Sample records for magnetism materials science

  1. Magnets & Magnet Condensed Matter Science

    E-Print Network [OSTI]

    McQuade, D. Tyler

    18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials Pressure 9 Metal to Insulator Transition on the N=0 Landau Level in Graphene 10 Evidence for Fractional Quantum Hall States in Suspended Bilayer and Trilayer Graphene 11 Fractional Quantum Hall Effect

  2. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    SciTech Connect (OSTI)

    Carwell, H.

    1997-09-19T23:59:59.000Z

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  3. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  4. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  5. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  6. Department of Materials Science &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Materials Science & Engineering #12;At the University of Virginia, students in materials science, engineering physics and engineering science choose to tackle compelling issues in materials science and engineering or engineering science

  7. MATERIALS SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Knobloch,Jürgen

    MATERIALS SCIENCE AND ENGINEERING BACHELOR OF SCIENCE MASTER OF SCIENCE Get your own impression. Materials Science and Engineering in Ilmenau stands for: + a broad and practical university education Catòlica del Peru (PUCP) in Lima/Peru and to receive a double degree in Materials Science and Engineering

  8. UNDERGRADUATE Materials Science & Engineering

    E-Print Network [OSTI]

    Tipple, Brett

    UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  9. Materials Science & Engineering

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

  10. A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

    E-Print Network [OSTI]

    Godeke, Arno

    2007-01-01T23:59:59.000Z

    Fundamental Physics Superconducting Magnets Yields: Accuraterecord setting superconducting magnet systems ITER, NMRScience, Fundamental Physics, and Superconducting Magnets

  11. Materials Science & Engineering

    E-Print Network [OSTI]

    Materials Science & Engineering In this presentation the role of materials in power generation and the person responsible for the integration of science and resources in the Materials Science & Technology University in Mexico City and a Ph.D. in Materials Engineering from Rensselaer Polytechnic Institute, Troy NY

  12. Materials Science & Engineering

    E-Print Network [OSTI]

    Reisslein, Martin

    Materials Science & Engineering The development of new high-performance materials for energy Research in Niskayuna, NY. He received his BS and PhD in Materials Science and Engineering at MIT. For 22 and composition of materials at higher spatial resolution, with greater efficiency, and on real materials

  13. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

  14. An in-situ accelerator-based diagnostic for plasma-material interactions science in magnetic fusion devices

    E-Print Network [OSTI]

    Hartwig, Zachary Seth

    2014-01-01T23:59:59.000Z

    Plasma-material interactions (PMI) in magnetic fusion devices such as fuel retention, material erosion and redeposition, and material mixing present significant scientific and engineering challenges, particularly for the ...

  15. MATERIALS SCIENCE ENGINEERING

    E-Print Network [OSTI]

    California at Irvine, University of

    MATERIALS SCIENCE AND ENGINEERING GRADUATE MANUAL COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA AT BERKELEY October 23, 2013 #12;Materials Science and Engineering University of California at Berkeley Page 2 Subject Matter · Outcome of the Preliminary Exam #12;Materials Science and Engineering University

  16. Ames Laboratory scientists create cheaper magnetic material for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory scientists create cheaper magnetic material for cars, wind turbines Contacts: For release: April 23, 2015 Karl A. Gschneidner, Division of Materials Sciences and...

  17. INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE

    E-Print Network [OSTI]

    Simaan, Nabil

    .m.satterwhite@vanderbilt.edu Interdisciplinary Graduate Program in Materials Science Vanderbilt University School of Engineering PMB 350106INTERDISCIPLINARY MATERIALS SCIENCE GRADUATE PROGRAM IN MATERIALS SCIENCE Materials advancements, faculty members from chemistry, physics, materials engineering, chemical engineering, electrical

  18. JOURNAL OF MATERIALS SCIENCE 37 (2002) 2441 2446 Influence of L uders bands on magnetic

    E-Print Network [OSTI]

    Clapham, Lynann

    2002-01-01T23:59:59.000Z

    is primarily utilized for the detection of corrosion defects in oil and gas pipelines [6, 7]. As most and gas pipelines during in-service aging act as stress raisers as these pipelines are operated at up. The MFL results indicate that magnetic flux leaks out into the air from regions with L ¨uders bands due

  19. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science The Quest for Efficiency in Thermoelectric Nanowires On February 26, 2015, in Materials Science, News, News & Events, Research & Capabilities Sandia researchers...

  20. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect (OSTI)

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)

    2013-12-15T23:59:59.000Z

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (?1 m), high-current (?1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields – in between plasma shots – to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ?5 ?m into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  1. ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Nanomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Science Chemistry Physics Engineering Nanomaterials Introductory Engineering 5 CP #12;

  2. ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP

    E-Print Network [OSTI]

    Pfeifer, Holger

    ADVANCED MATERIALS Curriculum Biomaterials Materials Science I 5 CP Materials Science II 5 CP Lab Materials Science II 5 CP Computational Methods in Materials Science 4 CP Lab Materials Science I 5 CP Physical Chemistry 4 CP General Chemistry 2 CP Synthesis of Org. & Inorg. Materials 4 CP Introductory Solid

  3. Superconductivity and Magnetism: Materials Properties

    E-Print Network [OSTI]

    .g. within high-Tc superconductivity, magnetic superconductors, MgB2, CMR materials, nanomagnetism and spin#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 Risø National Laboratory Roskilde, Denmark ISBN 87-550-3244-3 ISSN 0907-0079 #12;Superconductivity

  4. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for magnetic circular dichroism (XMCD) and magnetic scattering experiments. Sunset Yellow 6-ID-B: Resonant and In-Field Scattering Beamline 6-ID-B,C is the primary beamline on...

  5. Action Plan Materials Science

    E-Print Network [OSTI]

    Fitze, Patrick

    sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

  6. Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of

    E-Print Network [OSTI]

    Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

  7. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass, Computational Modeling & Simulation, CRF, Energy, Energy Storage, Materials Science, News, News & Events, Nuclear Energy, Partnership, Renewable Energy, Research &...

  8. Giant Magnetic Effects Induced in Hybrid Materials | U.S. DOE...

    Office of Science (SC) Website

    Giant Magnetic Effects Induced in Hybrid Materials Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic...

  9. Materials Sciences and Engineering Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

  10. Panel 3 - material science

    SciTech Connect (OSTI)

    Sarrao, John L [Los Alamos National Laboratory; Yip, Sidney [MIT

    2010-01-01T23:59:59.000Z

    In the last decades, NNSA's national security challenge has evolved, and the role of simulation and computation has grown dramatically. The process of certifying nuclear weapons performance has changed from one based on integrated tests to science-based certification in which underground nuclear tests have been replaced by large-scale simulations, appropriately validated with fundamental experimental data. Further, the breadth of national security challenges has expanded beyond stewardship of a nuclear deterrent to a broad range of global and asymmetric threats. Materials challenges are central to the full suite of these national security challenges. Mission requirements demand that materials perform predictably in extreme environments -- high pressure, high strain rate, and hostile irradiation and chemical conditions. Considerable advances have been made in incorporating fundamental materials physics into integrated codes used for component certification. On the other hand, significant uncertainties still remain, and materials properties, especially at the mesoscale, are key to understanding uncertainties that remain in integrated weapons performance codes and that at present are treated as empirical knobs. Further, additional national security mission challenges could be addressed more robustly with new and higher performing materials.

  11. Boston University College of Engineering Division of Materials Science & Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Theory of Elasticity MS 784 Topics in Materials Science ENGINEERING MANAGEMENT (4 cr) CourseBoston University College of Engineering Division of Materials Science & Engineering MEng Program and Statistical Materials AND MS 577 Electronic Optical and Magnetic Properties of Materials OR CAS PY 543

  12. Materials Science Application Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPA

  13. Materials Science and Materials Chemistry for Large Scale Electrochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

  14. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participated in AMII to Support American-Made Wind-Turbine Blades On December 3, 2014, in Computational Modeling & Simulation, Energy, Materials Science, News, News &...

  15. Sandia National Laboratories: materials science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selected for Outstanding Engineer Award On December 10, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar...

  16. Boston University College of Engineering Division of Materials Science & Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Boston University College of Engineering Division of Materials Science & Engineering MEng Program and Statistical Materials AND MS 577 Electronic Optical and Magnetic Properties of Materials OR CAS PY 543 structured Engineering Management Course (4 cr); 3 other courses (12 credits) can be engineering, science

  17. NREL: Energy Sciences - Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletterAcademy AlumniNews BelowMaterials

  18. Materials Science and Engineering B 126 (2006) 230235 Alloying, co-doping, and annealing effects on the magnetic and optical

    E-Print Network [OSTI]

    Dietz, Nikolaus

    are formed. Atomic force microscopy revealed MOCVD-like step flow growth patterns and a mean surface consist of semi- conductors doped with rare earth or transition metals to provide magnetic functionality on the magnetic and optical properties of MOCVD-grown Ga1-xMnxN Matthew H. Kanea,b, Martin Strassburga,d, Ali

  19. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  20. A Materials World Materials science and Engineering at the ANU

    E-Print Network [OSTI]

    A Materials World Materials science and Engineering at the ANU For a challenging and rewarding a career in materials science and engineering. Materials science is emerging as one of the most important. Researchers at ANU's Department of Electronic Materials Engineering are leading nanotube science

  1. Materials and Metallurgy Materials Science and Metallurgical Engineering

    E-Print Network [OSTI]

    Provancher, William

    Materials and Metallurgy Materials Science and Metallurgical Engineering Objective Students "Rocks and Materials Science" Presentation. Review uses of rocks. Explain that engineers extract Engineers to efficiently and safely extract ore, Metallurgical Engineers to refine the copper, and Materials

  2. Background Material Important Questions about Magnetism

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

  3. Materials & Engineering Sciences Center

    E-Print Network [OSTI]

    Atoms to Continuum Sandia: 40 years of Hydrogen Science and EngineeringSandia: 40 years of Hydrogen Microsensors CombustionEngineering Science Hydrogen: the renewable energy carrier for the 21st Century for complex hydrides (engineering properties, safety, contaminations....) Other Hydrogen Storage Concepts

  4. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  5. A study of magnetically annealed ferromagnetic materials

    E-Print Network [OSTI]

    Ramos, Domingo

    1961-01-01T23:59:59.000Z

    OF SCIENCE August 1961 Major Subject: Electrical Engineering A STUDY OF MAGNETICALLY ANNEALED FERROMAGNETIC MATERIALS A Thesis By 0 ca o o W C DOMINGO RAMOS App ved as to style and content by: r Ct- Chairman of Co ittee Head of Department... coeffrcients ranged from 41. 8 to 75. 8 oersted-microseconds. The Br/Bs ratio for the specimens which gave the highest response vol- tages varied from 0. 66 to 0. 88 and the coercive force ranged from 0. 850 to 1. 410 oersteds. The squareness ratio...

  6. Materials Science and Technology Mechanical and Materials Engineering

    E-Print Network [OSTI]

    Birmingham, University of

    Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

  7. Sandia National Laboratories: materials science and engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science and engineering Joint Hire Increases Materials Science Collaboration for Sandia, UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  8. MATERIALS SCIENCE HEALTHCARE POLICY

    E-Print Network [OSTI]

    Falge, Eva

    for Polymer Research are paving the way to optimizing organic substances for use in solar cells, light-emitting diodes and memory chips, and are using molecular materials to develop electronic components

  9. Materials Science and Engineering Graduate Program Requirements

    E-Print Network [OSTI]

    Simons, Jack

    Materials Science and Engineering Graduate Program Requirements The Department of Materials Science received their B.S. degree from Materials Science and Engineering at the University of Utah and received by the Supervisory Committee All petitions must be presented to the Materials Science and Engineering faculty

  10. The Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Texas at Arlington, University of

    The Department of Materials Science and Engineering 325 Woolf Hall · Box 19031 · 817-272-2398 www.uta.edu/mse Overview The interdisciplinary field of materials science and engineering has become critical to many and scientists with education and training in materials science and engineering. The Materials Science

  11. Introduction Materials science and engineering is on

    E-Print Network [OSTI]

    Prentiss, Mara

    Introduction Materials science and engineering is on a plateau. As a field, it has been one is biomaterials. A Short History of Materials Science and Engineering Materials science and engineering (MS&E) has and engineering. What is the Next BigThing for Materials Science? A50-year history of productive reinven- tion

  12. Materials Science Program Graduate Studies Handbook

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    Materials Science Program Graduate Studies Handbook 2012-2014 Lynda McGarry, Materials Science@chem.rochester.edu #12;University of Rochester Graduate Handbook Materials Science Program updated December 2012 Page 2 and Exit Exams 15 Plan A Thesis Exams 15 Plan B Exams 16 List of Materials Science faculty 17 Ph.D. Student

  13. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyForThe StandardInspiringJennaInstitute

  14. Journal of Magnetism and Magnetic Materials ] (

    E-Print Network [OSTI]

    McHenry, Michael E.

    magnetic properties were measured with a vibrating sample magnetometer. The mass-specific power loss.40.Rs Keywords: Nanocrystalline alloys; Amorphous alloys; Field annealing; Power loss; Soft magnets the hysteretic power loss while maintaining high-temperature operability [4]. Other goals have included studies

  15. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf NSEC »INNOVATIONFaces

  16. Materials Science and Engineering Graduate Program Requirements

    E-Print Network [OSTI]

    Tipple, Brett

    Materials Science and Engineering Graduate Program Requirements GRADUATE PROGRAMS The Department of Materials Science and Engineering at the University of Utah offers three graduate degrees: Master of Science petitions must be presented to the Materials Science and Engineering faculty for review and voting during

  17. Page 1 of 2 MATERIALS ENGINEERING SCIENCE

    E-Print Network [OSTI]

    Mukhopadhyay, Sharmila M.

    Page 1 of 2 ME 370/570 MATERIALS ENGINEERING SCIENCE Fall 2011 TEXT: W. D. Callister, Materials: This is the first course where most of you will be introduced to Materials Science & Engineering. All engineers need) is normally the first part of a 2-course sequence: ME 370: Materials Engineering Science - Introduction ME 371

  18. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  19. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  20. Journal of Magnetism and Magnetic Materials ] (

    E-Print Network [OSTI]

    Schumann, Rolf

    width of internal field fluctuations. For the ``normal'' TR of the metallic magnets SmCo5; Sm2Co17 of the parameters for SmCo5 and barium ferrite. Susceptibility measurements with small alternating fields, carried out at different points of the TR curve, as well as repeating TR-experiments at SmCo5 demonstrate

  1. Materials Science and Engineering Program Objectives

    E-Print Network [OSTI]

    Lin, Zhiqun

    Materials Science and Engineering Program Objectives Within the scope of the MSE mission, the objectives of the Materials Engineering Program are to produce graduates who: A. practice materials engineering in a broad range of industries including materials production, semiconductors, medical

  2. Materials Science | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials ScienceMaterials

  3. What is Materials Science and Engineering?

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    What is Materials Science and Engineering? Materials Science and Engineering (MS&E) is an interdisciplinary field devoted to providing the world with better materials and materials processing technology. Much of MS&E is devoted to understanding how the structure of a material affects its macroscopic

  4. Materials Science & Engineering | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPA Advanced

  5. Materials science matchmaker | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials science matchmaker ORNL-UTK joint faculty helps students navigate national lab network As a joint faculty appointee, David Mandrus conducts materials synthesis research...

  6. Materials Science Materials science has had a profound influence on the development of our technologically

    E-Print Network [OSTI]

    New Hampshire, University of

    Materials Science Materials science has had a profound influence on the development of our of materials. In addition, the materials engineer seeks to discover methods of fabricating materials specifically on materials science. In this group, research is being conducted on fracture and fatigue

  7. BACHELOR OF MATERIALS SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Thomas, David D.

    1 BACHELOR OF MATERIALS SCIENCE AND ENGINEERING PROGRAM DEPARTMENT OF CHEMICAL ENGINEERING-5762) #12;2 TABLE OF CONTENTS I. MATERIALS SCIENCE AND ENGINEERING (MSE) 3 II. PROGRAM EDUCATIONAL MAP FOR MSE MAJORS 13 #12;3 I. MATERIALS SCIENCE AND ENGINEERING (MSE) Advances in technology

  8. The Future of Materials Science and Engineering

    E-Print Network [OSTI]

    Li, Mo

    The Future of Materials Science and Engineering: An Industry Perspective May 14-15, 2013 #12;Proceedings of the Symposium on "The Future of Materials Science and Engineering: An Industry Perspective requirements and applications. Materials science and engineering (MSE) programs at universities across

  9. Thermal Casimir Force between Magnetic Materials

    E-Print Network [OSTI]

    G. L. Klimchitskaya; B. Geyer; V. M. Mostepanenko

    2009-11-21T23:59:59.000Z

    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectric properties of the metal plates.

  10. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production of battery cells, magnetic field processing, specialized rolling technologies, additive manufacturing, etc. Laboratories for comprehensive evaluations of low-level...

  11. Journal of Magnetism and Magnetic Materials 252 (2002) 159161 Magnetically induced alignment of FNS

    E-Print Network [OSTI]

    Reznikov, Yuri

    Journal of Magnetism and Magnetic Materials 252 (2002) 159­161 Magnetically induced alignment the observation of magnetically controlled anchoring of ferro-nematic suspensions. We found that application of a weak magnetic field to a cell with the ferro-suspension induces an easy orientation axis with weak

  12. Materials Science Applications at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPAScience

  13. Minor in Materials Science (EMTS) Department of Chemical Engineering & Materials Science

    E-Print Network [OSTI]

    Woodall, Jerry M.

    (concurrent enrollment recommended) EMS 180 Materials in Engineering Design 4 S C- or better in ENG 452/10/2013 Minor in Materials Science (EMTS) Department of Chemical Engineering & Materials Science majoring in engineering, physical sciences, biological sciences, and mathematics. Completion of the minor

  14. Materials sciences programs, Fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  15. FWP executive summaries: Basic energy sciences materials sciences programs

    SciTech Connect (OSTI)

    Samara, G.A.

    1996-02-01T23:59:59.000Z

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  16. Magnetic spectroscopy and microscopy of functional materials

    SciTech Connect (OSTI)

    Jenkins, C.A.

    2011-01-28T23:59:59.000Z

    Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).

  17. Frontiers in Catalysis Science and Engineering Materials Science

    E-Print Network [OSTI]

    Frontiers in Catalysis Science and Engineering Materials Science Chemical Imaging Date: May 13 the quality of human life but also critical to our survival. To power the planet for a better future

  18. Materials Science and Engineering Onsite Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology...

  19. Sandia National Laboratories: Materials Science and Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CapabilitiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project...

  20. Introduction to Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2014-06-02 08:56:54...

  1. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and HC) Suite of nondestructive pulsed magnets up to 100 tesla Thermoacoustics and fluid dynamics Transport, magnetism, and thermodynamic characterization at extreme conditions of...

  2. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science, News, News & Events, Office of Science, Research & Capabilities Research on topological insulators (TIs) has drawn intensive interests. The type-II InAsGaSb...

  3. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Washington DC, Sandian's Christopher San Marchi (manager of Sandia's Hydrogen and Metallurgy Science Dept.) and Brian Somerday (also in the Hydrogen and Metallurgy Science...

  4. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA in materials engineering and applied physics. The topics include dielectric/ferroelectric materials, magnetic by the Course: ABET A: Ability to apply mathematics, science and engineering principles ABET B: Ability

  5. Advanced Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

  6. Magnetization and magnetostriction in highly magnetostrictive materials

    SciTech Connect (OSTI)

    Thoelke, J.B.

    1993-05-26T23:59:59.000Z

    The majority of this research has been in developing a model to describe the magnetostrictive properties of Terfenol-D, Tb{sub 1{minus}x}Dy{sub x}Fe{sub y} (x = 0.7-0.75 and y = 1.8--2.0), a rare earth-iron alloy which displays much promise for use in device applications. In the first chapter an introduction is given to the phenomena of magnetization and magnetostriction. The magnetic processes responsible for the observed magnetic properties of materials are explained. An overview is presented of the magnetic properties of rare earths, and more specifically the magnetic properties of Terfenol-D. In the second chapter, experimental results are presented on three composition of Tb{sub 1{minus}x}Dy{sub x}Fe{sub y} with x = 0.7, y= 1.9, 1.95, and x= 0.73, y= 1.95. The data were taken for various levels of prestress to show the effects of composition and microstructure on the magnetic and magnetostrictive properties of Terfenol-D. In the third chapter, a theoretical model is developed based on the rotation of magnetic domains. The model is used to explain the magnetic and magnetostrictive properties of Terfenol-D, including the observed negative strictions and large change in strain. The fourth chapter goes on to examine the magnetic properties of Terfenol-D along different crystallographic orientations. In the fifth chapter initial data are presented on the time dependence of magnetization in nickel.

  7. Materials sciences programs, fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  8. Sports and Materials Science Course outline

    E-Print Network [OSTI]

    Birmingham, University of

    . Developments like carbon fibre composite bodyshells and suspension systems, hardened titanium alloy gears. The materials themes aim to introduce and develop knowledge in polymers, advanced composites, high performanceSports and Materials Science CF62 Course outline School of Metallurgy and Materials Success

  9. Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering

    E-Print Network [OSTI]

    Gleixner, Stacy

    Minor Form Materials Science and Engineering Department Of Biomedical, Chemical And Materials_______________________________________ Requirements for the Minor in Materials Science and Engineering: · 12 units of approved academic work CME Department requirements for a Minor in Materials Science and Engineering. Signed

  10. advanced magnetic materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the selection of materials for nano-photonic devices. Key words: Plasmonic electronic materials Peale, Robert E. 294 Modelling the Induced Magnetic Signature of Naval Vessels...

  11. applied materials science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    applied in chemical or materials sciences, physics, biology, psychology, applied maths, engineering - anything science brings clear benefits to: researchers (developing...

  12. Materials Sciences Division Integrated Safety Management Plan

    E-Print Network [OSTI]

    Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by: signed Feb. 9, 2012 Rick Kelly, Facility/EH&S Manager Submitted by: signed Feb. 9, 2012 Miquel Salmeron.1 RESPONSIBILITY AND AUTHORITY THROUGH LINE MANAGEMENT............................................................5

  13. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaff Webmaster Photobiology

  14. June 26 Training: Using Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0...

  15. The Computational Materials and Chemical Sciences Network (CMCSN...

    Office of Science (SC) Website

    The Computational Materials and Chemical Sciences Network (CMCSN) Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers...

  16. Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

  17. Sandia National Laboratories: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recent successes with metal-organic framework (MOF) materials by combining them with dye-sensitized solar cells (DSSCs). ... Fuel-Cell-Powered Mobile Lights Tested, Proven,...

  18. Graphene: from materials science to particle physics

    E-Print Network [OSTI]

    Joaquín E. Drut; Timo A. Lähde; Eero Tölö

    2010-11-02T23:59:59.000Z

    Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

  19. Magnetism in Non-Traditional Materials

    SciTech Connect (OSTI)

    Menon, Madhu

    2013-09-17T23:59:59.000Z

    We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host

  20. SURVEY OF HIGH FIELD SUPERCONDUCTING MATERIAL FOR ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Scanlan, R.

    2010-01-01T23:59:59.000Z

    1. Production status of Superconducto~ s Pabricability NbTivaluation of different superconducto~ materials is to investSupec-conductors , " in Superconductor Materials Science,

  1. Magnetic spectroscopy and microscopy of functional materials

    E-Print Network [OSTI]

    Jenkins, C.A.

    2012-01-01T23:59:59.000Z

    transitions for magnetic refrigeration. Appl Phys Lett, 97(these e?ects in magnetic refrigeration and actuation makesheat ?ow with the goal of magnetic refrigeration (adiabatic

  2. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  3. Science Gateway: The Materials Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office ofScience Education

  4. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3BenefitsSearch This page has moved to:

  5. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3BenefitsSearch This page has moved to:

  6. Materials Science and Technology Teachers Handbook

    SciTech Connect (OSTI)

    Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

    2008-09-04T23:59:59.000Z

    The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

  7. Field of Expertise Materials Science

    E-Print Network [OSTI]

    in materials research co-operates intensively with many globally active companies, such as Infineon, Austria and hybrid solar cells Ceramic semiconductors, sensors and piezoelectric components Lithium-ion batteries New welding methods RESEARCH OPPORTUNITIES FOR COMPANIES AND SCIENTIFIC PARTNERS © TU Graz© TU Graz

  8. Materials and Chemical Sciences Division annual report, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

  9. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOE Patents [OSTI]

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08T23:59:59.000Z

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  10. Journal of Magnetism and Magnetic Materials 281 (2004) 272275 Effects of high magnetic field annealing on texture and

    E-Print Network [OSTI]

    Garmestani, Hamid

    Journal of Magnetism and Magnetic Materials 281 (2004) 272­275 Effects of high magnetic field annealing on texture and magnetic properties of FePd D.S. Lia, *, H. Garmestania , Shi-shen Yanb , M China c National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive

  11. Registration Form American Society of Materials UTA Summer Camp 2014 Materials Science and Engineering,

    E-Print Network [OSTI]

    Texas at Arlington, University of

    of Materials Science and Engineering 501 W. 1st Street, Room 231 ­ Engineering Laboratory Building PO Box 19031 Arlington, TX 76019 #12;ASM International Materials Science Camp at Materials Science and Engineering of Materials Science and Engineering. The camp will provide an opportunity for the students to learn more about

  12. Bachelor of Science, Materials Science and Engineering, 2012-2013 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2012-2013 Name ID# Date General Degree to Electric Circuits ENGR 245, 245L Intro to Materials Science & Engineering & Lab 3 3 3 4 MATH 175 Calculus Mechanical Behavior of Materials MSE 380 Materials Science and Engineering Lab MSE 404 Materials Analysis

  13. Applied Physics A Materials Science & Processing

    E-Print Network [OSTI]

    Harilal, S. S.

    1 23 Applied Physics A Materials Science & Processing ISSN 0947-8396 Volume 117 Number 1 Appl. Phys. A (2014) 117:319-326 DOI 10.1007/s00339-014-8268-8 Background gas collisional effects on expanding fs at link.springer.com". #12;Background gas collisional effects on expanding fs and ns laser ablation plumes

  14. Materials Sciences programs, Fiscal year 1993

    SciTech Connect (OSTI)

    NONE

    1994-02-01T23:59:59.000Z

    This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

  15. Faculty Search Materials Science and Engineering

    E-Print Network [OSTI]

    Virginia Tech

    of polymeric membrane materials, polymeric based composites and nanocomposites, or advanced polymer at the senior level may be considered. The successful candidate will be expected to conduct scholarly research levels. Candidates with research interests in all areas of polymer engineering/polymer science

  16. Potential Materials Science Benefits from a Burning Plasma

    E-Print Network [OSTI]

    Potential Materials Science Benefits from a Burning Plasma Science Experiment S.J. Zinkle Oak Ridge;Introduction · The main materials science advances from a BPSX would occur during the R&D phase prior to construction ­e.g., CIT/BPX, ITER · Materials science opportunities during operation of a BPSX would likely

  17. Progress Materials Science Phase-field method and Materials Genome Initiative (MGI)

    E-Print Network [OSTI]

    Chen, Long-Qing

    evolution within a material are considered as the ``holy grail'' of materials science and engineering. Many of materials science and engineering. A microstructure may contain a wide variety of structural features such as an applied SPECIAL ISSUE: Materials Genome L.-Q. Chen (&) Department of Materials Science and Engineering

  18. alloying materials science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graduate students -- whose backgrounds include metallurgy, polymer science, chemistry, physics, ceramics Acton, Scott 19 Materials Science and Engineering B59 (1999) 253257...

  19. Chemical and Materials Science (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Home Advanced Photon Source About Us Useful Links Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for...

  20. Faculty of Mechanical Science and Engineering At the Institute of Materials Science, Chair of Materials Science and Nanotechnology

    E-Print Network [OSTI]

    Schubart, Christoph

    of Materials Science and Nanotechnology (Prof. G. Cuniberti), is open to work in the field of biomaterials and / or biologically inspired nanotechnology the position of a Senior Lecturer and Research Group leader (max. E 14 TV (Wissenschaftszeitvertragsgesetz ­ WissZeitVG). The scientific activities of the Chair of Materials Science and Nanotechnology

  1. Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date General Degree Science & Engineering & Lab 3-4 3 3 4 MATH 175 Calculus II MATH 275 Multivariable and Vector Calculus MATH Electrical Properties of Materials 3 MSE 312 Mechanical Behavior of Materials 3 MSE 380 Materials Science

  2. Bachelor of Science, Materials Science and Engineering, 2013-2014 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Materials Science and Engineering, 2013-2014 Name ID# Date General Degree of Materials MSE 312 Mechanical Behavior of Materials MSE 380 Materials Science and Engineering Lab MSE 404 Science & Engineering & Lab MATH 175 Calculus II MATH 275 Multivariable and Vector Calculus MATH 333

  3. Materials sciences programs: Fiscal year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  4. Materials sciences programs fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

  5. Theory VI. Computational Materials Sciences Network (CMSN)

    SciTech Connect (OSTI)

    Zhang, Z Y

    2008-06-25T23:59:59.000Z

    The Computational Materials Sciences Network (CMSN) is a virtual center consisting of scientists interested in working together, across organizational and disciplinary boundaries, to formulate and pursue projects that reflect challenging and relevant computational research in the materials sciences. The projects appropriate for this center involve those problems best pursued through broad cooperative efforts, rather than those key problems best tackled by single investigator groups. CMSN operates similarly to the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, coordinated by George Samara at Sandia. As in the Synthesis and Processing Center, the intent of the modest funding for CMSN is to foster partnering and collective activities. All CMSN proposals undergo external peer review and are judged foremost on the quality and timeliness of the science and also on criteria relevant to the objective of the center, especially concerning a strategy for partnering. More details about CMSN can be found on the CMSN webpages at: http://cmpweb.ameslab.gov/ccms/CMSN-homepage.html.

  6. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 12 N0. 1 2005

    E-Print Network [OSTI]

    Weston, Ken

    , and Geochemistry 14 MAGNET SCIENCE & TECHNOLOGY Engineering Materials, Instrumentation, and Magnet Technology Magnet Science & Technology 42 7 including Engineering Materials, Instrumentation, and Magnet TechnologyNATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 12 · N0. 1 · 2005 OPERATED BY: FLORIDA STATE

  7. UNIVERSITY OF UTAH MATERIALS SCIENCE AND ENGINEERING DEPARTMENT

    E-Print Network [OSTI]

    of this form and return to the Materials Science and Engineering Department along with a DARS report, three

  8. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science

  9. Peter W. Voorhees Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Shkel, Andrei M.

    Peter W. Voorhees Department of Materials Science and Engineering Northwestern University Evanston, IL 60208 (847) 491-7815 Experience Frank C. Engelhart Professor of Materials Science and Engineering, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 9/2000 - present

  10. Multiple Faculty Positions, All Ranks Materials Science and Engineering

    E-Print Network [OSTI]

    Multiple Faculty Positions, All Ranks Materials Science and Engineering Texas A&M University The interdisciplinary Department of Materials Science and Engineering at Texas A&M University invites applications. Applicants must have an earned doctorate in materials science and engineering or an appropriate, closely

  11. Materials Science and Engineering Graduate Program Bylaws Washington State University

    E-Print Network [OSTI]

    Collins, Gary S.

    1 Materials Science and Engineering Graduate Program Bylaws Washington State University of Materials Science and Engineering. In particular: a. To enable students to develop as successful in the field of Materials Science and Engineering. II. Graduate Faculty A. The Gradate Faculty include: 1. All

  12. Master of Materials Science & Engineering/ Master of Business Administration

    E-Print Network [OSTI]

    Firestone, Jeremy

    Master of Materials Science & Engineering/ Master of Business Administration (MMSE/MBA) Rationale this requirement in the MBA program. The creation of a dual Master of Materials Science & Engineering/MBA (MMSE of Materials Science & Engineering/ Master of Business Administration Dual Degree Admission: Students desiring

  13. Madhura Som Materials Science & Engineering, Stony Brook University

    E-Print Network [OSTI]

    Madhura Som Materials Science & Engineering, Stony Brook University Application for ASAP Board Member position I am a PhD student in the Materials Science and Engineering department at Stony Brook course ESG 111- C programming for Engineers at the Materials Science and Engineering department, at Stony

  14. From Microstructures to Properties: Statistical Aspects of Computational Materials Science

    E-Print Network [OSTI]

    Ji, Chuanshu

    and critical properties Computation of macroscopic properties always takes a center stage in materials scienceFrom Microstructures to Properties: Statistical Aspects of Computational Materials Science Chuanshu Ji 1 Abstract We discuss some statistical aspects in materials science that involve microstructures

  15. Molecular forensic science of nuclear materials

    SciTech Connect (OSTI)

    Wilkerson, Marianne Perry [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

  16. Chemistry and materials science research report

    SciTech Connect (OSTI)

    Not Available

    1990-05-31T23:59:59.000Z

    The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

  17. Magnetic spectroscopy and microscopy of functional materials

    E-Print Network [OSTI]

    Jenkins, C.A.

    2012-01-01T23:59:59.000Z

    in the classical Heusler material Co 2 FeSi (Appendix B).plated self-assembly. Nature Materials, 3:823–828, 2004.1 Concepts Functional materials are those with an industrial

  18. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Dept. of Materials and Engineering and Materials

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory J. M/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Outline of This Lecture I. Electron

  19. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, John A. (Madison, WI); Stewart, Walter F. (Marshall, WI); Henke, Michael D. (Los Alamos, NM); Kalash, Kenneth E. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  20. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03T23:59:59.000Z

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  1. School of Materials Science and Engineering Program Guide

    E-Print Network [OSTI]

    New South Wales, University of

    of the materials engineer range from materials production, including their extraction from ores and their refining in minerals, materials science has been designated as a priority area for research and development. Examples

  2. Annual report, Materials Science Branch, FY 1992

    SciTech Connect (OSTI)

    Padilla, S. [ed.

    1993-10-01T23:59:59.000Z

    This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  3. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and NuclearReportMaterials Science Bioscience

  4. Challenges in joining emerging materials Department of Materials Science and Engineering, Massachusetts

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Challenges in joining emerging materials T.W.EAGAR Department of Materials Science and Engineering, Massachusetts Institute of Technology ABSTRACT The revolution which has occurred in materials science and engineering over the past two decades has not been matched by improvements in joining science and technology

  5. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    E-Print Network [OSTI]

    Fischer, Peter

    2012-01-01T23:59:59.000Z

    Stoehr and H.C. Siegmann, „Magnetism”, Springer (2006) [93]Exploring nanoscale magnetism in advanced materials withABSTRACT Nanoscale magnetism is of paramount scientific

  6. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Han, Yehui

    This paper investigates the loss characteristics of RF magnetic materials for power conversion applications in the 10 to 100 MHz range. A measurement method is proposed that provides a direct measurement of an inductor ...

  7. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Dept. of Materials and Engineering and Materials

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory J. M://cbed.mse.uiuc.edu Theory and Practice of Electron Diffraction #12;DOE BES/DMS Materials Science and Engineering BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory Why

  8. MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 7/14/2011 RENSSELAER POLYTECHNIC INSTITUTE

    E-Print Network [OSTI]

    Salama, Khaled

    i MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 7/14/2011 RENSSELAER POLYTECHNIC INSTITUTE School of Engineering Materials Science & Engineering #12;ii MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 7/14/2011 Table of Contents Materials Science & Engineering 1

  9. MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 RENSSELAER POLYTECHNIC INSTITUTE

    E-Print Network [OSTI]

    Salama, Khaled

    i MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 RENSSELAER POLYTECHNIC INSTITUTE School of Engineering Materials Science & Engineering #12;ii MATERIALS SCIENCE AND ENGINEERING UNDERGRADUATE HANDBOOK 11/8/2010 Table of Contents Materials Science & Engineering 1

  10. Department of Chemical Engineering & Materials Science College of Engineering

    E-Print Network [OSTI]

    to expand the student's knowledge of engineering principles and applications. Each student also conductsDepartment of Chemical Engineering & Materials Science College of Engineering Michigan State of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree

  11. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect (OSTI)

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07T23:59:59.000Z

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  12. Materials Research Science and Engineering Center (MRSEC) 2013/2014 Rolling Call for Proposals for Support of

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    , Optical and Magnetic Properties MSE 470 Capstone Project I MSE 471 Capstone Project II Materials Emphasis Fundamentals of Analytical Science Chem 345 Intermediate Organic Chemistry Geol 203 Earth Materials Phys 205 and Electronic Circuits EMA 303 Mechanics of Materials Phys 321 Electric Circuits and Electronics Stat 424

  13. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, T.

    1998-06-16T23:59:59.000Z

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  14. The Natural Materials Browser: Using a Tablet Interface for Exploring Volumetric Materials Science Datasets

    E-Print Network [OSTI]

    Hollerer, Tobias

    The Natural Materials Browser: Using a Tablet Interface for Exploring Volumetric Materials Science angus.forbes@sista.arizona.edu Tony Fast Department of Materials Science Georgia Institute of Technology Barbara holl@cs.ucsb.edu ABSTRACT We present a novel tablet application, the Natural Materials Browser

  15. Fall `10 Seminar Series Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Gilchrist, James F.

    Fall `10 Seminar Series Department of Materials Science and Engineering Center for Advanced of Materials Science & Eng., University of Utah "Strain Engineering and Nanomechanical Architecture for Self Materials and Nanotechnology Seminar ­ 4:10 p.m. ­ WH 203 Refreshments served at 3:45 p.m. in Student Lounge

  16. November 2009 Peter Fratzl 1 MPG 2010+: BIOLOGICAL MATERIALS SCIENCES

    E-Print Network [OSTI]

    recognized that material properties can be critical for the biological function of molecules, tissuesNovember 2009 Peter Fratzl 1 MPG 2010+: BIOLOGICAL MATERIALS SCIENCES At a glance: A new field at the interface between biology and the materials sciences helps elucidating structure-function relations

  17. Mork Family Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Southern California, University of

    , materials science, and petroleum engineering. The reputation of the MFD for excellence in chemical Engineering MS in Materials Science MS in Petroleum Engineering PhD in Chemical Engineering PhD in Materials buildings: HEDCO Petroleum and Chemical Engineering Building Neely Petroleum and Chemical Engineering

  18. Digital lock-in detection of site-specific magnetism in magnetic materials

    DOE Patents [OSTI]

    Haskel, Daniel (Naperville, IL); Lang, Jonathan C. (Naperville, IL); Srajer, George (Oak Park, IL)

    2008-07-22T23:59:59.000Z

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  19. Static magnetic field concentration and enhancement using magnetic materials with positive permeability

    E-Print Network [OSTI]

    Sun, F

    2013-01-01T23:59:59.000Z

    In this paper a novel compressor for static magnetic fields is proposed based on finite embedded transformation optics. When the DC magnetic field passes through the designed device, the magnetic field can be compressed inside the device. After it passes through the device, one can obtain an enhanced static magnetic field behind the output surface of the device (in a free space region). We can also combine our compressor with some other structures to get a higher static magnetic field enhancement in a free space region. In contrast with other devices based on transformation optics for enhancing static magnetic fields, our device is not a closed structure and thus has some special applications (e.g., for controlling magnetic nano-particles for gene and drag delivery). The designed compressor can be constructed by using currently available materials or DC meta-materials with positive permeability. Numerical simulation verifies good performance of our device.

  20. Chemistry and Materials Science progress report, FY 1994. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

  1. Director, School of Materials Science and Engineering College of Engineering & Science, Clemson University, Clemson SC

    E-Print Network [OSTI]

    Bolding, M. Chad

    Director, School of Materials Science and Engineering College of Engineering & Science, Clemson of the School of Materials Science and Engineering. Clemson University is the land grant institution of South, and service. He or she will be a proactive partner with materials industry leaders as the School vigorously

  2. adsorption material science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering...

  3. University of Cambridge Department of Materials Science & Metallurgy

    E-Print Network [OSTI]

    Cambridge, University of

    University of Cambridge Department of Materials Science & Metallurgy Modelling of Microstructural and Metallurgy, University of Cambridge, between May 2007 and August 2007. Except where acknowledgements

  4. Magnetic Filtration Process, Magnetic Filtering Material, and Method of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, InaprilU . SMagellanForming Magnetic

  5. Minor in Engineering Materials [Administered jointly by the Faculty of Engineering (Department of Materials Science & Engineering) and the Faculty of Science

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    (Department of Materials Science & Engineering) and the Faculty of Science] Engineering materials have...1... Minor in Engineering Materials [Administered jointly by the Faculty of Engineering in cuttingedge technologies, whether related to life sciences such as in biomaterials, or engineering

  6. The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications and

    E-Print Network [OSTI]

    Stuart, Steven J.

    The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications the School of Materials Science and Engineering with additional affiliations within the University where

  7. Vidvuds Ozolins: Department of Materials Science and Engineering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vidvuds Ozolins: Department of Materials Science and Engineering UCLA & Director of DOE EFRC Molecularly Engineered Energy Materials Nov 13, 2013 | 4:00 PM - 5:00 PM Vidvuds...

  8. Chemistry and materials science progress report, FY 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

  9. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  10. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  11. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  12. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  13. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (posted 2013-05-13) Plasmarons exists ! (figure to the right) also for this system. Project To predicting the so far not measured in computational material science. You have taken the courses in Quantum physics, Solid state physics

  14. Center For Nanophase Materials Sciences Division Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    -8616 lix2@ornl.gov Education Shanghai Jiaotong University, China Materials Science & Engr. B.S., 2005 Shanghai Jiaotong University, China Materials Science M.S., 2008 University of Georgia Engineering Ph Ridge, U.S. 2009 Outstanding Thesis for Master Degree, Shanghai, China 2007 Yan Dongshen (Academician

  15. Materials and Chemical Sciences Division annual report 1989

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

  16. Yury Gogotsi Trustee Chair Professor of Materials Science and Engineering

    E-Print Network [OSTI]

    Yury Gogotsi Trustee Chair Professor of Materials Science and Engineering Founder and Director the Ukrainian Academy of Science in 1995. He performed his post- doctoral research in Germany supported for Promotion of Science (JSPS) Fellowships. Professional Affiliations (elected): Fellow of the American

  17. DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory A Tutorial on Electron Microscopy

    E-Print Network [OSTI]

    Zuo, Jian-Min "Jim"

    DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory and spectroscopy #12;DOE BES/DMS Materials Science and Engineering/Frederick Seitz Materials Research Laboratory I

  18. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    SciTech Connect (OSTI)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01T23:59:59.000Z

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  19. Fusion Nuclear Science and Technology Research Needed Now for Magnetic

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology Research Needed Now for Magnetic Fusion Energy Neil B. Morley;Outline Introduction Nuclear science and technology research needed now to enable the construction Conclusions What we are missing out on by eliminating long term technology programs? Opportunities in the Age

  20. Energy and material efficient non-circular bore Bitter magnets

    E-Print Network [OSTI]

    Akhmeteli, A

    2015-01-01T23:59:59.000Z

    There exist a number of experiments/applications where the second dimension of the bore of Bitter magnets is not fully utilized. Using an analytical solution for elliptical bore coils, we show that reducing one of the dimensions of the bore can lead to considerable decrease in consumed power and/or coil material.

  1. Engineered materials for all-optical helicity-dependent magnetic switching

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    Engineered materials for all-optical helicity-dependent magnetic switching S. Mangin1,2 *, M we explore the optical manipulation of the magnetization in engineered magnetic materials. We of engineered magnetic materials and devices. We demonstrate that AO-HDS can be observed not only in selected RE

  2. Magnetic mesoporous materials for removal of environmental wastes

    SciTech Connect (OSTI)

    Kim, Byoung Chan; Lee, Jinwoo; Um, Wooyong; Kim, Jaeyun; Joo, Jin; Lee, Jin Hyung; Kwak, Ja Hun; Kim, Jae Hyun; Lee, Changha; Lee, Hongshin; Addleman, Raymond S.; Hyeon, Taeghwan; Gu, Man Bock; Kim, Jungbae

    2011-09-15T23:59:59.000Z

    We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7 hours. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Tyrosinase aggregates in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, could be used repeatedly for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic, organic and biochemical contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.

  3. Materials Science Volume 7, Number 4

    E-Print Network [OSTI]

    Poeppelmeier, Kenneth R.

    Systems Using Gold and Silver Nanoparticles Materials for Clean H2 Production from Bioethanol Reforming

  4. Materials Science and Engineering BS/MS Program The Department of Materials Science and Engineering offers a combined BS/MS degree

    E-Print Network [OSTI]

    Tipple, Brett

    Materials Science and Engineering BS/MS Program The Department of Materials Science and Engineering currently enrolled in Major Status in the Materials Science and Engineering program can be admitted of Materials Science and Engineering at the University of Utah. A minimum 3.5 GPA is required for admission

  5. College of Engineering MSE Materials Science and Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    201, MA 213 or concurrent. MSE 395 INDEPENDENT WORK IN MATERIALS ENGINEERING. (1College of Engineering MSE Materials Science and Engineering KEY: # = new course * = course changed = course dropped University of Kentucky 2013-2014 Undergraduate Bulletin 1 MSE 101 MATERIALS ENGINEERING

  6. Fusion Materials Science Overview of Challenges and Recent Progress

    E-Print Network [OSTI]

    Fusion Materials Science Overview of Challenges and Recent Progress Steven J. Zinkle Oak Ridge: Development of new materials for structural applications is historically a long process ­ Ni3Al intermetallic alloys commercialization ­ Superalloy turbine blade development ­ Cladding and duct materials for fast

  7. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01T23:59:59.000Z

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  8. Joining of Advanced Materials: An The revolution which has occurred in materials science

    E-Print Network [OSTI]

    Eagar, Thomas W.

    science and engineering has not been matched by improve- ments in joining science and technology. 1t.materials require ever higher performance, the number of acceptable joining technologies becomes more re- stricted of the material are useless. Unless the shape and properties can be obtained economically, the product has limited

  9. Center for Nanophase Materials Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in nanostructured materials. Fieldstechniques include scanning probe microscopy, neutron scattering, optical spectroscopy and soft-matter electron and helium ion...

  10. Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Faculty and Instructional Staff in the UW-Madison Department of Materials Science & Engineering Dean, College of Engineering Professor, Materials Science & Engineering Microstructural evolution environments and radiation. Todd R. Allen Associate Professor, Engineering Physics and Materials Science

  11. Boston University College of Engineering Division of Materials Science and Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Boston University College of Engineering Division of Materials Science and Engineering Annual | Division of Materials Science and Engineering | Highlights | 1 Message from the Division Head Boston University has many interdisciplinary research activities in materials science and engineering, spanning

  12. 3.012 Fundamentals of Materials Science, Fall 2003

    E-Print Network [OSTI]

    Marzari, Nicola

    This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and ...

  13. Experimental Possibilities in Material Science enabled by FEL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Possibilities in Material Science enabled by FEL Sources Wednesday, July 1, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Joerg Hallmann, XFEL Program...

  14. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

    2010-03-30T23:59:59.000Z

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  15. DOE fundamentals handbook: Material science. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

  16. Transformational Materials Science Initiative Review June 29...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mode Easiness of assembly in discharged state Less corrosive nature of cathode materials <3> ZEBRA battery cost projection * * R.C. Galloway, C.-H. Dustmann, "ZEBRA Battery...

  17. Chemical and Engineering Materials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

  18. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA Instructor: Dr. A. Christou Textbook: Callister, William D. Jr., Fundamentals of Materials Science materials. Materials selection in engineering applications. Course Description: The course introduces

  19. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01T23:59:59.000Z

    Fusion Science, Magnetic Fusion Energy, and Related Fieldsof Science, Office of Fusion Energy Sciences, of the U.S.Fusion Science, Magnetic Fusion Energy, and Related Fields

  20. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (2013-12-05) Two-band Hubbard model of these materials. The temperature, pressure and doping driven transitions between a vast number of phases, e Gutzwiller method with the GPAW-DFT code in order to take into account the local correlations. Project

  1. Master of Science project in computational material physics

    E-Print Network [OSTI]

    Hellsing, Bo

    Master of Science project in computational material physics (2013-04-26) Engineering of ultra of remarkable properties of these materials. The temperature, pressure and doping driven transitions between correlations. Project Investigating the influence of biaxial strain on electronic properties such as self

  2. "The Future of Materials Science and Engineering

    E-Print Network [OSTI]

    Li, Mo

    with increased wear characteristics · Additive Manufacturing Processing speed, material strength, verification&D is limited and traditionally provided by device manufacturers · Technology adapted from other industries tools Opportunities #12;· Manufacturing Time and Process Step Reduction Patient digitizer to definitive

  3. Center for Nanophase Materials Sciences (CNMS) - Core Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARoleWell-Defined

  4. Advances in Materials Science for Environmental and Energy Technologies II

    SciTech Connect (OSTI)

    Matyas, Dr Josef [Pacific Northwest National Laboratory (PNNL); Ohji, Tatsuki [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Tec; Liu, Xingbo [West Virginia University, Morgantown; Paranthaman, Mariappan Parans [ORNL; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Fox, Kevin [Savannah River National Laboratory (SRNL); Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Wong-ng, Winnie [National Institute of Standards and Technology (NIST), Gaithersburg, MD

    2013-01-01T23:59:59.000Z

    The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

  5. NREL: Photovoltaics Research - Materials Science Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6 July 16, 2006Science Staff The

  6. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1986-07-24T23:59:59.000Z

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  7. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1988-10-18T23:59:59.000Z

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  8. The magnetic resonance force microscope: A new microscopic probe of magnetic materials

    SciTech Connect (OSTI)

    Hammel, P.C.; Zhang, Z. [Los Alamos National Lab., NM (United States); Midzor, M.; Roukes, M.L. [California Inst. of Tech., Pasadena, CA (United States); Wigen, P.E. [Ohio State Univ., Columbus, OH (United States); Childress, J.R. [Univ. of Florida, Gainesville, FL (United States)

    1997-08-06T23:59:59.000Z

    The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here the authors focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator.

  9. Measurement of Thermal Diffusivity and Conductivity in Advanced Nanostructured Materials

    E-Print Network [OSTI]

    Teweldebrhan, Desalegne Bekuretsion

    2012-01-01T23:59:59.000Z

    in Magnetic Materials . . . . . . . . . . . . . . . viimportants of understanding materials properties typicallyY.S. Ju, Annual Review of Materials Science, 29, 261 (1999).

  10. New Materials and Separations Science for Sustainable

    E-Print Network [OSTI]

    Keller, Arturo A.

    like? · Still using technologies developed 30-40 years ago · New materials and new insights have ­ U.S. uses 500 km3/year, brackish water reservoir in U.S. is 1,500,000 km3 · Sea water desalination geothermal plant · Thermal desalination and brine re-charge at the Salton Sea geothermal site · Combined

  11. Vanderbilt Interdisciplinary Program in Materials Science

    E-Print Network [OSTI]

    Simaan, Nabil

    on solar energy conversion, energy storage, and energy efficiency. semiconductors Spectacular new the development of materials with novel optical properties and functionalities. energy Energy is the most pressing a variety of disciplines. In recognition of this at Vanderbilt University, faculty members from chemistry

  12. Andrew A. Shapiro, Ph.D. Ph.D. Materials Science and Engineering

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Andrew A. Shapiro, Ph.D. EDUCATION Ph.D. Materials Science and Engineering University of California-SiO2." M.S. Materials Science and Engineering University of California, Los Angeles, 1989 Thesis Materials Science and Engineering 2000- 2005 Lecturer - Materials Science and Engineering 1998- 2000 Co

  13. MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    MEMORANDUM 2013/14-17 To: Members of the Department of Materials Science and Engineering Chairs of the Department of Materials Science and Engineering (MSE) for a second five-year term beginning July 1, 2014. Jun of Materials Science and Engineering Professor Uwe Erb, Department of Materials Science and Engineering

  14. Introduction to Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | National NuclearInterlibraryDocumentationTechnical'Make'Intro Chem

  15. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are here WesternWelcomeUpcoming Events

  16. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    SciTech Connect (OSTI)

    Samara, G.A.

    1997-05-01T23:59:59.000Z

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  17. Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee

    E-Print Network [OSTI]

    1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials, Columbia University 2 Plasma Science and Fusion Center, MIT December 19, 2011 Summary The proposal for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma

  18. EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

    E-Print Network [OSTI]

    Schwartz, Eric M.

    EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering Environmental Engineering 213 Black Hall Industrial and Systems Engineering 275 Florida Gym Materials Science Engineering 316 Chemical Civil & Coastal Engineering 273 Weil Hall Computer & Information Science

  19. Graduate Student and Postdoctoral Researcher openings in Computational Mechanics of Materials and Integrated Computational Materials Science & Engineering

    E-Print Network [OSTI]

    Ghosh, Somnath

    and Integrated Computational Materials Science & Engineering at Johns Hopkins University, Baltimore, USA.S. or M.S. in Mechanical Engineering, Civil Engineering, Materials Science & Engineering, Physics or any Computational Materials Science and Engineering (ICMSE) theme. The overarching goal is to overcome limitations

  20. Use of High Magnetic Field to Control Microstructural Evolution in Metallic and Magnetic Materials

    SciTech Connect (OSTI)

    Ludtka, G.M.; Mackiewicz- Ludtka, G.; Wilgen, J.B.; Kisner, R.A.

    2010-06-27T23:59:59.000Z

    The Amendment 1, referred to as Phase 2, to the original CRADA NFE-06-00414 added tasks 3 through 7 to the original statement of work that had two main tasks that were successfully accomplished in Phase 1 of this project. In this Phase 2 CRADA extension, extensive research and development activities were conducted using high magnetic field processing effects for the purpose of manipulating microstructure in the SAE 5160 steel to refine grain size isothermally and to develop nanocrystalline spacing pearlite during continuous cooling, and to enhance the formability/forgability of the non-ferrous precipitation hardening magnesium alloy AZ90 by applying a high magnetic field during deformation processing to investigate potential magnetoplasticity in this material. Significant experimental issues (especially non-isothermal conditions evolving upon insertion of an isothermal sample in the high magnetic field) were encountered in the isothermal phase transformation reversal experiments (Task 4) that later were determined to be due to various condensed matter physics phenomenon such as the magnetocaloric (MCE) effect that occurs in the vicinity of a materials Curie temperature. Similarly the experimental deformation rig had components for monitoring deformation/strain (Task 3) that were susceptible to the high magnetic field of the ORNL Thermomagnetic Processing facility 9-T superconducting magnet that caused electronic components to fail or record erroneous (very noisy) signals. Limited experiments on developing nanocrystalline spacing pearlite were not sufficient to elucidate the impact of high magnetic field processing on the final pearlite spacing since significant statistical evaluation of many pearlite colonies would need to be done to be conclusive. Since extensive effort was devoted to resolving issues for Tasks 3 and 7, only results for these focused activities are included in this final CRADA report along with those for Task 7 (described in the Objectives Section of this report).

  1. Sandia National Laboratories: Careers: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportationVice-PresidentEvents Sorry, there areMaterials

  2. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters: WeaponCybernetics: UniqueMaterials

  3. Sandia Energy - Materials Sciences and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry Simmons IsMaterials

  4. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015 FAQJanuary

  5. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015 FAQJanuaryChemical

  6. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015

  7. Chemical Sciences Division | Advanced Materials |ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the Rotating 2015AnalysisChemicalChemical

  8. Chemical and Engineering Materials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the RotatingChemical

  9. Chemical and Materials Sciences Building | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma of the RotatingChemicalChemical and

  10. Center for Nanophase Materials Sciences (CNMS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA

  11. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):

  12. Center for Nanophase Materials Sciences (CNMS) - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):CNMS News Enhanced

  13. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS Events User

  14. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS Events

  15. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS

  16. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS Summer

  17. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS SummerMessage

  18. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS SummerMessage

  19. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS SummerMessage

  20. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMS

  1. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCall for

  2. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCall

  3. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCallSummer

  4. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCallSummer

  5. Center for Nanophase Materials Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaff Highlight Nina BalkeSummerWhat's New

  6. Materials Sciences and Engineering Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials

  7. Materials Science: the science of everything | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials

  8. A Survey of Energies in Materials Science Frans Spaepen

    E-Print Network [OSTI]

    Spaepen, Frans A.

    a new or old problem by comparing its underlying energies. These conversations produced small diagramsA Survey of Energies in Materials Science Frans Spaepen Division of Engineering and Appliedth birthday. Abstract A table is presented that compares energies that govern a variety of phenomena

  9. CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY

    E-Print Network [OSTI]

    6/29/11 CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY Argonne Division, preferably by e-mail (norman@anl.gov), otherwise by regular mail (MSD-223, Argonne National Lab, Argonne, IL 60439). Please use the subject line "CMT Search" in any e-mail correspondence. Argonne

  10. Jianhua Zhou1 School of Materials Science and Engineering,

    E-Print Network [OSTI]

    Zhang, Yuwen

    thermal conductivity of random packed beds is of great interest to a wide-range of engineersJianhua Zhou1 Aibing Yu School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia Yuwen Zhang2 Department of Mechanical and Aerospace Engineering

  11. Method and apparatus for separating materials magnetically. [Patent application; iron pyrite from coal

    DOE Patents [OSTI]

    Hise, E.C. Jr.; Holman, A.S.; Friedlaender, F.J.

    1980-11-06T23:59:59.000Z

    Magnetic and nonmagnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  12. Final Report-MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS

    SciTech Connect (OSTI)

    Sumption, Mike D [OSU; Collings, E W

    2014-09-19T23:59:59.000Z

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  13. Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General Chemistry,

    E-Print Network [OSTI]

    Pfeifer, Holger

    Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General & Inorganic Materials Chemistry (4 CP) Energy Science and Technology I (5 CP) Surfaces/Interfaces/ Heterogen. Catalysis/ Electrocatalysis (5 CP) Materials Science II (5 CP) Energy Science and Technology II ( 5 CP

  14. Selected materials development for the 100 T magnet: Cu-Nb conductors with

    E-Print Network [OSTI]

    Weston, Ken

    Selected materials development for the 100 T magnet: Cu-Nb conductors with nanocomposite components (PBO) based composite for reinforcement Materials R&D for the 100-Tesla Pulsed Magnet Gregory S for this achievement was the long-term and painstaking research and development of high strength materials

  15. SCIENCE HIGHLIGHTS 2008 ANNUAL REPORT ORNL NEUTRON SCIENCES The Next Generation of Materials Research

    E-Print Network [OSTI]

    at the University of Tennessee, attended a conference in his native China. He asked a fellow scientist familiar their excite- ment. After obtaining some "made in China" samples of the superconductor's iron-based parent ANNUAL REPORT ORNL NEUTRON SCIENCES neutrons.ornl.gov 4 Some scientists predict that magnetic properties

  16. Materials Science and Engineering A 497 (2008) 212215 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2008-01-01T23:59:59.000Z

    a Department of Design and Production Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt b Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA a r t i Elsevier B.V. All rights reserved. 1. Introduction Nano-crystalline metallic materials and metal­matrix com

  17. Materials Physics Applications: The National High Magnetic Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulsed Magnetic Field Laboratory of the NHMFL in the form of a 1.4 GVA inertial storage motor-generator for high field pulsed magnets. In addition to the 60 Tesla Long Pulse Magnet...

  18. Department of Materials Science and Engineering Four Year Plan (201213 Catalog, ready for calculus)

    E-Print Network [OSTI]

    Barrash, Warren

    Department of Materials Science and Engineering Four Year Plan (201213 Catalog, ready Mechanical Behavior of Materials 3 ENGR 210 Statics 3 MSE 380 Materials Science and Engineering Lab 2 MATH by the student's advisor. #12;Department of Materials Science and Engineering Four Year Plan (201213

  19. Basic science research to support the nuclear material focus area

    SciTech Connect (OSTI)

    Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

    2002-01-01T23:59:59.000Z

    The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  20. Basic Science Research to Support the Nuclear Materials Focus Area

    SciTech Connect (OSTI)

    Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

    2002-02-26T23:59:59.000Z

    The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

  1. Chemistry and Materials Science Directorate 2005 Annual Report

    SciTech Connect (OSTI)

    Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

    2006-08-08T23:59:59.000Z

    In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent discovery of a new source of coherent light adds a new tool to an array of methods we use to more fully understand the properties of materials. Insights into the early stages of polymer crystallization may lead to new materials for our national-security mission and private industry. (3) Science Supporting National Objectives at the Intersection of Chemistry, Materials Science, and Biology--We are improving drug binding for cancer treatment through the use of new tools that are helping us characterize protein-antibody interactions. By probing proteins and nucleic acids, we may gain an understanding of Alzheimer's, Mad Cow, and other neurodegenerative diseases. (4) Applied Nuclear Science for Human Health and National Security--Our work with cyanobacteria is leading to a fuller understanding of how these microorganisms affect the global carbon cycle. We are also developing new ways to reduce nuclear threats with better radiation detectors. Dynamic Teams: The dynamic teams section illustrates the directorate's organizational structure that supports a team environment across disciplinary and institutional boundaries. Our three divisions maintain a close relationship with Laboratory programs, working with directorate and program leaders to ensure an effective response to programmatic needs. CMS's divisions are responsible for line management and leadership, and together, provide us with the flexibility and agility to respond to change and meet program milestones. The three divisions are: Materials Science and Technology Division; Chemistry and Chemical Engineering Division; and Chemical Biology and Nuclear Science Division. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes. The dynamic teams section also presents the work of CMS's postdoctoral fellows, who bring to the Laboratory many of the most recent advances taking place in academic departments and provide a research stimulus to established research teams. Postdo

  2. Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators

    SciTech Connect (OSTI)

    Anne Seifert; Louis Nadelson

    2011-06-01T23:59:59.000Z

    Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

  3. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  4. Magnetic mesoporous material for the sequestration of algae

    DOE Patents [OSTI]

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09T23:59:59.000Z

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  5. Co-op and Internship Program Department of Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Janssen, Michel

    Co-op and Internship Program Department of Chemical Engineering and Materials Science June 2013 Engineering and Materials Science (CEMS) supports both Industrial Internships and Co-op Industrial Assignments for qualified upper division students in the Chemical Engineering (ChEn) and Materials Science and Engineering

  6. Double Degree programme in Bachelor of Engineering in Materials Science & Engineering

    E-Print Network [OSTI]

    Chaudhuri, Sanjay

    Double Degree programme in Bachelor of Engineering in Materials Science & Engineering (Honours Rationale The Materials Science and Engineering (MSE) programme is built on the solid foundation.Eng. in Materials Science and Engineering and B.Sc. (Hons.) in Physics, a student must have: · Completed a minimum

  7. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA problem in Materials Science and Engineering and then design and evaluate a strategy to address and evaluation. Prerequisites: Senior standing in Materials Science and Engineering Course goals: The main

  8. Mechanical Engineering and Materials Science The George R. Brown School of Engineering

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    212 Mechanical Engineering and Materials Science The George R. Brown School of Engineering Chair. Computer graphics re- #12;Mechanical Engineering and Materials Science 213 search involves the cooperation Requirements for B.A., B.S.M.E. in Mechanical Engineering or B.A., B.S.M.S. in Materials Science

  9. JOYCE Y. WONG Departments of Biomedical Engineering and Materials Science & Engineering

    E-Print Network [OSTI]

    JOYCE Y. WONG Professor Departments of Biomedical Engineering and Materials Science & Engineering and Engineering, 1994 Massachusetts Institute of Technology, Cambridge, MA S.B., Materials Science and Engineering, Departments of Biomedical Engineering & Materials Science & Engineering (2013-) Co-Director, Affinity Research

  10. TENURE-TRACK FACULTY POSITION Department of Materials Science and Engineering

    E-Print Network [OSTI]

    Stuart, Steven J.

    TENURE-TRACK FACULTY POSITION Department of Materials Science and Engineering Clemson University, Clemson, S. C. 29634 The Department of Materials Science and Engineering at Clemson University is seeking of materials science and engineering though preference will be given to optical glasses, metallurgy

  11. A Report on the Workshop on Gender Equity in Materials Science and Engineering

    E-Print Network [OSTI]

    Gilbert, Matthew

    A Report on the Workshop on Gender Equity in Materials Science and Engineering May 18 - 20, 2008 College Park, Maryland GENDER EQUITY IN MATERIALS SCIENCE AND ENGINEERING Sponsored by: #12;This report on the results of the Workshop on Gender Equity in Materials Science and Engineering was sponsored

  12. Mechanical Engineering and Materials Science The George R. Brown School of Engineering

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    190 Mechanical Engineering and Materials Science The George R. Brown School of Engineering Chair Engineering and Materials Science 191 Work on expert systems and robotics is done in cooperation. Degree Requirements for B.A., B.S.M.E. in Mechanical Engineering or B.A., B.S.M.S. in Materials Science

  13. Department of Materials Science and Engineering Four Year Plan (2011-12 Catalog)

    E-Print Network [OSTI]

    Barrash, Warren

    Department of Materials Science and Engineering Four Year Plan (2011-12 Catalog) FALL SEMESTER Dimensions of Technology 3 MSE 380 Materials Science and Engineering Lab 2 MATH 360 or 361 Statistics 3's advisor. #12;Materials Science and Engineering Curriculum MATH 175 Calculus II MATH 275 Multivariable

  14. Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics in metallurgy. To form a complete design­technology, it is consequently necessary to re- sort to careful

  15. Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process Modelling, H. K. D. H. Bhadeshia

    E-Print Network [OSTI]

    Cambridge, University of

    Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process.­E. Svensson. The metallurgy of the welded joint can be categorised into two major regions, the fusion zone

  16. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOE Patents [OSTI]

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2005-03-29T23:59:59.000Z

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  17. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOE Patents [OSTI]

    Sanchez, Robert O. (Los Lunas, NM); Gunewardena, Shelton (Walnut, CA); Masi, James V. (Cape Elizabeth, ME)

    2007-11-27T23:59:59.000Z

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  18. Magnetic refrigeration: Materials, design, and applications. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The bibliography contains citations concerning cryogenics using magnetic refrigerants. Refrigerant properties, magnetic materials, and thermal characteristics are discussed. Magnetic refrigerators are used for helium liquefaction, cooling superconductors, and superfluid helium production. Carnot-cycle refrigerators, reciprocating refrigerators, parasitic refrigerators, Ericsson refrigerators, and Stirling cycle refrigerators are among the types of magnetic refrigerators evaluated. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Magnetic refrigeration: Materials, design, and applications. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The bibliography contains citations concerning cryogenics using magnetic refrigerants. Refrigerant properties, magnetic materials, and thermal characteristics are discussed. Magnetic refrigerators are used for helium liquefaction, cooling superconductors, and superfluid helium production. Carnot-cycle refrigerators, reciprocating refrigerators, parasitic refrigerators, Ericsson refrigerators, and Stirling cycle refrigerators are among the types of magnetic refrigerators evaluated. (Contains a minimum of 118 citations and includes a subject term index and title list.)

  20. Biasing and fast degaussing circuit for magnetic materials

    DOE Patents [OSTI]

    Dress, W.B. Jr.; McNeilly, D.R.

    1983-10-04T23:59:59.000Z

    A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a dc current and alternately apply a selectively damped ac current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.

  1. Biasing and fast degaussing circuit for magnetic materials

    DOE Patents [OSTI]

    Dress, Jr., William B. (Lenoir City, TN); McNeilly, David R. (Maryville, TN)

    1984-01-01T23:59:59.000Z

    A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a d.c. current and alternately apply a selectively damped a.c. current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.

  2. Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to today’s best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

  3. Fourth annual progress report on special-purpose materials for magnetically confined fusion reactors

    SciTech Connect (OSTI)

    Not Available

    1982-08-01T23:59:59.000Z

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. The Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits.

  4. Materials Science and Engineering A 516 (2009) 248252 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Gubicza, Jenõ

    2009-01-01T23:59:59.000Z

    for the processing of age-hardenable alloys by ECAP at room temperature Nguyen Q. Chinha,b, , Jen o Gubiczaa , Tomasz of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA: Aging Al­Zn­Mg alloys Equal-channel angular pressing (ECAP) Precipitation Supersaturated alloys a b

  5. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect (OSTI)

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15T23:59:59.000Z

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  6. Chemistry and Materials Science Department annual report, 1988--1989

    SciTech Connect (OSTI)

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

    1989-12-31T23:59:59.000Z

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  7. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA of Noncrystalline Materials, Tensile Fracture at Low Temperatures, Engineering Aspects of Fracture, High Temperature and microstructure affect mechanical properties of various engineering materials including metals, ceramics, polymers

  8. Division of Materials Sciences and Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date: Contact:DisclaimersMaterials Sciences and

  9. Sandia National Laboratories: Research: Materials Science: About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters: WeaponCybernetics: UniqueMaterials Science

  10. Sandia National Laboratories: Research: Materials Science: Video Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters: WeaponCybernetics:Materials Science

  11. Materials Science & Technology, MST: Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterialsMPA AdvancedMST

  12. MSE Concurrent Enrollment Approval Form Materials Science & Engineering IOWA STATE UNIVERSITY Request/Approval to apply/enroll as a concurrent student in Materials Science & Engineering

    E-Print Network [OSTI]

    Vaswani, Namrata

    01/10 MSE Concurrent Enrollment Approval Form Materials Science & Engineering · IOWA STATE UNIVERSITY Request/Approval to apply/enroll as a concurrent student in Materials Science & Engineering Name ISU ID# (Please Print) I am requesting approval to concurrently pursue my BS/graduate degrees and I

  13. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    SciTech Connect (OSTI)

    Johnson, Francis

    2014-06-30T23:59:59.000Z

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.

  14. Characterizing artificial electromagnetic materials and their hybridization with fundamentally resonant magnetic materials

    E-Print Network [OSTI]

    Gollub, Jonah Nathan

    2008-01-01T23:59:59.000Z

    4 Ferromagnetic Materials in Microstrip Structures . . . 4.1Ferromagnetic Materials . . . . . . . . . . . . . . 4.3 The1: positive material 1 , µ 1 > 0 . . . . . . . . . . . . . .

  15. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-02-11T23:59:59.000Z

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  16. EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

    E-Print Network [OSTI]

    Schwartz, Eric M.

    EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering Science and Engineering 126 MAE B(Materials Engineering) Next to Reitz Union Mechanical & Aerospace Engineering 316 CHE Civil & Coastal Engineering 273 Weil Hall Computer & Information Science & Engineering E

  17. College of Applied Science and Engineering The George S. Ansell Department of Metallurgical and Materials Engineering

    E-Print Network [OSTI]

    .D. or an equivalent degree in Metallurgical Engineering, Materials Science and Engineering, or related field, and have;College of Applied Science and Engineering The George S. Ansell Department of Metallurgical and MaterialsCollege of Applied Science and Engineering The George S. Ansell Department of Metallurgical

  18. Thermal Stability of MnBi Magnetic Materials. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because Mn is easy to react with oxygen. MnO formation is irreversible and causes degradation to the magnetic properties. In this paper, we report our effort on developing MnBi...

  19. Special-purpose materials for magnetically confined fusion reactors. Third annual progress report

    SciTech Connect (OSTI)

    Not Available

    1981-11-01T23:59:59.000Z

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits.

  20. 3.15 Electrical, Optical & Magnetic Materials and Devices, Fall 2003

    E-Print Network [OSTI]

    Ross, Caroline A.

    Explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. Features a device-motivated ...

  1. Development of Apple Workgroup Cluster and Parallel Computing for Phase Field Model of Magnetic Materials 

    E-Print Network [OSTI]

    Huang, Yongxin

    2010-01-16T23:59:59.000Z

    using MPI. The results show the cluster system can simultaneously support up to 32 processes for MPI program with high performance of interprocess communication. The parallel computations of phase field model of magnetic materials implemented by a MPI...

  2. ELSEWER Journal of Magnetism and Magnetic Materials 169 (1997) 261-270 Superparamagnetic behavior of Fe,GaAs precipitates in GaAs

    E-Print Network [OSTI]

    Woodall, Jerry M.

    ELSEWER Journal of Magnetism and Magnetic Materials 169 (1997) 261-270 Superparamagnetic behavior; revised 6 December 1996 Abstract We present magnetization measurements on Fe3GaAs clusters distributed-dependent magnetization well above the blocking temperature indicate a particle size distribution in agreement

  3. Department of Materials Science and Engineering Four Year Plan (201314 Catalog, ready for calculus)

    E-Print Network [OSTI]

    Barrash, Warren

    Department of Materials Science and Engineering Four Year Plan (201314 Catalog, ready 360 Engineering Statistics 3 MSE 380 Materials Science and Engineering Lab 2 Technical or engineering) MSE 482 Senior Project II 3 MSE 404L Materials Analysis Lab 1 Technical or engineering elective 3

  4. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA of Polymer Science", 1997 other supplemental materials: Handouts posted on the course web site (blackboard) Catalog/Course Description: Study of polymeric engineering materials and the relationship to structural

  5. Invention and Outreach: The Center for the Science and Engineering of Materials

    E-Print Network [OSTI]

    Haile, Sossina M.

    Invention and Outreach: The Center for the Science and Engineering of Materials THE CENTER FOR THE SCIENCE AND ENGINEERING OF MATERIALS (CSEM), under the direction of Professor of Chemical Engineering research and educational aspects of polymeric, structural, photonic, and ferroelectric materials

  6. Draft Workshop Report: 30 June 2004 Workshop on Advanced Computational Materials Science

    E-Print Network [OSTI]

    Gropp, Bill

    Summary The Workshop on Advanced Computational Materials Science: Application to Fusion and Generation IV and fission (Generation IV) reactors represents a significant challenge in materials science. There is a range power plants represent an even greater challenge to structural materials development and application

  7. Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions

    SciTech Connect (OSTI)

    Singleton, John [Los Alamos National Laboratory; Aravamudhan, Shyan [U OF SOUTH FL; Goddard, Paul A [U OF OXFORD; Bhansali, Shekhar [U OF SOUTH FL

    2008-01-01T23:59:59.000Z

    The objective of this work is to study the magnetic properties of arrays of Ni-Fe nanowires electrodeposited in different template materials such as porous silicon, polycarbonate and alumina. Magnetic properties were studied as a function of template material, applied magnetic field (parallel and perpendicular) during deposition, wire length, as well as magnetic field orientation during measurement. The results show that application of magnetic field during deposition strongly influences the c-axis preferred orientation growth of Ni-Fe nanowires. The samples with magnetic field perpendicular to template plane during deposition exhibits strong perpendicular anisotropy with greatly enhanced coercivity and squareness ratio, particularly in Ni-Fe nanowires deposited in polycarbonate templates. In case of polycarbonate template, as magnetic field during deposition increases, both coercivity and squareness ratio also increase. The wire length dependence was also measured for polycarbonate templates. As wire length increases, coercivity and squarness ratio decrease, but saturation field increases. Such magnetic behavior (dependence on template material, magnetic field, wire length) can be qualitatively explained by preferential growth phenomena, dipolar interactions among nanowires, and perpendicular shape anisotropy in individual nanowires.

  8. Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Thrust The thermal physics R&D activities in MPA-CMMS have common roots in thermodynamics, fluid dynamics, and statistical mechanics. Projects range from fundamental...

  9. UNIVERSITY OF MARYLAND MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER SUMMER 2011

    E-Print Network [OSTI]

    Rubloff, Gary W.

    UNIVERSITY OF MARYLAND MATERIALS RESEARCH SCIENCE AND ENGINEERING CENTER SUMMER 2011 RESEARCH Citizen US Permanent Resident By NSF Guidelines, this program is available to US Citizens and permanent for science/math/engineering: ___________________________ Overall grade point average for all courses

  10. Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance

    SciTech Connect (OSTI)

    Ludtka, GERALD M.

    2005-03-31T23:59:59.000Z

    Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in ferromagnetic materials of relevance to the Industries of the Future (IOF).

  11. www.advmat.de www.MaterialsViews.com

    E-Print Network [OSTI]

    McCalley, James D.

    . In this context, functional magnetic materials, such as advanced hard and soft magnets, magnetic refrigerants, Christina H. Chen, S. G. Sankar, and J. Ping Liu Magnetic Materials and Devices for the 21st Century Sciences Delft University of Technology 2629 JB Delft, The Netherlands Dr. C. H. Chen Magnetics Laboratory

  12. Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Burk, Linda H.

    2014-12-16T23:59:59.000Z

    The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

  13. MSE Concurrent Enrollment Materials Science & Engineering IOWA STATE UNIVERSITY Assistantship Increase Form

    E-Print Network [OSTI]

    Vaswani, Namrata

    01/10 MSE Concurrent Enrollment Materials Science & Engineering · IOWA STATE UNIVERSITY professor as noted below. Signature Date Concurrent BS/Graduate Approvals Academic Advisor This student has

  14. Facts and figures for the chemistry and materials science directorate (March 1997)

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-03-01T23:59:59.000Z

    This document contains a wide range of budgetary, personnel, and other administrative information about LLNL and the Chemistry and Materials Science Directorate.

  15. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01T23:59:59.000Z

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  16. A PHASE CHANGE MICROVALVE USING A MELTABLE MAGNETIC MATERIAL: FERRO-WAX

    E-Print Network [OSTI]

    Oh, Kwang W.

    A PHASE CHANGE MICROVALVE USING A MELTABLE MAGNETIC MATERIAL: FERRO-WAX Kwang W. Oh, Kak Namkoong This paper presents a novel phase change microvalve using a paraffin-based ferrofluid plug (called "Ferro-Wax"). The Ferro-Wax plug is essentially leak-proof because of the phase change nature of the material; once

  17. Abstract --In electromagnetic applications, hysteresis phenomena in magnetic materials are responsible of

    E-Print Network [OSTI]

    Boyer, Edmond

    rotation. Furthermore, based on the balance of chemical equation analogies, this model has the advantage13. M M Abstract -- In electromagnetic applications, hysteresis phenomena in magnetic materials the implementation proceeding used for some hysteresis material models and how they are applied in a sensor study

  18. Journal of Hazardous Materials 178 (2010) 2934 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Factors affecting the electroJournal of Hazardous Materials 178 (2010) 29­34 Contents lists available at ScienceDirect Journal

  19. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. ThygesenProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  20. Journal of Hazardous Materials 192 (2011) 16161622 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Sparks, Donald L.

    2011-01-01T23:59:59.000Z

    Journal of Hazardous Materials 192 (2011) 1616­1622 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Effects of dissolved

  1. Cheaper magnetic material for cars, wind turbines created | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and instead uses cerium, the most abundant rare earth. The result, an alloy of neodymium, iron and boron co-doped with cerium and cobalt, is a less expensive material...

  2. Journal of Magnetism and Magnetic Materials 288 (2005) 196204 Micromagnetic studies of nickel microbars fabricated by

    E-Print Network [OSTI]

    Pesic, Batric

    2005-01-01T23:59:59.000Z

    Abstract Micromagnetic configurations and macromagnetic properties of electrodeposited nickel microbars: 75.50.Cc; 75.75.+a; 81.15.Pq Keywords: Electrodeposited nickel; Magnetic microbar; Magnetic vortex (VSM) studies of nickel microbars with round corners, produced by nanoimprinting and electrodeposition

  3. Hydrogenated Bilayer Wurtzite SiC Nanofilms: A Two-Dimensional Bipolar Magnetic Semiconductor Material

    E-Print Network [OSTI]

    Yuan, Long; Yang, Jinlong

    2012-01-01T23:59:59.000Z

    Recently, a new kind of spintronics materials, bipolar magnetic semiconductor (BMS), has been proposed. The spin polarization of BMS can be conveniently controlled by a gate voltage, which makes it very attractive in device engineering. Now, the main challenge is finding more BMS materials. In this article, we propose that hydrogenated wurtzite SiC nanofilm is a two-dimensional BMS material. Its BMS character is very robust under the effect of strain, substrate, or even a strong electric field. The proposed two-dimensional BMS material paves the way to use this promising new material in an integrated circuit.

  4. Early career scientists in chemical or materials sciences, physics, biology, psychology, applied maths, engineering: this is for you!

    E-Print Network [OSTI]

    in chemical or materials sciences, physics, biology, psychology, applied maths, engineering ­ anything science in chemical or materials sciences, physics, biology, psychology, applied maths, engineering: this is for youEarly career scientists in chemical or materials sciences, physics, biology, psychology, applied

  5. Computational Materials Sciences FOA | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of Science (SC) BESACU.S.Computational Materials

  6. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    SciTech Connect (OSTI)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01T23:59:59.000Z

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  7. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA: ABET A: Ability to apply mathematics, science and engineering principles; ABET B: Ability to design for engineering. #12;Topics Covered: Advanced materials processing topics chosen by instructor for a given course

  8. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA Covered by the Course: ABET A: Ability to apply mathematics, science and engineering principles; ABET B 462: Smart Materials (Elective) ­ 3 credits Class Schedule: Tuesday and Thursday 3:30 ­ 4

  9. Document: L1334 | Category: Physical Science, Materials License Status: Available for licensing || Texas Industry Cluster: Biotechnology and Life Sciences

    E-Print Network [OSTI]

    Lightsey, Glenn

    for licensing || Texas Industry Cluster: Biotechnology and Life Sciences Nanocomposite membranes for energy. These markets include hydrogen production, medical devices, advanced materials, and drug delivery. Development Engineering, The University of Texas at Austin OTC Contact Brian Cummings, Associate Director, Life Sciences

  10. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Ahmad, Aquil [Eaton Corporation

    2010-08-01T23:59:59.000Z

    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  11. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSPECIAL EDITION VOLUME 13 N0. 1 2006

    E-Print Network [OSTI]

    Weston, Ken

    , and Geochemistry 16 MAGNET SCIENCE & TECHNOLOGY Engineering Materials, Instrumentation, and Magnet Technology 20NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSPECIAL EDITION VOLUME 13 · N0. 1 · 2006 SUPPORTED HIGHLIGHTS FROM Life Sciences Chemistry Magnet Science & Technology Condensed Matter Page 15 #12;NHMFLREPORTS

  12. Non-Rare Earth magnetic materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEnginesVacantmagnetic materials Non-Rare Earth

  13. Production of Materials with Superior Properties Utilizing High Magnetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 BrProcurementRaw Materials - EnergyField -

  14. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  15. Department of Materials Science and Engineering University of Maryland, College Park, Maryland

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Department of Materials Science and Engineering University of Maryland, College Park, Maryland ENMA 472: Technology and Design of Engineering Materials (Elective) ­ 3 credits Class Schedule: Tuesday and their engineering applications. Criteria for the choice of materials for electronic, mechanical and chemical

  16. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen crack opening. 1. INTRODUCTION Composite materials (mainly in unidirectional lay-up) are used in windProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  17. NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films

    E-Print Network [OSTI]

    NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films is critical was proposed more than 25 years ago in the form of FeS2 pyrite--fool's gold. Unfortunately, the material has that can be used to identify new Fe-containing materials that can circumvent the limitations of FeS2 pyrite

  18. Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Institute for Critical Technology and Applied Science Seminar Series Silicone Materials; these goals are critical for the broad adoption of PV globally. Silicone polymers possess key material for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris

  19. Review on the EFDA programme on tungsten materials technology and science M. Rieth a,

    E-Print Network [OSTI]

    Nordlund, Kai

    Review on the EFDA programme on tungsten materials technology and science M. Rieth a, , J design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due structural as well as armor materials in combination with the necessary production and fab- rication

  20. neutron scattering shows magnetic excitation mechanism at work in new materials.

    E-Print Network [OSTI]

    neutron scattering shows magnetic excitation mechanism at work in new materials. In 2008 dai of orNl and the university of tennes- see led early neutron scattering studies of the pnictides. dai ticks off four main things neutron scattering has revealed about superconducting iron com- pounds

  1. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect (OSTI)

    Goodson, Boyd M.

    1999-12-01T23:59:59.000Z

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  2. ACS DIVISION OF POLYMERIC MATERIALS: SCIENCE AND ENGINEERING

    E-Print Network [OSTI]

    Gilchrist, James F.

    , interpenetrating polymer networks, IPNs. Other topics included the mechanical and morphological aspects of polymers textbook, "Introduction to Physical Polymer Science," with Wiley, 2004. While in retirement, he remains for Polymer Science and Engineering, and served as Education Chairman. His efforts at ACS have included

  3. AC 2010-1276: STUDENT UNDERSTANDING OF THE MECHANICAL PROPERTIES OF METALS IN AN INTRODUCTORY MATERIALS SCIENCE

    E-Print Network [OSTI]

    Heckler, Andrew F.

    difficulties in learning materials science. © American Society for Engineering Education, 2010 #12;Student in a university-level introductory materials science course for engineers. Through interviews of over 80 students MATERIALS SCIENCE ENGINEERING COURSE Rebecca Rosenblatt, Ohio State University Rebecca Rosenblatt

  4. MATERIALS SCIENCE AND ENGINEERING 099. Undergraduate Research and/or Independent Study. (C) Open to all students.

    E-Print Network [OSTI]

    Fang-Yen, Christopher

    MATERIALS SCIENCE AND ENGINEERING (EG) {MSE} 099. Undergraduate Research and/or Independent Study and the nanotechnology revolution confronts materials science with limitations and opportunities; examples in which an introduction to the fundamental concepts of Materials Science through an examination of the structure, property

  5. Magnetic resonance studies of cement based materials in inhomogeneous magnetic fields

    SciTech Connect (OSTI)

    Boguszynska, Joanna [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Brown, Marc C.A. [School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NR (United Kingdom); McDonald, Peter J. [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom)]. E-mail: p.mcdonald@surrey.ac.uk; Mitchell, Jonathan [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom); Mulheron, Mike [School of Engineering, University of Surrey, Surrey, GU2 7XH (United Kingdom); Tritt-Goc, Jadwiga [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Verganelakis, Dimitris A. [Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA (United Kingdom)

    2005-10-01T23:59:59.000Z

    Single-sided magnets give hope that Nuclear Magnetic Resonance (NMR) might in future be used for in situ characterisation of hydration and water transport in the surface layers of concrete slabs. Towards that end, a portable NMR-MOUSE (MObile Universal Surface Explorer) has been used to follow the hydration of gypsum based plaster, a Portland cement paste and concrete mortar. The results compare favourably to those obtained using a standard laboratory bench-top spectrometer. Further, stray field imaging (STRAFI) based methods have been used with embedded NMR detector coils to study water transport across a mortar/topping interface. The measured signal amplitudes are found to correlate with varying sample conditions.

  6. Magnetic properties of materials for MR engineering, micro-MR and beyond

    E-Print Network [OSTI]

    Wapler, Matthias C; Dragonu, Iulius; von Elverfeld, Dominik; Zaitsev, Maxim; Wallrabe, Ulrike

    2014-01-01T23:59:59.000Z

    We present the results of a systematic measurement of the magnetic susceptibility of small material samples in a 9.4 T MRI scanner. We measured many of the most widely used materials in MR engineering and MR micro technology, including various polymers, optical and substrate glasses, resins, glues, photoresists, PCB substrates and some fluids. Based on our data, we identify particularly suitable materials with susceptibilities close to water. For polyurethane resins and elastomers, we also show the MR spectra, as they may be a good substitute for silicone elastomers and good casting resins.

  7. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    SciTech Connect (OSTI)

    Wu, Z. X.; Huang, C. J. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR (China); Li, L. F. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China and State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, C (China); Li, J. W. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China and University of Chinese Academy of Sciences, Beijing 100049, PR (China); Tan, R.; Tu, Y. P. [North China Electric Power University, Beijing 102206, PR (China)

    2014-01-27T23:59:59.000Z

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  8. Clare Boothe Luce Assistant Professor Position in Hard Materials The Departments of Mechanical Engineering (me.udel.edu) and Materials Science and Engineering

    E-Print Network [OSTI]

    Gao, Guang R.

    Engineering (me.udel.edu) and Materials Science and Engineering (mseg.udel.edu) at the University of Delaware appointment will be in Mechanical Engineering or Materials Science and Engineering with additional parallel faculty searches in Soft Materials (www.udel.edu/udjobs #101714) and Nanoscale engineering (www

  9. 2260 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 6, JUNE 2010 Characterization of Oxide Materials for Exchange

    E-Print Network [OSTI]

    Laughlin, David E.

    , and David E. Laughlin1 Department of Materials Science & Engineering, DSSC, Carnegie Mellon University, Pittsburgh, PA 15213 USA Department of Electrical & Computer Engineering, DSSC, Carnegie Mellon University

  10. Acta Physicae Superficierum Vol VII 2004 EXPLORING ARTIFICIAL MAGNETISM

    E-Print Network [OSTI]

    Rau, Carl

    Acta Physicae Superficierum · Vol VII · 2004 EXPLORING ARTIFICIAL MAGNETISM FROM THIN FILMS of artificially structured, new magnetic materials play a fundamental role in modern science and technology. From thin films to patterned magnetic nano-structures, these magnetic materials and systems can be utilized

  11. Electron diffraction from cylindrical nanotubes Department of Materials Science and Engineering, Massachusetts Institute of Technology,

    E-Print Network [OSTI]

    Qin, Lu-Chang

    Electron diffraction from cylindrical nanotubes L. C. Qin Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 14 January 1994; accepted 26 April 1994) Electron diffraction intensities from cylindrical objects can be conveniently

  12. C12 PART IIA and Part IIB C12 MATERIALS SCIENCE AND METALLURGY

    E-Print Network [OSTI]

    Colton, Jonathan S.

    C12 PART IIA and Part IIB C12 MATERIALS SCIENCE AND METALLURGY Course C12: Plasticity Horwood, 1985 Kc38 G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, 1988 Ka62 W.F. Hosford and R

  13. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  14. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    SciTech Connect (OSTI)

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05T23:59:59.000Z

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  15. Nanomaterials Theory Institute Center for Nanophase Materials Sciences

    E-Print Network [OSTI]

    Pennycook, Steve

    Ridge National Laboratory (865) 576-6885 myoon@ornl.gov Publications Education: Michigan State Postdoctoral Advisor: Z.Y. Zhang, University of Science and Technology of China, Hefei, China Thesis Advisor

  16. Magnetic measurement to evaluate material properties of ferromagnetic structural steels with planar coils

    SciTech Connect (OSTI)

    Ebine, Noriya; Ara, Katsuyuki

    1999-09-01T23:59:59.000Z

    The mechanical properties of a nuclear reactor pressure vessel (RPV) are degraded by fast neutron irradiation during operation. This is well-known as so-called as radiation embrittlement of RPV and an important problem to be considered in the assessment of residual life of the nuclear reactor. Hence the development of nondestructive means is required to measure directly the degree of material degradation in RPV. Here, nondestructive measurement experiments were carried out with a planar coil to evaluate changes of material properties of ferromagnetic structural steels. Examined steels were of A533B that is a low-alloy steel and of SUS410 that is a martensitic stainless steel. The planar coil has two windings; one is of primary for excitation and the other secondary for induction of output voltage. The coil was placed on a test plate with a magnetic yoke for application of a bias dc magnetic field, and excited with a constant current of 25 Hz. Then the output voltages were measured while slowly changing the bias field by excitation of the magnetic yoke with a triangular-wave form current of 0.005 Hz. Changes of output voltages with different test plates were correlated with their mechanical and magnetic properties. The correlation is so good that this measuring method could be applied to nondestructive evaluation of material degradation in ferromagnetic structural steels.

  17. Ultrafast Material Science Probed Using Coherent X-ray Pulses from High-Harmonic

    E-Print Network [OSTI]

    Aeschlimann, Martin

    Chapter 7 Ultrafast Material Science Probed Using Coherent X-ray Pulses from High science have made it possible to generate x-ray pulses at the femto- and attosecond frontiers using either-ray pulses paves the way for a completely new generation of experiments that can capture the coupled dynamics

  18. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01T23:59:59.000Z

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  19. USSR report: Materials science and metallurgy, [November 7, 1986

    SciTech Connect (OSTI)

    NONE

    1986-11-07T23:59:59.000Z

    Partial contents include: Analysis and Testing, Coatings, Corrosion, Ferrous Metals, Nonferrous Metals and Alloys ;Brazes and Solders, Nonmetallic Materials, Preparation, Treatments, Welding, Brazing and Soldering.

  20. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema (OSTI)

    John Sarrao

    2010-01-08T23:59:59.000Z

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  1. Novel approaches to multiscale modelling in materials science

    E-Print Network [OSTI]

    Elliott, James

    of nanocrystalline metals and alloys, crack propagation in brittle solids, polymer chain relaxation in nanocomposites, Materials modelling, Molecular dynamics, Monte Carlo, Finite element analysis, Hierarchical/hybrid models in polymer nanocomposites and the control of nucleation in biomimetic materials is also given. Many

  2. NERSC, LBNL Researchers Highlight Materials Science at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVAPlayedNERSC's Science Gateways

  3. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen requirements of resin infusion and prepregs for Wind Turbine blades manufacture. The new HiPertex technologyProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  4. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Proceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite strength of unidirectional (UD) carbon fibre reinforced composites (CFRP) in the fibre direction composites are getting much attention these years, due to increasing use of these materials in large

  5. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. ThygesenProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite reduction in composites were determined analytically. The interrelations between the remaining lifetime

  6. Proceedings of the 27th Ris International Symposium on Materials Science

    E-Print Network [OSTI]

    Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen joints are found today in the electronic, automobile, aerospace, wind turbine and shipingbuildingProceedings of the 27th Risø International Symposium on Materials Science: Polymer Composite

  7. Southwest Jiaotong University, Chengdu, China, 19992006 M.S. Materials Science and Engineering, 2006

    E-Print Network [OSTI]

    Pennycook, Steve

    Jiaotong University, Chengdu, China, 1999­2006 M.S. Materials Science and Engineering, 2006 B.S. Materials (865)241-0731 wangk@ornl.gov Publications #12;U.S. Patent Zhou, W. L.; Chen, J. J.; Wang, K. "Aligned

  8. Materials Science at Oxford is an interdisciplinary subject that makes use of knowledge from Physics,

    E-Print Network [OSTI]

    Oxford, University of

    for telecommunications, semiconductors and other materials for photovoltaic energy generation, and silicon microchips for the information revolution. Materials Science is critical to the practical realisation of our desire to generate power by nuclear fusion. It is at the core of nanotechnology, the production of machines and devices

  9. Need for development of higher strength cryogenic structural materials for fusion magnet

    SciTech Connect (OSTI)

    Nishimura, Arata [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-01-27T23:59:59.000Z

    A prototype fusion reactor is targeted as a beyond ITER project which is so called DEMO. Several conceptual designs have been carried out. Recently, in order to recognize practical aspects on maintenance of the prototype reactor, the replacement procedure of in-vessel components was focused and “sector process” was proposed. The process is that the reactor consists of sectors and all sectors will be drowned and replaced in a short time. The slim coil which generated higher magnetic field is required to realize the sector process. From the point of coil design, the occupancy of the structural material on the cross section of the coil increases with an increase of magnetic field. To realize the slim coil, the cryogenic structural material with higher yield strength and the proper toughness is desired.

  10. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOE Patents [OSTI]

    Jiles, David C. (Ames, IA); Sipahi, Levent B. (Ames, IA)

    1994-05-17T23:59:59.000Z

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  11. Research and Devlopment Associate Center for Nanophase Materials Sciences Division

    E-Print Network [OSTI]

    Pennycook, Steve

    -generation energy storage platform; iii) size-defined clusters as novel catalysts. #12;Graduate advisor: Manos for Journal for Physical Chemistry, Journal of the American Chemical Society, Surface Science, Applied: i) selective conversion of biomass-derived compounds; ii) rechargeable metal-air batteries as next

  12. DOE-EERE/NIST Joint Workshop on Combinatorial Materials Science...

    Broader source: Energy.gov (indexed) [DOE]

    semi-annual workshops hosted by NCMC. Two half-day sessions were focused on discovery of hydrogen storage materials, one half-day session on fuel cell membranes, and one half-day...

  13. School of Materials Science and Engineering Program Guide

    E-Print Network [OSTI]

    New South Wales, University of

    from materials production, including their extraction from ores and their refining, to the design every part of a country's manufacturing industry. Because Australia is a country rich in minerals

  14. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Pecharsky, Alexandra O. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

    2006-10-03T23:59:59.000Z

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  15. Chemistry and Materials Science, 1990--1991. [Second annual report

    SciTech Connect (OSTI)

    Sugihara, T.T.; Bruner, J.M.; McElroy, L.A. [eds.

    1991-12-31T23:59:59.000Z

    This 2-year (FY 1990-91) contains 49 technical articles in ten sections: research sampler, metals and alloys, energetic materials, chemistry and physics of advanced materials, bonding and reactions at surfaces and interfaces, superconductivity, energy R and D, waste processing and management, characterization and analysis, and facilities and instrumentation. Two more sections list department personnel, their publications etc., consultants, and summary of department budgets. The articles are processed separately for the data base. (DLC)

  16. Numerical upscaling for the eddy-current model with stochastic magnetic materials

    SciTech Connect (OSTI)

    Eberhard, Jens P. [Computer Simulation Technology, Bad Nauheimer Strasse, 19, D-64289 Darmstadt (Germany)], E-mail: jens.eberhard@cst.com; Popovic, Dan [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: dan.popovic@stud.uni-heidelberg.de; Wittum, Gabriel [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: wittum@uni-hd.de

    2008-04-01T23:59:59.000Z

    This paper deals with the upscaling of the time-harmonic Maxwell equations for heterogeneous media. We analyze the eddy-current approximation of Maxwell's equations to describe the electric field for heterogeneous, isotropic magnetic materials. The magnetic permeability of the materials is assumed to have random heterogeneities described by a Gaussian random field. We apply the so-called Coarse Graining method to develop a numerical upscaling of the eddy-current model. The upscaling uses filtering and averaging procedures in Fourier space which results in a formulation of the eddy-current model on coarser resolution scales where the influence of sub-scale fluctuations is modeled by effective scale- and space-dependent reluctivity tensors. The effective reluctivity tensors can be obtained by solving local partial differential equations which contain a Laplacian as well as a curl-curl operator. We present a computational method how the equation of the combined operators can be discretized and solved numerically using an extended variational formulation compared to standard discretizations. We compare the results of the numerical upscaling of the eddy-current model with theoretical results of Eberhard [J.P. Eberhard, Upscaling for the time-harmonic Maxwell equations with heterogeneous magnetic materials, Physical Review E 72 (3), (2005)] and obtain a very good agreement.

  17. Materials Science and Engineering A 552 (2012) 481485 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Hong, Soon Hyung

    2012-01-01T23:59:59.000Z

    conditions and ZrN volume fraction on the mechanical properties of spark plasma sintered W/ZrN composites by spark plasma sintering at temperatures in a range of 1200­1700 C under a pressure of 50 MPaDirect Materials Science and Engineering A journal homepage: www.elsevier.com/locate/msea The effect of sintering

  18. (1) Frank May REU Summary 2012 -http://engineering.umass.edu/reu/2012/reu-students (2) "Hard Magnetic Materials: A Perspecitve" J.M.D. Coey

    E-Print Network [OSTI]

    Mountziaris, T. J.

    (1) Frank May REU Summary 2012 - http://engineering.umass.edu/reu/2012/reu-students (2) "Hard Magnetic Materials: A Perspecitve" J.M.D. Coey (3) "Perspecitve on Permanent Magnetic Materials for Energy of L10 magnetic materials" David E. Laughlin, Kumar Srinivasan, Mihaela Tanase, Lisha Wang (5) "A study

  19. Big Data of Materials Science - Critical Role of the Descriptor

    E-Print Network [OSTI]

    Ghiringhelli, Luca M; Levchenko, Sergey V; Draxl, Claudia; Scheffler, Matthias

    2014-01-01T23:59:59.000Z

    Statistical learning of materials properties or functions so far starts with a largely silent, non-challenged step: the introduction of a descriptor. However, when the scientific connection between the descriptor and the actuating mechanisms is unclear, causality of the learned descriptor-property relation is uncertain. Thus, trustful prediction of new promising materials, identification of anomalies, and scientific advancement are doubtful. We analyze this issue and define requirements for a suited descriptor. For a classical example, the energy difference of zincblende/wurtzite and rocksalt semiconductors, we demonstrate how a meaningful descriptor can be found systematically.

  20. Biomolecular Materials | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find MoreTechnicalBiomimetic Dye Molecules|

  1. Chemistry and Materials Science. Progress report, first half, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Thrust areas of the weapons-supporting research are growth, structure, and reactivity of surfaces and thin films; uranium research; physics and processing of metals; energetic materials; etc. The laboratory-directed R and D include director`s initiatives and individual projects, and transactinium institute studies.

  2. Postdoctoral Research Associate Center for Nanophase Materials Sciences

    E-Print Network [OSTI]

    Pennycook, Steve

    yxe@ornl.gov Education 2007.9-2010.12 Ph.D in physics, Jilin University, Changchun, China, joint, China 1999.9-2003.9 BSc in physics, Jilin University, Changchun, China Professional Experience 2013 2004.9-2010.12 Research Assistant, State Key Lab of Superhard Materials, Jilin University, China Honors

  3. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect (OSTI)

    Park, Jin Yong [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of) [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); Pusan National University, Busan (Korea, Republic of); Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook, E-mail: mswon@kbsi.re.kr [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of)] [Busan Center, Korea Basic Science Institute, Busan 609-735 (Korea, Republic of); Kim, Byoung Chul [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)] [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Ahn, Jung Keun [Pusan National University, Busan (Korea, Republic of)] [Pusan National University, Busan (Korea, Republic of)

    2014-02-15T23:59:59.000Z

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  4. Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Science, Nanotechnology Shanghai, China We have several job openings for experienced polymer chemists / nanotechnology. We will consider hiring chemists who are skillful in macromolecular synthesis ("click chemistry

  5. Center for Nanophase Materials Sciences (CNMS) - Past Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos Laboratory NastasiPAST EVENTS Nanoscale Science

  6. Postdoctoral Research Fellow Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysicsPitsHousingPostdocs SHARE

  7. Experimental Possibilities in Material Science enabled by FEL Sources |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids |5ExpandedNovember DIXIStanford

  8. The High Energy Materials Science Beamline (HEMS) at PETRA III

    SciTech Connect (OSTI)

    Schell, Norbert; King, Andrew; Beckmann, Felix; Ruhnau, Hans-Ulrich; Kirchhof, Rene; Kiehn, Ruediger; Mueller, Martin; Schreyer, Andreas [GKSS Research Center Geesthacht GmbH, Max-Planck-Strasse 1, 21502 Geesthacht (Germany)

    2010-06-23T23:59:59.000Z

    The HEMS Beamline at the German high-brilliance synchrotron radiation storage ring PETRA III is fully tunable between 30 and 250 keV and optimized for sub-micrometer focusing. Approximately 70 % of the beamtime will be dedicated to Materials Research. Fundamental research will encompass metallurgy, physics and chemistry with first experiments planned for the investigation of the relationship between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, and the development of smart materials or processes. For this purpose a 3D-microsctructure-mapper has been designed. Applied research for manufacturing process optimization will benefit from high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of micro-structural transformations, e.g. during welding processes. The beamline infrastructure allows accommodation of large and heavy user provided equipment. Experiments targeting the industrial user community will be based on well established techniques with standardized evaluation, allowing full service measurements, e.g. for tomography and texture determination. The beamline consists of a five meter in-vacuum undulator, a general optics hutch, an in-house test facility and three independent experimental hutches working alternately, plus additional set-up and storage space for long-term experiments. HEMS is under commissioning as one of the first beamlines running at PETRA III.

  9. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and

  10. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and--

  11. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and----

  12. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and------

  13. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science, and--------

  14. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,

  15. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,-- Energy,

  16. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,-- Energy,--

  17. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,--

  18. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,---- Energy,

  19. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,----

  20. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,------

  1. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,--------

  2. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,----------

  3. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy, science,------------

  4. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy,-- Energy, science,

  5. Browse by Discipline -- E-print Network Subject Pathways: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy, science, andEnergy,-- Energy,-- Energy, science,--

  6. Center for Nanophase Materials Sciences (CNMS) - 2010 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for Nanophase

  7. Center for Nanophase Materials Sciences (CNMS) - 2011 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for Nanophase1

  8. Center for Nanophase Materials Sciences (CNMS) - 2012 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for

  9. Center for Nanophase Materials Sciences (CNMS) - 2014 CNMS User Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for4 CNMS USER

  10. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for4 CNMS

  11. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting Center for4

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting CenterARCHIVED

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting CenterARCHIVED

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting CenterARCHIVED

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User Meeting

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User MeetingSupramolecular

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS User

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS UserTunable Metallic Conductance

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS UserTunable Metallic

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS UserTunable

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS UserTunableElectromechanical

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMS

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstanding Metal-Directed Growth

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstanding Metal-Directed

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstanding

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn Situ Phase

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn Situ PhaseJournal

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn Situ

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn SituDirect

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn SituDirectDynamic

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingIn

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormation of

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormation ofStanding

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormation ofStanding

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormation

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0 CNMSUnderstandingInFormationLarge

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated environments for

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated environments forAn

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated environments

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated environmentsCNMS

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricated

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o .FornlA0Micro/nanofabricatedTransient-Mediated

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for Ab Initio

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for Ab Initio

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for Ab

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for AbNanoscale

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method for

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method forTopographic

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method Controlling the

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method Controlling

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method ControllingDirect

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable Method

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable MethodGene Network

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable MethodGene

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable< Molecular

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable< MolecularCharge

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable<

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable<Using Neutron

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable<Using

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable<UsingMethod to

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable<UsingMethod toPhonon

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable<UsingMethod

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A Scalable<UsingMethodProbing

  8. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH A

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole of Sub-stoichiometric Defects

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole of Sub-stoichiometric

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole of Sub-stoichiometricSpin

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole of

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscale Measurements of

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscale Measurements

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscale

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscaleSynthesis of

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscaleSynthesis ofTheory

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole ofNanoscaleSynthesis

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARole

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARoleWell-Defined Deuterated

  1. Center for Nanophase Materials Sciences (CNMS) - Correlated Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARoleWell-Defined Correlated

  2. Center for Nanophase Materials Sciences (CNMS) - Functional hybrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARoleWell-Defined

  3. Center for Nanophase Materials Sciences (CNMS) - Functional hybrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH ARoleWell-DefinedArchitectures

  4. Center for Nanophase Materials Sciences (CNMS) - Inorganic Synthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH

  5. Center for Nanophase Materials Sciences (CNMS) - Ionically Active Solids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCH

  6. Center for Nanophase Materials Sciences (CNMS) - Nanomaterials Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI): Computational

  7. Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI): ComputationalGlass

  8. Center for Nanophase Materials Sciences (CNMS) - STM for Oxide Surfaces,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):CNMS NewsMolecular

  9. Center for Nanophase Materials Sciences (CNMS) - Selective deuteration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):CNMS

  10. Center for Nanophase Materials Sciences (CNMS) - Soft Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):CNMSDesign Core

  11. Center for Nanophase Materials Sciences (CNMS) - Soft matter synthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute (NTI):CNMSDesign

  12. Center for Nanophase Materials Sciences (CNMS) - TRES: Transport,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstitute

  13. Center for Nanophase Materials Sciences - Newsletter January 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming CNMSCallSummerCNMS

  14. Center for Nanophase Materials Sciences - Newsletter January 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcoming

  15. Center for Nanophase Materials Sciences - Newsletter January 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcomingCall for Proposals

  16. Center for Nanophase Materials Sciences - Newsletter January 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcomingCall for

  17. Center for Nanophase Materials Sciences - Newsletter January 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcomingCall forSummer

  18. Center for Nanophase Materials Sciences - Newsletter January 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcomingCall

  19. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS RESEARCHInstituteUpcomingCallDirector's

  20. Center for Nanophase Materials Sciences - Summer Newsletter 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMS