Powered by Deep Web Technologies
Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Static High Magnetic Fields and Materials Science  

Science Journals Connector (OSTI)

Like temperature or pressure, the magnetic field is one of the important thermodynamic parameters that are used to change the inner energies of materials. Materials are essentially composed of atomic nuclei an...

M. Motokawa; K. Watanabe; F. Herlach

2002-01-01T23:59:59.000Z

2

Materials science: Radicals promote magnetic gel assembly  

Science Journals Connector (OSTI)

... are assembled from smaller components, may thus be better suited for replicating biological complexity. 3D printing, in which the direct deposition of material creates precise 3D structures, embodies this strategy ... material creates precise 3D structures, embodies this strategy. Recent advances in technology have allowed 3D printing of tissues through the deposition of cellular aggregates or cell-laden materials. However, these ...

Christopher B. Rodell; Jason A. Burdick

2014-10-29T23:59:59.000Z

3

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

4

Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

feature banner feature banner banner Condensed Matter and Magnet Science The Condensed Matter and Magnet Science Group (MPA-CMMS) is comprised of research scientists, technicians, postdocs, and students specializing in experimental physics research, with a strong emphasis on fundamental condensed matter physics with complimentary thrusts in correlated electron materials, high magnetic-field science and technology, thermal physics, and actinide chemistry. MPA-CMMS hosts the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL-PFF) located at TA-35 while new material synthesis, low temperature expertise, and various low-energy spectroscopies are located at TA-3. Our actinide chemistry activities occur at RC-1 (TA-48). The NHMFL-PFF is a national user facility for high magnetic field science sponsored primarily by the National Science Foundation's Division of Materials Research, with branches at Florida State University, the University of Florida, and Los Alamos National Laboratory. (Check out NHMFL Web site for more details.)

5

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

6

W.E. Henry Symposium compendium: The importance of magnetism in physics and material science  

SciTech Connect (OSTI)

This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

Carwell, H.

1997-09-19T23:59:59.000Z

7

NREL: Energy Sciences - Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Materials Science Learn about our...

8

Materials Science Division - Argonne National Laboratories, Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

9

NEWTON's Material Science References  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

10

NEWTON's Material Science Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

11

Department of Advanced Materials Science  

E-Print Network [OSTI]

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

12

Control of magnetic vortex chirality in square ring micromagnets Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Materials Science  

E-Print Network [OSTI]

Control of magnetic vortex chirality in square ring micromagnets A. Libála Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 and Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 M. Grimsditch Materials Science Division, Argonne National Laboratory

Metlushko, Vitali

13

Educational Material Science Games  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

14

An in-situ accelerator-based diagnostic for plasma-material interactions science in magnetic fusion devices  

E-Print Network [OSTI]

Plasma-material interactions (PMI) in magnetic fusion devices such as fuel retention, material erosion and redeposition, and material mixing present significant scientific and engineering challenges, particularly for the ...

Hartwig, Zachary Seth

2014-01-01T23:59:59.000Z

15

NEW MAGNETIC MATERIALS  

Science Journals Connector (OSTI)

New, sophisticated magnetic materials can be found as essential components in computers, sensors, and actuators, and in a variety of telecommunications devices ranging from telephones to satellites. Some of th...

STANOJA STOIMENOV

2006-01-01T23:59:59.000Z

16

LANL: Materials Science Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

17

NEWTON's Material Science Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

18

Journal of Magnetism and Magnetic Materials 225 (2001) 337345 Irreversible magnetization in nickel nanoparticles  

E-Print Network [OSTI]

in this magnetic nanoparticle system. # 2001 Elsevier Science B.V. All rights reserved. PACS: 75.10.Nr; 75.50.KjJournal of Magnetism and Magnetic Materials 225 (2001) 337­345 Irreversible magnetization in nickel in revised form 20 October 2000 Abstract We report magnetic studies on nickel nanoparticle films of average

Zuo, Fulin

19

Materials Science & Engineering | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

20

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2013, in Capabilities, Customers & Partners, Energy, Energy Efficiency, Materials Science, News, News & Events, Office of Science, Partnership, Research & Capabilities,...

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Materials Science & Engineering  

E-Print Network [OSTI]

. Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

22

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project On May 22,...

23

NREL: Energy Sciences - Theoretical Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Materials Science Solid-State Theory Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Theoretical Materials Science Learn about our research staff including staff profiles, publications, and contact information. Using modern computational techniques, the Theoretical Materials Science Group, within NREL's Chemical and Materials Science Center, applies quantum mechanics to complex materials, yielding quantitative predictions to guide and interact with experimental explorations. Current research focuses on the following efforts: Design new photovoltaic materials that can improve solar cell efficiency and reduce its cost. Explain the underlying physics of new

24

Superconductivity and Magnetism: Materials Properties  

E-Print Network [OSTI]

#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 and Magnetism: Materials Properties and Developments Extended abstracts of the 24th Risø International Symposium LABORATORY ROSKILDE, DENMARK #12;Risø International Symposium on Superconductivity and Magnetism: Material

25

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network [OSTI]

ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

26

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP  

E-Print Network [OSTI]

ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

Pfeifer, Holger

27

Magnetic Materials (MM)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam Time Contacts Calendars Community Scientific Access Site Access Training Science & Education Science & Research Highlights Conferences Seminars Publications Annual Reports...

28

Chemistry and Materials Science at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights NERSC Citations HPC Requirements Reviews Home Science at NERSC Chemistry & Materials Science Chemistry & Materials Science Simulation plays an indispensable...

29

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

30

Materials Science and Engineering  

Broader source: Energy.gov (indexed) [DOE]

Materials Science and Engineering Materials Science and Engineering 1 Fe---Cr A lloys f or A dvanced N uclear E nergy A pplica9ons Ron S caMaterials Science and Engineering 2 Thermodynamic S tabiliza9on o f G rain S ize The concept is that non---equilibrium solutes introduced by mechanical alloying can segregate to grain b oundaries, p roducing

31

Magnetism Highlights| Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnetism Magnetism SHARE Magnetism Highlights 1-5 of 5 Results ARCS maps collaborative magnetic spin behavior in iron telluride December 01, 2011 - Researchers have long thought that magnetism and superconductivity are mutually exclusive. The former typically involves localized atomic electrons. The latter requires freely propagating, itinerant electrons. Unexpected Magnetic Excitations in Doped Insulator Surprise Researchers October 01, 2011 - When doping a disordered magnetic insulator material with atoms of a nonmagnetic material, the conventional wisdom is that the magnetic interactions between the magnetic ions in the material will be weakened. Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" September 01, 2011 - Neutron scattering studies of "cobalt blue," a

32

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials with Solar Cells for Increased Photovoltaic Efficiency On December 4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy,...

33

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2013, in CINT, Facilities, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research & Capabilities, Transmission Grid Integration The nation's...

34

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid Integration, Infrastructure Security, Materials Science, News, News & Events,...

35

Journal of Magnetism and Magnetic Materials 281 (2004) 272275 Effects of high magnetic field annealing on texture and  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 281 (2004) 272­275 Effects of high magnetic field annealing on texture and magnetic properties of FePd D.S. Lia, *, H. Garmestania , Shi-shen Yanb , M of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr. N.W., Atlanta, GA

Garmestani, Hamid

36

Materials Sciences and Engineering Program | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

37

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

38

Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

39

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the ASME 12th Fuel Cell Science, Engineering and Technology Conference in Boston, Massachusetts. One pathway for delivering H2 ... Combining 'Tinkertoy' Materials with...

40

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Materials Science Graduate Student Handbook  

E-Print Network [OSTI]

Materials Science Program Graduate Student Handbook Fall 2010 #12;1 http://www.engr.wisc.ede/interd/msp/handbook year are eligible to run for office. This handbook was written by materials science graduate students Assistance (page 5): How does research funding work? Course Registration (page 7): What classes should I

Evans, Paul G.

42

Materials Science & Engineering  

E-Print Network [OSTI]

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

43

Soft Magnetic Materials in Telecommunications  

Science Journals Connector (OSTI)

... , the subject being "Soft Magnetic Materials whose Properties are of Use or Significance in Telecommunications". The meetings were attended by about seventy people from Great Britain and the Continent ... for a few papers which dealt with aspects of the matter not generally considered by telecommunications engineers, the authors concentrated on the following main lines : theoretical consequences of domain ...

1952-05-31T23:59:59.000Z

44

Recent Advances in Computational Materials Science and Multiscale Materials Modeling  

E-Print Network [OSTI]

Recent Advances in Computational Materials Science and Multiscale Materials Modeling Guest Editors Advances in Computational Materials Science and Multiscale Materials Modeling. These symposia provide. Professor Karel Matous Aerospace and Mechanical Engineering Department University of Notre Dame Email

Matous, Karel

45

Cryogenic structural materials for superconducting magnets  

SciTech Connect (OSTI)

This paper reviews research in the United States and Japan on structural materials for high-field superconducting magnets. Superconducting magnets are used for magnetic fusion energy devices and for accelerators that are used in particle-physics research. The cryogenic structural materials that we review are used for magnet cases and support structures. We expect increased materials requirements in the future.

Dalder, E.N.C.; Morris, J.W. Jr.

1985-02-22T23:59:59.000Z

46

Center for Nanophase Materials Sciences (CNMS) - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

94720 6 Institute for Problems of Materials Science, National Academy of Science of Ukraine, Kiev, Ukraine 7 Institute of Semiconductor Physics, National Academy of Science of...

47

Bayer MaterialScience | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Bayer MaterialScience Place: Leverkusen, Germany Website: http:www.bayermaterialscienc References: Bayer Material Science1...

48

Sandia National Laboratories: materials science and engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

49

Chemistry and Material Sciences Codes at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 L ast edited: 2014-06-02 08:59:45...

50

Materials Science & Engineering  

E-Print Network [OSTI]

technologies used to develop energy sources, protect the environment, preserve the national infrastructure, electronic materials, composites, biomaterials, nuclear materials and nanomaterials. The common thread and Engineering program. Effective 2014-2015 1 Updated May 2014 #12;Additionally, here are some helpful

Simons, Jack

51

Materials science Nanotubes get hard  

E-Print Network [OSTI]

Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

Downs, Robert T.

52

Chemical and Materials Sciences Building | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

53

Magnetic Quantum Oscillations in SrFe2As2 2009 NHMFL Science Highlight for NSF  

E-Print Network [OSTI]

Magnetic Quantum Oscillations in SrFe2As2 2009 NHMFL Science Highlight for NSF DMR-Award 0654118 at Los Alamos (through a collaboration with the material science group, MPA-10). Magnetic quantum materials by measuring the Fermi surface of the parent magnetic state. Examples of the magnetic quantum

Weston, Ken

54

Introduction Materials science and engineering is on  

E-Print Network [OSTI]

is biomaterials. A Short History of Materials Science and Engineering Materials science and engineering (MS&E) has and engineering. What is the Next BigThing for Materials Science? A50-year history of productive reinven- tionIntroduction Materials science and engineering is on a plateau. As a field, it has been one

Prentiss, Mara

55

Materials Science Program Graduate Studies Handbook  

E-Print Network [OSTI]

Training For Chemical/Physical Labs 26 #12;University of Rochester Graduate Handbook Materials ScienceMaterials Science Program Graduate Studies Handbook 2012-2014 Lynda McGarry, Materials Science@chem.rochester.edu #12;University of Rochester Graduate Handbook Materials Science Program updated December 2012 Page 2

Mahon, Bradford Z.

56

National High Magnetic Field Laboratory - Magnets and Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Superconductivity Center, please see the center's group members page. Magnet Science & Technology Group Members Senior Personnel Bai, Hongyu Research Faculty II Phone:...

57

National High Magnetic Field Laboratory - Magnets and Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which joined the Magnet Lab and Florida State University in 2006. The ASC advances the science and technology of superconductivity by investigating low temperature and high...

58

Background Material Important Questions about Magnetism  

E-Print Network [OSTI]

Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

Mojzsis, Stephen J.

59

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Selected Publications Our People Contacts by Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment ShaRE User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Correlated Electron Materials Group In The News PSD Directorate › MST Division › Correlated Electron Materials Group CdSiP2Tin Flux The ultimate aim of our research is to attain a better understanding of complex materials, particularly those that are important to clean energy technologies. For example, we are currently investigating the relationship between magnetism and superconductivity, new mechanisms for enhancing

60

Department of Advanced Materials Science  

E-Print Network [OSTI]

device, Bioconjugate matsuura@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials Nuclear magnetic resonance, Quantum spin systems, Low temperature physics, Strongly correlated electron Effect takatama@spring8.or.jpe-mail 0791-58-2942T E L Synchrotron Radiation, X-ray Free Electron Laser

Katsumoto, Shingo

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Center for Nanophase Materials Sciences | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences The Center for Nanophase Materials Sciences (CNMS), one of five DOE-funded nanoscience research centers (NSRCs). CNMS has established itself as an internationally...

62

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

63

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

64

MagLab - Magnets and Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSF highlights here. Magnets and materials go hand-in-hand, as the push for ever higher magnetic fields requires not just engineering excellence with what is already available,...

65

Sandia National Laboratories: Materials Science and Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

itiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project Materials...

66

Center for Nanophase Materials Sciences - Newsletter January...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

67

Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials  

E-Print Network [OSTI]

materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high, and energy-related materials Martin L. Green, Ichiro Takeuchi, and Jason R. Hattrick-Simpers Citation: J) methodologies to electronic, magnetic, optical, and energy-related materials Martin L. Green,1 Ichiro Takeuchi,2

Rubloff, Gary W.

68

Magnetic Filtration Process, Magnetic Filtering Material, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SummaryORNL researchers developed a new method for filtering materials and managing wastewater. This invention offers an integrated, intensified process to handle organic...

69

Magnetic Resonance Imaging in Soil Science  

Science Journals Connector (OSTI)

Magnetic resonance imaging is based upon the physical effect of nuclear magnetic resonance (NMR) of spin bearing atomic...1991; Blmich, 2000...). The most important NMR active nuclei in soil science applications...

Andreas Pohlmeier

2014-08-01T23:59:59.000Z

70

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production of battery cells, magnetic field processing, specialized rolling technologies, additive manufacturing, etc. Laboratories for comprehensive evaluations of low-level...

71

Advances in materials science, metals and ceramics division. Triannual progress report, June-September 1980  

SciTech Connect (OSTI)

Information is presented concerning the magnetic fusion energy program; the laser fusion energy program; geothermal research; nuclear waste management; Office of Basic Energy Sciences (OBES) research; diffusion in silicate minerals; chemistry research resources; and chemistry and materials science research.

Truhan, J.J.; Hopper, R.W.; Gordon, K.M. (eds.)

1980-10-28T23:59:59.000Z

72

Advances in materials science, Metals and Ceramics Division. Triannual progress report, February-May 1980  

SciTech Connect (OSTI)

Research is reported in the magnetic fusion energy and laser fusion energy programs, aluminium-air battery and vehicle research, geothermal research, nuclear waste management, basic energy science, and chemistry and materials science. (FS)

Truhan, J.J.; Gordon, K.M. (eds.)

1980-08-01T23:59:59.000Z

73

Argonne CNM: Electronic and Magnetic Materials and Devices Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic & Magnetic Materials & Devices Electronic & Magnetic Materials & Devices Group Leader: Saw-Wai Hla The objective of the Electronic and Magnetic Materials and Devices (EMMD) group at the CNM is to discover, understand, and utilize new electron and spin-based materials and phenomena in constrained geometries. Potential benefits include reduced power dissipation, new medical imaging methods and therapies, improved efficiency of data storage by spin current and electrical field-assisted writing, and enhanced energy conversion in photovoltaic devices. Research Activities Understanding complex magnetic order and coupling phenomena: Magnetic nanostructures are prone to complex magnetic ordering phenomena that do not occur in the bulk and that will have strong impact on the further development of functional magnetic nanostructures. Basic science on the influence of demagnetizing effects, geometrical frustration, next-nearest neighbor exchange interactions, unusual anisotropy values, and the spin-orbit interaction at reduced dimensionality are performed with a special focus on temperature-dependent magnetic order-disorder transitions.

74

The Department of Materials Science and Engineering  

E-Print Network [OSTI]

The Department of Materials Science and Engineering 325 Woolf Hall · Box 19031 · 817-272-2398 www.uta.edu/mse Overview The interdisciplinary field of materials science and engineering has become critical to many emerging areas of science and advanced technology. As a result, there is a growing demand for engineers

Texas at Arlington, University of

75

A New Class of Magnetic Materials with Novel Structural Order | U.S. DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Class of Magnetic Materials with Novel Structural Order A New Class of Magnetic Materials with Novel Structural Order Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » June 2013 A New Class of Magnetic Materials with Novel Structural Order The discovery of the first binary magnetic quasicrystals will enable the unraveling of the fundamental relationship between the structure and magnetism in aperiodic materials. Print Text Size: A A A Subscribe FeedbackShare Page

76

Nuclear Materials Science:Materials Science Technology:MST-16...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and actinide fundamental science. Alison Costello One for the team by Diana Del Mauro Alison Costello Surface Science and Corrosion team staff member Alison Costello and...

77

SCIENCE  

Science Journals Connector (OSTI)

SCIENCE ... Sedoheptulose phosphate may be an important intermediate in carbohydrate metabolism in animals as well as in plants, the NIH scientists observe. ... NOL Makes Magnetic Material ...

1952-06-23T23:59:59.000Z

78

FWP executive summaries: Basic energy sciences materials sciences programs  

SciTech Connect (OSTI)

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

79

Materials sciences programs, Fiscal year 1997  

SciTech Connect (OSTI)

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

80

Teacher Resource Center: Fermilab Science Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab Science Materials Fermilab Science Materials TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Select from several categories of items available from the Fermilab Education Office. Teachers created these classroom materials as part of Fermilab educational programs. The following materials may be ordered either through the Education Office or through the Fermilab Friends for Science Education Online Store. ** Use the online order form (pdf).** You can fill it out online, save it, print it and send it by US mail.

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chemical Sciences Division | Advanced Materials |ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

82

Materials Physics Applications: The National High Magnetic Field Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Search National High Magnetic Field Laboratory, NHMFL Home About Us Organization DIVISION Materials Physics and Applications Division GROUPS Superconductivity Technology Center Condensed Matter and Magnet Science Center for Integrated Nanotechnologies Sensors & Electrochemical Devices Materials Chemistry CONTACTS Group Leader Mike Hundley Director, NHMFL-PFF/Deputy Group Leader Chuck Mielke Head of Users Program Operations Jon Betts Professional Staff Assistant Julie T. Gallegos TA-03 Group Office TA-03, Building 0034, Room 101 Office Administrator Juanita Armijo TA-35 Group Office TA-35, Building 0127, Room C117 Office Administrator Angeline Willow 505-667-5032 National High Magnetic Field Laboratory, Pulsed Field Facility The Pulsed Field Facility at Los Alamos National Laboratory in Los Alamos, New Mexico, is one of three campuses of the National High Magnetic Field Laboratory (NHMFL), the other two being at Florida State University, Tallahassee (continuous fields, magnetic resonance, and general headquarters) and the University of Florida ,Gainesville(ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the US Department of Energy.

83

NREL: Energy Sciences - Chemical and Materials Science Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Materials Science Staff Chemical and Materials Science Staff The Chemical and Materials Science staff members at the National Renewable Energy Laboratory work within one of five groups: the Chemical and Nanoscale Science Group, the Theoretical Materials Science Group, the Materials Science Group, the Process Technology and Advanced Concepts Group, and the Fuel Cells Group. Access the staff members' background, areas of expertise, and contact information below. Jao van de Lagemaat Director Marisa Howe Project Specialist Chemical & Nanoscale Science Group Nicole Campos Administrative Professional Paul Ackerman Natalia Azarova Brian Bailey Matthew C. Beard Matt Bergren Raghu N. Bhattacharya Julio Villanueva Cab Rebecca Callahan Russ Cormier Ryan Crisp Alex Dixon Andrew J. Ferguson Arthur J. Frank

84

Magnetic Confinement Fusion Science Status and Challenges  

E-Print Network [OSTI]

Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin February, 2005 #12;Two approaches to fusion Inertial confinement extremely dense, short-lived Magnetic ·Control plasma disruptions ·Develop new magnetic configurations ·Control the plasma-wall interaction

85

Journal of Magnetism and Magnetic Materials 252 (2002) 159161 Magnetically induced alignment of FNS  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 252 (2002) 159­161 Magnetically induced alignment the observation of magnetically controlled anchoring of ferro-nematic suspensions. We found that application of a weak magnetic field to a cell with the ferro-suspension induces an easy orientation axis with weak

Reznikov, Yuri

86

Magnetism and magnetic materials probed with neutron scattering  

Science Journals Connector (OSTI)

Abstract Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale.

S.G.E. te Velthuis; C. Pappas

2014-01-01T23:59:59.000Z

87

Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk  

E-Print Network [OSTI]

structure of magnetic vortex cores. Science 298, 6. Fischer,Magnetic Material Center, National Institute for Materials Science (Magnetic vortex core observation in circular dots of Permalloy. Science

Im, Mi-Young

2014-01-01T23:59:59.000Z

88

Crystallographic Boundary in a Magnetic Shape Memory Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crystallographic Boundary in a Crystallographic Boundary in a Magnetic Shape Memory Material Crystallographic Boundary in a Magnetic Shape Memory Material Print Wednesday, 18 April 2012 11:37 A research team has shown the existence of a special structural boundary in an intermetallic compound by combining the unique measurement facilities at the ALS, the single-crystal production capabilities of Tohoku University (Japan), and the materials science expertise of Johannes-Gutenberg-University (Germany). Conventional shape memory materials, such as the commercially available Nitinol (an alloy of nickel and titanium used in microsensing, actuation, and medical devices), undergo a phase transformation with cooling or heating when large areas of a sample distort along a single axis, and where the atomic-unit cell "stretching" from a cube to a rectangular prism occurs. In contrast, magnetic shape memory (MSM) materials are much more rare but have an advantage: The axis of magnetic anisotropy is coupled to the direction of stretching, so a perfect MSM crystal can be made to flex and bend reversibly by applying an external magnetic field.

89

What is Materials Science and Engineering?  

E-Print Network [OSTI]

-Madison Chapter UW-Madison College of Engineering UW-Madison Engineering Career Services MS&E DepartmentalWhat is Materials Science and Engineering? Materials Science and Engineering (MS&E one of the smallest departments in the College of Engineering. Because of this, most classes contain

Wisconsin at Madison, University of

90

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTG MTG For the Public News & Highlights Publications Seminars Workshops Our People Group Leader, Staff Members Find People Fact Sheet Energy Frontier Research Center Center for Defect Physics (EFRC) Related Groups Computational Materials Science Group (CSMD) Nanomaterials Theory Institute (CNMS) Single Crystal Diffraction Group (NScD) University of Tennesee (MSE) ORNL Materials in Extreme Environments Other Useful Links American Physical Society DOE Office of Science Institute of Physics Office of Basic Energy Sciences National Energy Research Scientific Computing Center The Minerals, Metals & Materials Society U.S. Department of Energy Advanced Materials Group In The News PSD Directorate › MST Division › Materials Theory Group The Materials Theory Group (MTG) of the Materials Science and Technology

91

NREL: Energy Sciences - Chemical and Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center is led by Acting Director Jao van de Lagemaat. The Center...

92

Monte Carlo Study of the Spin Transport in Magnetic Materials , K. Akablia,b  

E-Print Network [OSTI]

Monte Carlo Study of the Spin Transport in Magnetic Materials Y. Magnina , K. Akablia,b , H. T of Natural Science and Technology, Okayama University 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.. Abstract The resistivity in magnetic materials has been theoretically shown to depend on the spin

93

Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS  

SciTech Connect (OSTI)

This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

Charles M. Falco

2012-09-13T23:59:59.000Z

94

Materials Science and Engineering Program Objectives  

E-Print Network [OSTI]

necessary to understand the impact of engineering solutions in a global, economic, environmentalMaterials Science and Engineering Program Objectives Within the scope of the MSE mission, the objectives of the Materials Engineering Program are to produce graduates who: A. practice materials

Lin, Zhiqun

95

Journal of Magnetism and Magnetic Materials 290291 (2005) 836838 Dynamic response limits of an elastic magnet  

E-Print Network [OSTI]

on the elastomagnetic coupling but also on the interaction among the microparticles magnetic moments depending as for possible applications [1,2]. When the magnetic particles are permanently magnetized and the matrix material. Bar shaped samples have been produced with the permanent magnetic moments preferentially oriented

Franzese, Giancarlo

96

Chemical and Materials Science (XSD) | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Materials Science (X-ray Science Division) Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for four experiment stations at sector 12 including: three undulator stations (12-ID-B, -C, and -D), and a spectroscopy and scattering bending magnet beamline (12-BM), and USAXS at 15-ID. As part of the APS Strategic Plan, canted undulators have been installed on 12-ID and 12-ID-B has become a full-time dedicated SAXS beamline and 12-ID-C and 12-ID-D are shared between TRSAXS, ASAXS, and surface scattering. Time-resolved and anomalous SAXS experiments on photosystems, biopolymers, polymers, ceramics, and catalytic systems are some of the focus areas for 12-ID-B and -C. At 12-ID-D surface scattering are used to study MOCVD growth, ferroelectrics, liquid solid interfaces and

97

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

..........................................................................................................................................2! 1.1 SAFETY CULTURE .......................................................4! 3. SAFETY RESPONSIBILITY, AUTHORITY, ACCOUNTABILITY AND A JUST CULTURE.........5! 3Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by

98

SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ATOMIC, MOLECULAR AND MATERIALS SCIENCE A semiempirical scaling law for target K x-ray production in heavy ion collisions... IV-1 R. L. Watson, Y. Peng, V. Horvat, and A....

99

The Physics of Ultrahigh-Density Magnetic Recording Series in Surface Sciences, 41)  

E-Print Network [OSTI]

1 The Physics of Ultrahigh-Density Magnetic Recording (Springer Series in Surface Sciences, 41. #550, Pittsburgh, PA 15203 + Materials Science and Engineering Department and Data Storage Systems an overview of the effects of various microstructural features on the resulting magnetic properties

Laughlin, David E.

100

Controlled interface profile in SmCo/Fe exchange-spring magnets Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439  

E-Print Network [OSTI]

-spring permanent magnets enhances the exchange coupling effectiveness without modifying the local composition are complementary or even mutually exclusive. Exchange-spring nanocomposite magnets1,2 consist of exchange coupled of the exchange-spring magnets. For example, interfacial condi- tions influence the exchange coupling

Liu, J. Ping

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Diamond Beamline I16 (Materials and Magnetism)  

SciTech Connect (OSTI)

We describe the key features and performance specifications of a facility for high-resolution single-crystal x-ray diffraction at Diamond Light Source. The scientific emphasis of the beamline is materials- and x-ray-physics, including resonant and magnetic scattering. We highlight some of the more novel aspects of the beamline design.

Collins, S. P.; Bombardi, A.; Marshall, A. R.; Williams, J. H.; Barlow, G.; Day, A. G.; Pearson, M. R.; Woolliscroft, R. J.; Walton, R. D.; Beutier, G.; Nisbet, G. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom)

2010-06-23T23:59:59.000Z

102

Sandia National Laboratories: materials science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of microsystems-enabled PV (MEPV) technology and ... Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating...

103

Center for Nanophase Materials Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the...

104

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

105

Other: Advancing Materials Science using Neutrons at Oak Ridge...  

Office of Scientific and Technical Information (OSTI)

Advancing Materials Science using Neutrons at Oak Ridge National Laboratory Citation Details Title: Advancing Materials Science using Neutrons at Oak Ridge National Laboratory...

106

Chemistry and Material Sciences Applications Training at NERSC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June 26, 2012 Jack Zhengji NERSC Training Event 09:00 - 12:00 PST June 26, 2012...

107

Chemistry and Material Sciences Applications Training at NERSC...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 or 510-486-8611 Home For Users Training & Tutorials Training Events Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications...

108

Materials science aspects of coal  

Science Journals Connector (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber fossilized organic matter used for centuries for ornamentation.

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

109

Field of Expertise Materials Science  

E-Print Network [OSTI]

structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

110

Materials Highlights | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials SHARE Materials Highlights 1-7 of 7 Results Neutron scattering characterizes dynamics in polymer family December 01, 2012 - Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells December 01, 2012 - Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in

111

Graphene: from materials science to particle physics  

E-Print Network [OSTI]

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaqun E. Drut; Timo A. Lhde; Eero Tl

2010-11-02T23:59:59.000Z

112

NETL: Onsite Research: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

113

E-Print Network 3.0 - amorphous soft magnetic Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Materials Science and Engineering, Carnegie Mellon University Collection: Materials Science 5 Magnetic Nanocomposite Materials for High Temperature Applications Frank...

114

Materials Science and Technology Teachers Handbook  

SciTech Connect (OSTI)

The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

2008-09-04T23:59:59.000Z

115

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Latest News Latest News Research Highlights Events Calendar Newsletter Archive Research Highlights 2013 A Square Peg in a Round Hole: Nanocrystals Pass Through Tiny Constrictions Unchanged A team of researchers have observed an iron nanocrystal move through a constriction in a carbon nanotube with a smaller diameter than that of the nanocrystal, driven by an electric current. It's the nanoscience equivalent of putting a square peg in a round hole. more» Increasing NMR/MRI Sensitivity through Optical Hyperpolarization in Diamond Dynamic nuclear polarization, which transfers the spin polarization of electrons to nuclei, is routinely applied to enhance the sensitivity of nuclear magnetic resonance. This method is particularly useful when spin hyperpolarization can be produced and controlled optically or electrically.

116

Department of Chemical Engineering & Materials Science College of Engineering  

E-Print Network [OSTI]

Department of Chemical Engineering & Materials Science College of Engineering Michigan State................................................................................. 19 7. Integrity and Safety in Research and Creative Activities of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree

117

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Publications J. R. I. Lee, H. D. Whitley, R. W. Meulenberg, A. Wolcott, J. Z. Zhang, D. Prendergast, D. D. Lovingood, G. F. Strouse, T. Ogitsu, E. Schwegler, L. J. Terminello and T. van Buuren. Ligand-Mediated Modification of the Electronic Structure of CdSe Quantum Dots. Nano Letters 12, 2763 (2012). abstract » B. Zamft, L. Bintu, T. Ishibashi and C. Bustamante. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proceedings of the National Academy of Sciences 109, 8948 (2012). abstract » W. Morris, B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart and O. M. Yaghi. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorganic chemistry 51, 6443 (2012). abstract »

118

Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Condensed Matter and Materials Physics Condensed Matter and Materials Physics Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Condensed Matter and Materials Physics Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported to understand, design, and control materials properties and function. These goals are accomplished through studies of the relationship of materials structures to their electrical, optical, magnetic, surface reactivity, and mechanical properties and of the way in

119

Magnetism in Non-Traditional Materials  

SciTech Connect (OSTI)

We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host

Menon, Madhu

2013-09-17T23:59:59.000Z

120

Materials Sciences programs, Fiscal year 1993  

SciTech Connect (OSTI)

This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

NONE

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

REACT: Alternatives to Critical Materials in Magnets  

SciTech Connect (OSTI)

REACT Project: The 14 projects that comprise ARPA-Es REACT Project, short for Rare Earth Alternatives in Critical Technologies, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

None

2012-01-01T23:59:59.000Z

122

Dynamic Glazing from a Material Science Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dynamic Glazing from a Material Science Perspective Dynamic Glazing from a Material Science Perspective Speaker(s): Sunnie Lim Date: February 16, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Advanced window technology has been identified as a component which can greatly reduce the energy consumption of the building envelope. The next generation of advanced windows will involve a "smart-coating" technology where the optical and solar properties can be dynamically controlled. The performance of such coating is ultimately linked to its materials properties such as chemical composition and microstructure. These properties are directly influenced by the deposition process conditions. A promising dynamic windows technology is based upon the electrochromism process. An electrochromic window system consists of a sandwich of

123

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3Lashkaryov Institute for Semiconductor Physics, National Academy of Science of Ukraine; 4Department of Materials Science and Engineering, Pennsylvania State University...

124

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ridge, TN, 37831 2 Institute of Semiconductor Physics, National Academy of Science of Ukraine,41, pr. Nauki, 03028 Kiev, Ukraine 3 Institute for Problems of Materials Science,...

125

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CST CST For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Capabilities Current Research Materials Our People Group Leader, Staff Members Find People Fact Sheet Group Poster Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Corrosion Science and Technology Group Corrosion Kinetics in simulated high-temperature/high-pressure environments

126

Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering  

E-Print Network [OSTI]

Minor Form Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering College of Engineering San José State University Name_______________________________________ Requirements for the Minor in Materials Science and Engineering: · 12 units of approved academic work

Gleixner, Stacy

127

Nuclear Magnetic Resonance Studies of Macroscopic Morphology and Dynamics  

E-Print Network [OSTI]

Applications in Materials Magnetic Science, Agriculture andApplications in Materials Magnetic Science, Agriculture andMagnetic Resonance Studies of Macroscopic Morphology and Dynamics Geoffrey Alden Barrali Department of Chemistry University of California, Berkeley and Materials Sciences

Barrall, G.A.

2010-01-01T23:59:59.000Z

128

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

matter physicist who investigates magnetism of nanostructured objects including magnetic nanoparticles, biomolecules and biologically inspired materials. In her own words I...

129

Polymer/Elastomer and Composite Material Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

/ Elastomer and / Elastomer and Composite Material Science KEVIN L. SIMMONS Pacific Northwest National Laboratory, Richland, WA DOE Headquarters, Forrestal Bldg. October 17-18, 2012 January 17, 2013 Kevin.simmons@pnnl.gov 1 Outline Hydrogen production, transmission, distribution, delivery system Common themes in the hydrogen system Automotive vs infrastructure Hydrogen use conditions Polymer/elastomer and composites compatibility? Common materials in BOP components, hoses, and liners Common materials in composite tank and piping Material issues Polymers/Elastomers Composites Questions 2 Main Points to Remember 1) Polymers are extensively used in hydrogen and fuel cell applications 2) Hydrogen impact on polymers is not well understood 3) Next steps 3 4 Hydrogen Production Systems

130

Materials sciences programs: Fiscal year 1995  

SciTech Connect (OSTI)

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1996-05-01T23:59:59.000Z

131

XG Sciences, ORNL partner on titanium-graphene composite materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

XG Sciences, ORNL partner on titaniumgraphene composite materials January 01, 2013 Titaniumgraphene composite specimens prepared for flash thermal diffusivity measurement....

132

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Nanophase Materials Sciences Oak Ridge National Laboratory is a collaborative nanoscience user research facility for the synthesis, characterization, theorymodeling...

133

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science  

E-Print Network [OSTI]

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science ...........................................................................................................................................4 Chemistry & Biochemistry Undergraduate Office..............................................................................................6 Majors in Chemistry & Biochemistry

Levine, Alex J.

134

Chemistry and materials science research report  

SciTech Connect (OSTI)

The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

Not Available

1990-05-31T23:59:59.000Z

135

Thermal Stability of MnBi Magnetic Materials. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MnBi attracts great attention in recent years for its great potential as permanent magnet materials. It is unique because its coercivity increases with increasing temperature,...

136

LANL: Facility Focus, MST-6 Materials Surface Science Investigations Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

07-018 Spring 2007 07-018 Spring 2007 T he MST-6 Materials Surface Science Investigations Laboratory is home to a one-of-a-kind integrated instrument for surface science and materials research, allowing scientists at Los Alamos National Laboratory the unique opportunity to perform coordinated research using ultra-high vacuum surface measurements, in situ reactions, and materials synthesis tools. Housed in the Materials Science Laboratory, the surface science instrument features an ultra-clean integrated system for surface analysis and in situ surface modification, thin film deposition, and surface gas reactions. This integrated system is used for analytical surface science; materials electronic

137

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to July 2004. Role Graduate research assistant and associate postdoc, Condensed Matter Science group in Tallahassee. Current work Investigating the electronic and magnetic...

138

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Connect with PJG Connect with PJG For the Public Awards & Honors R&D100 Awards R&D100 Award Posters For Researchers Profiles For Industry Research Thrust Areas Advanced Alloys Advanced Steels Amorphous Bulk Metallic Glasses Nano Crystalline Composites Ni-Based Alloys Ti Alloys Advanced Processing Additive Manufacturing Electronic Packaging Gelcasting Infrared/Photonic Processing Laser Interference Patterning Magnetic Field Processing Powder Metallurgy Pulse Thermal-Processing (PTP) Ceramics Ceramics Conventional Metals Processing Casting Extrusion Forging Lightweight Metals Aluminum Magnesium Titanium Modeling Materials Behavior Under Severe Environments Microstructure Modeling During Phase Transformations Process Modeling and Simulation: Energy Transport Sensors and Data Acquisition Techniques

139

Magnet Exploration: Pre and Post Materials for Classroom Visit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . . . . . Contact us 3 5 7 8 9 11 12 13 14 3 What is the NHMFL? * The National High Magnetic Field Laboratory is a working science research laboratory utilizing...

140

Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science newsroomassetsimagesscience-icon.png Science Cutting edge, multidisciplinary national-security science. Health Space Computing Energy Earth Materials Science...

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TFN TFN For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Core Compentencies Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Thin Films and Nanostructures Group Complex oxide thin films and heterostructures are important for not only fundamental physics, but also a wide range of exciting opportunities in

142

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPNM SPNM For the Public Awards Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Capabilities Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive | Honors and Awards Archive Lynn Boatner, Joanne Ramey, Hu Longmire, research featured in the 2013 Allied High Tech Products, Inc. Calendar in the form of a color micrograph for the month of March, 2013.

143

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ABD ABD For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Research Projects Our People Group Leader, Staff Members, Facilities Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Alloy Behavior and Design Group The principal technical contact for discussing potential projects in the Alloy Behavior and Design Group is Dr. Easo P. George, Group Leader.

144

Materials science: The pull of stronger magnets  

Science Journals Connector (OSTI)

... in the 1990s. The limit has hampered efforts to make high-tech products such as electric cars more efficient. And in the past two years, the cost of the rare-earth ... . And many devices that are part of the green economy require substantial amounts: an electric car carries a few kilograms of rare-earth elements, and a 3-megawatt wind turbine ...

Nicola Jones

2011-04-06T23:59:59.000Z

145

NETL Earns Carnegie Science Awards for Advanced Materials, Corporate  

Broader source: Energy.gov (indexed) [DOE]

Earns Carnegie Science Awards for Advanced Materials, Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation March 5, 2013 - 9:16am Addthis WASHINGTON, D.C. - For its leadership and innovation in science and technology, the National Energy Technology Laboratory has earned two Carnegie Science Awards from the Carnegie Science Center. NETL representatives will pick up the Advanced Materials Award and the Corporate Innovation Award at the 17th annual award ceremony to be held May 3, 2013, at Carnegie Music Hall in Pittsburgh. The Carnegie Science Center established the Carnegie Science Awards program in 1997 "to recognize and promote innovation in science and technology across western Pennsylvania." The awards not only identify the innovators

146

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, Name ID# Date  

E-Print Network [OSTI]

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, 2014-2015 Name ID Intro to Sociology 3 DLS Social Sciences course in a second field 3 CID HLTHST 382 Research Methods Pharmacology and Contrast Medias RADSCI 430 Comparative Sectional Imaging RADSCI 440 Principles of Magnetic

Barrash, Warren

147

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, Name ID# Date  

E-Print Network [OSTI]

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, 2012-2013 Name ID Intro to Sociology 3 DLS Social Sciences course in a second field 3 CID HLTHST 382 Research Methods Pharmacology and Contrast Medias RADSCI 430 Comparative Sectional Imaging RADSCI 440 Principles of Magnetic

Barrash, Warren

148

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, Name ID# Date  

E-Print Network [OSTI]

Bachelor of Science, Radiologic Sciences, Magnetic Resonance Imaging Emphasis, 2013-2014 Name ID Intro to Sociology 3 DLS Social Sciences course in a second field 3 CID HLTHST 382 Research Methods Pharmacology and Contrast Medias RADSCI 430 Comparative Sectional Imaging RADSCI 440 Principles of Magnetic

Barrash, Warren

149

Materials Science Division Project Safety Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

150

Magnetic refrigeration apparatus with belt of ferro or paramagnetic material  

DOE Patents [OSTI]

A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

1986-04-03T23:59:59.000Z

151

Science Drivers and Technical Challenges for Advanced Magnetic Resonance  

SciTech Connect (OSTI)

This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

2013-03-07T23:59:59.000Z

152

National High Magnetic Field Laboratory - Magnets and Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

W.D. and Weijers, H.W., Helium gas bubble trapped in liquid helium in high magnetic field, Appl. Phys. Lett., 104, 133511 (2014) read online 2 Bai, H.; Marshall, W.S.; Bird,...

153

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

most recent user project involved the synthesis of partially deuterated asymmetric polyethylene stars for Michaela Zamponi from Juelich Centre for Neutron Science. These materials...

154

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSK, BR) and the Scientific User Facilities Division (XGZ, EAK, APL) and the Division of Materials Sciences and Engineering (DMN), U.S. Department of Energy. Citation for...

155

Center for Nanophase Materials Sciences (CNMS) - About CNMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Sciences (CNMS) at Oak Ridge National Laboratory (ORNL) is one of five nanoscience research centers (NSRCs) funded by the U.S. Department of Energy (DOE) Scientific...

156

Iver Anderson, Division of Materials Sciences and Engineering...  

Broader source: Energy.gov (indexed) [DOE]

and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver Anderson, Division of Materials Sciences and...

157

The Materials Science of Titanium Dioxide Memristors  

E-Print Network [OSTI]

unipolar resistance switching, Advanced Materials, vol. 20,A variety of resistance switching materials could be used3 for resistance-change memory, Advanced Materials, vol.

Pickett, Matthew

2010-01-01T23:59:59.000Z

158

Nonlinear Vibration Energy Harvesting with High-Permeability Magnetic Materials  

Science Journals Connector (OSTI)

In this chapter, we introduce the recent demonstrations of high energy density nonlinear vibration energy harvesting with high-permeability magnetic materials, which show great promise for compact and wideband vi...

Xing Xing; Nian X. Sun

2013-01-01T23:59:59.000Z

159

Exploring nanoscale magnetism in advanced materials with polarized X-rays  

E-Print Network [OSTI]

Stoehr and H.C. Siegmann, Magnetism, Springer (2006) [93]Exploring nanoscale magnetism in advanced materials withABSTRACT Nanoscale magnetism is of paramount scientific

Fischer, Peter

2012-01-01T23:59:59.000Z

160

Materials and Chemical Sciences Division annual report 1989  

SciTech Connect (OSTI)

This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

Not Available

1990-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Conference on Advances in Materials Science - Presentations | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

162

Conference on Advances in Materials Science - Presentations | National  

National Nuclear Security Administration (NNSA)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

163

June 26 Training: Using Chemistry and Material Sciences Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0 Comments) NERSC will present a three-hour training class focussed on Chemistry and Material Sciences applications on Tuesday, June 26, from 9:00 to 12:00 Pacific Time. The first hour of the training is targeted at beginners. We will show you how to get started running material science and chemistry application codes at NERSC. We will demonstrate how to use the preinstalled VASP and Gaussian applications at NERSC efficiently. In the second hour, we will discuss more advanced use cases, such as managing workflows, compiling optimized versions of custom material science and chemistry applications.

164

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).  

SciTech Connect (OSTI)

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

Samara, George A.; Simmons, Jerry A.

2006-07-01T23:59:59.000Z

165

Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)  

Broader source: Energy.gov [DOE]

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

166

National High Magnetic Field Laboratory - Science Council  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organization Arrow Science Council The Science Council was established in 2005 to help set and guide the lab's scientific agenda. Populated by a group of distinguished research...

167

Condensed Matter Physics & Materials Science Department, Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

People People Facilities Publications Presentations Organizational Chart Other Information Basic Energy Sciences Directorate BNL Site Index Can't View PDFs? :: Next CMPMS Seminar There are no seminars scheduled at this time. Advanced Energy Materials Group We study both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies Group Leader: Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov AEM group news: Current research topics include: Superconducting Materials Nano-scale Materials (S. Wong) Applied Superconductivity Thermoelectric Materials

168

Digital lock-in detection of site-specific magnetism in magnetic materials  

DOE Patents [OSTI]

The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

Haskel, Daniel (Naperville, IL); Lang, Jonathan C. (Naperville, IL); Srajer, George (Oak Park, IL)

2008-07-22T23:59:59.000Z

169

Phase change materials: From material science to novel storage devices  

Science Journals Connector (OSTI)

In recent years, non-volatile solid state memories have in many applications replaced magnetic hard disk drives. While the most popular and successful non-volatile memory is the FLASH random access memory, seve...

M. Wuttig; C. Steimer

2007-06-01T23:59:59.000Z

170

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fisk, and my research today continues to be inspired by Zach. Zachs dedication to science and breadth of knowledge are truly inspirational. The Magnet Lab is very much the...

171

Center for Nanophase Materials Sciences (CNMS) - Collaborating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for studies of effects of simulated vehicle exhaust upon structure of catalysts. UHV MOKE, magneto optical Kerr effect (Affiliated with Scanning Probes) magnetic hysteresis...

172

Center for Nanophase Materials Sciences - Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

phenomena in strongly correlated electronic materials, including Mott insulators and high-temperature superconductors. The fundamental understanding of these materials can...

173

SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials Research  

E-Print Network [OSTI]

and colleagues.They initially reported that an iron-based material can conduct electricity without resistance close to conducting electric- ity with zero resistance at room temperature. Such materials wouldSCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials

174

Center for Nanophase Materials Sciences (CNMS) - Policies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policies and Procedures for User Access to the DOE Nanoscale Science Research Centers Peer Review and Advisory Bodies Evaluation Criteria and Process Modes of User Access...

175

Center for Nanophase Materials Sciences (CNMS) - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Minnesota - September 12, 2014 Norman J. Wagner, University of Delaware - April 4, 2014 Dieter Richter, Jlich Centre for Neutron Science, Institute for Complex Systems,...

176

Metallurgy:Metallurgical Science:Materials Science & Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Joining (W&J) Jason Cooley Peering into previously inacessible realms by Diana Del Mauro ADEPS Communications Surrounded by towers of books, boxes of magnets, bottles of...

177

21. Materials and methods are available as supporting material on Science Online.  

E-Print Network [OSTI]

21. Materials and methods are available as supporting material on Science Online. 22. N. Shakhova. Mar. Syst. 66, 227 (2007). 24. All the seawater-dissolved CH4 concentration data are publicly Online Material www.sciencemag.org/cgi/content/full/327/5970/1246/DC1 Materials and Methods SOM Text Figs

Newman, Eric A.

178

2004 research briefs :Materials and Process Sciences Center.  

SciTech Connect (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

179

Chemical & Engineering Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

180

Chemical and Engineering Materials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Materials Science and Engineering at TCCC  

E-Print Network [OSTI]

BILLION A DAY... RESPONSIBLY Technical Community ­ R&D #12;5 · Cold Drink Equipment · Energy efficiency High barrier plastic materials Don't underestimate the mundane. #12;88 Where are materials going

Li, Mo

182

Chemical & Engineering Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

183

DOE fundamentals handbook: Material science. Volume 1  

SciTech Connect (OSTI)

The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

184

Biomolecular Materials | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Biomolecular Materials Biomolecular Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Biomolecular Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research in the discovery, design and synthesis of biomimetic and bioinspired functional materials and complex structures, and materials aspects of energy conversion processes based on principles and concepts of biology. The major program emphasis is the creation of robust, scalable, energy-relevant materials and systems with

185

The Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical  

E-Print Network [OSTI]

and exacting process and the pharmaceutical industry strives to increase efficiency and productivityThe Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical Materials Science #12;The Pfizer Institute for Pharmaceutical Materials Science Modelling and Experimental

Lasenby, Joan

186

3.012 Fundamentals of Materials Science, Fall 2003  

E-Print Network [OSTI]

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and ...

Marzari, Nicola

187

Applications of Secondary Ion Mass Spectrometry (SIMS) in Materials Science  

Science Journals Connector (OSTI)

Secondary Ion Mass Spectrometry (SIMS) is a mature surface analysis technique with ... Materials Science. In this review article the SIMS process is described, the fundamental SIMS equations are derived and the m...

D. S. McPhail

2006-02-01T23:59:59.000Z

188

DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science...  

Broader source: Energy.gov (indexed) [DOE]

NIST Joint Workshop on Combinatorial Materials Science for Applications in Energy The Hydrogen Storage Subprogram of the U.S. Department of Energy co-hosted with the NIST...

189

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

190

Curriculum vitae Andr Schleife Department of Materials Science and Engineering  

E-Print Network [OSTI]

Andr� Schleife 07/2012: Physical and Life Sciences Directorate Poster Award 10/2010: "Young ScientistCurriculum vitae Andr� Schleife Department of Materials Science and Engineering University://schleife.matse.illinois.edu Education 10/2006 � 06/2010: Ph.D. student in the group of Prof. Dr. Friedhelm Bechstedt, Friedrich

Schleife, André

191

The Center for Interface Science: Solar Electric Materials  

E-Print Network [OSTI]

The Center for Interface Science: Solar Electric Materials Chemistry and Biochemistry alumni, on page 6, is written by Dr. Neal Armstrong, Director of the UA Center for Interface Science: Solar | teaches chemistry as a part-time in- structor at Central New Mexico Community College. Anne Simon | Ph

Ziurys, Lucy M.

192

National High Magnetic Field Laboratory - Basic Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fruits of Faraday's discovery of electromagnetic induction. A more recent example is magnetic resonance imaging (MRI), which originated in basic research that started in the...

193

EMSL: Science: Energy Materials and Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

194

Center for Nanophase Materials Sciences - Newsletter January...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the cleanroom, advanced optical profilometry. There were 166 proposals reviewed for the 2011A...

195

Chemical and Engineering Materials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

196

Center for Nanophase Materials Sciences (CNMS) - Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that have hindered the scalable growth and pattering of such materials for optoelectronic and energy related applications. "Digital Transfer Growth of Patterned 2D Metal...

197

Materials Science and Engineering Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems. R&D 070, November 2011 Research facilities include the Severe Environment Corrosion Erosion Research Facility (SECERF) for assessing materials performance in a variety...

198

Sandia National Laboratories: Research: Materials Science: About...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our products will perform in demanding missions over time. We must understand the fundamentals of the materials involved - over time and in demanding environments....

199

A Simple Apparatus for the Direct Measurement of Magnetic Forces and Magnetic Properties of Materials  

E-Print Network [OSTI]

In this paper, we describe a simple apparatus consisting of a scale, capable of a one milligram resolution, and a commonly obtainable magnet to measure magnetic forces. This simple apparatus is capable of measuring magnetic properties of materials in either a research or an instructional laboratory. We illustrate the capability of this apparatus by the measurement of the force of iron samples exerted on the magnet, the force of a paramagnetic sample, that by a current carrying wire, and the force of a high temperature superconductor.

Makkinje, Jan A

2014-01-01T23:59:59.000Z

200

E-Print Network 3.0 - alloying materials science Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials science Search Powered by Explorit Topic List Advanced Search Sample search results for: alloying materials science Page: << < 1 2 3 4 5 > >> 1 JOURNAL DE PHYSIQUE IV...

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

E-Print Network 3.0 - adsorption material science Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

material science Search Powered by Explorit Topic List Advanced Search Sample search results for: adsorption material science Page: << < 1 2 3 4 5 > >> 1 Modeling Thermodynamics...

202

E-Print Network 3.0 - applied materials science Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials science Search Powered by Explorit Topic List Advanced Search Sample search results for: applied materials science Page: << < 1 2 3 4 5 > >> 1 Apply today for the...

203

Thermal stability of MnBi magnetic materials  

SciTech Connect (OSTI)

MnBi has attracted much attention in recent years due to its potential as a rare-earth-free permanent magnet material. It is unique because its coercivity increases with increasing temperature, which makes it a good hard phase material for exchange coupling nanocomposite magnets. MnBi phase is difficult to obtain, partly because the reaction between Mn and Bi is peritectic, and partly because Mn reacts readily with oxygen. MnO formation is irreversible and harmful to magnet performance. In this paper, we report our efforts toward developing MnBi permanent magnets. To date, high purity MnBi (>90%) can be routinely produced in large quantities. The produced powder exhibits 74:6 emu g1 saturation magnetization at room temperature with 9 T applied field. After proper alignment, the maximum energy product (BH) max of the powder reached 11.9 MGOe, and that of the sintered bulk magnet reached 7.8 MGOe at room temperature. A comprehensive study of thermal stability shows that MnBi powder is stable up to 473 K in air.

Cui, Jinfang [Pacific Northwest National Laboratory; Choi, J. P. [Pacific Northwest National Laboratory; Li, G. [Pacific Northwest National Laboratory; Polikarpov, E. [Pacific Northwest National Laboratory; Darsell, J. [Pacific Northwest National Laboratory; Overman, N. [Pacific Northwest National Laboratory; Olszta, M. [Pacific Northwest National Laboratory; Schreiber, D. [Pacific Northwest National Laboratory; Bowden, M. [Environmental Molecular Sciences Laboratory; Droubay, T. [Pacific Northwest National Laboratory; Kramer, Matthew J. [Ames Laboratory; Zarkevich, Nikolay A. [Ames Laboratory; Wang, L L. [Ames Laboratory; Johnson, Duane D. [Ames Laboratory; Marinescu, M. [Electron Energy Corporation; Takeuchi, I. [University of Maryland; Huang, Q. Z. [National Institute of Standards and Technology; Wu, H. [University of Maryland; Reeve, H. [United Technologies Research Center; Vuong, N. V. [University of Texas; Liu, J P. [University of Texas

2014-01-27T23:59:59.000Z

204

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FRM FRM For the Public Awards and Honors Highlights Publications U.S. Program Planning Visiting ORNL For Researchers Profiles Program Manager Program Management ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles Accessing LAMDA Facility Our People Program Manager, Program Management, Facilities Find People ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles

205

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

573 Solar Energy Systems MS 779/ME 779 Solid State Ionics and Electrochemistry D. Nanomaterials MS 530 Introduction to Solid State Physics Course/Semester/Grade ______________________________ * Both courses listed Characterization of Materials MS 784 Topics in Materials Science ME 502 Intellectual Assets: Creation, Protection

Lin, Xi

206

Center for Nanophase Materials Sciences - Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Highlights Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-Intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H....

207

Polymer/Elastomer and Composite Material Science  

Broader source: Energy.gov [DOE]

Presentation by Kevin Simmons, Pacific Northwest National Laboratory, at the U.S. Department of Energy's Polymer and Composite Materials Meeting, held October 17-18, 2012, in Washington, D.C.

208

BACHELOR OF MATERIALS SCIENCE AND ENGINEERING  

E-Print Network [OSTI]

; strong, light-weight alloys and improved battery materials increase the energy efficiency of cars; polymeric contact lenses are available as an alternative to traditional eyewear; ceramic space shuttle tiles

Thomas, David D.

209

The New Materials Science Beamline HARWI-II at DESY  

SciTech Connect (OSTI)

In autumn 2005, the GKSS-Research Center Geesthacht in cooperation with Deutsches Elektronen-Synchrotron DESY, Hamburg, started operation of the new synchrotron radiation beamline HARWI-II. The beamline is specialized for performing materials science experiments using hard X-rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate, the texture of cold extruded Al90-Cu10 composites, and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI-II, the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Beckmann, Felix; Dose, Thomas; Lippmann, Thomas; Lottermoser, Lars; Martins, Rene-V.; Schreyer, Andreas [GKSS-Research Center Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

210

The New Materials Science Beamline HARWI?II at DESY  

Science Journals Connector (OSTI)

In autumn 2005 the GKSS?Research Center Geesthacht in cooperation with Deutsches Elektronen?Synchrotron DESY Hamburg started operation of the new synchrotron radiation beamline HARWI?II. The beamline is specialized for performing materials science experiments using hard X?rays. First experiments were successfully performed studying the residual strain in a VPPA welded Al alloy plate the texture of cold extruded Al90?Cu10 composites and the 3 dimensional material flow of friction steer welds by micro tomography. At the new beamline HARWI?II the GKSS now has direct access for using synchrotron radiation for materials science experiments.

Felix Beckmann; Thomas Dose; Thomas Lippmann; Lars Lottermoser; Rene?V. Martins; Andreas Schreyer

2007-01-01T23:59:59.000Z

211

Center for Nanophase Materials Sciences (CNMS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

Science User Facilities Science User Facilities Search Go Home About Advisory Committee CNMS Fact Sheet CNMS Organizational Chart Research Themes Publications Journal Cover Gallery Research Highlights Related ORNL User Facilities User Program Becoming A User Acknowledgement Guidelines CNMS Capabilities Active Projects User Group Data Management Policy Working at CNMS Jobs ES&H Obtaining Entry Hours of Operation Local Information News & Events News Events CNMS User Newsletters People Contact Us Visit us on Wikipedia. Visit us on FaceBook. Visit us on YouTube. Upcoming Events and Latest News Call For Proposals - Next cycle is Spring 2014 Neutrons and Nano Workshops and User Meetings - TALKS Postdoctoral Opportunities CNMS Discovery Seminars Opening the Eye-Popping Possibilities of the Smallest Scales

212

Fusion power: a challenge for materials science  

Science Journals Connector (OSTI)

...schematic representation of a fusion power plant is shown in figure-1...the harshest environments in fusion power plants are those that...broadly classified into three types. The conditions experienced...materials The first wall of a fusion power plant must contain the...

2010-01-01T23:59:59.000Z

213

"The Future of Materials Science and Engineering  

E-Print Network [OSTI]

with increased wear characteristics · Additive Manufacturing Processing speed, material strength, verification&D is limited and traditionally provided by device manufacturers · Technology adapted from other industries tools Opportunities #12;· Manufacturing Time and Process Step Reduction Patient digitizer to definitive

Li, Mo

214

Nanomaterials for Energy and Electronics Materials Science  

E-Print Network [OSTI]

crystalline silicon solar cells suffer from both high materials costs and energy-intensive production-sensitized solar cells (DSCs) based on oxide semiconductors and organic dyes have recently emerged as a promising Synthesis of ZnO Aggregates and Their Application in Dye-sensitized Solar Cells Nanomaterials for Energy

Cao, Guozhong

215

Diamond: glittering prize for materials science  

Science Journals Connector (OSTI)

...light, airy materials. The most airy aerogel prepared to date consists of 99.8...and windows. Halfan inch ofa silica aerogel can do what it takes 31/2 inches ofa...fast-moving particles. The prepara-tion of an aerogel begins with the preparation of a gelatinous...

RL Guyer; DE Koshland Jr

1990-12-21T23:59:59.000Z

216

Faculty Search Materials Science and Engineering  

E-Print Network [OSTI]

/ sensors, nuclear security, and/or nuclear medical applications are especially encouraged to apply. The MSE candidate will be expected to conduct scholarly research in an area of nuclear materials as evidenced department participates in the Nuclear Engineering Program at Virginia Tech (http://www.nuclear

Buehrer, R. Michael

217

How Does the Distribution of External Magnetic Lines of Force Influence the Growth of Ferromagnetic Material?  

Science Journals Connector (OSTI)

As one of the most important ferromagnetic materials, nickel shows applications in many fields including catalysis,(15) magnet sensors,(16) magnetic recording media,(17) conduction materials,(18) and ferrofluids. ... When an external magnetic field is applied, the directions of the self-generated magnetic fields could be adjusted to be the same by the external magnetic field, conducing one-dimensional structures along the external magnetic lines of force. ... Since these quasi-one-dimensional magnets are parallel to each other, the interaction caused by the self-generated magnetic fields between the quasi-one-dimensional magnets which are aligned in different magnetic lines of force could be ignored. ...

Rui-Ping Ji; Ji-Sen Jiang; Ming Hu

2010-06-28T23:59:59.000Z

218

Center for Nanophase Materials Sciences (CNMS) - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 PUBLICATIONS 9 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Alonzo, J.; Mays, J. W.; Kilbey II, S. M., "Forces of Interaction Between Surfaces Bearing Looped Polymer Brushes in Good Solvent," Soft Matter 5 (9), 1897-1904 (2009). Arenholz, E.; van der Laan, G.; Yang, F.; Kemik, N.; Biegalski, M. D.; Christen, H. M.; Takamura, Y, "Magnetic Structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3," Appl. Phys. Lett. 94 (7), 072503 (2009). Bai, X.; Sandukas, S.; Appleford, M. R.; Ong, J. L.; Rabiei, A., "Deposition and Investigation of Functionality Graded Calcium Phosphase Coatings in Titanium," Acta Biomater. 5, 3563-3572 (2009).

219

Center for Nanophase Materials Sciences - Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summer Newsletter 2010 What's New @ CNMS Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) is an analytical method to determine the structure of particle systems in terms of averaged particle sizes or shapes. The materials can be solid or liquid and they can contain solid, liquid or gaseous domains of the same or another material. The method is accurate, non-destructive and often requires only a minimum of sample preparation. The concentration ranges between 0.1 wt.% and 99.9 wt.%. The particle or structure sizes that can be resolved range from 1 to 50 nm in a typical set-up but can be extended to larger angles than between the typical 0.1° and 10° of SAXS, through simultaneous collection of Wide-Angle X-Ray Scattering (WAXS) data. The CNMS has recently added an

220

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents [OSTI]

An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

2010-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Condensed Matter Physics & Materials Science Department, Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science, Superconductivity & Energy News Materials Science, Superconductivity & Energy News This page displays news items tagged as "materials science," "superconductivity," and "energy." For a complete index of all topics, click here. Jon Rameau receives The Julian Baumert Thesis Award for his work carried out at NSLS. Htay Hlaing receives the 2010 Di Tian Award from the Department of Physics at Stony Brook University. Adrian Gozar receives one of sixty nine DOE Early Career Scientists awards selected from a pool of 1750 applicants. Enlisting Cells' Protein Recycling Machinery to Regulate Plant Products December 20, 2013 Scientists have developed a new set of molecular tools for controlling the production of plant compounds important for flavors, human health, and biofuels.

222

Training April 5 - Material Science and Chemistry Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 5 April 5 Training April 5 - Material Science and Chemistry Applications March 9, 2011 by Francesca Verdier Training on "Using Chemistry and Material Sciences Applications" will be held April 5, presented simultaneously on the web and at NERSC. See Chemistry and Material Sciences Applications. User Announcements Email announcement archive Subscribe via RSS Subscribe Browse by Date January 2014 December 2013 November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 October 2012 August 2012 June 2012 May 2012 April 2012 March 2012 February 2012 January 2012 December 2011 November 2011 October 2011 September 2011 August 2011 July 2011 June 2011 May 2011 April 2011 March 2011 February 2011

223

Center for Nanophase Materials Sciences (CNMS) - Macromolecular  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) Polymer Synthesis The Macromolecular Nanomaterials laboratories include a wide range of polymer synthesis capabilities, with extensive fume hoods (including walk-in hoods for large scale apparatus) and glove boxes for handling sensitive materials. Polymerization Techniques Ionic Polymerizations: World-class expertise in the preparation of well-defined, narrow molecular distribution polymers and copolymers including complex polymer architectures (i.e. block, star, comb, graft and hyperbranched polymers) by anionic and cationic polymerizations. Controlled Radical Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled

224

National High Magnetic Field Laboratory - Mission  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research to serve an interdisciplinary scientific user community spanning materials science, condensed matter physics, magnet technology, chemistry, and biology. Provide...

225

Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee  

E-Print Network [OSTI]

1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials, Columbia University 2 Plasma Science and Fusion Center, MIT December 19, 2011 Summary The proposal for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma

226

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network [OSTI]

in Heavy Ion Fusion Science, Magnetic Fusion Energy, andin Heavy Ion Fusion Science, Magnetic Fusion Energy, and

Kwan, J.W.

2008-01-01T23:59:59.000Z

227

Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material  

Science Journals Connector (OSTI)

Abstract In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25mmנ25mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. PbLi enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ?0.28m length in plane perpendicular to the magnetic field and faces two 90 bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2T).

A. Patel; R. Bhattacharyay; P.K. Swain; P. Satyamurthy; S. Sahu; E. Rajendrakumar; S. Ivanov; A. Shishko; E. Platacis; A. Ziks

2014-01-01T23:59:59.000Z

228

Bayer Material Science (TRL 1 2 3 System) - River Devices to...  

Broader source: Energy.gov (indexed) [DOE]

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM) Bayer Material Science (TRL 1 2 3 System) - River Devices to...

229

Research Areas, Condensed Matter Physics & Materials Science Department,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Studies of Nanoscale Structure and Structural Defects in Advanced Materials: The goal of this program is to study property sensitive structural defects in technologically-important materials such as superconductors, magnets, and other functional materials at nanoscale. Advanced quantitative electron microscopy techniques, such as coherent diffraction, atomic imaging, spectroscopy, and phase retrieval methods including electron holography are developed and employed to study material behaviors. Computer simulations and theoretical modeling are carried out to aid the interpretation of experimental data. Electron Spectroscopy Group's primary focus is on the electronic structure and dynamics of condensed matter systems. The group carries out studies on a range materials including strongly correlated systems and thin metallic films. A special emphasis is placed on studies of high-Tc superconductors and related materials.

230

Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation  

E-Print Network [OSTI]

Magnetic structure and hysteresis in hard magnetic nanocrystalline film: Computer simulation Taylor Road, Piscataway, New Jersey 08854 Andrei Kazaryan and Yunzhi Wang Department of Materials Science of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Armen G

Laughlin, David E.

231

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STG STG For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Sponsored Research Programs Our People Contacts by Group Leader, Staff Members Find People Related Cooperative Research and Development Agreement Work for Others Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Scattering and Thermophysics Group The Scattering and Thermophysics Group aims to be a national leader in materials characterization using diffraction and thermophysical property measurement methods. The diffraction portion of the Group utilizes laboratory x-ray, synchrotron x-ray, and neutron diffraction facilties to solve problems from phase stability to residual stress and texture. The thermography and thermophysical properties of the Group has exceptional

232

Materials Science and Technology Division - Physical Sciences Directorate -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PCM PCM For the Public Visiting ORNL For Researchers Profiles Group Leader Program Manager Staff Members Facilities Final Report on Economic Analysis of Deploying Used Batteries in Power Systems Document For Industry Research Catalysis by Design Zeolites Materials for Catalysis Photocatalytic C02 Our People Group Leader, Program Manager, Staff Members, Facilities Find People Programs Thin-Film Rechargeable Lithium, Lithium-Ion, and Li-Free Batteries Program Membrane Separations Research Program Related Programs ORNL Technologies Recent News & Features News Releases Archive | Features Archive Recent Honors & Awards Award Archives Honors & Awards Achives | ORNL Spotlight Archives] Nancy Dudney, was recently elected as a Electrochemical Society Fellow in recognition of her scientific achievements and service to the

233

The Computational Materials and Chemical Sciences Network (CMCSN) | U.S.  

Office of Science (SC) Website

The Computational Materials and Chemical Sciences Network (CMCSN) The Computational Materials and Chemical Sciences Network (CMCSN) Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas The Computational Materials and Chemical Sciences Network (CMCSN) Print Text Size: A A A RSS Feeds FeedbackShare Page The U.S. Department of Energy, Office of Basic Energy Sciences, provides support for Computational Materials and Chemical Sciences Network (CMCSN) projects through the Theoretical Condensed Matter Physics & Theoretical

234

Journal of Magnetism and Magnetic Materials 293 (2005) 578583 Theoretical comparison of magnetic and hydrodynamic  

E-Print Network [OSTI]

?, Mikkel Fougt Hansen, Henrik Bruus MIC--Department of Micro and Nanotechnology, Technical University). #12;inhomogeneous magnetic field created by micro- structures that are magnetized by either electro wish to highlight the importance of hydro- dynamic interactions in connection with bead capturing

235

The Departments of Chemical Engineering, Materials Science and Engineering and  

E-Print Network [OSTI]

setting will be facilitated by McMaster's Engineering Co-op and Career Services (ECCS). Applicants shouldThe Departments of Chemical Engineering, Materials Science and Engineering and Mechanical Engineering offer a program of study to students seeking the degree of Master of Engineering in Manufacturing

Thompson, Michael

236

Mork Family Department of Chemical Engineering & Materials Science  

E-Print Network [OSTI]

by incorporating mod- ern concepts such as nanotechnology and biotechnology into a traditional approach that has, nanotechnology, petroleum engi- neering, polymer/materials science, or envi- ronmental engineering), while of Dentistry) » Edward D. Crandall, M.D. (Hastings Professor of Medicine, Norris Chair of Medicine

Zhou, Chongwu

237

Wood September 28, 2002 DEPARTMENT OF MATERIALS SCIENCE  

E-Print Network [OSTI]

Wood September 28, 2002 1 DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CARNEGIE MELLON: Microstructure-Sensitive Mechanical Properties #12;Wood September 28, 2002 2 Introduction Reading will also have an opportunity to perform similar experiments on various types of wood. These will illustrate

Rollett, Anthony D.

238

A. A. Abrikosov Materials Science Division Argonne National Moratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developments in the Theory of HTSC Developments in the Theory of HTSC A. A. Abrikosov Materials Science Division Argonne National Moratory Argonne, IL 60439 Distribution: 1-2. M. J. Masek 3. B. D. Dunlap 4. G. W. Crabtree 5 . A. A. Abrikosov 6 - Editorial Office 7. Authors September, 1994 This work is supported by the Division of Materials Sciences, Office of Basic Energy Sciences of DOE, under contract No. W-31- 109-ENG-38, DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or as sun^^ any legal liabili- ty or responsibility for the accuracy, completenes, or usefulness of any information, appa-

239

Apparatus for magnetic separation of paramagnetic and diamagnetic material  

DOE Patents [OSTI]

The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadropole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin.

Doctor, Richard D. (Glen Ellyn, IL)

1988-01-01T23:59:59.000Z

240

Materials Science and Engineering B 157 (2009) 101104 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

) method [6], calcination process [7], chemical vapor deposition [8], thermal evaporation [1], hydrothermalDirect Materials Science and Engineering B journal homepage: www.elsevier.com/locate/mseb A rapid hydrothermal Court, S111, Lake Mary, FL 32746, USA d Advanced Materials Processing and Analysis Center

Chow, Lee

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

Capone, D.W.; Dunlap, B.D.; Veal, B.W.

1990-07-17T23:59:59.000Z

242

Magnetic preferential orientation of metal oxide superconducting materials  

DOE Patents [OSTI]

A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

Capone, Donald W. (Bolingbrook, IL); Dunlap, Bobby D. (Bolingbrook, IL); Veal, Boyd W. (Downers Grove, IL)

1990-01-01T23:59:59.000Z

243

Development of Superconducting Materials for Use in Magnet Applications: Nb3Sn Flux Pinning and Bi-2212 Magnetic Texturing  

E-Print Network [OSTI]

DEVELOPMENT OF SUPERCONDUCTING MATERIALS FOR USE IN MAGNET APLICATIONS: Nb3Sn FLUX PINING AND Bi-212 MAGNETIC TEXTURING Major: Physics April 2010 Submitted to the Office of Undergraduate Research Texas A&M University... in partial fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR A Senior Scholars Thesis by DAVID GABRIEL RAHMANI DEVELOPMENT OF SUPERCONDUCTING MATERIALS FOR USE IN MAGNET APLICATIONS: Nb3Sn FLUX...

Rahmani, David G.

2010-07-14T23:59:59.000Z

244

JOYCE Y. WONG Departments of Biomedical Engineering and Materials Science & Engineering  

E-Print Network [OSTI]

JOYCE Y. WONG Professor Departments of Biomedical Engineering and Materials Science & Engineering, Departments of Biomedical Engineering & Materials Science & Engineering (2013-) Co-Director, Affinity Research - ) Associate Chair, Graduate Studies, Department of Biomedical Engineering (2006-2010) Associate Director

245

Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering  

E-Print Network [OSTI]

& Engineering Materials for nuclear energy system, fission reactors, nuclear fuels, energy policy, sustainability of nuclear energy. Mark A Eriksson Professor, Physics and Materials Science & Engineering

Wisconsin at Madison, University of

246

Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators  

SciTech Connect (OSTI)

Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

Anne Seifert; Louis Nadelson

2011-06-01T23:59:59.000Z

247

University of Virginia, Dept. of Materials Science and Engineering Topic 8a -FIB  

E-Print Network [OSTI]

;University of Virginia, Dept. of Materials Science and Engineering Dynamic Secondary Ion Mass Spectrometry;University of Virginia, Dept. of Materials Science and Engineering q The focused ion beam (FIB) employsUniversity of Virginia, Dept. of Materials Science and Engineering Topic 8a - FIB q Introduction

Moeck, Peter

248

Argonne CNM: Electronic & Magnetic Materials & Devices Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic & Magnetic Materials & Devices Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450 Custom) Physical vapor deposition (Lesker CMS 18 and PVD 250) Spin coating (Laurell WS-400) Characterization Variable-temperature (VT) scanning tunneling microscope with atomic force microscopy capabilities (Omicron VT-AFM/STM), operates in an ultrahigh vacuum (UHV) environment with a base pressure of < 1E-10 mbar and 55-400 K. Atomic resolution is routinely obtained at room temperature and below. The AFM capabilities support a range of scanning modes. The analysis chamber also houses a LEED/Auger with an attached preparation chamber for sample cleaning and deposition (sputter cleaning, direct current heating, e-beam heating stage, metal deposition, etc.)

249

EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering  

E-Print Network [OSTI]

115 CSE Electrical and Computer Engineering 225 Nuclear Science-8pd / 407 Nuclear Science 9-10pd Engineering 221 MAE-A Nuclear Engineering Sciences 214 Nuclear Science (Next to Journalism Bldg) StudentEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

Schwartz, Eric M.

250

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology  

E-Print Network [OSTI]

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials and spacious clean room laboratories for nanofabrication of devices. Interested candidates are urged to submit. of Micro/Nanometer Sci. & Technology 800 Dongchuan Road, Shanghai, China 200240 e-mail:

Alpay, S. Pamir

251

Spin Magnetic Resonance in Perspectives of Spin Science and Spin Technology Development  

Science Journals Connector (OSTI)

The methods of magnetic resonance are widely used in many fields ... the pages of a specialized journal Applied Magnetic Resonance. This is even more important ... of MR methods in somewhat unusual fields of science

Kev M. Salikhov

2014-09-01T23:59:59.000Z

252

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP  

Science Journals Connector (OSTI)

The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation ... mission provides key wave and very low frequency magnetic field measurements to understand radia...

C. A. Kletzing; W. S. Kurth; M. Acuna; R. J. MacDowall

2014-01-01T23:59:59.000Z

253

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP  

Science Journals Connector (OSTI)

The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation ... mission provides key wave and very low frequency magnetic field measurements to understand radia...

C. A. Kletzing; W. S. Kurth; M. Acuna; R. J. MacDowall

2013-11-01T23:59:59.000Z

254

Microtrap Arrays On Magnetic Film Atom Chips For Quantum Information Science  

Science Journals Connector (OSTI)

We discuss two approaches for developing a quantum information science platform, based on microtrap arrays on a magnetic-film atom chip. One uses Rydberg mediated interactions, the...

Leung, Vanessa; Tauschinsky, Atreju; Van Druten, Klaasjan; Spreeuw, Robert

255

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to create novel synthetic polymers, which are environmentally responsive to various stimuli, such as temperature or pH, in a controlled manner. Understanding the nanoscale conformational changes and phase behavior upon exposure of these polymers to external stimuli is

256

Novel Magnetic Materials Including Organic I S. Shaheen, Chairman Magnetic ordering in M,,ox...,,bpy... system ,,MFe, Co, Ni; oxC2O4  

E-Print Network [OSTI]

Novel Magnetic Materials Including Organic I S. Shaheen, Chairman Magnetic ordering in M of the magnetization have been measured to investigate the magnetic properties of the first oxalate­bpy mixed , in which the magnetic M ions form one-dimensional chains along the a axis. Spontaneous magnetic orderings

Li, Jing

257

Journal of Materials Education Vol. 33 (3-4): 141 -148 (2011) INTEGRATION OF MATERIALS SCIENCE IN THE EDUCATION OF  

E-Print Network [OSTI]

Chemistry, University Siegen, 57068 Siegen, Germany; and Department of Polymer Science and Engineering Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, 3940 North creativity and curiosity for scientific problems are challenged. This ambitious concept that can be conducted

North Texas, University of

258

Soft Matter Group, Condensed Matter Physics & Materials Science Department,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Information (pdf) Research Information (pdf) Publications Seminars Journal Club Staff Information Other Information Basic Energy Sciences Directorate Related Sites BNL Site Index Can't View PDFs? Soft Matter Group Confinement and Template Directed Assembly in Chemical and Biomolecular Materials We use synchrotron x-ray scattering, scanning probe and optical microscopy techniques to study fundamental properties of complex fluids, simple liquids, macromolecular assemblies, polymers, and biomolecular materials under confinement and on templates. The challenges are: To understand liquids under nano-confinement. How templates and confinement can be used to direct the assembly. To understand the fundamental interactions which give rise to similar self-assembly behavior for a wide variety of systems.

259

The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications and  

E-Print Network [OSTI]

The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications Centers of Economic Excellence Act,both of which stipulated that the chaired professor encourage knowledge

Stuart, Steven J.

260

Condensed Matter Physics and Materials Science Department (PM)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Condensed Matter Physics and Materials Science Department (PM) Condensed Matter Physics and Materials Science Department (PM) Last modified 12/7/2012 LastName First MI Bldg Room Ext1 Ext2 Fax E-mail ABEYKOON MILINDA 510B 1-21 2915 3827 2739 aabeykoon@bnl.gov AKHANJEE SHIMUL 510A 2-6 5089 3995 2918 sakhanjee@bnl.gov ARONSON MEIGAN 703 2A 4915 7090 4071 maronson@bnl.gov BERLIJN TOM COS 3995 3995 tberlijn@bnl.gov BILLINGE SIMON 510B 1-29 5661 3827 2739 sb2896@columbia.edu BLUME MARTIN 510A 1-6 3735 3995 2739 blume@bnl.gov BOLLINGER ANTHONY 480 139 2601 7090 4071 abolling@bnl.gov BOZIN EMIL 510B 1-26 4963 3827 2739 bozin@bnl.gov BOZOVIC IVAN 480 126 4973 7090 4071 bozovic@bnl.gov CHECCO ANTONIO 510B 1-20 3319 3827 2739 checco@bnl.gov CHOU CHUNG-PIN 510A 2-12 3784 3995 2918 cpchou@bnl.gov DAI YAOMIN 510B 1-18 3788 3827 2739 ymdai@bnl.gov DAVIS SEAMUS 480 3827 4071 jcdavis@ccmr.cornell.edu and/or sdavis@bnl.gov DEAN

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Magnetic mesoporous material for the sequestration of algae  

DOE Patents [OSTI]

The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

2014-09-09T23:59:59.000Z

262

National Science Bowl® Competition Buzzer Materials List | U.S. DOE Office  

Office of Science (SC) Website

Materials List Materials List National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Academic Question Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List

263

National Science Bowl® Competition Buzzer Materials List | U.S. DOE Office  

Office of Science (SC) Website

Materials List Materials List National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List National Science Bowl® Competition Buzzer Schematic Sample Questions Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Make Your Own National Science Bowl® Competition Buzzer National Science Bowl® Competition Buzzer Materials List Print

264

MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering  

E-Print Network [OSTI]

MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering Chairs Science and Engineering I am very pleased to announce the re-appointment of Professor Jun Nogami as Chair of the Department of Materials Science and Engineering (MSE) for a second five-year term beginning July 1, 2014. Jun

Prodiæ, Aleksandar

265

Magnetic Shape Memory Alloys as smart materials for micro-positioning devices , N. Calchand1  

E-Print Network [OSTI]

Magnetic Shape Memory Alloys as smart materials for micro-positioning devices A. Hubert1 , N reports recent results obtained using a new type of smart material called Magnetic Shape Memory Alloy-mail: arnaud.hubert@femto-st.fr Abstract In the field of microrobotics, actuators based on smart ma- terials

Paris-Sud XI, Université de

266

EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering  

E-Print Network [OSTI]

& Engineering E115 CSE Electrical and Computer Engineering 1084 Weimer Hall 8pd / 407 Nuclear Science 9-10 pd-A Nuclear Engineering Science 214 Nuclear Science (Next to Journalism Bldg) Student Success 210 Weil HallEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

Schwartz, Eric M.

267

Spinning a New Type of Magnetic Field | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spinning a New Type of Magnetic Field Spinning a New Type of Magnetic Field Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » October 2013 Spinning a New Type of Magnetic Field Harnessing the spins of electrons in a new way - enabling efficient magnetic switching and holding promise for spintronic devices. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of John Xiao Schematic of mechanism for generating a magnetic field. The system consists

268

Early NYC High School Physics and Development of the Science Magnet School  

Science Journals Connector (OSTI)

The Bronx High School of Science opened in 1938 and is often considered the premier science magnet school in the country. While Bronx High may be one of the most successful science magnet schools it was not the first such school even in New York City. It owes its existence almost entirely to the development of the science magnet program in an earlier New York City school Stuyvesant High School in Manhattan and in particular to one of its early principals physicist Dr. Ernest R. von Nardroff (18641938).

Walter Hellman

2005-01-01T23:59:59.000Z

269

Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets  

SciTech Connect (OSTI)

REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to todays best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

None

2012-01-01T23:59:59.000Z

270

Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering  

E-Print Network [OSTI]

conditions-- stress, strain rate, gaseous and chemical environments and radiation. Todd R. Allen Professor; nanoelectronics. Paul G. Evans Professor, Materials Science & Eng X-ray diffraction, microscopy, and optics; x. James A. Clum Visiting Professor, Materials Science & Engineering Materials and manufacturing processes

Wisconsin at Madison, University of

271

Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CNMS USER RESEARCH CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature. E.g., homeostasis - regulation of a cell's internal environment to maintain stability and function at the mesoscale (i.e., cell) in the face of an unpredictable environment - is maintained even though there is considerable noise at the nanoscale (protein, RNA, molecular motor). A recent ACS Nano

272

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transient-Mediated fate determination in a transcriptional circuit of HIV Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a novel technique of discovering the details of these interactions through the measurement of the structure of stochastic fluctuations that occur in neighboring nanoscale system components that can be directly imaged. In this work [Nature Genetics, 40(4), 466-470 (2008)], in collaboration with a

273

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Nanowires K. Xiao, M. Yoon, A. J. Rondinone, E. A. Payzant, and D. B. Geohegan Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement Combined experimental and theoretical studies revealed the nucleation and growth mechanisms of M-TCNQF4 crystalline organic nanowires grown on different metals by vapor-solid chemical reaction (VSCR). Real-time x-ray diffraction was used to measure the growth kinetics of the nanowires, and a modified Avrami model of the data showed that growth proceeds via a 1D ion diffusion-controlled reaction at their tips. First principles atomistic calculations were used to understand how charge transfer interactions govern the reactivity of different metals in the growth process through the

274

Optical Science and Engineering Program Center for High Technology Materials  

E-Print Network [OSTI]

& Administration GA Graduate Assistantship HSC Health Sciences Center HVAC Heating, ventilation, and cooling IARPA for Standards and Technology NRL Naval Research Laboratory NSF National Science Foundation NSMS Nanoscience

New Mexico, University of

275

Integrated magnetic resonance imaging methods for speech science and technology  

Science Journals Connector (OSTI)

This presentation introduces our integration of magnetic resonance imaging(MRI) techniques at ATRBrain Activity Imaging Center (Kyoto Japan) toward research into speech science and technology. The first breakthrough in our application of MRI to speech research was the motion imaging of the speechorgans in articulation using a cardiac cine?MRI method. It enables us to acquire information in the time?space domain to reconstruct successive image frames using utterance repetitions synchronized with MRI scans. This cine?technique was further improved for high?quality imaging and expanded into three?dimensional (3D) visualization of articulatory movements. Using this technique we could successfully obtain temporal changes of vocal?tract area function during a Japanese five?vowel sequence. This effort also contributed to developing other techniques to overcome the limitations of MRI such as the post?hoc inclusion of teeth images in 3D volumes or the phonation?synchronized scan for crystal?sharp static imaging. Further a custom high?sensitivity coil was developed to visualize the fine structures of the lip muscles and laryngeal airway. The potentials of new MRI approaches such as ultra?high?resolution imaging with a higher?field scanner or real?time motion imaging during a single utterance will be discussed toward future contributions to speech science and technology.

Shinobu Masaki; Yukiko Nota; Sayoko Takano; Hironori Takemoto; Tatsuya Kitamura; Kiyoshi Honda

2008-01-01T23:59:59.000Z

276

Reversal of patterned Co/Pd multilayers with graded magnetic anisotropy  

E-Print Network [OSTI]

Magnetic Materials Group, Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA Center for Nanoscale Science

2011-01-01T23:59:59.000Z

277

Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97  

SciTech Connect (OSTI)

This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

Newkirk, L.

1997-12-01T23:59:59.000Z

278

Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials  

SciTech Connect (OSTI)

A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.

Johnson, Francis

2014-06-30T23:59:59.000Z

279

E-Print Network 3.0 - applied homogeneous magnetic Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Karsten - Physikalisches Institut, Universitt Bonn Collection: Physics ; Materials Science 6 Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field...

280

DEARING, J. A., AND R. J. FLOWER. The magnetic susceptibility of ...  

Science Journals Connector (OSTI)

Jun 2, 1981 ... The magnetic susceptibility of sedimenting material trapped in ... magnetic susceptibility of ..... the soil and its significance in soil science: A.

2000-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - anomalous magnetic behavior Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Physics, University of Maryland at College Park Collection: Engineering ; Materials Science 3 Probing the magnetic microstructure of an amorphous GdFe system with magnetic...

282

E-Print Network 3.0 - artificial molecular magnets Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ligands. The calculations show that the inherent spin magnetic... for new nanoscale magnetic materials. Single molecular ... Source: Kern, Klaus - Nanoscale Science...

283

Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery  

DOE Patents [OSTI]

A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

Viswanathan, Tito

2014-02-11T23:59:59.000Z

284

UHV-compatible magnetic material for atom optics  

Science Journals Connector (OSTI)

Magnetic videotape is of great interest for trapping and guiding cold atomic vapors, but was hitherto considered unsuitable for manipulating BoseEinstein condensates (BEC) because of the presumed evolution of...

S.A. Hopkins; E.A. Hinds; M.G. Boshier

2001-07-01T23:59:59.000Z

285

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

correlated electron systems is neutron scattering, often in conjunction with applied magnetic fields. In his own words My experience at the Magnet Lab gave me an early...

286

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network [OSTI]

AND NANOSTRUCTURE INFLUENCES ON MECHANICAL PROPERTIES OF THERMOELECTRIC MATERIALS Thermoelectric (TE) materials in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forcesThe Department of Chemical Engineering and Materials Science Michigan State University Ph

287

Effect of Composition and Heat Treatment on MnBi Magnetic Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abstract: The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for its high...

288

3.15 Electrical, Optical & Magnetic Materials and Devices, Fall 2003  

E-Print Network [OSTI]

Explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. Features a device-motivated ...

Ross, Caroline A.

289

p s sapplications and materials science www.pss-a.com  

E-Print Network [OSTI]

- dicted theoretically [11] and observed experimentally us- ing angle-resolved electron energy lossp s sapplications and materials science a status solidi www.pss-a.com physica REPRINT phys. stat s sapplications and materials science a status solidi www.pss-a.com physica Band structure effects on the Be(0001

Pohl, Karsten

290

Journal of Hazardous Materials 194 (2011) 1523 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chromate reduction in FeJournal of Hazardous Materials 194 (2011) 15­23 Contents lists available at ScienceDirect Journal Engineering, University of Leeds, Leeds LS2 9JT, UK d Diamond Light Source, Harwell Science and Innovation

Burke, Ian

291

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Features > Science Starts Here Arrow Science Starts Here: Forest White Forest White Forest White. Name Forest White. Current position Assistant Professor, Massachusetts Institute...

292

National High Magnetic Field Laboratory - Diversity in Science...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Science Resources Learn more about diversity in the sciences by exploring these Web sites and other resources. AAFAWCE Alliance for the Advancement of Florida's Academic Women...

293

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facts & Features > Science Starts Here Arrow Science Starts Here: Vivien Zapf Vivien Zapf Vivien Zapf. Name Vivien Zapf. Age 29. Current position Scientific staff member, Los...

294

ELSEWER Journal of Magnetism and Magnetic Materials 169 (1997) 261-270 Superparamagnetic behavior of Fe,GaAs precipitates in GaAs  

E-Print Network [OSTI]

ELSEWER Journal of Magnetism and Magnetic Materials 169 (1997) 261-270 Superparamagnetic behavior; revised 6 December 1996 Abstract We present magnetization measurements on Fe3GaAs clusters distributed-dependent magnetization well above the blocking temperature indicate a particle size distribution in agreement

Woodall, Jerry M.

295

Physical Behavior of Materials | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physical Behavior of Materials Physical Behavior of Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Physical Behavior of Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports basic research on the behavior of materials in response to external stimuli, such as temperature, electromagnetic fields, chemical environments, and the proximity effects of surfaces and interfaces. Emphasis is on the relationships between performance (such as

296

Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance  

SciTech Connect (OSTI)

Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in ferromagnetic materials of relevance to the Industries of the Future (IOF).

Ludtka, GERALD M.

2005-03-31T23:59:59.000Z

297

From material flow analysis to material flow management Part I: social sciences modeling approaches coupled to MFA  

Science Journals Connector (OSTI)

This paper presents social sciences modeling approaches (SSMA) that have been coupled to material flow analyses in order to support management of material flows. The presented literature review revealed that the large share of these approaches stem from economics, as these models have similar data and modeling structure than the material flow models. The discussed modeling approaches support a better system understanding and allow for estimating the potential effects of economic policies on material flows. However, it has been shown that these approaches lack important aspects of human decision-making and, thus, the designed economic measures might not always lead to the expected improvements of the material system.

Claudia R. Binder

2007-01-01T23:59:59.000Z

298

398 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 3, MARCH 2006 Introducing Dynamic Behavior of Magnetic Materials  

E-Print Network [OSTI]

of Magnetic Materials Into a Model of a Switched Reluctance Motor Drive F. Sixdenier, L. Morel, and J. P, we present the model of an ultrafast switched reluctance motor, in which the control of the power switched reluctance motor (SRM) drive [9], [10] designed by the Labora- toire de genie industriel et

Boyer, Edmond

299

Mesoporous Multifunctional Upconversion Luminescent and Magnetic Nanorattle Materials for Targeted Chemotherapy  

Science Journals Connector (OSTI)

The material emits visible luminescence upon NIR excitation and can be directed by an external magnetic field to a specific target, making it an attractive system for a variety of biological applications. ... (5-10) Along these lines, luminescent and magnetic nanoparticles have been used as biolabeling and contrast agents, and for magnetic resonance imaging (MRI), leading recently to major advances in biological and biomedical imaging. ... Field-dependent magnetization curves of the MUC-F-NR were recorded using a superconducting quantum interference device (SQUID) magnetometer with fields up to 5 T (Figure 2b). ...

Fan Zhang; Gary B. Braun; Alessia Pallaoro; Yichi Zhang; Yifeng Shi; Daxiang Cui; Martin Moskovits; Dongyuan Zhao; Galen D. Stucky

2011-12-01T23:59:59.000Z

300

Long Time Behavior of Magnetic Field in Two Department of Mathematical Sciences, Montana State University  

E-Print Network [OSTI]

Long Time Behavior of Magnetic Field in Two Dimensions I.Klapper Department of Mathematical Sciences, Montana State University Bozeman, MT 59717 Abstract: As noted by Zel'dovich (1957), geometric constraints restrict the behavior of magnetic field in two dimensions. Here, tight long time bounds and decay

Klapper, Isaac

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Center for Nanophase Materials Sciences (CNMS) - CNMS Discovery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dieter Richter, Jlich Centre for Neutron Science, Institute for Complex Systems, Germany - March 22,2013 CNMS and SNS Research Forum Annabella Selloni, Princeton University -...

302

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology. The Magnet Lab is a wonderful environment for nurturing students in high magnetic field research. The group that I worked in conducted leading-edge research in high...

303

Discovery of New Materials to Capture Methane | U.S. DOE Office of Science  

Office of Science (SC) Website

Discovery of New Materials to Capture Methane Discovery of New Materials to Capture Methane Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » April 2013 Discovery of New Materials to Capture Methane Predicted materials could economically produce high-purity methane from natural gas systems and separate methane from coal mine ventilation systems. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Berend Smit, UC-Berkeley

304

Christen leads ORNL's Center for Nanophase Materials Sciences | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 SHARE Media Contact: Bill Cabage Oak Ridge National Laboratory Communications (865) 574-4399 Christen leads ORNL's Center for Nanophase Materials Sciences Hans Christen Hans Christen (hi-res image) OAK RIDGE, Jan. 9, 2014 -- Hans M. Christen of the Department of Energy's Oak Ridge National Laboratory has been named director of ORNL's Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers. Christen joined ORNL in 2000 and led the Thin Films and Nanostructures group from 2006 to 2013. In 2013, he became associate director within the Materials Science and Technology Division and has managed the DOE Materials Sciences & Engineering Program since 2011. His research has focused on the effects of epitaxial strain, spatial

305

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended

Sheridan, Scott

306

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 1-May-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

307

Roadmap: Radiologic Imaging Sciences Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences ­ Magnetic Resonance Imaging (with certification and ATS Radiologic Technology) - Bachelor of Radiologic Imaging Sciences Technology [RE-BRIT-RIS-MRHA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 11-Apr-12/LNHD This roadmap is a recommended

Sheridan, Scott

308

Roadmap: Radiologic Imaging Sciences -Magnetic Resonance Imaging (with AAS Radiologic Technology) -  

E-Print Network [OSTI]

Roadmap: Radiologic Imaging Sciences - Magnetic Resonance Imaging (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-MRRT] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 21-May-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

309

Isaac Newton Institute for Mathematical Sciences Magnetic Reconnection Theory  

E-Print Network [OSTI]

of many MHD phenomena. Magnetic field lines in a configuration of eight null points, where reconnection. Inside the sheet, magnetic diffusion becomes important and the field lines are able to diffuse through. In particular, a plasma interacts in a subtle and intimate way with any magnetic field that is present. For many

310

Thesis for the Degree of Master of Science Magnetic Field Structure in the Star Forming Cloud L1641  

E-Print Network [OSTI]

Thesis for the Degree of Master of Science Magnetic Field Structure in the Star Forming Cloud L1641 of Astronomy and Space Science Graduate School Kyung Hee University Seoul, Korea February, 2009 #12;Magnetic Jungmi Kwon Department of Astronomy and Space Science Graduate School Kyung Hee University Seoul, Korea

Pak, Soojong

311

Materials Science and Engineering A 430 (2006) 189202 Grid indentation analysis of composite microstructure  

E-Print Network [OSTI]

Materials Science and Engineering A 430 (2006) 189­202 Grid indentation analysis of composite 17 May 2006 Abstract Several composites comprise material phases that cannot be recapitulated ex situ characteristics of naturally occurring material composites. Here, we propose a straightforward application

Van Vliet, Krystyn J.

312

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents [OSTI]

Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

Nellis, W.J.; Geballe, T.H.; Maple, M.B.

1990-03-13T23:59:59.000Z

313

Magnetic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures  

Science Journals Connector (OSTI)

Magnetic-plasmonic nanoparticles, combining magnetic and plasmonic components, are promising structures for use in life sciences. Optical properties of core-shell magnetite-gold nanostructures, such as the wavelength of the plasmon resonance, the extinction cross-section, and the ratio of scattering to absorption at the plasmon wavelength are critical parameters in the search for the most suitable particles for envisioned applications. Using Mie theory and the discrete dipole approximation (DDA), optical spectra as a function of composition, size, and shape of core-shell nanospheres and nanorods were calculated. Calculations were done using simulated aqueous media, used throughout the life sciences. Our results indicate that in the advantageous near-infrared region (NIR), although magnetic-plasmonic nanospheres produced by available chemical methods lack the desirable tunability of optical characteristics, magnetic-plasmonic nanorods can achieve the desired optical properties at chemically attainable dimensions. The presented results can aid in the selection of suitable magnetic-plasmonic structures for applications in life sciences. From the Clinical Editor In this basic science study, magnetic-plasmonic nanoparticles are studied for future applications in life sciences. Optical properties of core-shell magnetite-gold nanostructures, such as the wavelength of the plasmon resonance, the extinction cross-section, and the ratio of scattering to absorption at the plasmon wavelength are critical parameters in the search for the most suitable particles for proposed future applications.

Ward Brullot; Ventsislav K. Valev; Thierry Verbiest

2012-01-01T23:59:59.000Z

314

Applications of focused ion beam SIMS in materials science  

Science Journals Connector (OSTI)

Focused ion beam instruments (FIB) can be used both for materials processing and materials analysis, since the ion beam used in the FIB milling process generates several potentially useful analytical signals such...

David S. McPhail; Richard J. Chater; Libing Li

2008-06-01T23:59:59.000Z

315

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

charge injection in organic semiconducting materials for improving the optoelectronic properties of organic semiconductor devices. Publication " Spin injection from...

316

Fusion Materials Science Overview of Challenges and Recent Progress  

E-Print Network [OSTI]

resistance generally have very good high temperature capability (high thermal creep resistance) due to high, high fusion neutron flux) arguably makes fusion materials development the greatest challenge ever approach used to develop candidate materials for fusion reactors ­ Materials with high neutron radiation

317

Fundamental study of magnetic field-assisted micro-EDM for non-magnetic materials.  

E-Print Network [OSTI]

??Micro-Electrical Discharge Machining (??-EDM) is a unique machining method capable of removing material in the sub-grain size range (0.1-10 ??m) from materials irrespective of their (more)

Heinz, Kenneth G., Jr.

2010-01-01T23:59:59.000Z

318

Materials Science & Technology, MST: Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS MST Division Leader David F. Teter Bio MST Deputy Division...

319

Nuclear Magnetic Resonance Studies of Some Materials Containing Divalent Europium  

Science Journals Connector (OSTI)

This paper reports the results of a low-temperature NMR experiment on Eu153 in EuO. The data, which are assumed to be linear with magnetization, are compared with calculated values using spin-wave theory. Values of J1kb=0.7500.0025K and J2kb=-0.09750.004K are found to give a good description of EuO. This paper also reports the results of NMR studies of the ligands F19 and Cs137 in EuF2 and CsEuF3. These experiments indicate that there is a reversal in sign of the unpaired spin density of the europium ion. The same results are obtained with europium-bearing glasses. This effect is discussed in terms of the Freeman-Watson model of Gd3+ and in terms of a virtual 5d state in Eu2+.

E. L. Boyd

1966-05-06T23:59:59.000Z

320

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

work "I do biomedical research, which utilizes my education and experience of Nuclear Magnetic Resonance (NMR). In particular, we design methods to increase the signal that we...

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

smaller than a basketball. My goal is to understand how quantum mechanics affects the magnetic properties of these molecules. "My most recent work was performed with two...

322

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a better and much more productive scientist. I had the opportunity to learn unique high magnetic field experimental techniques from the top researchers in the field, in a...

323

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Postdoctoral associate, University of Florida, College of Medicine and Advanced Magnetic Resonance Imaging and Spectroscopy facility. Current work Fatma works on C.elegans, a...

324

SCIENCE  

Science Journals Connector (OSTI)

SCIENCE ... Neutral V-particles were first discovered in 1947 at the University of Manchester where researchers observed v-shaped tracks in a magnetic cloud chamber exposed to cosmic rays. ...

1953-08-17T23:59:59.000Z

325

JOURNAL OF MATERIALS SCIENCE 36 (2001) 77 86 Synthesis of yttria-doped strontium-zirconium  

E-Print Network [OSTI]

JOURNAL OF MATERIALS SCIENCE 36 (2001) 77­ 86 Synthesis of yttria-doped strontium-zirconium oxide densification, than co-precipitated powders. C 2001 Kluwer Academic Publishers 1. Introduction Strontium

Iglesia, Enrique

326

Materials Science and Engineering A297 (2001) 235243 Plasma-sprayed ceramic coatings: anisotropic elastic and  

E-Print Network [OSTI]

anisotropic elastic stiffnesses and thermal conductivities of the plasma sprayed ceramic coatingMaterials Science and Engineering A297 (2001) 235­243 Plasma-sprayed ceramic coatings: anisotropic are derived. © 2001 Elsevier Science S.A. All rights reserved. Keywords: Thermal spray; Elastic properties

Sevostianov, Igor

327

JOURNAL OF MATERIALS SCIENCE 29 (1994) 4135-4151 Bismuth oxide-based solid electrolytes for  

E-Print Network [OSTI]

of investigations has been reported pertaining to the science and technology of solid oxide fuel cells (SOFCs) based as the electrolyte and are accordingly known as the molten carbonate fuel cells (MCFCs) and the solid oxide fuelJOURNAL OF MATERIALS SCIENCE 29 (1994) 4135-4151 Review Bismuth oxide-based solid electrolytes

Azad, Abdul-Majeed

328

Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 17 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

Sheridan, Scott

329

Roadmap: Chemistry Materials Chemistry -Bachelor of Science [AS-BS-CHEM-MCHM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Materials Chemistry - Bachelor of Science [AS-BS-CHEM-MCHM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 30 Major GPA Important Notes Semester One: [14 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM

Sheridan, Scott

330

New applications of particle accelerators in medicine, materials science, and industry  

SciTech Connect (OSTI)

Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

Knapp, E.A.

1981-01-01T23:59:59.000Z

331

Chemical & EngChemical/Engineering Materials Division | Neutron Science |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical and Engineering Materials Division Chemical and Engineering Materials Division SHARE Chemical and Engineering Materials Division CEMD Director Mike Simonson The Chemical and Engineering Materials Division (CEMD) supports neutron-based research at SNS and HFIR in understanding the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of division-supported capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasielastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported by the division include the structure

332

Magnetism and Electricity for Schools and Science Classes  

Science Journals Connector (OSTI)

... SO many school manuals of Electricity and Magnetism have appeared during the last ten years, particularly since the establishment of the South ... and sufficiently illustrated, but occasionally insufficiently explicit for young boys. The chapter on Terrestrial Magnetism might with advantage be somewhat enlarged, and would be distinctly improved by the addition ...

1878-10-10T23:59:59.000Z

333

THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION  

SciTech Connect (OSTI)

An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

2012-01-01T23:59:59.000Z

334

Center for Nanophase Materials Sciences - Summer Newsletter 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TEMSTEM capabilities for soft materials, small-angle x-ray scattering, and in the cleanroom, advanced optical profilometry. (See the "What's New" section of this newsletter to...

335

Center for Nanophase Materials Sciences (CNMS) - Related ORNL...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

offer a variety of capabilities for materials characterization and computational nanoscience that may enhance the research projects of CNMS users. The CNMS has established...

336

Center for Nanophase Materials Sciences (CNMS) - Call For Proposals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials Deuterated vinyl and diene monomers and polymers Soft matter TEM OPTOELECTRONIC NANOSTRUCTURES Laser and CVD synthesis of carbon nanomaterials, oxide film...

337

NREL: Solar Research - Materials and Chemical Science and Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy and conducts theoretical studies and fundamental experimental research on optoelectronic materials. The center conducts research within three areas: Chemical and molecular...

338

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

types of systems could be of central importance to develop future electronic and optoelectronic devices with high-quality active materials. Significance One of the great...

339

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

despite the proposed use of organic thin-film materials in energy-related optoelectronic devices such as solid state lighting and photovoltaic cells. Although...

340

Center for Nanophase Materials Sciences (CNMS) - Chemical Functionalit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials (metals, oxides) Atomic layer deposition (ALD) and surface sol-gel processing (SSG) for conformal functionalization of support surfaces (located outside of...

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Science as Art: Materials Characterization Art | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

bamboo plant to grow. A porous "composite" structure as seen in the image would help in engineering structural materials capable of carrying fluids or gases internally." However,...

342

Science-Driven Network Requirements for ESnet  

E-Print Network [OSTI]

Magnetic Fusion Energy Science.Magnetic Fusion Energy Science..data sets Magnetic Fusion Energy Science Executive Summary

2006-01-01T23:59:59.000Z

343

The National High Magnetic Field Laboratory: Condensed Matter Science in Continuous Magnetic Fields  

Science Journals Connector (OSTI)

The National High Magnetic Field Laboratory (NHMFL) operates three facilities ... Tallahassee, Florida, the ultra-low-temperature high-magnetic-field facilities are located at the University ... scientific achiev...

M. D. Bird; J. E. Crow; P. Schlottmann

2003-10-01T23:59:59.000Z

344

Achieving Transformational Materials Performance in a New Era of Science  

ScienceCinema (OSTI)

The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

John Sarrao

2010-01-08T23:59:59.000Z

345

Materials science issues and structural studies of topical  

E-Print Network [OSTI]

Foundation grants (DMR-9733895 and DMR-9601796 to Nigel Browning) and Engineering and Physical Science and dislocation-pair hypothesis 3.3. Semi-quantitative plastic deformation model 3.4. As grown six-inch diameter: different stacking sequences of same structural, e.g. SiC has 46 modifications, ZnS has 11 modifications

Moeck, Peter

346

Science in High Magnetic Fields: What Could Be Learned?  

Science Journals Connector (OSTI)

High magnetic fields are one of the most powerful tools available to scientists for the study, modification and control of matter. This includes the knowledge on correlations effects, interaction mechanisms, s...

G. Martinez

2003-10-01T23:59:59.000Z

347

Materials Science and Engineering A 432 (2006) 100107 Effect of annealing and initial temperature on mechanical  

E-Print Network [OSTI]

for Advanced Materials, Department of Mechanical and Aerospace Engineering, University of California, San DiegoMaterials Science and Engineering A 432 (2006) 100­107 Effect of annealing and initial temperature stress at some temperature above Ms. Recently, it has been suggested that this superelastic property may

Nemat-Nasser, Sia

348

JOURNAL OF MATERIALS SCIENCE 39 (2004) 4103 4106 Effect of fiber content on the thermoelectric  

E-Print Network [OSTI]

JOURNAL OF MATERIALS SCIENCE 39 (2004) 4103­ 4106 Effect of fiber content on the thermoelectric behavior of cement S. WEN, D. D. L. CHUNG Composite Materials Research Laboratory, University at Buffalo of discontinuous stainless steel fibers (diameter 60 µm) as an admixture in cement paste on the thermoelectric

Chung, Deborah D.L.

349

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films  

E-Print Network [OSTI]

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films is critical of these materials could open new opportunities for introducing thin-film solar technologies that combine both low near the FeS2 thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than

350

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H. Overbury,a,c Viviane...

351

Materials Science Under Extreme Conditions of Pressure and Strain Rate  

E-Print Network [OSTI]

at Lawrence Livermore National Laboratory. I. INTRODUCTION HIGH-STRAIN-RATE materials dynamics and solid-state experiments to much higher pressures, P 103 GPa (10 Mbar), on the National Ignition Facility (NIF) laser

Zhigilei, Leonid V.

352

Research and Devlopment Associate Center for Nanophase Materials Sciences Division  

E-Print Network [OSTI]

: i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next. · Heterogeneous catalysis and electrocatalysis on metals, metal compounds, and nano- materials. · Current focuses

Pennycook, Steve

353

Stanislav Golubov, and Roger Stoller - Materials Science and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The team also investigated the response of textured materials, including rolled Zircaloy-2 and a random texture, both illustrated in Fig. 9. The results, plotted in Fig.10 and...

354

Magnetic resonance studies of cement based materials in inhomogeneous magnetic fields  

SciTech Connect (OSTI)

Single-sided magnets give hope that Nuclear Magnetic Resonance (NMR) might in future be used for in situ characterisation of hydration and water transport in the surface layers of concrete slabs. Towards that end, a portable NMR-MOUSE (MObile Universal Surface Explorer) has been used to follow the hydration of gypsum based plaster, a Portland cement paste and concrete mortar. The results compare favourably to those obtained using a standard laboratory bench-top spectrometer. Further, stray field imaging (STRAFI) based methods have been used with embedded NMR detector coils to study water transport across a mortar/topping interface. The measured signal amplitudes are found to correlate with varying sample conditions.

Boguszynska, Joanna [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Brown, Marc C.A. [School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NR (United Kingdom); McDonald, Peter J. [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom)]. E-mail: p.mcdonald@surrey.ac.uk; Mitchell, Jonathan [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom); Mulheron, Mike [School of Engineering, University of Surrey, Surrey, GU2 7XH (United Kingdom); Tritt-Goc, Jadwiga [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Verganelakis, Dimitris A. [Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA (United Kingdom)

2005-10-01T23:59:59.000Z

355

Transition-metal silicides as materials for magnet-semiconductor heterostructures*  

E-Print Network [OSTI]

Transition-metal silicides as materials for magnet-semiconductor heterostructures* Peter Kratzer as of binary late transition metal monosilicides, in contact with the Si surface. For the Heusler alloy Co2MnSi, we could show that the 001 surface retains the half-metallic character of the bulk if a fully Mn

356

Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms  

SciTech Connect (OSTI)

Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

Goodson, Boyd M.

1999-12-01T23:59:59.000Z

357

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Go to Research Groups Preprints Provided by Individual Scientists: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abécassis, Benjamin (Benjamin Abécassis) - Laboratoire de Physique des Solides, Université de Paris-Sud 11 Ackland, Graeme (Graeme Ackland) - Centre for Materials Science and Engineering & School of Physics, University of Edinburgh Adams, James B (James B Adams) - Department of Chemical and Materials Engineering, Arizona State University Adams, Philip W. (Philip W. Adams) - Department of Physics and Astronomy, Louisiana State University Adeyeye, Adekunle (Adekunle Adeyeye) - Department of Electrical and Computer Engineering, National University of Singapore Agrawal, Dinesh (Dinesh Agrawal) - Microwave Processing and

358

Magnetic nanoworms Systematic Surface Engineering of Magnetic Nanoworms  

E-Print Network [OSTI]

Magnetic nanoworms Systematic Surface Engineering of Magnetic Nanoworms for in vivo Tumor Targeting and nanoparticle chemistry for tumor targeting. full papers [?] Prof. M. J. Sailor, J.-H. Park Materials Science, Dr. T. J. Harris Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute

Bhatia, Sangeeta

359

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents [OSTI]

Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

2013-03-05T23:59:59.000Z

360

Laboratory and Multimedia in Science Teaching: Experiments about Magnetic Force  

Science Journals Connector (OSTI)

Abstract We investigated the effectiveness of using multimedia tools in favoring learning of magnetic forces, a topic that physics education research showed to be particularly complex and difficult for students. We designed a sequence of experiments that was tested with about 150 high school students. Our results compared with the ones reported in the literature indicate that student's understanding of the direction and magnitude of the magnetic force markedly improved and typical difficulties were overcome. The work also allowed create a group of in service teachers who continue cooperating with the researchers in experimenting and improving the activity sequence.

Pasquale Onorato; Anna De Ambrosis

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chemistry and Materials Science. Progress report, first half, FY 1993  

SciTech Connect (OSTI)

Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

Not Available

1993-07-01T23:59:59.000Z

362

Postdoctoral Research Associate Center for Nanophase Materials Sciences  

E-Print Network [OSTI]

that can lead us to design superior devices for various applications. 2. Design of high capacity energy of energy storage systems. #12;3. Catalysis properties of low-dimensional materials: Most of the catalysts are noble metals. Wide efforts are being made to replace or reduce the usage of noble metals. Low

Pennycook, Steve

363

Materials Discovery Design and Synthesis | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discovery Design and Synthesis Discovery Design and Synthesis Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Materials Discovery Design and Synthesis Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported in the discovery and design of novel materials and the development of innovative materials synthesis and processing methods. This research is guided by applications of concepts learned from the interface between physics and biology and from nano-scale understanding of

364

Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites  

E-Print Network [OSTI]

Annealing effects on magnetic properties of silicone-coated iron-based soft magnetic composites , Alex A. Volinsky b a School of Material Science and Engineering, University of Science and Technology Available online 1 October 2011 Keywords: Silicone resin Soft magnetic composites Annealing treatment

Volinsky, Alex A.

365

Acta Physicae Superficierum Vol VII 2004 EXPLORING ARTIFICIAL MAGNETISM  

E-Print Network [OSTI]

Acta Physicae Superficierum · Vol VII · 2004 EXPLORING ARTIFICIAL MAGNETISM FROM THIN FILMS of artificially structured, new magnetic materials play a fundamental role in modern science and technology. From thin films to patterned magnetic nano-structures, these magnetic materials and systems can be utilized

Rau, Carl

366

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thad M. Adams Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline Materials for Hydrogen Service Hydrogen Technology at the Savannah Hydrogen Technology at the Savannah River Site River Site * Tritium Production/Storage/Handling and Hydrogen Storage/Handling since 1955 - Designed, built and currently operate world's largest metal hydride based processing facility (RTF) - DOE lead site for tritium extraction/handling/separation/storage operations * Applied R&D provided by Savannah River National Laboratory - Largest hydrogen R&D staff in country * Recent Focus on Related National Energy Needs - Current major effort on hydrogen energy technology

367

Neutron Sciences - Electrode Material for Solid-oxide Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Theory meets experiment: structure-property relationships in an electrode Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells Research Contact: Ana B. Munoz-Garcia December 2012, Written by Agatha Bardoel Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in liquid electrolyte cells. Using the Powder Diffractometer at the Spallation Neutron Source, researchers experimentally characterized the promising new SOFC electrode material strontium iron molybdenum oxide─Sr2Fe1.5Mo0.5O6-δ (SFMO). Combining the experimental results with insights from theory showed that the crystal structure is distorted from the ideal cubic simple perovskite

368

Chemistry and Material Sciences Applications Training at NERSC April 5,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Feedback JGI Intro to NERSC Data Transfer and Archiving Using the Cray XE6 Joint NERSC/OLCF/NICS Cray XT5 Workshop NERSC User Group Training Remote Setup Online Tutorials Courses NERSC Training Accounts Request Form Training Links OSF HPC Seminiars Software Accounts & Allocations Policies Data Analytics & Visualization Data Management Policies Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov 1-800-66-NERSC, option 3 or 510-486-8611 Home » For Users » Training & Tutorials » Training Events » Chemistry

369

DOE-HDBK-1017/1-93; DOE Fundamentals Handbook Material Science Volume 1 of 2  

Broader source: Energy.gov (indexed) [DOE]

1-93 1-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK MATERIAL SCIENCE Volume 1 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161. Order No. DE93012224 DOE-HDBK-1017/1-93 MATERIAL SCIENCE ABSTRACT The Material Science Handbook was developed to assist nuclear facility operating

370

DOE-HDBK-1017/2-93; DOE Fundamentals Handbook Material Science Volume 2 of 2  

Broader source: Energy.gov (indexed) [DOE]

2-93 2-93 JANUARY 1993 DOE FUNDAMENTALS HANDBOOK MATERIAL SCIENCE Volume 2 of 2 U.S. Department of Energy FSC-6910 Washington, D.C. 20585 Distribution Statement A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information. P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. Available to the public from the National Technical Information Services, U.S. Department of Commerce, 5285 Port Royal., Springfield, VA 22161. Order No. DE93012225 DOE-HDBK-1017/2-93 MATERIAL SCIENCE ABSTRACT The Material Science

371

The Project for the High Energy Materials Science Beamline at Petra III  

SciTech Connect (OSTI)

The high energy materials science beamline will be among the first fourteen beamlines planned to be operational in 2009 at the new third generation synchrotron light source Petra III at DESY, Germany. The operation and funding of this beamline is assured by GKSS. 70% of the beamline will be dedicated to materials science. The remaining 30% are reserved for physics and are covered by DESY. The materials science activities will be concentrating on three intersecting topics which are industrial, applied, and fundamental research. The beamline will combine three main features: Firstly, the high flux, fast data acquisition systems, and the beamline infrastructure will allow carrying out complex and highly dynamic in-situ experiments. Secondly, a high flexibility in beam shaping will be available, fully exploiting the high brilliance of the source. Thirdly, the beamline will provide the possibility to merge in one experiment different analytical techniques such as diffraction and tomography.

Martins, R. V.; Lippmann, T.; Beckmann, F.; Schreyer, A. [GKSS-Research Centre Geesthacht GmbH, Max-Planck-Strasse, 21502 Geesthacht (Germany)

2007-01-19T23:59:59.000Z

372

Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field  

E-Print Network [OSTI]

Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field ZHEN Liang( )1 of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; 2. Department. Curriculum in Applied and Materials Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC

Qin, Lu-Chang

373

End station for nanoscale magnetic materials study: Combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy  

SciTech Connect (OSTI)

We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was connected to the XMCD experimental station via damper bellows to isolate it from environmental vibrations, thus achieving efficient spatial resolution for observing Si(111) surface at atomic resolution. We performed an in situ experiment with STM and XMCD spectroscopy on Co nanoclusters on an Au(111) surface and explored its practical application to investigate magnetic properties for well-characterized nanoscale magnetic materials.

Ueno, Tetsuro; Sawada, Masahiro; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Kishimizu, Yusuke; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)

2012-12-15T23:59:59.000Z

374

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

R S R S T U V W X Y Z Qasem, Apan (Apan Qasem) - Department of Computer Science, Texas State University - San Marcos Qi, Xiaojun (Xiaojun Qi) - Department of Computer Science, Utah State University Qi, Yuan "Alan" (Yuan "Alan" Qi) - Departments of Computer Sciences & Statistics, Purdue University Qian, Xiaoping (Xiaoping Qian) - Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology Qiao, Chunming (Chunming Qiao) - Department of Computer Science and Engineering, State University of New York at Buffalo Qiao, Daji (Daji Qiao) - Department of Electrical and Computer Engineering, Iowa State University Qiao, Sanzheng (Sanzheng Qiao) - Department of Computing and Software, McMaster University Qin, Feng (Feng Qin) - Department of Computer Science and

375

Fusion Nuclear Science and Technology Research Needed Now for Magnetic  

E-Print Network [OSTI]

Chamber Research Plasma Chamber Research embodies the scientific and engineering disciplines required Chamber · Plasma Heating/Fueling/CD · Safety · Tritium · Materials · Design Studies #12;Scope of Plasma

376

Effect of magnetic anisotropy on magnetic shaking E. Papernoa)  

E-Print Network [OSTI]

Effect of magnetic anisotropy on magnetic shaking E. Papernoa) and I. Sasada Department of Applied Science for Electronics and Materials, Kyushu University, 6-1 Kasuga-Koen, Kasuga-Shi, Fukuoka 816-8580, Japan The effect of magnetic shaking on both the transverse and axial shielding factors TSF and ASF

Paperno, Eugene

377

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

378

Estimation of quantum correlations in magnetic materials by neutron scattering data  

Science Journals Connector (OSTI)

Abstract We demonstrate that inelastic neutron scattering technique can be used to indirectly detect and measure the macroscopic quantum correlations quantified by both entanglement and discord in a quantum magnetic material, VODPO 4 ? 1 2 D 2 O . The amount of quantum correlations is obtained by analyzing the neutron scattering data of magnetic excitations in isolated V4+ spin dimers. Our quantitative analysis shows that the critical temperature of this material can reach as high as T c = 82.5 K , where quantum entanglement drops to zero. Significantly, quantum discord can even survive at T c = 300 K and may be used in room temperature quantum devices. Taking into account the spinorbit (SO) coupling, we also predict theoretically that entanglement can be significantly enhanced and the critical temperature T c increases with the strength of spinorbit coupling.

Ben-Qiong Liu; Lian-Ao Wu; Guo-Mo Zeng; Jian-Ming Song; Wei Luo; Yang Lei; Guang-Ai Sun; Bo Chen; Shu-Ming Peng

2014-01-01T23:59:59.000Z

379

System and method for non-destructive evaluation of surface characteristics of a magnetic material  

DOE Patents [OSTI]

A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

Jiles, David C. (Ames, IA); Sipahi, Levent B. (Ames, IA)

1994-05-17T23:59:59.000Z

380

Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review  

SciTech Connect (OSTI)

Results of a literature search on the cryogenic properties of candidate inorganic insulators for the ITER TF magnets are reported. The materials investigated include: Al{sub 2}O{sub 3}, AlN, MgO, porcelain, SiO{sub 2}, MgAl{sub 2}O{sub 4}, ZrO{sub 2}, and mica. A graphical presentation is given of mechanical, elastic, electrical, and thermal properties between 4 and 300 K. A companion report reviews the low temperature irradiation resistance of these materials.

Simon, N.J.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys  

DOE Patents [OSTI]

An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

Pecharsky, Alexandra O. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

2006-10-03T23:59:59.000Z

382

Condensed Matter Physics & Materials Science Department, Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presetations Presetations Homepage | Contacts "How can we make an isotropic high-temperature superconductor?," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, November 27 2007). PDF "Enhancement of Jc in thick MOD and BaF2 coatings through the structure improvement " DOE "Superconductivity for Power Systems" Annual Peer Review, (Arlington, VA, August 7-9 2007). PDF "Texture Development in 2-3 μm Thick YBCO Films Synthesized by BaF2 and MOD Processes on Metal RABiTS(tm) " Materials Research Society Spring Meeting, (San Francisco, CA, April 20 2007). PDF "Films and Crystals: Search for the Perfect Structure. ," Seminar at Condensed Matter Physics Department, (Brookhaven National Laboratory, Upton, NY, March 12 2007). PDF

383

Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

384

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

385

Sandia National Labs: Materials Science and Engineering Center: Research &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accomplishments Accomplishments Patents PATENTS Method for Making Surfactant-Templated Thin Films, Jeff Brinker, Hongyou Fan, Patent #RE41612, issued 8/13/10 Dendritic Metal Nanostructures, John Shelnutt, Yujiang Song, Patent #7,785,391, issued 8/13/10 Metal Nanoparticles as a Conductive Catalyst, Eric Coker, Patent #7,767,610, issued 8/13/10 Water-Soluable Titanium Alkoxide Material, Timothy Boyle, Patent # 7,741,486 B1, issued 6/22/10 Microfabricated Triggered Vacuum Switch, Alex W. Roesler, Joshua M. Schare,Kyle Bunch, Patent #7,714,240, issued 5/11/10 Method of Photocatalytic Nanotagging, John Shelnutt, Craig Medforth, Yujiang Song, Patent #7,704,489, issued 4/27/10 Correlation Spectrometer, Michael Sinclair, Kent Pfeifer, Jeb Flemming, Gary D Jones, Chris Tigges, Patent #7,697,134, issued 4/13/10

386

Center for Nanophase Materials Sciences (CNMS) - Functional Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) Synthesis of SWNT's, NT Arrays, NW's, NP's or thin films by CVD, Laser Vaporization, and PLD with in situ diagnostics ns-Laser Vaporization Synthesis of SWNTs, NWs, NPs SWNTs and nanowires are produced by pulsed Nd:YAG laser-irradiation (30 Hz, Q-switched or free-running) of composite pellets in a 2" tube furnace with variable pressure control. Excimer laser ablation of materials into variable pressure background gases is used for nanoparticle generation in proximity of ns-laser diagnostics. High-power ms-laser vaporization bulk production of nanomaterials SWNTs (primarily), SWNH (single-wall carbon nanohorns), nanoparticles and nanowires are produced by robotically-scanned 600W Nd:YAG laser-irradiation

387

Center for Nanophase Materials Sciences (CNMS) - Active CNMS User Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ACTIVE USER PROJECTS ACTIVE USER PROJECTS Proposal Cycle 2013B: expire July 31, 2014 Proposal Cycle 2013A: expire January 31, 2014 Proposal Cycle 2012B (extended): expire July 31, 2014 Proposal Cycle 2012A: (extended): expire January 31, 2014 Proposal Cycle 2013B: expire January 31, 2014 X-ray diffraction and scattering techniques for the study of interfacial phenomena in energy storage materials Gabriel Veith, ORNL [CNMS2013-201] Atomic scale study of the reduction of metal oxides Guangwen Zhou, State University of New York at Binghamton [CNMS2013-210] Local Switching Studies in PbZr0.2Ti0.8O3 (001), (101), and (111) Films Lane Martin, University of Illinois, Urbana-Champaign [CNMS2013-211] Direct Observation of Domain Structure and Switching Process in Strained

388

Materials Sciences and Engineering (MSE) Division Homepage | U.S. DOE  

Office of Science (SC) Website

MSE Home MSE Home Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Print Text Size: A A A RSS Feeds FeedbackShare Page Research Needs Workshop Reports Workshop Reports The Materials Sciences and Engineering (MSE) Division supports fundamental experimental and theoretical research to provide the knowledge base for the discovery and design of new materials with novel structures, functions, and properties. This knowledge serves as a basis for the development of new materials for the generation, storage, and use of energy and for mitigation of the environmental impacts of energy use. (details) The MSE research portfolio consists of the research focus areas in the

389

Materials Science and Engineering A 496 (2008) 501-506 Joining Ceramics to Metals  

E-Print Network [OSTI]

ductility enhances the resistance of the joint to thermal cycling; AlN-Inconel 600 bonds exhibited good thermal shock resistance. Alumina- stainless steel bonds withstood more that 60 thermal cycles between 200Materials Science and Engineering A 496 (2008) 501-506 1 Joining Ceramics to Metals using Metallic

Cambridge, University of

390

Materials Science Forum, Vols. 426432, 2003, pp. 3542. Advances in the Kinetic Theory of Carbide Precipitation  

E-Print Network [OSTI]

Materials Science Forum, Vols. 426­432, 2003, pp. 35­42. Advances in the Kinetic Theory of Carbide Pembroke Street, Cambridge CB2 3QZ, U.K., www.msm.cam.ac.uk/phase­trans Keywords : Carbides, kinetics and reversion of carbides can determine the quality of steels. This paper is a review of efforts towards better

Cambridge, University of

391

Materials Science and Engineering A 445446 (2007) 186192 Plastic instabilities and dislocation densities during plastic  

E-Print Network [OSTI]

Materials Science and Engineering A 445­446 (2007) 186­192 Plastic instabilities and dislocation densities during plastic deformation in Al­Mg alloys Gyozo Horv´ath, Nguyen Q. Chinh, Jeno Gubicza, J 2006 Abstract Plastic deformation of Al­Mg alloys were investigated by analyzing the stress

Gubicza, Jenõ

392

Materials Science Forum, Vols. 539543 (2007) 611. Online available at: http://www.scientific.net  

E-Print Network [OSTI]

://www.scientific.net Copyright 2006 Trans Tech Publications, Switzerland Strong Ferritic­Steel Welds H. K. D. H. Bhadeshia University of Cambridge Materials Science and Metallurgy Pembroke Street, Cambridge CB2 3QZ, U.K. www of the synergy between manganese and nickel is discussed in the light of recent high­resolution experiments

Cambridge, University of

393

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822  

E-Print Network [OSTI]

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822 Research and education in nuclear engineering, waste management and decommissioning holds the key to sustainable energy production on an ambitious programme of commissioning nuclear energy, creating opportunities for graduates from plant design

Miall, Chris

394

JOURNAL OF MATERIALS SCIENCE 36 (2001) 4681 4686 Deformation and energy absorption of wood  

E-Print Network [OSTI]

JOURNAL OF MATERIALS SCIENCE 36 (2001) 4681­ 4686 Deformation and energy absorption of wood cell and Physics & Christian Doppler Laboratory for Fundamentals of Wood Machining, University of Agricultural of Meteorology and Physics & Christian Doppler Laboratory for Fundamentals of Wood Machining, University

Lichtenegger, Helga C.

395

Microtrap arrays on magnetic film atom chips for quantum information science  

E-Print Network [OSTI]

We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ~5 {\\mu}m period, so that qubits can be individually addressed and interactions can be mediated by Rydberg excitations. The second strategy aims for direct quantum simulators using sub-optical lattices of ~100 nm period. These would allow the realization of condensed matter inspired quantum many-body systems, such as Hubbard models in new parameter regimes. The two approaches raise quite different issues, some of which are identified and discussed.

V. Y. F. Leung; A. Tauschinsky; N. J. van Druten; R. J. C. Spreeuw

2011-04-15T23:59:59.000Z

396

The New Structural Materials Science Beamlines BL8A and 8B at Photon Factory  

SciTech Connect (OSTI)

BL8A and 8B are new beamlines for structural materials science at Photon Factory. The primary characteristics of both beamlines are similar. The incident beam is monochromatized by the Si(111) double-flat crystal monochromator and focused at the sample position by a Rh-coated bent cylindrical quartz mirror. The Weissenberg-camera-type imaging-plate (IP) diffractometers were installed. The X-ray diffraction experiments for structural studies of strongly correlated materials, such as transition metals, molecular conductors, endohedral fullerenes, nano-materials, etc, are conducted at these stations.

Nakao, A.; Sugiyama, H.; Koyama, A.; Watanabe, K. [Insttitute of Materials Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

397

Research - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Research Groups in the Materials Science Division Condensed Matter Theory Carries out theoretical work on superconductivity, electronic structure and magnetism. Emerging Materials Emphasizes an integrated materials synthesis and science program that focuses on correlated electron transition metal oxides, chalcogenides with enhanced thermoelectric performance, and novel superconductors, including pnictides and cuprates. Energy Conversion and Storage The energy conversion and storage group focuses on charge-transfer processes, as well as the chemical environment in the vicinity of electrode surfaces. Magnetic Films Research to develop, characterize and investigate the properties of magnetic thin films and superlattices. Molecular Materials Synthesis and characterization of molecular materials that have novel

398

Critical Materials Strategy Summary  

Broader source: Energy.gov (indexed) [DOE]

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

399

Critical Materials Strategy Summary  

Broader source: Energy.gov (indexed) [DOE]

diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

400

Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details or contact  

E-Print Network [OSTI]

Chemistry Major, Materials Science and Engineering Emphasis See www.chem.utah.edu for details. Chemistry, Materials Science and Engineering Emphasis Core courses, plus: MATH 2250 Differential Equations or contact Professor Richard Ernst (ernst@chem.utah.edu; 801-581-8639) Chemistry Core Courses (required

Simons, Jack

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Momentum-resolved Electron Energy-Loss Spectroscopy Master Thesis, Electron Microscopy Group of Materials Science, Prof. Ute Kaiser  

E-Print Network [OSTI]

of Materials Science, Prof. Ute Kaiser Background Electron energy-loss spectroscopy (EELS) is a well like plasmons at a few 10eV, to core-shell excitations at high energy losses. In addition to the energy Microscopy group of Material Sciences in Ulm has gained experience in the acquisition and analysis of energy

Pfeifer, Holger

402

Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University  

E-Print Network [OSTI]

Contact: Overseas Affairs and Planning Institute for Integrated Cell-Material Sciences (i Cell-Material Sciences, iCeMS for short, I welcome you to the Seventh iCeMS International Symposium to develop them through evolution. They are also very important to design and create various novel "smart

Takada, Shoji

403

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect (OSTI)

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

404

Effect of Composition and Heat Treatment on MnBi Magnetic Materials  

SciTech Connect (OSTI)

The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. Several groups have demonstrated that the Hci of MnBi compound in thin film or in powder form can exceed 12 kOe and 26 kOe at 300 K and 523 K, respectively. Such steep increase in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. The reaction between Mn and Bi is peritectic, so Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, the composition of the Mn-Bi alloy with the largest amount of the desired LTP (low temperature phase) MnBi and highest saturation magnetization will be over-stoichiometric and rich in Mn. The amount of additional Mn required to compensate the Mn precipitation depends on solidification rate: the faster the quench speed, the less Mn precipitates. Here we report a systematic study of the effect of composition and heat treatments on the phase contents and magnetic properties of Mn-Bi alloys. In this study, Mn-Bi alloys with 14 compositions were prepared using conventional metallurgical methods such as arc melting and vacuum heat treatment, and the obtained alloys were analyzed for compositions, crystal structures, phase content, and magnetic properties. The results show that the composition with 55 at.% Mn exhibits the highest LTP MnBi content and the highest magnetization. The sample with this composition shows >90 wt.% LTP MnBi content. Its measured saturation magnetization is 68 emu/g with 2.3 T applied field at 300 K; its coercivity is 13 kOe and its energy product is 12 MGOe at 300 K. A bulk magnet fabricated using this powder exhibits an energy product of 8.2 MGOe.

Cui, Jun; Choi, Jung-Pyung; Polikarpov, Evgueni; Bowden, Mark E.; Xie, Wei; Li, Guosheng; Nie, Zimin; Zarkevich, Nikolai; Kramer, Matthew J.; Johnson, Duane D.

2014-08-17T23:59:59.000Z

405

Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration  

SciTech Connect (OSTI)

This document reports progress on the project Computational Materials and Chemical Sciences Network Administration, which is supported by DOE BES Grant DE-FG02-02ER45990 MOD 08. As stated in the original proposal, the primary goal of this project is to carry out the scientific administrative responsibilities for the Computational Materials and Chemical Sciences Network (CMCSN) of the U.S. Department of Energy, Office of Basic Energy Sciences. These responsibilities include organizing meetings, publishing and maintaining CMCSNs website, publishing a periodic newsletter, writing original material for both the website and the newsletter, maintaining CMCSN documentation, editing scientific documents, as needed, serving as liaison for the entire Network, facilitating information exchange across the network, communicating CMCSNs success stories to the larger community and numerous other tasks outside the purview of the scientists in the CMCSN. Given the dramatic increase in computational power, advances in computational materials science can have an enormous impact in science and technology. For many of the questions that can be addressed by computation there is a choice of theoretical techniques available, yet often there is no accepted understanding of the relative strengths and effectiveness of the competing approaches. The CMCSN fosters progress in this understanding by providing modest additional funding to research groups which engage in collaborative activities to develop, compare, and test novel computational techniques. Thus, the CMCSN provides the glue money which enables different groups to work together, building on their existing programs and expertise while avoiding unnecessary duplication of effort. This includes travel funding, partial postdoc salaries, and funding for periodic scientific meetings. The activities supported by this grant are briefly summarized below.

Rehr, John J.

2012-08-02T23:59:59.000Z

406

The National Science Foundations Investment in Sustainable Chemistry, Engineering, and Materials  

Science Journals Connector (OSTI)

The National Science Foundations Investment in Sustainable Chemistry, Engineering, and Materials ... However, NSF recognizes the importance of social, behavioral, and economic science to any comprehensive long-term risk mitigation strategy, as well as the need to transform education to train scientists in the systems-based approaches required to make interdisciplinary research successful. ... The supply of many key elements can become critical due to low Earth abundance or because the world has become dependent on a single supplier that is susceptible to supply disruption due to natural disasters, conflict, or political manipulation. ...

Ashley A. White; Matthew S. Platz; Deborah M. Aruguete; Sean L. Jones; Lynnette D. Madsen; Rosemarie D. Wesson

2013-05-29T23:59:59.000Z

407

Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material  

SciTech Connect (OSTI)

The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ?, Bs, Ms, and surface magnetic dead layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ? and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2?nm thick), while after RIE dead layer consisted of two sub-layers that were about 6?nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE damaged layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

2014-05-07T23:59:59.000Z

408

Materials Science and Engineering A 527 (2010) 62706282 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

that the change in preferred pore orientations with pressure is responsible for the higher thermal resistance) is the most widely used ceramic for TBC applications [2]. Thermal transport in this material occurs. At lower temperatures, conductive transport dom- inates, and the thermal resistance can be improved

Wadley, Haydn

409

Effect of composition and heat treatment on MnBi magnetic materials  

SciTech Connect (OSTI)

The metallic compound MnBi is a promising rare-earth-free permanent magnet material, unique among all candidates for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. The Hci of MnBi in thin-film or powder form can exceed 12 and 26 kOe at 300 and 523 K, respectively. Such a steep rise in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. However, the reaction between Mn and Bi is peritectic, and hence Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, when the alloy is prepared using conventional induction or arc-melting casting methods, additional Mn is required to compensate the precipitation of Mn. In addition to composition, post-casting annealing plays an important role in obtaining a high content of MnBi low-temperature phase (LTP) because the annealing encourages the Mn precipitates and the unreacted Bi to react, forming the desired LTP phase. Here we report a systematic study of the effect of composition and heat treatments on the phase content and magnetic properties of MnBi alloys. In this study, 14 compositions were prepared using conventional metallurgical methods, and the compositions, crystal structures, phase content and magnetic properties of the resulting alloys were analyzed. The results show that the composition with 55 at.% Mn exhibits both the highest LTP content (93 wt.%) and magnetization (74 emu g?1 with 9 T applied field at 300 K).

Cui, Jun [Pacific Northwest National Laboratory; Choi, Jung-Pyung [Pacific Northwest National Laboratory; Polikarpov, Evgueni [Pacific Northwest National Laboratory; Bowden, Mark E [Pacific Northwest National Laboratory; Xie, Wei [Pacific Northwest National Laboratory; Li, Guosheng [Pacific Northwest National Laboratory; Nie, Zimin [Pacific Northwest National Laboratory; Zarkevich, Nikolai [Ames Laboratory; Kramer, Matthew J [Ames Laboratory; Johnson, Duane [Ames Laboratory

2014-10-01T23:59:59.000Z

410

Supported by the National Science Foundation and the State of Florida 1 REPORTSNATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-Print Network [OSTI]

Supported by the National Science Foundation and the State of Florida 1 REPORTSNATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL SPRING 1997 Florida State University · University of Florida · Los Alamos National Laboratory the formation of convection currents in and NHMFL Magnets cont. on page 6 Recently

Weston, Ken

411

Magnetic switching of ferromagnetic thin films under thermal perturbation Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,  

E-Print Network [OSTI]

Magnetic switching of ferromagnetic thin films under thermal perturbation Di Liua Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012 Carlos Garcia; accepted 3 June 2005; published online 21 July 2005 In this paper, we study the magnetic switching

Liu, Di "Richard"

412

E-Print Network 3.0 - axial magnetic bearing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Department of Physics, University of Central Florida Collection: Physics ; Materials Science 3 Magnetic Pressure and Shape of Ferrofluid Seals in Cylindrical Structures...

413

E-Print Network 3.0 - ac magnetic susceptibility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spinu, Leonard - Department of Physics, University of New Orleans Collection: Materials Science ; Engineering 2 Fig. 1. Scanning electron micrograph of magnetic spherules...

414

E-Print Network 3.0 - ac magnetization measurements Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Department, Sungkyunkwan University Collection: Materials Science 79 TEST RESULTS OF HTS COILS AND AN R&D MAGNET FOR RIA* , M. Anerella, M. Harrison, J....

415

E-Print Network 3.0 - acceleration magnetic field Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Electronic Engineering, Tohoku University Collection: Physics ; Materials Science 86 TEST RESULTS OF HTS COILS AND AN R&D MAGNET FOR RIA* , M. Anerella, M. Harrison, J....

416

residual magnetism  

Science Journals Connector (OSTI)

The magnetization, i.e., the magnetic polarization, that remains in a magnetized material after all attempts to remove the magnetization have been made. Note: An example of residual magnetization is the magnetiza...

2001-01-01T23:59:59.000Z

417

Magnetic resonance imaging (MRI) of solid materials entails numerous problems from short longitudinal relaxation (T2) times to  

E-Print Network [OSTI]

. Solid-State STRAFI NMR Probe for Material Imaging of Quadrupolar Nuclei, J. Magn. Reson. httpMagnetic resonance imaging (MRI) of solid materials entails numerous problems from short for broadband tuning, sample translation along z-axis, and electrodes for in situ battery studies. An Alderman

Weston, Ken

418

"New horizons in cryobiology could be explored by nanotechnology, which has revolutionized multiple fields in science. Some of the advances in materials science and  

E-Print Network [OSTI]

Editorial "New horizons in cryobiology could be explored by nanotechnology, which has revolutionized multiple fields in science. Some of the advances in materials science and nanotechnology ... can-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Medicine, Brigham & Women's Hospital, Harvard Medical

Demirci, Utkan

419

Materials Science and Engineering A231 (1997) 170182 Fatigue crack growth resistance in SiC particulate and whisker  

E-Print Network [OSTI]

Materials Science and Engineering A231 (1997) 170­182 Fatigue crack growth resistance in Si resulted in higher crack growth resistance at low growth rates in the particulate reinforced materials in these materials have indicated that many factors may be important in deter- mining the fatigue resistance of SiC/

Ritchie, Robert

420

Marcus Wallace, Bryan Wiggins, K.W. Hipps Department of Chemistry and Materials Science and Engineering Program  

E-Print Network [OSTI]

Marcus Wallace, Bryan Wiggins, K.W. Hipps Department of Chemistry and Materials Science purified by both solvent extraction and sublimation methods in order to yield a high purity product

Collins, Gary S.

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,  

E-Print Network [OSTI]

Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

Wu, Zhigang

422

DEPARTMENT OF CHEMICAL ENGINEERING & MATERIALS SCIENCE Ph.D EXIT SEMINARS 2012-2013 (through Winter Quarter 2013)  

E-Print Network [OSTI]

DEPARTMENT OF CHEMICAL ENGINEERING & MATERIALS SCIENCE Ph.D EXIT SEMINARS 2012-2013 (through Winter Electrical Characteristics of Grain Boundaries in Oxygen Ion and Proton-Conducting Solid Oxide Electrolytes

Woodall, Jerry M.

423

Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96  

SciTech Connect (OSTI)

This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

Chase, L.

1997-03-01T23:59:59.000Z

424

Global phase diagram for magnetism and lattice distortion of iron-pnictide materials  

Science Journals Connector (OSTI)

We study the global phase diagram of magnetic orders and lattice structure in the Fe-pnictide materials at zero temperature within one unified theory tuned by both electron doping and pressure. On the low doping and high-pressure side of the phase diagram, there is one single transition, which is described by a z=2 mean-field theory with very weak run-away flows; on the high doping and low-pressure side, the transition is expected to split to two transitions, with one O(3) spin-density wave transition followed by a z=3 quantum Ising transition at larger doping. The fluctuation of the strain field of the lattice will not affect the spin-density wave transition but will likely drive the Ising nematic order transition a mean-field transition through a linear coupling, as observed experimentally in BaFe2?xCoxAs2.

Yang Qi and Cenke Xu

2009-09-04T23:59:59.000Z

425

Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite  

SciTech Connect (OSTI)

The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

Hong, Yang-Ki [University of Alabama] [University of Alabama; Haskew, Timothy [University of Alabama] [University of Alabama; Myryasov, Oleg [University of Alabama] [University of Alabama; Jin, Sungho [University of California San Diego] [University of California San Diego; Berkowitz, Ami [University of California San Diego] [University of California San Diego

2014-06-05T23:59:59.000Z

426

Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets  

SciTech Connect (OSTI)

Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P. (Carpenter Technologies, Inc.); Magee, J. (Carpenter Technologies, Inc.)

2010-09-10T23:59:59.000Z

427

High Field Magnetic Resonance Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HFMRF Overview HFMRF Overview Section 2-3-1 High Field Magnetic Resonance Facility The High Field Magnetic Resonance Facility (HFMRF) focuses a significant portion of its research on developing a fundamental, molecular-level understanding of biochemical and biological systems and their response to environmental effects. A secondary focus is materials science, including catalysis and chemical mechanisms and processes. Staff and science consultants within this facility offer expertise in the areas of structural biology, solid-state materials characterization, and magnetic resonance imaging (MRI) techniques. Research activities in the HFMRF include: * structure determination of large molecular assemblies such as protein-DNA (normal and damaged DNA) and protein-RNA complexes

428

Investigation of anisotropic photonic band gaps in three-dimensional magnetized plasma photonic crystals containing the uniaxial material  

SciTech Connect (OSTI)

In this paper, the dispersive properties of three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) composed of anisotropic dielectric (the uniaxial material) spheres immersed in homogeneous magnetized plasma background with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, as the Voigt effects of magnetized plasma are considered. The equations for calculating the anisotropic photonic band gaps (PBGs) in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and two flatbands regions can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, filling factor, plasma frequency, and external magnetic field on the dispersive properties of the 3D MPPCs are investigated in detail, respectively, and some corresponding physical explanations are also given. The numerical results show that the anisotropy can open partial band gaps in 3D MPPCs with fcc lattices and the complete PBGs can be found compared to the conventional 3D MPPCs doped by the isotropic material. The bandwidths of PBGs can be tuned by introducing the magnetized plasma into 3D PCs containing the uniaxial material. It is also shown that the anisotropic PBGs can be manipulated by the ordinary-refractive index, extraordinary-refractive index, filling factor, plasma frequency, and external magnetic field, respectively. The locations of flatbands regions cannot be manipulated by any parameters except for the plasma frequency and external magnetic field. Introducing the uniaxial material can obtain the complete PBGs as the 3D MPPCs with high symmetry and also provides a way to design the tunable devices.

Zhang, Hai-Feng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China) [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China)] [China; Liu, Shao-Bin; Kong, Xiang-Kun [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)] [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

2013-09-15T23:59:59.000Z

429

Materials Science in Radiation and Dynamics Extremes:MST-8:LANL:Los Alamos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Radiation and Dynamics Extremes (MST-8) in Radiation and Dynamics Extremes (MST-8) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS Group Leader, Anna Zurek Deputy Group Leader Ellen Cerreta Point of Contact Group Office 505-665-4735 He bubbles foming at a Cu twist grain boundary He bubbles forming at a Cu twist grain boundary Evaluating and predicting structure/property relationships Predict structure/property relationships of structural (metals, alloys, actinides, binders, energetic, and specialty) materials from atomistic to continuum length scales; Use computational materials modeling to inform and complement the measurements listed above;

430

Far-Infrared Studies of Spin-Peierls Materials in a Magnetic Field  

Science Journals Connector (OSTI)

Both a 20 T superconducting magnet and a 33 T resistive magnet were employed for the magnetic field work. ... Bottom panel:? dashed line, absolute transmission spectra of MEM(TCNQ)2 at 300 K and zero field; solid lines, 5 K transmission ratios of MEM(TCNQ)2 taken as a function of applied magnetic field. ... (47)?Ng, H. K.; Wang, Y. J. Proceedings of the Physical Phenomena at High Magnetic Fields II Conference, Tallahassee, FL, Fisk, Z., Ed.; 1995. ...

G. Li; J. S. Lee; V. C. Long; J. L. Musfeldt; Y. J. Wang; M. Almeida; A. Revcolevschi; G. Dhalenne

1998-03-04T23:59:59.000Z

431

Magnetism  

Science Journals Connector (OSTI)

Historically, magnetism is related to rock magnetism, due to a few minerals exhibiting spontaneous magnetization. Attractive properties of magnetite were already known in Antiquity and were used for navigation...

Guillaume Morin

1998-01-01T23:59:59.000Z

432

Brossman Science Lectureship 2012 Dr. Ainissa Ramirez, Yale University  

E-Print Network [OSTI]

Brossman Science Lectureship 2012 Dr. Ainissa Ramirez, Yale University Scientist, Inventor, Science be manipulated into place with a magnetic field has kept her busy during her time as Associate Professor of Mechanical Engineering & Materials Science in Yale's School of Engineering and Applied Sciences. Dr. Ramirez

Hardy, Christopher R.

433

magnetism  

Science Journals Connector (OSTI)

magnetism [A class of physical phenomena associated with moving electricity, including the mutual mechanical forces among magnets and electric currents] ? Magnetismus m

2014-08-01T23:59:59.000Z

434

The magnetic properties of nanocrystalline CoLa0.1Fe1.9O4 ferrite under an external AC magnetic field  

Science Journals Connector (OSTI)

Development of morphology-controlled synthesis methodologies is of great interest in materials science [13...]. Ferrites are important materials, which are broadly used in magnetic fields, including ferrofluid t...

Lijun Zhao; Hua Yang; Lei Lu

2008-10-01T23:59:59.000Z

435

Science | ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Science Neutron Science Neutron Scattering Science Neutrons are one of the fundamental particles that make up matter and have properties that make them ideal for certain types of research. In the universe, neutrons are abundant, making up more than half of all visible matter. Neutron scattering provides information about the positions, motions, and magnetic properties of solids. When a beam of neutrons is aimed at a sample, many neutrons will pass through the material. But some will interact directly with atomic nuclei and "bounce" away at an angle, like colliding balls in a game of pool. This behavior is called neutron diffraction, or neutron scattering. Using detectors, scientists can count scattered neutrons, measure their energies and the angles at which they scatter, and map their final position

436

ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets  

E-Print Network [OSTI]

The affordable, robust, compact (ARC) reactor conceptual design study aims to reduce the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q_p~13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ~63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ~23 T peak field on coil with newly available REBCO superconductor technology. External cu...

Sorbom, B N; Palmer, T R; Mangiarotti, F J; Sierchio, J M; Bonoli, P; Kasten, C; Sutherland, D A; Barnard, H S; Haakonsen, C B; Goh, J; Sung, C; Whyte, D G

2014-01-01T23:59:59.000Z

437

DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory  

SciTech Connect (OSTI)

The scientific programs of the FSMRL supported under the DOE A9024 Grant consisted of four interdisciplinary research clusters, as described. The clusters were led by Professors Tai Chiang (Physics), Jeffrey Moore (Chemistry), Paul Goldbart (Physics), and Steven Granick (Materials Science and Engineering). The completed work followed a dominant theme--Nanoscale Materials Systems--and emphasized studies of complex phenomena involving surfaces, interfaces, complex materials, dynamics, energetics, and structures and their transformations. A summary of our key accomplishments is provided for each cluster.

Lewis, Jennifer A.

2009-03-24T23:59:59.000Z

438

Maximizing Hysteretic Losses in Magnetic Ferrite Nanoparticles via Model-Driven Synthesis and Materials Optimization  

E-Print Network [OSTI]

This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe[subscript 2]O[subscript 4] (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using ...

Chen, Ritchie

439

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents [OSTI]

Shock wave formation of superconductive ceramic oxide electric and magnetic circuit elements with improved microstructures and mechanical properties. 10 figs.

Nellis, W.J.; Maple, M.B.; Geballe, T.H.

1987-10-23T23:59:59.000Z

440

Scattering and Instrumentation Sciences | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Scattering and Instrumentation Sciences Scattering and Instrumentation Sciences Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Scattering and Instrumentation Sciences Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported on the fundamental interactions of photons, neutrons, and electrons with matter to understand the atomic, electronic, and magnetic structures and excitations of materials and the relationship of these structures and excitations to materials properties and behavior.

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2452 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 11, NOVEMBER 2011 Permanent-Magnet Helicon Discharge Array  

E-Print Network [OSTI]

) which are powered by radio-frequency generators. Helicon-wave sources have been found to create higher, which consists of an array of eight tubes driven in parallel by a 3.2-kW RF supply at 13.56 MHz. Between2452 IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 11, NOVEMBER 2011 Permanent-Magnet Helicon

Chen, Francis F.

442

Department of Computer Science University of North Carolina at Chapel Hill February 2005 Although the use of magnetic technologies in biology  

E-Print Network [OSTI]

Department of Computer Science University of North Carolina at Chapel Hill February 2005 Although the use of magnetic technologies in biology dates to 1949, they have been applied by relatively few groups), and magnetic forces. Magnetics has the benefits of combining a freely moving probe, as in laser tweezers

Whitton, Mary C.

443

NERSC Science Gateways  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

QCD, Materials Science, Science Gateways About Science Gateways A science gateway is a web based interface to access HPC computers and storage systems. Gateways allow science...

444

Quantitative diffusion magnetic resonance imaging of the brain : validation, acquisition, and analysis  

E-Print Network [OSTI]

Engineering, Magnetic Resonance Imaging, Cognitive Science.on magnetic resonance imaging applications in brain science.

White, Nathan S.

2010-01-01T23:59:59.000Z

445

Thin Films Department of Materials Science and Engineering, Carnegie Mellon University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin Films Department of Materials Science and Engineering, Carnegie Mellon University Lu Yan, K.R. Balasubramaniam, Shanling Wang, Hui Du, and Paul Salvador Funded b y: U.S. D epartment o f E nergy, S olid S tate E nergy C onversion A lliance ( SECA) Introduction The oxygen reduction reaction (ORR) takes place in the solid oxide fuel cell (SOFC) cathode and the overall reaction is rather complex; it involves a variety of sub-reactions, such as surface adsorption, dissociation, election transfer, incorporation, and bulk diffusion. Although a considerable amount of effort has been expended in correlating processing / microstructural features to cathode performance, there is unfortunately relatively little known about the fundamental surface properties of oxide surfaces and their relation

446

HARWI-II, The New High-Energy Beamline for Materials Science at HASYLAB/DESY  

SciTech Connect (OSTI)

The GKSS Forschungszentrum Geesthacht, Germany, will setup a new high-energy beamline specialized for texture, strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen-Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI-II. The high pressure cell will be run by the GFZ Potsdam, Germany, the high-energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm x 0.5 mm) and a large monochromatic X-ray beam (50 mm x 10 mm) with an energy range of 20 to 250 keV.

Beckmann, Felix; Lippmann, Thomas; Metge, Joachim; Dose, Thomas; Donath, Tilman; Schreyer, Andreas [GKSS Forschungszentrum, Max-Planck-Strasse, 21502 Geesthacht (Germany); Tischer, Markus [HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Liss, Klaus Dieter [Technische Universitaet, Hamburg-Harburg, 21071 Hamburg (Germany)

2004-05-12T23:59:59.000Z

447

Science-Driven Candidate Search for New Scintillator Materials FY 2013 Annual Report  

SciTech Connect (OSTI)

This annual report presents work carried out during Fiscal Year (FY) 2013 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Dr. Fei Gao. This project is divided into three tasks, namely (1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; (2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and (3) Kinetics and efficiency of scintillation: nonlinearity, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the findings and insights obtained in each of these three tasks are provided in this report. Additionally, papers published this fiscal year or currently in review are included in Appendix together with presentations given this fiscal year.

Gao, Fei; Kerisit, Sebastien N.; Xie, YuLong; Wu, Dangxin; Prange, Micah P.; Van Ginhoven, Renee M.; Campbell, Luke W.; Wang, Zhiguo

2013-10-01T23:59:59.000Z

448

HARWI?II, The New High?Energy Beamline for Materials Science at HASYLAB/DESY  

Science Journals Connector (OSTI)

The GKSS Forschungszentrum Geesthacht Germany will setup a new high?energy beamline specialized for texture strain and imaging measurements for materials science at the Hamburger Synchrotronstrahlungslabor HASYLAB of the Deutsches Elektronen?Synchrotron DESY. Four different experiments will be installed at the new wiggler HARWI?II. The high pressure cell will be run by the GFZ Potsdam Germany the high?energy diffractometer together with a microtomography camera will be run by the GKSS. A further station will allow space for the diffraction enhanced imaging setup. The optics will provide for a small white beam (0.5 mm 0.5 mm) and a large monochromatic X?ray beam (50 mm 10 mm) with an energy range of 20 to 250 keV.

Felix Beckmann; Thomas Lippmann; Joachim Metge; Thomas Dose; Tilman Donath; Markus Tischer; Klaus Dieter Liss

2004-01-01T23:59:59.000Z

449

Magnetism Digest  

Science Journals Connector (OSTI)

... and Institute of Electrical and Electronic Engineers, on the occasion of their annual conferences on magnetism and magnetic materials in the United States, have sponsored the production of a Magnetic ... references, drawn from a large number of sources, to work in the field of magnetism and magnetic materials published in the preceding year. They therefore provide a very convenient ...

J. H. PHILLIPS

1966-06-25T23:59:59.000Z

450

Molecular environmental science using synchrotron radiation: Chemistry and physics of waste form materials  

E-Print Network [OSTI]

for radiation resistance in these materials. The ratio ofradiation resistance [4] of these same pyrochlore materials

Lindle, Dennis W.; Shuh, David K.

2005-01-01T23:59:59.000Z

451

Removal of radioactive materials and heavy metals from water using magnetic resin  

DOE Patents [OSTI]

Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

Kochen, R.L.; Navratil, J.D.

1997-01-21T23:59:59.000Z

452

Requirements for a Minor in Materials Science and Engineering 1. A minor in Materials Science and Engineering can be earned through completion of 20 credits  

E-Print Network [OSTI]

of Fuel Cells and Batteries ENG MS/ME 530 Introduction to Micro and Nanomechanics of Solids ENG MS/ME 555 MEMS Fabrication and Materials ENG MS/ME 534 Materials Technology for Microelectronics CAS PY 451 program. 4. Students must have a declared major on record in order to apply for the Minor in Materials

453

Nano fabrication approaches for patterned magnetic recording media  

E-Print Network [OSTI]

the science and technology of patterned magnetic recordingAND QUANTUM MAGNETIC DISK. Journal of Vacuum Science &high density magnetic storage. Journal of Vacuum Science &

Choi, Chulmin

2010-01-01T23:59:59.000Z

454

Magnetism  

Science Journals Connector (OSTI)

... dipoles in applied fields". It deals with the classical (Langevin) theory of para-magnetism, anisotropy fields and magnetic measurements. In the next chapter "Atomic structure" the author ... special relevance to ferrites and the inclusion of a quite lengthy discussion of Pauli para-magnetism and of Stoner's treatment of itinerant electron ferromagnetism, though it does much to ...

E. W. LEE

1972-03-31T23:59:59.000Z

455

Trends and Future perspective of Electronic, Electro-Optic and Magnetic Materials  

Science Journals Connector (OSTI)

The approach and challenge of innovation through cross-discipline research will be presented to demonstrate the feasibility of achieving major advancement in both fundamental science...

Chang, Jim J

456

MaterialsScienceandEngineeringDepartmentColloquium 4:00 P.M. Monday, March 31, 2014  

E-Print Network [OSTI]

, Materials science and engineering Building 1304 W green street, urBana Department of Materials Science for cheaper, sustainable and more efficient products has also motivated the development of new materials in the development of new devices, whether they involve charges, heat, elec- tromagnetic radiation and even magnetic

Weaver, John H.

457

Chemistry | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Soft Matter Chemical and Engineering Materials Quantum Condensed Matter Computational Chemistry Nuclear Sciences Engineering Computer Science Earth and Atmospheric Sciences...

458

Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

149802 149802 , 1291 (2007); 318 Science et al. L. Ozyuzer, Superconductors Emission of Coherent THz Radiation from www.sciencemag.org (this information is current as of November 29, 2007 ): The following resources related to this article are available online at http://www.sciencemag.org/cgi/content/full/318/5854/1291 version of this article at: including high-resolution figures, can be found in the online Updated information and services, http://www.sciencemag.org/cgi/content/full/318/5854/1291/DC1 can be found at: Supporting Online Material found at: can be related to this article A list of selected additional articles on the Science Web sites http://www.sciencemag.org/cgi/content/full/318/5854/1291#related-content http://www.sciencemag.org/cgi/content/full/318/5854/1291#otherarticles

459

Materials and Design 24 (2003) 6978 0261-3069/03/$ -see front matter 2002 Elsevier Science Ltd. All rights reserved.  

E-Print Network [OSTI]

operate near their limits of thermal cracking and melting erosion resistances during long-burst firing. Due to their high melting temperature (controls melting- erosion resistance), high hotMaterials and Design 24 (2003) 69­78 0261-3069/03/$ - see front matter 2002 Elsevier Science Ltd

Grujicic, Mica

460

Materials Science and Engineering A245 (1998) 293299 The wettability of silicon carbide by AuSi alloys  

E-Print Network [OSTI]

Materials Science and Engineering A245 (1998) 293­299 The wettability of silicon carbide by Au. Keywords: Wettability; Contact angle; Liquid metals; Silicon carbide 1. Introduction The interface properties of silicon carbide­liquid metals (wetting, adhesion, contact interaction) are im- portant

Grigoriev, Alexei

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

JOURNAL OF MATERIALS SCIENCE LETTERS 21, 2002, 251 255 Organic-inorganic sol-gel coating for corrosion protection  

E-Print Network [OSTI]

for corrosion protection of stainless steel T. P. CHOU Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA E-mail: gzcao@u.washington.edu One of the most effective corrosion example. This is the main reason for the durability and corrosion resistance be- havior of this particular

Cao, Guozhong

462

Materials Science and Engineering A 418 (2006) 341356 Microstructural effects of AZ31 magnesium alloy on its  

E-Print Network [OSTI]

Materials Science and Engineering A 418 (2006) 341­356 Microstructural effects of AZ31 magnesium Magnesium alloys exhibit the attractive combination of low densities (1.74 g/cm3 versus 2.7 g/cm3 for Al

Tong, Wei

463

Karen I. Winey is Professor of Materials Science and Engineering at the University of Pennsylvania with a secondary appointment in  

E-Print Network [OSTI]

Karen I. Winey is Professor of Materials Science and Engineering at the University of Pennsylvania with a secondary appointment in Chemical and Biomolecular Engineering. She is also Penn's Director include both polymer nanocomposites and ion-containing polymers. In nanocomposites, she designs

464

Radioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and  

E-Print Network [OSTI]

contamination during transportation. Dispersible radioactive material must be placed in rigid, leak- tight inner be sufficient such that EMSL staff will not encounter radioactive contamination when they open the shippingRadioactive Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located

465

Materials Science and Engineering A 445446 (2007) 669675 Degradation of elastomeric gasket materials in PEM fuel cells  

E-Print Network [OSTI]

to the overall durability of the fuel cell stacks. The degradation of four commercially available gasket as well. © 2006 Elsevier B.V. All rights reserved. Keywords: Gasket material; Fuel cell; Degradation; ATR materials in PEM fuel cells Jinzhu Tana,b,1, Y.J. Chaob,, J.W. Van Zeec, W.K. Leec a College of Mechanical

Van Zee, John W.

466

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents [OSTI]

Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

1998-04-28T23:59:59.000Z

467

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents [OSTI]

Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

Gschneidner, K.A. Jr.; Pecharsky, V.K.

1998-04-28T23:59:59.000Z

468

Wafer-Scale Synthesis of Monodisperse Synthetic Magnetic Multilayer Nanorods  

Science Journals Connector (OSTI)

Wafer-Scale Synthesis of Monodisperse Synthetic Magnetic Multilayer Nanorods ... Department of Materials Science and Engineering, Department of Mechanical Engineering, and Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States ...

Mingliang Zhang; Daniel J. B. Bechstein; Robert J. Wilson; Shan X. Wang

2013-12-12T23:59:59.000Z

469

Plasma-materials interactions and impurity control in magnetically confined thermonuclear fusion machines  

Science Journals Connector (OSTI)

Progress achieved in plasma heating and magnetic confinement during the past decade has brought to the fore a number of problems which have to be solved if controlled thermonuclear fusion is to become an economic...

Dieter M. Gruen; Stanislav Vep?ek; Randy B. Wright

1980-01-01T23:59:59.000Z

470

E-Print Network 3.0 - advanced magnetic materials Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. ParkerJ. Cozzolino S. Peggs... W. Louie E. WillenJ. Muratore 12;Construction and Test of the Magnetic Mirror Model of the HTS RIA Source: Gupta, Ramesh - Superconducting...

471

Research Highlights | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Highlights Research Highlights Biology & Medicine Biotechnology & Energy Fundamental Physics Imaging Magnetism Materials Nanotechnology Superconductivity Facilities and Capabilities Instruments User Program Publications and Resources Science and Education News and Awards NScD Careers Supporting Organizations Neutron Science Home | Science & Discovery | Neutron Science | Research Highlights SHARE Research Highlights No current Research Highlights found. 1-10 of 43 Results Comprehensive phonon "map" offers direction for engineering new thermoelectric devices January 08, 2014 - To understand how to design better thermoelectric materials, researchers are using neutron scattering at SNS and HFIR to study how a compound known as AgSbTe2, or silver antimony telluride, is

472

Science-Driven Candidate Search for New Scintillator Materials: FY 2014 Annual Report  

SciTech Connect (OSTI)

This annual reports presents work carried out during Fiscal Year (FY) 2014 at Pacific Northwest National Laboratory (PNNL) under the project entitled Science-Driven Candidate Search for New Scintillator Materials (Project number: PL13-SciDriScintMat-PD05) and led by Drs. Fei Gao and Sebastien N. Kerisit. This project is divided into three tasks: 1) Ab initio calculations of electronic properties, electronic response functions and secondary particle spectra; 2) Intrinsic response properties, theoretical light yield, and microscopic description of ionization tracks; and 3) Kinetics and efficiency of scintillation: nonproportionality, intrinsic energy resolution, and pulse shape discrimination. Detailed information on the results obtained in each of the three tasks is provided in this Annual Report. Furthermore, peer-reviewed articles published this FY or currently under review and presentations given this FY are included in Appendix. This work was supported by the National Nuclear Security Administration, Office of Nuclear Nonproliferation Research and Development (DNN R&D/NA-22), of the U.S. Department of Energy (DOE).

Kerisit, Sebastien N.; Gao, Fei; Xie, YuLong; Campbell, Luke W.; Wu, Dangxin; Prange, Micah P.

2014-10-01T23:59:59.000Z

473

Progress towards materials science above 1000 GPa (10 Mbar) on the NIF laser  

SciTech Connect (OSTI)

Solid state dynamics experiments at extreme pressures, P > 1000 GPa (10 Mbar), and ultrahigh strain rates (1.e6-1.e8 1/s) are being developed for the National Ignition Facility (NIF) laser. These experiments will open up exploration of new regimes of materials science at an order of magnitude higher pressures than have been possible to date. Such extreme, solid state conditions can be accessed with a ramped pressure drive. The experimental, computational, and theoretical techniques are being developed and tested on the Omega laser. Velocity interferometer measurements (VISAR) establish the high pressure conditions generated by the ramped drive. Constitutive models for solid state strength under these conditions are tested by comparing simulations with experiments measuring perturbation growth from the Rayleigh-Taylor instability in solid state samples of vanadium. Radiography techniques using synchronized bursts of x-rays have been developed to diagnose this perturbation growth. Experiments on Omega demonstrating these techniques at peak pressures of {approx}1 Mbar will be discussed. The time resolved observation of foil cracking and void formation show the need for tamped samples and a planar drive.

Remington, B A; Park, H; Prisbrey, S T; Pollaine, S M; Cavallo, R M; Rudd, R E; Lorenz, K T; Becker, R; Bernier, J; Barton, N; Arsenlis, T; Glendinning, S G; Hamza, A; Swift, D; Jankowski, A; Meyers, M A

2009-03-12T23:59:59.000Z

474

External proton beam analysis of plasma facing materials for magnetic confinement fusion applications  

E-Print Network [OSTI]

A 1.7MV tandem accelerator was reconstructed and refurbished for this thesis and for surface science applications at the Cambridge laboratory for accelerator study of surfaces (CLASS). At CLASS, an external proton beam ...

Barnard, Harold Salvadore

2009-01-01T23:59:59.000Z

475

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect (OSTI)

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

476

SCIENCE CHINA Technological Sciences  

E-Print Network [OSTI]

SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; 2 Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; 3 School of Material Science and Engineering, Georgia Institute

Wang, Zhong L.

477

Magnetic-film atom chip with 10 $?$m period lattices of microtraps for quantum information science with Rydberg atoms  

E-Print Network [OSTI]

We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 $\\mu$m, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold $^{87}$Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

V. Y. F. Leung; D. R. M. Pijn; H. Schlatter; L. Torralbo-Campo; A. La Rooij; G. B. Mulder; J. Naber; M. L. Soudijn; A. Tauschinsky; C. Abarbanel; B. Hadad; E. Golan; R. Folman; R. J. C. Spreeuw

2013-11-18T23:59:59.000Z

478

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

V W X Y Z V W X Y Z Vaandrager, Frits (Frits Vaandrager) - Institute for Computing and Information Sciences, Radboud Universiteit Vadhan, Salil (Salil Vadhan) - Electrical Engineering and Computer Science, School of Engineering and Applied Sciences, Harvard University Vahdat, Amin (Amin Vahdat) - Department of Computer Science and Engineering, University of California at San Diego Vahid, Frank (Frank Vahid) - Department of Computer Science and Engineering, University of California at Riverside Vaidyanathan, Ramachandran "Vaidy" (Ramachandran "Vaidy" Vaidyanathan) - Department of Electrical and Computer Engineering, Louisiana State University Vajnovszki, Vincent (Vincent Vajnovszki) - Laboratoire Electronique, Informatique et Image, Université de Bourgogne

479

Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices  

E-Print Network [OSTI]

Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

Barnard, Harold Salvadore

2014-01-01T23:59:59.000Z

480

Magnetism  

Science Journals Connector (OSTI)

... THIS is a good book, and we are glad to see the subject of magnetism fully treated in a popularly written text-book. It is a second edition of ... of importance, accuracy, and exhaustiveness, places the present treatise, as far as terrestrial magnetism is concerned, much before any similar book with which we are acquainted. The correction ...

JAMES STUART

1872-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "magnetism materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

Y Z Y Z Xi, Hongwei (Hongwei Xi) - Department of Computer Science, Boston University Xia, Ge "Frank" (Ge "Frank" Xia) - Department of Computer Science, Lafayette College Xia, Xiang-Gen (Xiang-Gen Xia) - Department of Electrical and Computer Engineering, University of Delaware Xiang, Yang (Yang Xiang) - Department of Computing and Information Science, University of Guelph Xiao, Bin (Bin Xiao) - Department of Computing, Hong Kong Polytechnic University Xiao, Jing (Jing Xiao) - Department of Computer Science, University of North Carolina at Charlotte Xiao, Li (Li Xiao) - Department of Computer Science and Engineering, Michigan State University Xie, Fei (Fei Xie) - Department of Computer Science, Portland State University Xie, Geoffrey (Geoffrey Xie) - Department of Computer Science, Naval

482

Temperature and magnetic field dependent optical spectral weight in the cation-deficient colossal-magnetoresistance material La0.936Mn0.982O3  

E-Print Network [OSTI]

with the general arguments, a broad peak has been observed in 1 various Mn-based CMR materials by several groupsTemperature and magnetic field dependent optical spectral weight in the cation-deficient colossal on single-crystal samples as a function of temperature and at zero and 0.5 T magnetic fields

Homes, Christopher C.

483

Magnetic Spinner  

Science Journals Connector (OSTI)

A science toy sometimes called the magnetic spinner is an interesting class demonstration to illustrate the principles of magnetic levitation. It can also be used to demonstrate Faraday's law and a horizontally suspended physical pendulum. The levitated part contains two circular magnets encased in a plastic housing. Each magnet stays above two triangular magnets fixed to the base. The magnetic repulsive force experienced by the circular magnets is independent of their orientation; therefore the holder of these magnets can be rotated without affecting its stability. The holder with the circular magnets can be oscillated up and down as a horizontally suspended physical pendulum.

P. J. Ouseph

2006-01-01T23:59:59.000Z

484

MARS MAGNETIC DATA: THE IMPACT OF NOISE ON THE VERTICAL EXTRAPOLATION OF FIELDS AND METHODS OF SUPPRESSION. Donna M. Jurdy, Michael Stefanick, Department of Geological Sciences,  

E-Print Network [OSTI]

MARS MAGNETIC DATA: THE IMPACT OF NOISE ON THE VERTICAL EXTRAPOLATION OF FIELDS AND METHODS OF SUPPRESSION. Donna M. Jurdy, Michael Stefanick, Department of Geological Sciences, Northwestern University strongly magnetized crust; despite Mars' weak field at present, the intensity reaches about 10 times

Jurdy, Donna M.

485

VERTICAL EXTRAPOLATION OF MARS MAGNETIC POTENTIALS. Donna M. Jurdy, Michael Stefanick, Department of Geological Sciences, Northwestern University, Evanston IL 60208-2150, donna@earth.northwestern.edu.  

E-Print Network [OSTI]

VERTICAL EXTRAPOLATION OF MARS MAGNETIC POTENTIALS. Donna M. Jurdy, Michael Stefanick, Department of Geological Sciences, Northwestern University, Evanston IL 60208-2150, donna@earth.northwestern.edu. Introduction: Mars Global Surveyor MAG/ER measured strongly magnetized crust; despite Mars' weak field

Jurdy, Donna M.

486

To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S. S. Hasan and R. J. Rutten, Astrophysics and Space Science Proceed-  

E-Print Network [OSTI]

To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S. S. Hasan and R. J. Rutten, Astrophysics and Space Science Proceed- ings, Springer-Verlag, Heidelberg, Berlin, 2009. Magnetic Coupling in the Quiet Solar Atmosphere O. Steiner Kiepenheuer-Institut f

Steiner, Oskar

487

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials  

E-Print Network [OSTI]

3. Magnetism in Metals . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideIII Superconductivity, Magnetism and Charge-Density Waves in

Zocco, Diego Andrs

2011-01-01T23:59:59.000Z

488

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

H I J K L M N O P Q R S H I J K L M N O P Q R S T U V W X Y Z Gabbard, Joseph L. (Joseph L. Gabbard) - Department of Computer Science, Virginia Tech Gabor, Adriana (Adriana Gabor) - Wiskunde en Informatica, Technische Universiteit Eindhoven Gaborit, Philippe (Philippe Gaborit) - Département Maths Informatique, Université de Limoges Gaborski, Roger S. (Roger S. Gaborski) - Department of Computer Science, Rochester Institute of Technology Gabow, Harold (Harold Gabow) - Department of Computer Science, University of Colorado at Boulder Gabriel, Edgar (Edgar Gabriel) - Department of Computer Science, University of Houston Gacek, Andrew (Andrew Gacek) - Department of Computer Science and Engineering, University of Minnesota Gacs, Peter (Peter Gacs) - Department of Computer Science, Boston

489

Dynamic switching of the circulation in tapered magnetic nanodisks  

E-Print Network [OSTI]

spin structure of magnetic vortex cores. Science 298, 577 (Magnetic vortex core observation in circular dots of permalloy. Science

Uhlir, V.

2014-01-01T23:59:59.000Z

490

Using Magnetic Levitation for Three Dimensional Self-Assembly SUPPORTI G O LI E MATERIAL  

E-Print Network [OSTI]

063-N50; rectangular prisms: grade N42, 4 in ? 2 in ? 1 in, Model# NB079) were purchased from Applied from Utrecht (Cambridge, MA; www.utrechtart.com). Polyvinyl chloride tape (PVC) and aluminum tape were sink to the bottom of the container in the absence of an applied magnetic field. B) Positioning

Aizenberg, Joanna

491

Materials Under Extremes | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home | Science & Discovery | Advanced Materials | Research Areas | Materials Under Extremes SHARE Materials Under Extremes Materials that can withstand extreme conditions such...

492

Ultrafast Materials and Chemical Sciences FOA | U.S. DOE Office...  

Office of Science (SC) Website

manipulation of highly correlated electron systems in condensed matter Free electron laser science to investigate time-resolved phenomena correlated electron excitations and...

493

Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office...  

Office of Science (SC) Website

(SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

494

Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science...  

Office of Science (SC) Website

(SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

495

Materials Science and Engineering -Master Thesis -July 2011 Analysis and optimization of thin walled  

E-Print Network [OSTI]

. Materials and processes Work done Compounding realized either using pre-preg technology or Resin Infusion

Dalang, Robert C.

496

Department of Materials Science and Engineering University of Maryland, College Park, MD  

E-Print Network [OSTI]

. Scattering of Phonons, Materials: cage compounds and rattles, The Glass Limit E. Applications: Aerogels

Rubloff, Gary W.

497

National High Magnetic Field Laboratory Audio Dictionary: Resistive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Flash to stream the Magnet Minute Mark Bird Associated Links Making Magnets (audio slideshow) Making Resistive Magnets (article) Meet the Magnets Magnet Science &...

498

Learning About Magnets!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a force that can "attract" or "repel" other magnets and magnetic materials, like iron or nickel. What is a Magnet? This bar magnet is a permanent magnet. Permanent magnets can be found in the Earth as rocks and metals. Magnets have

499

Journal of Hazardous Materials 267 (2014) 6270 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of Florida, Gainesville, FL 32611, USA b State Key Laboratory of Pollution Control and Resource Reuse, School,a, , Julia Gressa , Willie Harrisa , Yuncong Lic a Department of Soil and Water Science, University of the Environment, Nanjing University, Jiangsu 210046, China c Soil and Water Science Department, Tropical Research

Ma, Lena

500

Browse by Discipline -- E-print Network Subject Pathways: Materials Science  

Office of Scientific and Technical Information (OSTI)

C D E F G H I J K L M N O P Q R S C D E F G H I J K L M N O P Q R S T U V W X Y Z Babai, László (László Babai) - Departments of Computer Science & Mathematics, University of Chicago Babaoglu, Ozalp (Ozalp Babaoglu) - Dipartimento di Informatica: Scienza e Ingegneria, Università di Bologna Bacardit, Jaume (Jaume Bacardit) - School of Computer Science, University of Nottingham Bacchus, Fahiem (Fahiem Bacchus) - Department of Computer Science, University of Toronto Bach, Francis (Francis Bach) - Département d'Informatique, École Normale Supérieure Bachmat, Eitan (Eitan Bachmat) - Department of Computer Science, Ben-Gurion University Back, Godmar (Godmar Back) - Department of Computer Science, Virginia Tech Back, Jonathan (Jonathan Back) - UCL Interaction Centre, University