National Library of Energy BETA

Sample records for magnetization typically adopts

  1. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  2. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  3. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  4. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  5. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  6. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  7. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Print In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to flip the vortex cores on demand. Because these structures are highly stable, very

  8. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Magnetic Vortex Core Reversal by Low-Field Excitations Print Wednesday, 28 March 2007 00:00 In micrometer-sized magnetic thin films, the magnetization typically adopts an in-plane, circular configuration known as a magnetic vortex. At the vortex core, the magnetization turns sharply out of the plane, pointing either up or down. Magnetic data storage based on this binary phenomenon is an intriguing concept, but it would require the ability to

  9. CERTS customer adoption model

    SciTech Connect (OSTI)

    Rubio, F. Javier; Siddiqui, Afzal S.; Marnay, Chris; Hamachi,Kristina S.

    2000-03-01

    This effort represents a contribution to the wider distributed energy resources (DER) research of the Consortium for Electric Reliability Technology Solutions (CERTS, http://certs.lbl.gov) that is intended to attack and, hopefully, resolve the technical barriers to DER adoption, particularly those that are unlikely to be of high priority to individual equipment vendors. The longer term goal of the Berkeley Lab effort is to guide the wider technical research towards the key technical problems by forecasting some likely patterns of DER adoption. In sharp contrast to traditional electricity utility planning, this work takes a customer-centric approach and focuses on DER adoption decision making at, what we currently think of as, the customer level. This study reports on Berkeley Lab's second year effort (completed in Federal fiscal year 2000, FY00) of a project aimed to anticipate patterns of customer adoption of distributed energy resources (DER). Marnay, et al., 2000 describes the earlier FY99 Berkeley Lab work. The results presented herein are not intended to represent definitive economic analyses of possible DER projects by any means. The paucity of data available and the importance of excluded factors, such as environmental implications, are simply too important to make such an analysis possible at this time. Rather, the work presented represents a demonstration of the current model and an indicator of the potential to conduct more relevant studies in the future.

  10. MAGNETS

    DOE Patents [OSTI]

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  11. adoption | OpenEI Community

    Open Energy Info (EERE)

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  12. Energy conservation in typical Asian countries

    SciTech Connect (OSTI)

    Yang, M.; Rumsey, P.

    1997-06-01

    Various policies and programs have been created to promote energy conservation in Asia. Energy conservation centers, energy conservation standards and labeling, commercial building codes, industrial energy use regulations, and utility demand-side management (DSM) are but a few of them. This article attempts to analyze the roles of these different policies and programs in seven typical Asian countries: China, Indonesia, Japan, Pakistan, South Korea, the Philippines, and Thailand. The conclusions show that the two most important features behind the success policies and programs are (1) government policy support and (2) long-run self-sustainability of financial support to the programs.

  13. For Early Adopters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education » For Early Adopters For Early Adopters Many people consider hydrogen and fuel cells to be longer-term technologies, but they're beginning to enter the market now in certain applications. Potential "early adopters" can learn more about hydrogen and fuel cells today to better understand near-term opportunities and consider and prepare for using these technologies in the future. Early Markets for Fuel Cell Technology Battelle Memorial Institute conducted a study to identify

  14. Building Adoption of Visual Analytics Software

    SciTech Connect (OSTI)

    Chinchor, Nancy; Cook, Kristin A.; Scholtz, Jean

    2012-01-05

    Adoption of technology is always difficult. Issues such as having the infrastructure necessary to support the technology, training for users, integrating the technology into current processes and tools, and having the time, managerial support, and necessary funds need to be addressed. In addition to these issues, the adoption of visual analytics tools presents specific challenges that need to be addressed. This paper discusses technology adoption challenges and approaches for visual analytics technologies.

  15. Driving Innovation, Speeding Adoption, Scaling Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Innovation, Speeding Adoption, Scaling Savings An Overview of the Building Technologies Office Roland Risser 2016 Building Technologies Office Peer Review April 4, 2016 2 ...

  16. Distributed PV Adoption in Maine Through 2021

    SciTech Connect (OSTI)

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  17. Recycling and processing of several typical crosslinked polymer...

    Office of Scientific and Technical Information (OSTI)

    Recycling and processing of several typical crosslinked polymer scraps with enhanced mechanical properties based on solid-state mechanochemical milling Citation Details In-Document...

  18. Fast Company covers "Just Your Typical New Mexico Image Recognition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A ... covers new technique that may make solar panel production less expensive The ...

  19. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and magnetization history. Left: A typical speckle pattern from the CoPd multilayer. Color bar at bottom indicates relative intensity. The rotational symmetry of a scattering...

  20. Automotive Deployment Option Projection Tool (ADOPT) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Deployment Option Projection Tool (ADOPT) Model (National Renewable Energy Laboratory) Objectives Estimate the petroleum use impacts of alternative technologies and policies. Estimate future vehicle market share based on infrastructure constraints, consumer preferences, and vehicle attributes. Analyze policy options by considering factors such as vehicle incentives and energy prices. Key Attributes & Strengths The model validates in many relevant dimensions with historical vehicle

  1. Adiabatic quantum-flux-parametron cell library adopting minimalist design

    SciTech Connect (OSTI)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-05-07

    We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.

  2. Automatic Deployment Options Projection Tool (ADOPT) | Open Energy...

    Open Energy Info (EERE)

    Options Projection Tool (ADOPT) Jump to: navigation, search Tool Summary Name: Automotive Deployment Options Projection Tool (ADOPT) AgencyCompany Organization: National...

  3. SEP Success Story: Mississippi Adopts New Rules to Save Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mississippi Adopts New Rules to Save Energy, Money SEP Success Story: Mississippi Adopts ... courtesy of the University of Kentucky. SEP Success Story: Research Laboratory ...

  4. EIS-0470: EPA Amended Notice of Adoption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70: EPA Amended Notice of Adoption EIS-0470: EPA Amended Notice of Adoption Cape Wind Energy Project in Nantucket Sound, Massachusetts The Environmental Protection Agency's Notice ...

  5. Unvented Crawlspace Code Adoption - Building America Top Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unvented Crawlspace Code Adoption - Building America Top Innovation Unvented Crawlspace Code Adoption - Building America Top Innovation Photo of an unvented and insulated ...

  6. Accelerating Clean Energy Adoption Fact Sheet | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating Clean Energy Adoption Fact Sheet Accelerating Clean Energy Adoption Fact Sheet This fact sheet is an overview of the Department of Weatherization and Intergovernmental ...

  7. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  8. Successful Adoption of New Technology and Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Successful Adoption of New Technology and Services Track 3 Session 9 Mike Bushey Director, Government, Institutions, Agriculture, and Water Southern California Edison August 13, 2015 Energy Exchange: Federal Sustainability for the Next Decade What Are "New Technologies" * An innovative technology or service that will save our customers money or increase system efficiency * New equipment which is more efficient - Lightning - HVAC - Controls * New services or approaches that leverage

  9. NREL Releases Updated Typical Meteorological Year Data Set - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Releases Updated Typical Meteorological Year Data Set May 1, 2008 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today released an updated typical meteorological year (TMY) data set derived from the 1991-2005 National Solar Radiation Data Base update. The TMY3 data and user's manual are available at http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3. The new data sets update and expand the TMY2 data sets released by NREL in 1994. The TMY3 data

  10. Information architecture: Profile of adopted standards

    SciTech Connect (OSTI)

    1997-09-01

    The Department of Energy (DOE), like other Federal agencies, is under increasing pressure to use information technology to improve efficiency in mission accomplishment as well as delivery of services to the public. Because users and systems have become interdependent, DOE has enterprise wide needs for common application architectures, communication networks, databases, security, and management capabilities. Users need open systems that provide interoperability of products and portability of people, data, and applications that are distributed throughout heterogeneous computing environments. The level of interoperability necessary requires the adoption of DOE wide standards, protocols, and best practices. The Department has developed an information architecture and a related standards adoption and retirement process to assist users in developing strategies and plans for acquiring information technology products and services based upon open systems standards that support application software interoperability, portability, and scalability. This set of Departmental Information Architecture standards represents guidance for achieving higher degrees of interoperability within the greater DOE community, business partners, and stakeholders. While these standards are not mandatory, particular and due consideration of their applications in contractual matters and use in technology implementations Department wide are goals of the Chief Information Officer.

  11. Home Energy Displays. Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, Janelle; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. The team hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, Fraunhofer conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. In light of these challenges, the team is pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  12. Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders: Preprint

    SciTech Connect (OSTI)

    Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B.

    2012-07-01

    This paper presents simulation results for a taxonomy of typical distribution feeders with various levels of photovoltaic (PV) penetration. For each of the 16 feeders simulated, the maximum PV penetration that did not result in steady-state voltage or current violation is presented for several PV location scenarios: clustered near the feeder source, clustered near the midpoint of the feeder, clustered near the end of the feeder, randomly located, and evenly distributed. In addition, the maximum level of PV is presented for single, large PV systems at each location. Maximum PV penetration was determined by requiring that feeder voltages stay within ANSI Range A and that feeder currents stay within the ranges determined by overcurrent protection devices. Simulations were run in GridLAB-D using hourly time steps over a year with randomized load profiles based on utility data and typical meteorological year weather data. For 86% of the cases simulated, maximum PV penetration was at least 30% of peak load.

  13. Typical Oak Ridge cemesto houses and city bus | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Typical Oak Ridge cemesto ... Typical Oak Ridge cemesto houses and city bus Typical Oak Ridge cemesto houses and city bus

  14. EIS-0490: Adoption Notice for an Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0490: Adoption Notice for an Environmental Impact Statement Boulder CityU.S. 93 Corridor Transportation Improvements, Boulder City, NV Western has adopted the U.S. Department ...

  15. Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Savings for Years to Come Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come to someone by E-mail Share Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Facebook Tweet about Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Twitter Bookmark Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Google

  16. Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Events Oregon Boosts EV Adoption Through Popular Electric Vehicle Events to someone by E-mail Share Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Facebook Tweet about Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Twitter Bookmark Alternative Fuels Data Center: Oregon Boosts EV Adoption Through Popular Electric Vehicle Events on Google Bookmark Alternative Fuels Data

  17. Home Energy Displays: Consumer Adoption and Response

    SciTech Connect (OSTI)

    LaMarche, J.; Cheney, K.; Akers, C.; Roth, K.; Sachs, O.

    2012-12-01

    The focus of this project was to investigate the factors influencing consumer adoption of Home Energy Displays (HEDs) and to evaluate electricity consumption in households with basic HEDs versus enhanced feedback methods - web portals or alerts. We hypothesized that providing flexible and relatable information to users, in addition to a basic HED, would make feedback more effective and achieve persistent energy savings. In Phase I, we conducted three user research studies and found preferences for aesthetically pleasing, easy to understand feedback that is accessible through multiple media and offered free of charge. The deployment of HEDs in 150 households planned for Phase II encountered major recruitment and HED field deployment problems. First, after extensive outreach campaigns to apartment complexes with 760 units, only 8% of building's tenants elected to receive a free HED in their homes as part of the field study. Second, the HED used, a leading market model, had a spectrum of problems, including gateway miscommunications, failure to post to a data-hosting third party, and display malfunctions. In light of these challenges, we are pursuing a modified study investigating the energy savings of a web portal versus alert-based energy feedback instead of a physical HED.

  18. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  19. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  20. Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD

    SciTech Connect (OSTI)

    Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States). Aerospace Engineering Dept.

    1997-09-01

    An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

  1. Personnel Safety for Future Magnetic Fusion Power Plants

    SciTech Connect (OSTI)

    Lee Cadwallader

    2009-07-01

    The safety of personnel at existing fusion experiments is an important concern that requires diligence. Looking to the future, fusion experiments will continue to increase in power and operating time until steady state power plants are achieved; this causes increased concern for personnel safety. This paper addresses four important aspects of personnel safety in the present and extrapolates these aspects to future power plants. The four aspects are personnel exposure to ionizing radiation, chemicals, magnetic fields, and radiofrequency (RF) energy. Ionizing radiation safety is treated well for present and near-term experiments by the use of proven techniques from other nuclear endeavors. There is documentation that suggests decreasing the annual ionizing radiation exposure limits that have remained constant for several decades. Many chemicals are used in fusion research, for parts cleaning, as use as coolants, cooling water cleanliness control, lubrication, and other needs. In present fusion experiments, a typical chemical laboratory safety program, such as those instituted in most industrialized countries, is effective in protecting personnel from chemical exposures. As fusion facilities grow in complexity, the chemical safety program must transition from a laboratory scale to an industrial scale program that addresses chemical use in larger quantity. It is also noted that allowable chemical exposure concentrations for workers have decreased over time and, in some cases, now pose more stringent exposure limits than those for ionizing radiation. Allowable chemical exposure concentrations have been the fastest changing occupational exposure values in the last thirty years. The trend of more restrictive chemical exposure regulations is expected to continue into the future. Other issues of safety importance are magnetic field exposure and RF energy exposure. Magnetic field exposure limits are consensus values adopted as best practices for worker safety; a typical

  2. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to put it back

  3. Making a Difference: Solarize Programs Accelerating Solar Adoption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Making a Difference: Solarize Programs Accelerating Solar Adoption Making a Difference: Solarize Programs Accelerating Solar Adoption December 29, 2015 - 12:51pm Addthis Making a Difference: Solarize Programs Accelerating Solar Adoption Dr. Elaine Ulrich Dr. Elaine Ulrich Balance of Systems/Soft Costs Program Manager As a part of their Rooftop Solar Challenge II award, the Midwest Renewable Energy Association has organized group solar buys for 92 families in Milwaukee,

  4. EIS-0487: Notice of EIS Adoption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of EIS Adoption EIS-0487: Notice of EIS Adoption Freeport LNG Liquefaction Project, Brazoria County, Texas The Environmental Protection Agency issued a notice of DOE adoption of an EIS that the Federal Energy Regulatory Commission prepared, with DOE as a cooperating agency, on a proposal to expand an existing liquefied natural gas (LNG) import terminal and associated facilities in Brazoria County, Texas, to enable the terminal to liquefy and export LNG.

  5. Early Adoption of Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption of Fuel Cell Technologies Early Adoption of Fuel Cell Technologies Many private sector organizations-grocers, banks, tire and hardware companies, logistics providers, and others-have begun to realize the value of using fuel cells to support their operations. And they aren't the only ones. Federal agencies across the country are incorporating advanced energy technologies, such as fuel cells, into their facilities. Federal Deployment and Demonstration Government adoption of early market

  6. DOE Adopts Rules to Improve Energy Efficiency Enforcement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Adopts Rules to Improve Energy Efficiency Enforcement DOE Adopts Rules to Improve Energy Efficiency Enforcement February 7, 2011 - 5:50pm Addthis Today, the Department of Energy adopted final rules to improve the enforcement of DOE's efficiency requirements for appliances, lighting and other products. Overhauling the certification and enforcement process, the new rules are designed to encourage compliance and prevent manufacturers who break the law from gaining a competitive advantage

  7. California Member Connects Solar Adoption With Upgrades | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Connects Solar Adoption With Upgrades California Member Connects Solar Adoption With Upgrades Photo of a young man working on solar panels. Studies on the connection between solar adoption and energy upgrades by Better Buildings Residential Network member Center for Sustainable Energy (CSE) in California are helping solar companies realize that partnering with local energy efficiency programs can help turn potential competition into an addition to their business. According to CSE,

  8. Adopting LED Technology: What Federal Facility Managers Need to Know

    Broader source: Energy.gov [DOE]

    This document describes the presentation slides for the "Adopting LED Technology: What Federal Facility Managers Need to Know" webinar that took place on September 11, 2014.

  9. EIS-0493: Notice of Adoption of Final Environmental Impact Statement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Adoption of Final Environmental Impact Statement EIS-0493: Notice of Adoption of Final Environmental Impact Statement EPA issued a notice of DOE's adoption of a FERC EIS for a liquefied natural gas export and import terminal on the north shore of Corpus Christi Bay in Nueces and San Patricio Counties, Texas. DOE, Office of Fossil Energy, was a cooperating agency. Document Download Notice of Adoption of Final EIS (171.36 KB) More Documents & Publications EIS-0447: EPA

  10. Taxes, Permits, and the Adoption of Abatement Technology under...

    Open Energy Info (EERE)

    adoption. However, in terms of welfare, the ranking of the instruments is not so straightforward: taxes may induce lower emissions damages, while TEPs induce lower abatement,...

  11. Geothermal Heat Pumps: Market Status, Barriers to Adoption, and...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: Geothermal Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers AgencyCompany Organization: Oak Ridge...

  12. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect (OSTI)

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  13. Magnetic microbes: Bacterial magnetite biomineralization

    SciTech Connect (OSTI)

    Prozorov, Tanya

    2015-09-14

    Magnetotactic bacteria are a diverse group of prokaryotes with the ability to orient and migrate along the magnetic field lines in search for a preferred oxygen concentration in chemically stratified water columns and sediments. These microorganisms produce magnetosomes, the intracellular nanometer-sized magnetic crystals surrounded by a phospholipid bilayer membrane, typically organized in chains. Magnetosomes have nearly perfect crystal structures with narrow size distribution and species-specific morphologies, leading to well-defined magnetic properties. As a result, the magnetite biomineralization in these organisms is of fundamental interest to diverse disciplines, from biotechnology to astrobiology. As a result, this article highlights recent advances in the understanding of the bacterial magnetite biomineralization.

  14. AdoptADoc2012_slide.jpg | OSTI, US Dept of Energy Office of Scientific and

    Office of Scientific and Technical Information (OSTI)

    Technical Information AdoptADoc2012

  15. Magnetic Phases in Dense Quark Matter

    SciTech Connect (OSTI)

    Incera, Vivian de la

    2007-10-26

    In this paper I discuss the magnetic phases of the three-flavor color superconductor. These phases can take place at different field strengths in a highly dense quark system. Given that the best natural candidates for the realization of color superconductivity are the extremely dense cores of neutron stars, which typically have very large magnetic fields, the magnetic phases here discussed could have implications for the physics of these compact objects.

  16. EIS-0454: Notice of Adoption of an Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement, a 7,680-Acre Right-of-Way (ROW) on Public Lands to Construct a Concentrated Solar Thermal Power Plant Facility, Nye County, Nevada. PDF icon Notice of Adoption of the...

  17. Policy Memorandum #3 Advanced Leave for Childbirth Adoption and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Memo 3 - Advanced-Leave-for-Childbirth-Adoption-and-Foster-Care.pdf (277.11 KB) Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone ...

  18. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOE Patents [OSTI]

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  19. Market Transformation: Fuel Cell Early Adoption (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Transformation: Fuel Cell Early Adoption (Presentation) Market Transformation: Fuel Cell Early Adoption (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado. fuelcell_pre-solicitation_wkshop_jan08_devlin.pdf (761.49 KB) More Documents & Publications Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency Greenpower Trap Mufflerl System

  20. Project Profile: An Emergent Model of Technology Adoption for Accelerating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Diffusion of Residential Solar PV | Department of Energy Soft Costs » Project Profile: An Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV Project Profile: An Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV Logos of the University of Texas at Austin, Frontier Associates, and Austin Energy. The University of Texas at Austin, along with partners at Frontier Associates and Austin Energy, under the

  1. Spurring Market Adoption of Energy Efficient Storm Windows | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Spurring Market Adoption of Energy Efficient Storm Windows Spurring Market Adoption of Energy Efficient Storm Windows June 20, 2016 - 12:53pm Addthis At the Energy Department's Pacific Northwest National Laboratory (PNNL), researchers are using two modular homes to test energy-efficient products and calculate their energy savings. Researchers test new technologies in the Experimental home (pictured above), while the Baseline home (not pictured) serves as a control and doesn’t get

  2. Unvented Crawlspace Code Adoption - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Unvented Crawlspace Code Adoption - Building America Top Innovation Unvented Crawlspace Code Adoption - Building America Top Innovation Photo of an unvented and insulated crawlspace. This Top Innovation profile describes Building America research by Building Science Corporation that helped to clarify and contribute to code requirements that allow unvented crawlspaces in new home construction. This is critical because unvented crawlspaces save energy while improving

  3. Adoption and use of e-invoicing in Greece

    SciTech Connect (OSTI)

    Marinagi, C. E-mail: ptrivel@yahoo.com Trivellas, P. E-mail: ptrivel@yahoo.com Reklitis, Panagiotis E-mail: ptrivel@yahoo.com; Skourlas, C.

    2015-02-09

    This paper investigates the adoption and use of electronic invoices (e-invoices) in Greek organizations. The study attempts to evaluate current practices applied in implementing e-invoicing. A field research has been conducted, which is based on a structured questionnaire. The target sample consisted of 42 Greek enterprises. The main issues of the investigation include the existing invoice processing practices, the barriers that prevent the extended adoption and use of e-invoicing, the observed benefits from e-invoicing implementation, and the strategic drivers for transition to e-invoicing. Currently, the use of e-invoicing in Greece is low. However, the research results testify that the adoption of e-invoicing in Greece is promising. Even though, a number of enterprises state that benefits of e-invoicing are not clear yet, the majority of enterprises agree that there are crucial financial priorities that e-invoicing is expected to support.

  4. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  5. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  6. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  7. Batch fabrication of precision miniature permanent magnets

    DOE Patents [OSTI]

    Christenson, Todd R.; Garino, Terry J.; Venturini, Eugene L.

    2002-01-01

    A new class of processes for fabrication of precision miniature rare earth permanent magnets is disclosed. Such magnets typically have sizes in the range 0.1 to 10 millimeters, and dimensional tolerances as small as one micron. Very large magnetic fields can be produced by such magnets, lending to their potential application in MEMS and related electromechanical applications, and in miniature millimeter-wave vacuum tubes. This abstract contains simplifications, and is supplied only for purposes of searching, not to limit or alter the scope or meaning of any claims herein.

  8. ADOPT: A Historically Validated Light Duty Vehicle Consumer Choice Model

    SciTech Connect (OSTI)

    Brooker, A.; Gonder, J.; Lopp, S.; Ward, J.

    2015-05-04

    The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution of importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.

  9. Guidance for the Design and Adoption of Analytic Tools.

    SciTech Connect (OSTI)

    Bandlow, Alisa

    2015-12-01

    The goal is to make software developers aware of common issues that can impede the adoption of analytic tools. This paper provides a summary of guidelines, lessons learned and existing research to explain what is currently known about what analysts want and how to better understand what tools they do and don't need.

  10. Magnetic filtration process, magnetic filtering material, and...

    Office of Scientific and Technical Information (OSTI)

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically ...

  11. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  12. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  13. Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters

    Broader source: Energy.gov [DOE]

    Plenary III: Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Nancy N. Young, Vice President, Environmental Affairs, Airlines for America

  14. Information architecture: Standards adoption and retirement process service action plan

    SciTech Connect (OSTI)

    1997-03-01

    The purpose of this Service Action Plan is to announce, as well as provide, a high-level outline of a new Departmental process for the adoption and retirement of information technology standards. This process supports the implementation of a Department of Energy (DOE) Information Architecture. This plan was prepared with the Department of Energy information technology standards customers and stakeholders in mind. The process described in this plan will be serviced primarily by staff from the Office of the Deputy Assistant Secretary for Information Management with assistance from designated program and site Information Technology Standards Points of Contact. We welcome any comments regarding this new Departmental process and encourage the proposal of information technology standards for adoption or retirement.

  15. Adoption of waste minimization technology to benefit electroplaters

    SciTech Connect (OSTI)

    Ching, E.M.K.; Li, C.P.H.; Yu, C.M.K.

    1996-12-31

    Because of increasingly stringent environmental legislation and enhanced environmental awareness, electroplaters in Hong Kong are paying more heed to protect the environment. To comply with the array of environmental controls, electroplaters can no longer rely solely on the end-of-pipe approach as a means for abating their pollution problems under the particular local industrial environment. The preferred approach is to adopt waste minimization measures that yield both economic and environmental benefits. This paper gives an overview of electroplating activities in Hong Kong, highlights their characteristics, and describes the pollution problems associated with conventional electroplating operations. The constraints of using pollution control measures to achieve regulatory compliance are also discussed. Examples and case studies are given on some low-cost waste minimization techniques readily available to electroplaters, including dragout minimization and water conservation techniques. Recommendations are given as to how electroplaters can adopt and exercise waste minimization techniques in their operations. 1 tab.

  16. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption of Light-Emitting Diodes in Common Lighting Applications Prepared for the U.S. Department of Energy Solid-State Lighting Program July 2015 Prepared by Navigant This page intentionally left blank i | P a g e Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any

  17. New York State Code Adoption Analysis: Lighting Requirements

    SciTech Connect (OSTI)

    Richman, Eric E.

    2004-10-20

    The adoption of the IECC 2003 Energy code will include a set of Lighting Power Density (LPD) values that are effectively a subset of the values in Addendum g to the ASHRAE/IESNA/ANSI 90.1-2001 Standard which will soon be printed as part of the 90.1-2004 version. An analysis of the effectiveness of this adoption for New York State can be provided by a direct comparison of these values with existing LPD levels represented in the current IECC 2000 code, which are themselves a subset of the current ASHRAE/IESNA/ANSI 90.1-2001 Standard (without addenda). Because the complete ASHRAE 2001 and 2004 sets of LPDs are supported by a set of detailed models, they are best suited to provide the basis for an analysis comparison of the two code levels of lighting power density stringency. It is important to note that this kind of analysis is a point-to-point comparison where a fixed level of real world activity is assumed. It is understood that buildings are not built precisely to code levels and that actual percentage of compliance above and below codes will vary among individual buildings and building types. However, without specific knowledge of this real world activity for all buildings in existence and in the future (post-code adoption) it is not possible to analyze actual effects of code adoption. However, it is possible to compare code levels and determine the potential effect of changes from one code requirement level to another. This is the comparison and effectiveness assessment

  18. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  19. Regulatory Considerations Associated with the Expanded Adoption of Distributed Solar

    SciTech Connect (OSTI)

    Bird, L.; McLaren, J.; Heeter, J.; Linvill, C.; Shenot, J.; Sedano, R.; Migden-Ostrander, J.

    2013-11-01

    Increased adoption of distributed PV, and other forms of distributed generation, have the potential to affect utility-customer interactions, system costs recovery, and utility revenue streams. If a greater number of electricity customers choose to self-generate, demand for system power will decrease and utility fixed costs will have to be recovered over fewer kilowatt hours of sales. As such, regulators will need to determine the value and cost of additional distributed PV and determine the appropriate allocation of the costs and benefits among consumers. The potential for new business models to emerge also has implications for regulation and rate structures that ensure equitable solutions for all electricity grid users. This report examines regulatory tools and rate designs for addressing emerging issues with the expanded adoption of distributed PV and evaluates the potential effectiveness and viability of these options going forward. It offers the groundwork needed in order for regulators to explore mechanisms and ensure that utilities can collect sufficient revenues to provide reliable electric service, cover fixed costs, and balance cost equity among ratepayers -- while creating a value proposition for customers to adopt distributed PV.

  20. Hurdling barriers through market uncertainty: Case studies ininnovative technology adoption

    SciTech Connect (OSTI)

    Payne, Christopher T.; Radspieler Jr., Anthony; Payne, Jack

    2002-08-18

    The crisis atmosphere surrounding electricity availability in California during the summer of 2001 produced two distinct phenomena in commercial energy consumption decision-making: desires to guarantee energy availability while blackouts were still widely anticipated, and desires to avoid or mitigate significant price increases when higher commercial electricity tariffs took effect. The climate of increased consideration of these factors seems to have led, in some cases, to greater willingness on the part of business decision-makers to consider highly innovative technologies. This paper examines three case studies of innovative technology adoption: retrofit of time-and-temperature signs on an office building; installation of fuel cells to supply power, heating, and cooling to the same building; and installation of a gas-fired heat pump at a microbrewery. We examine the decision process that led to adoption of these technologies. In each case, specific constraints had made more conventional energy-efficient technologies inapplicable. We examine how these barriers to technology adoption developed over time, how the California energy decision-making climate combined with the characteristics of these innovative technologies to overcome the barriers, and what the implications of hurdling these barriers are for future energy decisions within the firms.

  1. Magnetic monopoles

    SciTech Connect (OSTI)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  2. Mineral Magnetism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2016 Small piles of rare earth elements In the United States, rare-earth elements used in strong magnets, such as neodymium and samarium, are scarce due to limits on ...

  3. CRYOGENIC MAGNETS

    DOE Patents [OSTI]

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  4. Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today’s most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

  5. Manganese-Aluminum-Based Magnets: Nanocrystalline t-MnAI Permanent Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Dartmouth is developing specialized alloys with magnetic properties superior to the rare earths used in todays best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.

  6. Magnetic microbes: Bacterial magnetite biomineralization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prozorov, Tanya

    2015-09-14

    Magnetotactic bacteria are a diverse group of prokaryotes with the ability to orient and migrate along the magnetic field lines in search for a preferred oxygen concentration in chemically stratified water columns and sediments. These microorganisms produce magnetosomes, the intracellular nanometer-sized magnetic crystals surrounded by a phospholipid bilayer membrane, typically organized in chains. Magnetosomes have nearly perfect crystal structures with narrow size distribution and species-specific morphologies, leading to well-defined magnetic properties. As a result, the magnetite biomineralization in these organisms is of fundamental interest to diverse disciplines, from biotechnology to astrobiology. As a result, this article highlights recent advances inmore » the understanding of the bacterial magnetite biomineralization.« less

  7. EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

  8. Fast Company covers "Just Your Typical New Mexico Image Recognition Startup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spun Off From A Government Lab" (Not) just your typical Lab spin off Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" Far from Silicon Valley, Descartes Labs aims to turn a national research facility's AI research into new ways of understanding the world. July 30, 2015 Fast Company covers "Just Your Typical New Mexico Image Recognition Startup Spun Off From A Government Lab" Descartes Labs cofounders Mark

  9. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opposition - Dataset | Department of Energy Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition - Dataset Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition - Dataset Excel file and dataset for VMT and the Price of Gasoline Typically Move in Opposition fotw#906_web.xlsx (51.4 KB) More Documents & Publications Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline - Dataset Fact

  10. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  11. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Underlying the magnetocaloric effect is the idea that magnetism is the result of the ... with the magnetic field, the magnetic entropy (disorder) of the system decreases; if ...

  12. Magnetic levitation system for moving objects

    DOE Patents [OSTI]

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  13. Magnetic levitation system for moving objects

    DOE Patents [OSTI]

    Post, R.F.

    1998-03-03

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds. 7 figs.

  14. Modeling of customer adoption of distributed energy resources

    SciTech Connect (OSTI)

    Marnay, Chris; Chard, Joseph S.; Hamachi, Kristina S.; Lipman, Timothy; Moezzi, Mithra M.; Ouaglal, Boubekeur; Siddiqui, Afzal S.

    2001-08-01

    This report describes work completed for the California Energy Commission (CEC) on the continued development and application of the Distributed Energy Resources Customer Adoption Model (DER-CAM). This work was performed at Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) between July 2000 and June 2001 under the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. Our research on distributed energy resources (DER) builds on the concept of the microgrid ({mu}Grid), a semiautonomous grouping of electricity-generating sources and end-use sinks that are placed and operated for the benefit of its members. Although a {mu}Grid can operate independent of the macrogrid (the utility power network), the {mu}Grid is usually interconnected, purchasing energy and ancillary services from the macrogrid. Groups of customers can be aggregated into {mu}Grids by pooling their electrical and other loads, and the most cost-effective combination of generation resources for a particular {mu}Grid can be found. In this study, DER-CAM, an economic model of customer DER adoption implemented in the General Algebraic Modeling System (GAMS) optimization software is used, to find the cost-minimizing combination of on-site generation customers (individual businesses and a {mu}Grid) in a specified test year. DER-CAM's objective is to minimize the cost of supplying electricity to a specific customer by optimizing the installation of distributed generation and the self-generation of part or all of its electricity. Currently, the model only considers electrical loads, but combined heat and power (CHP) analysis capability is being developed under the second year of CEC funding. The key accomplishments of this year's work were the acquisition of increasingly accurate data on DER technologies, including the development of methods for forecasting cost reductions for these technologies, and the creation of a credible

  15. Lymphocyte migration in the adoptive transfer of EAU

    SciTech Connect (OSTI)

    Palestine, A.G.; Mc Allister, C.; Carter, C.; Keenan, A.M.; Vistica, B.; Gery, I.; Davey, R.; Nussenblatt, R.

    1986-04-01

    Experimental autoimmune uveoretinitis (EAU) was transferred into naive male Lewis rats using 1 X 10(8) indium-111 labeled lymphocytes from syngeneic donors immunized with S-antigen. The migration of the lymphocytes was monitored by gamma camera imaging and by determining the accumulation of radioactivity in selected organs. The majority of the cells leave the peritoneal cavity within 24 hr and migrate to the liver, spleen, and thymus. Only a small fraction of the labeled cells reach the eye. However, there were significantly more labeled cells present in eyes that developed EAU as compared with controls using lymphocytes sensitized against bovine serum albumin. These results indicate the adoptive transfer of EAU is a complex process in which only a small number of transferred cells actually reach the eye to induce uveoretinitis.

  16. Customer adoption of small-scale on-site power generation

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-04-01

    The electricity supply system is undergoing major regulatory and technological change with significant implications for the way in which the sector will operate (including its patterns of carbon emissions) and for the policies required to ensure socially and environmentally desirable outcomes. One such change stems from the rapid emergence of viable small-scale (i.e., smaller than 500 kW) generators that are potentially competitive with grid delivered electricity, especially in combined heat and power configurations. Such distributed energy resources (DER) may be grouped together with loads in microgrids. These clusters could operate semi-autonomously from the established power system, or macrogrid, matching power quality and reliability more closely to local end-use requirements. In order to establish a capability for analyzing the effect that microgrids may have on typical commercial customers, such as office buildings, restaurants, shopping malls, and grocery stores, an economic mod el of DER adoption is being developed at Berkeley Lab. This model endeavors to indicate the optimal quantity and type of small on-site generation technologies that customers could employ given their electricity requirements. For various regulatory schemes and general economic conditions, this analysis produces a simple operating schedule for any installed generators. Early results suggest that many commercial customers can benefit economically from on-site generation, even without considering potential combined heat and power and reliability benefits, even though they are unlikely to disconnect from the established power system.

  17. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  18. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards 12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge ...

  19. U.S. Department of the Navy: Driving Alternative Fuels Adoption

    Broader source: Energy.gov [DOE]

    Plenary III: Early Market Adopters U.S. Department of the Navy: Driving Alternative Fuels Adoption Chris Tindal, Director for Operational Energy, Office of the Deputy Assistant Secretary of the Navy for Energy

  20. Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Magnus, F.; Brooks-Bartlett, M. E.; Moubah, R.; Procter, R. A.; Andersson, G.; Hase, T. P. A.; Banks, S. T.; Hjorvarsson, B.

    2016-06-13

    Low-dimensional magnetic heterostructures are a key element of spintronics, where magnetic interactions between different materials often define the functionality of devices. Although some interlayer exchange coupling mechanisms are by now well established, the possibility of direct exchange coupling via proximity-induced magnetization through non-magnetic layers is typically ignored due to the presumed short range of such proximity effects. Here we show that magnetic order can be induced throughout a 40-nm-thick amorphous paramagnetic layer through proximity to ferromagnets, mediating both exchange-spring magnet behaviour and exchange bias. Furthermore, Monte Carlo simulations show that nearest-neighbour magnetic interactions fall short in describing the observed effectsmore » and long-range magnetic interactions are needed to capture the extent of the induced magnetization. Lastly, the results highlight the importance of considering the range of interactions in low-dimensional heterostructures and how magnetic proximity effects can be used to obtain new functionality.« less

  1. EVALUATION OF TROQUE VS CLOSURE BOLT PRELOAD FOR A TYPICAL CONTAINMENT VESSEL UNDER SERVICE CONDITIONS

    SciTech Connect (OSTI)

    Smith, A.

    2010-02-16

    Radioactive material package containment vessels typically employ bolted closures of various configurations. Closure bolts must retain the lid of a package and must maintain required seal loads, while subjected to internal pressure, impact loads and vibration. The need for insuring that the specified preload is achieved in closure bolts for radioactive materials packagings has been a continual subject of concern for both designers and regulatory reviewers. The extensive literature on threaded fasteners provides sound guidance on design and torque specification for closure bolts. The literature also shows the uncertainty associated with use of torque to establish preload is typically between 10 and 35%. These studies have been performed under controlled, laboratory conditions. The ability to insure required preload in normal service is, consequently, an important question. The study described here investigated the relationship between indicated torque and resulting bolt load for a typical radioactive materials package closure using methods available under normal service conditions.

  2. Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opposition | Department of Energy 6: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition SUBSCRIBE to the Fact of the Week The prices of gasoline and diesel fuel affect the transportation sector in many ways. For example, fuel prices can impact the number of miles driven and affect the choices consumers make when purchasing vehicles. The graph below shows a three-month moving average

  3. Role of magnetic fluctuations in mode selection of magnetically driven instabilities

    SciTech Connect (OSTI)

    Dan, Jia-Kun Ren, Xiao-Dong; Huang, Xian-Bin; Ouyang, Kai; Chen, Guang-Hua

    2014-12-15

    The influences of magnetic fluctuations on quasiperiodic structure formation and fundamental wavelength selection of the instability have been studied using two 25-μm-diameter tungsten wires on a 100  ns rise time, 220 kA pulsed power facility. Two different load configurations were adopted to make end surfaces of electrodes approximately satisfy reflecting and absorbing boundary conditions, respectively. The experimental results that the fundamental wavelength in the case of absorbing boundary condition is about one half of that in the case of reflecting boundary condition have demonstrated that magnetic fluctuations appear to play a key role in mode selection of magnetically driven instabilities. The dominant wavelength should be proportional to magnetic field and inversely proportional to square root of mass density, provided that the magnetosonic wave propagating perpendicular to magnetic fields provides a leading candidate for magnetic fluctuations. Therefore, magnetic fluctuation is one of the three key perturbations, along with surface contaminants and surface roughness, that seeds magnetically driven instabilities.

  4. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  5. Tuning magnetic disorder in diluted magnetic semiconductors using high fields to 89 Tesla

    SciTech Connect (OSTI)

    Crooker, Scott A; Samarth, Nitin

    2008-01-01

    We describe recent and ongoing studies at the National High Magnetic Field Laboratory at Los Alamos using the new '100 Tesla Multi-Shot Magnet', which is presently delivering fields up to {approx}89 T during its commissioning. We discuss the first experiments performed in this magnet system, wherein the linewidth of low-temperature photoluminescence spectra was used to directly reveal the degree of magnetic alloy disorder 'seen' by excitons in single Zn{sub 0.80}Cd{sub 0.22}Mn{sub 0.08}Se quantum wells. The magnetic potential landscape in II-VI diluted magnetic semiconductors (DMS) is typically smoothed when the embedded Mn{sup 2+} spins align in an applied field. However, an important (but heretofore untested) prediction of current models of compositional disorder is that magnetic alloy fluctuations in many DMS compounds should increase again in very large magnetic fields approaching 100 T. We observed precisely this increase above {approx}70 T, in agreement with a simple model of magnetic alloy disorder.

  6. Permanent magnet assembly

    DOE Patents [OSTI]

    Chell, Jeremy; Zimm, Carl B.

    2006-12-12

    A permanent magnet assembly is disclosed that is adapted to provide a magnetic field across an arc-shaped gap. Such a permanent magnet assembly can be used, for example, to provide a time-varying magnetic field to an annular region for use in a magnetic refrigerator.

  7. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yi; Terletska, Hanna; Moore, C.; Ekuma, Chinedu; Tam, Ka-Ming; Berlijn, Tom; Ku, Wei; Moreno, Juana; Jarrell, Mark

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to KxFe2-ySe2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator. Moreover our resultsmore » demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.« less

  8. Study of multiband disordered systems using the typical medium dynamical cluster approximation

    SciTech Connect (OSTI)

    Zhang, Yi; Terletska, Hanna; Moore, C.; Ekuma, Chinedu; Tam, Ka-Ming; Berlijn, Tom; Ku, Wei; Moreno, Juana; Jarrell, Mark

    2015-11-06

    We generalize the typical medium dynamical cluster approximation to multiband disordered systems. Using our extended formalism, we perform a systematic study of the nonlocal correlation effects induced by disorder on the density of states and the mobility edge of the three-dimensional two-band Anderson model. We include interband and intraband hopping and an intraband disorder potential. Our results are consistent with those obtained by the transfer matrix and the kernel polynomial methods. We also apply the method to KxFe2-ySe2 with Fe vacancies. Despite the strong vacancy disorder and anisotropy, we find the material is not an Anderson insulator. Moreover our results demonstrate the application of the typical medium dynamical cluster approximation method to study Anderson localization in real materials.

  9. Try This: Household Magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now which is stronger, gravity or magnetism? What is going on? How do flexible refrigerator magnets work? Get two of these magnets, they are often the size of a business card....

  10. Magnetization of neutron matter

    SciTech Connect (OSTI)

    Bigdeli, M.

    2011-09-21

    In this paper, we compute magnetization of neutron matter at strong magnetic field using the lowest order constrained variational (LOCV) technique.

  11. Magnetic tweezers with high permeability electromagnets for fast actuation of magnetic beads

    SciTech Connect (OSTI)

    Chen, La; Offenhusser, Andreas; Krause, Hans-Joachim

    2015-04-15

    As a powerful and versatile scientific instrument, magnetic tweezers have been widely used in biophysical research areas, such as mechanical cell properties and single molecule manipulation. If one wants to steer bead position, the nonlinearity of magnetic properties and the strong position dependence of the magnetic field in most magnetic tweezers lead to quite a challenge in their control. In this article, we report multi-pole electromagnetic tweezers with high permeability cores yielding high force output, good maneuverability, and flexible design. For modeling, we adopted a piece-wise linear dependence of magnetization on field to characterize the magnetic beads. We implemented a bi-linear interpolation of magnetic field in the work space, based on a lookup table obtained from finite element simulation. The electronics and software were custom-made to achieve high performance. In addition, the effects of dimension and defect on structure of magnetic tips also were inspected. In a workspace with size of 0.1 0.1 mm{sup 2}, a force of up to 400 pN can be applied on a 2.8 ?m superparamagnetic bead in any direction within the plane. Because the magnetic particle is always pulled towards a tip, the pulling forces from the pole tips have to be well balanced in order to achieve control of the particles position. Active video tracking based feedback control is implemented, which is able to work at a speed of up to 1 kHz, yielding good maneuverability of the magnetic beads.

  12. EIS-0488: Notice of Adoption of FERC Final Environmental Impact Statement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Adoption of FERC Final Environmental Impact Statement EIS-0488: Notice of Adoption of FERC Final Environmental Impact Statement Cameron Liquefaction Project, Cameron Parish, Louisiana EPA announces the Department of Energy's adoption of the Federal Energy Regulatory Commission's Cameron Liquefaction Project, Cameron Parish, Louisiana Final Environmental Impact Statement. EIS-0488-FEIS-DOEAdoption-2014.pdf (54.65 KB) More Documents & Publications EIS-0447: EPA Notice

  13. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect (OSTI)

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10??s. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  14. THE MAGNETIC ENERGY-HELICITY DIAGRAM OF SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Tziotziou, Kostas; Georgoulis, Manolis K.; Raouafi, Nour-Eddine

    2012-11-01

    Using a recently proposed nonlinear force-free method designed for single-vector magnetograms of solar active regions, we calculate the instantaneous free magnetic energy and relative magnetic helicity budgets in 162 vector magnetograms corresponding to 42 different active regions. We find a statistically robust, monotonic correlation between the free magnetic energy and the relative magnetic helicity in the studied regions. This correlation implies that magnetic helicity, in addition to free magnetic energy, may be an essential ingredient for major solar eruptions. Eruptive active regions appear well segregated from non-eruptive ones in both free energy and relative helicity with major (at least M-class) flares occurring in active regions with free energy and relative helicity exceeding 4 Multiplication-Sign 10{sup 31} erg and 2 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The helicity threshold agrees well with estimates of the helicity contents of typical coronal mass ejections.

  15. Lab-Corps Pilot Accelerates Private-Sector Adoption of Game-Changing...

    Broader source: Energy.gov (indexed) [DOE]

    Teams were initially introduced to private sector and consumer interests - like ... Lab-Corps Pilot Accelerates Private-Sector Adoption of Game-Changing ...

  16. Vehicle Technologies Office: Report on Adoption of New Fuel-Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies from SuperTruck | Department of Energy Report on Adoption of New Fuel-Efficient Technologies from SuperTruck Vehicle Technologies Office: Report on Adoption of New Fuel-Efficient Technologies from SuperTruck The Vehicle Technologies Office has released "Adoption of New Fuel-Efficient Technologies from SuperTruck," a report on the industry's adoption rates of new fuel efficient technologies from the SuperTruck program into its manufacturing lines. For a summary of the

  17. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Geothermal Data Repository presentation by Arlene Anderson and Jon Weers at the 2013 Annual ...

  18. Vehicle Technologies Office: Fact sheet on Adoption of New Fuel-Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies from SuperTruck | Department of Energy Fact sheet on Adoption of New Fuel-Efficient Technologies from SuperTruck Vehicle Technologies Office: Fact sheet on Adoption of New Fuel-Efficient Technologies from SuperTruck The Vehicle Technologies Office has released "Adoption of New Fuel-Efficient Technologies from SuperTruck," a report on the industry's adoption rates of new fuel efficient technologies from the SuperTruck program into its manufacturing lines. This is a fact

  19. OSTIblog Articles in the Adopt-A-Doc Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    STIP is a robust and effective collaboration across the DOE... Related Topics: .EDUconnections, Adopt-A-Doc, DOE Green Energy, DOE STI, journal literature, National Library of ...

  20. MAGNETIC DENSITOMETER

    DOE Patents [OSTI]

    McCann, J.A.; Jones, R.H.

    1961-08-15

    A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)

  1. Iron-Nitride Alloy Magnets: Transformation Enabled Nitride Magnets Absent Rare Earths (TEN Mare)

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Case Western is developing a highly magnetic iron-nitride alloy to use in the magnets that power electric motors found in EVs and renewable power generators. This would reduce the overall price of the motor by eliminating the expensive imported rare earth minerals typically found in todays best commercial magnets. The iron-nitride powder is sourced from abundant and inexpensive materials found in the U.S. The ultimate goal of this project is to demonstrate this new magnet system, which contains no rare earths, in a prototype electric motor. This could significantly reduce the amount of greenhouse gases emitted in the U.S. each year by encouraging the use of clean alternatives to oil and coal.

  2. In-plane electric fields in magnetic islands during collisionless magnetic reconnection

    SciTech Connect (OSTI)

    Chen Lijen; Bhattacharjee, Amitava; Torbert, Roy B.; Bessho, Naoki; Daughton, William; Roytershteyn, Vadim

    2012-11-15

    Magnetic islands are a common feature in both the onset and nonlinear evolution of magnetic reconnection. In collisionless regimes, the onset typically occurs within ion-scale current layers leading to the formation of magnetic islands when multiple X lines are involved. The nonlinear evolution of reconnection often gives rise to extended electron current layers (ECL) which are also unstable to formation of magnetic islands. Here, we show that the excess negative charge and strong out-of-plane electron velocity in the ECL are passed on to the islands generated therein, and that the corresponding observable distinguishing the islands generated in the ECL is the strongly enhanced in-plane electric fields near the island core. The islands formed in ion-scale current layers do not have these properties of the ECL-generated islands. The above result provides a way to assess the occurrence and importance of extended ECLs that are unstable to island formation in space and laboratory plasmas.

  3. Magnetic multilayer structure

    DOE Patents [OSTI]

    Herget, Philipp; O'Sullivan, Eugene J.; Romankiw, Lubomyr T.; Wang, Naigang; Webb, Bucknell C.

    2016-07-05

    A mechanism is provided for an integrated laminated magnetic device. A substrate and a multilayer stack structure form the device. The multilayer stack structure includes alternating magnetic layers and diode structures formed on the substrate. Each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by a diode structure.

  4. Magnetic Membrane System

    DOE Patents [OSTI]

    McElfresh, Michael W.; ; Lucas, Matthew S.

    2004-12-30

    The present invention provides a membrane with magnetic particles. In one embodiment the membrane is created by mixing particles in a non-magnetic base. The membrane may act as an actuator, a sensor, a pump, a valve, or other device. A magnet is operatively connected to the membrane. The magnet acts on and changes the shape of the membrane.

  5. Recycling Magnets | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Magnets Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments, ATLAS and CMS at CERN, several tens of millions of dollars for an experiment like our GlueX experiment in Hall D, being built as part of our upgrade project. Among the expensive components of many experiments is a large magnet or sometimes more than one magnet. Sometimes the magnets have interesting

  6. Magnetic Damping For Maglev

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, S.; Cai, Y.; Rote, D. M.; Chen, S. S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  7. Cold test facility for 1.8 m superconducting model magnets at the SSCL

    SciTech Connect (OSTI)

    LaBarge, A.; Althaus, R.; Bird, R.; Baron, J.; Chagnon, J.; Deak, M.; Scott, M.; Vasilyev, V.; Williamson, G.

    1993-05-01

    A new facility has been constructed to measure the characteristic features of superconducting model magnets and cable at cryogenic temperatures--a function which supports the design and development process for building full-scale accelerator magnets. There are multiple systems operating in concert to test the model magnets, namely, cryogenic, magnet power, data acquisition and system control. A typical model magnet test includes the following items: warm measurements of magnet coils, strain gauges and voltage taps; hipot testing of insulation integrity; cooling with liquid nitrogen and then liquid helium; measuring quench current and magnetic field; (5) magnet warm-up. While the magnet is being cooled to 4.22 K, the mechanical stress is monitored through strain gauges. Current is then ramped into the magnet until it reaches some maximum value and the magnet transitions from the superconducting state to the normal state. Normal-zone propagation is monitored using voltage taps on the magnet coils during this process, thus indicating where the transition began. The current ramp is usually repeated until a plateau current is reached, where the magnet has mechanically settled. Many variations on the current ramping sequence are used to study different phenomena associated with magnet performance, e.g. magnetization hysteresis, eddy current losses, cryogenic stability, etc. A warm bore cryostat with a rotating coil is inserted in the magnet to measure field strength and homogeneity. These types of measurements yield multipole and current versus field data.

  8. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  9. Modeling a Typical Winter-time Dust Event over the Arabian Peninsula and the Red Sea

    SciTech Connect (OSTI)

    Kalenderski, S.; Stenchikov, G.; Zhao, Chun

    2013-02-20

    We used WRF-Chem, a regional meteorological model coupled with an aerosol-chemistry component, to simulate various aspects of the dust phenomena over the Arabian Peninsula and Red Sea during a typical winter-time dust event that occurred in January 2009. The model predicted that the total amount of emitted dust was 18.3 Tg for the entire dust outburst period and that the two maximum daily rates were ~2.4 Tg/day and ~1.5 Tg/day, corresponding to two periods with the highest aerosol optical depth that were well captured by ground- and satellite-based observations. The model predicted that the dust plume was thick, extensive, and mixed in a deep boundary layer at an altitude of 3-4 km. Its spatial distribution was modeled to be consistent with typical spatial patterns of dust emissions. We utilized MODIS-Aqua and Solar Village AERONET measurements of the aerosol optical depth (AOD) to evaluate the radiative impact of aerosols. Our results clearly indicated that the presence of dust particles in the atmosphere caused a significant reduction in the amount of solar radiation reaching the surface during the dust event. We also found that dust aerosols have significant impact on the energy and nutrient balances of the Red Sea. Our results showed that the simulated cooling under the dust plume reached 100 W/m2, which could have profound effects on both the sea surface temperature and circulation. Further analysis of dust generation and its spatial and temporal variability is extremely important for future projections and for better understanding of the climate and ecological history of the Red Sea.

  10. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  11. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W.; Kiekel, Paul

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  12. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  13. Tamper resistant magnetic stripes

    DOE Patents [OSTI]

    Naylor, Richard Brian; Sharp, Donald J.

    1999-01-01

    This invention relates to a magnetic stripe comprising a medium in which magnetized particles are suspended and in which the encoded information is recorded by actual physical rotation or alignment of the previously magnetized particles within the flux reversals of the stripe which are 180.degree. opposed in their magnetic polarity. The magnetized particles are suspended in a medium which is solid, or physically rigid, at ambient temperatures but which at moderately elevated temperatures, such as 40.degree. C., is thinable to a viscosity permissive of rotation of the particles therein under applications of moderate external magnetic field strengths within acceptable time limits.

  14. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging...

  15. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in...

  16. Policy Memorandum #3 Advanced Leave for Childbirth Adoption and Foster Care

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 3 Advanced Leave for Childbirth Adoption and Foster Care Policy Memorandum #3 Advanced Leave for Childbirth Adoption and Foster Care Policy Memo #3 - Advanced-Leave-for-Childbirth-Adoption-and-Foster-Care.pdf (277.11 KB) Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone 202-586-3372 More Documents & Publications DOE Handbook on Leave and Absence HQ Leave Guide POLICY GUIDANCE MEMORANDUM #20A Crediting Directly-Related

  17. EIS-0470: EPA Notice of Adoption of the Final Environmental Impact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement | Department of Energy 0: EPA Notice of Adoption of the Final Environmental Impact Statement EIS-0470: EPA Notice of Adoption of the Final Environmental Impact Statement Cape Wind Energy Project in Nantucket Sound, Massachusetts The Environmental Protection Agency's Notice, dated December 26, 2012, of DOE's adoption of the U.S. Department of the Interior's final EIS was published in the Federal Register on December 31, 2012. EIS-0470-FEIS-EPA-NOA-2012.pdf (192.06 KB) More Documents

  18. Statement from Secretary Moniz on Adoption Day for the Joint Comprehensive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan of Action | Department of Energy Secretary Moniz on Adoption Day for the Joint Comprehensive Plan of Action Statement from Secretary Moniz on Adoption Day for the Joint Comprehensive Plan of Action October 18, 2015 - 1:34pm Addthis NEWS MEDIA CONTACT (202) 586-4940 "Adoption Day marks an important milestone in ensuring that Iran's nuclear program is exclusively peaceful in nature. Today, as the Joint Comprehensive Plan of Action (JCPOA) comes into effect, Iran will begin taking

  19. An Analysis of Statewide Adoption Rates of Building Energy Code by Local Jurisdictions

    SciTech Connect (OSTI)

    Cort, Katherine A.; Butner, Ryan S.

    2012-12-31

    The purpose of this study is to generally inform the U.S. Department of Energys Building Energy Codes Program of the local, effective energy code adoption rate for a sample set of 21 states, some which have adopted statewide codes and some that have not. Information related to the residential energy code adoption process and status at the local jurisdiction was examined for each of the states. Energy code status information was gathered for approximately 2,800 jurisdictions, which effectively covered approximately 80 percent of the new residential building construction in the 21 states included in the study.

  20. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, John A.; Steyert, William A.

    1982-01-01

    The disclosure is directed to an active magnetic regenerator apparatus and method. Brayton, Stirling, Ericsson, and Carnot cycles and the like may be utilized in an active magnetic regenerator to provide efficient refrigeration over relatively large temperature ranges.

  1. LBB evaluation for a typical Japanese PWR primary loop by using the US NRC approved methods

    SciTech Connect (OSTI)

    Swamy, S.A.; Bhowmick, D.C.; Prager, D.E.

    1997-04-01

    The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping and supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.

  2. Soft X-ray techniques to study mesoscale magnetism

    SciTech Connect (OSTI)

    Kortright, Jeffrey B.

    2003-06-26

    Heterogeneity in magnetization (M) is ubiquitous in modern systems. Even in nominally homogeneous materials, domains or pinning centers typically mediate magnetization reversal. Fundamental lengths determining M structure include the domain wall width and the exchange stiffness length, typically in the 4-400 nm range. Chemical heterogeneity (phase separation, polycrystalline microstructure, lithographic or other patterning, etc.) with length scales from nanometers to microns is often introduced to influence magnetic properties. With 1-2 nm wavelengths {lambda}, soft x-rays in principle can resolve structure down to {lambda}/2, and are well suited to study these mesoscopic length scales [1, 2]. This article highlights recent advances in resonant soft x-ray methods to resolve lateral magnetic structure [3], and discusses some of their relative merits and limitations. Only techniques detecting x-ray photons (rather than photo-electrons) are considered [4], since they are compatible with strong applied fields to probe relatively deeply into samples. The magneto-optical (MO) effects discovered by Faraday and Kerr were observed in the x-ray range over a century later, first at ''hard'' wavelengths in diffraction experiments probing interatomic magnetic structure [5]. In the soft x-ray range, magnetic linear [6] and circular [7] dichroism spectroscopies first developed that average over lateral magnetic structure. These large resonant MO effects enable different approaches to study magnetic structure or heterogeneity that can be categorized as microscopy or scattering [1]. Direct images of magnetic structure result from photo-emission electron microscopes [4, 8] and zone-plate microscopes [9, 10]. Scattering techniques extended into the soft x-ray include familiar specular reflection that laterally averages over structure but can provide depth-resolved information, and diffuse scattering and diffraction that provide direct information about lateral magnetic structure

  3. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost

  4. Magnetic Ordering in Sr3YCo4O10+x

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kishida, Takayoshi; Kapetanakis, Myron D.; Yan, Jiaqiang; Sales, Brian C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Chisholm, Matthew F.

    2016-01-28

    Transition-metal oxides often exhibit complex magnetic behavior due to the strong interplay between atomic-structure, electronic and magnetic degrees of freedom. Cobaltates, especially, exhibit complex behavior because of cobalt’s ability to adopt various valence and spin state configurations. The case of the oxygen-deficient perovskite Sr3YCo4O10+x (SYCO) has gained considerable attention because of persisting uncertainties about its structure and the origin of the observed room temperature ferromagnetism. Here we report a combined investigation of SYCO using aberration-corrected scanning transmission electron microscopy and density functional theory calculations.

  5. How cleantech-as-a-service will drive renewable energy adoption...

    Open Energy Info (EERE)

    Dc's picture Submitted by Dc(266) Contributor 18 March, 2015 - 13:42 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  6. Weatherization and Intergovernmental Program - Accelerating Adoption of Energy Efficiency and Renewable Energy

    SciTech Connect (OSTI)

    2010-06-01

    The DOE/EERE Weatherization and Intergovernmental Program (WIP) increases awareness and accelerates adoption of practices and technologies that cost-effectively increase energy efficiency, the use of renewable energy, and oil displacement.

  7. This letter is to inform AHAM that DOE is adopting a new policy...

    Office of Environmental Management (EM)

    This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program. This letter...

  8. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  9. Magnetic nanohole superlattices

    DOE Patents [OSTI]

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  10. Iron dominated magnets

    SciTech Connect (OSTI)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  11. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOE Patents [OSTI]

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  12. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an array of magnetic nano-islands along a geometry that is not found in natural magnets. ... an array of magnetic nano-islands along a geometry that is not found in natural magnets. ...

  13. Mississippi Adopts New Rules to Save Energy, Money | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mississippi Adopts New Rules to Save Energy, Money Mississippi Adopts New Rules to Save Energy, Money November 8, 2013 - 11:59am Addthis The Jackson County Welcome Center in Moss Point, Mississippi. The Mississippi Public Service Commission has approved new rules that will help provide utility customers several pathways to increase energy efficiency. | Photo courtesy of Energy and Natural Resources Division, Mississippi Development Authority The Jackson County Welcome Center in Moss Point,

  14. EERE Success Story-DOE Industry Partnerships Lead to Widespread Adoption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Efficient Commercial Air Conditioners | Department of Energy DOE Industry Partnerships Lead to Widespread Adoption of Efficient Commercial Air Conditioners EERE Success Story-DOE Industry Partnerships Lead to Widespread Adoption of Efficient Commercial Air Conditioners January 14, 2016 - 10:27am Addthis Image courtesy of Daikin. Image courtesy of Daikin. Commercial air conditioners, often referred to as rooftop units (RTUs), are commonly used across commercial building sectors such as

  15. The adoption of a decentralized energy technology: The case of UK engine cogeneration

    SciTech Connect (OSTI)

    Strachan, N.D.; Dowlatabadi, H.

    1999-07-01

    Adoption of decentralized energy technologies will be crucial in the evolving structure of energy markets and the magnitude of future greenhouse gas emissions. This detailed analysis of the adoption of engine cogeneration gives insights into organizational decision making regarding the diffusion of a cost effective decentralized energy technology. Detailed site information on over 600 UK cogeneration installations was collected and analyzed for the six year period during which UK energy markets were in the process of deregulation. A detailed examination using standard investment criteria of the cogeneration schemes indicated that over 70% of investments were of questionable economic value to adopters. This was because these installations were below the calculated minimum economic size threshold. A key determinant of this size threshold was found to be the fixed costs of maintenance. Analysis of the financing of installations revealed that the largest fraction of poor investments occurred in energy services agreements between suppliers and adopters. The policy implications for decentralized energy technologies of a minimum size threshold and poor investment decisions by early adopters are discussed. Further research aims to explore postulated explanations for the observed decline in early adoption of UK engine cogeneration.

  16. Analyses of High Pressure Molten Debris Dispersion for a Typical PWR Plant

    SciTech Connect (OSTI)

    Osamu KAawabata; Mitsuhiro Kajimoto [Japan Nuclear Energy Safety Organization (Japan)

    2006-07-01

    In such severe core damage accident, as small LOCAs with no ECCS injection or station blackout, in which the primary reactor system remains pressurized during core melt down, certain modes of vessel failure would lead to a high pressure ejection of molten core material. In case of a local failure of the lower head, the molten materials would initially be ejected into the cavity beneath the pressure vessel may subsequently be swept out from the cavity to the containment atmosphere and it might cause the early containment failure by direct contact of containment steel liner with core debris. When the contribution of a high-pressure scenario in a core damage frequency increases, early conditional containment failure probability may become large. In the present study, the verification analysis of PHOENICS code and the combining analysis with MELCOR and PHOENICS codes were performed to examine the debris dispersion behavior during high pressure melt ejection. The PHOENICS code which can treat thermal hydraulic phenomena, was applied to the verification analysis for melt dispersion experiments conducted by the Purdue university in the United States. A low pressure melt dispersion experiment at initial pressure 1.4 MPas used metal woods as a molten material was simulated. The analytical results with molten debris dispersion mostly from the model reactor cavity compartment showed an agreement with the experimental result, but the analysis result of a volumetric median diameter of the airborne debris droplets was estimated about 1.5 times of the experimental result. The injection rates of molten debris and steam after reactor vessel failure for a typical PWR plant were analyzed using the MELCOR code. In addition, PHOENICS was applied to a 3D analysis for debris dispersion with low primary pressure at the reactor vessel failure. The analysis result showed that almost all the molten debris were dispersed from the reactor vessel cavity compartment by about 45 seconds after the

  17. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect (OSTI)

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  18. Magnetically attached sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  19. Conventional magnetic superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  20. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale, multidimensional artificial magnet created Nanoscale, multidimensional artificial magnet created Applications might range from general magnetism, such as developing sensors, to information encoding. October 26, 2015 Researchers have created a nanoscale, artificial magnet by arranging an array of magnetic nano-islands along a geometry that is not found in natural magnets. As temperature is reduced, magnetic nanoislands (in blue) reach a one-dimensional static, ordered state, while

  1. Passive magnetic bearing system

    DOE Patents [OSTI]

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  2. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.; Albano, Richard K.; Morrison, Jr., John L.

    1995-01-01

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.

  3. Magnetic latching solenoid

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.; Albano, R.K.; Morrison, J.L. Jr.

    1995-11-28

    This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized. 2 figs.

  4. Pulse magnetic welder

    DOE Patents [OSTI]

    Christiansen, D.W.; Brown, W.F.

    1984-01-01

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  5. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  6. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  7. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  8. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  9. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  10. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  11. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  12. Drivers and barriers to e-invoicing adoption in Greek large scale manufacturing industries

    SciTech Connect (OSTI)

    Marinagi, Catherine E-mail: ptrivel@yahoo.com Trivellas, Panagiotis E-mail: ptrivel@yahoo.com Reklitis, Panagiotis E-mail: ptrivel@yahoo.com; Skourlas, Christos

    2015-02-09

    This paper attempts to investigate the drivers and barriers that large-scale Greek manufacturing industries experience in adopting electronic invoices (e-invoices), based on three case studies with organizations having international presence in many countries. The study focuses on the drivers that may affect the increase of the adoption and use of e-invoicing, including the customers demand for e-invoices, and sufficient know-how and adoption of e-invoicing in organizations. In addition, the study reveals important barriers that prevent the expansion of e-invoicing, such as suppliers’ reluctance to implement e-invoicing, and IT infrastructures incompatibilities. Other issues examined by this study include the observed benefits from e-invoicing implementation, and the financial priorities of the organizations assumed to be supported by e-invoicing.

  13. Manufacturing the MFTF magnet

    SciTech Connect (OSTI)

    Dalder, E.N.C.; Hinkle, R.E.; Hodges, A.J.

    1980-10-13

    The Mirror Fusion Test Facility (MFTF) is a large mirror program experiment for magnetic fusion energy. It will combine and extend the near-classical plasma confinement achieved in 2XIIB with advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime.

  14. Magnetically leviated superconducting bearing

    DOE Patents [OSTI]

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  15. Magnetic switches and circuits

    SciTech Connect (OSTI)

    Nunnally, W.C.

    1982-05-01

    This report outlines the use of saturable inductors as switches in lumped-element, magnetic-pulse compression circuits is discussed and the characteristic use of each is defined. In addition, the geometric constraints and magnetic pulse compression circuits used in short-pulse, low-inductance systems are considered. The scaling of presaturation leakage currents, magnetic energy losses, and switching times with geometrical and material parameters are developed to aid in evaluating magnetic pulse compression systems in a particular application. Finally, a scheme for increasing the couping coefficient in saturable stripline transformers is proposed to enable their use in the short-pulse, high-voltage regime.

  16. Negative ion beam injection apparatus with magnetic shield and electron removal means

    DOE Patents [OSTI]

    Anderson, Oscar A.; Chan, Chun F.; Leung, Ka-Ngo

    1994-01-01

    A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.

  17. Successful Adoption of CNG and Energing CNG-Hydrogen Program in India |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Successful Adoption of CNG and Energing CNG-Hydrogen Program in India Successful Adoption of CNG and Energing CNG-Hydrogen Program in India Presentation given by Narendra Kumar Pal of the University of Nevada at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_6_pal.pdf (6.18 MB) More Documents & Publications Hydrogen Vehicles and Refueling Infrastructure in India Workshop Notes from ""Compressed Natural Gas and Hydrogen

  18. EERE Success Story-Alaska Gateway School District Adopts Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power | Department of Energy Alaska Gateway School District Adopts Combined Heat and Power EERE Success Story-Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy€, especially for the Alaska Gateway School District, with staff laid off and double duties assigned to many. To help offset high energy costs, the school district decided to replace its

  19. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy with the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Solar Challenge | Department of Energy Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge December 1, 2011 - 3:18pm Addthis Washington, D.C. - As part of the U.S. Department of Energy's SunShot Initiative, today Energy Secretary Steven Chu was joined by Lynn Jurich, the president and co-founder of the solar power company SunRun, and Saint Paul Mayor Chris

  20. DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy with the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Solar Challenge | Department of Energy Awards $12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge DOE Awards $12 Million to Spur Rapid Adoption of Solar Energy with the Rooftop Solar Challenge December 1, 2011 - 4:02pm Addthis As part of the U.S. Department of Energy's SunShot Initiative, today Energy Secretary Steven Chu was joined by Lynn Jurich, the president and co-founder of the solar power company SunRun, and Saint Paul Mayor Chris Coleman to

  1. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report

  2. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: Energy.gov [DOE]

    The rate of adoption of new vehicle technologies and related reductions in petroleum use and greenhouse gas emissions rely on how rapidly technology innovations enter the fleet through new vehicle purchases. New technologies often increase vehicle price, which creates a barrier to consumer purchase, but other barriers to adoption are not due to increased purchase prices. For example, plug-in vehicles, dedicated alternative fuel vehicles, and other new technologies face non-cost barriers such as consumer unfamiliarity or requirements for drivers to adjust behavior. This report reviews recent research to help classify these non-cost barriers and determine federal government programs and actions with the greatest potential to overcome them.

  3. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-12-23

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  4. 4 Tesla Magnet Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Tesla Magnet Facility 4 Tesla Magnet Facility Argonne researchers recently acquired two decommissioned magnets from magnetic resonance imaging (MRI) scanners from hospitals in ...

  5. Passive magnetic bearing configurations

    DOE Patents [OSTI]

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  6. EXOTIC MAGNETS FOR ACCELERATORS.

    SciTech Connect (OSTI)

    WANDERER, P.

    2005-09-18

    Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

  7. Fuel price changes and the adoption of cogeneration in the U.K. and Netherlands

    SciTech Connect (OSTI)

    Bonilla, David

    2007-08-15

    Whenever industrial plants consume power and heat, there is a need to consider energy efficiency investment in a cogeneration plant. The author tests an empirical model employing application of cross-sectional time series to analyze the economic incentives influencing the adoption of energy-saving technology in the U.K. and Dutch manufacturing sectors. (author)

  8. Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  9. Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  10. Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  11. Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes

    SciTech Connect (OSTI)

    Scott, Michael J.; Niemeyer, Jackie M.

    2013-09-01

    Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

  12. Magnet pole tips

    DOE Patents [OSTI]

    Thorn, Craig E. (Wading River, NY); Chasman, Chellis (Setauket, NY); Baltz, Anthony J. (Coram, NY)

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  13. Magnet pole tips

    DOE Patents [OSTI]

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  14. MAGNETIC RECORDING HEAD

    DOE Patents [OSTI]

    Merrill, L.C.

    1958-06-17

    An electromagetic recording head is described for simultaneous recording of a plurality of signals within a small space on a magnetically semsitized medium. Basically the head structure comprises a non-magnetic centerpiece provided with only first and second groups of spaced cut-out slots respectively on opposite sides of the centerpiece. The two groups of slots are in parallel alignment and the slots of one group are staggered with respect to the slots of the other group so that one slot is not directly opposite another slot. Each slot has a magnet pole piece disposed therein and cooperating with a second pole and coil to provide a magnetic flux gap at the upper end of the slot. As a tape is drawn over the upper end of the centerpiece the individual magnetic circuits are disposed along its width to provide means for simultaneously recording information on separate portions, tracks. of the tape.

  15. Novel magnets and superconductors studied by high precision magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel magnets and superconductors studied by high precision magnetic susceptometer under pressure An Inductor-capacitor circuit (LC circuit) is a simple, text-book level electric...

  16. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the

  17. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  18. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies....

  19. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism,...

  20. PLUTONIUM OUGHT TO PRODUCE MAGNETISM.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... valence states. 1663 October 2015 5 electrical conductivity changes drastically in the presence of a magnetic field, allowing for new spintronic and magnetic- sensing devices. ...

  1. Magnetic nematicity: A debated origin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vaknin, David

    2016-01-22

    Different experimental studies based on nuclear magnetic resonance and inelastic neutron scattering reach opposing conclusions in regards to the origin of magnetic nematicity in iron chalcogenides.

  2. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nondestructive pulsed magnets up to 100 tesla Thermoacoustics and fluid dynamics ... Nanotechnologies play 2:54 World's first 100 Tesla non-destructive magnetic field NSF BES

  3. magnets | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    magnets NNSA-lab-created new magnets will power renewable technology The Ion Beam Materials Laboratory at NNSA's Los Alamos National Laboratory (LANL) works to characterize and ...

  4. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Johnson, a materials scientist and project leader on GE's magnetic refrigeration project. ... materials would further improve the competitiveness of magnetic refrigeration technology. ...

  5. Magnetic field generator

    DOE Patents [OSTI]

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  6. Moment free toroidal magnet

    DOE Patents [OSTI]

    Bonanos, Peter

    1983-01-01

    A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.

  7. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    DOE Patents [OSTI]

    Humphries, David E.; Hong, Seok-Cheol; Cozzarelli, legal representative, Linda A.; Pollard, Martin J.; Cozzarelli, Nicholas R.

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  8. Periodic magnetic structures generated by spinpolarized currents in nanostripes

    SciTech Connect (OSTI)

    Volkov, Oleksii M. Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Mertens, Franz G.

    2013-11-25

    The influence of a transverse spinpolarized current on long ferromagnetic nanostripes is studied numerically. The magnetization behavior is analyzed for all range of the applied currents, up to the saturation. It is shown that the saturation current is a nonmonotonic function of the stripe width. A number of stable periodic magnetization structures are observed below the saturation. Type of the periodical structure depends on the stripe width. Besides the onedimensional domain structure, typical for narrow wires, and the twodimensional vortexantivortex lattice, typical for wide films, a number of intermediate structures are observed, e.g., crosstie and diamond state.

  9. Permanent magnet energy conversion machine with magnet mounting arrangement

    DOE Patents [OSTI]

    Hsu, John S.; Adams, Donald J.

    1999-01-01

    A hybrid permanent magnet dc motor includes three sets of permanent magnets supported by the rotor and three sets of corresponding stators fastened to the surrounding frame. One set of magnets operates across a radial gap with a surrounding radial gap stator, and the other two sets of magnets operate off the respective ends of the rotor across respective axial gaps.

  10. Magnetic design calculation and FRC formation modeling for the field reversed experiment liner

    SciTech Connect (OSTI)

    Dorf, L. A.; Intrator, T. P.; Renneke, R.; Hsu, S. C.; Wurden, G. A.; Awe, T.; Siemon, R.; Semenov, V. E.

    2008-10-01

    Integrated magnetic modeling and design are important to meet the requirements for (1) formation, (2) translation, and (3) compression of a field reversed configuration (FRC) for magnetized target fusion. Off-the-shelf solutions do not exist for many generic design issues. A predictive capability for time-dependent magnetic diffusion in realistically complicated geometry is essential in designing the experiment. An eddy-current code was developed and used to compute the mutual inductances between driven magnetic coils and passive magnetic shields (flux excluder plates) to calculate the self-consistent axisymmetric magnetic fields during the first two stages. The plasma in the formation stage was modeled as an immobile solid cylinder with selectable constant resistivity and magnetic flux that was free to readjust itself. It was concluded that (1) use of experimentally obtained anomalously large plasma resistivity in magnetic diffusion simulations is sufficient to predict magnetic reconnection and FRC formation, (2) comparison of predicted and experimentally observed timescales for FRC Ohmic decay shows good agreement, and (3) for the typical range of resistivities, the magnetic null radius decay rate scales linearly with resistivity. The last result can be used to predict the rate of change in magnetic flux outside of the separatrix (equal to the back-emf loop voltage), and thus estimate a minimum {theta}-coil loop voltage required to form an FRC.

  11. Thermal conductivity prediction of magnetic composite sheet for near-field electromagnetic absorption

    SciTech Connect (OSTI)

    Lee, Joonsik; Nam, Baekil; Ko, Frank K.; Kim, Ki Hyeon

    2015-05-07

    The magnetic composite sheets were designed by using core-shell structured magnetic fillers instead of uncoated magnetic fillers to resolve concurrently the electromagnetic interference and thermal radiation problems. To predict the thermal conductivity of composite sheet, we calculated the thermal conductivity of the uncoated magnetic fillers and core-shell structured fillers. And then, the thermal conductivity of the magnetic composites sheet filled with core-shell structured magnetic fillers was calculated and compared with that of the uncoated magnetic fillers filled in composite sheet. The magnetic core and shell material are employed the typical Fe-Al-Si flake (60??m??60??m??1??m) and 250?nm-thick AlN with high thermal conductivity, respectively. The longitudinal thermal conductivity of the core-shell structured magnetic composite sheet (2.45?W/mK) enhanced about 33.4% in comparison with that of uncoated magnetic fillers (1.83?W/mK) for the 50 vol. % magnetic filler in polymer matrix.

  12. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-C: Soft X-ray Magnetic Spectroscopy This beamline operates in the soft x-ray energy spectrum (500 - 2700 eV) using an electromagnetic helical undulator to provide circularly...

  13. Magnetic gripper device

    DOE Patents [OSTI]

    Meyer, Ross E.

    1993-01-01

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  14. Giant Controllable Magnetization ...

    Office of Scientific and Technical Information (OSTI)

    ... Figure 1(b) (red line) also shows how applying a saturation magnetic field of 1T, then ... in the nuclear scattering length density (NSLD) profiles as the red curve in Figure 2(c). ...

  15. Magnetic separation of algae

    DOE Patents [OSTI]

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  16. Modular tokamak magnetic system

    DOE Patents [OSTI]

    Yang, Tien-Fang (Wayland, MA)

    1988-01-01

    A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

  17. Magnetic gripper device

    DOE Patents [OSTI]

    Meyer, R.E.

    1993-03-09

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  18. Airlines and Aviation Alternative Fuels: Our Drive to Be Early Market Adopters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Bioenergy 2015 Nancy N. Young, VP-Environment; CAAFI Environment Team Co-Lead June 23, 2015 Why Airlines Want Alternative Fuels airlines.org 2 » New Supply Chain * Energy Security/Supply Reliability * Competitor to Petroleum-Based Fuels » Environmental Benefit/Imperative * Greenhouse Gas (Carbon) Emissions Benefits * Reduce Emissions Affecting Local Air Quality * Do Not Induce Other Environmental Problems U.S.

  19. Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gdr.openei.org Geothermal Data Repository Program Name or Ancillary Text eere.energy.gov Geothermal Data Repository GDR Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Jon Weers National Renewable Energy Laboratory Arlene Anderson (DOE) U.S. Department of Energy GTO 2013 Program Peer Review April 22, 2013 Lava Butte in Newberry National Volcanic Monument, Oregon 9/15/2005, courtesy WikiMedia Commons Energy Efficiency & Renewable Energy gdr.openei.org

  20. Distributed PV Adoption - Sensitivity to Market Factors (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed PV Adoption - Sensitivity to Market Factors Pieter Gagnon, Ben Sigrin National Renewable Energy Laboratory February 2016 NREL/PR-6A20-65984 Executive Summary 3 Executive Summary (1/2) * NREL's dSolar model was used to explore sensitivity of distributed PV (DGPV) deployment to three market factors-technology cost, future net metering policy, and a hypothetical carbon fee. * Modeling PV costs at 25% less than the reference scenario from 2020 onward resulted in ~35% more cumulative

  1. Performance assessment and adoption processes of an information monitoring and diagnostic system prototype

    SciTech Connect (OSTI)

    Piette, Mary Ann

    1999-10-01

    This report addresses the problem that buildings do not perform as well as anticipated during design. We partnered with an innovative building operator to evaluate a prototype Information Monitoring and Diagnostic System (IMDS). The IMDS consists of high-quality measurements archived each minute, a data visualization tool, and a web-based capability. The operators recommend similar technology be adopted in other buildings. The IMDS has been used to identify and correct a series of control problems. It has also allowed the operators to make more effective use of the building control system, freeing up time to take care of other tenant needs. They believe they have significantly improved building comfort, potentially improving tenant health, and productivity. The reduction in hours to operate the building are worth about $20,000 per year, which could pay for the IMDS in about five years. A control system retrofit based on findings from the IMDS is expected to reduce energy use by 20 percent over the next year, worth over $30,000 per year. The main conclusion of the model-based chiller fault detection work is that steady-state models can be used as reference models to monitor chiller operation and detect faults. The ability of the IMDS to measure cooling load and chiller power to one-percent accuracy with a one-minute sampling interval permits detection of additional faults. Evolutionary programming techniques were also evaluated, showing promise in the detection of patterns in building data. We also evaluated two technology adoption processes, radical and routine. In routine adoption, managers enhance features of existing products that are already well understood. In radical adoption, innovative building managers introduce novel technology into their organizations without using the rigorous payback criteria used in routine innovations.

  2. Successful Adoption of CNG and Energing CNG-Hydrogen Program in India

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Narendra Kumar Pal Research Scholar, University of Nevada, Reno Successful Adoption of CNG and Emerging CNG-H 2 Program in India US DOT and DOE Workshop Compressed Natural Gas and Hydrogen Fuels: Lesson Learned for the Safe Development of Vehicles Washington DC, December, 10-11, 2009 Content * Background - CNG Implementation - IPHE - The Planning Commission of India - MP&NG - Hydrogen Corpus Fund - MNRE - National Hydrogen Energy Roadmap * Major Initiatives - Initiatives by MoP&NG -

  3. This letter is to inform AHAM that DOE is adopting a new policy regarding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ENERGY STAR verification testing of models that are part of the AHAM verification program. | Department of Energy Letter Acknowledging DOE Letter on Verification Program 2015 (00036....pdf (34.17 KB) More Documents & Publications AHAM Letter Acknowledging DOE Letter on Verification Program This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program. AHAM DOE Verification Test

  4. This letter is to inform AHAM that DOE is adopting a new policy regarding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE ENERGY STAR verification testing of models that are part of the AHAM verification program. | Department of Energy Signed Letter.pdf (999.38 KB) More Documents & Publications AHAM DOE Verification Test Agreement Letter.pdf This letter is to inform AHAM that DOE is adopting a new policy regarding DOE ENERGY STAR verification testing of models that are part of the AHAM verification program.

  5. Magnetic fluorescent lamp

    DOE Patents [OSTI]

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  6. Magnetic coupling device

    DOE Patents [OSTI]

    Nance, Thomas A.

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  7. Adoption, implementation and enforcement of commercial building energy codes in New Mexico and Arizona

    SciTech Connect (OSTI)

    Callaway, J W; Thurman, A G; Shankle, D L

    1991-07-01

    The US Department of Energy (DOE) is considering ways to encourage states to adopt energy efficiency standards for residential and commercial buildings in the private sector. Such standards are now mandatory for federal buildings, and for private buildings in 34 states; in the remaining 16 states, the standards serve as guidelines for voluntary compliance. In this study for DOE, Pacific Northwest Laboratory (PNL) assessed the process by which energy codes for commercial buildings were adopted and implemented in Arizona and New Mexico. Information was gathered primarily through a series of interviews with state officials, city building officials, architects and engineers, builders, and staff from utilities in the two states. Until other state processes are studied, the extent of the similarities and dissimilarities to the situation in New Mexico and Arizona are unknown. A more extensive study may show that at least some elements of the two state's experience have been paralleled in other parts of the country. General strategies to encourage the adoption of energy codes, assist implementation, and support enforcement were developed based on the research from Arizona and New Mexico and are presented in this report. 6 refs., 4 figs.

  8. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less

  9. Simulation of hydrogen adsorption systems adopting the flow through cooling concept

    SciTech Connect (OSTI)

    Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; Cossement, Daniel; Tamburello, David; Anton, Donald

    2014-10-13

    Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes with the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.

  10. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOE Patents [OSTI]

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  11. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  12. Freely oriented portable superconducting magnet

    DOE Patents [OSTI]

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  13. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  14. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  15. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  16. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  17. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  18. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  19. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  20. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  1. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    SciTech Connect (OSTI)

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan; Qi, Xin E-mail: lyang@impcas.ac.cn; Shi, Jian; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions of moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.

  2. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  3. DOE Awards $15 Million in Technical Assistance to Support Major Retailers, Financial Institutions and Real Estate Firms to Adopt Energy-Efficient Technologies

    Broader source: Energy.gov [DOE]

    Awards Encourage Adoption of Energy-Saving Technologies for New Construction and Retrofits in Commercial Buildings

  4. Error-field penetration in reversed magnetic shear configurations

    SciTech Connect (OSTI)

    Wang, H. H.; Wang, Z. X.; Wang, X. Q. [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams of the Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, X. G. [School of Physics, Peking University, Beijing 100871 (China)] [School of Physics, Peking University, Beijing 100871 (China)

    2013-06-15

    Error-field penetration in reversed magnetic shear (RMS) configurations is numerically investigated by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. To explore different dynamic processes in locked modes, three equilibrium states are adopted. Stable, marginal, and unstable current profiles for double tearing modes are designed by varying the current intensity between two resonant surfaces separated by a certain distance. Further, the dynamic characteristics of locked modes in the three RMS states are identified, and the relevant physics mechanisms are elucidated. The scaling behavior of critical perturbation value with initial plasma velocity is numerically obtained, which obeys previously established relevant analytical theory in the viscoresistive regime.

  5. Active magnetic regenerator

    DOE Patents [OSTI]

    Barclay, J.A.; Steyert, W.A.

    1981-01-27

    An apparatus and method for refrigeration are disclosed which provides efficient refrigeration over temperature ranges in excess of 20/sup 0/C and which requires no maintenance and is, therefore, usable on an unmanned satellite. The apparatus comprises a superconducting magnet which may be solenoidal. A piston comprising a substance such as a rare earth substance which is maintained near its Curie temperature reciprocates through the bore of the solenoidal magnet. A magnetic drive rod is connected to the piston and appropriate heat sinks are connected thereto. The piston is driven by a suitable mechanical drive such as an electric motor and cam. In practicing the invention, the body of the piston is magnetized and demagnetized as it moves through the magnetic field of the solenoid to approximate any of the following cycles or a condition thereof as well as, potentially, other cycles: Brayton, Carnot, Ericsson, and Stirling. Advantages of the present invention include: that refrigeration can be accomplished over at least a 20/sup 0/C scale at superconducting temperatures as well as at more conventional temperatures; very high efficiency, high reliability, and small size. (LCL)

  6. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, Maynard

    1989-01-01

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in synchrony with the passage of a projectile. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile by magnetic reconnection as the gap portion of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile at both the rear vertical surface of the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils and fit loosely within the gap between the opposing coils.

  7. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  8. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  9. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  10. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  11. Exact physical model for magnets in storage rings

    SciTech Connect (OSTI)

    Maletic, D.; Ruggiero, A.G.

    1992-12-31

    In this report we try to make estimates of both kinematic and field effects on the stability of a particle motion, by employing a truly Maxwellian representation of the magnetic field in exact equations of motion. For this purpose we adopt a simple FODO cell model, which repeats periodically to infinity. This model includes only quadrupoles and drifts, leaving out the bending magnets to avoid the problem of the trajectory curvature. We think this model is a physically consistent approximation of a storage ring. We derive several models with different levels of approximation and compare them by evaluating the importance of these effects. The relevance to long-term stability is being investigated in the meantime by comparing the different models with extensive computer simulations. The results will be shown in a subsequent report.

  12. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  13. Magnetic imager and method

    DOE Patents [OSTI]

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  14. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    SciTech Connect (OSTI)

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  15. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately...

  16. Magnet Motor Corp | Open Energy Information

    Open Energy Info (EERE)

    Magnet Motor Corp Jump to: navigation, search Name: Magnet Motor Corp. Place: Starnberg, Germany Zip: 82319 Sector: Vehicles Product: Magnet motor Corp has been developing and...

  17. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetic Techniques page? For detailed information on Magnetic...

  18. Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic

    Office of Scientific and Technical Information (OSTI)

    quantum critical fluctuations (Journal Article) | SciTech Connect Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations Citation Details In-Document Search Title: Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations We report Knight shift experiments on the superconducting heavy electron material CeCoIn{sub 5} that allow one to track with some precision the behavior of the heavy electron

  19. Magnetic Filtration Process, Magnetic Filtering Material, and Method of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forming Magnetic Filtering Material - Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Magnetic Filtration Process, Magnetic Filtering Material, and Method of Forming Magnetic Filtering Material Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a new method for filtering materials and managing wastewater. This invention offers an integrated, intensified process

  20. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted

  1. Effects of a carbon tax on microgrid combined heat and power adoption

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

    2004-11-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A microgrid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The microgrid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without combined heat and power (CHP) equipment, such as water and space heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the microgrid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean central station generation in California.

  2. How can environmental regulations promote clean coal technology adoption in APEC developing economies?

    SciTech Connect (OSTI)

    2007-11-15

    The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target the recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.

  3. Magnetic resonance apparatus

    DOE Patents [OSTI]

    Jackson, Jasper A.; Cooper, Richard K.

    1982-01-01

    Means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial component of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  4. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  5. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  6. Nuclear magnetic resonance imaging

    SciTech Connect (OSTI)

    Young, I.R.

    1984-07-03

    A method of imaging a body by nuclear magnetic resonance wherein volume scanning of a region of the body is achieved by scanning a first planar slice of the region and at least one further slice of the region in the relaxation time for the scan of the first slice.

  7. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  8. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  9. Magnetic refrigeration apparatus and method

    DOE Patents [OSTI]

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  10. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  11. Magnet Cooldown and Warmup Model

    Energy Science and Technology Software Center (OSTI)

    1995-07-11

    This program evaluates cooldown/warmup performance of an SSC magnet or magnet strings, But can be applied to any other iron coldmass which is cooled or warmed by helium.

  12. SYNTHESIS AND CHARACTERIZATION OF ADVANCED MAGNETIC MATERIALS

    SciTech Connect (OSTI)

    Monica Sorescu

    2004-09-22

    The work described in this grant report was focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T = Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe (80-20 wt %) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x = 0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co (80-20 wt %) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which were published in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Materials Chemistry and Physics. The contributions reveal for the first time in literature the effect of

  13. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, M.

    1987-04-06

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.

  14. International magnetic pulse compression

    SciTech Connect (OSTI)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12--14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card -- its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  15. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  16. Magnetic Amplifier-Based Power-Flow Controller

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less

  17. Magnetic Amplifier-Based Power-Flow Controller

    SciTech Connect (OSTI)

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can be regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.

  18. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  19. Magnetic interactions in manganese oxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manganese oxide Magnetic interactions in manganese oxide Revealing the mechanism of 'superexchange' May 24, 2016 manganese oxide Manganese oxide Revealing the Nature of Magnetic Interactions in Manganese Oxide For nearly 60 years, scientists have been trying to determine how manganese oxide (MnO) achieves its long-range magnetic order of alternating up and down electron spins. Now, a team of scientists has used their recently developed mathematical approach to study the short-range magnetic

  20. Carbon Joins the Magnetic Club

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic

  1. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  2. Evolution of twisted magnetic fields

    SciTech Connect (OSTI)

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  3. A Model for the Behavior of Magnetic Tunnel Junctions

    SciTech Connect (OSTI)

    Bryan John Baker

    2003-08-05

    A magnetic tunnel junction is a device that changes its electrical resistance with a change in an applied magnetic field. A typical junction consists of two magnetic electrodes separated by a nonmagnetic insulating layer. The magnetizations of the two electrodes can have two possible extreme configurations, parallel and antiparallel. The antiparallel configuration is observed to have the higher measured resistance and the parallel configuration has the lower resistance. To switch between these two configurations a magnetic field is applied to the device which is primarily used to change the orientation of the magnetization of one electrode usually called the free layer, although with sufficient high magnetic field the orientation of the magnetizations of both of the electrodes can be changed. The most commonly used models for describing and explaining the electronic behavior of tunnel junctions are the Simmons model and the Brinkman model. However, both of these models were designed for simple, spin independent tunneling. The Simmons model does not address the issue of applied magnetic fields nor does it address the form of the electronic band structure in the metallic electrodes, including the important factor of spin polarization. The Brinkman model is similar, the main difference between the two models being the shape of the tunneling barrier potential between the two electrodes. Therefore, the research conducted in this thesis has developed a new theoretical model that addresses these important issues starting from basic principles. The main features of the new model include: the development of equations for true spin dependent tunneling through the insulating barrier, the differences in the orientations of the electrode magnetizations on either side of the barrier, and the effects of the density of states function on the behavior of the junction. The present work has explored densities of states that are more realistic than the simplified free electron density

  4. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  5. Low field magnetic resonance imaging

    DOE Patents [OSTI]

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  6. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  7. Ground-Source Heat Pumps. Overview of Market Status, Barriers to Adoption, and Options for Overcoming Barriers

    SciTech Connect (OSTI)

    Goetzler, William; Zogg, Robert; Lisle, Heather; Burgos, Javier

    2009-02-03

    February 2009 final report submitted to DOE by Navigant Consulting, Inc. This report summarizes the status of ground-source heat pump (GSHP) technology and market penetration globally, estimates the energy saving potential of GSHPs in the U.S., identifies key market barriers that are inhibiting wider market adoption of GSHPs, and recommends initiatives that can be implemented or facilitated by the DOE to accelerate market adoption.

  8. Iterative reconstruction of magnetic induction using Lorentz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iterative reconstruction of magnetic induction using Lorentz transmission electron tomography Title Iterative reconstruction of magnetic induction using Lorentz transmission...

  9. Magnetic coherence in cuprate superconductors (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; HIGH-TC SUPERCONDUCTORS; LANTHANUM OXIDES; STRONTIUM OXIDES; COPPER OXIDES; COHERENCE LENGTH; NEUTRON DIFFRACTION; MAGNETIZATION; MAGNETIC ...

  10. PECO energy adopts reliability centered maintenance to improve preventive maintanance of power delivery equipment

    SciTech Connect (OSTI)

    Maurer, R.; Linn, P.; Termine, G.; Schwan, C.

    1996-08-01

    One of the biggest challenges facing PECO Energy, in the area of power delivery, is holding the line on maintenance costs while preserving high levels of worker safety, enhancing equipment reliability, and improving customer satisfaction. PECO has taken an early lead in tackling this apparent industry-wide problem by adopting a proven preventive maintenance (PM) optimization method known as Reliability Centered Maintenance (RCM). The purpose of this paper is to explain: (1) how RCM was successfully introduced at PECO using data, lessons learned and consulting support associated with EPRI`s RCM for Substations research project; (2) how the RCM methodology will be implemented over the long term for the Power Delivery System; and (3) how the RCM activities will help lead to the development of a living PM program that will foster a continuous improvement in equipment reliability through cost-effective preventive maintenance.

  11. Effects of a carbon tax on combined heat and power adoption by a microgrid

    SciTech Connect (OSTI)

    Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

    2002-10-01

    This paper describes the economically optimal adoption and operation of distributed energy resources (DER) by a hypothetical California microgrid ((mu)Grid) consisting of a group of commercial buildings over an historic test year, 1999. The optimization is conducted using a customer adoption model (DER-CAM) developed at Berkeley Lab and implemented in the General Algebraic Modeling System (GAMS). A (mu)Grid is a semiautonomous grouping of electricity and heat loads interconnected to the existing utility grid (macrogrid) but able to island from it. The (mu)Grid minimizes the cost of meeting its energy requirements (consisting of both electricity and heat loads) by optimizing the installation and operation of DER technologies while purchasing residual energy from the local combined natural gas and electricity utility. The available DER technologies are small-scale generators (< 500 kW), such as reciprocating engines, microturbines, and fuel cells, with or without CHP equipment, such as water- and space-heating and/or absorption cooling. By introducing a tax on carbon emissions, it is shown that if the (mu)Grid is allowed to install CHP-enabled DER technologies, its carbon emissions are mitigated more than without CHP, demonstrating the potential benefits of small-scale CHP technology for climate change mitigation. Reciprocating engines with heat recovery and/or absorption cooling tend to be attractive technologies for the mild southern California climate, but the carbon mitigation tends to be modest compared to purchasing utility electricity because of the predominance of relatively clean generation in California.

  12. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the

  13. Method of making permanent magnets

    DOE Patents [OSTI]

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.

  14. Method of making permanent magnets

    DOE Patents [OSTI]

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.

  15. Inductrack magnet configuration

    DOE Patents [OSTI]

    Post, Richard Freeman

    2003-10-14

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  16. Inductrack magnet configuration

    DOE Patents [OSTI]

    Post, Richard Freeman

    2003-12-16

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track of windings is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  17. Magnetic hydrogel with high coercivity

    SciTech Connect (OSTI)

    Szeri, H.; Alvero?lu, E.; Kurtan, U.; ?enel, M.; Baykal, A.

    2013-08-01

    Highlights: Polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles have been prepared. Magnetization measurements reveal that hydrogels have hard magnetic properties with high coercivity. Magnetic nanoparticles makes the gel more homogeneous and do not diffuse out of the gel during water intake. These gels are useful in applications as wastewater treatment once gels are magnetized before its usage. - Abstract: This study investigates the synthesis and characterization of polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles. Structural, electrical, and magnetic characterization of the gels have been performed with X-ray powder diffractometry, scanning electron microscopy, DC conductivity, magnetization and fluorescence spectroscopy techniques. The preparation and characterization of polyacrylamide (PAAm) hydrogels that contain 5 and 10 mg BaFe{sub 12}O{sub 19} (16 and 21 nm diameter) nanoparticles are described herein. It is seen from the fluorescence spectra that, nanoparticles surrounded to pyranine molecules so that some of pyranine molecules could not bound to the polymer strands. Electrical measurements show that presence of nanoparticles make the gel more homogeneous. Magnetization measurements reveal that hydrogels have hard magnetic properties with quite high coercivity of 4.2 kOe, which does not change with swelling. This feature makes these gels useful in applications as wastewater treatment if they are magnetized before use.

  18. Magnetized Turbulent Dynamo in Protogalaxies

    SciTech Connect (OSTI)

    Leonid Malyshkin; Russell M. Kulsrud

    2002-01-28

    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.

  19. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  20. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  1. Magnetic resonance apparatus

    DOE Patents [OSTI]

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  2. Magnetic liquefier for hydrogen

    SciTech Connect (OSTI)

    1992-12-31

    This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design of the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.

  3. THE ROLE OF TURBULENT MAGNETIC RECONNECTION IN THE FORMATION OF ROTATIONALLY SUPPORTED PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Santos-Lima, R.; De Gouveia Dal Pino, E. M.; Lazarian, A.

    2012-03-01

    The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star

  4. Analysis of a typical BWR/4 MSIV closure ATWS using RAMONA-3B and TRAC-BD1 codes

    SciTech Connect (OSTI)

    Hsu, C.J.; Neymotin, L.; Saha, P.

    1984-01-01

    Analysis of a typical BWR/4 Anticipated Transient Without Scram (ATWS) has been performed using two advanced, best-estimate computer codes, namely, RAMONA-3B and TRAC-BD1. The transient was initiated by an inadvertant closure of all Main Steam Isolation Valves (MSIVs) with subsequent failure to scram the reactor. However, all other safety features namely, the safety and relief valves, recirculation pump trip, high pressure coolant injection and the standby liquid (boron) control system were assumed to work as designed. No other operator action was assumed. It has been found that both RAMONA-3B (with three-dimensional neutron kinetics) and TRAC-BD1 (with point kinetics) yielded similar results for the global parameters such as reactor power, system pressure and the suppression pool temperature. Both calculations showed that the reactor can be brought to hot shutdown in approximately twenty to twenty-five minutes with borated water mass flow rate of 2.78 kg/s (43 gpm) with 23800 ppM of boron. The suppression pool water temperature (assuming no pool cooling) at this time could be in the range of 170 to 205/sup 0/F. An additional TRAC-BD1 calculation with RAMONA-3B reactor power indicates that the thermal-hydraulic models in RAMONA-3B, although simpler than those in TRAC-BD1, can adequately represent the system behavior during the ATWS-type transient.

  5. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect (OSTI)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  6. Typical BWR/4 MSIV closure ATWS analysis using RAMONA-3B code with space-time neutron kinetics

    SciTech Connect (OSTI)

    Neymotin, L.; Saha, P.

    1984-01-01

    A best-estimate analysis of a typical BWR/4 MSIV closure ATWS has been performed using the RAMONA-3B code with three-dimensional neutron kinetics. All safety features, namely, the safety and relief valves, recirculation pump trip, high pressure safety injections and the standby liquid control system (boron injection), were assumed to work as designed. No other operator action was assumed. The results show a strong spatial dependence of reactor power during the transient. After the initial peak of pressure and reactor power, the reactor vessel pressure oscillated between the relief valve set points, and the reactor power oscillated between 20 to 50% of the steady state power until the hot shutdown condition was reached at approximately 1400 seconds. The suppression pool bulk water temperature at this time was predicted to be approx. 96/sup 0/C (205/sup 0/F). In view of code performance and reasonable computer running time, the RAMONA-3B code is recommended for further best-estimate analyses of ATWS-type events in BWRs.

  7. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  8. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  9. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  10. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  11. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  12. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with opposite alignments of the sample magnetization direction and x-ray helicity vector. ... To determine the origin of peak B, the researchers compared experimental results to atomic ...

  13. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    DOE Patents [OSTI]

    Oder, Robin R.; Jamison, Russell E.

    2011-11-08

    An apparatus and method for continuous separation of magnetic particles from non-magnetic fluids including particular rods, magnetic fields and flow arrangements.

  14. Magnification bias as a novel probe for primordial magnetic fields

    SciTech Connect (OSTI)

    Camera, S.; Fedeli, C.; Moscardini, L. E-mail: cosimo.fedeli@oabo.inaf.it

    2014-03-01

    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation, galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10{sup −4} nG for values of the PMF power spectral index n{sub B} ∼ 0.

  15. Nuclear magnetic resonance methods

    SciTech Connect (OSTI)

    Ordidge, R. J.; Mansfield, P.

    1985-04-02

    This invention provides methods of investigating a body by nuclear magnetic resonance. Nuclear magnetic resonance is preferentially excited in a slice of the body and the resulting free induction decay signals are detected in the presence of a magnetic field having first and second gradients (G /SUB y/ , G /SUB x/ ). In one proposed method two experiments are performed in which the phase of the first gradient (G /SUB y/ ) reversal is opposite, and the detected signals from the two experiments are edited to obtain a set of signals, for Fourier transformation, occurring when the first gradient has one sense. Two such sets may be obtained, one for each sense of the first gradient, and the data obtained after Fourier transformation re-ordered and added. In a second proposed method the second gradient (G /SUB x/ ) is applied only when the first gradient (G /SUB y/ ) has a given sense, and the free induction decay signals obtained when both gradients are present, and when only the first gradient is present, are separately processed. In a third proposed method, the first gradient (G /SUB y/ ) is temporarily removed before each reversal of its sense, and the second gradient (G /SUB x/ ) is reversed while the first gradient is removed, the magnitude of the second gradient being controlled so that the time integral of the second gradient at the beginning of each period when the first gradient has a given sense is the same as at the end of the preceding such period, the free induction decay signals occurring when the first gradient has said given sense only being used for data retrieval.

  16. Continuous magnetic separator and process

    DOE Patents [OSTI]

    Oder, Robin R.; Jamison, Russell E.

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  17. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  18. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond

    SciTech Connect (OSTI)

    Xu Xiangyang . E-mail: xiangyang.xu@sohu.com; Yu Zhiming; Zhu Yongwei; Wang Baichun

    2005-03-15

    In order to improve the dispersion of detonation nanodiamonds (ND) in aqueous and non-aqueous media, a series of thermal treatments have been conducted in air ambient to modify ND surface. Small angle X-ray scattering (SAXS) technique and high resolution transmission electron microscopy (HRTEM) were introduced to observe the primary size of ND. Differential thermal analysis (DTA), X-ray diffraction (XRD) methodology, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were adopted to analyze the structure, bonds at surfaces of the treated ND. Malvern instrument Zetasizer3000HS was used for measuring the surface electric potential and the size distribution of ND. As thermal treatments can cause graphitization and oxidization of functional groups at the surface, ND treated at high temperature is correspondingly more negatively charged in an aqueous medium, and the increased absolute value of zeta potential ensures the electrostatic stability of ND particles. Specially, after being treated at a temperature more than 850K, ND can be well dispersed in various media.

  19. Potential producers and their attitudes toward adoption of biomass crops in central Florida

    SciTech Connect (OSTI)

    Rahmani, M.; Hodges, A.W.; Stricker, J.A.

    1996-12-31

    A recent study by the University of Florida, Center for Biomass Programs (1996) showed that biomass crops have potential as a new agricultural commodity in central Florida. Both herbaceous and woody biomass crops have high yields, and weather and soil conditions are favorable. In the Polk County area over 40,371 ha (100,000 A) of phosphate-mined land and about 161,486 ha (400,000 A) of pastureland may be available for biomass production at low opportunity cost. Phosphate land is owned by a few mining companies while pastureland is owned by or rented to cattlemen. Infrastructure for large-scale crop production, such as in the Midwest United States, does not presently exist in central Florida. Personal interviews were conducted with phosphate company managers and a mail survey was conducted with 940 landowners, with at least 16 ha (40 A) of agricultural land. Data were gathered related to decision making factors in growing biomass and other new crops. Results suggested that economic factors, particularly availability of an established market and an assured high return per acre were considered the most important factors. Lack of familiarity with new crops was an important barrier to their adoption. Potential net returns and production costs were considered the most important information needed to make decisions about growing biomass crops.

  20. Thermally Activated Cooling: A Regional Approach for EstimatingBuilding Adoption

    SciTech Connect (OSTI)

    Edwards, Jennifer L.; Marnay, Chris

    2005-06-01

    This paper examines the economic potential for thermally-activated cooling (TAC) technologies as a component of distributed energy resource (DER) systems in California. A geographic information system (GIS) is used to assess the regional variation of TAC potential and to visualize the geographic pattern of potential adoption. The economic potential and feasibility of DER systems in general, and especially TAC, is highly dependent on regional factors such as retail electricity rates, building cooling loads, and building heating loads. Each of these factors varies with location, and their geographic overlap at different sites is an important determinant in a market assessment of DER and TAC. This analysis uses system payback period as the metric to show the regional variation of TAC potential in California office buildings. The DER system payback with and without TAC is calculated for different regions in California using localized values of retail electricity rates and the weather-dependent variation in building cooling and heating loads. This GIS-based method has numerous applications in building efficiency studies where geographically dependent variables, such as space cooling and heating energy use, play an important role.

  1. Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

  2. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect (OSTI)

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  3. Thermal equilibrium of non-neutral plasma in dipole magnetic field

    SciTech Connect (OSTI)

    Sato, N.; Kasaoka, N.; Yoshida, Z.

    2015-04-15

    Self-organization of a long-lived structure is one of the remarkable characteristics of macroscopic systems governed by long-range interactions. In a homogeneous magnetic field, a non-neutral plasma creates a “thermal equilibrium,” which is a Boltzmann distribution on a rigidly rotating frame. Here, we study how a non-neutral plasma self-organizes in inhomogeneous magnetic field; as a typical system, we consider a dipole magnetic field. In this generalized setting, the plasma exhibits its fundamental mechanism that determines the relaxed state. The scale hierarchy of adiabatic invariants is the determinant; the Boltzmann distribution under the topological constraint by the robust adiabatic invariants (hence, the homogeneous distribution with respect to the fragile invariant) is the relevant relaxed state, which turns out to be a rigidly rotating clump of particles (just same as in a homogeneous magnetic field), while the density is no longer homogeneous.

  4. Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy

    SciTech Connect (OSTI)

    Reeves, Daniel B.; Weaver, John B.

    2015-11-30

    Magnetic nanoparticles have been studied intensely because of their possible uses in biomedical applications. Biosensing using the rotational freedom of particles has been used to detect biomarkers for cancer, hyperthermia therapy has been used to treat tumors, and magnetic particle imaging is a promising new imaging modality that can spatially resolve the concentration of nanoparticles. There are two mechanisms by which the magnetization of a nanoparticle can rotate, a fact that poses a challenge for applications that rely on precisely one mechanism. The challenge is exacerbated by the high sensitivity of the dominant mechanism to applied fields. Here, we demonstrate stochastic Langevin equation simulations for the combined rotation in magnetic nanoparticles exposed to oscillating applied fields typical to these applications to both highlight the existing relevant theory and quantify which mechanism should occur in various parameter ranges.

  5. Wireless power transfer magnetic couplers

    DOE Patents [OSTI]

    Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee

    2016-01-19

    A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.

  6. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  7. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  8. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  9. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  10. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  11. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensors, and data processing. Fortunately, additional research has proven that etching carbon with sulfuric acid can also make the carbon magnetic, opening the door for...

  12. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  13. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  14. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  15. Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (25) Areas (19) Regions (0) NEPA(1) Exploration...

  16. Measurements of magnetic field alignment

    SciTech Connect (OSTI)

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  17. Summary report for nanoscale magnetics

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Jankowski, A.F.; Tamura, E.; Sterne, P.A.; Pappas, D.P.; Tong, S.Y.

    1993-09-23

    We have probed the electronic, geometric, and magnetic nanoscale structure of ultrathin magnetic films, both monolayers and multilayers (Fe/Cu(001), FePt, FeCoPt, UFe{sub 2}, U-S). Techniques used included the MCD (magnetic circular dichroism)-variants of of x-ray absorption, core-level photoemission, and photoelectron diffraction. Progress has been made on nanoscale structure-property relations, in part of coupling of world-class experimentation and theoretical modeling. Feasibility of investigations of 5f magnetism using bulk uranium samples also has been demonstrated.

  18. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, Don G.; Birx, Dan; Cook, Edward G.

    1993-01-01

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  19. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, D.G.; Birx, D.; Cook, E.G.

    1993-01-05

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  20. Processing and Protection of Rare Earth Permanent Magnet Particulate for Bonded Magnet Applications

    SciTech Connect (OSTI)

    Peter Kelly Sokolowski

    2007-12-01

    Rapid solidification of novel mixed rare earth-iron-boron, MRE{sub 2}Fe{sub 14}B (MRE = Nd, Y, Dy; currently), magnet alloys via high pressure gas atomization (HPGA) have produced similar properties and structures as closely related alloys produced by melt spinning (MS) at low wheel speeds. Recent additions of titanium carbide and zirconium to the permanent magnet (PM) alloy design in HPGA powder (using He atomization gas) have made it possible to achieve highly refined microstructures with magnetic properties approaching melt spun particulate at cooling rates of 10{sup 5}-10{sup 6}K/s. By producing HPGA powders with the desirable qualities of melt spun ribbon, the need for crushing ribbon was eliminated in bonded magnet fabrication. The spherical geometry of HPGA powders is more ideal for processing of bonded permanent magnets since higher loading fractions can be obtained during compression and injection molding. This increased volume loading of spherical PM powder can be predicted to yield a higher maximum energy product (BH){sub max} for bonded magnets in high performance applications. Passivation of RE-containing powder is warranted for the large-scale manufacturing of bonded magnets in applications with increased temperature and exposure to humidity. Irreversible magnetic losses due to oxidation and corrosion of particulates is a known drawback of RE-Fe-B based alloys during further processing, e.g. injection molding, as well as during use as a bonded magnet. To counteract these effects, a modified gas atomization chamber allowed for a novel approach to in situ passivation of solidified particle surfaces through injection of a reactive gas, nitrogen trifluoride (NF{sub 3}). The ability to control surface chemistry during atomization processing of fine spherical RE-Fe-B powders produced advantages over current processing methodologies. In particular, the capability to coat particles while 'in flight' may eliminate the need for post atomization treatment

  1. Acceleration during magnetic reconnection

    SciTech Connect (OSTI)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  2. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, David C. (Ames, IA)

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  3. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  4. Secondary lift for magnetically levitated vehicles

    DOE Patents [OSTI]

    Cooper, Richard K.

    1976-01-01

    A high-speed terrestrial vehicle that is magnetically levitated by means of magnets which are used to induce eddy currents in a continuous electrically conductive nonferromagnetic track to produce magnetic images that repel the inducing magnet to provide primary lift for the vehicle. The magnets are arranged so that adjacent ones have their fields in opposite directions and the magnets are spaced apart a distance that provides a secondary lift between each magnet and the adjacent magnet's image, the secondary lift being maximized by optimal spacing of the magnets.

  5. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    SciTech Connect (OSTI)

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-02-01

    This report describes a Berkeley Lab effort to model the economics and operation of small-scale (<500 kW) on-site electricity generators based on real-world installations at several example customer sites. This work builds upon the previous development of the Distributed Energy Resource Customer Adoption Model (DER-CAM), a tool designed to find the optimal combination of installed equipment, and idealized operating schedule, that would minimize the site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a historic test period, usually a recent year. This study offered the first opportunity to apply DER-CAM in a real-world setting and evaluate its modeling results. DER-CAM has three possible applications: first, it can be used to guide choices of equipment at specific sites, or provide general solutions for example sites and propose good choices for sites with similar circumstances; second, it can additionally provide the basis for the operations of installed on-site generation; and third, it can be used to assess the market potential of technologies by anticipating which kinds of customers might find various technologies attractive. A list of approximately 90 DER candidate sites was compiled and each site's DER characteristics and their willingness to volunteer information was assessed, producing detailed information on about 15 sites of which five sites were analyzed in depth. The five sites were not intended to provide a random sample, rather they were chosen to provide some diversity of business activity, geography, and technology. More importantly, they were chosen in the hope of finding examples of true business decisions made based on somewhat sophisticated analyses, and pilot or demonstration projects were avoided. Information on the benefits and pitfalls of implementing a DER system was also presented from an additional ten sites including agriculture, education, health

  6. Distributed energy resources customer adoption modeling with combined heat and power applications

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

    2003-07-01

    In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

  7. Magnetic agglomeration method for size control in the synthesis...

    Office of Scientific and Technical Information (OSTI)

    Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles Title: Magnetic agglomeration method for size control in the synthesis of magnetic ...

  8. SOLAR MAGNETIC TRACKING. IV. THE DEATH OF MAGNETIC FEATURES

    SciTech Connect (OSTI)

    Lamb, D. A.; Howard, T. A.; DeForest, C. E.; Parnell, C. E.; Welsch, B. T.

    2013-09-10

    The removal of magnetic flux from the quiet-Sun photosphere is important for maintaining the statistical steady state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected into the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux, either by cancellation (submerging or rising loops, or reconnection in the photosphere) or by dispersal of flux. We used the SWAMIS feature tracking code to understand how nearly 2 Multiplication-Sign 10{sup 4} magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of the quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously detected flux so that it is too small and too weak to be detected, rather than completely eliminating it. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 hr, is three times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.

  9. Neutron stars in a perturbative f(R) gravity model with strong magnetic fields

    SciTech Connect (OSTI)

    Cheoun, Myung-Ki; Deliduman, Cemsinan; Gngr, Can; Kele?, Vildan; Ryu, C.Y.; Kajino, Toshitaka; Mathews, Grant J. E-mail: cemsinan@msgsu.edu.tr E-mail: kelesvi@itu.edu.tr E-mail: kajino@nao.ac.jp

    2013-10-01

    In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17?18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R) = R+?R{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter ? along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.

  10. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  11. Magnetic-field-dosimetry system

    DOE Patents [OSTI]

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  12. Magnetic polarizability of the nucleon

    SciTech Connect (OSTI)

    Ragusa, S.

    1996-01-01

    We derive an expression for the magnetic polarizability of the nucleon, as related to sums of products of its electromagnetic transition moments involving the electric and magnetic dipoles and mean-square radii, as well as the electric quadrupole moment. Two sum rules emerge from the calculation. {copyright} {ital 1995 The American Physical Society.}

  13. Exploration of Artificial Frustrated Magnets

    SciTech Connect (OSTI)

    Samarth, Nitin; Schiffer, Peter

    2015-02-17

    This program encompasses experimental and theoretical studies of arrays of nanometer-scale magnets known as “artificial frustrated magnets”. These magnets are small and closely spaced, so that their behavior as a collective group is complex and reveals insights into how such collections of interacting objects behave as a group. In particular, the placement of the magnets is such that the interactions between them are “frustrated”, in that they compete with each other. These systems are analogs to a class of magnetic materials in which the lattice geometry frustrates interactions between individual atomic moments, and in which a wide range of novel physical phenomena have been recently observed. The advantage to studying the arrays is that they are both designable and resolvable: i.e., the experiments can control all aspects of the array geometry, and can also observe how individual elements of the arrays behave. This research program demonstrated a number of phenomena including the role of multiple collective interactions, the feasibility of using systems with their magnetism aligned perpendicular to the plane of the array, the importance of disorder in the arrays, and the possibility of using high temperatures to adjust the magnet orientations. All of these phenomena, and others explored in this program, add to the body of knowledge around collective magnetic behavior and magnetism in general. Aside from building scientific knowledge in an important technological area, with relevance to computing and memory, the program also gave critical support to the education of students working on the experiments.

  14. Josephson magnetic rotary valve

    SciTech Connect (OSTI)

    Soloviev, I. I.; Klenov, N. V.; Bakurskiy, S. V.; Bol'ginov, V. V.; Ryazanov, V. V.; Kupriyanov, M. Yu.; Golubov, A. A.

    2014-12-15

    We propose a control element for a Josephson spin valve. It is a complex Josephson device containing ferromagnetic (F) layer in the weak-link area consisting of two regions, representing 0 and π Josephson junctions, respectively. The valve's state is defined by mutual orientations of the F-layer magnetization vector and boundary line between 0 and π sections of the device. We consider possible implementation of the control element by introduction of a thin normal metal layer in a part of the device area. By means of theoretical simulations, we study properties of the valve's structure as well as its operation, revealing such advantages as simplicity of control, high characteristic frequency, and good legibility of the basic states.

  15. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  16. Magnet measurement workshop

    SciTech Connect (OSTI)

    1986-12-01

    This report covers the deliberations of the participants the workshop and some subsequent contributions. Section III, the report of the rotating coil group, includes a summary table of the major measuring systems in use today, with separate sections on each. Section IV is the summary report of the group that addressed other measuring techniques. Because one of the limits of all the techniques being considered is electronic data acquisition, Section V addresses this topic. A set of issues relevant to magnetic field measurements of SSC dipoles was raised and addressed during the workshop. These are included as Section VI. Section VII includes a complete list of attendees with their addresses and a separate list of the members of the two working groups.

  17. A design for a high voltage magnet coil ringer test set

    SciTech Connect (OSTI)

    Koska, W. ); Sims, R.E. )

    1992-04-01

    By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ring'' the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed.

  18. A design for a high voltage magnet coil ringer test set

    SciTech Connect (OSTI)

    Koska, W.; Sims, R.E.

    1992-04-01

    By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ``ring`` the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed.

  19. Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004

    SciTech Connect (OSTI)

    Richman, Eric E.

    2006-09-29

    This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

  20. Permanent-magnet multipole with adjustable strength

    DOE Patents [OSTI]

    Halbach, K.

    1982-09-20

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  1. Permanent magnet multipole with adjustable strength

    DOE Patents [OSTI]

    Halbach, Klaus

    1985-01-01

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  2. Plated lamination structures for integrated magnetic devices

    DOE Patents [OSTI]

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  3. Method and apparatus for separating materials magnetically

    DOE Patents [OSTI]

    Hise, Jr., Eugene C.; Holman, Allen S.

    1982-01-01

    Magnetic and non-magnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  4. Magnetic circular dichroism in x-ray absorption and core-level photoemission

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Gouder, T.H.; Colmenares, C.A.; Pappas, D.P.

    1993-03-17

    Here is reported observation of magnetic circular dichroism in both x-ray absorption and core-level photoemission of ultra thin magnetic films using circularly polarized x-rays. Iron films (1--4 ML) grown on a Cu(001) substrate at 150 K and magnetized perpendicular to the surface show dramatic changes in the L{sub 2,3} branching ratio for different x-ray polarizations. For linearly-polarized x-rays perpendicular to the magnetic axis of the sample the branching ratio was 0.75. For films {ge} 2 ML, this ratio varied from 0.64 to 0.85 for photon spin parallel and anti-parallel, respectively, to the magnetic axis. This effect was observed either by changing the x-ray helicity for a fixed magnetic axis, or by reversing the magnetic axis for a fixed x-ray helicity. Our observation can be analyzed within a simple one-electron picture, if the raw branching ratios are no so that the linear value becomes statistical Furthermore, warming the films to {approximately}300 K eliminated this effect, indicating a loss of magnetization in the film over a temperature range of {approximately}30 K. Finally, reversing the relative orientation of the photon spin and the magnetic axis from parallel to anti-parallel allowed measurement of the exchange splitting of the Fe 2p and 3p core levels which were found to be 0.3 eV and 0.2 eV. respectively. These results are consistent with earlier studies, but the use of off-plane circularly-polarized x-rays from a bending magnet monochromator offers {approximately}2 orders of magnitude greater intensity than typical spin-polarization measurements. Finally, we have performed preliminary x-ray absorption studies of UFe{sub 2}, demonstrating the feasibilty of MCD measurements in 5f as well as 3d materials.

  5. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over

  6. Optical Magnetism from Dielectric Resonator Metamaterials. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Optical Magnetism from Dielectric Resonator Metamaterials. Citation Details In-Document Search Title: Optical Magnetism from Dielectric Resonator Metamaterials. Abstract not ...

  7. Magnetic diagnostics for equilibrium reconstructions with eddy...

    Office of Scientific and Technical Information (OSTI)

    Magnetic diagnostics for equilibrium reconstructions with eddy currents on the lithium tokamak experimenta) Citation Details In-Document Search Title: Magnetic diagnostics for...

  8. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired...

  9. Dielectric Resonator Metamasurfaces: Optical Magnetism Emission...

    Office of Scientific and Technical Information (OSTI)

    Optical Magnetism Emission and Optical Devices. Citation Details In-Document Search Title: Dielectric Resonator Metamasurfaces: Optical Magnetism Emission and Optical Devices. ...

  10. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their...

  11. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Direct Imaging of Asymmetric Magnetization Reversal Print Wednesday, 28 September 2005 00:00 The phenomenon of exchange bias has...

  12. Design Principles for Materials with Magnetic Functionality

    SciTech Connect (OSTI)

    Thompson, Joe David

    2015-11-05

    This report describes the processes involved with refining and testing design principles of high density, magnetic materials and while observing their magnetic functionality.

  13. National High Magnetic Field Laboratory moves closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers to carefully tune material parameters while perfectly reproducing the non-invasive magnetic field. Such high magnetic fields confine electrons to nanometer scale...

  14. Design Principles for Materials with Magnetic Functionality ...

    Office of Scientific and Technical Information (OSTI)

    Design Principles for Materials with Magnetic Functionality Citation Details In-Document Search Title: Design Principles for Materials with Magnetic Functionality This report ...

  15. Mesoscale magnetism (Journal Article) | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    Mesoscale magnetism This content will become publicly available on March 16, 2017 Prev Next Title: Mesoscale magnetism Authors: Hoffmann, Axel ; Schulthei, Helmut ...

  16. Magnetic Pair Spectrometer Studies of Electromagnetic Transitions...

    Office of Scientific and Technical Information (OSTI)

    Warburton, E. K. PHYSICS; BRANCHING RATIO; CARBON 13; CARBON 14; DECAY; DEUTERON BEAMS; ELECTRIC CHARGES; ENERGY; ENERGY LEVELS; ERRORS; LIFETIME; MAGNETIC FIELDS; MAGNETIC...

  17. Magnetic Pair Spectrometer Studies of Electromagnetic Transitions...

    Office of Scientific and Technical Information (OSTI)

    English Subject: PHYSICS; BRANCHING RATIO; CARBON 13; CARBON 14; DECAY; DEUTERON BEAMS; ELECTRIC CHARGES; ENERGY; ENERGY LEVELS; ERRORS; LIFETIME; MAGNETIC FIELDS; MAGNETIC...

  18. Category:Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Magnetics page? For detailed information on Ground...

  19. Testing military grade magnetics (transformers, inductors and coils).

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Engineers and designers are constantly searching for test methods to qualify or 'prove-in' new designs. In the High Reliability world of military parts, design test, qualification tests, in process tests and product characteristic tests, become even more important. The use of in process and function tests has been adopted as a way of demonstrating that parts will operate correctly and survive its 'use' environments. This paper discusses various types of tests to qualify the magnetic components - the current carrying capability of coils, a next assembly 'as used' test, a corona test and inductance at temperature test. Each of these tests addresses a different potential failure on a component. The entire process from design to implementation is described.

  20. The Phenix Detector magnet subsystem

    SciTech Connect (OSTI)

    Yamamoto, R.M.; Bowers, J.M.; Harvey, A.R.

    1995-05-19

    The PHENIX [Photon Electron New Heavy Ion Experiment] Detector is one of two large detectors presently under construction for RHIC (Relativistic Heavy Ion Collider) located at Brookhaven National Laboratory. Its primary goal is to detect a new phase of matter; the quark-gluon plasma. In order to achieve this objective, the PHENIX Detector utilizes a complex magnet subsystem which is comprised of two large magnets identified as the Central Magnet (CM) and the Muon Magnet (MM). Muon Identifier steel is also included as part of this package. The entire magnet subsystem stands over 10 meters tall and weighs in excess of 1900 tons (see Fig. 1). Magnet size alone provided many technical challenges throughout the design and fabrication of the project. In addition, interaction with foreign collaborators provided the authors with new areas to address and problems to solve. Russian collaborators would fabricate a large fraction of the steel required and Japanese collaborators would supply the first coil. This paper will describe the overall design of the PHENIX magnet subsystem and discuss its present fabrication status.

  1. Mu2e Magnetic Measurements

    SciTech Connect (OSTI)

    Buehler, Marc; Tartaglia, Michael; Tompkins, John; Orozco, Charles

    2014-07-01

    The Mu2e experiment at Fermilab is designed to explore charged lepton flavor violation by searching for muon-to-electron conversion. The magnetic field generated by a system of solenoids is crucial for Mu2e and requires accurate characterization to detect any flaws and to produce a detailed field map. Stringent physics goals are driving magnetic field specifications for the Mu2e solenoids. A field mapper is being designed, which will produce detailed magnetic field maps. The uniform field region of the spectrometer volume requires the highest level of precision (1 Gauss per 1 Tesla). During commissioning, multiple magnetic field maps will be generated to verify proper alignment of all magnet coils, and to create the final magnetic field map. In order to design and build a precise field mapping system consisting of Hall and NRM probes, tolerances and precision for such a system need to be evaluated. In this paper we present a design for the Mu2e field mapping hardware, and discuss results from OPERA-3D simulations to specify parameters for Hall and NMR probes. We also present a fitting procedure for the analytical treatment of our expected magnetic measurements.

  2. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, Myles A.; Morris, Robert S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorbtion agents can be incorporated during the manufacture of the structure.

  3. Magnetic cellulose-derivative structures

    DOE Patents [OSTI]

    Walsh, M.A.; Morris, R.S.

    1986-09-16

    Structures to serve as selective magnetic sorbents are formed by dissolving a cellulose derivative such as cellulose triacetate in a solvent containing magnetic particles. The resulting solution is sprayed as a fine mist into a chamber containing a liquid coagulant such as n-hexane in which the cellulose derivative is insoluble but in which the coagulant is soluble or miscible. On contact with the coagulant, the mist forms free-flowing porous magnetic microspheric structures. These structures act as containers for the ion-selective or organic-selective sorption agent of choice. Some sorption agents can be incorporated during the manufacture of the structure. 3 figs.

  4. Nuclear magnetic resonance contrast agents

    DOE Patents [OSTI]

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  5. Nuclear magnetic resonance contrast agents

    DOE Patents [OSTI]

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  6. Periodic permanent magnet focused klystron

    DOE Patents [OSTI]

    Ferguson, Patrick; Read, Michael; Ives, R Lawrence

    2015-04-21

    A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.

  7. Stress analysis of superconducting magnets for magnetic fusion reactors

    SciTech Connect (OSTI)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility (ETF).

  8. Improved superconducting magnet wire

    DOE Patents [OSTI]

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  9. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  10. Quantum Monte Carlo Calculations Applied to Magnetic Molecules

    SciTech Connect (OSTI)

    Larry Engelhardt

    2006-08-09

    We have calculated the equilibrium thermodynamic properties of Heisenberg spin systems using a quantum Monte Carlo (QMC) method. We have used some of these systems as models to describe recently synthesized magnetic molecules, and-upon comparing the results of these calculations with experimental data-have obtained accurate estimates for the basic parameters of these models. We have also performed calculations for other systems that are of more general interest, being relevant both for existing experimental data and for future experiments. Utilizing the concept of importance sampling, these calculations can be carried out in an arbitrarily large quantum Hilbert space, while still avoiding any approximations that would introduce systematic errors. The only errors are statistical in nature, and as such, their magnitudes are accurately estimated during the course of a simulation. Frustrated spin systems present a major challenge to the QMC method, nevertheless, in many instances progress can be made. In this chapter, the field of magnetic molecules is introduced, paying particular attention to the characteristics that distinguish magnetic molecules from other systems that are studied in condensed matter physics. We briefly outline the typical path by which we learn about magnetic molecules, which requires a close relationship between experiments and theoretical calculations. The typical experiments are introduced here, while the theoretical methods are discussed in the next chapter. Each of these theoretical methods has a considerable limitation, also described in Chapter 2, which together serve to motivate the present work. As is shown throughout the later chapters, the present QMC method is often able to provide useful information where other methods fail. In Chapter 3, the use of Monte Carlo methods in statistical physics is reviewed, building up the fundamental ideas that are necessary in order to understand the method that has been used in this work. With these

  11. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies

  12. Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x

    SciTech Connect (OSTI)

    Alexander S. Chernyshov

    2006-08-09

    Magnetic materials exhibiting magnetic phase transitions simultaneously with structural rearrangements of their crystal lattices hold a promise for numerous applications including magnetic refrigeration, magnetomechanical devices and sensors. We undertook a detailed study of a single crystal of dysprosium metal, which is a classical example of a system where magnetic and crystallographic sublattices can be either coupled or decoupled from one another. Magnetocaloric effect, magnetization, ac magnetic susceptibility, and heat capacity of high purity single crystals of dysprosium have been investigated over broad temperature and magnetic field intervals with the magnetic field vector parallel to either the a- or c-axes of the crystal. Notable differences in the behavior of the physical properties when compared to Dy samples studied in the past have been observed between 110 K and 125 K, and between 178 K and {approx}210 K. A plausible mechanism based on the formation of antiferromagnetic clusters in the impure Dy has been suggested in order to explain the reduction of the magnetocaloric effect in the vicinity of the Neel point. Experimental and theoretical investigations of the influence of commensurability effects on the magnetic phase diagram and the value of the magnetocaloric effect have been conducted. The presence of newly found anomalies in the physical properties has been considered as evidence of previously unreported states of Dy. The refined magnetic phase diagram of dysprosium with the magnetic field vector parallel to the a-axis of a crystal has been constructed and discussed. The magnetic and crystallographic properties of Gd{sub 5}Sb{sub x}Ge{sub 4-x} pseudo-binary system were studied by x-ray diffraction (at room temperature), heat capacity, ac-magnetic susceptibility, and magnetization in the temperature interval 5-320 K in magnetic fields up to 100 kOe. The magnetic properties of three composition (x = 0.5, 1,2) were examined in detail. The Gd{sub 5

  13. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the...

  14. Magnet Girder Assembly and Installation

    ScienceCinema (OSTI)

    None

    2013-07-17

    It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

  15. Magnetically focused liquid drop radiator

    DOE Patents [OSTI]

    Botts, Thomas E. (Fairfax, VA); Powell, James R. (Shoreham, NY); Lenard, Roger (Redondo Beach, CA)

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  16. Magnetically focused liquid drop radiator

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  17. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  18. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering ...

  19. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... It is a perfect "diamagnet," repelled by an external magnetic field. Over the past decade, however, research has indicated that proton irradiation (i.e. hydrogen doping) of carbon ...

  20. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  1. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic...

  2. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gambino, S. Mangin, S. Roy, and P. Fischer, "X-ray diffraction microscopy of magnetic structures," Phys. Rev. Lett. 107, 033904 (2011). ALS Science Highlight 244 ALSNews Vol. 329...

  3. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. McNulty, R. Gambino, S. Mangin, S. Roy, and P. Fischer, "X-ray diffraction microscopy of magnetic structures," Phys. Rev. Lett. 107, 033904 (2011). ALS Science Highlight 244...

  4. Optically detected magnetic resonance imaging

    SciTech Connect (OSTI)

    Blank, Aharon; Shapiro, Guy; Fischer, Ran; London, Paz; Gershoni, David

    2015-01-19

    Optically detected magnetic resonance provides ultrasensitive means to detect and image a small number of electron and nuclear spins, down to the single spin level with nanoscale resolution. Despite the significant recent progress in this field, it has never been combined with the power of pulsed magnetic resonance imaging techniques. Here, we demonstrate how these two methodologies can be integrated using short pulsed magnetic field gradients to spatially encode the sample. This result in what we denote as an 'optically detected magnetic resonance imaging' technique. It offers the advantage that the image is acquired in parallel from all parts of the sample, with well-defined three-dimensional point-spread function, and without any loss of spectroscopic information. In addition, this approach may be used in the future for parallel but yet spatially selective efficient addressing and manipulation of the spins in the sample. Such capabilities are of fundamental importance in the field of quantum spin-based devices and sensors.

  5. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, Larry D.; Ballard, William P.; Clark, M. Collins; Marder, Barry M.

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  6. Magnetically insulated transmission line oscillator

    DOE Patents [OSTI]

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  7. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

    SciTech Connect (OSTI)

    Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

    2009-07-01

    A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

  8. Two coordination polymers of manganese(II) isophthalate and their preparation, structures, and magnetic properties

    SciTech Connect (OSTI)

    Chen Jinxi; Wang Jingjing; Ohba, Masaaki

    2012-01-15

    Two manganese coordination polymers, [Mn{sub 2}(ip){sub 2}(dmf)]{center_dot}dmf (1) and [Mn{sub 4}(ip){sub 4}(dmf){sub 6}]{center_dot}2dmf (2) (ip=isophthalate; dmf=N,N-dimethylformamide), have been synthesized and characterized. X-ray crystal structural data reveal that compound 1 crystallizes in triclinic space group P-1, a=9.716(3) A, b=12.193(3) A, c=12.576(3) A, {alpha}=62.19(2) Degree-Sign , {beta}=66.423(17) Degree-Sign , {gamma}=72.72(2) Degree-Sign , Z=2, while compound 2 crystallizes in monoclinic space group Cc, a=19.80(3) A, b=20.20(2) A, c=18.01(3) A, {beta}=108.40(4) Degree-Sign , Z=4. Variable-temperature magnetic susceptibilities of compounds 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent Mn(II) ions. - Graphical abstract: Three-dimensional porous and two-dimensional layered manganese isophthalates have been prepared. Magnetic susceptibility measurements exhibit overall weak antiferromagnetic interactions between the Mn(II) ions in both compounds. Highlights: Black-Right-Pointing-Pointer Two manganese isophthalates have been prepared. Black-Right-Pointing-Pointer Compound 1 adopts a three-dimensional porous structure. Black-Right-Pointing-Pointer Compound 2 adopts a two-dimensional layered structure. Black-Right-Pointing-Pointer Magnetic properties of both compounds are investigated.

  9. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  10. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  11. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMMS Condensed Matter and Magnet Science The group has a distinguished history of applying cutting-edge condensed matter physics research and high magnetic field science to mission-relevant materials challenges as well as fundamental investigations of emergent physical phenomena. Contact Us Group Leader Michael Hundley Email Deputy Group Leader Chuck Mielke Email NHMFL-PFF Director Chuck Mielke Email Deputy NHMFL-PFF Director Ross McDonald Email Group Office (505) 667-4838 NHMFL Office (505)

  12. MICE Spectrometer Magnet System Progress

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  13. Superconducting magnet development in Japan

    SciTech Connect (OSTI)

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  14. Optical sensor of magnetic fields

    DOE Patents [OSTI]

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  15. Ames Lab 101: Ultrafast Magnetic Switching

    SciTech Connect (OSTI)

    Jigang Wang

    2013-04-08

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  16. Ames Lab 101: Ultrafast Magnetic Switching

    ScienceCinema (OSTI)

    Jigang Wang

    2013-06-05

    Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.

  17. Steering magnet design for a limited space

    SciTech Connect (OSTI)

    Okamura,M.; Fite, J.; Lodestro, V.; Raparia, D.; Ritter, J.

    2009-05-04

    We compare two extreme designs of steering magnets. The first one is a very thin steering magnet design which occupies only 6 mm in length and can be additionally installed as needed. The other is realized by applying extra coil windings to a quadrupole magnet and does not consume any length. The properties and the features of these steering magnets are discussed.

  18. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2010

    SciTech Connect (OSTI)

    Meyers, Stephen; Williams, Alison; Chan, Peter

    2011-12-07

    This paper presents estimates of the key impacts of the energy and water conservation standards that have been adopted from 1987 through 2010. The standards covered include those set by legislation as well as standards adopted by DOE through rulemaking. We estimate that energy efficiency standards for consumer products and certain commercial and industrial equipment that have been adopted from 1987 through 2010 saved 3.0 quads in 2010, have had a cumulative energy savings of 25.9 quads through 2010 and will achieve cumulative energy savings of 158 quads over the period 1990-2070. Thus, the majority of the savings are still to come as products subject to standards enter the stock. Furthermore, the standards will have a cumulative net present value (NPV) of consumer benefit of between $851 billion and $1,103 billion, using 7 percent and 3 percent discount rates, respectively. In addition, we estimate the water conservation standards, together with those energy conservation standards that also save water, saved residential consumers 1.5 trillion gallons of water in 2010, have had cumulative water savings of 11.7 trillion gallons through 2010, and will achieve cumulative water savings by 2040 of 51.4 trillion gallons.

  19. Energy Use Savings for a Typical New Residential Dwelling Unit Based on the 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) require a substantial improvement in energy efficiency compared to the 2006 IECC. This report averages the energy use savings for a typical new residential dwelling unit based on the 2009 and 2012 IECC compared to the 2006 IECC. Results are reported by the eight climate zones in the IECC and for the national average.

  20. Size and grain morphology dependent magnetic behaviour of Co-doped ZnO

    SciTech Connect (OSTI)

    Vagadia, Megha; Ravalia, Ashish; Khachar, Uma; Solanki, P.S.; Doshi, R.R.; Rayaprol, S.; Kuberkar, D.G.

    2011-11-15

    Highlights: {yields} Structure and magnetic studies on Co-doped ZnO. {yields} Synthesis method dependent comparison of magnetic properties. {yields} Grain size and morphology affect the magnetic properties of Co-doped ZnO. -- Abstract: We have carried out a comparative study of structural, microstructural and magnetic properties of the two sets of Co-doped ZnO samples synthesized using solid state reaction and sol-gel method. Rietveld refinement of the X-ray diffraction data reveals single phase hexagonal wurtzite structure for all the samples, while the tunnelling electron microscopy measurements show the presence of nano-phase in the sol-gel grown Co-doped ZnO samples. It is found that, the microstructure strongly depends on the synthesis method adopted. Samples with higher Co-concentration synthesized by SSR route exhibit antiferromagnetism while SG grown Co-doped ZnO samples exhibit weak ferromagnetic behaviour. Improved magnetic phase in the SG grown samples has been attributed to the grain morphology.

  1. Writing magnetic patterns with surface acoustic waves

    SciTech Connect (OSTI)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi

    2014-05-07

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10 μm wide stripes of alternating magnetization and a 3 μm dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  2. Signal enhancement using a switchable magnetic trap

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2012-05-29

    A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.

  3. QUASI-BIENNIAL OSCILLATIONS IN THE SOLAR TACHOCLINE CAUSED BY MAGNETIC ROSSBY WAVE INSTABILITIES

    SciTech Connect (OSTI)

    Zaqarashvili, Teimuraz V.; Carbonell, Marc; Oliver, Ramon; Ballester, Jose Luis E-mail: marc.carbonell@uib.e E-mail: joseluis.ballester@uib.e

    2010-11-20

    Quasi-biennial oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rossby waves in the solar tachocline using the shallow water magnetohydrodynamic approximation. Our analysis shows that the combination of typical differential rotation and a toroidal magnetic field with a strength of {>=}10{sup 5} G triggers the instability of the m = 1 magnetic Rossby wave harmonic with a period of {approx}2 years. This harmonic is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar surface and consequently may lead to the observed QBO in solar activity features. The period of QBOs may change throughout a cycle, and from cycle to cycle, due to variations of the mean magnetic field and differential rotation in the tachocline.

  4. Development of a Process to Build Polyimide Insulated Magnets For Operation at 350C

    SciTech Connect (OSTI)

    Zatz, Irving J.

    2013-07-09

    An extensive R&D program has been conducted that has confirmed the feasibility of designing and fabricating copper alloy magnets that can successfully operate at temperatures as high as 350C. The process, originally developed for the possibility of manufacturing in-vessel resonant magnetic field perturbation (RMP) coils for JET, has been optimized for insulated magnet (and, potentially, other high temperature component) applications. One of the benefits of high temperature operation is that active cooling may no longer be required, greatly simplifying magnet/component design. These elevated temperatures are beyond the safe operating limits of conventional OFHC copper and the epoxies that bond and insulate the turns of typical magnets. This would necessitate the use an alternative copper alloy conductor such as C18150 (CuCrZr). Coil manufacture with polyimide is very similar to conventional epoxy bonded coils. Conductors would be dry wound then impregnated with polyimide of low enough viscosity to permit saturation, then cured; similar to the vacuum pressure impregnation process used for conventional epoxy bonded coils. Representative polyimide insulated coils were mechanically tested at both room temperature and 350C. Mechanical tests included turn-to-turn shear bond strength and overall polyimide adhesion strength, as well as the flexural strength of a 48-turn polyimide-bonded coil bundle. This paper will detail the results of the testing program on coil samples. These results demonstrate mechanical properties as good, or better than epoxy bonded magnets, even at 350C.

  5. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  6. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  7. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  8. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  9. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Print The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron microscopy at the ALS to directly image the magnetic structure of an exchange-biased film,

  10. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imaging of Asymmetric Magnetization Reversal Direct Imaging of Asymmetric Magnetization Reversal Print Wednesday, 28 September 2005 00:00 The phenomenon of exchange bias has transformed how data is read on magnetic hard disks and created an explosion in their information storage density. However, it remains poorly understood, and even the fundamental mechanism of magnetic reversal for exchange-biased systems in changing magnetic fields is unclear. By using x-ray photoemission electron

  11. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  12. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  13. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  14. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  15. Magnetic reconnection | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic reconnection Subscribe to RSS - Magnetic reconnection Magnetic reconnection (henceforth called "reconnection") refers to the breaking and reconnecting of oppositely directed magnetic field lines in a plasma. In the process, magnetic field energy is converted to plasma kinetic and thermal energy. Physicist Fatima Ebrahimi conducts computer simulations that indicate the efficiency of an innovative fusion start-up technique Physicist Fatima Ebrahimi at the U.S. Department of

  16. Exact scattering matrix of graphs in magnetic field and quantum noise

    SciTech Connect (OSTI)

    Caudrelier, Vincent; Mintchev, Mihail; Ragoucy, Eric

    2014-08-15

    We consider arbitrary quantum wire networks modelled by finite, noncompact, connected quantum graphs in the presence of an external magnetic field. We find a general formula for the total scattering matrix of the network in terms of its local scattering properties and its metric structure. This is applied to a quantum ring with N external edges. Connecting the external edges of the ring to heat reservoirs, we study the quantum transport on the graph in ambient magnetic field. We consider two types of dynamics on the ring: the free Schrdinger and the free massless Dirac equations. For each case, a detailed study of the thermal noise is performed analytically. Interestingly enough, in presence of a magnetic field, the standard linear Johnson-Nyquist law for the low temperature behaviour of the thermal noise becomes nonlinear. The precise regime of validity of this effect is discussed and a typical signature of the underlying dynamics is observed.

  17. Efficiently recyclable magnetic core-shell photocatalyst for photocatalytic oxidation of chlorophenol in water

    SciTech Connect (OSTI)

    Choi, Kyong-Hoon; Oh, Seung-Lim; Jung, Jong-Hyung; Jung, Jin-Seung

    2012-04-01

    Multifunctional Fe{sub 3}O{sub 4}-TiO{sub 2} core-shell submicron particles were fabricated by a simple surface modification process that induces the magnetic submicron particles to be coated with a TiO{sub 2} shell. As characterized by field emission scanning electron microscopy, (FESEM), the as-synthesized Fe{sub 3}O{sub 4}-TiO{sub 2} particles exhibit a narrow size distribution with a typical size of 248 {+-} 19 nm and 8 nm in shell thickness. Magnetic measurement indicates that the as-synthesized Fe{sub 3}O{sub 4}-TiO{sub 2} core-shell particles are superparamagnetic at room temperature. Photocatalytic experiment is demonstrated by utilizing the oxidation reaction of 2,4,6-trichlorophenol (2,4,6-TCP) with the photofunctional magnetic nanoparticles.

  18. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    SciTech Connect (OSTI)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  19. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  20. Magnetic properties of the iron laminations for CBA magnets

    SciTech Connect (OSTI)

    Tannenbaum, M.J.; Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1983-01-01

    The required magnetic properties of the iron for CBA dipoles are for the most part the same as those for conventional accelerators, namely: low coercive force, high permeability at both low and high inductions, and high saturation induction. There are two main differences in the CBA application, (1) the iron is at 3.8/sup 0/K, and (2) the magnetic field in the iron can go as high as 6 Tesla, which is well above saturation. Measurements of the magnetization curves for CBA iron laminations at 300/sup 0/K and 4.2/sup 0/K are presented. The data are analyzed in terms of a simple model in which the variation in saturation induction can be separated from the low field permeability variation. Tolerances on coercive force, permeability, and saturation induction are discussed.

  1. Barriers in the transition to global chaos in collisionless magnetic reconnection. II. Field line spectroscopy

    SciTech Connect (OSTI)

    Borgogno, D.; Grasso, D.; Pegoraro, F.; Schep, T. J.

    2011-10-15

    The transitional phase from local to global chaos in the magnetic field of a reconnecting current layer is investigated. The identification of the ridges in the field of the finite time Lyapunov exponent as barriers to the field line motion is carried out adopting the technique of field line spectroscopy to analyze the radial position of a field line while it winds its way through partial stochastic layers and to compare the frequencies of the field line motion with the corresponding frequencies of the distinguished hyperbolic field lines that are the nonlinear generalizations of linear X-lines.

  2. MagRad: A code to optimize the operation of superconducting magnets in a radiation environment

    SciTech Connect (OSTI)

    Yeaw, C.T.

    1995-12-31

    A powerful computational tool, called MagRad, has been developed which optimizes magnet design for operation in radiation fields. Specifically, MagRad has been used for the analysis and design modification of the cable-in-conduit conductors of the TF magnet systems in fusion reactor designs. Since the TF magnets must operate in a radiation environment which damages the material components of the conductor and degrades their performance, the optimization of conductor design must account not only for start-up magnet performance, but also shut-down performance. The degradation in performance consists primarily of three effects: reduced stability margin of the conductor; a transition out of the well-cooled operating regime; and an increased maximum quench temperature attained in the conductor. Full analysis of the magnet performance over the lifetime of the reactor includes: radiation damage to the conductor, stability, protection, steady state heat removal, shielding effectiveness, optimal annealing schedules, and finally costing of the magnet and reactor. Free variables include primary and secondary conductor geometric and compositional parameters, as well as fusion reactor parameters. A means of dealing with the radiation damage to the conductor, namely high temperature superconductor anneals, is proposed, examined, and demonstrated to be both technically feasible and cost effective. Additionally, two relevant reactor designs (ITER CDA and ARIES-II/IV) have been analyzed. Upon addition of pure copper strands to the cable, the ITER CDA TF magnet design was found to be marginally acceptable, although much room for both performance improvement and cost reduction exists. A cost reduction of 10-15% of the capital cost of the reactor can be achieved by adopting a suitable superconductor annealing schedule. In both of these reactor analyses, the performance predictive capability of MagRad and its associated costing techniques have been demonstrated.

  3. Dynamic control of spin states in interacting magnetic elements

    DOE Patents [OSTI]

    Jain, Shikha; Novosad, Valentyn

    2014-10-07

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  4. Hyperon polarization and magnetic moments

    SciTech Connect (OSTI)

    Lach, J.

    1993-12-01

    Inclusively produced hyperons with significant polarization were first observed at Fermilab about seventeen years ago. This and subsequent experiments showed that {Lambda}{degree} were produced polarized while {bar {Lambda}}{degree} had no polarization in the same kinematical region. This set the stage for many experiments which showed that most hyperons are produced polarized. Recent Fermilab experiments have showed that this phenomena is even more complex and theoretical understanding is still lacking. Nevertheless polarized hyperon beams have been an extremely useful experimental tool in measuring hyperon magnetic moments. Recently, magnetic moment precession of channeled particles in bent crystals has been observed. This opens the possibility of measuring the magnetic moments of charmed baryons.

  5. High performance magnetic bearing systems using high temperature superconductors

    DOE Patents [OSTI]

    Abboud, R.G.

    1998-05-05

    Disclosed are a magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly. 7 figs.

  6. High performance magnetic bearing systems using high temperature superconductors

    DOE Patents [OSTI]

    Abboud, Robert G.

    1998-01-01

    A magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly.

  7. Laminated magnet field coil sheath

    DOE Patents [OSTI]

    Skaritka, John R.

    1987-12-01

    a method for manufacturing a magnet cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible sheath, with the trim coil pattern precisely positioned thereon, is accurately positioned at a precise location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator.

  8. Laminated magnet field coil sheath

    DOE Patents [OSTI]

    Skaritka, J.R.

    1987-05-15

    A method for manufacturing a magnetic cable trim coil in a sheath assembly for use in a cryogenic particle accelerator. A precisely positioned pattern of trim coil turns is bonded to a flexible substrate sheath that is capable of withstanding cryogenic operating conditions. In the method of the invention the flexible substrate sheath, with the trim coil pattern precisely location relative to a bore tube assembly of an accelerator and is then bonded to the bore tube with a tape suitable for cryogenic application. The resultant assembly can be readily handled and installed within an iron magnet yoke assembly of a suitable cryogenic particle accelerator. 1 fig.

  9. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  10. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  11. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  12. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  13. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  14. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-12-31

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  15. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-01-01

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  16. Not All Nanodisk Magnetic Vortices Are Created Equally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Not All Nanodisk Magnetic Vortices Are Created Equally Print Magnetic vortices - hurricanes of magnetism only a few atoms across - have generated intense interest in the high-tech...

  17. Tiny Particles with Big Magnetic Power | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tiny Particles with Big Magnetic Power "Magnetic nanofibers" are special not only for their inherent properties as individual magnets, but also for their ability to be manipulated...

  18. Structural modulations and magnetic properties of off-stoichiometric...

    Office of Scientific and Technical Information (OSTI)

    magnetic shape memory alloys Prev Next Title: Structural modulations and magnetic properties of off-stoichiometric Ni-Mn-Ga magnetic shape memory alloys Authors: ...

  19. Design and Synthesis of Novel Diluted Magnetic Semiconductors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design and Synthesis of Novel Diluted Magnetic Semiconductors Diluted magnetic semiconductors (DMSs) are semiconductors doped with small amounts of magnetic active transition...

  20. Phase diagram and magnetic excitations of anisotropic spin-one...

    Office of Scientific and Technical Information (OSTI)

    Phase diagram and magnetic excitations of anisotropic spin-one magnets Citation Details In-Document Search Title: Phase diagram and magnetic excitations of anisotropic spin-one ...

  1. Making permanent magnets more powerful and less expensive | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making permanent magnets more powerful and less expensive Today's high-tech and clean energy capabilities are extremely reliant on powerful permanent magnets. Permanent magnets...

  2. Magnetic dipole interactions in crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnston, David

    2016-01-13

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ˆ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ → i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices,more » 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ˆ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c/a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120 ° AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB 4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic

  3. Bioinspired synthesis of magnetic nanoparticles

    SciTech Connect (OSTI)

    David, Anand

    2009-05-26

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite particles. The overall

  4. Magnetic and structural properties of ferromagnetic Fe5PB2 and Fe5SiB2 and effects of Co and Mn substitutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGuire, Michael A.; Parker, David S.

    2015-10-22

    Crystallographic and magnetic properties of Fe5PB2, Fe4CoPB2, Fe4MnPB2, Fe5SiB2, Fe4CoSiB2, and Fe4MnSiB2 are reported. All adopt the tetragonal Cr5B3 structure-type and are ferromagnetic at room temperature with easy axis of magnetization along the c-axis. The spin reorientation in Fe5SiB2 is observed as an anomaly in the magnetization near 170 K, and is suppressed by substitution of Co or Mn for Fe. The silicides are found to generally have larger magnetic moments than the phosphides, but the data suggests smaller magnetic anisotropy in the silicides. Cobalt substitution reduces the Curie temperatures by more than 100 K and ordered magnetic moments bymore » 16-20%, while manganese substitution has a much smaller effect. This suggests Mn moments align ferromagnetically with the Fe and that Co does not have an ordered moment in these structures. Anisotropic thermal expansion is observed in Fe5PB2 and Fe5SiB2, with negative thermal expansion seen along the c-axis of Fe5SiB2. First principles calculations of the magnetic properties of Fe5SiB2 and Fe4MnSiB2 are reported. The results, including the magnetic moment and anisotropy, and are in good agreement with experiment.« less

  5. Barriers and incentives to the adoption of innovative, energy-efficient housing: Passive and active solar and earth-sheltered

    SciTech Connect (OSTI)

    Conway, R.J.

    1988-01-01

    The purpose of this study was to determine intermediaries perceptions of barriers and incentives to innovative, energy-efficient housing in Iowa. Data were collected by two surveys. The questionnaire for the first survey collected data from 102 communities. The second questionnaire surveyed housing intermediaries drawn from the 102 communities included in the first survey. The sample consisted of 481 builders, building inspectors, realtors, lenders, and solar suppliers. Intermediary groups differed in their perceptions of barriers and incentives to innovative, energy-efficient housing. Significant differences were found among the intermediaries for whether state-mandated solar standards would reduce the risk of inspection of solar-energy houses and whether risky resale potential acts as a barrier to building solar energy housing. The major barriers were the first costs associated with building active solar and earth-sheltered housing and the lack of skills among subcontractors to build these types. There was not significant relationship between rate of adoption among communities and their location in the state. There was, however, a significant relationship between category of building official and rate of adoption among communities.

  6. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  7. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  8. Magnetically coupled system for mixing

    DOE Patents [OSTI]

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2015-09-22

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  9. Magnetically coupled system for mixing

    SciTech Connect (OSTI)

    Miller, III, Harlan; Meichel, George; Legere, Edward; Malkiel, Edwin; Woods, Robert Paul; Ashley, Oliver; Katz, Joseph; Ward, Jason; Petersen, Paul

    2014-04-01

    The invention provides a mixing system comprising a magnetically coupled drive system and a foil for cultivating algae, or cyanobacteria, in an open or enclosed vessel. The invention provides effective mixing, low energy usage, low capital expenditure, and ease of drive system component maintenance while maintaining the integrity of a sealed mixing vessel.

  10. Magnetic chicane for terahertz management

    DOE Patents [OSTI]

    Benson, Stephen; Biallas, George Herman; Douglas, David; Jordan, Kevin Carl; Neil, George R.; Michelle D. Shinn; Willams, Gwyn P.

    2010-12-28

    The introduction of a magnetic electron beam orbit chicane between the wiggler and the downstream initial bending dipole in an energy recovering Linac alleviates the effects of radiation propagated from the downstream bending dipole that tend to distort the proximate downstream mirror of the optical cavity resonator.

  11. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry

    SciTech Connect (OSTI)

    Spemann, D. Esquinazi, P. Setzer, A.; Bhlmann, W.

    2014-10-15

    In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearly exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.

  12. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  13. Magnetism at Nanoscale | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will be able to sense the extremely weak magnetic fields of just a handful of electrons with the spatial resolution of about 10 nanometers. "We want to determine magnetic...

  14. How Bacteria Make Magnets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Bacteria Make Magnets For a number of animals, including birds, fish and mammals, there is evidence that magnets are used for orientation. However, little is known about how...

  15. Magnetic switch for reactor control rod. [LMFBR

    DOE Patents [OSTI]

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  16. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Circulation of Magnetic Vortices Print Wednesday, 31 July 2013 00:00 In magnetic media, information is stored in binary form-one or zero, depending on which way the...

  17. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reversing the Circulation of Magnetic Vortices Print In magnetic media, information is stored in binary form-one or zero, depending on which way the electronic spins are aligned in...

  18. Magnetic nano-particles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic nano-particles The student will be involved in assembling CoFe2O4 nano-particles onto Si wafers for further studies by X-ray magnetic circular dichroism (XMCD) that will...

  19. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material like iron is itself a tiny magnet represented by a magnetic moment. If the atomic moments are pointing in random directions, they cancel each other out. So, to bring...

  20. Generic magnetic fusion reactor cost assessment

    SciTech Connect (OSTI)

    Sheffield, J.

    1984-01-01

    A generic D-T burning magnetic fusion reactor model shows that within the constraints set by generic limitations it is possible for magnetic fusion to be a competitive source of electricity in the 21st century.

  1. Minimizing magnetic fields for precision experiments

    SciTech Connect (OSTI)

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  2. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    very stable and form readily in soft magnetic materials of the sort useful for magnetic random-access memory (MRAM) devices. Interestingly, the formation of such vortices was at...

  3. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect (OSTI)

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ?4?nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  4. Performance of Conduction Cooled Splittable Superconducting Magnet...

    Office of Scientific and Technical Information (OSTI)

    A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a ...

  5. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  6. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  7. Magnetic bearing element with adjustable stiffness

    DOE Patents [OSTI]

    Post, Richard F

    2013-11-12

    A compact magnetic bearing element is provided which is made of permanent magnet discs configured to be capable of the adjustment of the bearing stiffness and levitation force over a wide range.

  8. Synthesis and magnetic properties of Ta/NdFeB-based composite microwires

    SciTech Connect (OSTI)

    Szary, P. Prigo, E. A.; Michels, A.; Luciu, I.; Duday, D.; Wirtz, T.; Choquet, P.

    2015-05-07

    Magnetic NdFeB-based microwire composites have been prepared by the direct current magnetron sputtering technique in a specifically designed sputtering chamber for thin-film deposition in wire geometry. As substrate wire material, we have employed steel and Ta. Annealing of the substrate wires during the deposition process was performed by ohmic heating through the application of a direct current. Samples were characterized by means of vibrating sample magnetometry (VSM) and scanning electron microscopy. Best properties have been encountered when using Ta wires as core (substrate) material. The VSM data show a dramatic impact of the current applied during the deposition process on the magnetic properties. For higher current values, i.e., higher annealing temperatures, the wires exhibit a reversal process that is typical for a two-phase system. Moreover, an increase of the coercive field (and remanent magnetization) is observed, which is ascribed to a modification of the magnetic phase present in the sample due to the annealing. We find an indication for the formation of a magnetic easy-axis direction which is azimuthally oriented around the wire axis.

  9. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reversing the Circulation of Magnetic Vortices Reversing the Circulation of Magnetic Vortices Print Wednesday, 31 July 2013 00:00 In magnetic media, information is stored in binary form-one or zero, depending on which way the electronic spins are aligned in a given section of the medium. Recently, however, magnetic vortices have drawn scientists toward a new possibility: multibit storage in which each logic unit has four states instead of two and can store twice the information. Each tiny

  10. Magnet operating experience review for fusion applications

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1991-11-01

    This report presents a review of magnet operating experiences for normal-conducting and superconducting magnets from fusion, particle accelerator, medical technology, and magnetohydrodynamics research areas. Safety relevant magnet operating experiences are presented to provide feedback on field performance of existing designs and to point out the operational safety concerns. Quantitative estimates of magnet component failure rates and accident event frequencies are also presented, based on field experience and on performance of similar components in other industries.

  11. Rotating copper plasmoid in external magnetic field

    SciTech Connect (OSTI)

    Pandey, Pramod K.; Thareja, Raj K.

    2013-02-15

    Effect of nonuniform magnetic field on the expanding copper plasmoid in helium and argon gases using optical emission spectroscopy and fast imaging is presented. We report a peculiar oscillatory rotation of plasmoid in magnetic field and argon ambient. The temporal variation and appearance of the dip in the electron temperature show a direct evidence of the threading and expulsion of the magnetic field lines from the plasmoid. Rayleigh Taylor instability produced at the interface separating magnetic field and plasma is discussed.

  12. Chemical synthesis, characterizations and magnetic properties...

    Office of Scientific and Technical Information (OSTI)

    PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ALLOYS; BCC LATTICES; COERCIVE FORCE; CRYSTALS; LATTICE PARAMETERS; MAGNETIC...

  13. Hidden Rotational Symmetries in Magnetic Domain Patterns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hidden Rotational Symmetries in Magnetic Domain Patterns Hidden Rotational Symmetries in Magnetic Domain Patterns Print Wednesday, 27 June 2012 00:00 Magnetic thin films have complicated domain patterns that may or may not repeat with each cycle through a hysteresis loop. A magnetic thin film with perpendicular anisotropy, such as that used in computer hard drives, for example, commonly exhibits labyrinthine domain patterns. These patterns are disordered over a macroscopic length scale, and

  14. Magnetic-cusp, cathodic-arc source

    DOE Patents [OSTI]

    Falabella, Steven (Livermore, CA)

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  15. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Description Magnetic refrigeration is being investigated as an alternative to conventional gas compressor technology for cooling and heating because of its potential to save energy and reduce operating costs. The potential

  16. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryIowa State University and Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Magnetic refrigeration is

  17. Ground Magnetics (Nannini, 1986) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration...

  18. Gamma-ray burst spectrum with decaying magnetic field

    SciTech Connect (OSTI)

    Zhao, Xiaohong; Bai, Jinming [Yunnan Observatory, Chinese Academy of Sciences, P.O. Box 110, 650011 Kunming (China); Li, Zhuo [Department of Astronomy and Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Liu, Xuewen; Zhang, Bin-bin; Mszros, Peter, E-mail: zhaoxh@ynao.ac.cn, E-mail: zhuo.li@pku.edu.cn [Department of Astronomy and Astrophysics and Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-01-01

    In the internal shock model for gamma-ray bursts (GRBs), the synchrotron spectrum from the fast cooling electrons in a homogeneous downstream magnetic field (MF) is too soft to produce the low-energy slope of GRB spectra. However, the MF may decay downstream with distance from the shock front. Here we show that the synchrotron spectrum becomes harder if electrons undergo synchrotron and inverse-Compton cooling in a decaying MF. To reconcile this with the typical GRB spectrum with low-energy slope ?F {sub ?}??, the postshock MF decay time must be comparable to the cooling time of the bulk electrons (corresponding to a MF decaying length typically of ?10{sup 5} skin depths); that the inverse-Compton cooling should dominate synchrotron cooling after the MF decay time; and/or that the MF decays with comoving time roughly as B?t {sup 1.5}. An internal shock synchrotron model with a decaying MF can account for the majority of GRBs with low-energy slopes not harder than ?{sup 4/3}.

  19. Primordial magnetic field limits from cosmological data

    SciTech Connect (OSTI)

    Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

    2010-10-15

    We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

  20. Search for Magnetic Monopoles with the NO$\

    SciTech Connect (OSTI)

    Wang, Zukai

    2015-09-01

    The magnetic monopole is a hypothetical particle, which is an important field configuration in many Grand Unified Theories, and whose mass may vary from 104 to 1018 GeV. The quantization of magnetic charge derived by Dirac in 1931 suggests the heavy ionization nature of magnetic monopoles. The NO$\