella; Efstathopoulos, Efstathios P.

    2013-11-15

    Purpose: To investigate the utility of the nested polymethylacrylate (PMMA) phantom (which is available in many CT facilities for CTDI measurements), as a tool for the presentation and comparison of the ways that two different CT automatic exposure control (AEC) systems respond to a phantom when various scan parameters and AEC protocols are modified.Methods: By offsetting the two phantom's components (the head phantom and the body ring) half-way along their longitudinal axis, a phantom with three sections of different x-ray attenuation was created. Scan projection radiographs (SPRs) and helical scans of the three-section phantom were performed on a Toshiba Aquilion 64 and a Philips Brilliance 64 CT scanners, with different scan parameter selections [scan direction, pitch factor, slice thickness, and reconstruction interval (ST/RI), AEC protocol, and tube potential used for the SPRs]. The dose length product (DLP) values of each scan were recorded and the tube current (mA) values of the reconstructed CT images were plotted against the respective Z-axis positions on the phantom. Furthermore, measurements of the noise levels at the center of each phantom section were performed to assess the impact of mA modulation on image quality.Results: The mA modulation patterns of the two CT scanners were very dissimilar. The mA variations were more pronounced for Aquilion 64, where changes in any of the aforementioned scan parameters affected both the mA modulations curves and DLP values. However, the noise levels were affected only by changes in pitch, ST/RI, and AEC protocol selections. For Brilliance 64, changes in pitch affected the mA modulation curves but not the DLP values, whereas only AEC protocol and SPR tube potential selection variations affected both the mA modulation curves and DLP values. The noise levels increased for smaller ST/RI, larger weight category AEC protocol, and larger SPR tube potential selection.Conclusions: The nested PMMA dosimetry phantom can be effectively utilized for the comprehension of CT AEC systems performance and the way that different scan conditions affect the mA modulation patterns, DLP values, and image noise. However, in depth analysis of the reasons why these two systems exhibited such different behaviors in response to the same phantom requires further investigation which is beyond the scope of this study.

  16. Engineering scale demonstration of a prospective Cast Stone process

    SciTech Connect (OSTI)

    Cozzi, A.; Fowley, M.; Hansen, E.; Fox, K.; Miller, D.; Williams, M.

    2014-09-30

    This report documents an engineering-scale demonstration with non-radioactive simulants that was performed at SRNL using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. Over three days, the SCPF was used to fill a 1600 gallon container, staged outside the facility, with simulated Cast Stone grout. The container, staged outside the building approximately 60 ft from the SCPF, was instrumented with x-, y-, and z-axis thermocouples to monitor curing temperature. The container was also fitted with two formed core sampling vials. For the operation, the targeted grout production rate was 1.5 gpm. This required a salt solution flow rate of approximately 1 gpm and a premix feed rate of approximately 580 lb/h. During the final day of operation, the dry feed rate was increased to evaluate the ability of the system to handle increased throughput. Although non-steady state operational periods created free surface liquids, no bleed water was observed either before or after operations. The final surface slope at a fill height of 39.5 inches was 1-1.5 inches across the 8.5 foot diameter container, highest at the final fill point and lowest diametrically opposed to the fill point. During processing, grout was collected in cylindrical containers from both the mixer discharge and the discharge into the container. These samples were stored in a humid environment either in a closed box proximal to the container or inside the laboratory. Additional samples collected at these sampling points were analyzed for rheological properties and density. Both the rheological properties (plastic viscosity and yield strength) and density were consistent with previous and later SCPF runs.

  17. A study on the characteristics of upward air-water two-phase flow in a large diameter pipe

    SciTech Connect (OSTI)

    Shen, Xiuzhong; Saito, Yasushi; Mishima, Kaichiro [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Nakamura, Hideo [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195 (Japan)

    2006-10-15

    An adiabatic upward co-current air-water two-phase flow in a vertical large diameter pipe (inner diameter, D: 0.2m, ratio of pipe length to diameter, L/D: 60.5) was experimentally investigated under various inlet conditions. Flow regimes were visually observed, carefully analyzed and classified into five, i.e. undisturbed bubbly, agitated bubbly, churn bubbly, churn slug and churn froth. Void fraction, bubble frequency, Sauter mean diameter, interfacial area concentration (IAC) and interfacial direction were measured with four-sensor optical probes. Both the measured void fraction and the measured IAC demonstrated radial core-peak distributions in most of the flow regimes and radial wall peak in the undisturbed bubbly flow only. The bubble frequency also showed a wall-peak radial distribution only when the bubbles were small in diameter and the flow was in the undisturbed bubbly flow. The Sauter mean diameter of bubbles did not change much in the radial direction in undisturbed bubbly, agitated bubbly and churn bubbly flows and showed a core-peak radial distribution in the churn slug flow due to the existence of certain amount of large and deformed bubbles in this flow regime. The measurements of interfacial direction showed that the main and the secondary bubbly flow could be displayed by the main flow peak and the secondary flow peak, respectively, in the probability density function (PDF) of the interfacial directional angle between the interfacial direction and the z-axis, {eta}{sub zi}. The local average {eta}{sub zi }at the bubble front or rear hemisphere ({eta}{sub zi}{sup F} and {eta}{sub zi}{sup R}) reflected the local bubble movement and was in direct connection with the flow regimes. Based on the analysis, the authors classified the flow regimes in the vertical large diameter pipe quantitatively by the cross-sectional area-averaged {eta}{sub zi }at bubbly front hemisphere ({eta}{sub zi}{sup F}-bar). Bubbles in the undisturbed bubbly flow moved in a vertical way with some swerving motions and those in other flow regimes moved along the lateral secondary flow with an averaging net upward velocity. (author)

  18. Yellowstone National Park as an opportunity for deep continental drilling in thermal regions. [Abstract only

    SciTech Connect (OSTI)

    Fournier, R.O.

    1983-03-01

    The Yellowstone caldera represnets the most intense magnatic and thermal anomaly within the conterminous United States. Voluminous rhyolite ash flows, accompanied by formation of huge calderas, occurred approximately 2.0, 1.3, and 0.6 My B.P. Although the last lava flow was about 70,000 B.P., much evidence suggests that magma may still be present at relatively shallow depth. The evidence from gravity and magnetic lows, magnetotelluric soundings, seismic wave velocities, maximum depths of earthquake foci, significant recent uplift of the caldera floor, and exceptionally high heat flux suggest that magmatic temperatures may be attained 5 to 10 km beneath much of the caldera. Most of the hot-spring and geyser activity occurs within the caldera and along a fault zone that trends north from the caldera rim through Norris Geyser Basin and Mammoth Hot Springs. The thermal waters and gases have been extensively sampled and analyzed over a period of 100 years. The chemical, isotopic, and hydrologic data obtained from natural discharges and from shallow wells drilled in thermal areas, enable formulation of models of the hydrothermal system. No previous intermediate-depth drilling has been conducted at Yellowstone to help select the best location for a deep drill hole, and because Yellowstone is a National Park, no commercial drilling will be available for add-on experiments. Also, a deep drill hole in Yellowstone would have to be sited with great regard to environmental and ecological considerations. Nevertheless, the large amount of existing data is sufficient to formulate testable models. The Yellowstone thermal anomaly is so extensive and scientifically interesting that almost any suitable drilling site there may be superior to the best drilling site in any other silicic caldera complex in the United States.

  19. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  20. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2014-01-02

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  1. Long-term monitoring of ULF electromagnetic fields at Parkfield, CA

    SciTech Connect (OSTI)

    Kappler, K.N.; Morrison, H.F.; Egbert, G.D.

    2009-08-01

    Electric and magnetic fields in the (10{sup -4}-1.0) Hz band were monitored at two sites adjacent to the San Andreas Fault near Parkfield and Hollister, California from 1995 to present. A data window [2002-2005], enclosing the September 28, 2004 M6 Parkfield earthquake, was analyzed to determine if anomalous electric or magnetic fields, or changes in ground conductivity, occurred before the earthquake. The data were edited, removing intervals of instrument malfunction leaving 875 days in the four-year period. Frequent, spike-like disturbances were common, but were not more frequent around the time of the earthquake; these were removed before subsequent processing. Signal to noise amplitude spectra, estimated via magnetotelluric processing showed the behavior of the ULF fields to be remarkably constant over the period of analysis. These first-order plots make clear that most of the recorded energy is coherent over the spatial extent of the array. Three main statistical techniques were employed to separate local anomalous electrical or magnetic fields from the dominant coherent natural fields: transfer function estimates between components at each site were employed to subtract the dominant field, and look deeper at the 'residual' fields; the data were decomposed into principal components to identify the dominant coherent array modes; and the technique of canonical coherences was employed to distinguish anomalous fields which are spatially broad from anomalies which occur at a single site only, and furthermore to distinguish anomalies which are present in both the electric and magnetic fields from those which are present in only one field type. Standard remote reference apparent resistivity estimates were generated daily at Parkfield. A significant seasonal component of variability was observed suggesting local distortion due to variations in near surface resistance. In all cases, high levels of sensitivity to subtle electromagnetic effects were demonstrated, but no effects which can be reasonably characterized as precursors to the Parkfield earthquake were found.

  2. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    SciTech Connect (OSTI)

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.; Reeves, Kirk Patrick

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair) fouling of o-rings, (B) leakage through simulated cracks in o-rings, and (C) air leakage due to inadequately tightened canister lids. The Los Alamos POC instrument determined pertinent air flow and pressure quantities, and this knowledge was used to specify a customized Isaac® (Z axis, Salt Lake City, UT) leak test module. The final Los Alamos IPFT (incorporating the Isaac® leak test module) was used to repeat the tests in the Instrument Development Plan (with simulated filter clogging tests and canister leak pathway tests). The Los Alamos IPFT instrument is capable of determining filter clogging and leak rate conditions, without requiring removal of the container lid. The IPFT measures pressure decay rate from 1.7E-03 in WC/sec to 1.7E-01 in WC/sec. On the same unit scale, helium leak testing of canisters has a range from 5.7E-07 in WC/sec to 1.9E-03 in WC/sec. For a 5-quart storage canister, the IPFT measures equivalent leak flow rates from 0.03 to 3.0 cc/sec. The IPFT does not provide the same sensitivity as helium leak testing, but is able to gauge the assembled condition of as-found and in-situ canisters.

  3. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

  4. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

  5. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive confining units. The underlying pre-Tertiary rocks are divided into six hydrostratigraphic units, including three aquifers and three confining units. Other units include an alluvial aquifer and a Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units ('layers' in the model). The model also incorporates 56 Tertiary normal faults and 4 Mesozoic thrust faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Four of these alternatives were developed so they can be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area Subproject of the Environmental Restoration Project.

  6. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    SciTech Connect (OSTI)

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

  7. Final Report DOE Contract No. DE-FG36-04G014294 ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP P.E. Malin, S.A. Onacha, E. Shalev Division of Earth and Ocean Sciences Nicholas School of the Environment Duke University Durham, NC 27708

    SciTech Connect (OSTI)

    Malin, Peter E.; Shalev, Eylon; Onacha, Stepthen A.

    2006-12-15

    In this final report, we discuss both theoretical and applied research resulting from our DOE project, ICEKAP 2004: A Collaborative Joint Geophysical Imaging Project at Krafla and IDDP. The abstract below begins with a general discussion of the problem we addressed: the location and characterization of “blind” geothermal resources using microearthquake and magnetotelluric measurements. The abstract then describes the scientific results and their application to the Krafla geothermal area in Iceland. The text following this abstract presents the full discussion of this work, in the form of the PhD thesis of Stephen A. Onacha. The work presented here was awarded the “Best Geophysics Paper” at the 2005 Geothermal Resources Council meeting, Reno. This study presents the modeling of buried fault zones using microearthquake and electrical resistivity data based on the assumptions that fluid-filled fractures cause electrical and seismic anisotropy and polarization. In this study, joint imaging of electrical and seismic data is used to characterize the fracture porosity of the fracture zones. P-wave velocity models are generated from resistivity data and used in locating microearthquakes. Fracture porosity controls fluid circulation in the hydrothermal systems and the intersections of fracture zones close to the heat source form important upwelling zones for hydrothermal fluids. High fracture porosity sites occur along fault terminations, fault-intersection areas and fault traces. Hydrothermal fault zone imaging using resistivity and microearthquake data combines high-resolution multi-station seismic and electromagnetic data to locate rock fractures and the likely presence fluids in high temperature hydrothermal systems. The depths and locations of structural features and fracture porosity common in both the MT and MEQ data is incorporated into a joint imaging scheme to constrain resistivity, seismic velocities, and locations of fracture systems. The imaging of the fault zones is constrained by geological, drilling, and geothermal production data. The objective is to determine interpretation techniques for evaluating structural controls of fluid circulation in hydrothermal systems. The conclusions are: • directions of MT polarization and anisotropy and MEQ S-splitting correlate. Polarization and anisotropy are caused by fluid filled fractures at the base of the clay cap. •Microearthquakes occur mainly on the boundary of low resistivity within the fracture zone and high resistivity in the host rock. Resistivity is lowest within the core of the fracture zone and increases towards the margins of the fracture zone. The heat source and the clay cap for the hydrothermal have very low resistivity of less than 5?m. •Fracture porosity imaged by resistivity indicates that it varies between 45-5% with most between 10-20%, comparable to values from core samples in volcanic areas in Kenya and Iceland. For resistivity values above 60?m, the porosity reduces drastically and therefore this might be used as the upper limit for modeling fracture porosity from resistivity. When resistivity is lower than 5?m, the modeled fracture porosity increases drastically indicating that this is the low resistivity limit. This is because at very low resistivity in the heat source and the clay cap, the resistivity is dominated by ionic conduction rather than fracture porosity. •Microearthquakes occur mainly above the heat source which is defined by low resistivity at a depth of 3-4.5 km at the Krafla hydrothermal system and 4-7 km in the Longonot hydrothermal system. •Conversions of S to P waves occur for microearthquakes located above the heat source within the hydrothermal system. Shallow microearthquakes occur mainly in areas that show both MT and S-wave anisotropy. •S-wave splitting and MT anisotropy occurs at the base of the clay cap and therefore reflects the variations in fracture porosity on top of the hydrothermal system. •In the Krafla hydrothermal system in Iceland, both MT polarization and MEQ splitting directions align with