National Library of Energy BETA

Sample records for magnetism materials surface

  1. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  2. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  3. MHD problems in free liquid surfaces as plasma-facing materials in magnetically confined reactors

    E-Print Network [OSTI]

    Harilal, S. S.

    ) are removed by the free flowing surface of the liquid metal above a solid structure or as free jets. The LM #12;DP due to the MHD decelerating force is of critical importance since the ram pressure of the flow

  4. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah RiverMagnetic Materials

  5. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  6. Superconductivity and Magnetism: Materials Properties

    E-Print Network [OSTI]

    .g. within high-Tc superconductivity, magnetic superconductors, MgB2, CMR materials, nanomagnetism and spin#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 Risø National Laboratory Roskilde, Denmark ISBN 87-550-3244-3 ISSN 0907-0079 #12;Superconductivity

  7. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect (OSTI)

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  8. Magnetic Materials Group - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah RiverMagnetic

  9. Design Principles for Materials with Magnetic Functionality

    SciTech Connect (OSTI)

    Thompson, Joe David

    2015-11-05

    This report describes the processes involved with refining and testing design principles of high density, magnetic materials and while observing their magnetic functionality.

  10. Permanent Magnetic Materials Discovery | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic materials find wide applications in energy generation. The materials providing best performances (e.g., high energy product), such as NdFeB, contains a large weight...

  11. Self-assembled magnetic surface swimmers.

    SciTech Connect (OSTI)

    Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W.-K.; Materials Science Division; Illinois Inst. of Tech.

    2009-03-20

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation.

  12. Materials with low DC magnetic susceptibility for sensitive magnetic measurements

    E-Print Network [OSTI]

    Khatiwada, Rakshya; Kendrick, Rachel; Khosravi, Marjan; Peters, Michael; Smith, Erick; Snow, Mike

    2015-01-01

    Materials with very low DC magnetic susceptibility have many scientific applications. To our knowledge however, relatively little research has been conducted with the goal to produce a totally nonmagnetic material. This phrase in our case means after spatially averaging over macroscopic volumes, it possesses an average zero DC magnetic susceptibility. We report measurements of the DC magnetic susceptibility of three different types of nonmagnetic materials at room temperature: (I) solutions of paramagnetic salts and diamagnetic liquids, (II) liquid gallium-indium alloys and (III) pressed powder mixtures of tungsten and bismuth. The lowest measured magnetic susceptibility among these candidate materials is in the order of 10^-9 cgs volume susceptibility units, about two orders of magnitude smaller than distilled water. In all cases, the measured concentration dependence of the magnetic susceptibility is consistent with that expected for the weighted sum of the susceptibilities of the separate components within...

  13. Materials Characterization Capabilities at the HTML: Surface...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the HTML: SurfaceSub-surface dislocation density analysis of forming samples using advanced characterization techniques 2011 DOE...

  14. Reduction of Magnetic Noise in Atom Chips by Material Optimization

    E-Print Network [OSTI]

    V. Dikovsky; Y. Japha; C. Henkel; R. Folman

    2005-06-05

    We discuss the contribution of the material type in metal wires to the electromagnetic fluctuations in magnetic microtraps close to the surface of an atom chip. We show that significant reduction of the magnetic noise can be achieved by replacing the pure noble metal wires with their dilute alloys. The alloy composition provides an additional degree of freedom which enables a controlled reduction of both magnetic noise and resistivity if the atom chip is cooled. In addition, we provide a careful re-analysis of the magnetically induced trap loss observed by Yu-Ju Lin et al. [Phys. Rev. Lett. 92, 050404 (2004)] and find good agreement with an improved theory.

  15. Magnetism in Non-Traditional Materials

    SciTech Connect (OSTI)

    Menon, Madhu

    2013-09-17

    We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host

  16. Thermal Casimir Force between Magnetic Materials

    E-Print Network [OSTI]

    G. L. Klimchitskaya; B. Geyer; V. M. Mostepanenko

    2009-11-21

    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectric properties of the metal plates.

  17. A study of magnetically annealed ferromagnetic materials 

    E-Print Network [OSTI]

    Ramos, Domingo

    1961-01-01

    some magnetic effects and therefore, the term "magnetic materials" may be said to include all substances. In those ?14 known as "diamagnetics" or "paramagnetics, " the effects are very 15 feeble and they are regarded as non... electron spins break away until the Curie point is reached, the alignment is lost completely and the material behaves like a paramagnetic. The Domain Structure One of the experimental methods that show the existence of domains 14 in ferromagnetics...

  18. Vacuum magnetic fields with dense flux surfaces

    SciTech Connect (OSTI)

    Cary, J R

    1982-05-01

    A procedure is given for eliminating resonances and stochasticity in nonaxisymmetric vacuum toroidal magnetic field. The results of this procedure are tested by the surface of section method. It is found that one can obtain magnetic fields with increased rotational transform and decreased island structure while retaining basically the same winding law.

  19. Materials with low DC magnetic susceptibility for sensitive magnetic measurements

    E-Print Network [OSTI]

    Rakshya Khatiwada; Lawrence Dennis; Rachel Kendrick; Marjan Khosravi; Michael Peters; Erick Smith; Mike Snow

    2015-06-30

    Materials with very low DC magnetic susceptibility have many scientific applications. To our knowledge however, relatively little research has been conducted with the goal to produce a totally nonmagnetic material. This phrase in our case means after spatially averaging over macroscopic volumes, it possesses an average zero DC magnetic susceptibility. We report measurements of the DC magnetic susceptibility of three different types of nonmagnetic materials at room temperature: (I) solutions of paramagnetic salts and diamagnetic liquids, (II) liquid gallium-indium alloys and (III) pressed powder mixtures of tungsten and bismuth. The lowest measured magnetic susceptibility among these candidate materials is in the order of 10^-9 cgs volume susceptibility units, about two orders of magnitude smaller than distilled water. In all cases, the measured concentration dependence of the magnetic susceptibility is consistent with that expected for the weighted sum of the susceptibilities of the separate components within experimental error. These results verify the Wiedemann additivity law and thereby realize the ability to produce materials with small but tunable magnetic susceptibility. For our particular scientific application, we are also looking for materials with the largest possible number of neutrons and protons per unit volume. The gallium-indium alloys fabricated and measured in this work possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature liquid, and the tungsten-bismuth pressed powder mixtures possess to our knowledge the smallest ratio of volume magnetic susceptibility to nucleon number density per unit volume for a room temperature solid. This ratio is a figure of merit for a certain class of precision experiments that search for possible exotic spin-dependent forces of Nature.

  20. Tailoring superelasticity of soft magnetic materials

    E-Print Network [OSTI]

    Peet Cremer; Hartmut Löwen; Andreas M. Menzel

    2015-08-04

    Embedding magnetic colloidal particles in an elastic polymer matrix leads to smart soft materials that can reversibly be addressed from outside by external magnetic fields. We discover a pronounced nonlinear superelastic stress-strain behavior of such materials. It results from a combination of two stress-induced transitions: a detachment transition of embedded particle aggregates as well as a reorientation transition of magnetic moments. The superelastic regime can be reversibly tuned or even be switched on and off by external magnetic fields and thus be tailored during operation. Similarities to the superelastic behavior of shape-memory alloys suggest analogous applications, with the additional benefit of reversible switchability and a higher biocompatibility of soft materials.

  1. Magnetic spectroscopy and microscopy of functional materials

    SciTech Connect (OSTI)

    Jenkins, C.A.

    2011-01-28

    Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).

  2. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah RiverMagneticXSD-MM XSD-MM

  3. Magnetic surfaces in an axisymmetric torus

    SciTech Connect (OSTI)

    Skovoroda, A. A., E-mail: skovorod@nfi.kiae.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2013-04-15

    A method is developed for specifying the boundary equilibrium magnetic surface in an axially symmetric torus by using the absolute values of the magnetic field B = B{sub s}({theta}) and the gradient of the poloidal flux vertical bar vertical bar {nabla}{Psi} vertical bar = vertical bar {nabla}{Psi} vertical bar {sub s}({theta}) in a special flux coordinate system. By setting two surface constants (e.g., the safety factor q and dp/d{Psi}) and matching the absolute values of the magnetic field and the flux gradient on a closed magnetic surface, it is possible to find all equilibrium magnetic functions (including n {center_dot} {nabla} ln B and the local shear s) and all constants (including the toroidal current J and the shear d{mu}/d{Psi}) on this surface. Such a non-traditional formulation of the boundary conditions in solving the stability problem in an axisymmetric torus allows one to impose intentional conditions on plasma confinement and MHD stability at the periphery of the system.

  4. Surface treatment of magnetic recording heads

    DOE Patents [OSTI]

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, S.C.

    1995-12-19

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 15 figs.

  5. Surface treatment of magnetic recording heads

    DOE Patents [OSTI]

    Komvopoulos, K.; Brown, I.G.; Wei, B.; Anders, S.; Anders, A.; Bhatia, C.S.

    1998-11-17

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances. 22 figs.

  6. Surface treatment of magnetic recording heads

    DOE Patents [OSTI]

    Komvopoulos, Kyriakos (Orinda, CA); Brown, Ian G. (Berkeley, CA); Wei, Bo (Albany, CA); Anders, Simone (Albany, CA); Anders, Andre (Albany, CA); Bhatia, Singh C. (Morgan Hill, CA)

    1995-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  7. Surface treatment of magnetic recording heads

    DOE Patents [OSTI]

    Komvopoulos, Kyriakos (Orinda, CA); Brown, Ian G. (Berkeley, CA); Wei, Bo (Albany, CA); Anders, Simone (Albany, CA); Anders, Andre (Albany, CA); Bhatia, C. Singh (Morgan Hill, CA)

    1998-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  8. Ames Laboratory scientists create cheaper magnetic material for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory scientists create cheaper magnetic material for cars, wind turbines Contacts: For release: April 23, 2015 Karl A. Gschneidner, Division of Materials Sciences and...

  9. Surface Magnetic Flux Maintenance In Quiet Sun

    E-Print Network [OSTI]

    Y. Iida

    2012-12-27

    We investigate surface processes of magnetic patches, namely merging, splitting, emergence, and cancellation, by using an auto-detection technique. We find that merging and splitting are locally predominant in the surface level, while the frequencies of the other two are less by one or two orders of magnitude. The frequency dependences on flux con- tent of surface processes are further investigated. Based on these observations, we discuss a possible whole picture of the maintenance. Our conclusion is that the photospheric magnetic field structure, especially its power-law nature, is maintained by the processes locally in the surface not by the interactions between different altitudes. We suggest a scenario of the flux maintenance as follows: The splitting and merging play a crucial role for the generation of the power-law distribution, not the emergence nor cancellation do. This power-law distribution results in another power-law one of the cancellation with an idea of the random convective transport. The cancellation and emergence have a common value for the power-law indices in their frequency distributions, which may suggest a "recycle of fluxes by submergence and re-emergence".

  10. Surface modified CFx cathode material for ultrafast discharge...

    Office of Scientific and Technical Information (OSTI)

    Surface modified CFx cathode material for ultrafast discharge and high energy density Citation Details In-Document Search Title: Surface modified CFx cathode material for ultrafast...

  11. Surface modified CFx cathode material for ultrafast discharge...

    Office of Scientific and Technical Information (OSTI)

    Surface modified CFx cathode material for ultrafast discharge and high energy density Prev Next Title: Surface modified CFx cathode material for ultrafast discharge and high...

  12. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  13. Surface waves in deformed Bell materials

    E-Print Network [OSTI]

    Michel Destrade

    2013-04-30

    Small amplitude inhomogeneous plane waves are studied as they propagate on the free surface of a predeformed semi-infinite body made of Bell constrained material. The predeformation corresponds to a finite static pure homogeneous strain. The surface wave propagates in a principal direction of strain and is attenuated in another principal direction, orthogonal to the free surface. For these waves, the secular equation giving the speed of propagation is established by the method of first integrals. This equation is not the same as the secular equation for incompressible half-spaces, even though the Bell constraint and the incompressibility constraint coincide in the isotropic infinitesimal limit.

  14. Electrically Controllable Surface Magnetism on the Surface of Topological Insulators Jia-Ji Zhu,1

    E-Print Network [OSTI]

    Electrically Controllable Surface Magnetism on the Surface of Topological Insulators Jia-Ji Zhu,1 magnetism electrically. The gap opened by doped magnetic ions can lead to a short-range Bloembergen 2010; published 28 February 2011) We study theoretically the RKKY interaction between magnetic

  15. Materials with low DC magnetic susceptibility for sensitive magnetic measurements R. Khatiwada,1, 2, 3,

    E-Print Network [OSTI]

    Materials with low DC magnetic susceptibility for sensitive magnetic measurements R. Khatiwada,1, 2 (Dated: July 1, 2015) Materials with very low DC magnetic susceptibility have many scientific a totally nonmagnetic material. This phrase in our case means after spatially averaging over macroscopic

  16. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOE Patents [OSTI]

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  17. Surface Induced Magnetism in Quantum Dots

    SciTech Connect (OSTI)

    Meulenberg, R W; Lee, J I

    2009-08-20

    The study of nanometer sized semiconductor crystallites, also known as quantum dots (QDs), has seen rapid advancements in recent years in scientific disciplines ranging from chemistry, physics, biology, materials science, and engineering. QD materials of CdSe, ZnSe, InP, as well as many others, can be prepared in the size range of 1-10 nm producing uniform, nearly monodisperse materials that are typically coated with organic molecules [1-3]. The strength of charge carrier confinement, which dictates the size-dependent properties, in these QDs depends on the nature of the material and can be correlated to the Bohr radius for the system of interest. For instance, the Bohr radius for CdSe is {approx} 5 nm, while in the more covalent structure of InP, the Bohr radius approaches {approx} 10 nm. The study of CdSe QDs has been particularly extensive during the last decade because they exhibit unique and tunable optical properties and are readily synthesized with high-crystallinity and narrow size dispersions. Although the core electronic properties of CdSe are explained in terms of the quantum confinement model, experimental efforts to elucidate the surface structure of these materials have been limited. Typically, colloidal CdSe QDs are coated with an organic surfactant, which typically consists of an organo-phosphine, -thiol, or -amine, that has the function of energetically relaxing defect states via coordination to partially coordinated surface atoms. The organic surfactant also acts to enhance carrier confinement and prevent agglomeration of the particles. Chemically, it has been shown that the bonding of the surfactant to the CdSe QD occurs through Cd atoms resulting cleavage of the Se atoms and formation of a Cd-rich (i.e. non-stoichiometric) particle [5].

  18. Ferrofluid surface and volume flows in uniform rotating magnetic fields

    E-Print Network [OSTI]

    Elborai, Shihab M. (Shihab Mahmoud), 1977-

    2006-01-01

    Ferrofluid surface and volume effects in uniform dc and rotating magnetic fields are studied. Theory and corroborating measurements are presented for meniscus shapes and resulting surface driven flows, spin-up flows, and ...

  19. Enhancing Magnetic Properties of Molecular Magnetic Materials: The Role of Single-Ion Anisotropy 

    E-Print Network [OSTI]

    Saber, Mohamed Rashad Mohamed

    2013-07-09

    Considerable efforts are being devoted to designing enhanced molecular magnetic materials, in particular single molecule magnets (SMMs) that can meet the requirements for future technologies such as quantum computing and spintronics. A current...

  20. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Perreault, Dave

    1 Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han, Member frequency (VHF) applications. Index Terms--Magnetic materials, resonant inductor, very high frequency (VHF capable of efficient operation at very high switching frequencies (e.g., 10 ­ 100 MHz). Power electronics

  1. Surface-Based Analysis of Functional Magnetic Resonance Imaging Data

    E-Print Network [OSTI]

    Thompson, Paul

    Surface-Based Analysis of Functional Magnetic Resonance Imaging Data Theo G.M. van Erp1, Vikas Y School of Medicine, Los Angeles, CA 90095, USA Abstract. Surface-based visualization, atlases the integration of surface-based tech- niques with functional imaging data, combining surface-based nonlinear

  2. Magnetic spectroscopy and microscopy of functional materials

    E-Print Network [OSTI]

    Jenkins, C.A.

    2012-01-01

    magnetic anisotropy for spintronic devices. Appl Phys Lett,the model systems of spintronic, multiferroic, and energy-spin lifetimes [35]. Spintronic devices include spin ?lters,

  3. High anisotropy materials for magnetic nanotechnologies

    E-Print Network [OSTI]

    Shipton, Erik G.

    2011-01-01

    the magnetic response of spintronic nanodevices. The goal ofdesirable for the design of spintronic devices as well. Bothwill have an impact on spintronic devices as it gives more

  4. Magnetic spectroscopy and microscopy of functional materials

    E-Print Network [OSTI]

    Jenkins, C.A.

    2012-01-01

    in the classical Heusler material Co 2 FeSi (Appendix B).plated self-assembly. Nature Materials, 3:823–828, 2004.1 Concepts Functional materials are those with an industrial

  5. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  6. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, John A. (Madison, WI); Stewart, Walter F. (Marshall, WI); Henke, Michael D. (Los Alamos, NM); Kalash, Kenneth E. (Los Alamos, NM)

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  7. NANO-SCALE MATERIALS DEVELOPMENT FOR FUTURE MAGNETIC APPLICATIONSp

    E-Print Network [OSTI]

    Laughlin, David E.

    evolution, it is clear that development of new materials and their understanding on a smaller and smaller in the development of new mag- netic materials for a variety of important appli- cations [2±5]. In recent yearsNANO-SCALE MATERIALS DEVELOPMENT FOR FUTURE MAGNETIC APPLICATIONSp M. E. McHENRY and D. E. LAUGHLIN

  8. Surface electromagnetic wave equations in a warm magnetized quantum plasma

    SciTech Connect (OSTI)

    Li, Chunhua; Yang, Weihong [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Wu, Zhengwei, E-mail: wuzw@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Center of Low Temperature Plasma Application, Yunnan Aerospace Industry Company, Kunming, 650229 Yunnan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2014-07-15

    Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

  9. High anisotropy materials for magnetic nanotechnologies

    E-Print Network [OSTI]

    Shipton, Erik G.

    2011-01-01

    p. 721-724. Kent, A.D. , Spintronics: Perpendicular all thethe magnetic response of spintronic nanodevices. The goal ofdesirable for the design of spintronic devices as well. Both

  10. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han An Li Grace High Frequency Power Applications Yehui Han, Grace Cheung, An Li, Charles R. Sullivan and David J useful for design of magnetic components for very high frequency applications. I. INTRODUCTION

  11. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Perreault, Dave

    4270 Evaluation of Magnetic Materials for Very High Frequency Power Applications Yehui Han, Grace. The results of this paper are thus useful for design of magnetic components for very high frequency of efficient operation at very high switching frequencies (e.g., 10-100 MHz). Power electronics operating

  12. Magnetic Wall Climbing Robot for Thin Surfaces with Specific Obstacles

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Magnetic Wall Climbing Robot for Thin Surfaces with Specific Obstacles W. Fischer¹, F. Tâche high magnetic forces The main optimization criterion for this robot was to design it as light@ethz.ch Summary. This paper describes a novel solution to a mobile climbing robot on mag- netic wheels, designed

  13. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, Tomas (State College, PA)

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  14. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  15. Digital lock-in detection of site-specific magnetism in magnetic materials

    DOE Patents [OSTI]

    Haskel, Daniel (Naperville, IL); Lang, Jonathan C. (Naperville, IL); Srajer, George (Oak Park, IL)

    2008-07-22

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  16. Investigation of the Impact of Magnetic Permeability and Loss of Magnetic Composite Materials on RFID and RF Passives

    E-Print Network [OSTI]

    Tentzeris, Manos

    magnetic materials. One of the most significant challenges for applying new magnetic materials is understanding the interrelationships of the new materials, design, and performance. In previous studies, it can and organic matrix has been demonstrated [4]. The implication ofthese new magnetic materials has not been

  17. Surface Properties of Advanced Materials and Their Applications in Ballistics 

    E-Print Network [OSTI]

    Yun, Huisung

    2010-07-23

    This thesis research investigates the surface properties and performances of gold nanoparticles, microarc oxidation coating, and epitaxial nano-twinned copper film. The research aims to understand the critical behavior of material surfaces in order...

  18. Complex curvilinear surfaces in composite materials

    E-Print Network [OSTI]

    Liao, Nancy Han, 1975-

    2001-01-01

    The thesis will propose a method of architectural design that applies the use of continuous and curvilinear surfaces. It will explore a method of engaging the continuous surface as an expression and response to t he dynamic ...

  19. TANK FARM INTERIM SURFACE BARRIER MATERIALS AND RUNOFF ALTERNATIVES STUDY

    SciTech Connect (OSTI)

    HOLM MJ

    2009-06-25

    This report identifies candidate materials and concepts for interim surface barriers in the single-shell tank farms. An analysis of these materials for application to the TY tank farm is also provided.

  20. Cyanide Bridged Molecular Magnetic Materials with Anisotropic Transition Metal Ions: Investigation of Bistable Magnetic Phenomena 

    E-Print Network [OSTI]

    Avendano, Carolina

    2011-08-08

    ......................................................................................................................... 257 xii LIST OF FIGURES Page Figure 1.1 Schematic molecular spintronics based... and electronic degrees of freedom. This field, dubbed ?spintronics?,12-15 encompasses a range of novel applications for magnetic materials (Figure 1.1). Research in molecular magnetism has spawned a new collaborative spirit between the physical and chemical...

  1. Surface waves in orthotropic incompressible materials

    E-Print Network [OSTI]

    Michel Destrade

    2013-05-30

    The secular equation for surface acoustic waves propagating on an orthotropic incompressible half-space is derived in a direct manner, using the method of first integrals.

  2. Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

    SciTech Connect (OSTI)

    Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

    2007-06-26

    The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

  3. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect (OSTI)

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)

    2013-12-15

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (?1 m), high-current (?1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields – in between plasma shots – to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ?5 ?m into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  4. Surface Emission Properties of Strongly Magnetic Neutron Stars

    E-Print Network [OSTI]

    Feryal Ozel

    2001-09-18

    We construct radiative equilibrium models for strongly magnetized (B > 10^13 G) neutron-star atmospheres taking into account magnetic free-free absorption and scattering processes computed for two polarization modes. We include the effects of vacuum polarization in our calculations. We present temperature profiles and the angle-, photon energy-, and polarization-dependent emerging intensity for a range of magnetic field strengths and effective temperatures of the atmospheres. We find that for B neutron star surface, and find that T_c/T_eff ranges between 1.1-1.8. We discuss the implications of our results for various thermally emitting neutron star models.

  5. Energy and material efficient non-circular bore Bitter magnets

    E-Print Network [OSTI]

    Akhmeteli, A

    2015-01-01

    There exist a number of experiments/applications where the second dimension of the bore of Bitter magnets is not fully utilized. Using an analytical solution for elliptical bore coils, we show that reducing one of the dimensions of the bore can lead to considerable decrease in consumed power and/or coil material.

  6. 30-MHz Power Inductor Using Nano-Granular Magnetic Material

    E-Print Network [OSTI]

    -impedance applications. In order to achieve higher inductance values and high Q values, we stack multiple polyimide constructed a core for an inductor by stacking multiple 50 µm polyimide substrates, each with 6 µm of Co travelling in one direction in the 2 mm Fig. 1. Segments of magnetic material deposited on thin polyimide

  7. Surface Magnetism: Relativistic Effects at Semiconductor Interfaces and Solar Cells

    E-Print Network [OSTI]

    Schmidt, Wolf Gero

    excellently into the energy level scheme of this kind of solar cell and has the potential to replace with high potential for a further devel- opment. The global market for photovoltaics cells is expectedSurface Magnetism: Relativistic Effects at Semiconductor Interfaces and Solar Cells U. Gerstmann, M

  8. Unidirectional propagation of magnetostatic surface spin waves at a magnetic film surface

    SciTech Connect (OSTI)

    Wong, Kin L.; Bao, Mingqiang E-mail: caross@mit.edu; Lin, Yen-Ting; Wang, Kang L.; Bi, Lei; Wen, Qiye; Zhang, Huaiwu; Chatelon, Jean Pierre; Ross, C. A. E-mail: caross@mit.edu

    2014-12-08

    An analytical expression for the amplitudes of magnetostatic surface spin waves (MSSWs) propagating in opposite directions at a magnetic film surface is presented. This shows that for a given magnetic field H, it is forbidden for an independent MSSW to propagate along the direction of ?H{sup ?}×n{sup ?}, where n{sup ?} is the surface normal. This unidirectional propagation property is confirmed by experiments with both permalloy and yttrium iron garnet films of different film thicknesses, and has implications in the design of spin-wave devices such as isolators and spin-wave diodes.

  9. Model for Dynamic Self-Assembled Magnetic Surface Structures

    E-Print Network [OSTI]

    M. Belkin; A. Glatz; A. Snezhko; I. S. Aranson

    2010-02-02

    We propose a first-principles model for self-assembled magnetic surface structures on the water-air interface reported in earlier experiments \\cite{snezhko2,snezhko4}. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended on the water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snake-like structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. The model provides valuable insights into self-organization phenomena in a broad range of non-equilibrium magnetic and electrostatic systems with competing interactions.

  10. Comparison of Magnetic Materials for V-Groove Inductors and MOSFETs in Optimised

    E-Print Network [OSTI]

    Comparison of Magnetic Materials for V-Groove Inductors in Optimized High-Frequency DC-DC Converters Parul materials for thin film inductors is ex- amined quantitatively. We use an optimization routine to evaluate frequency, inductors, optimization, soft magnetic materials. I. INTRODUCTION FOR soft magnetic materials

  11. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interface

    SciTech Connect (OSTI)

    Allain, Jean Paul; Taylor, Chase N. [School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, Indiana 47907 (United States)

    2012-05-15

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  12. Chemistry and material science at the cell surface

    E-Print Network [OSTI]

    Zhao, Weian

    Cell surfaces are fertile ground for chemists and material scientists to manipulate or augment cell functions and phenotypes. This not only helps to answer basic biology questions but also has diagnostic and therapeutic ...

  13. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  14. Metal-organic framework materials with ultrahigh surface areas

    DOE Patents [OSTI]

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  15. Surface Intensive Materials Processing for Multi-Functional Purposes

    SciTech Connect (OSTI)

    Ila, D.; Williams, E.K.; Muntele, C.I.; George, M.A.; Poker, D.B.; Hensley, D.K.; Larkin, D.J.

    2000-03-06

    We have chosen silicon carbide (SiC) as a multi-functional material to demonstrate the application of surface intensive processing for device fabrication. We will highlight two devices which are produced in house at the Center for Irradiation of materials of Alabama A and M university: (A) High temperature electronic gas sensor, (B) High temperature optical properties/sensor.

  16. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    E-Print Network [OSTI]

    Fischer, Peter

    2012-01-01

    promising materials for spintronic applications due theirextremely attractive for spintronic applications, where acalled field of molecular spintronic [197] - [199]. Magnetic

  17. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    SciTech Connect (OSTI)

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  18. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1988-10-18

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  19. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1986-07-24

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  20. Surface magnetism of Gd(0001): Evidence of ferromagnetic coupling to bulk

    SciTech Connect (OSTI)

    Mulhollan, G.A.; Garrison, K.; Erskine, J.L. )

    1992-11-30

    Previous polarized electron experiments and recent {ital ab} {ital initio} calculations suggest that the surface layer magnetic moments of Gd(0001) are antiferromagnetically coupled to the bulk magnetic moments. Spin-polarized photoemission data are presented which show that the spin polarization of the magnetic surface state and the surface 4{ital f} states of Gd(0001) are coupled ferromagnetically to the bulk magnetic moment.

  1. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials

    E-Print Network [OSTI]

    Rubloff, Gary W.

    , and energy-related materials Martin L. Green, Ichiro Takeuchi, and Jason R. Hattrick-Simpers Citation: J) methodologies to electronic, magnetic, optical, and energy-related materials Martin L. Green,1 Ichiro Takeuchi,2 materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high

  2. Use of High Magnetic Field to Control Microstructural Evolution in Metallic and Magnetic Materials

    SciTech Connect (OSTI)

    Ludtka, G.M.; Mackiewicz- Ludtka, G.; Wilgen, J.B.; Kisner, R.A.

    2010-06-27

    The Amendment 1, referred to as Phase 2, to the original CRADA NFE-06-00414 added tasks 3 through 7 to the original statement of work that had two main tasks that were successfully accomplished in Phase 1 of this project. In this Phase 2 CRADA extension, extensive research and development activities were conducted using high magnetic field processing effects for the purpose of manipulating microstructure in the SAE 5160 steel to refine grain size isothermally and to develop nanocrystalline spacing pearlite during continuous cooling, and to enhance the formability/forgability of the non-ferrous precipitation hardening magnesium alloy AZ90 by applying a high magnetic field during deformation processing to investigate potential magnetoplasticity in this material. Significant experimental issues (especially non-isothermal conditions evolving upon insertion of an isothermal sample in the high magnetic field) were encountered in the isothermal phase transformation reversal experiments (Task 4) that later were determined to be due to various condensed matter physics phenomenon such as the magnetocaloric (MCE) effect that occurs in the vicinity of a materials Curie temperature. Similarly the experimental deformation rig had components for monitoring deformation/strain (Task 3) that were susceptible to the high magnetic field of the ORNL Thermomagnetic Processing facility 9-T superconducting magnet that caused electronic components to fail or record erroneous (very noisy) signals. Limited experiments on developing nanocrystalline spacing pearlite were not sufficient to elucidate the impact of high magnetic field processing on the final pearlite spacing since significant statistical evaluation of many pearlite colonies would need to be done to be conclusive. Since extensive effort was devoted to resolving issues for Tasks 3 and 7, only results for these focused activities are included in this final CRADA report along with those for Task 7 (described in the Objectives Section of this report).

  3. Overview of surface studies on high energy materials at Mound

    SciTech Connect (OSTI)

    Moddeman, W.E.; Collins, L.W.; Wang, P.S.; Haws, L.D.; Wittberg, T.N.

    1980-01-01

    Since 1975 Mound has been examining the surface structure of high energy materials and the interaction of these materials with various metal containers. The high energy materials that have been studied include: the pyrotechnic TiH/sub x//KClO/sub 4/, the Al/Cu/sub 2/O machinable thermite, the PETN, HMX and RDX explosives, and two plastic bonded explosives (PBX). Aluminum and alloys of Fe, Ni and Cr have been used as the containment materials. Two aims in this research are: (1) the elucidation of the mechanism of pyrotechnic ignition and (2) the compatibility of high energy materials with their surroundings. New information has been generated by coupling Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) with thermal data. In particular, AES and XPS studies on the pyrotechnic materials and on thermites have shown the mechanism of ignition to be nearly independent of the type of oxidizer present but directly related to surface chemistry of the fuels. In studies on the two PBX's, PBX-9407 and LX-16, it was concluded that the Exon coating on 9407 was complete and greater than or equal to 100A; whereas in LX-16, the coating was < 100A or even incomplete. AES and scanning Auger have been used to characterize the surface composition and oxide thickness for an iron-nickel alloy and showed the thicker oxides to have the least propensity for atmospheric hydrocarbon adsorption. Data are presented and illustrations made which highlight this new approach to studying ignition and compatibility of high energy materials. Finally, the salient features of the X-SAM-800 purchased by Mound are discussed in light of future studies on high energy materials.

  4. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOE Patents [OSTI]

    Lim, Chong Wee (Urbana, IL); Ohmori, Kenji (Urbana, IL); Petrov, Ivan Georgiev (Champaign, IL); Greene, Joseph E. (Champaign, IL)

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  5. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOE Patents [OSTI]

    Viswanathan, Tito

    2015-10-27

    A method of separating a liquid hydrocarbon material from a body of water, includes: (a) mixing magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the magnetic carbon-metal nanocomposites each to be adhered by the liquid hydrocarbon material to form a mixture; (b) applying a magnetic force to the mixture to attract the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material; and (c) removing the body of water from the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material while maintaining the applied magnetic force. The magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material, for a period of time effective to allow the carbon-metal nanocomposites to be formed.

  6. Condensed Surfaces of Magnetic Neutron Stars, Thermal Surface Emission, and Particle Acceleration Above Pulsar Polar Caps

    E-Print Network [OSTI]

    Zach Medin; Dong Lai

    2008-01-18

    For sufficiently strong magnetic fields and/or low temperatures, the neutron star surface may be in a condensed state with little gas or plasma above it. Such surface condensation can significantly affect the thermal emission from isolated neutron stars, and may lead to the formation of a charge-depleted acceleration zone ("vacuum gap") in the magnetosphere above the stellar polar cap. Using the latest results on the cohesive property of magnetic condensed matter, we quantitatively determine the conditions for surface condensation and vacuum gap formation in magnetic neutron stars. We find that condensation can occur if the thermal energy kT of the neutron star surface is less than about 8% of its cohesive energy Q_s, and that a vacuum gap can form if the neutron star's rotation axis and magnetic moment point in opposite directions and kT is less than about 4% of Q_s. Thus, vacuum gap accelerators may exist for some neutron stars. Motivated by this result, we also study the physics of pair cascades in the vacuum gap model for photon emission by accelerating electrons and positrons due to both curvature radiation and resonant/nonresonant inverse Compton scattering. Our calculations of the condition of cascade-induced vacuum breakdown and the related pulsar death line/boundary generalize previous works to the superstrong field regime. We find that inverse Compton scatterings do not produce a sufficient number of high energy photons in the gap and thus do not lead to pair cascades for most neutron star parameters. We discuss the implications of our results for the recent observations of neutron star thermal radiation as well as for the detection/non-detection of radio emission from high-B pulsars and magnetars.

  7. Method and apparatus for separating materials magnetically. [Patent application; iron pyrite from coal

    DOE Patents [OSTI]

    Hise, E.C. Jr.; Holman, A.S.; Friedlaender, F.J.

    1980-11-06

    Magnetic and nonmagnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  8. Method of driving liquid flow at or near the free surface using magnetic microparticles

    DOE Patents [OSTI]

    Snezhko, Oleksiy (Woodridge, IL); Aronson, Igor (Darien, IL); Kwok, Wai-Kwong (Evanston, IL); Belkin, Maxim V. (Woodridge, IL)

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  9. Novel ultrafine grain size processing of soft magnetic materials.

    SciTech Connect (OSTI)

    Michael, Joseph Richard; Robino, Charles Victor

    2009-01-01

    High performance soft magnetic alloys are used in solenoids in a wide variety of applications. These designs are currently being driven to provide more margin, reliability, and functionality through component size reductions; thereby providing greater power to drive ratio margins as well as decreases in volume and power requirements. In an effort to produce soft magnetic materials with improved properties, we have conducted an initial examination of one potential route for producing ultrafine grain sizes in the 49Fe-49Co-2V alloy. The approach was based on a known method for the production of very fine grain sizes in steels, and consisted of repeated, rapid phase transformation cycling through the ferrite to austenite transformation temperature range. The results of this initial attempt to produce highly refined grain sizes in 49Fe-49Co-2V were successful in that appreciable reductions in grain size were realized. The as-received grain size was 15 {micro}m with a standard deviation of 9.5 {micro}m. For the temperature cycling conditions examined, grain refinement appears to saturate after approximately ten cycles at a grain size of 6 {micro}m with standard deviation of 4 {micro}m. The process also reduces the range of grain sizes present in these samples as the largest grain noted in the as received and treated conditions were 64 and 26 {micro}m, respectively. The results were, however, complicated by the formation of an unexpected secondary ferritic constituent and considerable effort was directed at characterizing this phase. The analysis indicates that the phase is a V-rich ferrite, known as {alpha}{sub 2}, that forms due to an imbalance in the partitioning of vanadium during the heating and cooling portions of the thermal cycle. Considerable but unsuccessful effort was also directed at understanding the conditions under which this phase forms, since it is conceivable that this phase restricts the degree to which the grains can be refined. Due to this difficulty and the relatively short timeframe available in the study, magnetic and mechanical properties of the refined material could not be evaluated. An assessment of the potential for properties improvement through the transformation cycling approach, as well as recommendations for potential future work, are included in this report.

  10. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, William J. (Berkeley, CA); Maple, M. Brian (Del Mar, CA)

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  11. Comparison of glass surfaces as a countertop material to existing surfaces

    SciTech Connect (OSTI)

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  12. Radon-222 progeny surface deposition and resuspension - residential materials

    SciTech Connect (OSTI)

    Leonard, B.E.

    1994-12-31

    In evaluating the hazards from indoor {sup 222}Rn, it is imperative that the behavior of the four short-lived particulate progeny are fully understood since they are the radioisotopes that deliver most of the radiobiological damage to occupants. One known characteristic of these radon progeny is that they deposit (plate out) onto macroscopic surfaces. Some of these plated-out atoms become resuspended when they disintegrate and decay to the next progeny, in particular, {sup 218}Po. Both of these mechanisms, plateout and resuspension, affect the airborne population of the individual daughters and their impact on the radiation energy delivered to the human respiratory system. There are two specific and separate areas of concern, One is that monitoring {sup 222} Rn levels alone, such as with charcoal canisters, is obviously not sufficient to determine the radiation dose since the daughters are never in absolute equilibrium with {sup 222}Rn. Further, from an internal dose standpoint, the {open_quotes}unattached{close_quotes} fraction (free ions) of the daughters are believed, by virtue of their deeper tissue depositions in the tracheo-bronchial tract, to deliver the greatest dose in the body. Currently, there are virtually no data on the measurements of both plateout rates and resuspension factors for specific individual residential material surfaces. This report presents experimental data of plateout rates in an indoor house for typical indoor materials. Results of measurements of resuspension factors for some of the materials are provided.

  13. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Kollu, Pratap E-mail: anirmalagrace@vit.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D. E-mail: anirmalagrace@vit.ac.in; Santosh, Chella; Grace, Andrews Nirmala E-mail: anirmalagrace@vit.ac.in

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100?Oe and 200?Oe) are explained on the basis of surface spin disorder.

  14. Engineering materials for all optical magnetic recording Stephane Mangin

    E-Print Network [OSTI]

    Siegel, Paul H.

    " with spintronic applications for data storage, memories and logic. The use of laser pulses for magnetization of AOS in spintronic devices. Figure 1 shows an example or controlled reversal of magnetization

  15. Magnetic mesoporous material for the sequestration of algae

    SciTech Connect (OSTI)

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  16. Method for producing high surface area chromia materials for catalysis

    DOE Patents [OSTI]

    Gash, Alexander E. (Brentwood, CA); Satcher, Joe (Patterson, CA); Tillotson, Thomas (Tracy, CA); Hrubesh, Lawrence (Pleasanton, CA); Simpson, Randall (Livermore, CA)

    2007-05-01

    Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.

  17. RF Surface Impedance Characterization of Potential New Materials for SRF-based Accelerators

    SciTech Connect (OSTI)

    Xiao, Binping [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and College of William and Mary, Williamsburg, VA (United States); Eremeev, Grigory V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Phillips, H. Lawrence [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Kelley, Michael J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2012-09-01

    In the development of new superconducting materials for possible use in SRF-based accelerators, it is useful to work with small candidate samples rather than complete resonant cavities. The recently commissioned Jefferson Lab RF Surface Impedance Characterization (SIC) system can presently characterize the central region of 50 mm diameter disk samples of various materials from 2 to 40 K exposed to RF magnetic fields up to 14 mT at 7.4 GHz. We report the recent measurement results of bulk Nb, thin film Nb on Cu and sapphire substrates, Nb{sub 3}Sn sample, and thin film MgB{sub 2} on sapphire substrate provided by colleagues at JLab and Temple University.

  18. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOE Patents [OSTI]

    Sanchez, Robert O. (Los Lunas, NM); Gunewardena, Shelton (Walnut, CA); Masi, James V. (Cape Elizabeth, ME)

    2007-11-27

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  19. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOE Patents [OSTI]

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2005-03-29

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  20. Magnetic-Surface Quality in Nonaxisymmetric Plasma Equilibria Carolin Nuhrenberg*

    E-Print Network [OSTI]

    Hudson, Stuart

    received 21 January 2009; published 9 June 2009) The confinement of plasmas by magnetic fields A central requirement in magnetic confinement fusion is to balance the pressure force with the Lorentz force gradient is nonzero, both the magnetic field B and the current density j must lie on the constant pressure

  1. The evolution of surface magnetic fields in young solar-type stars

    E-Print Network [OSTI]

    Folsom, C P; Bouvier, J; Morin, J; Lèbre, A

    2015-01-01

    Surface rotation rates of young solar-type stars display drastic changes at the end of the pre-main sequence through the early main sequence. This may trigger corresponding changes in the magnetic dynamos operating in these stars, which ought to be observable in their surface magnetic fields. We present here the first results of an observational effort aimed at characterizing the evolution of stellar magnetic fields through this critical phase. We observed stars from open clusters and associations, which range from 20 to 600 Myr, and used Zeeman Doppler Imaging to characterize their complex magnetic fields. We find a clear trend towards weaker magnetic fields for older ages, as well as a tight correlation between magnetic field strength and Rossby number over this age range. Comparing to results for younger T Tauri stars, we observe a very significant change in magnetic strength and geometry, as the radiative core develops during the late pre-main sequence.

  2. SURVEY OF HIGH FIELD SUPERCONDUCTING MATERIAL FOR ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Scanlan, R.

    2010-01-01

    1. Production status of Superconducto~ s Pabricability NbTivaluation of different superconducto~ materials is to investSupec-conductors , " in Superconductor Materials Science,

  3. Fermi Surface of Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Fermi Surface of ­Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory DMR-Award 0654118 DC Field Facility User Program The fermi surface of ­Uranium has been measured surface of alpha-uranium at ambient pressure, Phys. Rev. B Rapid Commun., 80, 241101 (2009). B//c-axis B

  4. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    SciTech Connect (OSTI)

    Johnson, Francis

    2014-06-30

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.

  5. Fig. 1. Magnetic hysteresis of NiO-doped NiF2 conversion materials

    E-Print Network [OSTI]

    Siegel, Paul H.

    member with CMRR, is leading her group to design, optimize and develop new materials for energy storage materials for higher energy lithium ion batteries (at least double the energy density of today's technologyFig. 1. Magnetic hysteresis of NiO-doped NiF2 conversion materials CMRR Newsletter Shirley Meng

  6. Wave turbulence on the surface of a ferrofluid submitted to a magnetic field Francois Boyer and Eric Falcon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Wave turbulence on the surface of a ferrofluid submitted to a magnetic field Fran¸cois Boyer the observation of wave turbulence on the surface of a ferrofluid mechanically forced and submitted to a static normal magnetic field. We show that magnetic surface waves arise only above a critical field. The power

  7. Wave Turbulence on the Surface of a Ferrofluid in a Magnetic Field Francois Boyer and Eric Falcon*

    E-Print Network [OSTI]

    Falcon, Eric

    Wave Turbulence on the Surface of a Ferrofluid in a Magnetic Field Franc¸ois Boyer and Eric Falcon the observation of wave turbulence on the surface of a ferrofluid mechanically forced and submitted to a static normal magnetic field. We show that magnetic surface waves arise only above a critical field. The power

  8. Inversion of surface nuclear magnetic resonance data by an adapted Monte Carlo method applied to water resource characterization

    E-Print Network [OSTI]

    Sailhac, Pascal

    Inversion of surface nuclear magnetic resonance data by an adapted Monte Carlo method applied, France Abstract Inversion of surface nuclear magnetic resonance (SNMR) provides important information Science B.V. All rights reserved. Keywords: Inversion; Surface nuclear magnetic resonance; Monte Carlo 1

  9. Magnetic properties on the surface of FeAl stripes induced by nanosecond pulsed laser irradiation

    SciTech Connect (OSTI)

    Kaiju, H., E-mail: kaiju@es.hokudai.ac.jp; Kondo, K.; Ishibashi, A. [Laboratory of Nano-Structure Physics, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Yoshida, Y. [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Creative Research Institution Sousei, Hokkaido University, Sapporo, Hokkaido 001-0021 (Japan); Watanabe, S. [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Yoshimi, K. [Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan)

    2014-05-07

    We demonstrate the formation of magnetic nanostripes on the surface of Fe{sub 52}Al{sub 48} induced by nanosecond pulsed laser irradiation and investigate their magnetic properties. The magnetic stripe consists of a disordered A2 phase of Fe-Al alloys with Al-oxide along the [110] direction on the (111)-oriented plane. According to the focused magneto-optical Kerr effect measurement, the coercive force of the magnetic stripe obeys the 1/cos?? law, where ? is the field rotation angle estimated from the stripe direction. Also, the jump field can be observed in the magnetic hysteresis loop. These results indicate that the magnetization reversal in the magnetic stripe originates from the domain pinning, showing that the magnetization rotates incoherently.

  10. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  11. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOE Patents [OSTI]

    Kochen, R.L.; Navratil, J.D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  12. Full vector low-temperature magnetic measurements of geologic materials

    E-Print Network [OSTI]

    Feinberg, Joshua M; Solheid, Peter A; Swanson-Hysell, Nicholas L; Jackson, Mike J; Bowles, Julie A

    2015-01-01

    511. FEINBERG ET AL. : THREE-AXIS LOW-TEMPERATURE REMANENCEof pyrrhotite as determined by low- and high-field experi-10.1029/, Full vector low-temperature magnetic measurements

  13. Magnetic and petrologic characterization of synthetic Martian basalts and implications for the surface magnetization of Mars

    E-Print Network [OSTI]

    Hammer, Julia Eve

    , and the kinetics of silicate mineral nucleation and growth. Oxide abundance and magnetic intensity are most typical terrestrial basalt [Connerney et al., 1999]. [3] Most rock magnetic studies have focused

  14. Model for dynamic self-assembled magnetic surface structures.

    SciTech Connect (OSTI)

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.; Materials Science Division; Northwestern Univ.

    2010-07-07

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  15. Characterizing artificial electromagnetic materials and their hybridization with fundamentally resonant magnetic materials

    E-Print Network [OSTI]

    Gollub, Jonah Nathan

    2008-01-01

    4 Ferromagnetic Materials in Microstrip Structures . . . 4.1Ferromagnetic Materials . . . . . . . . . . . . . . 4.3 The1: positive material 1 , µ 1 > 0 . . . . . . . . . . . . . .

  16. Novel Magnetic Material Operates under Extreme Stress Conditions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystal structure of complex oxide material La2MnNiO6. An ordered arrangement of Mn and Ni ions renders this material ferromagnetic with an unusual stability for operation in...

  17. 3.15 Electrical, Optical & Magnetic Materials and Devices, Fall 2003

    E-Print Network [OSTI]

    Ross, Caroline A.

    Explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. Features a device-motivated ...

  18. Supplementary Material for Magnetic Jam in the Corona of the Sun

    E-Print Network [OSTI]

    Loss, Daniel

    Supplementary Material for Magnetic Jam in the Corona of the Sun F. Chen,1 H. Peter,1 S. Bingert,2 as well as the density, temperature, and magnetic field at the bottom boundary of our computational box is that there is a continuous distribution of heat deposition into the upper solar atmosphere, all the way from the chromosphere

  19. PHYSICAL REVIEW B 85, 184301 (2012) Spin-lattice-electron dynamics simulations of magnetic materials

    E-Print Network [OSTI]

    2012-01-01

    of experiments on laser-induced demagnetization of iron thin films, and estimate the rates of heat transfer of a magnetic material. They evaluated the total free energies and heat capacities of Fe, Co, and Ni usingPHYSICAL REVIEW B 85, 184301 (2012) Spin-lattice-electron dynamics simulations of magnetic

  20. Inducing magnetism onto the surface of a topological crystalline insulator

    E-Print Network [OSTI]

    Assaf, Badih A.

    Inducing magnetism onto a topological crystalline insulator (TCI) has been predicted to result in several novel quantum electromagnetic effects. This is a consequence of the highly strain-sensitive band topology of such ...

  1. Fatigue cracking in materials with brittle surface coatings

    SciTech Connect (OSTI)

    Suresh, S.; Sugimura, Y.; Ogawa, T. (Brown Univ., Providence, RI (United States))

    1993-07-15

    Ceramic coatings enhance the resistance of metal alloys to wear, oxidation, thermal exposure, corrosion, erosion and delamination in a variety of structural, optical, electrical , electronic and bioengineering applications. Recent experimental work on steel-steel bimaterials has shown that the conditions for the growth or arrest of a fatigue crack, which approaches the interface between the two steels perpendicularly, are determined by whether the crack propagates to the interface from the weaker or the stronger material. Specifically, it is found that as the fatigue crack advances toward the interface from the weaker steel, the interaction of the crack-tip plastic zone with the interface results in the arrest of the crack. However, when the fatigue crack is propagated from the stronger to the weaker steel, crack growth occurs unimpeded through the interface. In this paper, the authors present additional experimental and mechanistic descriptions of fatigue crack growth normal to interfaces. They then apply the mechanisms underlying these experiments to the design of fatigue-resistant surface coatings for alloys. In particular, they demonstrate experimentally that a fatigue crack emanating from the brittle outercoating and advancing into the substrate can be arrested and/or deflected by proper choices of ductile interlayers. Experimental results of fatigue crack profiles and high-cycle fatigue lives are presented for two different coated materials: a steel coated with a Cr[sub 2]O[sub 3] layer and a steel coated with a Cr[sub 2]O[sub 3] outerlayer and a soft Ni-Al interlayer. The paper also includes a brief discussion of the application of proposed concepts to nitrided titanium alloys.

  2. Surface Extraction from Multi-Material Components for Metrology using Dual Energy CT

    E-Print Network [OSTI]

    Surface Extraction from Multi-Material Components for Metrology using Dual Energy CT Christoph surface models of multi-material components using dual energy com- puted tomography (DECT exposure scans was facilitated. Index Terms--DECT image fusion, local surface extraction, Dual Energy CT

  3. Induced patterning of organic and inorganic materials by spatially discrete surface energy Walter Hu,a)

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    Induced patterning of organic and inorganic materials by spatially discrete surface energy Walter surface energies on the substrate induce microfluidic self-patterning of materials that are deposited but spatially organized nanostructures both in organic and inorganic materials. Available methods are mainly

  4. Radio-frequency sheath-plasma interactions with magnetic field tangency points along the sheath surface

    SciTech Connect (OSTI)

    Kohno, H. [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, Pennsylvania 18015 (United States)] [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, Pennsylvania 18015 (United States); Myra, J. R.; D'Ippolito, D. A. [Lodestar Research Corporation, 2400 Central Avenue P-5, Boulder, Colorado 80301 (United States)] [Lodestar Research Corporation, 2400 Central Avenue P-5, Boulder, Colorado 80301 (United States)

    2013-08-15

    Computer simulations of radio-frequency (RF) waves propagating across a two-dimensional (2D) magnetic field into a conducting boundary are described. The boundary condition for the RF fields at the metal surface leads to the formation of an RF sheath, which has previously been studied in one-dimensional models. In this 2D study, it is found that rapid variation of conditions along the sheath surface promote coupling of the incident RF branch (either fast or slow wave) to a short-scale-length sheath-plasma wave (SPW). The SPW propagates along the sheath surface in a particular direction dictated by the orientation of the magnetic field with respect to the surface, and the wave energy in the SPW accumulates near places where the background magnetic field is tangent to the surface.

  5. Surface Chemistry of a Microcoated Energetic Material, Pentaerythritoltetranitrate (PETN)

    SciTech Connect (OSTI)

    Worley, C.M.; Vannet, M.D.; Ball, G.L.; Moddeman, W.E.

    1987-01-01

    A microcoating technique was used to apply a polymer to an energetic explosive material. The explosive was pentaerythritoltetranitrate (PETN), and the coating was a copolymer consisting of vinylchloride/trifluorochloroethylene in a 1.5/1.0 molecular ratio. X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS) were used to study the surface and interfacial chemistry of PETN powders and pellets made from compressed powders having either 0.5 or 20 wt% coating. Two simple models were used to discuss the nature of the copolymer film on the PETN. Model I shows the copolymer completely coating PETN; Model II depicts the copolymer as only partially covering PETN. Model II was applicable in explaining the 0.5 and 20 wt% microcoating of powders, as well as the 0.5 wt% coated pellets. However, the pellets with 20 wt% coating showed the copolymer to completely coat PETN (Model I), suggesting copolymer redistribution during pelletization. XPS and ISS results showed the copolymer film to be thin. An XPS expression modified to accommodate ISS data was developed for the calculation of the average copolymer thickness of PETN. The thicknesses were determined to be 10 {angstrom} and 6 {angstrom} for 0.5 wt% coated PETN powders and pellets, respectively. Bonding between the copolymer and PETN was concluded to be mechanical.

  6. Homogeneous solutions for elliptically polarized light in a cavity containing materials with electric and magnetic nonlinearities

    E-Print Network [OSTI]

    Martin, D A

    2015-01-01

    We study evolution equations and stationary homogeneous solutions for electric and magnetic field amplitudes in a ring cavity with flat mirrors. The cavity is filled with a positive or negative refraction index material with third order Kerr-like electric nonlinearities and also magnetic nonlinearities, which can be relevant in metamaterials. We consider the degree of freedom of polarization in the incident beam. It is found that considering a magnetic nonlinearity increases the variety of possible qualitatively different solutions. A classification of solutions is proposed in terms of the number of bifurcations. The analysis can be useful for the implementation of optical switching or memory storage using ring cavities with non linear materials.

  7. SPIE Symposium on Smart Structures & Materials 2/96 paper No. 2717-66 Measured Terfenol-D material properties under varied applied magnetic field levels

    E-Print Network [OSTI]

    Flatau, Alison B.

    -D material properties under varied applied magnetic field levels Marcelo J. Dapino, Frederick T. Calkins An experimental approach is used to identify Terfenol-D material properties under magnetic bias and mechanical, and on the theory of vector impedance and admittance analysis. The material properties being investigated, measured

  8. An in-situ accelerator-based diagnostic for plasma-material interactions science in magnetic fusion devices

    E-Print Network [OSTI]

    Hartwig, Zachary Seth

    2014-01-01

    Plasma-material interactions (PMI) in magnetic fusion devices such as fuel retention, material erosion and redeposition, and material mixing present significant scientific and engineering challenges, particularly for the ...

  9. A PHASE CHANGE MICROVALVE USING A MELTABLE MAGNETIC MATERIAL: FERRO-WAX

    E-Print Network [OSTI]

    Oh, Kwang W.

    A PHASE CHANGE MICROVALVE USING A MELTABLE MAGNETIC MATERIAL: FERRO-WAX Kwang W. Oh, Kak Namkoong This paper presents a novel phase change microvalve using a paraffin-based ferrofluid plug (called "Ferro-Wax"). The Ferro-Wax plug is essentially leak-proof because of the phase change nature of the material; once

  10. Surface space : digital manufacturing techniques and emergent building material

    E-Print Network [OSTI]

    Ho, Joseph Chi-Chen, 1975-

    2002-01-01

    This thesis explores tectonic possibilities of new material and forming techniques. The design process is catalyzed by experimenting different configurations of the material.This project attempts to develop inventive ways ...

  11. Electron Holography of Magnetic and Electric Fields in Nanostructured Materials Prepared for TEM Examination Using Focused Ion Beam Milling

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Electron Holography of Magnetic and Electric Fields in Nanostructured Materials Prepared for TEM local angle and spacing carry the desired information about magnetic and electric fields. Electron not be perturbed by stray (fringing) magnetic or electric fields. When examining magnetic nanostructures in cross

  12. Surface Interactions as a Mechanism for Nuclear Magnetic Relaxation 

    E-Print Network [OSTI]

    Smith, Ronald Edward

    1960-01-01

    values of the parameter h, . . . . . . . . . . , . . . . . . 18 Experimental results 24 Relaxation in a surface layer of reduced mobility of thickness xl ~. . . 26 Relaxation arising from collisions with the surface . 28 Relaxation by a surface layer... of the transcendental equation 1 tan & 1 - ha (2. 26) and P ~r. The relaxation time is now defined to be the time required for the excess polarization to decay to 1/e of its original ~slue. This decay is given by a sum of exponentials rather than a single...

  13. Magnetic tunable microstructured surfaces for thermal management and microfluidic applications

    E-Print Network [OSTI]

    Zhu, Yangying

    2013-01-01

    Micro and nanostructured surfaces have broad applications including heat transfer enhancement in phase-change systems and liquid manipulation in microfluidic devices. While significant efforts have focused on fabricating ...

  14. Hydrogenated Bilayer Wurtzite SiC Nanofilms: A Two-Dimensional Bipolar Magnetic Semiconductor Material

    E-Print Network [OSTI]

    Yuan, Long; Yang, Jinlong

    2012-01-01

    Recently, a new kind of spintronics materials, bipolar magnetic semiconductor (BMS), has been proposed. The spin polarization of BMS can be conveniently controlled by a gate voltage, which makes it very attractive in device engineering. Now, the main challenge is finding more BMS materials. In this article, we propose that hydrogenated wurtzite SiC nanofilm is a two-dimensional BMS material. Its BMS character is very robust under the effect of strain, substrate, or even a strong electric field. The proposed two-dimensional BMS material paves the way to use this promising new material in an integrated circuit.

  15. Modeling Magnetism in Rare-Earth Intermetallic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMission Mission MissionofLaboratory Modeling Magnetism

  16. Electronic & Magnetic Materials & Devices | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAwardElectronElectronic & Magnetic

  17. Improved Bounds on the Effective Yield Surface of Inhomogeneous Rigid/Plastic Materials

    E-Print Network [OSTI]

    Olson, Tamara

    Improved Bounds on the Effective Yield Surface of Inhomogeneous Rigid/Plastic Materials Tamara January 1993 Abstract The yield surface of a mixture of rigid/perfectly­plastic materials is examined plasticity under suffi­ ciently large stress. The set of stresses at which the deformation changes from

  18. Surface composites: A new class of engineered materials Rajiv Singh and James Fitz-Gerald

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    applications, are generally com- posed of ceramic, metal, or polymeric matrix with a dispersed second phaseSurface composites: A new class of engineered materials Rajiv Singh and James Fitz component, a new class of engineered materials termed "surface composites" has been developed

  19. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Wilgen, John B; Kisner, Roger A; Ahmad, Aquil

    2010-08-01

    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  20. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOE Patents [OSTI]

    King, D.E.; Herdt, G.C.; Czanderna, A.W.

    1997-01-07

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

  1. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOE Patents [OSTI]

    King, David E. (Lakewood, CO); Herdt, Gregory C. (Denver, CO); Czanderna, Alvin W. (Denver, CO)

    1997-01-01

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

  2. New pure shear acoustic surface waves guided by cuts in magneto-electro-elastic materials

    E-Print Network [OSTI]

    Arman Melkumyan

    2006-07-12

    It is shown that new pure shear acoustic surface waves with five different velocities can be guided by stress free plane cuts with different magneto-electrical properties in magneto-electro-elastic materials. The possibility for the surface waves to be guided by a cut in pairs, which is reported in this paper, is new in magneto-electro-elastic materials and has no counterpart in piezoelectric materials. The five velocities of propagation of the surface waves are obtained in explicit forms. It is shown that the possibility for the surface waves to be guided in pairs disappears and the number of surface waves decreases from 5 to 1 if the magneto-electro-elastic material is changed to a piezoelectric material.

  3. Relation between photospheric flow fields and the magnetic field distribution on the solar surface

    SciTech Connect (OSTI)

    Simon, G.W.; Title, A.M.; Topka, K.P.; Tarbell, T.D.; Shine, R.A.

    1988-04-01

    Using the technique of local correlation tracking on a 28 minute time sequence of white-light images of solar granulation, the horizontal flow field on the solar surface is measured. The time series was obtained by the Solar Optical Universal Polarimeter (SOUP) on Spacelab 2 (Space Shuttle flight 51-F) and is free from atmospheric blurring and distortion. The SOUP flow fields have been compared with carefully aligned magnetograms taken over a nine hour period at the Big Bear Solar Observatory before, during, and after the SOUP images. The flow field and the magnetic field agree in considerable detail: vectors which define the flow of the white-light intensity pattern (granulation) point toward magnetic field regions, magnetic fields surround flow cells, and magnetic features move along the flow arrows. The projected locations of free particles (corks) in the measured flow field congregate at the same locations where the magnetic field is observed. 31 references.

  4. Reduction of surface leakage current by surface passivation of CdZn Te and other materials using hyperthermal oxygen atoms

    DOE Patents [OSTI]

    Hoffbauer, Mark A. (Los Alamos, NM); Prettyman, Thomas H. (Los Alamos, NM)

    2001-01-01

    Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.

  5. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk

    E-Print Network [OSTI]

    Ryan, Dominic

    Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de

  6. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  7. Data mining for materials design: A computational study of single molecule magnet

    SciTech Connect (OSTI)

    Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan) [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi (Viet Nam); Pham, Tien Lam; Ho, Tu Bao [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)] [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Nguyen, Anh Tuan [Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi (Viet Nam)] [Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi (Viet Nam); Nguyen, Viet Cuong [HPC Systems, Inc., 3-9-15 Kaigan, Minato-ku, Tokyo 108-0022 (Japan)] [HPC Systems, Inc., 3-9-15 Kaigan, Minato-ku, Tokyo 108-0022 (Japan)

    2014-01-28

    We develop a method that combines data mining and first principles calculation to guide the designing of distorted cubane Mn{sup 4+} Mn {sub 3}{sup 3+} single molecule magnets. The essential idea of the method is a process consisting of sparse regressions and cross-validation for analyzing calculated data of the materials. The method allows us to demonstrate that the exchange coupling between Mn{sup 4+} and Mn{sup 3+} ions can be predicted from the electronegativities of constituent ligands and the structural features of the molecule by a linear regression model with high accuracy. The relations between the structural features and magnetic properties of the materials are quantitatively and consistently evaluated and presented by a graph. We also discuss the properties of the materials and guide the material design basing on the obtained results.

  8. Propagation of surface waves on a semi-bounded quantum magnetized collisional plasma

    SciTech Connect (OSTI)

    Niknam, A. R.; Taheri Boroujeni, S.; Khorashadizadeh, S. M.

    2013-12-15

    The propagation of surface waves on a semi-bounded quantum plasma in the presence of the external magnetic field and collisional effects is investigated by using quantum magnetohydrodynamics model. A general analytical expression for the dispersion relation of surface waves is obtained by considering the boundary conditions. It is shown that, in some special cases, the obtained dispersion relation reduces to the results reported in previous works. It is also indicated that the quantum, external magnetic field and collisional effects can facilitate the propagation of surface waves on a semi-bounded plasma. In addition, it is found that the growth rate of the surface wave instability is enhanced by increasing the collision frequency and plasmonic parameter.

  9. A PARAMETRIC STUDY OF BCS RF SURFACE IMPEDANCE WITH MAGNETIC FIELD USING THE XIAO CODE

    SciTech Connect (OSTI)

    Reece, Charles E. [JLAB; Xiao, Binping [JLAB, BNL

    2013-09-01

    A recent new analysis of field-dependent BCS rf surface impedance based on moving Cooper pairs has been presented.[1] Using this analysis coded in Mathematica TM, survey calculations have been completed which examine the sensitivities of this surface impedance to variation of the BCS material parameters and temperature. The results present a refined description of the "best theoretical" performance available to potential applications with corresponding materials.

  10. Permanent Magnet Motors for Energy Savings in Industrial Applications Copyright Material IEEE

    E-Print Network [OSTI]

    McCalley, James D.

    Permanent Magnet Motors for Energy Savings in Industrial Applications Copyright Material IEEE Paper industry. Over the past 30 years, there have been clear trends in motor utilization that demand higher energy efficiency and reduced Total Cost of Ownership (TCO). Induction motors have been able

  11. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications

    E-Print Network [OSTI]

    McHenry, Michael E.

    and facilitate two-way power conversion.7 Flexible alternating current (AC) Transmission Systems (FACTS) and High Voltage DC (HVDC) technologies aim to improve the effi- ciency of power networks and benefit from highSoft Magnetic Materials in High-Frequency, High-Power Conversion Applications ALEX M. LEARY,1

  12. neutron scattering shows magnetic excitation mechanism at work in new materials.

    E-Print Network [OSTI]

    neutron scattering shows magnetic excitation mechanism at work in new materials. In 2008 dai of orNl and the university of tennes- see led early neutron scattering studies of the pnictides. dai ticks off four main things neutron scattering has revealed about superconducting iron com- pounds

  13. Critical magnetic field of surface superconductivity in lead

    SciTech Connect (OSTI)

    Khlyustikov, I. N., E-mail: khly@kapitza.ras.ru [Russian Academy of Sciences, Kapitza Institute of Physical Problems (Russian Federation)

    2011-12-15

    The critical superconductivity field H{sub c3} is measured on lead single crystals. It is shown that the temperature dependence of H{sub c3}/H{sub c} in the vicinity of superconducting transition temperature T{sub c} is essentially nonlinear. Relative changes in the value of H{sub c3}/H{sub c} reach approximately 30%, which cannot be described by the Ginzburg-Landau theory. The experimental temperature dependences lead to the conclusion that the surface superconducting transition temperature noticeably exceeds the superconducting transition temperature in the bulk of the semiconductor. The differences in the critical temperatures and in the Ginzburg-Landau parameters for lead are estimated.

  14. Surface Finish Modeling in Micromilling of Biocompatible Materials 

    E-Print Network [OSTI]

    Berestovskyi, Dmytro V

    2013-06-05

    the requirements listed above. Computer controlled micromilling on a high speed machine system in minimum quantity lubrication was used to remove most materials and define a channel pattern. Microchannels were machined with ball end mills of diameters from Ø152?m...

  15. Real time image integrator for magnetic surface mapping experiments in TJ-I U torsatron

    SciTech Connect (OSTI)

    Marin, J.; Carballo, I.; Olmos, P.; Ascasibar, E.; Pastor, I.; Qin, J.; Herranz, J.; Fraguas, A.L. [CIEMAT, Madrid (Spain)] [CIEMAT, Madrid (Spain)

    1996-02-01

    The authors describe in this paper a video integrator system developed for mapping the magnetic surfaces inside the TJ-I U torsatron built at CIEMAT and devoted to fusion plasma studies. A description of the video integrator hardware as well as some of the results carried out with the system are also presented and discussed.

  16. Impedance operator description of a meta--surface with electric and magnetic dipoles

    E-Print Network [OSTI]

    Didier Felbacq

    2015-07-28

    A meta-surface made of a collection of nano-resonators characterized an electric dipole and a magnetic dipole was studied in the regime where the wavelength is large with respect to the size of the resonators. An effective description in terms of an impedance operator was derived.

  17. Speciation of Energetic Materials on a Microcantilever Using Surface Reduction

    SciTech Connect (OSTI)

    Yi, Dechang; Senesac, Larry R; Thundat, Thomas George

    2008-01-01

    Although microcantilevers have been used to detect explosives with extremely high sensitivity using variations in adsorption-induced bending and resonance frequency, obtaining selectivity remains a challenge. Reversible chemoselectivity at ambient temperatures based on receptor-based detection provides only limited selectivity due to the generality of chemical interactions. The oxygen imbalance in secondary explosives presents a means to achieve receptor-free speciation of explosives using surface reduction of adsorbed molecules. We demonstrate highly selective and real-time detection of Trinitrotoluene (TNT) using a copper oxide-coated cantilever with a surface reduction approach. Not only can this technique exclusively differentiate explosives from nonexplosives, but also it has the potential to specify individual explosives such as TNT, pentaerythritol tetranitrate (PETN), and RDX. This technique together with receptor-based detection techniques provides a multimodal approach for achieving very high selectivity.

  18. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  19. Computation of Neutron Star Surface Emission Spectra for Arbitrary Magnetic Field Directions without Diffusion Approximation

    E-Print Network [OSTI]

    L. W. Yeh; G. T. Chen; H. K. Chang

    2006-12-22

    To derive physical properties of the neutron star surface with observed spectra, a realistic model spectrum of neutron star surface emission is essential. Limited by computing resources, a full computation of the radiative transfer equations without the diffusion approximation has been conducted up to date only for the case of local magnetic fields being perpendicular to the stellar surface. In this paper we report the full-computation result for an arbitrary field direction. For comparison we also compute the radiative transfer equation using the diffusion approximation. For a given effective temperature, the computed spectrum with the diffusion approximation is always softer than that of a full computation at a non-negligible level. It leads to an over-estimate of the effective temperature if the diffusion approximation spectrum is employed in the spectral fitting. Other characteristics for different magnetic field orientations, such as the beaming pattern of the two polarization modes and the structure of the atmosphere, are also discussed.

  20. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    Surface Reconstruction and Chemical Evolution of LiNi x Mn xto Fm3m transition) and chemical evolution (formation of areconstruction and chemical evolution in NMC materials using

  1. Carbon-Based Materials, High-Surface-Area Sorbents, and New Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies includes a range of carbon-based materials such as carbon nanotubes, aerogels, nanofibers (including metal-doped hybrids), as well as metal-organic frameworks,...

  2. The importance of Fe surface states for spintronic devices based on magnetic tunnel junctions

    SciTech Connect (OSTI)

    Chantis, Athanasios N

    2008-01-01

    In this article we give a review of our recent theoretical studies of the influence of Fe(001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferromagnetic electrode. Second, in Fe/GaAs(001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers.

  3. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    SciTech Connect (OSTI)

    Arranz, Miguel A. [Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain); Palomares, Francisco J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100?nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength ? and selected, large amplitudes (?) up to 20?nm so that stray dipolar fields are enhanced, while the residual film thickness t?=?35–50?nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ?{sup 2}/?/t in quantitative agreement with Schlömann's prediction for a surface anisotropy entirely ruled by dipolar interaction. The limits of UMA tuning by a ripple pattern are discussed in terms of the surface local angle with respect to the mean surface and of the onset of ripple detachment.

  4. Hamilton--Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity

    E-Print Network [OSTI]

    M. McGann; S. R. Hudson; R. L. Dewar; G. von Nessi

    2010-02-18

    The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton--Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational.

  5. De novo synthesis of a metalorganic framework material featuring ultrahigh surface area and gas

    E-Print Network [OSTI]

    . Among the many potential applications that can be extrapolated from these properties are gas storage4 high gas storage capacities and one of the highest reported surface areas to date. ResultsDe novo synthesis of a metal­organic framework material featuring ultrahigh surface area and gas

  6. Plastic yield surfaces of anisotropic porous materials in terms of effective electric conductivities

    E-Print Network [OSTI]

    Sevostianov, Igor

    Plastic yield surfaces of anisotropic porous materials in terms of effective electric University, 204 Anderson Hall, Medford, MA 02155, USA Received 10 December 2004 Abstract Plastic yield analysis of a plastic flow in a porous material. Interna- tional Journal of Plasticity 18, 1649­1659] show

  7. Nanocluster-based white-light-emitting material employing surface tuning

    DOE Patents [OSTI]

    Wilcoxon, Jess P. (Albuquerque, NM); Abrams, Billie L. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM)

    2007-06-26

    A method for making a nanocrystal-based material capable of emitting light over a sufficiently broad spectral range to appear white. Surface-modifying ligands are used to shift and broaden the emission of semiconductor nanocrystals to produce nanoparticle-based materials that emit white light.

  8. Materials of interaction : responsive materials in the design of transformable interactive surfaces

    E-Print Network [OSTI]

    Coelho, Marcelo

    2008-01-01

    Materials that embody computational properties are reshaping the ways in which we design, interact and communicate. This thesis looks at the topic of form transformation and how to bring the programmability and versatility ...

  9. A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

    E-Print Network [OSTI]

    Godeke, Arno

    2007-01-01

    Fundamental Physics Superconducting Magnets Yields: Accuraterecord setting superconducting magnet systems ITER, NMRScience, Fundamental Physics, and Superconducting Magnets

  10. Surface driven effects on magnetic properties of antiferromagnetic LaFeO{sub 3} nanocrystalline ferrite

    SciTech Connect (OSTI)

    Sendil Kumar, A. E-mail: anilb42@gmail.com; Manivel Raja, M.; Bhatnagar, Anil K. E-mail: anilb42@gmail.com

    2014-09-21

    LaFeO{sub 3} nanocrystalline ferrites were synthesized through sol-gel method in different size distributions and the effect of finite size on magnetic properties is investigated. Results of magnetization and Mössbauer measurements show that superparamagnetism and weak ferromagnetic behavior in some of the size distributions. The origin of the superparamagnetism is from fine particles similar to ferromagnetic single domains and the weak ferromagnetism comes from surface spin disorder caused by Dzyaloshinskii-Moriya interaction. The magnetic ground state of LaFeO{sub 3} nanoparticles differs from that of bulk, and the ground state is dictated by the finite size effect because density of states depends on the dimensionality of the sample.

  11. Magnetic breakdown and Landau level spectra of a tunable double-quantum-well Fermi surface

    SciTech Connect (OSTI)

    Simmons, J.A.; Harff, N.E.; Lyo, S.K.; Klem, J.F. [Sandia National Labs., Albuquerque, NM (United States); Boebinger, G.S.; Pfeiffer, L.N.; West, K.W. [Lucent Technologies, Murray Hill, NJ (United States). Bell Labs.

    1997-12-31

    By measuring longitudinal resistance, the authors map the Landau level spectra of double quantum wells as a function of both parallel (B{sub {parallel}}) and perpendicular (B{sub {perpendicular}}) magnetic fields. In this continuously tunable highly non-parabolic system, the cyclotron masses of the two Fermi surface orbits change in opposite directions with B{sub {parallel}}. This causes the two corresponding ladders of Landau levels formed at finite B{sub {perpendicular}} to exhibit multiple crossings. They also observe a third set of landau levels, independent of B{sub {parallel}}, which arise from magnetic breakdown of the Fermi surface. Both semiclassical and full quantum mechanical calculations show good agreement with the data.

  12. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Pecharsky, Alexandra O. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

    2006-10-03

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  13. Relation between convection flows and magnetic structure at the solar surface

    SciTech Connect (OSTI)

    Simon, G.W.; November, L.J.; Action, L.W.; Title, A.M.; Tarbell, T.D.

    1988-01-01

    Recent results from comparison of data from the Solar Optical Universal Polarimeter instrument of Spacelab 2 and magnetograms from Big Bear Solar Observatory are described. It is shown that the Sun's surface velocity field governs the structure of the observed magnetic field over the entire solar surface outside sunspots and pores. The authors attempt to describe the observed flows by a simple axisymmetric plume model. Finally, they suggest that these observations may have important implications for the prediction of solar flares, mass ejections, and coronal heating.

  14. Optimal current control strategies for surface-mounted permanent-magnet synchronous machine drives

    SciTech Connect (OSTI)

    Chapman, P.L.; Sudhoff, S.D.; Whitcomb, C.A.

    1999-12-01

    The current waveforms for optimal excitation of surface-mounted permanent-magnet synchronous machines are set forth. Four different modes are considered, involving varying degrees of minimization of rms current and torque ripple. The optimized waveforms are markedly different than the traditional sinusoidal or rectangular excitation schemes. Inclusion of cogging torque and arbitrary degree of torque ripple minimization generalize this work over that of previous authors. An experimental drive and a detailed computer simulation verify the proposed control schemes.

  15. Numerical upscaling for the eddy-current model with stochastic magnetic materials

    SciTech Connect (OSTI)

    Eberhard, Jens P. [Computer Simulation Technology, Bad Nauheimer Strasse, 19, D-64289 Darmstadt (Germany)], E-mail: jens.eberhard@cst.com; Popovic, Dan [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: dan.popovic@stud.uni-heidelberg.de; Wittum, Gabriel [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: wittum@uni-hd.de

    2008-04-01

    This paper deals with the upscaling of the time-harmonic Maxwell equations for heterogeneous media. We analyze the eddy-current approximation of Maxwell's equations to describe the electric field for heterogeneous, isotropic magnetic materials. The magnetic permeability of the materials is assumed to have random heterogeneities described by a Gaussian random field. We apply the so-called Coarse Graining method to develop a numerical upscaling of the eddy-current model. The upscaling uses filtering and averaging procedures in Fourier space which results in a formulation of the eddy-current model on coarser resolution scales where the influence of sub-scale fluctuations is modeled by effective scale- and space-dependent reluctivity tensors. The effective reluctivity tensors can be obtained by solving local partial differential equations which contain a Laplacian as well as a curl-curl operator. We present a computational method how the equation of the combined operators can be discretized and solved numerically using an extended variational formulation compared to standard discretizations. We compare the results of the numerical upscaling of the eddy-current model with theoretical results of Eberhard [J.P. Eberhard, Upscaling for the time-harmonic Maxwell equations with heterogeneous magnetic materials, Physical Review E 72 (3), (2005)] and obtain a very good agreement.

  16. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 21, Materials and processes selection. Volume 2

    SciTech Connect (OSTI)

    Smith, B.R.

    1995-08-15

    This document identifies the candidate materials and manufacturing processes selected for development of the TPX Toroidal Field (TF) Magnet. Supporting rationale and selection criteria are provided for justification and the materials properties database report is included for completeness. Specific properties for each material selection are included in this document.

  17. Mobile interfaces: Liquids as a perfect structural material for multifunctional, antifouling surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grinthal, Alison; Aizenberg, Joanna

    2013-10-14

    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultraslippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design andmore »fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions-able to operate in harsh, changing environments-not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through a range of finely tuned liquid topographies in response to environmental stimuli. In conclusion, with nearly unlimited design possibilities and unmatched interfacial properties, liquid materials-as long-term stable interfaces yet in their fully liquid state-may potentially transform surface design everywhere from medicine to architecture to energy infrastructure.« less

  18. Fluctuating Surface Currents: A New Algorithm for Efficient Prediction of Casimir Interactions among Arbitrary Materials in Arbitrary Geometries. I. Theory

    E-Print Network [OSTI]

    M. T. Homer Reid; Jacob White; Steven G. Johnson

    2012-07-12

    This paper presents a new method for the efficient numerical computation of Casimir interactions between objects of arbitrary geometries, composed of materials with arbitrary frequency-dependent electrical properties. Our method formulates the Casimir effect as an interaction between effective electric and magnetic current distributions on the surfaces of material bodies, and obtains Casimir energies, forces, and torques from the spectral properties of a matrix that quantifies the interactions of these surface currents. The method can be formulated and understood in two distinct ways: \\textbf{(1)} as a consequence of the familiar \\textit{stress-tensor} approach to Casimir physics, or, alternatively, \\textbf{(2)} as a particular case of the \\textit{path-integral} approach to Casimir physics, and we present both formulations in full detail. In addition to providing an algorithm for computing Casimir interactions in geometries that could not be efficiently handled by any other method, the framework proposed here thus achieves an explicit unification of two seemingly disparate approaches to computational Casimir physics.

  19. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films

    E-Print Network [OSTI]

    Temnov, Vasily V.

    The magnetic field is an interesting candidate for the development of active plasmonic devices as it is able to modify the surface plasmon polariton (SPP) wave vector. Both real and imaginary parts of the SPP wave vector ...

  20. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    SciTech Connect (OSTI)

    Carwell, H.

    1997-09-19

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  1. Effect of composition and heat treatment on MnBi magnetic materials

    SciTech Connect (OSTI)

    Cui, Jun [Pacific Northwest National Laboratory; Choi, Jung-Pyung [Pacific Northwest National Laboratory; Polikarpov, Evgueni [Pacific Northwest National Laboratory; Bowden, Mark E [Pacific Northwest National Laboratory; Xie, Wei [Pacific Northwest National Laboratory; Li, Guosheng [Pacific Northwest National Laboratory; Nie, Zimin [Pacific Northwest National Laboratory; Zarkevich, Nikolai [Ames Laboratory; Kramer, Matthew J [Ames Laboratory; Johnson, Duane [Ames Laboratory

    2014-10-01

    The metallic compound MnBi is a promising rare-earth-free permanent magnet material, unique among all candidates for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. The Hci of MnBi in thin-film or powder form can exceed 12 and 26 kOe at 300 and 523 K, respectively. Such a steep rise in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. However, the reaction between Mn and Bi is peritectic, and hence Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, when the alloy is prepared using conventional induction or arc-melting casting methods, additional Mn is required to compensate the precipitation of Mn. In addition to composition, post-casting annealing plays an important role in obtaining a high content of MnBi low-temperature phase (LTP) because the annealing encourages the Mn precipitates and the unreacted Bi to react, forming the desired LTP phase. Here we report a systematic study of the effect of composition and heat treatments on the phase content and magnetic properties of Mn–Bi alloys. In this study, 14 compositions were prepared using conventional metallurgical methods, and the compositions, crystal structures, phase content and magnetic properties of the resulting alloys were analyzed. The results show that the composition with 55 at.% Mn exhibits both the highest LTP content (93 wt.%) and magnetization (74 emu g?1 with 9 T applied field at 300 K).

  2. High magnetic field ohmically decoupled non-contact technology

    DOE Patents [OSTI]

    Wilgen, John (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger (Knoxville, TN) [Knoxville, TN; Ludtka, Gerard (Oak Ridge, TN) [Oak Ridge, TN; Ludtka, Gail (Oak Ridge, TN) [Oak Ridge, TN; Jaramillo, Roger (Knoxville, TN) [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  3. Magnetic Materials at finite Temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    SciTech Connect (OSTI)

    Eisenbach, Markus; Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles derived simulations.

  4. Magnetic anisotropy engineering: Single-crystalline Fe films on ion eroded ripple surfaces

    SciTech Connect (OSTI)

    Liedke, M. O.; Koerner, M.; Lenz, K.; Grossmann, F.; Facsko, S.; Fassbender, J.

    2012-06-11

    We present a method to preselect the direction of an induced in-plane uniaxial magnetic anisotropy (UMA) in thin single-crystalline Fe films on MgO(001). Ion beam irradiation is used to modulate the MgO(001) surface with periodic ripples on the nanoscale. The ripple direction determines the orientation of the UMA, whereas the intrinsic cubic anisotropy of the Fe film is not affected. Thus, it is possible to superimpose an in-plane UMA with a precision of a few degrees - a level of control not reported so far that can be relevant for example in spintronics.

  5. Depth-dependent magnetism in epitaxial MnSb thin films: effects of surface passivation and cleaning

    SciTech Connect (OSTI)

    Aldous J. D.; Sanchez-Hanke C.; Burrows, C.W.; Maskery, I.; Brewer, M.S.; Hase, T.P.A.; Duffy, J.A.; Lees, M. Rs; Decoster, T.; Theis, W.; Quesada, A.; Schmid, A.K.; Bell, G.R.

    2012-03-15

    Depth-dependent magnetism in MnSb(0001) epitaxial films has been studied by combining experimental methods with different surface specificities: polarized neutron reflectivity, x-ray magnetic circular dichroism (XMCD), x-ray resonant magnetic scattering and spin-polarized low energy electron microscopy (SPLEEM). A native oxide {approx}4.5 nm thick covers air-exposed samples which increases the film's coercivity. HCl etching efficiently removes this oxide and in situ surface treatment of etched samples enables surface magnetic contrast to be observed in SPLEEM. A thin Sb capping layer prevents oxidation and preserves ferromagnetism throughout the MnSb film. The interpretation of Mn L{sub 3,2} edge XMCD data is discussed.

  6. Final Report: Stability and Novel Properties of Magnetic Materials and Ferromagnet / Insulator Interfaces

    SciTech Connect (OSTI)

    Voyles, Paul

    2013-07-24

    We report investigations of the synthesis, structure, and properties of new materials for spintronic applications integrated onto silicon substrates. Our primary focus is materials with very high, negative, intrinsic spin polarization of the density of states at the Fermi level. We have developed a new synthesis method for Fe3O4 thin films through selective oxidation of Fe, resulting in smooth, low-defect density films. We have synthesized Fe4N films and shown that they preferentially oxidize to Fe3O4. When integrated into magnetic tunnel junctions consisting of Fe4N / AlOx / Fe, oxidation at the Fe4N / AlOx interface creates Fe3O4, leading to negative tunneling magnetoresistance (TMR). Oxidation of Fe in nominally symmetric CoFe / AlOx / CoFe also produces Fe3O4 and negative TMR under selected oxidation conditions.

  7. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    E-Print Network [OSTI]

    Isliker, Heinz

    Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label, 056114 (2012); 10.1063/1.3694842 Driving toroidally asymmetric current through the tokamak scrape-off in toroidal geometry: An exact analytical flux surface label for large aspect ratio N. Kallinikos, H. Isliker

  8. Surface Analysis Leader If we are to understand how reliable materials are, and how well they can

    E-Print Network [OSTI]

    Lennard, William N.

    of quality accreditation · Certified to International Organization for Standardization (ISO) 9001 that produce metallic and plastic components analyse and evaluate the surfaces of their materials

  9. IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 2, FEBRUARY 2011 317 Systematic Analysis and Engineering of Absorbing Materials Containing

    E-Print Network [OSTI]

    Koledintseva, Marina Y.

    A methodology to efficiently design novel products based on magneto-dielectric materials containing ferrite and Engineering of Absorbing Materials Containing Magnetic Inclusions for EMC Applications Marina Y. Koledintseva1 for solving numerous problems of electromagnetic compatibility (EMC) and improving immunity of electronic

  10. Development of Advanced Wear and Corrosion Resistant Systems Through Laser Surface Alloying and Materials Simulations

    SciTech Connect (OSTI)

    R. P. Martukanitz and S. Babu

    2007-05-03

    Laser surfacing in the form of cladding, alloying, and modifications are gaining widespread use because of its ability to provide high deposition rates, low thermal distortion, and refined microstructure due to high solidification rates. Because of these advantages, laser surface alloying is considered a prime candidate for producing ultra-hard coatings through the establishment or in situ formation of composite structures. Therefore, a program was conducted by the Applied Research Laboratory, Pennsylvania State University and Oak Ridge National Laboratory to develop the scientific and engineering basis for performing laser-based surface modifications involving the addition of hard particles, such as carbides, borides, and nitrides, within a metallic matrix for improved wear, fatigue, creep, and corrosion resistance. This has involved the development of advanced laser processing and simulation techniques, along with the refinement and application of these techniques for predicting and selecting materials and processing parameters for the creation of new surfaces having improved properties over current coating technologies. This program has also resulted in the formulation of process and material simulation tools capable of examining the potential for the formation and retention of composite coatings and deposits produced using laser processing techniques, as well as positive laboratory demonstrations in producing these coatings. In conjunction with the process simulation techniques, the application of computational thermodynamic and kinetic models to design laser surface alloying materials was demonstrated and resulted in a vast improvement in the formulation of materials used for producing composite coatings. The methodology was used to identify materials and to selectively modify microstructures for increasing hardness of deposits produced by the laser surface alloying process. Computational thermodynamic calculations indicated that it was possible to induce the precipitation of titanium carbonitrides during laser surface alloying provided there was sufficient amount of dissolved titanium, carbon, and nitrogen in the liquid steel. This was confirmed experimentally by using a powder mixture of 431-martensitic steel, titanium carbide powder, and nitrogen shielding, during laser deposition to produce deposits exhibiting relatively high hardness (average surface hardness of 724 HV). The same approach was extended to direct diode laser processing and similar microstructures were attained. The above analysis was extended to develop an in-situ precipitation of Ti(CN) during laser deposition. The Ti addition was achieving by mixing the 431 martensitic steel powders with ferro-titanium. The dissolution of nitrogen was achieved by using 100% nitrogen shielding gas, which was indicated by thermodynamic analysis. Demonstrations were also conducted utilizing the tools developed during the program and resulted in several viable composite coating systems being identified. This included the use of TiC and ferro-titanium in martensitic-grade stainless steel matrix material with and without the use of active N2 shielding gas, WC hard particles in a martensitic-grade stainless steel matrix material, WC and BN in a nickel-based matrix material, and WC in highly alloyed iron-based matrix. Although these demonstrations indicated the potential of forming composite coatings, in certain instances, the intended industrial applications involved unique requirements, such as coating of internal surfaces, which hindered the full development of the improved coating technology. However, it is believed that the addition of common hard particles, such as WC or TiC, to matrix material representing martensitic grades of stainless steel offer opportunities for improved performance at relatively low material cost.

  11. Magnetic material in mean-field dynamos driven by small scale helical flows

    E-Print Network [OSTI]

    Giesecke, Andre; Gerbeth, Gunter

    2014-01-01

    We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G.O. Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-K\\'arm\\'an-Sodium (VKS) dynamo. For both examined flow configurations the consideration of magnetic material within...

  12. Fresnel versus Kummer surfaces: geometrical optics in dispersionless linear (meta)materials and vacuum

    E-Print Network [OSTI]

    Alberto Favaro; Friedrich W. Hehl

    2014-01-16

    Geometrical optics describes, with good accuracy, the propagation of high-frequency plane waves through an electromagnetic medium. Under such approximation, the behaviour of the electromagnetic fields is characterised by just three quantities: the temporal frequency $\\omega$, the spatial wave (co)vector $k$, and the polarisation (co)vector $a$. Numerous key properties of a given optical medium are determined by the Fresnel surface, which is the visual counterpart of the equation relating $\\omega$ and $k$. For instance, the propagation of electromagnetic waves in a uniaxial crystal, such as calcite, is represented by two light-cones. Kummer, whilst analysing quadratic line complexes as models for light rays in an optical apparatus, discovered in the framework of projective geometry a quartic surface that is linked to the Fresnel one. Given an arbitrary dispersionless linear (meta)material or vacuum, we aim to establish whether the resulting Fresnel surface is equivalent to, or is more general than, a Kummer surface.

  13. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  14. Solar-wind protons and heavy ions sputtering of lunar surface materials A.F. Barghouty a,

    E-Print Network [OSTI]

    Solar-wind protons and heavy ions sputtering of lunar surface materials A.F. Barghouty a, , F Available online 21 December 2010 Keywords: Solar wind sputtering Lunar regolith KREEP soil Potential a c t Lunar surface materials are exposed to $1 keV/amu solar-wind protons and heavy ions on almost

  15. Adhesion between a Viscoelastic Material and a Solid Surface F. Saulnier,, T. Ondarcuhu,, A. Aradian,,|,# and E. Raphae1l*,

    E-Print Network [OSTI]

    Raphael, Elie

    Adhesion between a Viscoelastic Material and a Solid Surface F. Saulnier,, T. Ondarc¸uhu,§, A by a weak adhesion, and a solid surface. We reassess the "viscoelastic trumpet" model (de Gennes, P.-G. C. R. We deduce from this integral expression the adhesion energy for different kind of materials: (i) we

  16. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J. Zaluzec, Nestor; Leifer, Klaus

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magneticmore »orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.« less

  17. Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  18. Fresnel versus Kummer surfaces: geometrical optics in dispersionless linear (meta)materials and vacuum

    E-Print Network [OSTI]

    Favaro, Alberto

    2014-01-01

    Geometrical optics describes, with good accuracy, the propagation of high-frequency plane waves through an electromagnetic medium. Under such approximation, the behaviour of the electromagnetic fields is characterised by just three quantities: the temporal frequency $\\omega$, the spatial wave (co)vector $k$, and the polarisation (co)vector $a$. Numerous key properties of a given optical medium are determined by the Fresnel surface, which is the visual counterpart of the equation relating $\\omega$ and $k$. For instance, the propagation of electromagnetic waves in a uniaxial crystal, such as calcite, is represented by two light-cones. Kummer, whilst analysing quadratic line complexes as models for light rays in an optical apparatus, discovered in the framework of projective geometry a quartic surface that is linked to the Fresnel one. Given an arbitrary dispersionless linear (meta)material or vacuum, we aim to establish whether the resulting Fresnel surface is equivalent to, or is more general than, a Kummer su...

  19. Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  20. Imaging the early material response associated with exit surface damage in fused silica

    SciTech Connect (OSTI)

    Demos, S G; Raman, R N; Negres, R A

    2010-11-05

    The processes involved at the onset of damage initiation on the surface of fused silica have been a topic of extensive discussion and thought for more than four decades. Limited experimental results have helped develop models covering specific aspects of the process. In this work we present the results of an experimental study aiming at imaging the material response from the onset of the observation of material modification during exposure to the laser pulse through the time point at which material ejection begins. The system involves damage initiation using a 355 nm pulse, 7.8 ns FWHM in duration and imaging of the affected material volume with spatial resolution on the order of 1 {micro}m using as strobe light a 150 ps laser pulse that is appropriately timed with respect to the pump pulse. The observations reveal that the onset of material modification is associated with regions of increased absorption, i.e., formation of an electronic excitation, leading to a reduction in the probe transmission to only a few percent within a time interval of about 1 ns. This area is subsequently rapidly expanding with a speed of about 1.2 {micro}m/ns and is accompanied by the formation and propagation of radial cracks. These cracks appear to initiate about 2 ns after the start of the expansion of the modified region. The damage sites continue to grow for about 25 ns but the mechanism of expansion after the termination of the laser pulse is via formation and propagation of lateral cracks. During this time, the affected area of the surface appears to expand forming a bulge of about 40 {micro}m in height. The first clear observation of material cluster ejection is noted at about 50 ns delay.

  1. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    SciTech Connect (OSTI)

    Luo, Shaohua [School of Automation, Chongqing University, Chongqing 400044, China and College of Mechanical Engineering, Hunan University of Arts and Science, Hunan 415000 (China)

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  2. Mesoporous Co{sub 3}O{sub 4} nanostructured material synthesized by one-step soft-templating: A magnetic study

    SciTech Connect (OSTI)

    Poyraz, Altug S.; Kuo, Chung-Hao; Li, Nan; Hines, William A. Perry, David M.; Suib, Steven L.

    2014-03-21

    A combined magnetization and zero-field {sup 59}Co spin-echo nuclear magnetic resonance (NMR) study has been carried out on one member of a recently developed class of highly ordered mesoporous nanostructured materials, mesoporous Co{sub 3}O{sub 4} (designated UCT-8, University of Connecticut, mesoporous materials). The material was synthesized using one-step soft-templating by an inverse micelles packing approach. Characterization of UCT-8 by powder x-ray diffraction and electron microscopy reveals that the mesostructure consists of random close-packed Co{sub 3}O{sub 4} nanoparticles ??12?nm in diameter. The N{sub 2} sorption isotherm for UCT-8, which is type IV with a type H1 hysteresis loop, yields a 134 m{sup 2}/g BET surface area and a 7.7?nm BJH desorption pore diameter. The effect of heat treatment on the structure is discussed. The antiferromagnetic Co{sub 3}O{sub 4} nanoparticles have a Néel temperature T{sub N}?=?27?K, somewhat lower than the bulk. A fit to the Curie-Weiss law over the temperature range 75?K???T???300?K yields an effective magnetic moment of ?{sub eff}?=?4.36??{sub B} for the Co{sup 2+} ions, indicative of some orbital contribution, and a Curie-Weiss temperature ??=??93.5?K, consistent with antiferromagnetic ordering. The inter-sublattice and intra-sublattice exchange constants for the Co{sup 2+} ions are J{sub 1}/k{sub B}?=?(?)4.75?K and J{sub 2}/k{sub B}?=?(?)0.87?K, respectively, both corresponding to antiferromagnetic coupling. The presence of uncompensated surface spins is observed below T{sub N} with shifts in the hysteresis loops, i.e., an exchange-bias effect. The {sup 59}Co NMR spectrum for UCT-8, which is attributed to Co{sup 2+} ions at the tetrahedral A sites, is asymmetrically broadened with a peak at ?55?MHz (T?=?4.2?K). Since there is cubic symmetry at the A-sites, the broadening is indicative of a magnetic field distribution due to the uncompensated surface spins. The spectrum is consistent with antiferromagnetically ordered particles that are nanometer in size and single domain.

  3. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    SciTech Connect (OSTI)

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.

  4. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark

    2015-05-19

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore »of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less

  5. Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile

    SciTech Connect (OSTI)

    Aslam, Tariq [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gustavsen, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scharff, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byers, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results, are presented.

  6. Synthesis of bulk FeHfBO soft magnetic materials and its loss characterization at megahertz frequency

    SciTech Connect (OSTI)

    Zhou Yang; Kou Xiaoming; Warsi Muhammad, Asif; Lin Shuo; Harris, Brendan S.; Parsons, Paul E.; Xiao, John Q. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Mu Mingkai; Lee, Fred C. [Center for Power Electronics System, Virginia Polytechnic and State University, Blacksburg, Virginia 24060 (United States); Zhu Hao [Spectrum Magnetics LLC, Wilmington, Delaware 19804 (United States)

    2013-05-07

    Magnetic core materials with low loss, high saturation magnetization, large permeability, and operating frequency above 1 MHz are in high demands for the next generation of miniaturized power electronics. Amorphous FeHfB ribbons with thickness around 20 {mu}m have been fabricated through melt-spinning. Different heat treatments were performed on the FeHfB ribbons, and the relations among heat treatments, microstructure, and magnetic properties have been explored. Properties such as coercivity (H{sub c}) of 2.0 Oe and saturation magnetic flux density (B{sub S}) of 1.2 T have been achieved in samples with exchange coupling. The losses can be minimized by balancing the hysteretic and eddy current losses and can be further reduced with additional magnetic field annealing. At 5 MHz with peak magnetic flux density of 20 mT, the materials show core losses comparable to the best ferrites, but with higher permeability value of about 200 and superior saturation induction of more than 1 T.

  7. The evolution of surface magnetic fields in young solar-type stars I: the first 250 Myr

    E-Print Network [OSTI]

    Folsom, C P; Bouvier, J; Lèbre, A; Amard, L; Palacios, A; Morin, J; Donati, J -F; Jeffers, S V; Marsden, S C; Vidotto, A A

    2016-01-01

    The surface rotation rates of young solar-type stars vary rapidly with age from the end of the pre-main sequence through the early main sequence. Important changes in the dynamos operating in these stars may result from this evolution, which should be observable in their surface magnetic fields. Here we present a study aimed at observing the evolution of these magnetic fields through this critical time period. We observed stars in open clusters and stellar associations of known ages, and used Zeeman Doppler Imaging to characterize their complex magnetic large-scale fields. Presented here are results for 15 stars, from 5 associations, with ages from 20 to 250 Myr, masses from 0.7 to 1.2 solar masses, and rotation periods from 0.4 to 6 days. We find complex large-scale magnetic field geometries, with global average strengths from 14 to 140 G. There is a clear trend towards decreasing average large-scale magnetic field strength with age, and a tight correlation between magnetic field strength and Rossby number. ...

  8. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect (OSTI)

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  9. Surface Modification of Fuel Cladding Materials with Integral Fuel BUrnable Absorber Boron

    SciTech Connect (OSTI)

    Dr. Kumar Sridharan; Dr. Todd Allen; Jesse Gudmundson; Benjamin Maier

    2008-11-03

    Integral fuel burnable absorgers (IFBA) are added to some rods in the fuel assembly to counteract excessive reactivity. These IFBA elements (usually boron or gadolinium) are presently incorporated in the U)2 pellets either by mixing in the pellets or as coatings on the pellet surface. In either case, the incorporation of ifba into the fuel has to be performed in a nuclear-regulated facility that is physically separated from the main plant. These operations tend to be costly and can add from 20 to 30% to the manufacturing cost of the fuel. The goal of this NEER research project was to develop an alternative approach that involves incorporation of IFBA element boron at the surface of the fuel cladding material.

  10. Development of Superconducting Materials for Use in Magnet Applications: Nb3Sn Flux Pinning and Bi-2212 Magnetic Texturing 

    E-Print Network [OSTI]

    Rahmani, David G.

    2010-07-14

    Density MeOH Methanol MJR Modified Jellyroll PIT Powder-in-Tube ppm Parts Per Million RGA Residual Gas Analysis SEM Scanning Electron Microscopy SPD Severe Plastic Deformation T Tesla XRD X-Ray Diffraction vii TABLE OF CONTENTS Page... increased the J c at medium level magnetic fields of approximately 5 Tesla (T); however, the magnetic field at which the peak in J c occurs has not shifted considerably by reducing the grain size [6]. The pinning force for Nb 3 Sn and NbTi are shown...

  11. Probing nanoscale behavior of magnetic materials with soft x-ray spectromicroscopy

    E-Print Network [OSTI]

    Fischer, Peter

    2014-01-01

    seen as one of the ?rst spintronic effects. Very soon afterstructure and magnetism in spintronic-, complex oxide- and

  12. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  13. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    SciTech Connect (OSTI)

    Kong, Zueqian

    2010-03-15

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  14. SURFACE SCIENCE, WETTING, CONDENSATION, ENGINEERED Correspondence and requests for materials: konradr@asu.edu and varanasi@mit.edu

    E-Print Network [OSTI]

    body of work devoted to surface engineering for promoting dropwise condensation heat transfer of steam of these fluids, re-entrant omniphobic surfaces became flooded and reverted to filmwise condensation. We also mechanisms, methods, and materials for enhancing the condensation heat transfer rate of steam by promoting

  15. Effective flow surface of porous materials with two populations of voids under internal pressure: I. a GTN model

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ). Such a microstructure is typical of the highly irradiated uranium dioxide (UO2), a nuclear fuel commonly used in nuclear several studies on the mechanical behavior of highly irradiated nuclear fuels at different scales (Vincent to the effective plastic flow surface of a bi-porous material saturated by a fluid. The material under

  16. Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface

    E-Print Network [OSTI]

    Haendel, S; Wiles, T P; Hopkins, S A; Cornish, S L

    2011-01-01

    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of $^{85}$Rb and $^{87}$Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum (UHV). To maintain excellent optical access to the region surrounding the surface magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally we demonstrate the loading of a hybrid optical-magnetic trap with $^{87}$Rb and the creation of Bose-Einstein condensates via forced evaporative cooling ...

  17. Probing nanoscale behavior of magnetic materials with soft x-ray spectromicroscopy

    E-Print Network [OSTI]

    Fischer, Peter

    2014-01-01

    seen as one of the ?rst spintronic effects. Very soon afterstructure and magnetism in spintronic-, complex oxide- andspin electronics or spintronics [3], where in addition to

  18. Magnets & Magnet Condensed Matter Science

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Sights from around the Magnet Lab in 2010. On the cover MAGNETS & MAGNET MATERIALS Engineering materials in Mesoporous Silica SBA-15 31 YBCO Pancake Wound Test Coil for 32-T Magnet Development 32 Strong Vortex Pinning from Marine Cyanobacteria 37 Heavy Petroleum Composition 2. Progression of the Boduszynski Model

  19. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    SciTech Connect (OSTI)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  20. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Kai [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, Huolin L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhao, Kejie [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Yu, Xiqian [Brookhaven National Lab. (BNL), Upton, NY (United States); Norlund, Dennis [SLAC National Accelerator Lab., Menlo Park, CA (United States); Weng, Tsu-Chien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Jing [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Jiang, Yi [Cornell Univ., Ithaca, NY (United States); Cadigan, Christopher A. [Colorado School of Mines, Golden, CO (United States); Richards, Ryan M. [Colorado School of Mines, Golden, CO (United States); Doeff, Marca M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States); Stach, Eric A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Ju [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Lin, Feng [Colorado School of Mines, Golden, CO (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Su, Dong [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States)

    2015-02-11

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²??Ni?) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²??Ni? can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubation time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.

  1. Transitions from near-surface to interior redox upon lithiation in conversion electrode materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Kai; Xin, Huolin L.; Zhao, Kejie; Yu, Xiqian; Norlund, Dennis; Weng, Tsu-Chien; Li, Jing; Jiang, Yi; Cadigan, Christopher A.; Richards, Ryan M.; et al

    2015-01-29

    Nanoparticle electrodes in lithium-ion batteries have both near-surface and interior contributions to their redox capacity, each with distinct rate capabilities. Using combined electron microscopy, synchrotron X-ray methods and ab initio calculations, we have investigated the lithiation pathways that occur in NiO electrodes. We find that the near-surface electroactive (Ni²??Ni?) sites saturated very quickly, and then encounter unexpected difficulty in propagating the phase transition into the electrode (referred to as a “shrinking-core” mode). However, the interior capacity for Ni²??Ni? can be accessed efficiently following the nucleation of lithiation “fingers” which propagate into the sample bulk, but only after a certain incubationmore »time. Our microstructural observations of the transition from a slow shrinking-core mode to a faster lithiation finger mode corroborate with synchrotron characterization of large-format batteries, and can be rationalized by stress effects on transport at high-rate discharge. The finite incubation time of the lithiation fingers sets the intrinsic limitation for the rate capability (and thus the power) of NiO for electrochemical energy storage devices. The present work unravels the link between the nanoscale reaction pathways and the C-rate-dependent capacity loss, and provides guidance for the further design of battery materials that favors high C-rate charging.« less

  2. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect (OSTI)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.

  3. Probing nanoscale behavior of magnetic materials with soft x-ray spectromicroscopy

    E-Print Network [OSTI]

    Fischer, Peter

    2014-01-01

    spin electronics or spintronics [3], where in addition tomagnetic materials for spintronics ap- plications, where the

  4. Corrosion in Supercritical carbon Dioxide: Materials, Environmental Purity, Surface Treatments, and Flow Issues

    SciTech Connect (OSTI)

    Sridharan, Kumar; Anderson, Mark

    2013-12-10

    The supercritical CO{sub 2} Brayton cycle is gaining importance for power conversion in the Generation IV fast reactor system because of its high conversion efficiencies. When used in conjunction with a sodium fast reactor, the supercritical CO{sub 2} cycle offers additional safety advantages by eliminating potential sodium-water interactions that may occur in a steam cycle. In power conversion systems for Generation IV fast reactors, supercritical CO{sub 2} temperatures could be in the range of 30°C to 650°C, depending on the specific component in the system. Materials corrosion primarily at high temperatures will be an important issue. Therefore, the corrosion performance limits for materials at various temperatures must be established. The proposed research will have four objectives centered on addressing corrosion issues in a high-temperature supercritical CO{sub 2} environment: Task 1: Evaluation of corrosion performance of candidate alloys in high-purity supercritical CO{sub 2}: The following alloys will be tested: Ferritic-martensitic Steels NF616 and HCM12A, austenitic alloys Incoloy 800H and 347 stainless steel, and two advanced concept alloys, AFA (alumina forming austenitic) steel and MA754. Supercritical CO{sub 2} testing will be performed at 450°C, 550°C, and 650°C at a pressure of 20 MPa, in a test facility that is already in place at the proposing university. High purity CO{sub 2} (99.9998%) will be used for these tests. Task 2: Investigation of the effects of CO, H{sub 2}O, and O{sub 2} impurities in supercritical CO{sub 2} on corrosion: Impurities that will inevitably present in the CO{sub 2} will play a critical role in dictating the extent of corrosion and corrosion mechanisms. These effects must be understood to identify the level of CO{sub 2} chemistry control needed to maintain sufficient levels of purity to manage corrosion. The individual effects of important impurities CO, H{sub 2}O, and O{sub 2} will be investigated by adding them separately to high purity CO{sub 2}. Task 3: Evaluation of surface treatments on the corrosion performance of alloys in supercritical CO{sub 2}: Surface treatments can be very beneficial in improving corrosion resistance. Shot peening and yttrium and aluminum surface treatments will be investigated. Shot peening refines the surface grain sizes and promotes protective Cr-oxide layer formation. Both yttrium and aluminum form highly stable oxide layers (Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3}), which can get incorporated in the growing Fe-oxide layer to form an impervious complex oxide to enhance corrosion resistance. Task 4: Study of flow-assisted corrosion of select alloys in supercritical CO{sub 2} under a selected set of test conditions: To study the effects of flow-assisted corrosion, tests will be conducted in a supercritical CO{sub 2} flow loop. An existing facility used for supercritical water flow studies at the proposing university will be modified for use in this task. The system is capable of flow velocities up to 10 m/s and can operate at temperatures and pressures of up to 650°C and 20 MPa, respectively. All above tasks will be performed in conjunction with detailed materials characterization and analysis using scanning electron microscopy/energy dispersive spectroscopy (SEM-EDS), x-ray diffraction (XRD), Auger electron spectroscopy (AES) techniques, and weight change measurements. Inlet and outlet gas compositions will be monitored using gas chromatography-mass spectrometry (GCMS).

  5. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    SciTech Connect (OSTI)

    Sumption, Mike; Collings, E.

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  6. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  7. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  8. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOE Patents [OSTI]

    Huang, Yuhong (West Hills, CA); Wei, Qiang (West Hills, CA); Zheng, Haixing (Oak Park, CA)

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  9. Measurements and Performance Factor Comparisons of Magnetic Materials at High Frequency

    E-Print Network [OSTI]

    Hanson, Alex J.

    The design of power magnetic components for operation at high frequency (HF, 3–30MHz) has been hindered by a lack of performance data and by the limited design theory in that frequency range. To address these deficiencies, ...

  10. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    E-Print Network [OSTI]

    Goodson, B.M.

    2010-01-01

    ized helium gas at such low fields. CONVENTIONAL DETECTION jDETECTION optical pumping. Following respiration of laser-polarized heliumand helium at low magnetic fields. 9.3. SQUID DETECTION OF

  11. External proton beam analysis of plasma facing materials for magnetic confinement fusion applications

    E-Print Network [OSTI]

    Barnard, Harold Salvadore

    2009-01-01

    A 1.7MV tandem accelerator was reconstructed and refurbished for this thesis and for surface science applications at the Cambridge laboratory for accelerator study of surfaces (CLASS). At CLASS, an external proton beam ...

  12. A model of material removal and post process surface topography for copper CMP

    E-Print Network [OSTI]

    Choi, Seungchoun; Doyle, Fiona M.; Dornfeld, David

    2011-01-01

    post process surface topography for copper CMP Seungchounis due to the uneven surface topography generated during theand the post CMP topography. Two synergistic mechanisms were

  13. Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices

    E-Print Network [OSTI]

    Barnard, Harold Salvadore

    2014-01-01

    Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

  14. Formation and dynamics of easy orientation axis in magnetic field on PVCN-F surface

    E-Print Network [OSTI]

    Reznikov, Yuri

    of Sciences of Ukraine, 46 Nauki Str., 03-039 Kyiv, Ukraine 2Condensed Phase Dynamics Group, University University, 6 Glushkova Str., 03-680, Kyiv, Ukraine We describe the experiments on a magnetically

  15. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principlesMaterials for Lithium-Ion Batteries. Adv. Funct. Mater. 23,

  16. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-Cathode Materials for Lithium-Ion Batteries. Adv. Funct.

  17. Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon

    DOE Patents [OSTI]

    Stupp, Samuel I. (Chicago, IL); Spoerke, Erik D. (Albuquerque, NM); Anthony, Shawn G. (New Stanton, PA); Niece; Krista L. (Evanston, IL)

    2008-06-24

    Biocompatible composites comprising peptide amphiphiles and surface modified substrates and related methods for attachment thereon.

  18. Study of Interfacial Interactions Using Thing Film Surface Modification: Radiation and Oxidation Effects in Materials

    SciTech Connect (OSTI)

    Sridharan, Kumar; Zhang, Jinsuo

    2014-01-09

    Interfaces play a key role in dictating the long-term stability of materials under the influence of radiation and high temperatures. For example, grain boundaries affect corrosion by way of providing kinetically favorable paths for elemental diffusion, but they can also act as sinks for defects and helium generated during irradiation. Likewise, the retention of high-temperature strength in nanostructured, oxide-dispersion strengthened steels depends strongly on the stoichiometric and physical stability of the (Y, Ti)-oxide particles/matrix interface under radiation and high temperatures. An understanding of these interfacial effects at a fundamental level is important for the development of materials for extreme environments of nuclear reactors. The goal of this project is to develop an understanding stability of interfaces by depositing thin films of materials on substrates followed by ion irradiation of the film-substrate system at elevated temperatures followed by post-irradiation oxidation treatments. Specifically, the research will be performed by depositing thin films of yttrium and titanium (~500 nm) on Fe-12%Cr binary alloy substrate. Y and Ti have been selected as thin-film materials because they form highly stable protective oxides layers. The Fe-12%Cr binary alloy has been selected because it is representative of ferritic steels that are widely used in nuclear systems. The absence of other alloying elements in this binary alloy would allow for a clearer examination of structures and compositions that evolve during high-temperature irradiations and oxidation treatments. The research is divided into four specific tasks: (1) sputter deposition of 500 nm thick films of Y and Ti on Fe-12%Cr alloy substrates, (2) ion irradiation of the film-substrate system with 2MeV protons to a dose of 2 dpa at temperatures of 300°C, 500°C, and 700°C, (3) oxidation of as-deposited and ion-irradiated samples in a controlled oxygen environment at 500°C and 700°C, (4) multi-scale computational modeling involving first- principle molecular dynamics (FPMD) and coarse-grained dissipative particle dynamics (DPD) approaches to develop theories underlying the evolution and stability of structures and phases. Samples from Tasks 1 to 3 (above) will be rigorously characterized and analyzed using scanning electron microscopy, Auger electron microscopy, x-ray diffraction, Rutherford back scatter spectroscopy, and transmission electron microscopy. Expected outcomes of the experimental work include a quantitative understanding film-substrate interface mixing, evolution of defects and other phases at the interface, interaction of interfaces with defects, and the ability of the Y and Ti films to mitigate irradiation-assisted oxidation.The aforementioned experimental work will be closely coupled with multi-scale molecular dynamics (MD) modeling to understand the reactions at the surface, the transport of oxidant through the thin film, and the stabilities of the deposited thin films under radiation and oxidation. Simulations of materials property changes under conditions of radiation and oxidation require multiple size domains and a different simulation scheme for each of these domains. This will be achieved by coupling the FPMD and coarse-grained kinetic Monte Carlo (KMC). This will enable the comparison of the results of each simulation approach with the experimental results.

  19. Surface modified CFx cathode material for ultrafast discharge and high energy density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Yang [Shanghai Inst. of Space Power Sources, Shanghai (China); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Cai, Sendan [Shanghai Inst. of Space Power Sources, Shanghai (China); Wu, Lijun [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, Weijing [Shanghai Inst. of Space Power Sources, Shanghai (China); Xie, Jingying [Shanghai Inst. of Space Power Sources, Shanghai (China); Shanghai Engineering Center for Power and Energy Storage Systems, Shanghai (China); Wen, Wen [BL14B1 Shanghai Synchrotron Radiation Facility, Shanghai (China); Zheng, Jin-Cheng [Xiamen Univ., Xiamen (China); Zheng, Yi [Shanghai Inst. of Space Power Sources, Shanghai (China)

    2014-01-01

    Li/CFx primary possesses the highest energy density of 2180 W h kg?¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CFx, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CFx. The modified CFx, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yielding a high-capacity performance and an excellent rate-capability. Indeed, a capacity of 500 mA h g?¹ and a maximum power density of 44 800 W kg?¹ can be realized at the ultrafast rate of 30 C (24 A g?¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.

  20. Surface modified CFx cathode material for ultrafast discharge and high energy density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Yang; Zhu, Yimei; Cai, Sendan; Wu, Lijun; Yang, Weijing; Xie, Jingying; Wen, Wen; Zheng, Jin-Cheng; Zheng, Yi

    2014-11-10

    Li/CFx primary possesses the highest energy density of 2180 W h kg?¹ among all primary lithium batteries. However, a key limitation for the utility of this type of battery is in its poor rate capability because the cathode material, CFx, is an intrinsically poor electronic conductor. Here, we report on our development of a controlled process of surface de-fluorination under mild hydrothermal conditions to modify the highly fluorinated CFx. The modified CFx, consisting of an in situ generated shell component of F-graphene layers, possesses good electronic conductivity and removes the transporting barrier for lithium ions, yielding a high-capacity performance andmore »an excellent rate-capability. Indeed, a capacity of 500 mA h g?¹ and a maximum power density of 44 800 W kg?¹ can be realized at the ultrafast rate of 30 C (24 A g?¹), which is over one order of magnitude higher than that of the state-of-the-art primary lithium-ion batteries.« less

  1. Magnetic Force Microscopy Study of Zr2Co11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; Sellmyer, David J.

    2015-01-01

    The addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. The effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. The coercivity of the samples increases with the increase in Mo content (x?1.5). The maximum energy product(BH)maxincreases with increasingxfrom 0.5?MGOe forx=0to a maximum value of 4.2?MGOe forx=1.5. The smallest domain size with a relativelymore »short magnetic correlation length of 128?nm and largest root-mean-square phase shift?rmsvalue of 0.66° are observed for thex=1.5. The optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  2. Ferromagnetic Material in the Superconductor and Its Effect on the Magnetization Sextupole and Decapole in the SSC Dipoles at Injection

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01

    SSC dipole magnets due to superconductor magnetization usingmaterial in the superconductor matrix," Lawrence Berkeleyof the fields due to superconductor magnetization in the SSC

  3. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    E-Print Network [OSTI]

    Fischer, Peter

    2012-01-01

    R. Buhrman, in Concepts in Spintronics (ed. Maekawa, S. ) (promising materials for spintronic applications due theirextremely attractive for spintronic applications, where a

  4. The effect of carbon on surface quality of solid-state-sintered silicon carbide as optical materials

    SciTech Connect (OSTI)

    Chen, Jian Huang, Zhengren; Chen, Zhongming; Yuan, Ming; Liu, Yan; Zhu, Yunzhou

    2014-03-01

    The microstructure and the distribution of carbon (C) in silicon carbide (SiC) ceramics were investigated by scanning electron microscopy and transmission electron microscopy. The results show that C can restrain the growth of SiC grains and densify SiC ceramics with the increase of the C content, but residual C introduces a new phase-C to SiC ceramics. The hardness of C is less than that of SiC, so it's difficult to be polished as optical materials. The existence of C phase doesn't lead to the increase of surface roughness on SiC optical materials, but it leads to the decrease of the reflectance of SiC as the optical materials because the optical absorption of C in visible light is stronger than that of SiC. It indicates that C content is very important to the surface properties of SiC, which will affect the coating of chemical vapor deposition SiC or Si on the surface of SiC ceramics because of the different physical and chemical properties between C and SiC. - Highlights: • The microstructure and the distribution of carbon were investigated. • A new phase in the optical materials is introduced. • It is difficult to be polished as the optical materials because of different phases. • Carbon leads to the decrease of reflectance because of its absorption to light wave. • The different properties may affect the coating of chemical vapor deposition on SiC.

  5. Electronic structure and magnetism of the Rh[l brace]001[r brace] surface

    SciTech Connect (OSTI)

    Wu, S.C. Physics Department, Peking University, Beijing 100871 ); Garrison, K. ); Begley, A.M.; Jona, F. ); Johnson, P.D. )

    1994-05-15

    Spin-polarized-photoemission experiments on clean Rh[l brace]001[r brace] show that the surface resonance at the [ital [bar M

  6. Electrochemical phenomena provide unique methods for materials synthesis and surface modification. Within this framework, the group

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    components for information storage, sensors and energy conversion devices. "Further the understanding or photoelectrochemical solar cells. Green Processing and Electrochemical Energy Conversion Various efforts/nano-electronics and magnetics, with a recent emphasis on energy conversion applications. Our work encompasses

  7. Glow discharge plasma deposited hexauoropropylene lms: surface chemistry and interfacial materials properties

    E-Print Network [OSTI]

    Glow discharge plasma deposited hexa¯uoropropylene ®lms: surface chemistry and interfacial; accepted 10 November 1998 Abstract Fluoropolymer ®lms prepared by radio frequency glow discharge (RF, HFP) ®lms is shown to confer surface functional group presentation that promotes high protein

  8. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    Layered, “Li-Excess” Lithium-Ion Battery Electrode Materialthe surfaces of lithium-ion battery (LIB) electrodes evolve

  9. Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials

    E-Print Network [OSTI]

    , Mohamad Sleiman

    2014-01-01

    thermal comfort conditions. Solar Energy 85, 3085-3102.surfaces and its effect on solar reflectance-Part I:of roofing product databases. . Solar Energy Materials and

  10. Synthesis of Novel Polypeptide-Silica Hybrid Materials through Surface-Initiated N-carboxyanhydride Polymerization 

    E-Print Network [OSTI]

    Lunn, Jonathan D.

    2011-08-08

    There is an increasing demand for materials that are physically robust, easily recovered, and able to perform a wide variety of chemical functions. By combining hard and soft matter synergistically, organic-inorganic hybrid materials are potentially...

  11. Time-Resolved Imaging of Material Response Following Laser-Induced Breakdown in the Bulk and Surface of Fused Silica

    SciTech Connect (OSTI)

    Raman, R N; Negres, R A; DeMange, P; Demos, S G

    2010-02-04

    Optical components within high energy laser systems are susceptible to laser-induced material modification when the breakdown threshold is exceeded or damage is initiated by pre-existing impurities or defects. These modifications are the result of exposure to extreme conditions involving the generation of high temperatures and pressures and occur on a volumetric scale of the order of a few cubic microns. The response of the material following localized energy deposition, including the timeline of events and the individual processes involved during this timeline, is still largely unknown. In this work, we investigate the events taking place during the entire timeline in both bulk and surface damage in fused silica using a set of time-resolved microscopy systems. These microscope systems offer up to 1 micron spatial resolution when imaging static or dynamic effects, allowing for imaging of the entire process with adequate temporal and spatial resolution. These systems incorporate various pump-probe geometries designed to optimize the sensitivity for detecting individual aspects of the process such as the propagation of shock waves, near-surface material motion, the speed of ejecta, and material transformations. The experimental results indicate that the material response can be separated into distinct phases, some terminating within a few tens of nanoseconds but some extending up to about 100 microseconds. Overall the results demonstrate that the final characteristics of the modified region depend on the material response to the energy deposition and not on the laser parameters.

  12. Magnetic anisotropy of permalloy films grown on an Mo,,001... stepped surface

    E-Print Network [OSTI]

    Huang, Jung-Chun

    , low coercivity, and small magnetic anisotropy.1 Py based multilayers2,3 and spin-valve4,5 struc- tures was below 5 10 9 torr. One-side polished Al2O3 1-102 sub- strates were outgassed at 1000 °C for 1 h prior

  13. PHYSICAL REVIEW B 84, 224517 (2011) Surface impedance of superconductors with weak magnetic impurities

    E-Print Network [OSTI]

    Fominov, Yakov

    2011-01-01

    serve as traps for nonequilibrium quasiparticles, reducing the absorption in some range of low radiation Electron scattering off magnetic impurities, unlike the potential scattering, substantially modifies to the phenomenon of gapless superconductivity. The gap suppression was investigated by means of tunneling between

  14. Noncollinear magnetism of Cr clusters on Fe surfaces R. Robles and L. Nordstrm

    E-Print Network [OSTI]

    Rodriguez, Roberto

    in high-density magnetic storage devices. In low- dimensionality systems, like free or supported The study of supported nanostructures has attracted a lot of attention from the scientific community the intrinsic properties of the nanostructure and the properties of the substrate. So in order to elucidate them

  15. SURFACE RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRIC LAYERED CATHODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRICreconstruction and chemical evolution in NMC materials andsurface reconstruction and chemical evolution herein refer

  16. Incorporation of 4d and 5d Transition Metal Cyanometallates into Magnetic Clusters and Materials

    E-Print Network [OSTI]

    Hilfiger, Matthew Gary

    2011-08-08

    The work presented herein describes efforts to synthesize and characterize new types of cyanide-bridged molecular materials encompassing both discrete clusters and extended solids. This investigation focused on the ...

  17. The Shapes of Atomic Lines from the Surfaces of Weakly Magnetic Rotating Neutron Stars and Their Implications

    E-Print Network [OSTI]

    Sudip Bhattacharyya; M. Coleman Miller; Frederick K. Lamb

    2006-06-26

    Motivated by the report by Cottam et al. (2002) of iron resonance scattering lines in the spectra of thermonuclear bursts from EXO 0748-676, we have investigated the information about neutron star structure and the geometry of the emission region that can be obtained by analyzing the profiles of atomic lines formed at the surface of the star. We have calculated the detailed profiles of such lines, taking into account the star's spin and the full effects of special and general relativity, including light-bending and frame-dragging. We discuss the line shapes produced by rotational Doppler broadening and magnetic splitting of atomic lines, for the spin rates and magnetic fields expected in neutron stars in low-mass X-ray binary systems. We show that narrow lines are possible even for rapidly spinning stars, if the emission region or the line of sight are close to the spin axis. For most neutron stars in low-mass systems, magnetic splitting is too small to obscure the effects of special and general relativity. We show that the ratio of the star's mass to its equatorial radius can be determined to within 5% using atomic line profiles, even if the lines are broad and skewed. This is the precision required to constrain strongly the equation of state of neutron star matter. We show further that if the radius and latitude of emission are known to ~ 5-10% accuracy, then frame-dragging has a potentially detectable effect on the profiles of atomic lines formed at the stellar surface.

  18. A Numerical Algorithm for MHD of Free Surface Flows at Low Magnetic Reynolds

    E-Print Network [OSTI]

    McDonald, Kirk

    Tier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface and other compressible fluid phenomena such as cavitation are typical features of many practically important

  19. Equipotential Surfaces of a Plasma MOving in a Toroidal Octupole Magnetic Pield

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    . Atomic Energy Commission #12;COO-1233-32 Equipotential Surfaces of a Plasma Moving in a Toroidal Octupo1e. Soc. II, 11, 452 (1966) * Work Supported by the ".. S. Atomic Energy Commission : . #12;2 INTRODUCTION

  20. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    SciTech Connect (OSTI)

    Ye, L.; Pearson, T.; Crawford, T. M., E-mail: crawftm@mailbox.sc.edu [Department of Physics and Astronomy, University of South Carolina, 712 Main Street, Columbia, South Carolina 29208 (United States); Qi, B.; Cordeau, Y.; Mefford, O. T. [Department of Materials Science and Engineering, Clemson University, 161 Sirrine Hall, Clemson, South Carolina 29634 (United States); Center for Optical Materials Science and Engineering Technologies (COMSET), 91 Technology Dr., Anderson, South Carolina 29625 (United States)

    2014-05-07

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability.

  1. Effect of the porosity on the fracture surface roughness of sintered materials: From anisotropic to isotropic self-affine scaling

    E-Print Network [OSTI]

    Tristan Cambonie; Jonathan Bares; Lamine Hattali; Daniel Bonamy; Véronique Lazarus; Harold Auradou

    2015-01-16

    To unravel how the microstructure affects the fracture surface roughness in heterogeneous brittle solids like rocks or ceramics, we characterized the roughness statistics of post-mortem fracture surfaces in home-made materials of adjustable microstructure length-scale and porosity, obtained by sintering monodisperse polystyrene beads. Beyond the characteristic size of disorder, the roughness profiles are found to exhibit self-affine scaling features evolving with porosity. Starting from a null value and increasing the porosity, we quantitatively modify the self-affine scaling properties from anisotropic (at low porosity) to isotropic (for porosity larger than 10 %).

  2. Modular Permanent Magnet Machine Based on Soft Magnetic *** Burgess-Norton Mfg.Co.

    E-Print Network [OSTI]

    Lipo, Thomas

    . The rotor structure can be designed with surface permanent magnet (SPM) or internal permanent magnet (IPM

  3. Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials

    SciTech Connect (OSTI)

    Szanyi, Janos; Yi, Cheol-Woo W.; Mudiyanselage, Kumudu K.; Kwak, Ja Hun

    2013-11-01

    The structure-reactivity relationships of model BaO-based NOx storage/reduction catalysts were investigated under well controlled experimental conditions using surface science analysis techniques. The reactivity of BaO toward NO2, CO2, and H2O was studied as a function of BaO layer thickness [0\\hBaO\\30 monolayer (ML)], sample temperature, reactant partial pressure, and the nature of the substrate the NOx storage material was deposited onto. Most of the efforts focused on understanding the mechanism of NO2 storage either on pure BaO, or on BaO exposed to CO2 or H2O prior to NO2 exposure. The interaction of NO2 with a pure BaO film results in the initial formation of nitrite/nitrate ion pairs by a cooperative adsorption mechanism predicted by prior theoretical calculations. The nitrites are then further oxidized to nitrates to produce a fully nitrated surface. The mechanism of NO2 uptake on thin BaO films (\\4 ML), BaO clusters (\\1 ML) and mixed BaO/Al2O3 layers are fundamentally different: in these systems initially nitrites are formed only, and then converted to nitrates at longer NO2 exposure times. These results clarify the contradicting mechanisms presented in prior studies in the literature. After the formation of a nitrate layer the further conversion of the underlying BaO is slow, and strongly depends on both the sample temperature and the NO2 partial pressure. At 300 K sample temperature amorphous Ba(NO3)2 forms that then can be converted to crystalline nitrates at elevated temperatures. The reaction between BaO and H2O is facile, a series of Ba(OH)2 phases form under the temperature and H2O partial pressure regimes studied. Both amorphous and crystalline Ba(OH)2 phases react with NO2, and initially form nitrites only that can be converted to nitrates. The NO2 adsorption capacities of BaO and Ba(OH)2 are identical, i.e., both of these phases can completely be converted to Ba(NO3)2. In contrast, the interaction of CO2 with pure BaO results in the formation of a BaCO3 layer that prevents to complete carbonation of the entire BaO film under the experimental conditions applied in these studies. However, these ‘‘carbonated’’ BaO layers readily react with NO2, and at elevated sample temperature even the carbonate layer is converted to nitrates. The importance of the metal oxide/metal interface in the chemistry on NOx storage-reduction catalysts was studied on BaO(\\1 ML)/Pt(111) reverse model catalysts. In comparison to the clean Pt(111), new oxygen adsorption phases were identified on the BaO/Pt(111) surface that can be associated with oxygen atoms strongly adsorbed on Pt atoms at the peripheries of BaO particles. A simple kinetic model developed helped explain the observed thermal desorption results. The role of the oxide/metal interface in the reduction of Ba(NO3)2 was also substantiated in experiments where Ba(NO3)2/O/Pt(111) samples were exposed to CO at elevated sample temperature. The catalytic decomposition of the nitrate phase occurred as soon as metal sites opened up by the removal of interfacial oxygen via CO oxidation from the O/Pt(111) surface. The temperature for catalytic nitrate reduction was found to be significantly lower than the onset temperature of thermal nitrate decomposition. We gratefully acknowledge the US Department of Energy (DOE), Office of Science, Division of Chemical Sciences, Geosciences, and Biosciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national user facility sponsored by the DOE Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle under contract number DE-AC05-76RL01830.

  4. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  5. A highly stable zirconium-based metal-organic framework material with high surface area and gas storage capacities

    E-Print Network [OSTI]

    Gutov, Oleksii V.; Bury, Wojciech; Gomez-Gualdron, Diego A.; Krungleviciute, Vaiva; Fairen-Jimenez, David; Sarjeant, Amy A.; Snurr, Randall Q.; Hupp, Joseph T.; Yildirim, Taner; Farha, Omar K.

    2014-08-14

    : 10.1002/chem.201xxxxxx ? Metal-organic frameworks A highly stable zirconium-based metal-organic framework material with high surface area and gas storage capacities Oleksii V. Gutov,†[a] Wojciech Bury,†[a,b] Diego A. Gomez-Gualdron,[c] Vaiva... these parameters is crucial for constructing materials with high-capacity gas uptake, as well as stability. However, most known MOFs are not sufficiently stable to allow their application for gas storage in the presence of water or acid.10 To overcome...

  6. U.S. Rare Earth Magnet Patents Table | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA| ReactionSite Map Site MapU.S. Rare Earth Magnet

  7. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  8. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    SciTech Connect (OSTI)

    Griffin, John

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  9. Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria

    E-Print Network [OSTI]

    Hudson, Stuart

    .1063/1.4906888 View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/22/2?ver=pdfcov Published.6 Their singular nature is exposed as follows. First, straight-field-line coordinates may of the coordinates, i- is the rotational transform on a given flux surface, and h and f are the poloidal and toroi

  10. Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    , Rensselaer Polytechnic Institute, Troy, New York 12180-3590 G. Palasantzas and J. Th. M. De Hosson Department nm thick deposited on plasma etched Si 100 substrates showed that, by increasing surface rough- ness nearly linearly with film thickness. Such an increase of the thickness fluctuations5 was attributed

  11. Effect of substitutional defects on Kambersky damping in L1{sub 0} magnetic materials

    SciTech Connect (OSTI)

    Qu, T.; Victora, R. H.

    2015-02-16

    Kambersky damping, representing the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction, is calculated for L1{sub 0} FePt, FePd, CoPt, and CoPd alloys versus chemical degree of order. When more substitutional defects exist in the alloys, damping is predicted to increase due to the increase of the spin-flip channels allowed by the broken symmetry. It is demonstrated that this corresponds to an enhanced density of states (DOS) at the Fermi level, owing to the rounding of the DOS with loss of long-range order. Both the damping and the DOS of the Co-based alloy are found to be less affected by the disorder. Pd-based alloys are predicted to have lower damping than Pt-based alloys, making them more suitable for high density spintronic applications.

  12. Origin of the positive spin- 12 photoluminescence-detected magnetic resonance in ?-conjugated materials and devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ying; Cai, Min; Hellerich, Emily; Shinar, Ruth; Shinar, Joseph

    2015-09-02

    The spin-1/2 single-modulation (SM) and double-modulation (DM) photoluminescence (PL) detected magnetic resonance (PLDMR) in poly(2-methoxy-5-(2'-ethyl)–hexoxy-1,4- phenylene vinylene) (MEH-PPV) films and poly(3-hexylthiophene) (P3HT) films is described, analyzed, and discussed. In particular, the models based on spin-dependent recombination of charge pairs (SDR) and triplet-polaron quenching (TPQ) are evaluated. By analyzing the dependence of the resonance amplitude on the microwave chopping (modulation) frequency using rate equations, it is demonstrated that the TPQ model can well explain the observed resonance behavior, while SDR model cannot reproduce the results of the observed DM-PLDMR. As a result, the observed spin-1/2 PLDMR is assigned to TPQ rathermore »than SDR, even though the latter may also be present.« less

  13. Nanostructured multifunctional materials for control of light transport and surface wettability

    E-Print Network [OSTI]

    Choi, Hyungryul

    2014-01-01

    Biological surfaces have evolved to optimize their structures and physical and chemical properties at the micro/nanoscale for adaptation to different environments, exhibiting a wide variety of beneficial functions, ranging ...

  14. Surface Modification of Material by Irradiation of Low Power Atmospheric Pressure Plasma Jet

    SciTech Connect (OSTI)

    Akamatsu, Hiroshi; Ichikawa, Kazunori [Kobe City College of Technology, 8-3 Gakuenhigashimachi, Kobe, Hyogo, 651-2194 (Japan); Azuma, Kingo [University of Hyogo, 2167 Shosya, Himeji, Hyogo, 671-2280 (Japan); Onoi, Masahiro [Metal Technology Co., Ltd., 713 Shake Aza Narihira, Ebina, Kanagawa, 243-0424 (Japan)

    2010-10-13

    Application of a low power atmospheric pressure plasma jet for surface modifications of acrylic, aluminum, and highly crystalline graphite has been carried out experimentally. The plasma jet was generated with batteries-driven high voltage modulator. The power consumed for the plasma generation was estimated to be 0.12 W. The plasma had hydroxyl radicals, which is known as a strong oxider from an observation of optical emission spectrum. After the irradiation of the plasma, the surfaces of acrylic and aluminum became to be hydrophilic from the compartment of contact angle of water on these surfaces. The surface of highly crystalline graphite irradiated by the plasma jet had oxygen-rich functional groups such as C-O, C = O, and O = C-O.

  15. Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling

    DOE Patents [OSTI]

    Feng, Xiangdong (West Richland, WA); Liu, Jun (West Richland, WA); Liang, Liang (Richland, WA)

    2001-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'-diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  16. Method of bonding functional surface materials to substrates and applications in microtechnology and antifouling

    DOE Patents [OSTI]

    Feng, Xiangdong (West Richland, WA); Liu, Jun (West Richland, WA); Liang, Liang (Richland, WA)

    1999-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer, preferably, (N,N'-diethylamine)dithiocarbamoylpropyl-(trimethoxy)silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N,N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  17. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Alexandra O. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  18. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–Material in Lithium Ion Batteries. Adv. Energy Mater. n/a–n/decomposition in lithium ion batteries: first-principles

  19. The surface nitrogen abundance of a massive star in relation to its oscillations, rotation, and magnetic field

    SciTech Connect (OSTI)

    Aerts, C. [Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Molenberghs, G. [Faculty of Science, Hasselt University, Martelarenlaan 42, B-3500 Hasselt (Belgium); Kenward, M. G. [Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E7HT (United Kingdom); Neiner, C., E-mail: conny@ster.kuleuven.be [LESIA, UMR 8109 du CNRS, Observatoire de Paris, UPMC, Paris Diderot, 5 Place Jules Janssen, F-92195 Meudon Cedex (France)

    2014-02-01

    We have composed a sample of 68 massive stars in our galaxy whose projected rotational velocity, effective temperature, and gravity are available from high-precision spectroscopic measurements. The additional seven observed variables considered here are their surface nitrogen abundance, rotational frequency, magnetic field strength, and the amplitude and frequency of their dominant acoustic and gravity modes of oscillation. A multiple linear regression to estimate the nitrogen abundance combined with principal component analysis, after addressing the incomplete and truncated nature of the data, reveals that the effective temperature and the frequency of the dominant acoustic oscillation mode are the only two significant predictors for the nitrogen abundance, while the projected rotational velocity and the rotational frequency have no predictive power. The dominant gravity mode and the magnetic field strength are correlated with the effective temperature but have no predictive power for the nitrogen abundance. Our findings are completely based on observations and their proper statistical treatment and call for a new strategy in evaluating the outcome of stellar evolution computations.

  20. Surface treated natural graphite as anode material for high-power Li-ion battery applications.

    SciTech Connect (OSTI)

    Liu, J.; Vissers, D. R.; Amine, K.; Barsukov, I. V.; Henry, F.; Doniger, J.; Chemical Engineering; Superior Graphite Co.

    2006-01-01

    High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)-based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

  1. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  2. Superconducting magnets

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  3. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1990-01-01

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed.

  4. Oxidation of carbon fiber surfaces for use as reinforcement in high-temperature cementitious material systems

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1990-05-22

    The interfacial bond characteristics between carbon fiber and a cement matrix, in high temperature fiber-reinforced cementitious composite systems, can be improved by the oxidative treatment of the fiber surfaces. Compositions and the process for producing the compositions are disclosed. 2 figs.

  5. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  6. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A. (Livermore, CA); Stone, Roger R. (Walnut Creek, CA); Fabyan, Joseph (Livermore, CA)

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  7. ECE 415 Materials Science of Nanotechnology Catalog Description: Introductory physical chemistry of solid surfaces, thermodynamics and

    E-Print Network [OSTI]

    ECE 415 ­ Materials Science of Nanotechnology Catalog Description: Introductory physical chemistry, applications of nanomaterials, nano-synthesis techniques, integration of nanotechnology, and emerging nanotechnology topics. Credits: 3 Terms Offered: Spring Prerequisites: By course: ECE 416 or ENGR 321 or ENGR 321

  8. SUPPLEMENTARY MATERIAL Global ab initio ground-state potential energy surface of N4

    E-Print Network [OSTI]

    Truhlar, Donald G

    . Date of final revision of this supplementary material: Feb. 7, 2014 Table of contents, supplementary energy function S-4 Figures S1-S8 S-6 Fortran conversion subroutine, internal coordinates to Cartesian coordinates S-14 N4 ab initio data set, internal coordinates S-17 N4 ab initio data set, Cartesian coordinates

  9. THE EFFECT OF LIMITED SPATIAL RESOLUTION OF STELLAR SURFACE MAGNETIC FIELD MAPS ON MAGNETOHYDRODYNAMIC WIND AND CORONAL X-RAY EMISSION MODELS

    SciTech Connect (OSTI)

    Garraffo, C.; Cohen, O.; Drake, J. J.; Downs, C.

    2013-02-10

    We study the influence of the spatial resolution on scales of 5 Degree-Sign and smaller of solar surface magnetic field maps on global magnetohydrodynamic solar wind models, and on a model of coronal heating and X-ray emission. We compare the solutions driven by a low-resolution Wilcox Solar Observatory magnetic map, the same map with spatial resolution artificially increased by a refinement algorithm, and a high-resolution Solar and Heliospheric Observatory Michelson Doppler Imager map. We find that both the wind structure and the X-ray morphology are affected by the fine-scale surface magnetic structure. Moreover, the X-ray morphology is dominated by the closed loop structure between mixed polarities on smaller scales and shows significant changes between high- and low-resolution maps. We conclude that three-dimensional modeling of coronal X-ray emission has greater surface magnetic field spatial resolution requirements than wind modeling, and can be unreliable unless the dominant mixed polarity magnetic flux is properly resolved.

  10. Magnetic transitions driven by temperature in surface oxidized Co{sub 0.10}Ni{sub 0.90}/Cu(001) ultrathin films

    SciTech Connect (OSTI)

    Shih, Ying-Ta; Shen, Wen-He; Lee, Kuo-Long; Pan, Wei, E-mail: weipane@gmail.com [Department of Physics, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan (China)] [Department of Physics, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan (China)

    2014-01-15

    The magnetization of Co{sub 0.10}Ni{sub 0.90}/Cu(001) films before and after surface oxidization at 300 K is presented. Before the oxidization, the magnetization of the films in the thickness of 11 to 20 monolayers (ML) is in the in-plane direction at the temperature ranging from 140 K to 300 K. After the oxidization, the magnetizations of the films are in the in-plane direction at the temperature above 200 K, but transit to magnetization demolishment, in-plane-and-out-of-plane co-existence, spin reorientation transition, and coercivity enhancement, for films of 11, 12, 13, and above 15 ML, respectively. The blocking temperature of this film is also 200 K, which implies the transitions might be driven by the ordering of the antiferromagnetic surface oxides. The various magnetizations provide a model system for manipulating the magnetization direction, as well as a spin valve device by combination of the oxidized films.

  11. Proceedings in Applied Mathematics and Mechanics, 8 April 2008 Locomotion based on the control of the shape of magnetic fluid surfaces

    E-Print Network [OSTI]

    Grohs, Philipp

    Proceedings in Applied Mathematics and Mechanics, 8 April 2008 Locomotion based on the control of the shape of magnetic fluid surfaces and of magnetizable media K. Zimmermann1 , V.A. Naletova 2,3 , I. Zeidis1 , V.A. Turkov3 , V. B¨ohm1 , E. Kolev1 , and J. Popp1 1 Faculty of Mechanical Engineering

  12. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect (OSTI)

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  13. Supporting on-line material for: Topologically protected conduction state at carbon foam surfaces

    E-Print Network [OSTI]

    Tománek, David

    views of the structure that better illustrate the type of termination and illustrate partial hydrogen of sp3 - and sp2 -terminated n-honeycomb thick slabs with n = 3, 5, 7 is shown in Fig. S1. The slab are both at the surface and in the bulk of these thick slabs. sp3sp2 sp3 sp2 sp3 sp2 sp3 sp2 sp3 terminated

  14. Scrub-resistance Characteristics of Kitchen and Bathroom Wall-surfacing Materials

    E-Print Network [OSTI]

    Hobgood, Price; Kunze, O. R.; Stewart, B. R.

    1960-01-01

    . an abrasive cleanser. Loss of gloss continued bv: A statistical analysis was made to evaluate the at a much slower rate as the scrubbing progressed, gloss differences which resulted from 30-minute Ceramic tile, porcelain-on-steel, stainlesq stet: I... and that produced by scrubbing with an abrasive cleanser. Both abrasive cleansers produced essentially the same results on the materials. There was no significant difference between them. Prefinished wallboard, enameled steel and plastic tiles experienced most...

  15. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    SciTech Connect (OSTI)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Cao, Guoping; Kulcinski, Gerald

    2011-07-25

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

  16. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Concentrated Windings

    SciTech Connect (OSTI)

    Lawler, J.S.

    2005-12-21

    It is well known that the ability of the permanent magnet synchronous machine (PMSM) to operate over a wide constant power speed range (CPSR) is dependent upon the machine inductance [1,2,3,4,5]. Early approaches for extending CPSR operation included adding supplementary inductance in series with the motor [1] and the use of anti-parallel thyristor pairs in series with the motor-phase windings [5]. The increased inductance method is compatible with a voltage-source inverter (VSI) controlled by pulse-width modulation (PWM) which is called the conventional phase advance (CPA) method. The thyristor method has been called the dual mode inverter control (DMIC). Neither of these techniques has met with wide acceptance since they both add cost to the drive system and have not been shown to have an attractive cost/benefit ratio. Recently a method has been developed to use fractional-slot concentrated windings to significantly increase the machine inductance [6]. This latest approach has the potential to make the PMSM compatible with CPA without supplemental external inductance. If the performance of such drive is acceptable, then the method may make the PMSM an attractive option for traction applications requiring a wide CPSR. A 30 pole, 6 kW, 6000 maximum revolutions per minute (rpm) prototype of the fractional-slot PMSM design has been developed [7]. This machine has significantly more inductance than is typical of regular PMSMs. The prototype is to be delivered in late 2005 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study the steady-state performance of high-inductance PMSM machines with a view towards control issues. The detailed steady-state model developed includes all motor and inverter-loss mechanisms and will be useful in assessing the performance of the dynamic controller to be developed in future work. This report documents the results of this preliminary investigation.

  17. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  18. Estimation of Hourly Solar Loads on the Surfaces of Moving Refrigerated Tractor Trailers Outfitted with Phase Change Materials (PCMs) for Several Routes across the Continental U.S.

    E-Print Network [OSTI]

    Varadarajan, Krupasagar

    2011-08-31

    The primary objective of this thesis was to calculate solar loads, wind chill temperatures on the surfaces of moving refrigerated tractor trailers outfitted with phase change materials (PCMs) for several routes across the ...

  19. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  20. Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials

    E-Print Network [OSTI]

    Zocco, Diego Andrés

    2011-01-01

    B. Superconductivity . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideSearch for Pressure Induced Superconductivity in Undoped Ce-

  1. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect (OSTI)

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  2. Review of the margins for ASME code fatigue design curve - effects of surface roughness and material variability.

    SciTech Connect (OSTI)

    Chopra, O. K.; Shack, W. J.; Energy Technology

    2003-10-03

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. The Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Existing fatigue strain-vs.-life ({var_epsilon}-N) data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of pressure vessel and piping steels. This report provides an overview of the existing fatigue {var_epsilon}-N data for carbon and low-alloy steels and wrought and cast austenitic SSs to define the effects of key material, loading, and environmental parameters on the fatigue lives of the steels. Experimental data are presented on the effects of surface roughness on the fatigue life of these steels in air and LWR environments. Statistical models are presented for estimating the fatigue {var_epsilon}-N curves as a function of the material, loading, and environmental parameters. Two methods for incorporating environmental effects into the ASME Code fatigue evaluations are discussed. Data available in the literature have been reviewed to evaluate the conservatism in the existing ASME Code fatigue evaluations. A critical review of the margins for ASME Code fatigue design curves is presented.

  3. GUIDANCE FOR THE PROPER CHARACTERIZATION AND CLASSIFICATION OF LOW SPECIFIC ACTIVITY MATERIALS AND SURFACE CONTAMINATED OBJECTS FOR DISPOSAL

    SciTech Connect (OSTI)

    PORTSMOUTH JH; BLACKFORD LT

    2012-02-13

    Regulatory concerns over the proper characterization of certain waste streams led CH2M HILL Plateau Remediation Company (CHPRC) to develop written guidance for personnel involved in Decontamination & Decommissioning (D&D) activities, facility management and Waste Management Representatives (WMRs) involved in the designation of wastes for disposal on and off the Hanford Site. It is essential that these waste streams regularly encountered in D&D operations are properly designated, characterized and classified prior to shipment to a Treatment, Storage or Disposal Facility (TSDF). Shipments of waste determined by the classification process as Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) must also be compliant with all applicable U.S. Department of Transportation (DOE) regulations as well as Department of Energy (DOE) orders. The compliant shipment of these waste commodities is critical to the Hanford Central Plateau cleanup mission. Due to previous problems and concerns from DOE assessments, CHPRC internal critiques as well as DOT, a management decision was made to develop written guidance and procedures to assist CHPRC shippers and facility personnel in the proper classification of D&D waste materials as either LSA or SCO. The guidance provides a uniform methodology for the collection and documentation required to effectively characterize, classify and identify candidate materials for shipping operations. A primary focus is to ensure that waste materials generated from D&D and facility operations are compliant with the DOT regulations when packaged for shipment. At times this can be difficult as the current DOT regulations relative to the shipment of LSA and SCO materials are often not clear to waste generators. Guidance is often sought from NUREG 1608/RAMREG-003 [3]: a guidance document that was jointly developed by the DOT and the Nuclear Regulatory Commission (NRC) and published in 1998. However, NUREG 1608 [3] is now thirteen years old and requires updating to comply with the newer DOT regulations. Similar challenges present themselves throughout the nuclear industry in both commercial and government operations and therefore, this is not only a Hanford Site problem. Shipping radioactive wastes as either LSA or SCO rather than repacking it is significantly cheaper than other DOT radioactive materials shipping classifications particularly when the cost of packages is included. Additionally, the need to 'repackage' materials for transport can often increase worker exposure, necessitated by 'repackaging' waste materials into DOT 7 A Type A containers.

  4. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  5. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    SciTech Connect (OSTI)

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000�°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500�°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300�°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

  6. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1981

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Steel Work in Progress C. Magnetic Materials Precipitation Hardening Sm-Co Base Permanent Magnets Annealing

  7. Magnetic Materials (MM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah River

  8. Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity

    DOE Patents [OSTI]

    Wrenn, G.E. Jr.; Lewis, J. Jr.

    1982-09-29

    The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

  9. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  10. -Supplementary Material -Electrical read-out of individual nuclear spin trajectories in a single-molecule magnet

    E-Print Network [OSTI]

    . Terbium Double-Decker 1 S3. Nuclear Spin Read-Out 2 S4. Quantum Tunnelling of Magnetization 3 S5. Quantum magnetic field sweeps in three dimensions at field sweep rates up to 0.2 T/s. S2. TERBIUM DOUBLE-DECKER We

  11. Dielectric-Loaded Microwave Cavity for High-Gradient Testing of Superconducting Materials 

    E-Print Network [OSTI]

    Pogue, Nathaniel Johnston

    2011-08-08

    A superconducting microwave cavity has been designed to test advanced materials for use in the accelerating structures contained within linear colliders. The electromagnetic design of this cavity produces surface magnetic fields on the sample wafer...

  12. Journal of Magnetism and Magnetic Materials 226}230 (2001) 809}811 Formation of epitaxial and polycrystalline "lms of the electron

    E-Print Network [OSTI]

    Raychaudhuri, Pratap

    2001-01-01

    and polycrystalline "lms of the electron doped system La \\V Ce V MnO through pulsed laser deposition C. Mitra, P (impurity) phase. However, when prepared as thin "lms by pulsed laser deposition technique, La Ce Mn*thin "lms; Magnetic oxides In some perovskite-type hole doped manganese oxides R \\V A V MnO (where R

  13. Surface scaling of magnetism in Cr:ZnO dilute magnetic dielectric Bradley K. Roberts, Alexandre B. Pakhomov, Patricia Voll, and Kannan M. Krishnana

    E-Print Network [OSTI]

    Krishnan, Kannan M.

    leads to antiferromagnetism at high concen- trations of the magnetic dopant ions.17 With respect to DMDs-state-mediated superexchange model20,21 which will be referred to as SE. It has been proposed that DMDs can find applications

  14. Patterned Magnetic Nanostructures and Quantized Magnetic Disks

    E-Print Network [OSTI]

    -increasing demands in data storage and to new applications of magnetic devices in the field of sensors. NewPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra

  15. Surface chemistry of BORAZON: I, Analysis of the three cubic boron nitride materials: Type 1, 510, and 550

    SciTech Connect (OSTI)

    Moddeman, W.E.; Foose, D.S.; Bowling, W.C.; Burke, A.R.; Kasten, L.S.; Cassidy, R.T.

    1992-03-25

    Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface chemistry of three BORAZON* materials: Type I, 510, and 550. Samples were examined in the ``as-received`` condition and following heat treatments in air. Boron oxides were found on the Type I and 550 BORAZON crystals; oxide thicknesses were estimated to be 15A. The titanium-coated product, 510, was found to have a discontinuous titanium coating with a TiO{sub 2} layer that was approximately 20A thick. Following heat treatment at 800{degrees}C for 1 hr in air, the boron oxide layer on the Type I crystals was found to increase in thickness to approximately 30A. The same heat treatment on the 510 crystals yielded a multi-layered structure consisting of an enriched outer layer of B{sub 2}O{sub 3} over a predominantly TiO{sub 2} one. The entire initial titanium coating was oxidized, and segregated patches of B{sub 2}O{sub 3} (``islands``) were observed. The segregated patches can be explained in terms of the coalescence of liquid B{sub 2}O{sub 3} (melting point = 450{degrees}C). The 550 crystals were oxidized at 500{degrees}C. The oxide formed at this temperature was B{sub x}O (x > 0.67). These results were interpreted in terms of their potential use in sealing BORAZON to glass in vitreous bonding.

  16. A garden mulch is any material spread on the soil surface to modify the environment where the plant is growing. The materials used can be natural or synthetic and can be used in any number of combinations

    E-Print Network [OSTI]

    New Hampshire, University of

    companies manufacture recycled paper into mulch, sold in rolls and installed much like black plastic. OtherA garden mulch is any material spread on the soil surface to modify the environment where the plant within a single garden or around a homestead. The proper selection and use of a mulch will result

  17. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    SciTech Connect (OSTI)

    Allain, Jean Paul

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  18. Formation of an internal transport barrier and magnetohydrodynamic activity in experiments with the controlled density of rational magnetic surfaces in the T-10 Tokamak

    SciTech Connect (OSTI)

    Razumova, K. A., E-mail: razumova@nfi.kiae.ru; Andreev, V. F.; Bel’bas, I. S.; Gorshkov, A. V.; Dnestrovskij, A. Yu.; Dyabilin, K. S.; Kislov, A. Ya.; Lysenko, S. E.; Notkin, G. E.; Timchenko, N. N.; Chudnovskiy, A. N.; Shelukhin, D. A. [National Research Centre Kurchatov Institute (Russian Federation)] [National Research Centre Kurchatov Institute (Russian Federation)

    2013-09-15

    Results are presented from experiments on the formation of an internal electron transport barrier near the q = 1.5 rational surface in the T-10 tokamak. The experiments were carried out in the regime with off-axis electron cyclotron resonance (ECR) heating followed by a fast plasma current ramp-up. After suppressing sawtooth oscillations by off-axis ECR heating, an internal transport barrier began to form near the q = 1.5 rational surface. In the phase of the current ramp-up, the quality of the transport barrier improved; as a result, the plasma energy confinement time increased 2–2.5 times. The intentionally produced flattening of the profile of the safety factor q(r) insignificantly affected magnetohydrodynamic activity in the plasma column in spite of the theoretical possibility of formation of substantial m/n = 3/2 and 2/1 magnetic islands. Conditions are discussed under which the flattening of the profile of the safety factor q near low-order rational surfaces leads to the formation of either an internal transport barrier or the development of an island magnetic structure induced by tearing modes.

  19. Investigation of demagnetization in HTS stacked tapes implemented in electric machines as a result of crossed magnetic field

    E-Print Network [OSTI]

    Baghdadi, M.; Ruiz, H. S.; Fagnard, J. F.; Zhang, M.; Wang, W.; Coombs, T. A.

    2014-11-24

    to a nitrogen reservoir. Having several materials with different expansion rates, we employed finite element analysis to be confident that the experimental rig can be safely used at low temperature, 77 K. In all the experiments, the wider surface... path for magnetic flux and, subsequently, shield against static or slowly varying magnetic fields. It should be noted that µ-metal is saturated at low magnetic field, therefore, using several layers is advised; each layer shields a fraction of magnetic...

  20. Magnetically attached sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  1. Magnetic nanohole superlattices

    DOE Patents [OSTI]

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  2. Chemically diverse polymer microarrays and high throughput surface characterisation: a method for discovery of materials for stem cell culture

    E-Print Network [OSTI]

    Celiz, A. D.

    Materials discovery provides the opportunity to identify novel materials that are tailored to complex biological environments by using combinatorial mixing of monomers to form large libraries of polymers as micro arrays. ...

  3. Magnetorheological materials, method for making, and applications thereof

    DOE Patents [OSTI]

    Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.

    2014-08-19

    A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.

  4. Comment on "Extension of neoclassical rotation theory for tokamaks to realistically account for the geometry of magnetic flux surfaces"

    E-Print Network [OSTI]

    Johnson, Robert W

    2014-01-01

    The derivation presented in the paper (C. Bae et al 2013 Nucl. Fusion 53 043011) relies heavily on the approximate solution of the electron momentum balance equation for the poloidal component of the electric field. One can show that, within the assumptions specified by the model, the exact solution of the resulting equation leads to an unphysical expression for the electrostatic potential relative to the magnetic axis. Remarks on its treatment of the radial and toroidal components of the electric field also appear.

  5. Auxiliary material: "Scaling laws of single polymer dynamics near attractive surfaces" This electronic auxiliary material contains supportive evidence for claims made in the main text.

    E-Print Network [OSTI]

    Mueser, Martin

    " This electronic auxiliary material contains supportive evidence for claims made in the main text. STRUCTURAL PROPERTIES To give an impression of the various systems analyzed in the main part of our letter, a few conditions. In the main part of our manuscript we claim that our model reproduces the correct static features

  6. Magnetic gripper device

    DOE Patents [OSTI]

    Meyer, R.E.

    1993-03-09

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  7. Magnetic gripper device

    DOE Patents [OSTI]

    Meyer, Ross E. (Los Alamos, NM)

    1993-01-01

    A climbing apparatus is provided for climbing ferromagnetic surfaces, such as storage tanks and steel frame structures. A magnet assembly is rotatably mounted in a frame assembly. The frame assembly provides a pair of cam surfaces having different dimensions so that, when the frame is rotated, the cam surfaces contact the ferromagnetic surface to separate the magnet assembly from the surface. The different cam dimensions enable one side of the magnet at a time to be detached from the surface to reduce the effort needed to disengage the climbing apparatus. The cam surface also provides for smoothly attaching the apparatus. A hardened dowel pin is also attached to the frame and the pointed end of the dowel engages the surface when the magnet is attached to the surface to prevent downward sliding movement of the assembly under the weight of the user.

  8. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  9. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  10. Pauli equation for a charged spin particle on a curved surface in an electric and magnetic field

    E-Print Network [OSTI]

    Yong-Long Wang; Long Du; Chang-Tan Xu; Xiao-Jun Liu; Hong-Shi Zong

    2014-11-05

    We derive the Pauli equation for a charged spin particle confined to move on a spatially curved surface $\\mathcal{S}$ in an electromagnetic field. Using the thin-layer quantization scheme to constrain the particle on $\\mathcal{S}$, and in the transformed spinor representations, we obtain the well-known geometric potential $V_g$ and the presence of $e^{-i\\varphi}$, which can generate additive spin connection geometric potentials by the curvilinear coordinate derivatives, and we find that the two fundamental evidences in the literature [Giulio Ferrari and Giampaolo Cuoghi, Phys. Rev. Lett. 100, 230403 (2008).] are still valid in the present system without source current perpendicular to $\\mathcal{S}$. Finally, we apply the surface Pauli equation to spherical, cylindrical, and toroidal surfaces, in which we obtain expectantly the geometric potentials and new spin connection geometric potentials, and find that only the normal Pauli matrix appears in these equations.

  11. Predictive Capability for Strongly Correlated Systems: Mott Transition in MnO, Multielectron Magnetic Moments, and Dynamics Effects in Correlated Materials

    SciTech Connect (OSTI)

    Krakauer, Henry; Zhang, Shiwei

    2013-02-21

    There are classes of materials that are important to DOE and to the science and technology community, generically referred to as strongly correlated electron systems (SCES), which have proven very difficult to understand and to simulate in a material-specific manner. These range from actinides, which are central to the DOE mission, to transition metal oxides, which include the most promising components of new spin electronics applications as well as the high temperature superconductors, to intermetallic compounds whose heavy fermion characteristics and quantum critical behavior has given rise to some of the most active areas in condensed matter theory. The objective of the CMSN cooperative research team was to focus on the application of these new methodologies to the specific issue of Mott transitions, multi-electron magnetic moments, and dynamical properties correlated materials. Working towards this goal, the W&M team extended its first-principles phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to accurately calculate structural phase transitions and excited states.

  12. Multiscale Studies of the Formation and Stability of Surface-based Nanostructures, DOE Computational Materials Science Network - Final Report

    SciTech Connect (OSTI)

    Einstein, Theodore L.

    2011-10-31

    Summary of work performed under DOE-CMSN/FG0205ER46227, Multiscale Studies of the Formation and Stability of Surface-based Nanostructures, listing publications, collaborations, and presentations.

  13. The evaluation of micro-surfacing mixture design procedures and the effects of material variation on the test responses 

    E-Print Network [OSTI]

    Andrews, Edward Mensah

    1994-01-01

    This study examines statistically the repeatability of the International Slurry Surfacing Association (ISSA) mixture design tests by estimating the h and k consistency statistics for the test results obtained. An idea of ...

  14. MIT and Materials Industries MIT Industry Brief

    E-Print Network [OSTI]

    Herr, Hugh

    -based materials, devices and systems to provide breakthrough capabilities for applications ranging from energy materials; magnetic materials and processes; biomaterials; and materials economics. The NECSTlab (Nano-Engineered · Materials Selection, Fabrication, Processing · Materials and Electronics, Photonics, Semiconductors

  15. Photoelectron spectroscopic study of the surface reactivity of the high T[c] material YBa?Cu?O? 

    E-Print Network [OSTI]

    Liu, Hong-Xia

    1988-01-01

    of the high T, Y-Ba-Cu-0 system . . . . . 1. 2. A review of the spectroscopic study of the Y-Ba-Cu-0 system. 1. 3. Properties of metal oxide surfaces. 1. 4. Influence of the effective escape depth of the electrons on surface studies . 1. 5. Objectives... extensive in the area of the high T, Y-Ba-Cu-0 system. 1. 1. Properties of the high T, Y-Ba-Cu-0 system The high T, Y-Ba-Cu-0 system is the single phase compound YBagCu309 8 with 5=2 (Cava et al 1987). It is an orthorhombically distorted perovskite...

  16. Status of Magnetic Nozzle and Plasma Detachment Experiment

    SciTech Connect (OSTI)

    Chavers, D. Gregory; Dobson, Chris; Jones, Jonathan; Lee, Michael; Martin, Adam; Gregory, Judith; Cecil, Jim [Propulsion Research Center, MSFC NASA, Huntsville, AL 35812 (United States); Bengtson, Roger D.; Breizman, Boris; Arefiev, Alexey [Department of Physics, University of Texas at Austin, TX 78712 (United States); Institute of Fusion Studies, University of Texas at Austin, TX 78712 (United States); Chang-Diaz, Franklin; Squire, Jared; Glover, Tim; McCaskill, Greg [Ad Astra Rocket Company, 2101 NASA Parkway, Houston, TX 77058 (United States); Cassibry, Jason; Li Zhongmin [University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2006-01-20

    High power plasma propulsion can move large payloads for orbit transfer, lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue if the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment is being performed to test the theory regarding the MHD detachment scenario. The status of that experiment will be discussed in this paper.

  17. Characterization and Surface Treatment of Materials Used in MADEAL S.A. Industry Productive Process of Rims by Plasma Assisted Repetitive Pulsed Arcs Technique

    SciTech Connect (OSTI)

    Jimenez, H.; Salazar, V. H.; Devia, A.; Jaramillo, S.; Velez, G.

    2006-12-04

    A study of materials used in the molds production to aluminium rims manufacture in the MADEAL S.A. factory was carried out for apply a plasma assisted surface treatment consists in growing TiAlN hard coatings that it protects this molds in the productive process. This coating resists high oxidation temperatures, of the other of 800 deg. C, high hardness (2800 Vickers) and low friction coefficient. A plasma assisted repetitive pulsed arcs mono-evaporator system was used in the grow of the TiAlN coatings, the TiAlN target is a sinterized 50% Ti and 50% Al, in the substrate they were used two types of steel that compose the molds injection pieces for the rims production. These materials were subjected to linear and fluctuating thermal changes in the Bruker axs X-Ray diffractometer temperature chamber, what simulated the molds thermal variation in the rims production process and they were compared with TiAlN coatings subjected to same thermal changes. The Materials characterization, before and later of thermal process, was carried out using XRD, SPM and EDS techniques, to analyze the crystallographic, topographic and chemical surface structure behaviours.

  18. Thermal effects in the magnetic Casimir-Polder interaction

    E-Print Network [OSTI]

    H. Haakh; F. Intravaia; C. Henkel

    2009-11-18

    We investigate the magnetic dipole coupling between a metallic surface and an atom in a thermal state, ground state and excited hyperine state. This interaction results in a repulsive correction and - unlike the electrical dipole contribution - depends sensitively on the Ohmic dissipation in the material.

  19. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data

    E-Print Network [OSTI]

    Meju, Max

    multidimensional non- invasive dc resistivity and seismic refraction investigations of the near-surface have and seismic data Luis A. Gallardo1 and Max A. Meju Department of Environmental Science, Lancaster University-gradients of electrical resistivity and seismic velocity as constraints so as to investigate more precisely

  20. Wind tunnel simulation of wind effects and associated displacement hazards on flat surface construction materials such as plywood 

    E-Print Network [OSTI]

    Madeley, Jack T.

    1996-01-01

    decking material with the air stream flowing over the stack until top sheet separated or lifted from the stack. Next, a half-scale model was placed in the test section of the tunnel with pressure ports attached to a high speed sampling transducer...

  1. Inversion of surface and borehole gravity with thresholding and density constraints Jiajia Sun and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Department of Geophysics, Colorado

    E-Print Network [OSTI]

    and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Department of Geophysics, Colorado School

  2. Flipping the switch on magnetism in strontium titanate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetism. So that piqued our interest in this material," Crooker said. Semiconductor material can be magnetized with light, suggesting new technology opportunities LOS ALAMOS,...

  3. Next Generation Materials:

    Office of Environmental Management (EM)

    databases for ICME Surface treatments User facility for remanufactured parts testing; lower-cost coating materials Low-cost laser processing; high accuracy non-planar surface...

  4. Contol of Surface Mounted Permanent Magnet Motors with Special Application to Motors with Fractional-Slot Concentrated Windings

    SciTech Connect (OSTI)

    Patil, N.; Lawler, J.S.; McKeever, J.

    2007-07-31

    A 30-pole, 6-kW prototype of a fractional-slot permanent magnet synchronous motor (PMSM) design has been developed to operate at a maximum speed of 6000 rpm [1,2]. This machine has significantly more inductance than regular PMSMs with distributed windings. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. To prepare for this test/control development effort, ORNL used PMSM models developed over a number of previous studies to preview the control issues that arise when a dynamic controller drives a high inductance PMSM machine during steady state performance evaluations. The detailed steady state model developed includes all motor and inverter loss mechanisms and was useful for assessing the performance of the dynamic controller before it was put into operation. This report documents the results of tests demonstrating the effectiveness of ORNL's simple low-cost control scheme during characterization of the fractional-slot concentrated windings (FSCW) PMSM motor. The control scheme is simple because only the supply voltage magnitude and the phase angle between the back-electromotive force (emf) and the supply voltage is controlled. It is low-cost because it requires no current or phase voltage sensors.

  5. Surface solitons in left-handed metamaterials

    E-Print Network [OSTI]

    G. T. Adamashvili; A. Knorr

    2007-09-08

    A theory of self-induced transparency of surface TM-mode propagating along a interface separating conventional and left-handed metamaterials is developed. A transition layer sandwiched between connected media is described using a model of a two-dimensional gas of quantum dots. Explicit analytical expressions for a surface optical soliton in the presence of single and biexciton transitions, depending on the magnetic permeability of the left-handed medium, are obtained with realistic parameters which can be reached in current experiments. It is shown that the sign of the total energy flow the surface mode depends on the material parameters of the quantum dots and the connected media.

  6. Centrifugal Breakout of Magnetically Confined Line-Driven Stellar Winds

    E-Print Network [OSTI]

    A. ud-Doula; R. H. D. Townsend; S. P. Owocki

    2006-02-15

    We present 2D MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the star's rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value), and also a large magnetic confinement parameter, $\\eta_{\\ast} \\equiv B_{\\ast}^2 R_{\\ast}^{2} / \\dot{M} V_{\\infty} = 600$. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outwards. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back on to the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outwards, leading to episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly $10^{8}$K, high enough to emit hard (several keV) X-rays. Such \\emph{centrifugal mass ejection} represents a novel mechanism for driving magnetic reconnection, and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like $\\sigma$ Ori E.

  7. Magnetic Graphene Nanohole Superlattices

    E-Print Network [OSTI]

    Yu, Decai; Liu, Miao; Liu, Wei; Liu, Feng

    2008-01-01

    We investigate the magnetic properties of nano-holes (NHs) patterned in graphene using first principles calculations. We show that superlattices consisting of a periodic array of NHs form a new family of 2D crystalline "bulk" magnets whose collective magnetic behavior is governed by inter-NH spin-spin interaction. They exhibit long-range magnetic order well above room temperature. Furthermore, magnetic semiconductors can be made by doping magnetic NHs into semiconducting NH superlattices. Our findings offer a new material system for fundamental studies of spin-spin interaction and magnetic ordering in low dimensions, and open up the exciting opportunities of making engineered magnetic materials for storage media and spintronics applications.

  8. CRITICAL MATERIALS INSTITUTE PROJECTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INL National Technology Roadmap for Critical Materials 4 4-3 4.3.3 McCall, Scott LLNL Additive Manufacturing of Permanent Magnets 2 2-1 2.1.2 Turchi, Patrice LLNL Materials...

  9. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  10. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  11. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  12. (1) Frank May REU Summary 2012 -http://engineering.umass.edu/reu/2012/reu-students (2) "Hard Magnetic Materials: A Perspecitve" J.M.D. Coey

    E-Print Network [OSTI]

    Mountziaris, T. J.

    -performance magnets on the market are formed using rare-earth metals. However, a world-wide shortage of rare-earth of these rare-earth metals. My project focuses on one method for forming high-performance magnets: modeling to become one of the world's main suppliers of powerful rare-earth magnets2,3 . In order to gain

  13. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Motors with Concentrated Windings

    SciTech Connect (OSTI)

    McKeever, John W; Patil, Niranjan; Lawler, Jack

    2007-07-01

    A 30 pole, 6 kW, and 6000 maximum revolutions per minute (rpm) prototype of the permanent magnet synchronous motor (PMSM) with fractional-slot concentrated windings (FSCW) has been designed, built, and tested at the University of Wisconsin at Madison (UWM). This machine has significantly more inductance than that of regular PMSMs. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a controller that will achieve maximum efficiency. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study how steady state performance of high inductance PMSM machines relates to control issues. This report documents the results of this research. The amount of inductance that enables the motor to achieve infinite constant power speed ratio (CPSR) is given by L{sub {infinity}} = E{sub b}/{Omega}{sub b}I{sub R}, where E{sub b} is the root-mean square (rms) magnitude of the line-to-neutral back-electromotive force (emf) at base speed, {Omega}{sub b} is the base speed in electrical radians per second, and I{sub R} is the rms current rating of the motor windings. The prototype machine that was delivered to ORNL has about 1.5 times as much inductance as a typical PMSM with distributed integral slot windings. The inventors of the FSCW method, who designed the prototype machine, remarked that they were 'too successful' in incorporating inductance into their machine and that steps would be taken to modify the design methodology to reduce the inductance to the optimum value. This study shows a significant advantage of having the higher inductance rather than the optimal value because it enables the motor to develop the required power at lower current thereby reducing motor and inverter losses and improving efficiency. The main problem found with high inductance machines driven by a conventional phase advance (CPA) method is that the motor current at high speed depends solely on machine parameters and is virtually independent of the load level and the direct current (dc) supply voltage. Thus, the motor current is virtually the same at no load as at full load resulting in poor efficiency at less than full load conditions. While an inductance higher than the value cited above is warranted, it still does not ensure that the motor current is proportional to load; consequently, the problem of low efficiency at high speed and partial load is not resolved but is only mitigated. A common definition of 'base speed' is the speed at which the voltage applied to the motor armature is equal to the magnitude of the back-emf. The results in this study indicate that the dc supply voltage should be adequate to drive rated current into the motor winding at the specified base speed. At a minimum this requires sufficient voltage to overcome not only the back-emf but also the voltage drop across the internal impedance of the machine. For a high inductance PMSM, the internal impedance at base speed can be considerable and substantial additional voltage is required to overcome the internal voltage drop. It is further shown that even more voltage than the minimum required for injecting rated current at base speed can be beneficial by allowing the required power to be developed at lower current, which reduces losses in the motor and inverter components. Further, it is shown that the current is minimized at a unique speed; consequently, there may be room for optimization if the drive spends a substantial amount of its operating life at a certain speed (for example 60 mph). In this study, fundamental frequency phasor models are developed for a synchronous PMSM and the control systems that drive them is CPA. The models were compared with detailed simulations to show their validity. The result was used to design a traction drive control system with optimized efficiency to drive the fractional-slot motor with concentrated windings. The goal is to meet or exceed the FreedomCAR inverter cost and performance targets.

  14. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

    2011-05-01

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the false negative rate (FNR). The FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not FNR (which left a major gap in available information). Quantifying the FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The testing was performed by SNL and is now completed. The study investigated the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and FNR. The experimental design involves 16 test runs, performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) were tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations were very low and presented challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and FNR over the full range of concentrations of interest. In each run, there were 10 test coupons of each of the three surface materials. A positive control sample was generated at the same time as each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and FNR-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the FNR for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting FNR-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in FNR and RE predictions made with the fitted equations.

  15. Experimental Design for a Sponge-Wipe Study to Relate the Recovery Efficiency and False Negative Rate to the Concentration of a Bacillus anthracis Surrogate for Six Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Amidan, Brett G.; Krauter, Paula; Einfeld, Wayne

    2010-12-16

    Two concerns were raised by the Government Accountability Office following the 2001 building contaminations via letters containing Bacillus anthracis (BA). These included the: 1) lack of validated sampling methods, and 2) need to use statistical sampling to quantify the confidence of no contamination when all samples have negative results. Critical to addressing these concerns is quantifying the probability of correct detection (PCD) (or equivalently the false negative rate FNR = 1 ? PCD). The PCD/FNR may depend on the 1) method of contaminant deposition, 2) surface concentration of the contaminant, 3) surface material being sampled, 4) sample collection method, 5) sample storage/transportation conditions, 6) sample processing method, and 7) sample analytical method. A review of the literature found 17 laboratory studies that focused on swab, wipe, or vacuum samples collected from a variety of surface materials contaminated by BA or a surrogate, and used culture methods to determine the surface contaminant concentration. These studies quantified performance of the sampling and analysis methods in terms of recovery efficiency (RE) and not PCD/FNR (which left a major gap in available information). Quantifying the PCD/FNR under a variety of conditions is a key aspect of validating sample and analysis methods, and also for calculating the confidence in characterization or clearance decisions based on a statistical sampling plan. A laboratory study was planned to partially fill the gap in PCD/FNR results. This report documents the experimental design developed by Pacific Northwest National Laboratory and Sandia National Laboratories (SNL) for a sponge-wipe method. The study will investigate the effects on key response variables from six surface materials contaminated with eight surface concentrations of a BA surrogate (Bacillus atrophaeus). The key response variables include measures of the contamination on test coupons of surface materials tested, contamination recovered from coupons by sponge-wipe samples, RE, and PCD/FNR. The experimental design involves 16 test runs, to be performed in two blocks of eight runs. Three surface materials (stainless steel, vinyl tile, and ceramic tile) were tested in the first block, while three other surface materials (plastic, painted wood paneling, and faux leather) will be tested in the second block. The eight surface concentrations of the surrogate were randomly assigned to test runs within each block. Some of the concentrations will be very low and may present challenges for deposition, sampling, and analysis. However, such tests are needed to investigate RE and PCD/FNR over the full range of concentrations of interest. In each run, there will be 10 test coupons of each of the three surface materials. A positive control sample will be generated prior to each test sample. The positive control results will be used to 1) calculate RE values for the wipe sampling and analysis method, and 2) fit RE- and PCD-concentration equations, for each of the six surface materials. Data analyses will support 1) estimating the PCD for each combination of contaminant concentration and surface material, 2) estimating the surface concentrations and their uncertainties of the contaminant for each combination of concentration and surface material, 3) estimating RE (%) and their uncertainties for each combination of contaminant concentration and surface material, 4) fitting PCD-concentration and RE-concentration equations for each of the six surface materials, 5) assessing goodness-of-fit of the equations, and 6) quantifying the uncertainty in PCD and RE predictions made with the fitted equations.

  16. annual progress report Propulsion Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle Technologies Advanced Materials Agreement 13295 - Permanent Magnet Development for Automotive Traction Motors......... 55 PROJECT 18517 PROJECT 18519 ­ MATERIALS FOR CONTROL OF EXHAUST GASES AND ENERGY RECOVERY SYSTEMS

  17. annual progress report Propulsion Materials

    E-Print Network [OSTI]

    Pennycook, Steve

    Progress Report for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle - Permanent Magnet Development for Automotive Traction Motors......... 47 PROJECT 18518 - MATERIALS FOR HIGH)...................................................................... 193 PROJECT 18519 ­ MATERIALS FOR CONTROL OF EXHAUST GASES AND ENERGY RECOVERY SYSTEMS

  18. Experimental Design for a Macrofoam-Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-12-05

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam-swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (culture and polymerase chain reaction) will be used. Only one previous study has investigated how the false negative rate depends on test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam-swab sampling at low concentrations.

  19. Experimental Design for a Macrofoam Swab Study Relating the Recovery Efficiency and False Negative Rate to Low Concentrations of Two Bacillus anthracis Surrogates on Four Surface Materials

    SciTech Connect (OSTI)

    Piepel, Gregory F.; Hutchison, Janine R.

    2014-04-16

    This report describes the experimental design for a laboratory study to quantify the recovery efficiencies and false negative rates of a validated, macrofoam swab sampling method for low concentrations of Bacillus anthracis Sterne (BAS) and Bacillus atrophaeus (BG) spores on four surface materials (stainless steel, glass, vinyl tile, plastic light cover panel). Two analytical methods (plating/counting and polymerase chain reaction) will be used. Only one previous study has investigated false negative as a function of affecting test factors. The surrogates BAS and BG have not been tested together in the same study previously. Hence, this study will provide for completing gaps in the available information on the performance of macrofoam swab sampling at low concentrations.

  20. Magnetic Material for PM Motors

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  1. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratory program LabsDesignLarge

  2. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate studentScienceLaboratory program LabsDesignLargeLarge

  3. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and mastheadLakeLanguage of a flyLarge

  4. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and mastheadLakeLanguage of a flyLargeLarge

  5. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and mastheadLakeLanguage of a

  6. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and mastheadLakeLanguage of aLarge

  7. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and mastheadLakeLanguage of aLargeLarge

  8. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and mastheadLakeLanguage of aLargeLargeLarge

  9. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOE Patents [OSTI]

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  10. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    E-Print Network [OSTI]

    Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic (2014) Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin

  11. Conference Proceedings (Refereed Invited Reviews). 1. "Role of Large-Scale Magnetic Fields and Material Flows in the Formation of Solar Filaments

    E-Print Network [OSTI]

    Mackay, Duncan

    Conference Proceedings (Refereed Invited Reviews). 1. "Role of Large-Scale Magnetic Fields Scale Structures and their Role in Solar Activity, ASP Conference Proceedings Series, 346, 177. 2. "The-297. Conference Proceedings (Others). 1. "Basic Magnetic Field Configurations for Filament Channels and Filaments

  12. Computation of Casimir Interactions between Arbitrary 3D Objects with Arbitrary Material Properties

    E-Print Network [OSTI]

    M. T. Homer Reid; Jacob White; Steven G. Johnson

    2011-10-20

    We extend a recently introduced method for computing Casimir forces between arbitrarily--shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett._103_ 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface--surface separation at which finite--size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters.

  13. Laser detection of material thickness

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    2002-01-01

    There is provided a method for measuring material thickness comprising: (a) contacting a surface of a material to be measured with a high intensity short duration laser pulse at a light wavelength which heats the area of contact with the material, thereby creating an acoustical pulse within the material: (b) timing the intervals between deflections in the contacted surface caused by the reverberation of acoustical pulses between the contacted surface and the opposite surface of the material: and (c) determining the thickness of the material by calculating the proportion of the thickness of the material to the measured time intervals between deflections of the contacted surface.

  14. Method for improving performance of high temperature superconductors within a magnetic field

    DOE Patents [OSTI]

    Wang, Haiyan (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM); Maiorov, Boris A. (Los Alamos, NM); Civale, Leonardo (Los Alamos, NM)

    2010-01-05

    The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.

  15. U.S. Rare Earth Magnet Patents Table © 6-2-2015 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of permanent magnetic motors with broader and flexible in material selection space and cost selection space What is claimed is: 1. A composite permanent magnetic material,...

  16. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  17. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  18. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    DOE Patents [OSTI]

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  19. The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

  20. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  1. Magnetic Topological Insulator and Quantum Anomalous Hall Effect

    E-Print Network [OSTI]

    Kou, Xufeng

    2015-01-01

    magnetic field and a high mobility material with a good 2D confinement [magnetic TI system, the competition between the FM exchange field and the quantum confinement-

  2. A comparison of eddy current effects in a single sided magnetic thrust bearing 

    E-Print Network [OSTI]

    DeWeese, Randall Thomas

    1996-01-01

    of nodal vector potential Surface Area (m ) Magnetic flux density (tesla) Force based on virtual work (N) Vertical force yielded from the macro FOR2DS One dimensional calculated vertical force on rotor H I(A, ) L N Ni Ns Rs Magnetic field... if the flux density remains below one tesla for silicon iron materials (Magnetic, 1995). All the flux densities used remained below one tesla, so the reluctance of the back iron and rotor were neglected. From Eq. (3. 7) we arrive at Eq. (3. 8). 2@R, =NI...

  3. Microwave magnetic dynamics in highly conducting magnetic nanostructures

    SciTech Connect (OSTI)

    Kostylev, M.; Ivanov, E.; Samarin, S. [School of Physics M013, The University of Western Australia, Crawley, WA 6009 (Australia); Ding, J.; Adeyeye, A. O. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-05-07

    We performed low-noise broadband microstrip ferromagnetic resonance (FMR) measurements of the resonant modes of an array of metallic ferromagnetic nanostripes. In addition to a strong signal of the fundamental mode, we observed up to five weak-amplitude peaks in the field-resolved FMR traces, depending on the frequency. These higher-order absorption peaks have been theoretically identified as due to resonant excitation of odd and even standing spin waves across the direction of confinement in array plane (i.e., across the stripe width). The theory we developed suggests that the odd modes become excited in the spatially uniform microwave field of the FMR setup due to the large conductivity of metals. This promotes excitation of large-amplitude eddy currents in the sample by the incident microwave magnetic field and ultimately results in excitation of these modes. Following this theory, we found that the eddy current contribution is present only for patterned materials and when the microwave magnetic field is incident on one surface of sample surface, as it is in the case of a microstrip FMR.

  4. International Conference on Materials for Advanced Technologies (ICMAT 2007), Singapore, July 1-6, 2007. A Novel Strategy of Surface Nanofication for Ceramic Gas Sensors

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    -6, 2007. A Novel Strategy of Surface Nanofication for Ceramic Gas Sensors (Invited) A.-M. Azad* and S in the solid-state ceramic-based chemical sensors. Since the sensing mechanism and catalytic activity of ceramics are predominantly surface- dominated, benign surface features in terms of small grain size, large

  5. ORNL thermomagnetic processing method provides path to new materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermomagnetic processing method provides path to new materials The high magnetic field environments are provided by fully recondensing commercial prototype superconducting magnet...

  6. ORNL partners on critical materials hub | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in such applications as permanent magnet-ics and lighting. Activities will also encompass additive manufacturing in order to reduce the amount of rare earth materials for permanent...

  7. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    09propulsionmaterials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office:...

  8. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  9. Dynamic Jiles-Atherton Model for Determining the Magnetic Power Loss at High Frequency in Permanent Magnet Machines

    E-Print Network [OSTI]

    Du, Ruoyang; Robertson, Paul

    2014-12-18

    —Finite element methods (FEM), Magnetic hysteresis, Magnetic losses, Magnetization, Permanent magnet machines, Permanent magnet motors, Permanent magnet generators. I. INTRODUCTION HE magnetic power losses in ferromagnetic materials have been continuously... made to the original dynamic Jiles-Atherton model in order to make it work correctly for laminations in high frequency permanent magnet synchronous machines (PMSMs), such as BLDC motors. Since the working frequencies of modern BLDC motors...

  10. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  11. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  12. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  13. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, David C. (Ames, IA)

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  14. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  15. Magnetically leviated superconducting bearing

    DOE Patents [OSTI]

    Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT)

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  16. Power-Invariant Magnetic System Modeling 

    E-Print Network [OSTI]

    Gonzalez Dominguez, Guadalupe Giselle

    2012-10-19

    insights to invent new magnetic systems. 9 E. Dissertation Organization The next chapter includes a literature review of magnetic materials and electromagnetic theory as these are fundamental for the development of the theory that we... storage element. Furthermore, the two other iv elements are not defined. This difference has initiated a reevaluation of the conventional magnetic model. In this dissertation the fundamentals on electromagnetism and magnetic materials that supports...

  17. Magnetically Catalyzed Fusion

    E-Print Network [OSTI]

    Jeremy S. Heyl; Lars Hernquist

    1996-08-25

    We calculate the reaction cross-sections for the fusion of hydrogen and deuterium in strong magnetic fields as are believed to exist in the atmospheres of neutron stars. We find that in the presence of a strong magnetic field ($B \\gsim 10^{12}$G), the reaction rates are many orders of magnitude higher than in the unmagnetized case. The fusion of both protons and deuterons are important over a neutron star's lifetime for ultrastrong magnetic fields ($B \\sim 10^{16}$G). The enhancement may have dramatic effects on thermonuclear runaways and bursts on the surfaces of neutron stars.

  18. Moment free toroidal magnet

    DOE Patents [OSTI]

    Bonanos, Peter (East Brunswick, NJ)

    1983-01-01

    A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.

  19. Isodynamic axisymmetric equilibrium near the magnetic axis

    SciTech Connect (OSTI)

    Arsenin, V. V., E-mail: arsenin@nfi.kiae.ru [National Research Centre Kurchatov Institute (Russian Federation)

    2013-08-15

    Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo’s configuration)

  20. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  1. Magnetic Tweezers Instrumentation: We have used magnetic tweezers to study chromatin assembly and disassembly and RNA

    E-Print Network [OSTI]

    Leuba, Sanford

    > l F x surface Instrumental set-up video camera beam condenser hollow bearing with magnet 90x oil camera beam condenser hollow bearing with magnet 90x oil objective square glass cuvette white lightMagnetic Tweezers Instrumentation: We have used magnetic tweezers to study chromatin assembly

  2. Ubiquitous Solar Eruptions Driven by Magnetized Vortex Tubes

    E-Print Network [OSTI]

    Kitiashvili, I N; Lele, S K; Mansour, N N; Wray, A A

    2013-01-01

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruptions events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push surrounding material up, generating quasiperiodic shocks. Our simulations reveal a complicated high-speed flow patterns, and thermodynamic and magnetic structure in the erupting vortex tubes. We found that the eruptions are initiated in the subsurface layers and are driven by the high-pressure gradients in the subphotosphere and photosphere, and by the Lorentz force in the higher atmosphere layers.

  3. Fresnel versus Kummer surfaces

    E-Print Network [OSTI]

    Peinke, Joachim

    Fresnel versus Kummer surfaces Alberto Favaro & Friedrich W. Hehl Outline Linear media Linear media-you. Fresnel versus Kummer surfaces: geometrical optics in dispersionless linear (meta)materials and vacuum, 19­23 November 2012 Email: favaro@thp.uni-koeln.de #12;Fresnel versus Kummer surfaces Alberto Favaro

  4. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1997-08-05

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  5. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  6. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  7. The appearance of glossy, bumpy surfaces VSS,May 2007Yun-Xian Ho1

    E-Print Network [OSTI]

    Landy, Michael S.

    microscale structure (gloss) and mesoscale structure (3D surface texture) affect surface material judgments

  8. Investigation of copper ferrite, Cu{sub 0.5}Fe{sub 2.5}O{sub 4}, as a high saturation magnetization material

    SciTech Connect (OSTI)

    Sriram, D.; Snyder, R.L. [Alfred Univ., NY (United States). NYS Coll. of Ceramics

    1996-11-01

    The ferrite of composition Cu{sub 0.5}Fe{sub 2.5}O{sub 4}, prepared using a conventional solid-state processing route, was soaked at different temperatures between 1,200 C and 1,350 C, for an hour, in air. The samples were rapidly quenched into oil. Moessbauer, resistivity and x-ray lattice parameter data were obtained for the quenched phase. The maximum saturation magnetization value, obtained at 10 K, was close to 5.0 {micro}{sub B}. The characterization of the sample showed Cu{sup +1} to be partially disordered across both A and B sites of the spinel structure, with an excess occupancy of the A-site showing that under the proper conditions the ordered high 4{pi}M{sub s} Cu{sup +1} phase will be stable.

  9. Magnetic cooling at Risoe DTU

    E-Print Network [OSTI]

    Nielsen, K K; Jensen, J B; Bahl, C R H; Pryds, N; Smith, A; Nordentoft, A; Hattel, J

    2009-01-01

    Magnetic refrigeration at room temperature is of great interest due to a long-term goal of making refrigeration more energy-efficient, less noisy and free of any environmentally hostile materials. A refrigerator utilizing an active magnetic regenerator (AMR) is based on the magnetocaloric effect, which manifests itself as a temperature change in magnetic materials when subjected to a varying magnetic field. In this work we present the current state of magnetic refrigeration research at Risoe DTU with emphasis on the numerical modeling of an existing AMR test machine. A 2D numerical heat-transfer and fluid-flow model that represents the experimental setup is presented. Experimental data of both no-heat load and heat load situations are compared to the model. Moreover, results from the numerical modeling of the permanent magnet design used in the system are presented.

  10. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOE Patents [OSTI]

    Hunt, T.K.; Novak, R.F.

    1991-05-07

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined. 3 figures.

  11. Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI)

    1991-01-01

    An improved active metal braze filler material is provided in which the coefficient of thermal expansion of the braze filler is more closely matched with that of the ceramic and metal, or two ceramics, to provide ceramic to metal, or ceramic to ceramic, sealed joints and articles which can withstand both high temperatures and repeated thermal cycling without failing. The braze filler material comprises a mixture of a material, preferably in the form of a powder, selected from the group consisting of molybdenum, tungsten, silicon carbide and mixtures thereof, and an active metal filler material selected from the group consisting of alloys or mixtures of nickel and titanium, alloys or mixtures of nickel and zirconium, alloys or mixtures of nickel, titanium, and copper, alloys or mixtures of nickel, titanium, and zirconium, alloys or mixtures of niobium and nickel, alloys or mixtures of niobium and zirconium, alloys or mixtures of niobium and titanium, alloys or mixtures of niobium, titanium, and nickel, alloys or mixtures of niobium, zirconium, and nickel, and alloys or mixtures of niobium, titanium, zirconium, and nickel. The powder component is selected such that its coefficient of thermal expansion will effect the overall coefficient of thermal expansion of the braze material so that it more closely matches the coefficients of thermal expansion of the ceramic and metal parts to be joined.

  12. Deposition temperature dependence of material and Si surface passivation properties of O{sub 3}-based atomic layer deposited Al{sub 2}O{sub 3}-based films and stacks

    SciTech Connect (OSTI)

    Bordihn, Stefan, E-mail: s.bordihn2@q-cells.com [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Hanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen (Germany); Mertens, Verena; Müller, Jörg W. [Hanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen (Germany); Kessels, W. M. M., E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-01-15

    The material composition and the Si surface passivation of aluminum oxide (Al{sub 2}O{sub 3}) films prepared by atomic layer deposition using Al(CH{sub 3}){sub 3} and O{sub 3} as precursors were investigated for deposition temperatures (T{sub Dep}) between 200?°C and 500?°C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H]?=?3 at. % at 200?°C to [H]?surface passivation performance was investigated after annealing at 300?°C–450?°C and also after firing steps in the typical temperature range of 800?°C–925?°C. A similar high level of the surface passivation performance, i.e., surface recombination velocity values <10?cm/s, was obtained after annealing and firing. Investigations of Al{sub 2}O{sub 3}/SiN{sub x} stacks complemented the work and revealed similar levels of surface passivation as single-layer Al{sub 2}O{sub 3} films, both for the chemical and field-effect passivation. The fixed charge density in the Al{sub 2}O{sub 3}/SiN{sub x} stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10{sup 12}?cm{sup ?2} to 3·10{sup 11}?cm{sup ?2} when T{sub Dep} was increased from 300?°C to 500?°C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T{sub Dep}. When firing films prepared at of low T{sub Dep}, blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al{sub 2}O{sub 3}-based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen.

  13. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO)

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  14. Microwave impregnation of porous materials with thermal energy storage materials

    DOE Patents [OSTI]

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  15. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  16. NANOSCALE STRUCTURALAND MAGNETIC CHARACTERIZATION USING

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    of novel nanoscale storage devices and sensors. However, for successful utilization, it is essential]. Such unique properties of magnetic thin films and nanostructures hold great promise for the development to the characterization of nanostructured magnetic materials. 2. ELECTRON MICROSCOPY METHODS In the transmission electron

  17. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  18. Earth materials and earth dynamics

    SciTech Connect (OSTI)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  19. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  20. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  1. Soiling of building envelope surfaces and its effect on solar reflectance - Part II: Development of an accelerate aging method for roofing materials

    SciTech Connect (OSTI)

    Sleiman, Mohamad; Kirchstetter, Thomas W.; Berdahl, Paul; Gilbert, Haley; Quelen, Sarah; Marlot, Lea; Preble, Chelsea; Chen, Sharon; Montalbano, Amadine; Rosseler, Olivier; Akbari, Hashem; Levinson, Ronnen; Destaillats, Hugo

    2013-11-18

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products?single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles?and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. This accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  2. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  3. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  4. A material segmentation and classification system

    E-Print Network [OSTI]

    Wong, Jennifer L

    2013-01-01

    In this thesis, I developed a material segmentation and classification system that takes in images of an object and identifies the material composition of the object's surface. The 3D surface is first segmented into regions ...

  5. Magnetic switch for reactor control rod. [LMFBR

    DOE Patents [OSTI]

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  6. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  7. Magnetic-cusp, cathodic-arc source

    DOE Patents [OSTI]

    Falabella, Steven (Livermore, CA)

    1995-01-01

    A magnetic-cusp for a cathodic-arc source wherein the arc is confined to the desired cathode surface, provides a current path for electrons from the cathode to the anode, and utilizes electric and magnetic fields to guide ions from the cathode to a point of use, such as substrates to be coated. The magnetic-cusp insures arc stability by an easy magnetic path from anode to cathode, while the straight-through arrangement leads to high ion transmission.

  8. Rapidly solidified alloys and their mechanical and magnetic properties; Proceedings of the Symposium, Boston, MA, December 2-4, 1985. Volume 58

    SciTech Connect (OSTI)

    Giessen, B.C.; Polk, D.E.; Taub, A.I.

    1986-01-01

    Papers are presented on methods for processing rapidly solidified alloys, the effects of bombardment of high energy ions onto the growing surface on the structure and properties of sputtered magnetic films, and the transition from a planar interface to cellular and dendritic structures during rapid solidification processing (RSP). Consideration is given to the formation, structural relaxation and phase transformation, and chemical, magnetic, and mechanical properties of amorphous alloys. Topics discussed include crystalline magnetic materials, quasi-crystals, and the microstructures and properties of RSP Al, Ti, Mg, Ni, Fe, Co, and Cu-based alloys.

  9. Validation of plasma shape reconstruction by Cauchy condition surface method in KSTAR

    SciTech Connect (OSTI)

    Miyata, Y.; Suzuki, T.; Ide, S. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)] [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Hahn, S. H.; Chung, J.; Bak, J. G.; Ko, W. H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2014-03-15

    Cauchy Condition Surface (CCS) method is a numerical approach to reconstruct the plasma boundary and calculate the quantities related to plasma shape using the magnetic diagnostics in real time. It has been applied to the KSTAR plasma in order to establish the plasma shape reconstruction with the high elongation of plasma shape and the large effect of eddy currents flowing in the tokamak structures for the first time. For applying the CCS calculation to the KSTAR plasma, the effects by the eddy currents and the ferromagnetic materials on the plasma shape reconstruction are studied. The CCS calculation includes the effect of eddy currents and excludes the magnetic diagnostics, which is expected to be influenced largely by ferromagnetic materials. Calculations have been performed to validate the plasma shape reconstruction in 2012 KSTAR experimental campaign. Comparison between the CCS calculation and non-magnetic measurements revealed that the CCS calculation can reconstruct the accurate plasma shape even with a small I{sub P}.

  10. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-12-31

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  11. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-01-01

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  12. Tailored Porous Materials

    SciTech Connect (OSTI)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  13. WAFER TEST CAVITY -Linking Surface Microstructure to RF Performance: a ‘Short-­?Sample Test Facility’ for characterizing superconducting materials for SRF cavities.

    SciTech Connect (OSTI)

    Pogue, Nathaniel; Comeaux, Justin; McIntyre, Peter

    2014-05-30

    The Wafer Test cavity was designed to create a short sample test system to determine the properties of the superconducting materials and S?I?S hetero?structures. The project, funded by ARRA, was successful in accomplishing several goals to achieving a high gradient test system for SRF research and development. The project led to the design and construction of the two unique cavities that each severed unique purposes: the Wafer test Cavity and the Sapphire Test cavity. The Sapphire Cavity was constructed first to determine the properties of large single crystal sapphires in an SRF environment. The data obtained from the cavity greatly altered the design of the Wafer Cavity and provided the necessary information to ascertain the Wafer Test cavity’s performance.

  14. MODELING OF EDDY CURRENT LOSS AND TEMPERATURE OF THE MAGNETS

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    MODELING OF EDDY CURRENT LOSS AND TEMPERATURE OF THE MAGNETS IN PERMANENT MAGNET MACHINES the performance of the machine. This paper presents the modeling and analysis of eddy current loss in surface- mounted-magnets PM synchronous motors (SPMSM) and interior-magnets PM synchronous motors (IPMSM), operated

  15. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  16. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  17. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  18. System and method for manipulating domain pinning and reversal in ferromagnetic materials

    DOE Patents [OSTI]

    Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel

    2013-10-15

    A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.

  19. Solar filament material oscillations and drainage before eruption

    SciTech Connect (OSTI)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Li, Haidong; Yang, Dan; Yang, Bo

    2014-08-01

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the H? images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative to the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.

  20. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  1. INVESTIGATION OF BREAKDOWN INDUCED SURFACE DAMAGE ON 805 MHZ PILLBOX CAVITY INTERIOR SURFACES

    SciTech Connect (OSTI)

    Jana, M.R.; Chung, M.; Leonova, M.; Moretti, A.; Tollestrup,A.; Yonehara, K.; Freemire, B.; Torun, Y.; Bowring, D.; Flanagan, G.

    2013-09-25

    The MuCool Test Area (MTA) at Fermilab is a facility to develop the technology required for ionization cooling for a future Muon Collider and/or Neutrino Factory. As part of this research program, we have tested two 805 MHz vacuum RF cavities in a multi-Tesla magnetic field to study the effects of the static magnetic field on the cavity operation. This study gives useful information on field emitters in the cavity, dark current, surface conditioning, breakdown mechanisms and material properties of the cavity. All these factors determine the maximum accelerating gradient in the cavity. This paper discusses the image processing technique for quantitative estimation of spark damage spot distribution on cavity interior surfaces. The distribution is compared with the electric field distribution predicted by a computer code calculation. The local spark density is proportional to probability of surface breakdown and shows a power law dependence on the maximum electric field (E). This E dependence is consistent with the dark current calculated from the Fowler-Nordheim equation.

  2. Magnetic Filtration Process, Magnetic Filtering Material, and Method of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration Savannah River SiterayForming

  3. Dipolar second harmonic generation in inversion symmetric materials

    E-Print Network [OSTI]

    Hardhienata, Hendradi; Prylepa, Andrii; Reitböck, Cornelia; Hingerl, Kurt

    2012-01-01

    It is generally argued that material classes with inversion symmetry such as silicon do not produce bulk dipole related second harmonic generation (SHG). So, SHG is then either ascribed to surface effects or bulk related electric quadrupol or magnetic dipole effects. In this letter we show analytically that due to the fact of the decaying harmonic electric field certain Si facets, as eg. Si(111), produce a bulk dipole SHG response and we propose an experiment, exploiting the different dispersion for the fundamental as well as frequency doubled radiation to determine this effect.

  4. Many-body Interactions in Magnetic Films and Nanostructures

    SciTech Connect (OSTI)

    Stephen D. Kevan

    2012-12-12

    We describe results supported by DOE grant DE-FG02-04ER46158, which focused on magnetic interaction at surfaces, in thin films, and in metallic nanostructures. We report on three general topics: 1) The Rashba spin splitting at magnetic surfaces of rare earth metals, 2) magnetic nanowires self-assembled on stepped tungsten single crystals, and 3) magnetic interaction in graphene films doped with hydrogen atoms.

  5. Magnetic Properties of Mesoporous and Nano-particulate Metal Oxides 

    E-Print Network [OSTI]

    Hill, Adrian H

    2009-01-01

    The magnetic properties of the first row transition metal oxides are wide and varied and have been studied extensively since the 1930’s. Observations that the magnetic properties of these material types change with the ...

  6. Materials Characterization | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy X-ray Scattering Neutron Scattering Mechanical Properties Thermal Optical Spectroscopy Nuclear Magnetic Resonance Macromolecular Characterization Nuclear...

  7. Magnetic circular dichroism in x-ray absorption and core-level photoemission

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Gouder, T.H.; Colmenares, C.A.; Pappas, D.P.

    1993-03-17

    Here is reported observation of magnetic circular dichroism in both x-ray absorption and core-level photoemission of ultra thin magnetic films using circularly polarized x-rays. Iron films (1--4 ML) grown on a Cu(001) substrate at 150 K and magnetized perpendicular to the surface show dramatic changes in the L{sub 2,3} branching ratio for different x-ray polarizations. For linearly-polarized x-rays perpendicular to the magnetic axis of the sample the branching ratio was 0.75. For films {ge} 2 ML, this ratio varied from 0.64 to 0.85 for photon spin parallel and anti-parallel, respectively, to the magnetic axis. This effect was observed either by changing the x-ray helicity for a fixed magnetic axis, or by reversing the magnetic axis for a fixed x-ray helicity. Our observation can be analyzed within a simple one-electron picture, if the raw branching ratios are no so that the linear value becomes statistical Furthermore, warming the films to {approximately}300 K eliminated this effect, indicating a loss of magnetization in the film over a temperature range of {approximately}30 K. Finally, reversing the relative orientation of the photon spin and the magnetic axis from parallel to anti-parallel allowed measurement of the exchange splitting of the Fe 2p and 3p core levels which were found to be 0.3 eV and 0.2 eV. respectively. These results are consistent with earlier studies, but the use of off-plane circularly-polarized x-rays from a bending magnet monochromator offers {approximately}2 orders of magnitude greater intensity than typical spin-polarization measurements. Finally, we have performed preliminary x-ray absorption studies of UFe{sub 2}, demonstrating the feasibilty of MCD measurements in 5f as well as 3d materials.

  8. Thermodynamic measurements of applied magnetic materials

    E-Print Network [OSTI]

    Cooke, David William

    2010-01-01

    new technologies such as spintronics in order to drive powerGMR, multiferroism, and spintronics. In metals, which is themagnetoresistance (TMR), and spintronics. The Fe/Cr MMLs ?

  9. Magnetic spectroscopy and microscopy of functional materials

    E-Print Network [OSTI]

    Jenkins, C.A.

    2012-01-01

    Spintronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .for semiconductor spintronics. e Nature Physics, 3:153–159,J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and

  10. High anisotropy materials for magnetic nanotechnologies

    E-Print Network [OSTI]

    Shipton, Erik G.

    2011-01-01

    anisotropy in rare earth transition metal alloys originatesfor transition metals than for rare earth. The atomicmetal sublattice and negative exchange between the CoPd and the rare earth

  11. Frequency domain surface nuclear magnetic resonance forward modeling on an adaptive octree mesh Trevor Irons*, Colorado School of Mines, United States Geological Survey; Yaoguo Li, Center for Gravity, Electrical,

    E-Print Network [OSTI]

    to directly detect hydrogen in liquids. In near surface applications wire loops may be deployed on the surface be monitored inductively on the earth's surface using wire loops that measure the changing emf due

  12. Superconductive imaging surface magnetometer

    DOE Patents [OSTI]

    Overton, Jr., William C. (Los Alamos, NM); van Hulsteyn, David B. (Santa Fe, NM); Flynn, Edward R. (Los Alamos, NM)

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  13. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  14. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  15. Non-axisymmetric magnetic modes of neutron stars with purely poloidal magnetic fields

    E-Print Network [OSTI]

    Asai, Hidetaka; Yoshida, Shijun

    2015-01-01

    We calculate non-axisymmetric oscillations of neutron stars magnetized by purely poloidal magnetic fields. We use polytropes of index $n=1$ and 1.5 as a background model, where we ignore the equilibrium deformation due to the magnetic field. Since separation of variables is not possible for the oscillation of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. Solving the oscillation equations as the boundary and eigenvalue problem, we find two kinds of discrete magnetic modes, that is, stable (oscillatory) magnetic modes and unstable (monotonically growing) magnetic modes. For isentropic models, the frequency or the growth rate of the magnetic modes is exactly proportional to $B_{\\rm S}$, the strength of the field at the surface. The oscillation frequency and the growth rate are affected by the buoyant force in the interior, and the stable stratification tends to stabilize the unstable magnetic modes.

  16. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN) [Oak Ridge, TN; Walls, Claudia A. (Oak Ridge, TN) [Oak Ridge, TN; Boatner, Lynn A. (Oak Ridge, TN) [Oak Ridge, TN

    2010-02-23

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  17. Combinatorial synthesis of ceramic materials

    DOE Patents [OSTI]

    Lauf, Robert J.; Walls, Claudia A.; Boatner, Lynn A.

    2006-11-14

    A combinatorial library includes a gelcast substrate defining a plurality of cavities in at least one surface thereof; and a plurality of gelcast test materials in the cavities, at least two of the test materials differing from the substrate in at least one compositional characteristic, the two test materials differing from each other in at least one compositional characteristic.

  18. Power Dependence of the RF Surface Resistance of MgB2 Superconductor.

    SciTech Connect (OSTI)

    Tajima, T.; Findikoglu, A. T.; Jason, A. J.; Krawczyk, F. L.; Mueller, F. M.; Shapiro, A. H.; Geng, R. L.; Padamsee, Hasan,; Romanenko, A.; Moeckly, B. H.

    2005-01-01

    Magnesium diboride (MgB{sub 2}) is a superconducting material that has a transition temperature (T{sub c}) of {approx}40 K, which is {approx}30 K higher than niobium (Nb) that has been used for most superconducting RF cavities in the past decades. Last year, it was demonstrated that the RF surface resistance of MgB{sub 2} can be lower than Nb at 4 K. One of the problems with other high-T{sub c} materials such as YBCO was its rapid increase in RF surface resistance with higher surface magnetic fields. Recently, we have shown that MgB2 shows little increase in the surface resistance up to {approx}120 Oe, equivalent of an accelerating field of {approx}3 MV/m. The highest field tested was limited by available power. This result is encouraging and has made us consider fabrication of a cavity coated with MgB{sub 2} and test it. Also, there is a potential that this material has a higher critical magnetic field that enables the cavity to run at a higher gradient than Nb cavities in addition to the possibility of operation at higher temperatures.

  19. Direct torsional actuation of microcantilevers using magnetic excitation

    SciTech Connect (OSTI)

    Gosvami, Nitya Nand; Nalam, Prathima C.; Tam, Qizhan; Carpick, Robert W.; Exarhos, Annemarie L.; Kikkawa, James M.

    2014-09-01

    Torsional mode dynamic force microscopy can be used for a wide range of studies including mapping lateral contact stiffness, torsional frequency or amplitude modulation imaging, and dynamic friction measurements of various materials. Piezo-actuation of the cantilever is commonly used, but it introduces spurious resonances, limiting the frequency range that can be sampled, and rendering the technique particularly difficult to apply in liquid medium where the cantilever oscillations are significantly damped. Here, we demonstrate a method that enables direct torsional actuation of cantilevers with high uniformity over wide frequency ranges by attaching a micrometer-scale magnetic bead on the back side of the cantilever. We show that when beads are magnetized along the width of the cantilever, efficient torsional actuation of the cantilevers can be achieved using a magnetic field produced from a solenoid placed underneath the sample. We demonstrate the capability of this technique by imaging atomic steps on graphite surfaces in tapping mode near the first torsional resonance of the cantilever in dodecane. The technique is also applied to map the variations in the lateral contact stiffness on the surface of graphite and polydiacetylene monolayers.

  20. Magnetic reconnection launcher

    DOE Patents [OSTI]

    Cowan, M.

    1987-04-06

    An electromagnetic launcher includes a plurality of electrical stages which are energized sequentially in the launcher with the passage of a projectiles. Each stage of the launcher includes two or more coils which are arranged coaxially on either closed-loop or straight lines to form gaps between their ends. The projectile has an electrically conductive gap-portion that passes through all the gaps of all the stages in a direction transverse to the axes of the coils. The coils receive an electric current, store magnetic energy, and convert a significant portion of the stored magnetic energy into kinetic energy of the projectile moves through the gap. The magnetic polarity of the opposing coils is in the same direction, e.g. N-S-N-S. A gap portion of the projectile may be made from aluminum and is propelled by the reconnection of magnetic flux stored in the coils which causes accelerating forces to act upon the projectile and at the horizontal surfaces of the projectile near its rear. The gap portion of the projectile may be flat, rectangular and longer than the length of the opposing coils. The gap portion of the projectile permits substantially unrestricted distribution of the induced currents so that current densities are only high where the useful magnetic force is high. This allows designs which permit ohmic oblation from the rear surfaces of the gap portion of the projectile allowing much high velocities to be achieved. An electric power apparatus controls the electric power supplied to the opposing coils until the gap portion of the projectile substantially occupies the gap between the coils, at which time the coils are supplied with peak current quickly. 8 figs.

  1. Filament Shape Versus Coronal Potential Magnetic Field Structure

    E-Print Network [OSTI]

    Filippov, Boris

    2015-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in H$\\alpha$ chromospheric images. We found that the most of the filament material is enclosed between two polarity inversion lines (PILs), one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the {\\it STEREO} spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disk observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that th...

  2. Intense Magnetized Plasma-Wall Interaction

    SciTech Connect (OSTI)

    Bauer, Bruno S.; Fuelling, Stephan

    2013-11-30

    This research project studied wall-plasma interactions relevant to fusion science. Such interactions are a critical aspect of Magneto-Inertial Fusion (MIF) because flux compression by a pusher material, in particular the metal for the liner approach to MIF, involves strong eddy current heating on the surface of the pusher, and probably interactions and mixing of the pusher with the interior fuel during the time when fusion fuel is being burned. When the pusher material is a metal liner, high-energy-density conditions result in fascinating behavior. For example, "warm dense matter" is produced, for which material properties such as resistivity and opacity are not well known. In this project, the transformation into plasma of metal walls subjected to pulsed megagauss magnetic fields was studied with an experiment driven by the UNR 1 MA Zebra generator. The experiment was numerically simulated with using the MHRDR code. This simple, fundamental high-energy-density physics experiment, in a regime appropriate to MIF, has stimulated an important and fascinating comparison of numerical modeling codes and tables with experiment. In addition, we participated in developing the FRCHX experiment to compress a field-reversed-configuration (FRC) plasma with a liner, in collaboration with researchers from Air Force Research Laboratory and Los Alamos National Lab, and we helped develop diagnostics for the Plasma Liner Experiment (PLX) at LANL. Last, but not least, this project served to train students in high-energy-density physics.

  3. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  4. REVIEW ARTICLE 100 NPG ASIA MATERIALS | VOL 3 | NOVEMBER 2011 | www.natureasia.com/asia-materials

    E-Print Network [OSTI]

    REVIEW ARTICLE 100 NPG ASIA MATERIALS | VOL 3 | NOVEMBER 2011 | www.natureasia.com/asia-materials or find materials for which the dielectric permittivity and the magnetic permeability µ were both negative. He deduced that one striking outcome would be that the refractive index of the material would

  5. Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points

    E-Print Network [OSTI]

    Favaro, Alberto

    2015-01-01

    It is known that the Fresnel wave surfaces of transparent biaxial media have 4 singular points, located on two special directions. We show that, in more general media, the number of singularities can exceed 4. In fact, a highly symmetric linear material is proposed whose Fresnel surface exhibits 16 singular points. Because, for every linear material, the dispersion equation is quartic, we conclude that 16 is the maximum number of singularities. The identity of Fresnel and Kummer surfaces, which holds true for media with a certain symmetry (zero skewon piece), provides an elegant interpretation of the results. We describe a metamaterial realization for our linear medium with 16 singular points. It is found that an appropriate combination of metal bars, split-ring resonators, and magnetized particles can generate the correct permittivity, permeability, and magnetoelectric moduli. Lastly, we discuss the arrangement of the singularities in terms of Kummer's (16,6)-configuration of points and planes. An investigat...

  6. Method of passivating semiconductor surfaces

    DOE Patents [OSTI]

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  7. Magnetic monopoles

    SciTech Connect (OSTI)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  8. High magnetic field processing of liquid crystalline polymers

    DOE Patents [OSTI]

    Smith, Mark E. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Douglas, Elliot P. (Los Alamos, NM)

    1998-01-01

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  9. High magnetic field processing of liquid crystalline polymers

    DOE Patents [OSTI]

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  10. Sandia Energy - Magnetically Stimulated Flow Patterns Offer Strategy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetically Stimulated Flow Patterns Offer Strategy for Heat-Transfer Problems Home Office of Science Capabilities News News & Events Research & Capabilities Materials Science...

  11. Dynamic Switching of the Spin Circulation in Tapered Magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phenomenon which is found across a large range of length scales, from galaxies to hurricanes and even down to the nanoscale as in superconducting materials. Magnetic vortex...

  12. Turbulence may be key to "fast magnetic reconnection" mystery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnetic reconnection" mystery The new research could lead to better understanding of solar flares and ejections of material from the Sun's corona. July 11, 2013 Electric...

  13. Materials Characterization Capabilities at the HTML: Surface/Sub-surface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report ManagementMarine &Massachusettsdislocation density

  14. Lunar magnetic field measurements with a cubesat

    E-Print Network [OSTI]

    Garrick-Bethell, Ian

    We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon’s surface. The mission calls for sending the cubesats on impact ...

  15. Covetic Materials

    Broader source: Energy.gov (indexed) [DOE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  16. Geotoxic materials in the surface environment

    SciTech Connect (OSTI)

    Koranda, J.J.; Cohen, J.J.; Smith, C.F.; Ciminesi, F.J.

    1981-12-07

    The toxicology and natural occurrence of several recognized geotoxic elements including arsenic, cadmium, chromium, nickel, lead, selenium, uranium, and vanadium is reviewed. The behavior of these elements in the environment and in biological systems is examined. The properties of these eight toxic elements are summarized and presented in a toxicity matrix. The toxicity matrix identifies each of the elements in terms of average crustal abundance, average soil concentration, drinking water standards, irrigation water standards, daily human intake, aquatic toxicity, phytotoxicity, mammalian toxicity, human toxicity, and bioaccumulation factors for fish. Fish are the major aquatic environment contribution to the human diet and bioaccumulation in aquatic ecosystems has been demonstrated to be an important factor in the cycling of elements in aquatic ecosystems. The toxicity matrix is used as a first approximation to rank the geotoxicity of elements for the purpose of focusing future efforts. The ranking from highest to lowest toxicity with respect to the toxicity parameters being discussed is as follows: arsenic, cadmium, lead, selenium, chromium, vanadium, nickel, and uranium.

  17. Interfacial and Surface Science | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIsProcess Relevant to Carbon

  18. High performance hybrid magnetic structure for biotechnology applications

    DOE Patents [OSTI]

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  19. Permanent magnet edge-field quadrupole

    DOE Patents [OSTI]

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  20. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal...

  1. Homogenization of ferromagnetic materials by Franois Alouges

    E-Print Network [OSTI]

    Alouges, François

    the homogenzation theory for ferromagnetic materials. A new phenomenon arises, in particular to take into accountHomogenization of ferromagnetic materials by François Alouges Abstract In these notes we describe the geometric constraint that the magnetization is locally saturated. 1 Introduction Ferromagnetic materials

  2. Corrosion protective coating for metallic materials

    DOE Patents [OSTI]

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  3. HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.

    2011-01-01

    D. C. 'Niobium-Titanium Superconducting Material s ', in S.Nb -Ti and Nb3Sn superconductors. , •• ,""" s. S. Clamp, Tie14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.

  4. Siphon flow in a cool magnetic loop

    E-Print Network [OSTI]

    Bethge, C; Peter, H; Lagg, A

    2011-01-01

    We investigate the properties of a structure in the solar chromosphere in an active region to find out whether the feature is consistent with a siphon flow in a magnetic loop filled with chromospheric material.

  5. MMMMaaaaggggnnnneeeettttiiiicccc FFFFuuuussssiiiioooonnnn EEEEnnnneeeerrrrggggyyyy MAGNETIC FUSION ENERGY

    E-Print Network [OSTI]

    MINUTES OF FUEL IN PLASMA · LOW RISK OF NUCLEAR MATERIALS PROLIFERATION · CONCENTRATED RELATIVE TO SOLAR FFFFuuuussssiiiioooonnnn EEEEnnnneeeerrrrggggyyyy Schematic of MFE Power Plant Raw Fuel WasteFuel p First Wall Magnet

  6. Magnetic fields of HgMn stars

    E-Print Network [OSTI]

    Hubrig, S; Ilyin, I; Korhonen, H; Schoeller, M; Savanov, I; Arlt, R; Castelli, F; Curto, G Lo; Briquet, M; Dall, T H

    2012-01-01

    The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. We re-analyse available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD65949 and the hotter analog of HgMn stars, the PGa star HD19400, using FORS2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. We downloaded from the ESO archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudina...

  7. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  8. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  9. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  10. Critical Materials:

    Office of Environmental Management (EM)

    Extraction Separation Processes for Critical Materials in 30- 21 Stage Test Facility (Bruce Moyer) ......

  11. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  12. Enhancement of artificial magnetism via resonant bianisotropy

    E-Print Network [OSTI]

    Markovich, Dmitry; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2015-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here a new approach for increasing magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer nanoantenna. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of magnetic polarizability, tailoring the later in the dynamical range of 100 % and enhancement up to 36 % relative to performances of standalone spherical particles....

  13. Immobilized lipid-bilayer materials

    SciTech Connect (OSTI)

    Sasaki, Darryl Y. (Albuquerque, NM); Loy, Douglas A. (Albuquerque, NM); Yamanaka, Stacey A. (Dallas, TX)

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  14. Surface Correction to Landau Diamagnetism 

    E-Print Network [OSTI]

    Allen, Roland E.

    1975-01-01

    field applied perpendicular to the surface, we show that gd ??g?'/3, where gd and g~ are, respectively, the surface corrections to the Landau diamagnetism and the Pauli paramagnetism. The total surface contribution to the susceptibility is y' :=(2.../3)(pa/w )A [y(kw) -w/4], where y(k+) is the phase shift for k, = kF . Since iyi = w/4 and y(k F) & (y), the surface contributions to the magnetic susceptibility and electronic heat capacity are positive. s 1 sXg= ?3Xp~ (2) where X'?and X~ are...

  15. A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor

    SciTech Connect (OSTI)

    Xiao, Binping; Reece, Charles E.

    2014-02-01

    There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. The surprising reduction in resistance with increasing field is explained to be an intrinsic effect.

  16. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  17. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  18. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  20. Combinatorial sythesis of organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.