National Library of Energy BETA

Sample records for magnetic vortex core

  1. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetic Vortex Core Reversal by Low-Field Excitations Magnetic Vortex Core Reversal by Low-Field Excitations Print Wednesday, 28 March 2007 00:00 In micrometer-sized magnetic thin...

  2. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration SavannahMagnetic Vortex CoreMagnetic

  3. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration SavannahMagneticMagnetic Vortex Core

  4. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration SavannahMagnetic Vortex Core

  5. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration SavannahMagnetic VortexMagnetic

  6. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration SavannahMagnetic Vortex

  7. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these structures are highly stable, very strong magnetic fields of around half a tesla (approximately one-third the field of the strongest permanent magnet) were previously...

  8. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    switching mechanism, which can be understood within the framework of micromagnetic theory, gives insights into basic magnetization dynamics and their possible application to...

  9. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration SavannahMagnetic

  10. Ultra-fast magnetic vortex core reversal by a local field pulse

    SciTech Connect (OSTI)

    Rückriem, R.; Albrecht, M., E-mail: manfred.albrecht@physik.uni-augsburg.de [Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz (Germany); Schrefl, T. [St. Pölten University of Applied Science, 3100 St. Pölten (Austria)

    2014-02-03

    Magnetic vortex core reversal of a 20-nm-thick permalloy disk with a diameter of 100?nm was studied by micromagnetic simulations. By applying a global out-of-plane magnetic field pulse, it turned out that the final core polarity is very sensitive to pulse width and amplitude, which makes it hard to control. The reason for this phenomenon is the excitation of radial spin waves, which dominate the reversal process. The excitation of spin waves can be strongly suppressed by applying a local field pulse within a small area at the core center. With this approach, ultra-short reversal times of about 15 ps were achieved, which are ten times faster compared to a global pulse.

  11. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internet TheLaboratoryMagnetic

  12. Strong vortex core pinning and Barkhausen-free magnetization response in thin Permalloy disks induced by implantation of 1 × 10{sup 4} Ga{sup +} ions

    SciTech Connect (OSTI)

    Fani Sani, F., E-mail: fanisani@ualberta.ca, E-mail: mark.freeman@ualberta.ca; Losby, J. E.; Diao, Z.; Parsons, L. C.; Burgess, J. A. J.; Hiebert, W. K.; Freeman, M. R., E-mail: fanisani@ualberta.ca, E-mail: mark.freeman@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7 (Canada); National Institute for Nanotechnology (NINT), Edmonton, Alberta T6G 2M9 (Canada); Vick, D. [National Institute for Nanotechnology (NINT), Edmonton, Alberta T6G 2M9 (Canada)

    2014-05-07

    Artificial vortex core pinning sites are induced in thin Permalloy disks by point exposure to as few as 10?000 ions from a focused Ga{sup +} beam. These pinning sites yield a first-order change in the magnetization response of the disk. A single site can keep the vortex core pinned over an applied field range comparable to the vortex annihilation field of the unaltered disk. Several widely separated sites can work together to keep the core pinned in one place, while the Barkhausen effect is eliminated from the magnetization curve over a range approaching the saturation moment of the disk.

  13. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alloy) revealed a way to easily switch the vortex polarization with a small alternating electrical current, but how the switching actually occurred has remained speculative in...

  14. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    SciTech Connect (OSTI)

    Silva, R. M. da; Domínguez, D.; Aguiar, J. Albino

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  15. Deep sub-nanosecond reversal of vortex cores confined in a spin-wave potential well

    SciTech Connect (OSTI)

    Dong, Xinwei; Wang, Zhenyu; Wang, Ruifang, E-mail: wangrf@xmu.edu.cn [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China)

    2014-03-17

    A spin-wave potential well is created in a permalloy nanodisk by setting up a cylindrical cavity in the center of the sample. We then apply a single-harmonic external magnetic field perpendicular to the disk plane to switch the vortex polarity of the sample. Our micromagnetic numerical studies establish that the effective spin-wave confinement by the potential well leads to much stronger magnetization oscillation in the sample. Therefore, the vortex core can be reversed well below 200 ps and over a wide range of field frequency. Our findings present an additional efficient means for ultrafast switching of magnetic vortices.

  16. Dynamics of Magnetized Vortex Tubes in the Solar Chromosphere

    E-Print Network [OSTI]

    Kitiashvili, I N; Mansour, N N; Wray, A A

    2012-01-01

    We use 3D radiative MHD simulations to investigate the formation and dynamics of small-scale (less than 0.5 Mm in diameter) vortex tubes spontaneously generated by turbulent convection in quiet-Sun regions with initially weak mean magnetic fields. The results show that the vortex tubes penetrate into the chromosphere and substantially affect the structure and dynamics of the solar atmosphere. The vortex tubes are mostly concentrated in intergranular lanes and are characterized by strong (near sonic) downflows and swirling motions that capture and twist magnetic field lines, forming magnetic flux tubes that expand with height and which attain magnetic field strengths ranging from 200 G in the chromosphere to more than 1 kG in the photosphere. We investigate in detail the physical properties of these vortex tubes, including thermodynamic properties, flow dynamics, and kinetic and current helicities, and conclude that magnetized vortex tubes provide an important path for energy and momentum transfer from the con...

  17. Electron vortex beams in a magnetic field and spin filter

    E-Print Network [OSTI]

    Debashree Chowdhury; Banasri Basu; Pratul Bandyopadhyay

    2015-02-25

    We investigate the propagation of electron vortex beams in a magnetic field. It is pointed out that when electron vortex beams carrying orbital angular momentum propagate in a magnetic field, the Berry curvature associated with the scalar electron moving in a cyclic path around the vortex line is modified from that in free space. This alters the spin-orbit interaction, which affects the propagation of nonparaxial beams. The electron vortex beams with tilted vortex lead to spin Hall effect in free space. In presence of a magnetic field in time space we have spin filtering such that either positive or negative spin states emerge in spin Hall currents with clustering of spin $\\frac{1}{2}$ states.

  18. Riemannian geometrical constraints on magnetic vortex filaments in plasmas

    E-Print Network [OSTI]

    L. C. Garcia de Andrade

    2005-10-16

    Two theorems on the Riemannian geometrical constraints on vortex magnetic filaments acting as dynamos in (MHD) flows are presented. The use of Gauss-Mainard-Codazzi equations allows us to investigate in detail the influence of curvature and torsion of vortex filaments in the MHD dynamos. This application follows closely previous applications to Heisenberg spin equation to the investigations in magnetohydrostatics given by Schief (Plasma Physics J. 10, 7, 2677 (2003)). The Lorentz force on vortex filaments are computed and the ratio between the forces along different directions are obtained in terms of the ratio between the corresponding magnetic fields which equals also the ratio between the Frenet torsion and vortex line curvature. A similar relation between Lorentz forces, magnetic fields and twist, which is proportional to total torsion integral has been obtained by Ricca (Fluid Dyn. Res. 36,319 (2005)) in the case of inflexional desiquilibrium of magnetic flux-tubes. This is due to the fact that the magnetic vortex lines are a limit case of the magnetic flux-tubes when the lenght of the tube is much greater than the radius of the tube. Magnetic helicity equation of the filament allows us again to determine the magnetic fields ratio from Frenet curvature and torsion of the vortex lines.

  19. Impact of vortex core structure on equftion of motion V.A.Budarin

    E-Print Network [OSTI]

    1 Impact of vortex core structure on equftion of motion V.A.Budarin National Polytechnical-solid hollow and continuous vortex core wall has been examined in this paper. Two other exact solutions derived of thick-walled cylinders and task about the tube rotation. Comparison of the results obtained has been

  20. Ubiquitous Solar Eruptions Driven by Magnetized Vortex Tubes

    E-Print Network [OSTI]

    Kitiashvili, I N; Lele, S K; Mansour, N N; Wray, A A

    2013-01-01

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruptions events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push surrounding material up, generating quasiperiodic shocks. Our simulations reveal a complicated high-speed flow patterns, and thermodynamic and magnetic structure in the erupting vortex tubes. We found that the eruptions are initiated in the subsurface layers and are driven by the high-pressure gradients in the subphotosphere and photosphere, and by the Lorentz force in the higher atmosphere layers.

  1. Experimental investigation of magnetic anisotropy in spin vortex discs

    SciTech Connect (OSTI)

    Garraud, N. Arnold, D. P.

    2014-05-07

    We present experimental 2D vector vibrating sample magnetometer measurements to demonstrate the shape anisotropy effects occurring in micrometer-diameter supermalloy spin vortex discs. Measurements made for different disc sizes and orientations confirm the out-of-plane susceptibility is several orders of magnitude smaller than the in-plane susceptibility. These results validate with a high certitude that spin vortices with high diameter to thickness ratio retain in-plane-only magnetization, even when subjected to fields in the out-of-plane direction. These results contribute to further computational simulations of the dynamics of spin vortex structures in colloidal suspensions where external fields may be applied in any arbitrary direction.

  2. Fast chirality reversal of the magnetic vortex by electric current

    SciTech Connect (OSTI)

    Lim, W. L. Liu, R. H.; Urazhdin, S.; Tyliszczak, T.; Erokhin, S. G.; Berkov, D.

    2014-12-01

    The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. The reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.

  3. Role of the Vortex-Core Energy on the Berezinskii-Kosterlitz-Thouless Transition in Thin Films of NbN

    E-Print Network [OSTI]

    Raychaudhuri, Pratap

    Role of the Vortex-Core Energy on the Berezinskii-Kosterlitz-Thouless Transition in Thin Films-Kosterlitz-Thouless (BKT) transition in thin films of NbN at various film thickness, by probing the effect of vortex played by the vortex-core energy in determining the characteristic signatures of the BKT physics, and we

  4. Determination of magnetic vortex chirality using lateral spin-valve and Y. Otani

    E-Print Network [OSTI]

    Otani, Yoshichika

    Determination of magnetic vortex chirality using lateral spin-valve geometry T. Kimuraa and Y October 2005 We demonstrate the determination of the vortex chirality using a nonlocal spin-valve measurement technique in a lateral spin valve consisting of a Permalloy Py disk 1 m in diameter and a Py wire

  5. Method for the detection of a magnetic field utilizing a magnetic vortex

    DOE Patents [OSTI]

    Novosad, Valentyn (Chicago, IL); Buchanan, Kristen (Batavia, IL)

    2010-04-13

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  6. Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement

    E-Print Network [OSTI]

    Kondo, Kei-Ichi; Shinohara, Toru; Shibata, Akihiro; Kato, Seikou

    2015-01-01

    First, we give a gauge-independent definition of chromomagnetic monopoles in $SU(N)$ Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of $U(N)$ gauge-Higgs model, which is to be compared with numerical simulations of the $SU(N)$ Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.

  7. Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement

    E-Print Network [OSTI]

    Kei-Ichi Kondo; Takaaki Sasago; Toru Shinohara; Akihiro Shibata; Seikou Kato

    2015-08-08

    First, we give a gauge-independent definition of chromomagnetic monopoles in $SU(N)$ Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of $U(N)$ gauge-Higgs model, which is to be compared with numerical simulations of the $SU(N)$ Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.

  8. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    SciTech Connect (OSTI)

    Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Mól, L. A. S.

    2014-03-03

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

  9. Spectro-Polarimetric Properties of Small-Scale Plasma Eruptions Driven by Magnetic Vortex Tubes

    E-Print Network [OSTI]

    Kitiashvili, Irina N

    2014-01-01

    Highly turbulent nature of convection on the Sun causes strong multi-scale interaction of subsurface layers with the photosphere and chromosphere. According to realistic 3D radiative MHD numerical simulations ubiquitous small-scale vortex tubes are generated by turbulent flows below the visible surface and concentrated in the intergranular lanes. The vortex tubes can capture and amplify magnetic field, penetrate into chromospheric layers and initiate quasi-periodic flow eruptions that generates Alfv\\'enic waves, transport mass and energy into the solar atmosphere. The simulations revealed high-speed flow patterns, and complicated thermodynamic and magnetic structures in the erupting vortex tubes. The spontaneous eruptions are initiated and driven by strong pressure gradients in the near-surface layers, and accelerated by the Lorentz force in the low chromosphere. In this paper, the simulation data are used to further investigate the dynamics of the eruptions, their spectro-polarimetric characteristics for the...

  10. Magnetic Vortex Core Reversal by Low-Field Excitations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internet TheLaboratory

  11. Magnetic Fields in Quasar Cores II

    E-Print Network [OSTI]

    G. B. Taylor

    1999-11-22

    Multi-frequency polarimetry with the Very Long Baseline Array (VLBA) telescope has revealed absolute Faraday Rotation Measures (RMs) in excess of 1000 rad/m/m in the central regions of 7 out of 8 strong quasars studied (e.g., 3C 273, 3C 279, 3C 395). Beyond a projected distance of ~20 pc, however, the jets are found to have |RM| < 100 rad/m/m. Such sharp RM gradients cannot be produced by cluster or galactic-scale magnetic fields, but rather must be the result of magnetic fields organized over the central 1-100 pc. The RMs of the sources studied to date and the polarization properties of BL Lacs, quasars and galaxies are shown to be consistent so far with the predictions of unified schemes. The direct detection of high RMs in these quasar cores can explain the low fractional core polarizations usually observed in quasars at centimeter wavelengths as the result of irregularities in the Faraday screen on scales smaller than the telescope beam. Variability in the RM of the core is reported for 3C 279 between observations taken 1.5 years apart, indicating that the Faraday screen changes on that timescale, or that the projected superluminal motion of the inner jet components samples a new location in the screen with time. Either way, these changes in the Faraday screen may explain the dramatic variability in core polarization properties displayed by quasars.

  12. NUMERICAL SIMULATION OF VORTEX BREAKDOWN

    E-Print Network [OSTI]

    Prete, Vincenza Del

    2011-01-01

    axis of the tube and is called the vortex core. The basicthe tube plus a perturbation caused by the vortex breakdown.of the tube. Thus the occurrence of the vortex breakdown

  13. First-Order Transition in the Magnetic Vortex Matter in Superconducting MgB2 Tuned by Disorder

    E-Print Network [OSTI]

    Boyer, Edmond

    First-Order Transition in the Magnetic Vortex Matter in Superconducting MgB2 Tuned by Disorder T such as Wigner crystals, charge density waves, magnetic bubble arrays, or vortices in type-II superconductors posi- tional correlations. Vortices in superconductors rapidly became the system of choice

  14. Vortex Zero Modes, Large Flux Limit and Ambjørn-Nielsen-Olesen Magnetic Instabilities

    E-Print Network [OSTI]

    Stefano Bolognesi; Chandrasekhar Chatterjee; Sven Bjarke Gudnason; Kenichi Konishi

    2014-09-23

    In the large flux limit vortices become flux tubes with almost constant magnetic field in the interior region. This occurs in the case of non-Abelian vortices as well, and the study of such configurations allows us to reveal a close relationship between vortex zero modes and the gyromagnetic instabilities of vector bosons in a strong background magnetic field discovered by Nielsen, Olesen and Ambj{\\o}rn. The BPS vortices are exactly at the onset of this instability, and the dimension of their moduli space is precisely reproduced in this way. We present a unifying picture in which, through the study of the linear spectrum of scalars, fermions and W bosons in the magnetic field background, the expected number of translational, orientational, fermionic as well as semilocal zero modes is correctly reproduced in all cases.

  15. Effect of boundary conditions on axial flow in a concentrated vortex core Richard K. Cohn and Manoochehr M. Koochesfahani

    E-Print Network [OSTI]

    Koochesfahani, Manoochehr M.

    of confined flows such as vortex chambers, and swirl separators (e.g., hydrocyclones). More recently

  16. Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field

    SciTech Connect (OSTI)

    Ludu, A.; Van Deun, J.; Cuyt, A.; Milosevic, M. V.; Peeters, F. M.

    2010-08-15

    We solve the linear Ginzburg-Landau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.

  17. Anisotropic Formation of Magnetized Cores in Turbulent Clouds

    E-Print Network [OSTI]

    Chen, Che-Yu

    2015-01-01

    In giant molecular clouds (GMCs), shocks driven by converging turbulent flows create high-density, strongly-magnetized regions that are locally sheetlike. In previous work, we showed that within these layers, dense filaments and embedded self-gravitating cores form by gathering material along the magnetic field lines. Here, we extend the parameter space of our three-dimensional, turbulent MHD core formation simulations. We confirm the anisotropic core formation model we previously proposed, and quantify the dependence of median core properties on the pre-shock inflow velocity and upstream magnetic field strength. Our results suggest that bound core properties are set by the total dynamic pressure (dominated by large-scale turbulence) and thermal sound speed c_s in GMCs, independent of magnetic field strength. For models with Mach number between 5 and 20, the median core masses and radii are comparable to the critical Bonnor-Ebert mass and radius defined using the dynamic pressure for P_ext. Our results corres...

  18. Magnetized neutron stars with superconducting cores: Effect of entrainment

    E-Print Network [OSTI]

    Palapanidis, K; Lander, S K

    2015-01-01

    We construct equilibrium configurations of magnetized, two-fluid neutron stars using an iterative numerical method. We assume that the neutron star has two regions: the core, which is modelled as a two-component fluid consisting of type-II superconducting protons and superfluid neutrons, and the crust, a region composed of normal matter. Taking a new step towards more complete equilibrium models, we include the effect of entrainment, which implies that a magnetic force acts on neutrons, too. We consider purely poloidal field cases and present improvements to an earlier numerical scheme for solving equilibrium equations, by introducing new convergence criteria. We find that entrainment results in qualitative differences in the structure of field lines across the crust-core boundary and along the magnetic axis.

  19. Pulsed Magnetic Welding for Advanced Core and Cladding Steel

    SciTech Connect (OSTI)

    Cao, Guoping; Yang, Yong

    2013-12-19

    To investigate a solid-state joining method, pulsed magnetic welding (PMW), for welding the advanced core and cladding steels to be used in Generation IV systems, with a specific application for fuel pin end-plug welding. As another alternative solid state welding technique, pulsed magnetic welding (PMW) has not been extensively explored on the advanced steels. The resultant weld can be free from microstructure defects (pores, non-matallic inclusions, segregation of alloying elements). More specifically, the following objectives are to be achieved, 1) To design a suitable welding apparatus fixture, and optimize welding parameters for repeatable and acceptable joining of the fuel pin end-plug. The welding will be evaluated using tensile tests for lap joint weldments and helium leak tests for the fuel pin end-plug. 2) investigate the microstructural and mechanical properties changes in PMW weldments of proposed advanced core and cladding alloys. 3) Simulate the irradiation effects on the PWM weldments using ion irradiation.

  20. The Holographic Superconductor Vortex

    E-Print Network [OSTI]

    Marc Montull; Alex Pomarol; Pedro J. Silva

    2009-09-02

    A gravity dual of a superconductor at finite temperature has been recently proposed. We present the vortex configuration of this model and study its properties. In particular, we calculate the free energy as a function of an external magnetic field, the magnetization and the superconducting density. We also find the two critical magnetic fields that define the region in which the vortex configurations are energetically favorable.

  1. Transition between vortex rings and MAP solutions for electrically charged magnetic solutions

    SciTech Connect (OSTI)

    Wong, Khai-Ming; Soltanian, Amin; Teh, Rosy

    2014-03-05

    We consider the bifurcation and transition of axially symmetric monopole-antimonopole pair (MAP) and vortex ring solutions in the presence of electric charge for the SU(2) Yang-Mills-Higgs field theory. Here we investigate the properties of MAP/vortex ring solutions with n = 3,? = 0.65, for different Higgs field strength ?. For ? < 4.93, there is only one fundamental branch of vortex ring solution, but at the critical value of ?{sub b} = 4.93, branching happens and 2 sets of new solutions appeared. The new branch with less energy is a full MAP solution while the branch with higher energy contains MAP at the beginning and separation between poles of MAP on the z-axis reduces gradually and at another critical value of ?{sub t} = 14.852, they merge together at z = 0. Beyond this point the solutions change to the vortex ring solutions and a transitions between MAP and vortex ring solutions happens at this branch.

  2. GREEN'S FUNCTIONS OF VORTEX OPERATORS

    E-Print Network [OSTI]

    Polchinski, Joseph

    2013-01-01

    8 g Olesen vortex • , somewhere in space. The tube between cvortex operators have surface clustering, as this implies that magnetic flux is forming into tubes.

  3. Spin waves in circular soft magnetic dots at the crossover between vortex and single domain state

    E-Print Network [OSTI]

    Metlushko, Vitali

    Facility, Cornell University, Ithaca, New York, 14853 USA 6Departamento de Fisica de Materiales We report on linear spin dynamics in the vortex state of Permalloy cylindrical dots subjected In many physical systems such as liquids, plasma, super- conductors, ferromagnets, etc., the topological

  4. Development of vortex state in circular magnetic nanodots: Theory and experiment RID A-9247-2009 

    E-Print Network [OSTI]

    Mejia-Lopez, J.; Altbir, D.; Landeros, P.; Escrig, J.; Romero, A. H.; Roshchin, Igor V.; Li, C-P; Fitzsimmons, M. R.; Batlle, X.; Schuller, Ivan K.

    2010-01-01

    in a variety of spintronics and magnetic storage applications, including magnetic bit- patterned media and magnetic random access memory. One of the most studied types of such structures are nanoscaled disks denoted as ?nanodots? which have been...

  5. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    represents the binary 0 and the other the binary 1. Driven by the consumer's insatiable demand for inexpensive devices that store more data in a smaller area and access it faster...

  6. Resonant amplification of vortex-core oscillations by coherent magnetic-field pulses

    E-Print Network [OSTI]

    Yu, Young-Sang

    2014-01-01

    2002). 41. Cowburn, R. P. Spintronics: Change of direction.Past achievements in spintronics have largely relied on an

  7. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    devices that store more data in a smaller area and access it faster while consuming less power, the data storage industry is ever on the lookout for new materials with new...

  8. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld's largestX-Ray ImagingImaging

  9. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld's largestX-Ray

  10. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld's largestX-RayX-Ray Imaging of

  11. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind PowerX-RayX-Ray

  12. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind PowerX-RayX-RayX-Ray

  13. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind PowerX-RayX-RayX-RayX-Ray

  14. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind

  15. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-Ray Imaging of the Dynamic

  16. Vortex pinning by inhomogeneities in type-II superconductors

    E-Print Network [OSTI]

    Chapman, Jon

    Vortex pinning by inhomogeneities in type-II superconductors S.J. Chapman #3;y G. Richardson zx of a curvilinear vortex in an inhomogeneous type-II superconducting material in the limit as the vortex core radius of the superconducting electrons acts as a pinning potential for the vortex, so that vortices will be attracted

  17. Observation of Half-Height Magnetization Steps in Sr2RuO4

    E-Print Network [OSTI]

    Goldbart, Paul M.

    of the magnetic moment of a conventional, full-quantum vortex (FQV), for which Dq ¼ Dq ¼ T2p. The Meissner with the entry of single vor- tices. To facilitate this aim, we have fabricated annular samples by drilling, but evades complications arising from the vortex core. For an annular conventional superconductor

  18. Collapse and fragmentation of magnetic molecular cloud cores with the Enzo AMR MHD code. II. Prolate and oblate cores

    SciTech Connect (OSTI)

    Boss, Alan P.; Keiser, Sandra A.

    2014-10-10

    We present the results of a large suite of three-dimensional models of the collapse of magnetic molecular cloud cores using the adaptive mesh refinement code Enzo2.2 in the ideal magnetohydrodynamics approximation. The cloud cores are initially either prolate or oblate, centrally condensed clouds with masses of 1.73 or 2.73 M {sub ?}, respectively. The radial density profiles are Gaussian, with central densities 20 times higher than boundary densities. A barotropic equation of state is used to represent the transition from low density isothermal phases, to high density optically thick phases. The initial magnetic field strength ranges from 6.3 to 100 ?G, corresponding to clouds that are strongly to marginally supercritical, respectively, in terms of the mass to magnetic flux ratio. The magnetic field is initially uniform and aligned with the clouds' rotation axes, with initial ratios of rotational to gravitational energy ranging from 10{sup –4} to 0.1. Two significantly different outcomes for collapse result: (1) formation of single protostars with spiral arms, and (2) fragmentation into multiple protostar systems. The transition between these two outcomes depends primarily on the initial magnetic field strength, with fragmentation occurring for mass to flux ratios greater than about 14 times the critical ratio for prolate clouds. Oblate clouds typically fragment into several times more clumps than prolate clouds. Multiple, rather than binary, system formation is the general rule in either case, suggesting that binary stars are primarily the result of the orbital dissolution of multiple protostar systems.

  19. A dynamically collapsing core and a precursor of a core in a filament supported by turbulent and magnetic pressures

    SciTech Connect (OSTI)

    Furuya, Ray S.; Kitamura, Yoshimi; Shinnaga, Hiroko E-mail: kitamura@isas.jaxa.jp

    2014-10-01

    To study physical properties of the natal filament gas around the cloud core harboring an exceptionally young low-mass protostar GF 9-2, we carried out J = 1-0 line observations of {sup 12}CO, {sup 13}CO, and C{sup 18}O molecules using the Nobeyama 45 m telescope. The mapping area covers ? one-fifth of the whole filament. Our {sup 13}CO and C{sup 18}O maps clearly demonstrate that the core formed at the local density maxima of the filament, and the internal motions of the filament gas are totally governed by turbulence with Mach number of ?2. We estimated the scale height of the filament to be H = 0.3-0.7 pc, yielding the central density of n {sub c} = 800-4200 cm{sup –3}. Our analysis adopting an isothermal cylinder model shows that the filament is supported by the turbulent and magnetic pressures against the radial and axial collapse due to self-gravity. Since both the dissipation timescales of the turbulence and the transverse magnetic fields can be comparable to the free-fall time of the filament gas of 10{sup 6} yr, we conclude that the local decay of the supersonic turbulence and magnetic fields made the filament gas locally unstable, hence making the core collapse. Furthermore, we newly detected a gas condensation with velocity width enhancement to ?0.3 pc southwest of the GF 9-2 core. The condensation has a radius of ?0.15 pc and an LTE mass of ?5 M {sub ?}. Its internal motion is turbulent with Mach number of ?3, suggesting a gravitationally unbound state. Considering the uncertainties in our estimates, however, we propose that the condensation is a precursor of a cloud core, which would have been produced by the collision of the two gas components identified in the filament.

  20. Magnetic Epoxy Resin Nanocomposites Reinforced with Core-Shell Structured

    E-Print Network [OSTI]

    Guo, John Zhanhu

    are also investigated in this work. KEYWORDS: polymer-matrix composites · magnetic properties · rheology advantages, polymer nanocomposites have found extensive applications such as proton conducting membranes*, Integrated Composites Laboratory (ICL), Dan F Smith Department of Chemical Engineering, and Department

  1. Microfluxgate sensor with amorphous cobalt (Co-Nb-Zr) soft magnetic core for electronic compass

    SciTech Connect (OSTI)

    Na, Kyoung-Won; Yuan, Jingli; Ji, Joon-Ho; Choi, Sang-On [Nano Fabrication Center, Samsung Advanced Institute of Technology (SAIT) (Korea, Republic of); MEMS Laboratory, Samsung Advanced Institute of Technology (SAIT) (Korea, Republic of)

    2006-04-15

    A silicon based microfluxgate sensor with a cobalt based amorphous soft magnetic core for electronic compass is presented in this paper. A sputtered Co{sub 85}Nb{sub 12}Zr{sub 3} magnetic core having a rectangular ring shape is combined with microcopper solenoid coils for excitation and pickup, which were wound alternately around the core to increase the number of coil turns. The Co{sub 85}Nb{sub 12}Zr{sub 3} as a core material is adopted for improving properties of the magnetic core and easy integration with micromachining processes to achieve a small size of the sensor. The sputtered Co{sub 85}Nb{sub 12}Zr{sub 3} showed dc effective permeability of {approx}10 000 and an extremely low coercivity of {approx}0.03 Oe with the thickness of 1 {mu}m. The Co{sub 85}Nb{sub 12}Zr{sub 3} as a thin film core with high permeability and low coercivity was easily saturated by a low excitation magnetic field, enhancing the sensitivity and linearity of the microfluxgate sensor. Finally, the sensor showed excellent linearity response over the range of -300 to 300 {mu}T with sensitivity of 60 V/T at the excitation condition of 3.0 V{sub p-p} and 5.0 MHz square wave form. The sensor size excluding pad region is about 0.55x1.4 mm{sup 2}.

  2. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. II. IONIZATION AND MAGNETIC FIELD

    SciTech Connect (OSTI)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-07-20

    We study the effect that non-equilibrium chemistry in dynamical models of collapsing molecular cloud cores has on measurements of the magnetic field in these cores, the degree of ionization, and the mean molecular weight of ions. We find that OH and CN, usually used in Zeeman observations of the line-of-sight magnetic field, have an abundance that decreases toward the center of the core much faster than the density increases. As a result, Zeeman observations tend to sample the outer layers of the core and consistently underestimate the core magnetic field. The degree of ionization follows a complicated dependence on the number density at central densities up to 10{sup 5} cm{sup -3} for magnetic models and 10{sup 6} cm{sup -3} in non-magnetic models. At higher central densities, the scaling approaches a power law with a slope of -0.6 and a normalization which depends on the cosmic-ray ionization rate {zeta} and the temperature T as ({zeta}T){sup 1/2}. The mean molecular weight of ions is systematically lower than the usually assumed value of 20-30, and, at high densities, approaches a value of 3 due to the asymptotic dominance of the H{sup +}{sub 3} ion. This significantly lower value implies that ambipolar diffusion operates faster.

  3. NON-EQUILIBRIUM CHEMISTRY OF DYNAMICALLY EVOLVING PRESTELLAR CORES. I. BASIC MAGNETIC AND NON-MAGNETIC MODELS AND PARAMETER STUDIES

    SciTech Connect (OSTI)

    Tassis, Konstantinos; Willacy, Karen; Yorke, Harold W.; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2012-07-01

    We combine dynamical and non-equilibrium chemical modeling of evolving prestellar molecular cloud cores and investigate the evolution of molecular abundances in the contracting core. We model both magnetic cores, with varying degrees of initial magnetic support, and non-magnetic cores, with varying collapse delay times. We explore, through a parameter study, the competing effects of various model parameters in the evolving molecular abundances, including the elemental C/O ratio, the temperature, and the cosmic-ray ionization rate. We find that different models show their largest quantitative differences at the center of the core, whereas the outer layers, which evolve slower, have abundances which are severely degenerate among different dynamical models. There is a large range of possible abundance values for different models at a fixed evolutionary stage (central density), which demonstrates the large potential of chemical differentiation in prestellar cores. However, degeneracies among different models, compounded with uncertainties induced by other model parameters, make it difficult to discriminate among dynamical models. To address these difficulties, we identify abundance ratios between particular molecules, the measurement of which would have maximal potential for discrimination among the different models examined here. In particular, we find that the ratios between NH{sub 3} and CO, NH{sub 2} and CO, and NH{sub 3} and HCO{sup +} are sensitive to the evolutionary timescale, and that the ratio between HCN and OH is sensitive to the C/O ratio. Finally, we demonstrate that measurements of the central deviation (central depletion or enhancement) of abundances of certain molecules are good indicators of the dynamics of the core.

  4. Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability

    SciTech Connect (OSTI)

    Nishikawa, K.-I. [Department of Physics, University of Alabama in Huntsville, ZP12, Huntsville, AL 35899 (United States); Hardee, P. E. [Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL 35487 (United States); Du?an, I. [Institute of Space Science, Atomistilor 409, Bucharest-Magurele RO-077125 (Romania); Niemiec, J. [Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków (Poland); Medvedev, M. [Department of Physics and Astronomy, University of Kansas, KS 66045 (United States); Mizuno, Y. [Institute of Astronomy, National Tsing-Hua University, Hsinchu, Taiwan 30013 (China); Meli, A. [Department of Physics and Astronomy, University of Gent, Proeftuinstraat 86 B-9000, Gent (Belgium); Sol, H. [LUTH, Observatore de Paris-Meudon, 5 place Jules Jansen, F-92195 Meudon Cedex (France); Zhang, B. [Department of Physics, University of Nevada, Las Vegas, NV 89154 (United States); Pohl, M. [Institut fur Physik und Astronomie, Universität Potsdam, D-14476 Potsdam-Golm (Germany); Hartmann, D. H., E-mail: ken-ichi.nishikawa@nasa.gov [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2014-09-20

    We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shear surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.

  5. Control of Electron Beam Using Strong Magnetic Field for Efficient Core Heating in Fast Ignition

    E-Print Network [OSTI]

    Johzaki, T; Sentoku, Y; Sunahara, A; Nagatomo, H; Sakagami, H; Mima, K; Fujioka, S; Shiraga, H

    2014-01-01

    For enhancing the core heating efficiency in electron-driven fast ignition, we proposed the fast electron beam guiding using externally applied longitudinal magnetic fields. Based on the PIC simulations for the FIREX-class experiments, we demonstrated the sufficient beam guiding performance in the collisional dense plasma by kT-class external magnetic fields for the case with moderate mirror ratio (~<10 ). Boring of the mirror field was found through the formation of magnetic pipe structure due to the resistive effects, which indicates a possibility of beam guiding in high mirror field for higher laser intensity and/or longer pulse duration.

  6. Improvement of the magnetic core for eddy current losses decreasing in cylindrical linear actuators.

    E-Print Network [OSTI]

    Boyer, Edmond

    Improvement of the magnetic core for eddy current losses decreasing in cylindrical linear actuators the power) increases, the iron losses become high [1]. One classical method for reducing the eddy current the eddy current losses in a longitudinal flux multi-rod actuator and to compute improvement. 2 The linear

  7. Sulfur's impact on core evolution and magnetic field generation on Ganymede

    E-Print Network [OSTI]

    category. It is the only known satellite in the solar system with an intrinsic global magnetic field 2006; published 13 September 2006. [1] Analysis of the melting relationships of potential core forming centrally concentrated, largely solid body known in the solar system as indicated by the nondimensional

  8. Magnetic circular dichroism in x-ray absorption and core-level photoemission

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Gouder, T.H.; Colmenares, C.A.; Pappas, D.P.

    1993-03-17

    Here is reported observation of magnetic circular dichroism in both x-ray absorption and core-level photoemission of ultra thin magnetic films using circularly polarized x-rays. Iron films (1--4 ML) grown on a Cu(001) substrate at 150 K and magnetized perpendicular to the surface show dramatic changes in the L{sub 2,3} branching ratio for different x-ray polarizations. For linearly-polarized x-rays perpendicular to the magnetic axis of the sample the branching ratio was 0.75. For films {ge} 2 ML, this ratio varied from 0.64 to 0.85 for photon spin parallel and anti-parallel, respectively, to the magnetic axis. This effect was observed either by changing the x-ray helicity for a fixed magnetic axis, or by reversing the magnetic axis for a fixed x-ray helicity. Our observation can be analyzed within a simple one-electron picture, if the raw branching ratios are no so that the linear value becomes statistical Furthermore, warming the films to {approximately}300 K eliminated this effect, indicating a loss of magnetization in the film over a temperature range of {approximately}30 K. Finally, reversing the relative orientation of the photon spin and the magnetic axis from parallel to anti-parallel allowed measurement of the exchange splitting of the Fe 2p and 3p core levels which were found to be 0.3 eV and 0.2 eV. respectively. These results are consistent with earlier studies, but the use of off-plane circularly-polarized x-rays from a bending magnet monochromator offers {approximately}2 orders of magnitude greater intensity than typical spin-polarization measurements. Finally, we have performed preliminary x-ray absorption studies of UFe{sub 2}, demonstrating the feasibilty of MCD measurements in 5f as well as 3d materials.

  9. Electrical Core Transformer for Grid Improvement Incorporating Wire Magnetic Components

    SciTech Connect (OSTI)

    Harrie R. Buswell, PhD; Dennis Jacobs, PhD; Steve Meng

    2012-03-26

    The research reported herein adds to the understanding of oil-immersed distribution transformers by exploring and demonstrating potential improvements in efficiency and cost utilizing the unique Buswell approach wherein the unit is redesigned, replacing magnetic sheet with wire allowing for improvements in configuration and increased simplicity in the build process. Exploration of new designs is a critical component in our drive to assure reduction of energy waste, adequate delivery to the citizenry, and the robustness of U.S. manufacturing. By moving that conversation forward, this exploration adds greatly to our base of knowledge and clearly outlines an important avenue for further exploration. This final report shows several advantages of this new transformer type (outlined in a report signed by all of our collaborating partners and included in this document). Although materials development is required to achieve commercial potential, the clear benefits of the technology if that development were a given is established. Exploration of new transformer types and further work on the Buswell design approach is in the best interest of the public, industry, and the United States. Public benefits accrue from design alternatives that reduce the overall use of energy, but it must be acknowledged that new DOE energy efficiency standards have provided some assurance in that regard. Nonetheless the burden of achieving these new standards has been largely shifted to the manufacturers of oil-immersed distribution transformers with cost increasing up to 20% of some units versus 2006 when this investigation was started. Further, rising costs have forced the industry to look closely are far more expensive technologies which may threaten U.S. competitiveness in the distribution transformer market. This concern is coupled with the realization that many units in the nation's grid are beyond their optimal life which suggests that the nation may be headed for an infrastructure crisis that U.S. industry is ill prepared to handle which could further challenge U.S. competitiveness.

  10. Induced core formation time in subcritical magnetic clouds by large-scale trans-Alfvénic flows

    SciTech Connect (OSTI)

    Kudoh, Takahiro; Basu, Shantanu E-mail: basu@uwo.ca

    2014-10-20

    We clarify the mechanism of accelerated core formation by large-scale nonlinear flows in subcritical magnetic clouds by finding a semi-analytical formula for the core formation time and describing the physical processes that lead to them. Recent numerical simulations show that nonlinear flows induce rapid ambipolar diffusion that leads to localized supercritical regions that can collapse. Here, we employ non-ideal magnetohydrodynamic simulations including ambipolar diffusion for gravitationally stratified sheets threaded by vertical magnetic fields. One of the horizontal dimensions is eliminated, resulting in a simpler two-dimensional simulation that can clarify the basic process of accelerated core formation. A parameter study of simulations shows that the core formation time is inversely proportional to the square of the flow speed when the flow speed is greater than the Alfvén speed. We find a semi-analytical formula that explains this numerical result. The formula also predicts that the core formation time is about three times shorter than that with no turbulence, when the turbulent speed is comparable to the Alfvén speed.

  11. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    SciTech Connect (OSTI)

    Mitchell, Jonathan Fordham, Edmund J.

    2014-11-15

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  12. Tunable multiple Fano resonances in magnetic single-layered core-shell particles

    E-Print Network [OSTI]

    Arruda, Tiago Jose; Pinheiro, Felipe Arruda

    2015-01-01

    We investigate multiple Fano, comblike scattering resonances in single-layered, concentric core-shell nanoparticles composed of magnetic materials. Using the Lorenz-Mie theory, we derive, in the long-wavelength limit, an analytical condition for the occurrence of comblike resonances in the single scattering by coated spheres. This condition establishes that comblike scattering response uniquely depends on material parameters and thickness of the shell, provided that it is magnetic and thin compared to the scatterer radius. We also demonstrate that comblike scattering response shows up beyond the long-wavelength limit and it is robust against absorption. Since multiple Fano resonances are shown to depend explicitly on the magnetic permeability of the shell, we argue that both the position and profile of the comblike, morphology-dependent resonances could be externally tuned by exploiting the properties of engineered magnetic materials.

  13. THE EFFECT OF MAGNETIC FIELDS AND AMBIPOLAR DIFFUSION ON CORE MASS FUNCTIONS

    SciTech Connect (OSTI)

    Bailey, Nicole D.; Basu, Shantanu E-mail: basu@uwo.ca

    2013-03-20

    Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds yields information about length scales involved in star formation. Combining these length scales with various distributions of other environmental variables (i.e., column density and mass-to-flux ratio) and applying Monte Carlo methods allow us to produce synthetic core mass functions (CMFs) for different environmental conditions. Our analysis shows that the shape of the CMF is directly dependent on the physical conditions of the cloud. Specifically, magnetic fields act to broaden the mass function and develop a high-mass tail while ambipolar diffusion will truncate this high-mass tail. In addition, we analyze the effect of small number statistics on the shape and high-mass slope of the synthetic CMFs. We find that observed CMFs are severely statistically limited, which has a profound effect on the derived slope for the high-mass tail.

  14. Core and filament formation in magnetized, self-gravitating isothermal layers

    SciTech Connect (OSTI)

    Van Loo, Sven; Keto, Eric; Zhang, Qizhou

    2014-07-01

    We examine the role of the gravitational instability in an isothermal, self-gravitating layer threaded by magnetic fields on the formation of filaments and dense cores. Using a numerical simulation, we follow the non-linear evolution of a perturbed equilibrium layer. The linear evolution of such a layer is described in the analytic work of Nagai et al. We find that filaments and dense cores form simultaneously. Depending on the initial magnetic field, the resulting filaments form either a spiderweb-like network (for weak magnetic fields) or a network of parallel filaments aligned perpendicular to the magnetic field lines (for strong magnetic fields). Although the filaments are radially collapsing, the density profile of their central region (up to the thermal scale height) can be approximated by a hydrodynamical equilibrium density structure. Thus, the magnetic field does not play a significant role in setting the density distribution of the filaments. The density distribution outside of the central region deviates from the equilibrium. The radial column density distribution is then flatter than the expected power law of r {sup –4} and similar to filament profiles observed with Herschel. Our results do not explain the near constant filament width of ?0.1pc. However, our model does not include turbulent motions. It is expected that the accretion-driven amplification of these turbulent motions provides additional support within the filaments against gravitational collapse. Finally, we interpret the filamentary network of the massive star forming complex G14.225-0.506 in terms of the gravitational instability model and find that the properties of the complex are consistent with being formed out of an unstable layer threaded by a strong, parallel magnetic field.

  15. First MHD Simulation of Collapse and Fragmentation of Magnetized Molecular Cloud Cores

    E-Print Network [OSTI]

    Masahiro N Machida; Kohji Tomisaka; Tomoaki Matsumoto

    2003-11-16

    This is the first paper about the fragmentation and mass outflow in the molecular cloud by using three-dimensional MHD nested-grid simulations. The binary star formation process is studied paying particular attention to the fragmentation of a rotating magnetized molecular cloud. We assume an isothermal rotating and magnetized cylindrical cloud in hydrostatic balance. Non-axisymmetric as well as axisymmetric perturbations are added to the initial state and the subsequent evolutions are studied. The evolution is characterized by three parameters: the amplitude of the non-axisymmetric perturbations, the rotation speed, and the magnetic field strength. As a result, it is found that non-axisymmetry hardly evolves in the early phase, but begins to grow after the gas contracts and forms a thin disk. Disk formation is strongly promoted by the rotation speed and the magnetic field strength. There are two types of fragmentation: fragmentation from a ring and that from a bar. Thin adiabatic cores fragment if a thickness is smaller than 1/4 of the radius. For the fragments to survive, they should be formed in a heavily elongated barred core or a flat round disk. In the models showing fragmentation, outflows from respective fragments are found as well as those driven by the rotating bar or the disk.

  16. SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas

    SciTech Connect (OSTI)

    Stutman, Dan

    2014-09-10

    The present report summarizes the results obtained during a one-year extension of DoE grant “SXR-XUV Diagnostics for Edge and Core of Magnetically Confined Plasmas”, at Johns Hopkins University, aimed at completing the development of a new type of magnetic fusion plasma diagnostic, the XUV Transmission Grating Imaging Radiometer (TGIR). The TGIR enables simultaneous spatially and spectrally resolved measurements of the XUV/VUV radiated power from impurities in fusion plasmas, with high speed. The instrument was successfully developed and qualified in the laboratory and in experiments on a tokamak. Its future applications will be diagnostic of the impurity content and transport in the divertor and edge of advanced magnetic fusion experiments, such as NSTX Upgrade.

  17. RECONCILING MODELS OF LUMINOUS BLAZARS WITH MAGNETIC FLUXES DETERMINED BY RADIO CORE-SHIFT MEASUREMENTS

    SciTech Connect (OSTI)

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek

    2014-11-20

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Compton dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.

  18. Reply to "Comment on `Microwave vortex dissipation of superconducting Nd-Ce-Cu-O epitaxial films in high magnetic fields' "

    E-Print Network [OSTI]

    Yeh, Nai-Chang

    in high magnetic fields' " N.-C. Yeh1 and D. M. Strayer2 1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA 2 Jet Propulsion Laboratory, California Institute of Technology of these modes are insensitive to the application of external magnetic fields, be- cause magnetic fields do

  19. On the evolution of vortex rings with swirl

    SciTech Connect (OSTI)

    Naitoh, Takashi, E-mail: naitoh.takashi@nitech.ac.jp [Department of Engineering Physics, Electronics and Mechanics, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Okura, Nobuyuki, E-mail: ohkura@meijo-u.ac.jp [Department of Vehicle and Mechanical Engineering, Meijo University, 1-501 Shiogamaguchi Tempaku-ku, Nagoya 468-8502 (Japan); Gotoh, Toshiyuki, E-mail: gotoh.toshiyuki@nitech.ac.jp [Department of Scientific and Engineering Simulation, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Kato, Yusuke [Controller Business Unit Engineering Division 1, Engineering Department 3, Denso Wave Incorporated, 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297 (Japan)

    2014-06-15

    A laminar vortex ring with swirl, which has the meridional velocity component inside the vortex core, was experimentally generated by the brief fluid ejection from a rotating outlet. The evolution of the vortex ring was investigated with flow visualizations and particle image velocimetry measurements in order to find the influence of swirling flow in particular upon the transition to turbulence. Immediately after the formation of a vortex ring with swirl, a columnar strong vortex along the symmetric axis is observed in all cases of the present experiment. Then the characteristic fluid discharging from a vortex ring with swirl referred to as “peeling off” appears. The amount of discharging fluid due to the “peeling off” increases with the angular velocity of the rotating outlet. We conjectured that the mechanism generating the “peeling off” is related to the columnar strong vortex by close observations of the spatio-temporal development of the vorticity distribution and the cutting 3D images constructed from the successive cross sections of a vortex ring. While a laminar vortex ring without swirl may develop azimuthal waves around its circumference at some later time and the ring structure subsequently breaks, the swirling flow in a vortex ring core reduces the amplification rate of the azimuthal wavy deformation and preserved its ring structure. Then the traveling distance of a vortex ring can be extended using the swirl flow under certain conditions.

  20. Disordering transitions in vortex matter: peak effect and phase diagram

    E-Print Network [OSTI]

    Scalettar, Richard T.

    Disordering transitions in vortex matter: peak effect and phase diagram C.J. Olson a,*, C- order nature of this transition. In YBCO a rapid increase in Jc as a function of magnetic field vortex phase diagram as a function of magnetic field and temperature. For increasing field or temperature

  1. Vortex Tubes of Turbulent Solar Convection

    E-Print Network [OSTI]

    Kitiashvili, I N; Mansour, N N; Lele, S K; Wray, A A

    2011-01-01

    Investigation of turbulent properties of solar convection is extremely important for understanding of the multi-scale dynamics observed on the solar surface. In particular, recent high-resolution observations revealed ubiquitous vortical structures, and numerical simulations demonstrated links between the vortex tube dynamics and magnetic field organization, and also importance of vortex tube interactions in the mechanism of acoustic wave excitation on the Sun. In this paper we investigate mechanisms of formation of vortex tubes in highly-turbulent convective flows near the solar surface by using realistic radiative hydrodynamic LES simulations. Analysis of data, obtained by the simulations, indicates two basic processes of the vortex tube formation: 1) development of small-scale convective instability inside convective granules, and 2) a Kelvin-Helmholtz type instability of shearing flows in intergranular lanes. Our analysis shows that vortex stretching during these processes is a primary source of generatio...

  2. A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear

    E-Print Network [OSTI]

    A Key to Improved Ion Core Confinement in the JET Tokamak: Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear

  3. COLLAPSE AND FRAGMENTATION OF MAGNETIC MOLECULAR CLOUD CORES WITH THE ENZO AMR MHD CODE. I. UNIFORM DENSITY SPHERES

    SciTech Connect (OSTI)

    Boss, Alan P.; Keiser, Sandra A.

    2013-02-20

    Magnetic fields are important contributors to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density, and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer standard isothermal test case for three-dimensional (3D) hydrodynamics codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) contraction without sustained collapse, forming a denser cloud core; (2) collapse to form a single protostar with significant spiral arms; and (3) collapse and fragmentation into binary or multiple protostar systems, with multiple spiral arms. Comparisons are also made with previous MHD calculations of similar clouds with a barotropic equations of state. These results for the collapse of initially uniform density spheres illustrate the central importance of both magnetic field direction and field strength for determining the outcome of dynamic protostellar collapse.

  4. Large enhanced dielectric permittivity in polyaniline passivated core-shell nano magnetic iron oxide by plasma polymerization

    SciTech Connect (OSTI)

    Joy, Lija K.; Sooraj, V.; Sethulakshmi, N.; Anantharaman, M. R., E-mail: mraiyer@yahoo.com [Department of Physics, Cochin University of Science and Technology, Cochin-682022, Kerala (India); Sajeev, U. S. [Department of Physics, Government College, Kottayam-686613, Kerala (India); Nair, Swapna S. [Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasargode-671123, Kerala (India); Narayanan, T. N. [CSIR-Central Electrochemical Research Institute, Karaikkudi-630006, Tamil Nadu (India); Ajayan, P. M. [Department of Material Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 7700 (United States)

    2014-03-24

    Commercial samples of Magnetite with size ranging from 25–30?nm were coated with polyaniline by using radio frequency plasma polymerization to achieve a core shell structure of magnetic nanoparticle (core)–Polyaniline (shell). High resolution transmission electron microscopy images confirm the core shell architecture of polyaniline coated iron oxide. The dielectric properties of the material were studied before and after plasma treatment. The polymer coated magnetite particles exhibited a large dielectric permittivity with respect to uncoated samples. The dielectric behavior was modeled using a Maxwell–Wagner capacitor model. A plausible mechanism for the enhancement of dielectric permittivity is proposed.

  5. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    E-Print Network [OSTI]

    Bromberg, Omer

    2015-01-01

    Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It is generally accepted that these jets are powered electromagnetically, by the magnetised rotation of a central compact object. However, how they produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven non-axisymmetric instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic simulations of relativistic, Poynting flux dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetised central compact object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a globa...

  6. NUMERICAL SIMULATION OF VORTEX BREAKDOWN

    E-Print Network [OSTI]

    Prete, Vincenza Del

    2011-01-01

    irrotational vortex. NRC Con. Aero Rep. LR-378. Hald, O. &vortex breakdown" phenomenon. Aero Dept. , Imperial ColI.

  7. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    SciTech Connect (OSTI)

    van der Laan, Danko [Advanced Conductor Technologies; Noyes, Patrick [National High Magnetic Field Laboratory; Miller, George [National High Magnetic Field Laboratory; Weijers, Hubertus [National High Magnetic Field Laboratory; Willering, Gerard [CERN

    2013-02-13

    The next generation of high-field magnets that will operate at magnetic fields substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a fl?exible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  8. Vortex pinning in super-conductivity as a rate-independent process

    E-Print Network [OSTI]

    Mielke, Alexander

    : R the magnetic field perpendicular to the plane. The vortex tube density : R is related to ~H via for this case. The modeling assumption in [Cha00] is now that the vortex tubes will not move if the modulus the conservation of the vortex-tube density which is driven by the current J. The second line contains

  9. Vortex Lattices and Crystalline Geometries

    E-Print Network [OSTI]

    Ning Bao; Sarah Harrison; Shamit Kachru; Subir Sachdev

    2013-04-16

    We consider $AdS_2 \\times R^2$ solutions supported by a magnetic field, such as those which arise in the near-horizon limit of magnetically charged $AdS_4$ Reissner-Nordstrom black branes. In the presence of an electrically charged scalar field, such magnetic solutions can be unstable to spontaneous formation of a vortex lattice. We solve the coupled partial differential equations which govern the charged scalar, gauge field, and metric degrees of freedom to lowest non-trivial order in an expansion around the critical point, and discuss the corrections to the free energy and thermodynamic functions arising from the formation of the lattice. We describe how such solutions can also be interpreted, via S-duality, as characterizing infrared crystalline phases of conformal field theories doped by a chemical potential, but in zero magnetic field; the doped conformal field theories are dual to geometries that exhibit dynamical scaling and hyperscaling violation.

  10. Chiral specific electron vortex beam spectroscopy

    E-Print Network [OSTI]

    J. Yuan; S. M. Lloyd; M. Babiker

    2013-07-29

    Electron vortex beams carry well-defined orbital angular momentum (OAM) about the propagation axis. Such beams are thus characterised by chirality features which make them potentially useful as probes of magnetic and other chiral materials. An analysis of the inelastic processes in which electron vortex beams interact with atoms and which involve OAM exchange is outlined, leading to the multipolar selection rules governing this chiral specific electron vortex beam spectroscopy. Our results show clearly that the selection rules are dependent on the dynamical state and location of the atoms involved. In the most favorable scenario, this form of electron spectroscopy can induce magnetic sublevel transitions which are commonly probed using circularly polarized photon beams.

  11. Convectively driven vortex flows in the Sun

    E-Print Network [OSTI]

    J. A. Bonet; I. Marquez; J. Sanchez Almeida; I. Cabello; V. Domingo

    2008-09-23

    We have discovered small whirlpools in the Sun, with a size similar to the terrestrial hurricanes (<~0.5 Mm). The theory of solar convection predicts them, but they had remained elusive so far. The vortex flows are created at the downdrafts where the plasma returns to the solar interior after cooling down, and we detect them because some magnetic bright points (BPs) follow a logarithmic spiral in their way to be engulfed by a downdraft. Our disk center observations show 0.009 vortexes per Mm^2, with a lifetime of the order of 5 min, and with no preferred sense of rotation. They are not evenly spread out over the surface, but they seem to trace the supergranulation and the mesogranulation. These observed properties are strongly biased by our type of measurement, unable to detect vortexes except when they are engulfing magnetic BPs.

  12. American Institute of Aeronautics and Astronautics An Experimental Study of the Stability of a Four-Vortex

    E-Print Network [OSTI]

    Nelson, Robert C.

    . Helium bubbles were introduced into the core region of individual vortices to visualize these wake. These results suggest that the use of helium bubbles is a suitable method for visualizing wake vortices programs can be divided into two categories, vortex detection and vortex alleviation. The vortex detection

  13. The development of magnetic resonance imaging for the determination of porosity in reservoir core samples 

    E-Print Network [OSTI]

    Sherman, Byron Blake

    1991-01-01

    16 Calculated Pomsities and Experimental Errors: Trial 2 17 NMR Parameters for Trial 3 . . . 40 41 41 18 Observed Signal Intensities for Core KMS - TE=4: Trial 3 19 Observed Signal Intensities for Core AH8 ? TE=4; Trial 3 20 Observed Signal... Intensities for Core JCR2 - TE=4: Trial 3 . . . 42 . . . 43 Table 21 Observed Signal Intensities for Core AH5 - TE=4: Trial 3 22 Observed Signal Intensities for Glass Bead A: Trial 3 23 Observed Signal Intensities for Glass Bead B: Trial 3 24 Observed...

  14. Magnets & Magnet Condensed Matter Science

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Sights from around the Magnet Lab in 2010. On the cover MAGNETS & MAGNET MATERIALS Engineering materials in Mesoporous Silica SBA-15 31 YBCO Pancake Wound Test Coil for 32-T Magnet Development 32 Strong Vortex Pinning from Marine Cyanobacteria 37 Heavy Petroleum Composition 2. Progression of the Boduszynski Model

  15. Crystalline Geometries from Fermionic Vortex Lattice

    E-Print Network [OSTI]

    M. Reza Mohammadi Mozaffar; Ali Mollabashi

    2013-08-08

    We study charged Dirac fermions on an AdS$_2\\times R^2$ background with a non-zero magnetic field. Under certain boundary conditions, we show that the charged fermion can make the background unstable, resulting in spontaneously formation of a vortex lattice. We observe that an electric field emerges in the back-reacted solution due to the vortex lattice constructed from spin polarized fermions. This electric field may be extended to the UV boundary which leads to a finite charge density. We also discuss corrections to the thermodynamic functions due to the lattice formation.

  16. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  17. Vortex diode jet

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  18. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    SciTech Connect (OSTI)

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phase transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.

  19. Inelastic electron-vortex-beam scattering

    E-Print Network [OSTI]

    Ruben Van Boxem; Bart Partoens; Jo Verbeeck

    2015-03-16

    Recent theoretical and experimental developments in the field of electron vortex beam physics have raised questions on what exactly this novelty in the field of electron microscopy (and other fields, such as particle physics) really provides. An important part in the answer to those questions lies in scattering theory. The present investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather, by pre- and post-selection one can filter out the relevant contributions to a specific signal.

  20. Electron trapping by a current vortex F. Bentosela, a;b P. Exner, c;d and V.A. Zagrebnov a;b

    E-Print Network [OSTI]

    simpler example involves a Pauli electron interacting with a flux tube modelling a vortex magnetic fieldElectron trapping by a current vortex F. Bentosela, a;b P. Exner, c;d and V.A. Zagrebnov a;b a with the magnetic field due to an electric current forming a localized rotationally symmetric vortex. We show

  1. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  2. Particle Acceleration and Gamma-ray emission due to magnetic reconnection in the core region of radio galaxies

    E-Print Network [OSTI]

    Khiali, Behrouz; Sol, Hélène

    2015-01-01

    The current detectors of gamma-ray emission have too poor resolution to determine whether this emission is produced in the jet or in the core, specially of low luminous, non-blazar AGNs (as radio galaxies). In recent works it has been found that the power released by events of turbulent fast magnetic reconnection in the core region of these sources is more than sufficient to reproduce the observed gamma-ray luminosities. Besides, 3D MHD simulations with test particles have demonstrated that a first-order Fermi process within reconnection sites with embedded turbulence results very efficient particle acceleration rates. Employing this acceleration mechanism and the model above, and considering the relevant leptonic and hadronic loss processes in the core region, we computed the spectral energy distribution (SED) of radio galaxies for which very high energy (VHE) emission has been detected (namely, M87, Cen A, Per A, and IC 310). We found that these match very well specially with the VHE observations, therefore...

  3. Optical vortex driven charge current loop and optomagnetism in fullerenes

    E-Print Network [OSTI]

    Wätzel, Jonas; Schäffer, Alexander; Berakdar, Jamal

    2016-01-01

    Endohedral molecular magnets, e.g. as realized in fullerenes containing $\\rm DySc_{2}N$, are promising candidates for molecular electronics and quantum information processing. For their functionalization an ultrafast local magnetization control is essential. Using full ab-initio quantum chemistry calculations we predict the emergence of charge current loops in fullerenes with an associated orbital magnetic moment upon irradiation with weak light vortex pulses that transfer orbital angular momentum. The generated current is controllable by the frequency, the vortex topological charge, and the intensity of the light. Numerical and analytical results show that an ultraviolet vortex femtosecond pulse with an intensity $\\sim10^{13}$ W/cm$^2$ generates non-invasively nA unidirectional surface current with an associated magnetic field of hundreds $\\mu$T at the center of the fullerene.

  4. A Model of Compressor Blade Row Interaction with Shock Induced Vortex Shedding

    E-Print Network [OSTI]

    Cincinnati, University of

    A Model of Compressor Blade Row Interaction with Shock Induced Vortex Shedding Mark G. Turner". The mid and far spacings represent typical axial gaps found in operational fans and compressors. However behind a stator are modeled. The model is based on a Burger vortex core model for shed vortices

  5. Vortex-Based Aero- and Hydrodynamic Estimation

    E-Print Network [OSTI]

    Hemati, Maziar Sam

    2013-01-01

    Vortex-Based Aero- and Hydrodynamic Estimation . . . . . .2 Aero- andbenefit from vortex-based aero- and hydrodynamic estimation.

  6. Oxide shell reduction and magnetic property changes in core-shell Fe nanoclusters under ion irradiation

    SciTech Connect (OSTI)

    Sundararajan, Jennifer A.; Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Jiang, Weilin [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); McCloy, John S. [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164 (United States)

    2014-05-07

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe{sub 3}O{sub 4}/Fe{sub 3}N. These NC films were deposited on Si substrates to thickness of ?0.5 ?m using a NC deposition system. The films were irradiated at room temperature with 5.5?MeV Si{sup 2+} ions to ion fluences of 10{sup 15} and 10{sup 16} ions/cm{sup 2}. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization or growth of Fe{sub 3}N. The film retained its Fe-core and its ferromagnetic properties after irradiation. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe{sub 3}O{sub 4} and FeO?+?Fe{sub 3}N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  7. Magnetic States in Fe Nanoparticles Imaged by Off-axis Electron Holography Luise Theil Kuhn1*

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    a procedure that is described elsewhere [1]. In FIG. 1 (d), a magnetic vortex surrounds a flux tube that runs.e. their magnetic configurations may be vortex-like. The critical size for this transition from single domain to vortex behaviour is crucial for determining the net magnetic moments carried by magnetic nanoparticles, i

  8. Very high energy neutrino emission from the core of low luminosity AGNs triggered by magnetic reconnection acceleration

    E-Print Network [OSTI]

    Khiali, Behrouz

    2015-01-01

    The detection of astrophysical very high energy (VHE) neutrinos in the range of TeV-PeV energies by the IceCube observatory has opened a new season in high energy astrophysics. Energies ~PeV imply that the neutrinos are originated from sources where cosmic rays (CRs) can be accelerated up to ~ 10^{17}eV. Recently, we have shown that the observed TeV gamma-rays from radio-galaxies may have a hadronic origin in their nuclear region and in such a case this could lead to neutrino production. In this paper we show that relativistic protons accelerated by magnetic reconnection in the core region of these sources may produce VHE neutrinos via the decay of charged pions produced by photo-meson process. We have also calculated the diffuse flux of VHE neutrinos and found that it can be associated to the IceCube data.

  9. “Smart” Diblock Copolymers as Templates for Magnetic-Core Gold-Shell Nanoparticle Synthesis

    SciTech Connect (OSTI)

    Nash, Michael A.; Lai, James J.; Hoffman, Allan S.; Yager, Paul; Stayton, Partick S.

    2010-01-13

    We report a new strategy for synthesizing temperature-responsive ?-Fe2O3-core/Au-shell nanoparticles (Au-mNPs) from diblock copolymer micelles. The amphiphilic diblock copolymer chains were synthesized using reversible addition-fragmentation chain-transfer (RAFT) with a thermally responsive “smart” poly(N-isopropylacrylamide) (pNIPAAm) block and an amine-containing poly(N,N-dimethylaminoethylacrylamide) (DMAEAm) block that acted as a reducing agent during gold shell formation. The Au-mNPs reversibly aggregated upon heating the solution above the transition temperature of pNIPAAm, resulting in a red-shifted localized surface plasmon resonance.

  10. Dynamics of a relativistic Rankine vortex for a two-constituent superfluid in a weak perturbation of cylindrical symmetry

    E-Print Network [OSTI]

    B. Boisseau

    1999-01-18

    From a recent study of a stationary cylindrical solution for a relativistic two-constituent superfluid at low temperature limit, we propose to specify this solution under the form of a relativistic generalisation of a Rankine vortex (Potential vortex whose the core has a solid body rotation).Then we establish the dynamics of the central line of this vortex by supposing that the deviation from the cylindrical configuration is weak in the neighbourhood of the core of the vortex. In "stiff" material the Nambu-Goto equations are obtained.

  11. MICROMAGNETIC STUDIES OF THE TRANSITION BETWEEN VORTEX AND SINGLE-DOMAIN STATES IN SUB-100 NM NANODOTS 

    E-Print Network [OSTI]

    King, Andrew

    2012-04-26

    20 40 60 80 100 120 140 To ta l E ne rg y (e V ) Vortex-­?Core Posi2on (nm) Total Energy vs. Vortex-­?Core Posi2on 65 nm Diameter Iron Dot 0 kOe 0.5 kOe 17... B ar ri er (e V ) Applied Field (kOe) Energy Barriers vs. Applied Field 40 nm Diameter Iron Dot Vortex Annihila:on Vortex Nuclea:on 21 FIG. 8. Energy barriers plotted versus applied...

  12. Oxide Shell Reduction and Magnetic Property Changes in Core-Shell Fe Nanoclusters under Ion Irradiation

    SciTech Connect (OSTI)

    Sundararajan, Jennifer A.; Kaur, Maninder; Jiang, Weilin; McCloy, John S.; Qiang, You

    2014-02-12

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe3O4/FeO. These NC films were were deposited on Si substrates to thickness of ~0.5 micrometers using a NC deposition system. The films were irradiated at room temperature with 5.5 MeV Si2+ ions to ion fluences of 1015 and 1016 ions/cm2. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization of Fe3N. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe3O4 and FeO+Fe3N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  13. Strings, vortex rings, and modes of instability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gubser, Steven S.; Nayar, Revant; Parikh, Sarthak

    2015-03-01

    We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scalemore »which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.« less

  14. Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    E-Print Network [OSTI]

    V. B. Eltsov; R. de Graaf; P. J. Heikkinen; J. J. Hosio; R. Hanninen; M. Krusius; V. S. L'vov

    2010-05-04

    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.

  15. A Non-Abelian Vortex Lattice in Strongly Coupled Systems

    E-Print Network [OSTI]

    Kenny Wong

    2013-10-09

    The AdS/CFT correspondence predicts that background non-abelian magnetic fields induce instabilities in strongly-coupled systems with non-abelian global symmetries. These instabilities lead to the formation of vortex lattices in which the non-abelian currents "antiscreen" the applied magnetic field. From the bulk perspective, this behaviour can be traced to a well-known instability of Yang-Mills theory. We analyse the phase structure of the instability and comment on aspects of the vortex lattice.

  16. The internal structure of a vortex in a two-dimensional superfluid with long healing length and its implications

    SciTech Connect (OSTI)

    Klein, Avraham; Aleiner, Igor L.; Agam, Oded

    2014-07-15

    We analyze the motion of quantum vortices in a two-dimensional spinless superfluid within Popov’s hydrodynamic description. In the long healing length limit (where a large number of particles are inside the vortex core) the superfluid dynamics is determined by saddle points of Popov’s action, which, in particular, allows for weak solutions of the Gross–Pitaevskii equation. We solve the resulting equations of motion for a vortex moving with respect to the superfluid and find the reconstruction of the vortex core to be a non-analytic function of the force applied on the vortex. This response produces an anomalously large dipole moment of the vortex and, as a result, the spectrum associated with the vortex motion exhibits narrow resonances lying within the phonon part of the spectrum, contrary to traditional view.

  17. Large vortex state in ferromagnetic disks

    E-Print Network [OSTI]

    Metlov, Konstantin L

    2013-01-01

    Magnetic vortices in soft ferromagnetic nano-disks have been extensively studied for at least several decades both for their fundamental (as a "live" macroscopic realization of a field theory model of an elementary particle) as well as applied value for high-speed high-density power-independent information storage. Here it is shown that there is another vortex state in nano-scale ferromagnetic disks of several exchange lengths in size. The energy of this large vortex state is computed numerically (within the framework of Magnetism@home distributed computing project) and its stability is studied analytically, which allows to plot it on magnetic phase diagram. It is the ground state of cylinders of certain sizes and is metastable in a wider set of geometries. Large vortices exist on par with classical ones, while being separated by an energy barrier, controllable by tuning the geometry and material of ferromagnetic disk. This state can be an excellent candidate for magnetic information storage not only because ...

  18. Vortex-Based Aero- and Hydrodynamic Estimation

    E-Print Network [OSTI]

    Hemati, Maziar Sam

    2013-01-01

    1. The strength of a vortex tube is uniform along the tube.3. The strength of a vortex tube is invariant in time. Theof Vortex Ring Formation at the Edge of a Circular Tube. ”

  19. -STABILITY AND VORTEX MOTION IN TYPE II SUPERCONDUCTORS

    E-Print Network [OSTI]

    Spirn, Daniel

    -STABILITY AND VORTEX MOTION IN TYPE II SUPERCONDUCTORS MATTHIAS KURZKE AND DANIEL SPIRN Abstract. 1. Introduction 1.1. Physical background. The evolution of a superconducting material is usu- ally of the magnetic field and the electric field potential for a superconducting sample R2 . The parameter

  20. High Reynolds Number Vortices with Magnetic Field in NonAxisymmetric Strain

    E-Print Network [OSTI]

    Bajer, Konrad

    of co­axial vortex and magnetic flux tubes supported by non­axisymmetric uni­axial strain. Two different the radius of the vortex and we call such a tube thin. In section 4 we consider a thick tube (Pm ø 1) whose radius is much larger than that of the vortex tube which is now approximated by a line vortex. The value

  1. Liquid Vortex Shielding for Fusion Energy Applications

    SciTech Connect (OSTI)

    Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

    2005-05-15

    Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

  2. Magneto-Vortex Dynamo Model in Solar convection zone

    E-Print Network [OSTI]

    Sergey V. Ershkov

    2011-01-06

    Here is presented a new magneto-vortex dynamo model for modeling & predicting of a processes in Solar plasma convection zone. Solar convection zone is located above the level r > 0,6-0,7 R, where R is a Solar radius. A key feature of such a model is that equation of Solar plasma motion as well as equation of magnetic fields evolution - are reduced to Helmholtz's vortex equation, which is up-graded in according with alpha-effect (Coriolis force forms an additional vorticity field or magnetic field due to Sun's differential rotation). Such an additional vorticity or magnetic field are proved to be concentrated at the proper belt in Solar convection zone under the influence of Coriolis force (at the middle latitudes of the Sun in respect to equator). Besides, such an an additional vorticity & magnetic fields are to be the basic sources of well-known phenomena "Maunder's butterfly" diagram.

  3. Vortex lattice for a holographic superconductor

    E-Print Network [OSTI]

    Kengo Maeda; Makoto Natsuume; Takashi Okamura

    2009-12-17

    We investigate the vortex lattice solution in a (2+1)-dimensional holographic model of superconductors constructed from a charged scalar condensate. The solution is obtained perturbatively near the second-order phase transition and is a holographic realization of the Abrikosov lattice. Below a critical value of magnetic field, the solution has a lower free energy than the normal state. Both the free energy density and the superconducting current are expressed by nonlocal functions, but they reduce to the expressions in the Ginzburg-Landau (GL) theory at long wavelength. As a result, a triangular lattice becomes the most favorable solution thermodynamically as in the GL theory of type II superconductors.

  4. Magnetic core mounting system

    DOE Patents [OSTI]

    Ronning, Jeffrey J. (Fishers, IN)

    2002-01-01

    A mounting apparatus for an electromagnetic device such as a transformer of inductor includes a generally planar metallic plate as a first heat sink, and a metallic mounting cup as a second heat sink. The mounting cup includes a cavity configured to receive the electromagnetic device, the cavity being defined by a base, and an axially-extending annular sidewall extending from the base to a flange portion of the mounting cup. The mounting cup includes first and second passages for allowing the leads of first and second windings of the electromagnetic device to be routed out of the cavity. The cavity is filled with a polyurethane potting resin, and the mounting cup, including the potted electromagnetic device, is mounted to the plate heat sink using fasteners. The mounting cup, which surrounds the electromagnetic device, in combination with the potting resin provides improved thermal transfer to the plate heat sink, as well as providing resistance to vibration and shocks.

  5. Motion of a helical vortex

    E-Print Network [OSTI]

    Fuentes, Oscar Velasco

    2015-01-01

    We study the motion of a single helical vortex in an unbounded, inviscid, incompressible fluid. The vortex is an infinite tube whose centerline is a helix and whose cross section is a circle of small radius (compared to the radius of curvature) where the vorticity is uniform and parallel to the centerline. Ever since Joukowsky (1912) deduced that this vortex translates and rotates steadily without change of form, numerous attempts have been made to compute these self-induced velocities. Here we use Hardin's (1982) solution for the velocity field to find new expressions for the vortex's linear and angular velocities. Our results, verified by numerically computing the Helmholtz integral and the Rosenhead-Moore approximation to the Biot-Savart law, are more accurate than previous results over the whole range of values of the vortex pitch and cross-section. We then use the new formulas to study the advection of passive particles near the vortex; we find that the vortex's motion and capacity to transport fluid dep...

  6. Crystalline Scaling Geometries from Vortex Lattices

    E-Print Network [OSTI]

    Ning Bao; Sarah Harrison

    2013-06-25

    We study magnetic geometries with Lifshitz and/or hyperscaling violation exponents (both with a hard wall cutoff in the IR and a smooth black brane horizon) which have a complex scalar field which couples to the magnetic field. The complex scalar is unstable to the production of a vortex lattice in the IR. The lattice is a normalizable mode which is relevant (i.e. grows into the IR.) When one considers linearized backreaction of the lattice on the metric and gauge field, the metric forms a crystalline structure. We analyze the scaling of the free energy, thermodynamic entropy, and entanglement in the lattice phase and find that in the smeared limit, the leading order correction to thermodynamic properties due to the lattice has the scaling behavior of a theory with a hyperscaling violation exponent between 0 and 1, indicating a flow to an effectively lower-dimensional theory in the deep IR.

  7. Elementary Vortex Processes in Thermal Superfluid Turbulence

    E-Print Network [OSTI]

    Kivotides, Demosthenes; Wilkin, S. Louise

    2009-01-01

    a complex system of vortex tubes has only (a vigorouslyIn this context, the vortex tube model (VTM) of Kivotidesstraight normal ?uid vortex tube, suggested an explicit

  8. Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks

    SciTech Connect (OSTI)

    Lara, A.; Aliev, F. G.; Dobrovolskiy, O. V.; Prieto, J. L.; Huth, M.

    2014-11-03

    The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magnetic permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.

  9. Negative specific heat for quasi-2D vortex structures in electron plasmas: an explicit, closed-form derivation

    E-Print Network [OSTI]

    T. D. Andersen; C. C. Lim

    2008-02-29

    Negative specific heat is a dramatic phenomenon where processes decrease in temperature when adding energy. It has been observed in gravo-thermal collapse of globular clusters. We now report finding this phenomenon in bundles of nearly parallel, periodic, single-sign generalized vortex filaments in the electron magnetohydrodynamic (EMH) model for the unbounded plane under strong magnetic confinement. We derive the specific heat using a steepest descent method and a mean field property. Our derivations show that as temperature increases, the overall size of the system increases exponentially and the energy drops. The implication of negative specific heat is a runaway reaction, resulting in a collapsing inner core surrounded by an expanding halo of filaments.

  10. Dynamic Switching of the Spin Circulation in Tapered Magnetic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phenomenon which is found across a large range of length scales, from galaxies to hurricanes and even down to the nanoscale as in superconducting materials. Magnetic vortex...

  11. Gravity waves from vortex dipoles and jets 

    E-Print Network [OSTI]

    Wang, Shuguang

    2009-05-15

    The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here...

  12. Single-vortex pinning and penetration depth in superconducting NdFeAsO1-xFx

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena; Ye, Cun; Kim, Stella; Canfield, Paul C.; Prozorov, Ruslan; Auslaender, Ophir M.; Hoffman, Jennifer E.

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO1-xFx, one of the highest-Tc iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, Fdepin ? 4.5 pN, corresponding to a critical current up to Jc ? 7×105 A/cm2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO1-xFx, ?ab = 320 ± 60 nm, which ismore »larger than previous bulk measurements.« less

  13. Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications

    SciTech Connect (OSTI)

    None

    2010-09-01

    ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgia Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.

  14. Moon Rock Reveals Hot Molten Core | Wired Science from Wired.com http://blog.wired.com/wiredscience/2009/01/moon-magnet.html 1 of 4 1/16/2009 2:39 PM

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    All Wired Moon Rock Reveals Hot Molten Core | Wired Science from Wired.com http://blog Science from Wired.com http://blog.wired.com/wiredscience/2009/01/moon-magnet.html 2 of 4 1/16/2009 2

  15. VORTEX CREEP AGAINST TOROIDAL FLUX LINES, CRUSTAL ENTRAINMENT, AND PULSAR GLITCHES

    SciTech Connect (OSTI)

    Gügercino?lu, Erbil; Alpar, M. Ali E-mail: alpar@sabanciuniv.edu

    2014-06-10

    A region of toroidally oriented quantized flux lines must exist in the proton superconductor in the core of the neutron star. This region will be a site of vortex pinning and creep. Entrainment of the neutron superfluid with the crustal lattice leads to a requirement of superfluid moment of inertia associated with vortex creep in excess of the available crustal moment of inertia. This will bring about constraints on the equation of state. The toroidal flux region provides the moment of inertia necessary to complement the crust superfluid with postglitch relaxation behavior fitting the observations.

  16. Electroelastic fields in artificially created vortex cores in...

    Office of Scientific and Technical Information (OSTI)

    37831, USA Institute for Problems of Materials Science, National Academy of Science of Ukraine, Kiev, Ukraine Publication Date: 2015-08-03 OSTI Identifier: 1229566 GrantContract...

  17. Vortex Cores of Inertial Particles Tobias Gunther and Holger Theisel

    E-Print Network [OSTI]

    coal combustion. In this paper, we present two strategies for the extraction of the corelines and industrial applications, such as combustion of pulverized coal, sediment transport, helicopter brownout, sand blasting, particu- late pollution control, soiling of cars and many more [24, 27, 20]. In contrast

  18. Electroelastic fields in artificially created vortex cores in epitaxial

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal Article) |ContinuumPhotoactive Biological

  19. Localized Induction Equation for Stretched Vortex Filament

    E-Print Network [OSTI]

    Kimiaki Konno; Hiroshi Kakuhata

    2006-03-02

    We study numerically the motion of the stretched vortex filaments by using the localized induction equation with the stretch and that without the stretch.

  20. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; et al

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpectedmore »asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  1. Light propagation around a relativistic vortex flow of dielectric medium

    E-Print Network [OSTI]

    B. Linet

    2000-11-06

    We determine the path of the light around a dielectric vortex described by the relativistic vortex flow of a perfect fluid.

  2. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water...

  3. Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    yielding an intermediate magnetic state between the vortex state and the tube state is found closure vortex states but in rings with thickness variations, an effective stray field occurs. Using. The interaction between exchange coupled rings leads to antiparallel vortex states and extended onion states

  4. Relativistic Electron Vortex Beams: Angular Momentum and Spin-Orbit Interaction

    E-Print Network [OSTI]

    Konstantin Y. Bliokh; Mark R. Dennis; Franco Nori

    2011-09-11

    Motivated by the recent discovery of electron vortex beams carrying orbital angular momentum (AM), we construct exact Bessel-beam solutions of the Dirac equation. They describe relativistic and nonparaxial corrections to the scalar electron beams. We describe the spin and orbital AM of the electron with Berry-phase corrections and predict the intrinsic spin-orbit coupling in free space. This can be observed as a spin-dependent probability distribution of the focused electron vortex beams. Moreover, the magnetic moment is calculated, which shows different $g$-factors for spin and orbital AM and also contains the Berry-phase correction.

  5. The idea of vortex energy

    E-Print Network [OSTI]

    V. E. Shapiro

    2011-09-22

    This work formulates and gives grounds for general principles and theorems that question the energy function doctrine and its quantum version as a genuine law of nature without borders of adequacy. The emphasis is on the domain where the energy of systems is conserved -- I argue that only in its tiny part the energy is in the kinetic, potential and thermal forms describable by a generalized thermodynamic potential, whereas otherwise the conserved energy constitutes a whole linked to vortex forces, and can be a factor of things like persistent currents and dark matter.

  6. Generator stator core vent duct spacer posts

    DOE Patents [OSTI]

    Griffith, John Wesley (Schenectady, NY); Tong, Wei (Clifton Park, NY)

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  7. EXISTENCE OF KNOTTED VORTEX TUBES IN STEADY EULER FLOWS

    E-Print Network [OSTI]

    Enciso, Alberto

    EXISTENCE OF KNOTTED VORTEX TUBES IN STEADY EULER FLOWS ALBERTO ENCISO AND DANIEL PERALTA-SALAS Abstract. We prove the existence of knotted and linked thin vortex tubes for steady solutions of vortex tubes of a Beltrami field that tends to zero at infinity. The structure of the vortex lines

  8. Under consideration for publication in J. Fluid Mech. 1 Some steady axisymmetric vortex ows past

    E-Print Network [OSTI]

    Fornberg, Bengt

    include vortex rings, bounded vortices attached to the sphere and in nite vortex tubes. Four families to be considered: vortex rings, bounded vortices attached to the sphere, and vortex tubes" extending to in nity. Fornberg and K. Miller = 0: attached vortex vortex ring > 0: vortex tube Figure 1. Examples

  9. Large amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer

    SciTech Connect (OSTI)

    Dussaux, A.; Rache Salles, B.; Jenkins, A. S.; Bortolotti, P.; Grollier, J.; Cros, V.; Fert, A.; Khvalkovskiy, A. V.; Kubota, H.; Fukushima, A.; Yakushiji, K.; Yuasa, S.

    2014-07-14

    We investigate the microwave response of a spin transfer vortex based oscillator in a magnetic tunnel junction with an in-plane reference layer combined with a spin valve with an out-of-plane magnetization spin polarizing layer. The main advantage of this perpendicular spin polarizer is to induce a large spin transfer force even at zero magnetic field, thus leading to a record emitted power (up to 0.6??W) associated to a very narrow spectral linewidth of a few hundreds of kHz. The characteristics of this hybrid vortex based spin transfer nano-oscillator obtained at zero field and room temperature are of great importance for applications based on rf spintronic devices as integrated and tunable microwave source and/or microwave detector.

  10. Observation of the Larmor and Gouy Rotations with Electron Vortex Beams

    E-Print Network [OSTI]

    Giulio Guzzinati; Peter Schattschneider; Konstantin Bliokh; Franco Nori; Jo Verbeeck

    2013-02-25

    Electron vortex beams carrying intrinsic orbital angular momentum (OAM) are produced in electron microscopes where they are controlled and focused using magnetic lenses. We observe various rotational phenomena arising from the interaction between the OAM and magnetic lenses. First, the Zeeman coupling, proportional to the OAM and magnetic field strength, produces an OAM-independent Larmor rotation of a mode superposition inside the lens. Second, hen passing through the focal plane, the electron beam acquires an additional Gouy phase dependent on the absolute value of the OAM. This brings about the Gouy rotation of the superposition image proportional to the sign of the OAM. A combination of the Larmor and Gouy effects can result in the addition (or subtraction) of rotations, depending on the OAM sign. This behaviour is unique to electron vortex beams and has no optical counterpart, as Larmor rotation occurs only for charged particles. Our experimental results are in agreement with recent theoretical predictions.

  11. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  12. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  13. Meissner Effect and Vortex Dynamics in Quark Stars -- A Model for Soft Gamma-Ray Repeaters

    E-Print Network [OSTI]

    R. Ouyed; O. Elgaroy; H. Dahle; P. Keranen

    2004-03-24

    We present a new model for soft gamma-ray repeaters based on a quark star born with temperatures above the critical value (T_c) for the onset of the colour-flavor locked superconductivity. The quark star then quickly cools below T_c, expelling a fraction of the surface magnetic field via the Meissner effect. We show that if a small fraction (\\leq 10%) of the surface magnetic field (10^{14} - 10^{15} {\\rm G}) is expelled, it quickly decays via magnetic reconnection and heats up the quark star surface to temperatures > 10^9 {\\rm K}. Created (e^{+},e^{-}) pairs annihilate into gamma rays emitted in a giant burst (the first burst in our model), with a luminosity of \\sim 10^{45} {\\rm ergs} {\\rm s}^{-1}. Subsequent bursts result from the restructuring of the surface magnetic field following the formation and relaxation of a vortex lattice which confines the internal magnetic field. During this phase, energy is sporadically released as a consequence of magnetic reconnection events in the entangled surface magnetic field as it evolves into a smooth, more stable, configuration. The star eventually enters a quiescent phase in which energy is continuously supplied by vortex annihilation at the surface. As the star spins down, the outermost vortex lines will be pushed to the surface where they annihilate and release their confined magnetic field. We show that the corresponding luminosity is L_v \\sim 10^{36} {\\rm ergs} {\\rm s}^{-1} for a typical soft gamma-ray repeater spinning with a period of 8 {\\rm s} and a surface magnetic field not exceeding 10^{15} {\\rm G}. Our model can be applied to any situation where a T>T_{\\rm c} quark star is generated. We discuss the connection between anomalous X-ray pulsars and soft gamma-ray repeaters in the context of our model.

  14. Airfoil Vortex Induced Vibration suppression devices

    E-Print Network [OSTI]

    Lee, Evan J. (Evan Joseph)

    2007-01-01

    Vortex Induced Vibrations (VIV) is a major concern of the offshore oil industry. This problem leads to fatigue failure in the marine risers and causes costly replacement of the risers. Appendages such as helical strakes ...

  15. Magnetorotational instability, current relaxation, and current-vortex sheet

    SciTech Connect (OSTI)

    Silveira, F. E. M. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, CEP 09210-170, Bairro Bangu, Santo André, SP (Brazil)] [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, CEP 09210-170, Bairro Bangu, Santo André, SP (Brazil); Galvão, R. M. O. [Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R, 187, CEP 05508-090, Cidade Universitária, São Paulo, SP (Brazil)] [Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R, 187, CEP 05508-090, Cidade Universitária, São Paulo, SP (Brazil)

    2013-08-15

    The conjugate effect of current relaxation and of current-vortex sheet formation on the magnetorotational instability is explored in a conducting fluid. It is found that the relative amplification of the magnetic viscosity from marginal stability to the instability determined by the maximum growth rate is around 924% when resistive effects dominate, while the corresponding quantity is around 220% in the ideal limit. This shows that the conjugate influence is much more efficient to amplify the magnetic viscosity than just the effect due to the standard magnetic tension. It is also found that the magnitude of the magnetic viscosity is effectively enhanced by the conjugate influence. The results presented here may contribute to the understanding of the various processes that play a significant role in the mechanism of anomalous viscosity observed in Keplerian disks. It is argued that the new effect shall be relevant in thin accretion disks. It is also mentioned that the proposed formulation may be of interest for some theories of magnetic reconnection. Possible extensions of this work are suggested.

  16. Topological analysis of paraxially scattered electron vortex beams

    E-Print Network [OSTI]

    Axel Lubk; Laura Clark; Giulio Guzzinati; Jo Verbeeck

    2014-10-10

    We investigate topological aspects of sub-nm electron vortex beams upon elastic propagation through atomic scattering potentials. Two main aspects can be distinguished: (i) Significantly reduced delocalization compared to a similar non-vortex beam if the beam centers on an atomic column and (ii) site symmetry dependent splitting of higher-order vortex beams. Furthermore, the results provide insight into the complex vortex line fabric within the elastically scattered wave containing characteristic vortex loops predominantly attached to atomic columns and characteristic twists of vortex lines around atomic columns.

  17. Vortex precession frequency and its amplitude-dependent shift in cylindrical nanomagnets

    SciTech Connect (OSTI)

    Metlov, Konstantin L.

    2013-12-14

    Frequency of free magnetic vortex precession in circular soft ferromagnetic nano-cylinders (magnetic dots) of various sizes is an important parameter, used in design of spintronic devices (such as spin-torque microwave nano-oscillators) and characterization of magnetic nanostructures. Here, using a recently developed collective-variable approach to non-linear dynamics of magnetic textures in planar nano-magnets, this frequency and its amplitude-dependent shift are computed analytically and plotted for the full range of cylinder geometries. The frequency shift is positive in large planar dots, but becomes negative in smaller and more elongated ones. At certain dot dimensions, a zero frequency shift is realized, which can be important for enhancing frequency stability of magnetic nano-oscillators.

  18. MAP, MAC, and Vortex-rings Configurations in the Weinberg-Salam Model

    E-Print Network [OSTI]

    Rosy Teh; Ban-Loong Ng; Khai-Ming Wong

    2015-03-20

    We report on the presence of new axially symmetric monopoles, antimonopoles and vortex-rings solutions of the SU(2)$\\times$U(1) Weinberg-Salam model of electromagnetic and weak interactions. When the $\\phi$-winding number $n=1$, and 2, the configurations are monopole-antimonopole pair (MAP) and monopole-antimonopole chain (MAC) with poles of alternating sign magnetic charge arranged along the $z$-axis. Vortex-rings start to appear from the MAP and MAC configurations when the winding number $n=3$. The MAP configurations possess zero net magnetic charge whereas the MAC configurations possess net magnetic charge of $4\\pi n/e$. In the MAP configurations, the monopole-antimonopole pair is bounded by the ${\\cal Z}^0$ field flux string and there is an electromagnetic current loop encircling it. The monopole and antimonopole possess magnetic charges $\\pm\\frac{4\\pi n}{e}\\sin^2\\theta_W$ respectively. In the MAC configurations there is no string connecting the monopole and the adjacent antimonopole and they possess magnetic charges $\\pm\\frac{4\\pi n}{e}$ respectively. The MAC configurations possess infinite total energy and zero magnetic dipole moment whereas the MAP configurations which are actually sphalerons possess finite total energy and magnetic dipole moment. The configurations were investigated for varying values of Higgs self-coupling constant $0\\leq \\lambda\\leq 40$ at Weinberg angle $\\theta_W=\\frac{\\pi}{4}$.

  19. Low NOx Advanced Vortex Combustor

    SciTech Connect (OSTI)

    Edmonds, R.G. (Ramgen Power Systems, Inc., Bellevue, WA); Williams, J.T. (Ramgen Power Systems, Inc., Bellevue, WA); Steele, R.C. (EPRI); Straub, D.L.; Casleton, K.H.; Bining, Avtar (California Energy Commission, Sacramento, CA)

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  20. Core Topography

    E-Print Network [OSTI]

    Carter-Thompson, Safiya

    2011-04-20

    Core Topography By Safiya Carter-Thompson Submitted to the graduate degree program in Design and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Arts...-Thompson certifies that this is the approved version of the following thesis: Core Topography ________________________________ Chairperson Mary Anne Jordan Date approved: April 20 th 2011 iii...

  1. 866 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008 Dynamical Models for Eddy Current in Ferromagnetic Cores Introduced in

    E-Print Network [OSTI]

    Boyer, Edmond

    866 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 6, JUNE 2008 Dynamical Models for Eddy Current accurate dynamical models for representing eddy currents are studied. The simulation of the relay is provided. Index Terms--AC circuit breakers (CBs), eddy currents, magnetic hysteresis, optimization methods

  2. Critical current density and mechanism of vortex pinning in KxFe2-ySe? doped with S

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lei, Hechang; Petrovic, C.

    2011-08-01

    We report the critical current density Jc in KxFe2-ySe2-zSz crystals. The Jc can be enhanced significantly with optimal S doping (z=0.99). For K0.70(7)Fe1.55(7)Se1.01(2)S0.99(2), the weak fishtail effect is found for H II c. The normalized vortex pinning forces follow the scaling law with a maximum position at 0.41 of the reduced magnetic field. These results demonstrate that the small size normal point defects dominate the vortex pinning mechanism.

  3. Transitions between turbulent and laminar superfluid vorticity states in the outer core of a neutron star

    E-Print Network [OSTI]

    C. Peralta; A. Melatos; M. Giacobello; A. Ooi

    2006-07-08

    We investigate the global transition from a turbulent state of superfluid vorticity to a laminar state, and vice versa, in the outer core of a neutron star. By solving numerically the hydrodynamic Hall-Vinen-Bekarevich-Khalatnikov equations for a rotating superfluid in a differentially rotating spherical shell, we find that the meridional counterflow driven by Ekman pumping exceeds the Donnelly-Glaberson threshold throughout most of the outer core, exciting unstable Kelvin waves which disrupt the rectilinear vortex array, creating a vortex tangle. In the turbulent state, the torque exerted on the crust oscillates, and the crust-core coupling is weaker than in the laminar state. This leads to a new scenario for the rotational glitches observed in radio pulsars: a vortex tangle is sustained in the differentially rotating outer core by the meridional counterflow, a sudden spin-up event brings the crust and core into corotation, the vortex tangle relaxes back to a rectilinear vortex array, then the crust spins down electromagnetically until enough meridional counterflow builds up to reform a vortex tangle. The turbulent-laminar transition can occur uniformly or in patches; the associated time-scales are estimated from vortex filament theory. We calculate numerically the global structure of the flow with and without an inviscid superfluid component, for Hall-Vinen and Gorter-Mellink forms of the mutual friction. We also calculate the post-glitch evolution of the angular velocity of the crust and its time derivative, and compare the results with radio pulse timing data, predicting a correlation between glitch activity and Reynolds number.

  4. Geometric phases for corotating elliptical vortex patches B. N. Shashikantha)

    E-Print Network [OSTI]

    Shashikanth, Banavara N.

    of an infinitely long rectilinear vortex tube of area A whose vorticity distribution is invariant along the lengthGeometric phases for corotating elliptical vortex patches B. N. Shashikantha) Control and Dynamical September 2000 We describe a geometric phase that arises when two elliptical vortex patches co- rotate

  5. Quasi-two Dimensional Hydrodynamics and Interaction of Vortex Tubes

    E-Print Network [OSTI]

    Zakharov, Vladimir

    Quasi-two Dimensional Hydrodynamics and Interaction of Vortex Tubes Vladimir Zakharov 1 but a careful study of the dynamics of the vortex tubes or their systems in a real 3-dimentional nonstationary for description of this type of flow looks very timely. Another motivation is the vortex dynamics

  6. Rogue Waves on a Vortex Filament St Anne's College

    E-Print Network [OSTI]

    Tarrès, Pierre

    Rogue Waves on a Vortex Filament Rehan Shah St Anne's College University of Oxford A dissertation;Abstract The presence of a standing soliton on a vortex filament has been demonstrated theoretically of the local induction approximation (LIA) governing the motion of a thin vortex filament to those of nonlinear

  7. Optical vortex array in spatially varying lattice

    E-Print Network [OSTI]

    Kapoor, Amit; Senthilkumaran, P; Joseph, Joby

    2015-01-01

    We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.

  8. Optimization of vortex pinning by nanoparticles using simulations of time-dependent Ginzburg-Landau model

    E-Print Network [OSTI]

    A. E. Koshelev; I. A. Sadovskyy; C. L. Phillips; A. Glatz

    2015-10-01

    Introducing nanoparticles into superconducting materials has emerged as an efficient route to enhance their current-carrying capability. We address the problem of optimizing vortex pinning landscape for randomly distributed metallic spherical inclusions using large-scale numerical simulations of time-dependent Ginzburg-Landau equations. We found the size and density of particles for which the highest critical current is realized in a fixed magnetic field. For each particle size and magnetic field, the critical current reaches a maximum value at a certain particle density, which typically corresponds to 15-23% of the total volume being replaced by nonsuperconducting material. For fixed diameter, this optimal particle density increases with the magnetic field. Moreover, we found that the optimal particle diameter slowly decreases with the magnetic field from 4.5 to 2.5 coherence lengths at a given temperature. This result shows that pinning landscapes have to be designed for specific applications taking into account relevant magnetic field scales.

  9. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    SciTech Connect (OSTI)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-15

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  10. Existence of knotted vortex tubes in steady Euler flows

    E-Print Network [OSTI]

    Alberto Enciso; Daniel Peralta-Salas

    2014-10-23

    We prove the existence of knotted and linked thin vortex tubes for steady solutions to the incompressible Euler equation in R^3. More precisely, given a finite collection of (possibly linked and knotted) disjoint thin tubes in R^3, we show that they can be transformed with a C^m-small diffeomorphism into a set of vortex tubes of a Beltrami field that tends to zero at infinity. The structure of the vortex lines in the tubes is extremely rich, presenting a positive-measure set of invariant tori and infinitely many periodic vortex lines. The problem of the existence of steady knotted vortex tubes can be traced back to Lord Kelvin.

  11. Vortex generation in protoplanetary disks with an embedded giant planet

    E-Print Network [OSTI]

    M. de Val-Borro; P. Artymowicz; G. D'Angelo; A. Peplinski

    2007-06-21

    Vortices in protoplanetary disks can capture solid particles and form planetary cores within shorter timescales than those involved in the standard core-accretion model. We investigate vortex generation in thin unmagnetized protoplanetary disks with an embedded giant planet with planet to star mass ratio $10^{-4}$ and $10^{-3}$. Two-dimensional hydrodynamical simulations of a protoplanetary disk with a planet are performed using two different numerical methods. The results of the non-linear simulations are compared with a time-resolved modal analysis of the azimuthally averaged surface density profiles using linear perturbation theory. Finite-difference methods implemented in polar coordinates generate vortices moving along the gap created by Neptune-mass to Jupiter-mass planets. The modal analysis shows that unstable modes are generated with growth rate of order $0.3 \\Omega_K$ for azimuthal numbers m=4,5,6, where $\\Omega_K$ is the local Keplerian frequency. Shock-capturing Cartesian-grid codes do not generate very much vorticity around a giant planet in a standard protoplanetary disk. Modal calculations confirm that the obtained radial profiles of density are less susceptible to the growth of linear modes on timescales of several hundreds of orbital periods. Navier-Stokes viscosity of the order $\

  12. Coreless vortex formation in a spinor Bose-Einstein condensate Topological defects vary between superfluid systems described by scalar and vector

    E-Print Network [OSTI]

    Coreless vortex formation in a spinor Bose-Einstein condensate Topological defects vary between-polarized condensates, line defects such as vortices have cores where the density of condensed particles is necessarily zero to keep the order parameter single-valued. However, in condensates with an internal, spin degree

  13. Vortex dynamics in 4 Banavara N. Shashikanth

    E-Print Network [OSTI]

    Shashikanth, Banavara N.

    of oblique vortex shedding behind a heated circular cylinder in laminar wake regime Phys. Fluids 24, 011701 dynamics of Euler's equations for a constant density fluid flow in R4 is studied. Most of the paper focuses of such work are in Refs. 31, 24, 12, 14, and 11. It is fair to say that, in general, classical fluid flows

  14. Quenching Processes in Flame-Vortex Interactions

    E-Print Network [OSTI]

    Zingale, Michael

    for Astrophysical Thermonuclear Flashes 1 , Chicago, IL 60637 y Department of Astronomy and Astrophysics, University-vortex interactions in order to understand quenching of thermonuclear ames. The key question is|can a ther- monuclear. If a ame encounters a 1) The Center for Astrophysical Thermonuclear Flashes is supported by the Department

  15. Gas core nuclear rocket feasibility project

    SciTech Connect (OSTI)

    Howe, S.D.; DeVolder, B.; Thode, L.; Zerkle, D.

    1997-09-01

    The next giant leap for mankind will be the human exploration of Mars. Almost certainly within the next thirty years, a human crew will brave the isolation, the radiation, and the lack of gravity to walk on and explore the Red planet. However, because the mission distances and duration will be hundreds of times greater than the lunar missions, a human crew will face much greater obstacles and a higher risk than those experienced during the Apollo program. A single solution to many of these obstacles is to dramatically decrease the mission duration by developing a high performance propulsion system. The gas core nuclear rocket (GCNR) has the potential to be such a system. The gas core concept relies on the use of fluid dynamic forces to create and maintain a vortex. The vortex is composed of a fissile material which will achieve criticality and produce high power levels. By radiatively coupling to the surrounding fluids, extremely high temperatures in the propellant and, thus, high specific impulses can be generated. The ship velocities enabled by such performance may allow a 9 month round trip, manned Mars mission to be considered. Alternatively, one might consider slightly longer missions in ships that are heavily shielded against the intense Galactic Cosmic Ray flux to further reduce the radiation dose to the crew. The current status of the research program at the Los Alamos National Laboratory into the gas core nuclear rocket feasibility will be discussed.

  16. A model of the ULF magnetic and electric field generated from a dust devil

    E-Print Network [OSTI]

    Cummer, Steven A.

    A model of the ULF magnetic and electric field generated from a dust devil W. M. Farrell,1 J. R emit ULF magnetic radiation. On Mars, dust devils may also generate such magnetic emissions, which in the vortex wind fields accounts for the magnetic emission. To test this hypothesis in general

  17. PROPERTIES AND EVOLUTION OF THE EARTH'S CORE AND GEODYNAMO and D. Alf`e2,3,4

    E-Print Network [OSTI]

    Nimmo, Francis

    is extracting heat from the core (at a rate of 9 ± 3 TW); the resulting inner core growth drives core convection: the properties of the core-forming materials, the manner in which core motions generate the Earth's magnetic and temporal behaviour of the observed magnetic field. The present-day dynamo occurs because the mantle

  18. Origin and dynamics of vortex rings in drop splashing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore »vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  19. Vortex Bubble Formation in Pair Plasmas

    E-Print Network [OSTI]

    Berezhiani, V I; Mahajan, S M; Aleksi?, B N

    2013-01-01

    It is shown that delocalized vortex solitons in relativistic pair plasmas with small temperature asymmetries can be unstable for intermediate intensities of the background electromagnetic field. Instability leads to the generation of ever-expanding cavitating bubbles in which the electromagnetic fields are zero. The existence of such electromagnetic bubbles is demonstrated by qualitative arguments based on a hydrodynamic analogy, and by numerical solutions of the appropriate Nonlinear Schr\\"odinger equation with a saturating nonlinearity.

  20. Electron vortex orbits and merger T. B. Mitchella)

    E-Print Network [OSTI]

    California at San Diego, University of

    of the spatially extended vortices are calculated by the point vortex approximation, and simple rules are used resulted in predictions for tim

  1. Dual vortex theory of strongly interacting electrons: A non-Fermi...

    Office of Scientific and Technical Information (OSTI)

    Dual vortex theory of strongly interacting electrons: A non-Fermi liquid with a twist Citation Details In-Document Search Title: Dual vortex theory of strongly interacting...

  2. How much potassium is in the Earth's core? New insights from partitioning experiments

    E-Print Network [OSTI]

    Mcdonough, William F.

    of the magnetic field and convection in the outer core and mantle are intimately linked to the amount of heat) that are potentially present in the core. In the absence of radioactive heating, predicted high rates of core present in the core. In addition to primordial heat, the latent heat of crystallization of the inner core

  3. Objets compacts et mati`ere dense Silvano Bonazzola, Brandon Carter, Jean-Louis Cornou, Joaquin Diaz,

    E-Print Network [OSTI]

    Gourgoulhon, Eric

    core Nuclei in a lattice + Neutron superfluid Neutron vortex proton superconductor Magnetic flux tube #12;´Ecorce solide des ´etoiles `a neutrons Neutron vortex Atmosphere Envelope Crust Outer core Inner

  4. Almost Optimal Convergence of the Point Vortex Method for Vortex Sheets using Numerical Filtering

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    vortices, numerical filtering, discrete Cauchy­Kowalewski theorem. AMS subject classifications: primary 65M subsequent modes will be dominated by roundoff error. Since these highest modes are amplified the fastest, singularity formation appears to be generic, even for vortex sheets initially near equilibrium [13, 6, 19

  5. One-vortex moduli space and Ricci flow

    E-Print Network [OSTI]

    Nicholas S. Manton

    2008-05-02

    The metric on the moduli space of one abelian Higgs vortex on a surface has a natural geometrical evolution as the Bradlow parameter, which determines the vortex size, varies. It is shown by various arguments, and by calculations in special cases, that this geometrical flow has many similarities to Ricci flow.

  6. High-Resolution Simulations of Parallel BladeVortex Interactions

    E-Print Network [OSTI]

    Alonso, Juan J.

    to that encountered in the simulation of realistic helicopter blade­vortex interaction, but the computational costs aeroacoustics rotor tests [2,3]. These tests were performed on a Mach-scaled Bo-105 rotor and the blade loadsHigh-Resolution Simulations of Parallel Blade­Vortex Interactions Alasdair Thom University

  7. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOE Patents [OSTI]

    Sohal, Manohar S. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID)

    2005-12-20

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  8. Finned Tube With Vortex Generators For A Heat Exchanger.

    DOE Patents [OSTI]

    Sohal, Monohar S. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID)

    2004-09-14

    A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

  9. Vortex Lattice Modelling of Winglets on Wind Turbine Blades

    E-Print Network [OSTI]

    Vortex Lattice Modelling of Winglets on Wind Turbine Blades Mads Døssing Risø-R-1621(EN) Risø Title: Vortex Lattice Modelling of Winglets on Wind Turbine Blades Departments: Wind Energy Department turbines can be increased by the use of winglets without increasing the swept area. This makes them

  10. Vortex Molecular Crystal and Vortex Plastic Crystal States in Honeycomb and Kagome Pinning Arrays

    E-Print Network [OSTI]

    C. Reichhardt; C. J. Olson Reichhardt

    2007-07-26

    Using numerical simulations, we investigate vortex configurations and pinning in superconductors with honeycomb and kagome pinning arrays. We find that a variety of novel vortex crystal states can be stabilized at integer and fractional matching field densities. The honeycomb and kagome pinning arrays produce considerably more pronounced commensuration peaks in the critical depinning force than triangular pinning arrays, and also cause additional peaks at noninteger matching fields where a portion of the vortices are located in the large interstitial regions of the pinning lattices. For the honeycomb pinning array, we find matching effects of equal strength at most fillings B/B_\\phi=n/2 for n>2, where n is an integer, in agreement with recent experiments. For kagome pinning arrays, pronounced matching effects generally occur at B/B_\\phi=n/3 for n>3, while for triangular pinning arrays pronounced matching effects are observed only at integer fillings B/B_\\phi=n. At the noninteger matching field peaks in the honeycomb and kagome pinning arrays, the interstitial vortices are arranged in dimer, trimer, and higher order n-mer states that have an overall orientational order. We call these n-mer states "vortex molecular crystals" and "vortex plastic crystals" since they are similar to the states recently observed in colloidal molecular crystal systems. We argue that the vortex molecular crystals have properties in common with certain spin systems such as Ising and n-state Potts models. We show that kagome and honeycomb pinning arrays can be useful for increasing the critical current above that of purely triangular pinning arrays.

  11. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; Lee, Minkyung; Choi, Hee Cheul; Bud'ko, Sergey L.; Canfield, Paul C.; Yeom, Han Woong; Kim, Jeehoon

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth ? and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosovmore »vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.« less

  12. Superconducting vortex pinning with artificially prepared nanostructures

    E-Print Network [OSTI]

    Rosen, Yaniv Jacob

    Neutron scattering regards to section ‘V.3 Neutron scattering’. I would like tomeasurements, neutron scattering, and magnetic force

  13. Multistage interaction of a shock wave and a strong vortex Shuhai Zhanga

    E-Print Network [OSTI]

    Zhang, Yong-Tao

    tube, it traveled back toward the vortex and the interaction between the shock and the vortex tookMultistage interaction of a shock wave and a strong vortex Shuhai Zhanga China Aerodynamics; published online 8 November 2005 The interaction between a shock wave and a strong vortex is simulated

  14. Intermittency and lifetime of the 625 Hz quasi-periodic oscillation in the 2004 hyperflare from the magnetar SGR 1806-20 as evidence for magnetic coupling between the crust and the core

    SciTech Connect (OSTI)

    Huppenkothen, Daniela; Watts, Anna L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam 1098 XH (Netherlands); Levin, Yuri, E-mail: d.huppenkothen@uva.nl [Monash Center for Astrophysics and School of Physics, Monash University, Clayton, Victoria 3800 (Australia)

    2014-10-01

    Quasi-periodic oscillations (QPOs) detected in the 2004 giant flare from SGR 1806-20 are often interpreted as global magneto-elastic oscillations of the neutron star. There is, however, a large discrepancy between theoretical models, which predict that the highest frequency oscillations should die out rapidly, and the observations, which suggested that the highest-frequency signals persisted for ?100 s in X-ray data from two different spacecraft. This discrepancy is particularly important for the high-frequency QPO at ?625 Hz. However, previous analyses did not systematically test whether the signal could also be present in much shorter data segments, more consistent with the theoretical predictions. Here, we test for the presence of the high-frequency QPO at 625 Hz in data from both the Rossi X-ray Timing Explorer (RXTE) and the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) systematically both in individual rotational cycles of the neutron star, as well as averaged over multiple successive rotational cycles at the same phase. We find that the QPO in the RXTE data is consistent with being only present in a single cycle, for a short duration of ?0.5 s, whereas the RHESSI data are as consistent with a short-lived signal that appears and disappears as with a long-lived QPO. Taken together, this data provides evidence for strong magnetic interaction between the crust and the core.

  15. Grain alignment in starless cores

    SciTech Connect (OSTI)

    Jones, T. J.; Bagley, M. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Krejny, M. [Cree Inc., 4600 Silicon Dr., Durham, NC (United States); Andersson, B.-G. [SOFIA Science Center, USRA, Moffett Field, CA (United States); Bastien, P., E-mail: tjj@astro.umn.edu [Centre de recherche en astrophysique du Québec and Départment de Physique, Université de Montréal, Montréal (Canada)

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}?48. We find that P{sub K}/?{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly ?0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}?20 the slope for P versus ? becomes ??1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}?20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  16. The effect of stoichiometry on vortex flame interactions

    SciTech Connect (OSTI)

    Bell, John B.; Brown, Nancy J.; Day, Marcus S.; Frenklach, Michael; Grcar, Joseph F.; Tonse, Shaheen R.

    1999-12-01

    The interaction of a vortex pair with a premixed flame serves as an important prototype for premixed turbulent combustion. In this study, the authors investigate the interaction of a counter-rotating vortex pair with an initially flat premixed methane flame. The authors focus on characterizing the mechanical nature of the flame-vortex interaction and on the features of the interaction strongly affected by fuel equivalence ratio. The authors compare computational solutions obtained using a time-dependent, two-dimensional adaptive low Mach number combustion algorithm that incorporates GRI-Mech 1.2 for the chemistry, thermodynamics and transport of the chemical species. The authors find that the circulation around the vortex scours gas from the preheat zone in front of the flame, making the interaction extremely sensitive to equivalence ratio. For nearly stoichiometric cases, the peak mole fraction of CH across the flame is relatively insensitive to the vortex whereas for richer flames they observe a substantial and rapid decline in the peak CH mole fraction, commencing early in the flame-vortex interaction. The peak concentration of HCO is found to correlate, in both space and time, with the peak heat release across a broad range of equivalence ratios. The model also predicts a measurable increase in C{sub 2}H{sub 2} as a result of interaction with the vortex, and a marked increase in the low temperature chemistry activity.

  17. Ferroelectric nanostructure having switchable multi-stable vortex states

    DOE Patents [OSTI]

    Naumov, Ivan I. (Fayetteville, AR); Bellaiche, Laurent M. (Fayetteville, AR); Prosandeev, Sergey A. (Fayetteville, AR); Ponomareva, Inna V. (Fayetteville, AR); Kornev, Igor A. (Fayetteville, AR)

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  18. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, Kim W. (Albuquerque, NM); Kiekel, Paul (Albuquerque, NM)

    1999-01-01

    Apparatus for synchronizing the output pulses from a pair of magnetic switches. An electrically conductive loop is provided between the pair of switches with the loop having windlings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself.

  19. Magnetic switch coupling to synchronize magnetic modulators

    DOE Patents [OSTI]

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  20. Fuel injection of coal slurry using vortex nozzles and valves

    DOE Patents [OSTI]

    Holmes, Allen B. (Rockville, MD)

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  1. Type I and Two-Gap Superconductivity in Neutron Star Magnetism

    E-Print Network [OSTI]

    P B Jones

    2006-08-18

    Neutron-star inner cores with several charged baryonic components are likely to be analogues of the two-gap superconductor which is of current interest in condensed-matter physics. Consequently, type I superconductivity is less probable than type II but may nevertheless be present in some intervals of matter density. The intermediate state structure formed at finite magnetic flux densities after the superconducting transitions is subject to buoyancy, frictional and neutron-vortex interaction forces. These are estimated and it is shown that the most important frictional force is that produced by the stable stratification of neutron-star matter, the irreversible process being diffusion in the normal, finite magnetic-flux density, parts of the structure. The length-scale of the structure, in directions perpendicular to the local magnetic field is of crucial importance. For small scales, the flux comoves with the neutron vortices, as do the proton vortices of a type II superconductor. But for much larger length-scales, flux movement tends to that expected for normal charged Fermi systems.

  2. Magnetic core studies at LBNL and LLNL

    E-Print Network [OSTI]

    Molvik, A.W.

    2008-01-01

    it. Some materials, such as polyimide and Parylene-N aredilute coating solution (e.g. , polyimide, sodium silicate).

  3. Alleviation of fuselage form drag using vortex flows: Final report

    SciTech Connect (OSTI)

    Wortman, A.

    1987-09-15

    The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.

  4. Superconducting vortex pinning with artificially prepared nanostructures

    E-Print Network [OSTI]

    Rosen, Yaniv Jacob

    E. Dubin, Physica C: Superconductivity 369, 21 (2002). R. D.P. G. De Gennes, Superconductivity of Metals and Alloys (W.Schuller, Journal of Superconductivity and Novel Magnetism

  5. 21. Khaykovich, B. et al. Vortex-lattice phase transitions in Bi2Sr2CaCu2O8 crystals with different oxygen stoichiometry. Phys. Rev. Lett. 76, 25552558 (1996).

    E-Print Network [OSTI]

    Zeldov, Eli

    1996-01-01

    . Williams, G. A. Vortex-loop phase transitions in liquid helium, cosmic strings, and high-Tc super the discovery of ®rst-order inverse melting of the lattice formed by magnetic ¯ux lines in a high-temperature of magnetic ¯ux lattice melting and decomposition in the high-Tc superconductor Bi2.15Sr1.95CaCu2O8+x. Nature

  6. Vortex in a relativistic perfect isentropic fluid and Nambu Goto dynamics

    E-Print Network [OSTI]

    B. Boisseau

    1999-11-26

    By a weak deformation of the cylindrical symmetry of the potential vortex in a relativistic perfect isentropic fluid, we study the possible dynamics of the central line of this vortex. In "stiff" material the Nanbu-Goto equations are obtained

  7. Vortex life cycles in two-and three-layer quasi-geostrophic models 

    E-Print Network [OSTI]

    Fox, Amanda Katherine

    2000-01-01

    regimes with jets has occurred. This research attempted to first determine the typical lifetime of a vortex, with considerations of its birth, evolution, and cessation. A vortex census was also performed in an attempt to describe the life cycle...

  8. Wave–vortex interactions in the nonlinear Schrödinger equation

    SciTech Connect (OSTI)

    Guo, Yuan Bühler, Oliver

    2014-02-15

    This is a theoretical study of wave–vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave–vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave–vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  9. Core Values | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentratingPortalCool MagneticCopper Palladium-Core

  10. Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic Dipole

    E-Print Network [OSTI]

    Mauel, Michael E.

    Observation of Centrifugally Driven Interchange Instabilities in a Plasma Confined by a Magnetic) Centrifugally driven interchange instabilities are observed in a laboratory plasma confined by a dipole magnetic electrostatic dipole vortex [3] that transports mass, energy, and charge [4]. The centrifugally driven

  11. Vortex Lattice Studies in CeCoIn? with H?c

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Das, P.; White, J. S.; Holmes, A. T.; Gerber, S.; Forgan, E. M.; Bianchi, A. D.; Kenzelmann, M.; Zolliker, M.; Gavilano, J. L.; Bauer, E. D.; et al

    2012-02-01

    We present small angle neutron scattering studies of the vortex lattice (VL) in CeCoIn? with magnetic fields applied parallel (H) to the antinodal [100] and nodal [110] directions. For H II 100], a single VL orientation is observed, while a 90° reorientation transition is found for H II [110]. For both field orientations and VL configurations we find a distorted hexagonal VL with an anisotropy, ?=2.0±0.05. The VL form factor shows strong Pauli paramagnetic effects similar to what have previously been reported for H II [001]. At high fields, above which the upper critical field (Hc2) becomes a first-order transition,more »an increased disordering of the VL is observed.« less

  12. Molecular tagging velocimetry measurements of axial flow in a concentrated vortex core

    E-Print Network [OSTI]

    Koochesfahani, Manoochehr M.

    , hydrocyclones) and natural (e.g., tornadoes, hurricanes, dust devils) flow fields. The interaction of vortices

  13. The Effects of Wind Tunnel Walls on the Near-field Behavior of a Wingtip Vortex

    E-Print Network [OSTI]

    Hu, Hui

    /vortex interaction on helicopter blades can impact performance and cause undesirable noise and vibration. Vortex completely. This method was applied to investigate the effects of the angle of attack of the test wing vortex structures on dynamics of towed vehicles, tail buffeting, and icing arrays. Blade

  14. Vortex Rings in Bio-inspired and Biological Jet Propulsion Paul S. Krueger1, a

    E-Print Network [OSTI]

    Horth, Lisa

    of the latter, vortex rings are generated by the transient ejection of a jet from a tube or orifice, which leadsVortex Rings in Bio-inspired and Biological Jet Propulsion Paul S. Krueger1, a , Ali A. Moslemi1,b@odu.edu, e wstewart@uci.edu Keywords: Vortex rings, pulsed jets, propulsion, thrust, propulsive efficiency

  15. PHYSICAL REVIEW E 78, 036304 2008 Variational principle in dynamics of a vortex ...lament

    E-Print Network [OSTI]

    Berdichevsky, Victor

    A vortex ...lament is a thin tube such that vorticity is negligible in a vicinity of this tube while insidePHYSICAL REVIEW E 78, 036304 2008 Variational principle in dynamics of a vortex ...lament Victor L in dynamics of vortex ...lament Victor L. Berdichevsky Mechanical Engineering, Wayne State University, Detroit

  16. COLLISIONS OF VORTEX FILAMENT PAIRS VALERIA BANICA, ERWAN FAOU, AND EVELYNE MIOT

    E-Print Network [OSTI]

    Faou, Erwan

    COLLISIONS OF VORTEX FILAMENT PAIRS VALERIA BANICA, ERWAN FAOU, AND EVELYNE MIOT Abstract. We consider the problem of collisions of vortex filaments for a model introduced by Klein, Majda and Damodaran [KMD95] and Zakharov [Z88, Z99] to describe the interaction of almost parallel vortex filaments

  17. Low Head, Vortex Induced Vibrations River Energy Converter

    SciTech Connect (OSTI)

    Bernitsas, Michael B.; Dritz, Tad

    2006-06-30

    Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing and utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.

  18. Small Winding-Number Expansion: Vortex Solutions at Critical Coupling

    E-Print Network [OSTI]

    Keisuke Ohashi

    2015-07-22

    We study an axially symmetric solution of a vortex in the Abelian-Higgs model at critical coupling in detail. Here we propose a new idea for a perturbative expansion of a solution, where the winding number of a vortex is naturally extended to be a real number and the solution is expanded with respect to it around its origin. We test this idea on three typical constants contained in the solution and confirm that this expansion works well with the help of the Pad\\'e approximation. For instance, we analytically reproduce the value of the scalar charge of the vortex with an error of $O(10^{-6})$. This expansion is also powerful even for large winding numbers.

  19. Small Winding-Number Expansion: Vortex Solutions at Critical Coupling

    E-Print Network [OSTI]

    Keisuke Ohashi

    2015-09-01

    We study an axially symmetric solution of a vortex in the Abelian-Higgs model at critical coupling in detail. Here we propose a new idea for a perturbative expansion of a solution, where the winding number of a vortex is naturally extended to be a real number and the solution is expanded with respect to it around its origin. We test this idea on three typical constants contained in the solution and confirm that this expansion works well with the help of the Pad\\'e approximation. For instance, we analytically reproduce the value of the scalar charge of the vortex with an error of $O(10^{-6})$. This expansion is also powerful even for large winding numbers.

  20. Small Winding-Number Expansion: Vortex Solutions at Critical Coupling

    E-Print Network [OSTI]

    Ohashi, Keisuke

    2015-01-01

    We study an axially symmetric solution of a vortex in the Abelian-Higgs model at critical coupling in detail. Here we propose a new idea for a perturbative expansion of a solution, where the winding number of a vortex is naturally extended to be a real number and the solution is expanded with respect to it around its origin. We test this idea on three typical constants contained in the solution and confirm that this expansion works well with the help of the Pad\\'e approximation. For instance, we analytically reproduce the value of the scalar charge of the vortex with an error of $O(10^{-6})$. This expansion is also powerful even for large winding numbers.

  1. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  2. Exploiting lens aberrations to create electron vortex beams

    E-Print Network [OSTI]

    L. Clark; A. Béché; G. Guzzinati; A. Lubk; M. Mazilu; R. Van Boxem; J. Verbeeck

    2013-07-18

    A model for a new electron vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condensor plane. Experimental results are found to be in good agreement with simulations.

  3. Laboratory Analysis of Vortex Dynamics For Shallow Tidal Inlets 

    E-Print Network [OSTI]

    Whilden, Kerri Ann

    2010-10-12

    OF VORTEX DYNAMICS FOR SHALLOW TIDAL INLETS A Thesis by KERRI ANN WHILDEN Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of MASTER OF SCIENCE August 2009 Major Subject: Ocean... Engineering LABORATORY ANALYSIS OF VORTEX DYNAMICS FOR SHALLOW TIDAL INLETS A Thesis by KERRI ANN WHILDEN Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of MASTER OF SCIENCE Approved...

  4. Magnetic switch for reactor control rod. [LMFBR

    DOE Patents [OSTI]

    Germer, J.H.

    1982-09-30

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  5. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental results show similar trends as the computational fluid dynamics (CFD) results presented in this report; however, some differences exist that will need to be assessed in future studies. The results of this testing will be used to improve the diode design to be tested in the liquid salt loop system.

  6. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: IV. Pulse Ejection of Electrons at the mutual interaction of Vortex Structures

    E-Print Network [OSTI]

    Kervalishvili, N A

    2015-01-01

    The results of experimental investigations of the ejection of electrons from gas-discharge nonneutral electron plasma at interaction of vortex structures have been given. The periodical approach of vortex structures causes the ejection of electrons both from the vortex structures themselves and from the adjacent regions of electron sheath to the end cathodes of discharge device. The ejection takes place in the form of short and long pulses following each other. The nature of these pulses and the dynamics of interaction of vortex structures at their approach were studied.

  7. Elliptic vortex patches: coasts and chaos Andrew Crosby

    E-Print Network [OSTI]

    Lebovitz, Norman

    are important for the transport of heat/salt across the Atlantic and, due to their relatively long life-times (O of such ocean vortices as point vortices and analysing their paths around islands or past coastal gaps presented by Ted were that of motion around a pair of islands (see Figure 2a) where the vortex patch might

  8. Vortex Rings in a Stratified Fluid M. M. Scase

    E-Print Network [OSTI]

    Dalziel, Stuart

    in a stratified fluid, are developed. These models include both buoyancy forces and the drag due to the generation to investigate the waves generated by the propagation of the vortex ring, the ring is modelled as a sphere, based for describing these wavefronts is given. The drag due to the generated internal wave field is calculated

  9. WAVE-VORTEX INTERACTIONS IN THE ATMOSPHERE, AND CLIMATE

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    WAVE-VORTEX INTERACTIONS IN THE ATMOSPHERE, AND CLIMATE PREDICTION Onno Bokhove Numerical Analysis, The Netherlands o.bokhove@math.utwente.nl Abstract Can we construct an accurate atmospheric climate model parcel dynamics, linear modes, balan- ced models, gravity waves, weather and climate prediction

  10. Modified Black Hole with Polar Jet and Vortex

    E-Print Network [OSTI]

    T. Tmmalm

    2001-12-06

    There are many models relating an accretion disk of Black Hole to jet outflow. The herein heuristic model describes the continuation of an external accretion disk to an internal accretion disk for less than Black Hole horizon, and subsequent polar jet outflow along polar axis out of polar vortex wherein the event horizon is no longer descriptive.

  11. MOI OF PATTERN FORMATION IN THE VORTEX LANDSCAPE

    E-Print Network [OSTI]

    Wijngaarden, Rinke J.

    1081, 1081 HV Amsterdam, The Netherlands RW@NAT.VU.NL Abstract Due to the occurence of punctuations front were reported by Surdeanu et al.[1]. To local vortex density in the type-II YBa2Cu3O7

  12. Numerical Approximation of Vortex Density Evolution in a Superconductor.

    E-Print Network [OSTI]

    Styles, Vanessa

    Numerical Approximation of Vortex Density Evolution in a Superconductor. C.M. Elliott & V. Styles Abstract A #12;nite volume/element approximation of a mean #12;eld model of superconducting vortices in one approximations of a two-dimensional version of the mean #12;eld model of superconducting vortices considered

  13. Planet Embryos in Vortex Wombs Joseph A. Barranco

    E-Print Network [OSTI]

    Marcus, Philip S.

    Planet Embryos in Vortex Wombs Joseph A. Barranco and Philip S. Marcus Dept. of Astronomy gravitating planetesimals, the "build- ing blocks" of planets. One theory is that the dust grains settle into the mid-plane of the protoplane- tary disk (thin, cool disk of gas and dust in orbit around a newly

  14. Biomedical Engineering Correlation Between Vortex Ring Formation and Mitral

    E-Print Network [OSTI]

    Kheradvar, Arash

    was generated during fluid propulsion and that it is maximal for an annulus diameter close to the normal adult typically develop from a jet or slug of fluid ejected from a nozzle. In fluid mechanics, mitral inflow fluid phenomena observed in the left ventricle during diastole is the presence of vortex rings

  15. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  16. VORTEX: Design and Implementation of an Interactive Volumetric Display

    E-Print Network [OSTI]

    Subramanian, Sriram

    VORTEX: Design and Implementation of an Interactive Volumetric Display Abstract True 3D display systems like volumetric displays allow generation of autostereoscopic, multi-view 3D content that has real custom volumetric display from easily available components. By building a touch-enabled volumetric

  17. Vector spectropolarimetry of dark-cored penumbral filaments with Hinode

    E-Print Network [OSTI]

    L. R. Bellot Rubio; S. Tsuneta; K. Ichimoto; Y. Katsukawa; B. W. Lites; S. Nagata; T. Shimizu; R. A. Shine; Y. Suematsu; T. D. Tarbell; A. M. Title; J. C. del Toro Iniesta

    2007-08-21

    We present spectropolarimetric measurements of dark-cored penumbral filaments taken with Hinode at a resolution of 0.3". Our observations demonstrate that dark-cored filaments are more prominent in polarized light than in continuum intensity. Far from disk center, the Stokes profiles emerging from these structures are very asymmetric and show evidence for magnetic fields of different inclinations along the line of sight, together with strong Evershed flows of at least 6-7 km/s. In sunspots closer to disk center, dark-cored penumbral filaments exhibit regular Stokes profiles with little asymmetries due to the vanishing line-of-sight component of the horizontal Evershed flow. An inversion of the observed spectra indicates that the magnetic field is weaker and more inclined in the dark cores as compared with the surrounding bright structures. This is compatible with the idea that dark-cored filaments are the manifestation of flux tubes carrying hot Evershed flows.

  18. Numerical studies on the effect of normal-metal coatings on the magnetization characteristics of type-II superconductors

    E-Print Network [OSTI]

    Hampshire, Damian

    Numerical studies on the effect of normal-metal coatings on the magnetization characteristics; published 19 April 2005 Magnetic properties of superconductors coated with metals of arbitrary resistivity N in the coating is reduced, the initial vortex penetration field Hp N does not decrease monotonically from

  19. LETTER doi:10.1038/nature10068 Melting of the Earth's inner core

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    compositional convection1­3 . Mantle convection extracts heat from the core at a rate that has enormous lateral Sreenivasan3 , Jon Mound1 & Sebastian Rost1 The Earth's magnetic field is generated by a dynamo in the liquid-core boundary and can be large enough to cause heat to flow into the inner core. If this were to occur

  20. Magnetic nano-particles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) |Administration SavannahMagneticMagnetic Vortex

  1. Secure Core Contact Information

    E-Print Network [OSTI]

    Secure Core Contact Information C. E. Irvine irvine@nps.edu 831-656-2461 Department of Computer for the secure management of local and/or remote information in multiple contexts. The SecureCore project Science Graduate School of Operations and Information Sciences www.cisr.nps.edu Project Description

  2. Thomson scattering for core plasma on DEMO

    SciTech Connect (OSTI)

    Mukhin, E. E.; Kurskiev, G. S.; Tolstyakov, S. Yu.; Bukreev, I. M.; Chernakov, P. V.; Kochergin, M. M.; Koval, A. N.; Litvinov, A. E.; Masyukevich, S. V.; Razdobarin, A. G.; Semenov, V. V. [Ioffe Physical Technical Institute, 26 Polytechnicheskaya St., St. Petersburg (Russian Federation); Kukushkin, A. B.; Sdvizhenskii, P. A. [NRC Kurchatov Institute, 1, Akademika Kurchatova pl., Moscow, 123182 (Russian Federation); Andrew, P. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-08-21

    This paper describes the challenges of Thomson scattering implementation for core plasma on DEMO and evaluates the capability to measure extremely high electron temperature range 0.5-40keV. A number of solutions to be developed for ITER diagnostics are suggested in consideration of their realization for DEMO. New approaches suggested for DEMO may also be of interest to ITER and currently operating magnetic confinement devices.

  3. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S. (Monroeville, PA)

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  4. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  5. Vortex energy and 360 Neel walls in thinfilm

    E-Print Network [OSTI]

    .Ignat@math.u-psud.fr) Courant Institute, New York University, New York, NY 10012, USA (e-mail: knuepfer@cims.nyu.edu) 1 #12Vortex energy and 360 ­N´eel walls in thin­film micromagnetics Radu Ignat , Hans Kn¨upfer October-section. The model is based on the following energy functional: E2d (m) = Z B2 |m|2 dx + | ln | 2 Z R2 ||-1

  6. Vortex energy and 360 Neel wall in thinfilm

    E-Print Network [OSTI]

    Ignat, Radu

    .Ignat@math.u-psud.fr) Courant Institute, New York University, New York, NY 10012, USA (e-mail: knuepfer@cims.nyu.edu) 1 #12Vortex energy and 360 ­N´eel wall in thin­film micromagnetics Radu Ignat , Hans Kn¨upfer October-section. The model is based on the following energy functional: E2d (m) = Z B2 |m|2 dx + | ln | 2 Z R2 ||-1

  7. Equilibrium vortex motion in two- and three-dimensional suprconductors studied with a dc SQUID

    E-Print Network [OSTI]

    Shaw, Timothy J.

    2010-01-01

    is determined by thermal activation between pinning sites.is determined by thermal activation, it is important tothe SQUID washer. Thermal activation of the vortex between

  8. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    E-Print Network [OSTI]

    Pournazeri, Sam; Segre, Paolo; Princevac, Marko; Altshuler, Douglas

    2012-01-01

    energetic cost of flight (Rayner and Gordon 1998; Hedenstro¨generates one vortex ring per stroke (Rayner 1979; Ellington1984; Pennycuick 1988; Rayner and Gordon 1998), which would

  9. From the Newton's laws to motions of the fluid and superfluid vacuum: vortex tubes, rings, and others

    E-Print Network [OSTI]

    Sbitnev, Valeriy I

    2014-01-01

    Owing to three conditions (namely: (a) the velocity is represented by sum of irrotational and solenoidal components; (b) the fluid is barotropic; (c) a bath with the fluid undergoes vertical vibrations) the Navier-Stokes equation admits reduction to the modified Hamilton-Jacobi equation. The modification term is the Bohmian(quantum) potential. This reduction opens possibility to define a complex-valued function, named the wave function, which is a solution of the Schr\\"{o}dinger equation. The solenoidal component being added to the momentum operator poses itself as a vector potential by analogy with the magnetic vector potential. The vector potential is represented by the solenoidal velocity multiplied by mass of the fluid element. Vortex tubes, rings, and balls along with the wave function guiding these objects are solutions of this equation. Motion of the vortex balls along the Bohmian trajectories gives a model of droplets moving on the fluid surface. A peculiar fluid is the superfluid physical vacuum. It ...

  10. Midland Core Repository

    SciTech Connect (OSTI)

    Tyler, Noel

    2000-08-14

    This report summarizes activities for the repository during this quarter. The repository holds drill cores and cuttings samples from oil wells that can be viewed or checked out by users.

  11. Core assembly storage structure

    DOE Patents [OSTI]

    Jones, Jr., Charles E. (Northridge, CA); Brunings, Jay E. (Chatsworth, CA)

    1988-01-01

    A structure for the storage of core assemblies from a liquid metal-cooled nuclear reactor. The structure comprises an enclosed housing having a substantially flat horizontal top plate, a bottom plate and substantially vertical wall members extending therebetween. A plurality of thimble members extend downwardly through the top plate. Each thimble member is closed at its bottom end and has an open end adjacent said top plate. Each thimble member has a length and diameter greater than that of the core assembly to be stored therein. The housing is provided with an inlet duct for the admission of cooling air and an exhaust duct for the discharge of air therefrom, such that when hot core assemblies are placed in the thimbles, the heat generated will by convection cause air to flow from the inlet duct around the thimbles and out the exhaust duct maintaining the core assemblies at a safe temperature without the necessity of auxiliary powered cooling equipment.

  12. Model for dynamic self-assembled magnetic surface structures.

    SciTech Connect (OSTI)

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.; Materials Science Division; Northwestern Univ.

    2010-07-07

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  13. Summary report for nanoscale magnetics

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Jankowski, A.F.; Tamura, E.; Sterne, P.A.; Pappas, D.P.; Tong, S.Y.

    1993-09-23

    We have probed the electronic, geometric, and magnetic nanoscale structure of ultrathin magnetic films, both monolayers and multilayers (Fe/Cu(001), FePt, FeCoPt, UFe{sub 2}, U-S). Techniques used included the MCD (magnetic circular dichroism)-variants of of x-ray absorption, core-level photoemission, and photoelectron diffraction. Progress has been made on nanoscale structure-property relations, in part of coupling of world-class experimentation and theoretical modeling. Feasibility of investigations of 5f magnetism using bulk uranium samples also has been demonstrated.

  14. Emergency core cooling system

    DOE Patents [OSTI]

    Schenewerk, William E. (Sherman Oaks, CA); Glasgow, Lyle E. (Westlake Village, CA)

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  15. MCNP LWR Core Generator

    SciTech Connect (OSTI)

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  16. Induced Magnetism in Color-Superconducting Media

    E-Print Network [OSTI]

    Efrain J. Ferrer

    2010-01-22

    The dense core of compact stars is the natural medium for the realization of color superconductivity. A common characteristic of such astrophysical objects is their strong magnetic fields, especially those of the so called magnetars. In this talk, I discuss how a color superconducting core can generate or/and enhance the stellar magnetic field independently of a magnetohydrodynamic dynamo mechanism. The magnetic field generator is in this case a gluonic current which circulates to stabilize the color superconductor in the presence of a strong magnetic field or under the pairing stress produced in the medium by the neutrality and $\\beta$-equilibrium constraints.

  17. Vortex-induced vibration of a circular cylinder with combined in-line and cross-flow motion

    E-Print Network [OSTI]

    Dahl, Jason (Jason Michael)

    2008-01-01

    Deep water, string-like, marine risers subject to strong ocean currents, suffer from vortex-induced vibrations (VIV), where vortex shedding interacts with the structural properties of the riser, resulting in large amplitude ...

  18. All-University Core Curriculum All-University Core Curriculum

    E-Print Network [OSTI]

    All-University Core Curriculum All-University Core Curriculum Office of Vice Provost-UNIVERSITY CORE CURRICULUM (AUCC) All Colorado State University students share a learning experience in common recommendations for satisfying All- University Core Curriculum requirements. A student must earn a cumulative

  19. All-University Core Curriculum All-University Core Curriculum

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    All-University Core Curriculum _______________ 2.3 Page 1 All-University Core Curriculum Office-UNIVERSITY CORE CURRICULUM (AUCC) All Colorado State University students share a learning experience in common if their preferred program of study has particular recommendations for satisfying All- University Core Curriculum

  20. Generation of a spin-polarized electron beam by multipole magnetic fields

    E-Print Network [OSTI]

    Boyd, Robert W.

    Generation of a spin-polarized electron beam by multipole magnetic fields Ebrahim Karimi a October 2013 Accepted 18 December 2013 Available online 31 December 2013 Keywords: Electron vortex beam Polarized electron beam Spin-to-orbit conversion a b s t r a c t The propagation of an electron beam

  1. Magnetic Fields Boosted by Gluon Vortices in Color Superconductivity

    E-Print Network [OSTI]

    Efrain J. Ferrer; Vivian de la Incera

    2006-08-28

    We investigate the effects of an external magnetic field in the gluon dynamics of a color superconductor with three massless quark flavors. In the framework of gluon mean-field theory at asymptotic densities, we show that the long-range component $\\widetilde{H}$ of the external magnetic field that penetrates the CFL phase produces an instability when its strength becomes larger than the Meissner mass of the charged gluons. As a consequence, the magnetic field causes the formation of a vortex state characterized by the condensation of charged gluons and the creation of magnetic flux tubes. Inside the flux tubes the magnetic field is stronger than the applied one. This antiscreening effect is connected to the anomalous magnetic moment of the gluon field. We suggest how this same mechanism could serve to remove the chromomagnetic instabilities existing in gapless color superconductivity.

  2. The role of vortex wake dynamics in the flow-induced vibration of tube arrays

    E-Print Network [OSTI]

    Kevlahan, Nicholas

    The role of vortex wake dynamics in the flow-induced vibration of tube arrays N.K.-R. Kevlahan Keywords: Fluid­structure interaction Vortex-induced vibration Tube arrays Potential flow a b s t r a c in the non-resonant flow-induced vibration of periodic tube arrays. This dual approach untangles the effects

  3. Laminar Flow of a Sheared Vortex Crystal: Scars in Flat Geometry M.-Carmen Miguel,1

    E-Print Network [OSTI]

    Miguel-Lopez, Carmen

    Laminar Flow of a Sheared Vortex Crystal: Scars in Flat Geometry M.-Carmen Miguel,1 Adil Mughal,2 November 2010; published 15 June 2011) We consider the laminar flow of a vortex crystal in the Corbino disk geometry. Laminar flow can be induced by thermal fluctuations melting the crystal, but also by shear stress

  4. Resuspension onset and crater erosion by a vortex ring interacting with a particle layer

    E-Print Network [OSTI]

    Dalziel, Stuart

    Resuspension onset and crater erosion by a vortex ring interacting with a particle layer N. Bethke. Fluids 24, 055106 (2012) Conveyor belt effect in the flow through a tube of a viscous fluid with spinning and crater erosion by a vortex ring interacting with a particle layer N. Bethkea) and S. B. Dalziel

  5. Mixing characteristics of compressible vortex rings interacting with normal shock waves

    SciTech Connect (OSTI)

    Cetegen, B.M. . Mechanical Engineering Dept.); Hermanson, J.C. )

    1995-01-01

    Current interest in the interaction between compressible vortical flows and shock waves is largely motivated by the need to promote rapid, loss-effective mixing and combustion of hydrogen and hydrocarbon fuels for supersonic combustor applications. The instability mechanisms and mixing enhancement arising from the interaction of a compressible vortex ring with a normal shock wave were studied in a colinear, dual-shock tube. This flow geometry simulates features of the interaction of a shock wave with a jet containing streamwise vorticity, a configuration of significant interest for supersonic combustion applications. Flow visualization and quantitative concentration measurements were performed by planar laser Rayleigh scattering. For a given primary shock strength, interfacial instability is more evident in a weak vortex ring than in a strong vortex ring. In all cases, the identity of the vortex ring is lost after a sufficiently long time of interaction. The probability density function of the mixed fluid changes rapidly from a bimodal distribution to a single peak upon processing by a shock wave. The most probable concentration decreases with time, indicating a rapid increase in mixing and dilution of the vortex fluid. The mixing enhancement is most rapid for the case of a strong vortex ring interacting with a strong shock wave, somewhat slower for a weak vortex ring and a strong shock wave, and significantly slower for the case of a strong vortex ring and a weaker shock wave. These observations are consistent with the earlier numerical predictions.

  6. Comparison of optical vortex detection methods for use with a Shack-Hartmann

    E-Print Network [OSTI]

    Dainty, Chris

    Comparison of optical vortex detection methods for use with a Shack-Hartmann wavefront sensor Kevin of de- tecting optical vortices from Shack-Hartmann wavefront sensor (SHWFS) data, the vortex potential of Shack-Hartmann wavefront sensing," J. Refract. Surg. 17, S573­S577 (2001). 13. J. Notaras and C

  7. Numerical Simulation of Vortex Pyrolysis Reactors for Condensable Tar Production from Biomass

    E-Print Network [OSTI]

    Miller, Richard S.

    Numerical Simulation of Vortex Pyrolysis Reactors for Condensable Tar Production from Biomass R. S is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor

  8. Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection

    E-Print Network [OSTI]

    Wang, Zhong L.

    efficiently convert the vortex motion in the atmosphere into electricity. Based on the Karman vortex street in wireless environmental monitoring networks. 1. Introduction Self-powered nanosystem is a promising concept for the realization of environmental wireless sensor networks. Due to the enormous demands of distributed nodes

  9. The critical velocity for vortex existence in a two dimensional rotating Bose-Einstein condensate

    E-Print Network [OSTI]

    Ignat, Radu

    The critical velocity for vortex existence in a two dimensional rotating Bose-Einstein condensate-Einstein condensate. It consists in minimizing a Gross-Pitaevskii functional defined in R2 under the unit mass constraint. We estimate the critical rotational speed 1 for vortex existence in the bulk of the condensate

  10. Generalized London free energy for high-Tc vortex lattices Ian Affleck

    E-Print Network [OSTI]

    Franz, Marcel

    Generalized London free energy for high-Tc vortex lattices Ian Affleck Department of Physics-1829 97 50402-4 The London free energy provides a very simple way of studying the vortex lattice that this effect can arise from additional quartic derivative terms in the Ginzburg-Landau GL free energy4­7 or

  11. A model for universal time scale of vortex ring formation Kamran Mohseni

    E-Print Network [OSTI]

    Mohseni, Kamran

    and Applied Science, 104-44, California Institute of Technology, Pasadena, California 91125 Morteza Gharib Graduate Aeronautical Laboratory, California Institute of Technology, Pasadena, California 91125 Received of the fluid out of the cylinder and the approximation of the vortex at the pinch off moment by a vortex

  12. Modeling bubble-vortex interactions Modeling and simulation of multiple bubble entrainment and interactions with two

    E-Print Network [OSTI]

    Apte, Sourabh V.

    Modeling bubble-vortex interactions Modeling and simulation of multiple bubble entrainment entrainment and interactions with two dimensional vorti- cal flows are preformed using a Discrete Element microbubbles entrained in a traveling vortex tube is studied in detail. The test case resembles the experiments

  13. Electronic states near a quantum fluctuating point vortex in a d-wave superconductor: Dirac fermion theory

    E-Print Network [OSTI]

    -point motion in a d-wave superconductor. The vortex is treated as a point flux tube, carrying fluxElectronic states near a quantum fluctuating point vortex in a d-wave superconductor: Dirac fermion model of the low-energy electronic states in the vicinity of a vortex undergoing quantum zero

  14. Slowing of vortex rings by development of Kelvin waves Robert E. Hershberger, Diogo Bolster, and Russell J. Donnelly*

    E-Print Network [OSTI]

    Bolster, Diogo

    , at least for a straight vortex tube case, results from subjection to a straining field in a planeSlowing of vortex rings by development of Kelvin waves Robert E. Hershberger, Diogo Bolster the slowing of viscous vortex rings. In particular we do so using the concept of drag coefficient, which

  15. Bluff Body Flow Simulation Using a Vortex Element Method

    SciTech Connect (OSTI)

    Anthony Leonard; Phillippe Chatelain; Michael Rebel

    2004-09-30

    Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.

  16. Gradient catastrophe and flutter in vortex filament dynamics

    E-Print Network [OSTI]

    B. G. Konopelchenko; G. Ortenzi

    2011-06-02

    Gradient catastrophe and flutter instability in the motion of vortex filament within the localized induction approximation are analyzed. It is shown that the origin if this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes motion of filament with slow varying curvature and torsion. Geometrically this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painlev\\'e-I equation.

  17. Vortex nozzle for segmenting and transporting metal chips from turning operations

    DOE Patents [OSTI]

    Bieg, L.F.

    1993-04-20

    Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.

  18. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  19. The Relation Between Dry Vortex Merger and Tropical Cyclone Genesis over the Atlantic Ocean

    SciTech Connect (OSTI)

    Chen, Shu-Hua; Liu, Yi-Chin

    2014-10-27

    A strong, convective African tropical disturbance has a greater chance to develop into a Tropical 23 Depression (TD) if it merges with a shallow, dry vortex (D-vortex) from the north of the African 24 easterly jet (AEJ) after leaving the western coast. Using 11-year reanalysis data we found that the 25 western tip of a vortex strip at northwestern Africa can serve as dry vortices for the D-vortex 26 merger if it shifts southward. Another source of D-vortices is the westward propagating lows 27 along the southern edge of the Saharan air. The D-vortex merger process occurred for 63.5% of 28 tropical cyclones (TCs) or developing systems over the main development region of the Atlantic 29 Ocean, while it occurred for 54% of non-developing systems. TC genesis could be largely 30 controlled by the large-scale environment, but the differences in characteristics of vortices 31 associated with the D-vortex merger between developing and non-developing systems could 32 potentially help determine their destinies; in general, developing systems were dominated by a 33 more intense and moist south vortex, while non-developing systems were dominated by a north 34 vortex which was more intense, drier, and larger in size. Analysis also shows that 74% of intense 35 developing systems were involved with the D-vortex merger process. More attention needs to be 36 paid to the D-vortex merger and the characteristics of those vortices as they can play significant 37 roles or have a strong indication in Atlantic TC genesis.

  20. DOES MAGNETIC-FIELD-ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION?

    SciTech Connect (OSTI)

    Li Zhiyun [Astronomy Department, University of Virginia, Charlottesville, VA (United States); Krasnopolsky, Ruben; Shang, Hsien [Academia Sinica, Theoretical Institute for Advanced Research in Astrophysics, Taipei, Taiwan (China)

    2013-09-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al., is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.

  1. Strategic Plan Core strategies

    E-Print Network [OSTI]

    Oxford, University of

    Strategic Plan 2013­18 Vision Priorities Core strategies Enabling strategies #12;Strategic Plan on the Strategic Plan, ensuring that it continues to meet academic needs, enables us to respond to the external the framework for making the Strategic Plan operational at divisional and service level. ©UniversityofOxford #12

  2. Venturi/vortex technology for controlling chromium electroplating emissions

    SciTech Connect (OSTI)

    Hay, K.J.; Northrup, J. [Army Construction Engineering Research Labs., Champaign, IL (United States); Heck, S.R. [MSE-HKM, Inc., Butte, MT (United States)

    1997-12-31

    A new technology has been developed to control air emissions from hexavalent chromium electroplating tanks. The venturi/vortex scrubber uses a patented drain assembly to pull plating solution, air with toxic particulates above the solution, and unpopped bubbles of generated gases down with a gravity generated vortex effect. The recirculated plating solution acts as the scrubbing liquid and air agitation is eliminated. Separated gases are passed through a condenser/filter to remove any remaining fumes. The device is almost entirely constructed of CPVC. This device offers several advantages over conventional end-of-pipe systems including significantly lower cost, no wastewater, no extensive ventilation system, and emissions are recycled. The system can be is easily retrofitted to existing tanks, however, a loose fitting tank lid is recommended. A pilot demonstration has been performed at Benet Laboratory, Watervliet, NY (US Army) with a 1,500 gallon chromic acid electroplating tank and 1,500 Amps of applied current. Overall chromium emissions results were 0.00002 mg/Amp-hr, surpassing the stringent California State requirement of 0.006 mg/Amp-hr. Emission prevention by capturing unpopped bubbles is the method in which this system reduces the most emissions. The system met current ambient worker safety standards. Two major improvements are recommended: an increase in gas flow rate through the system and a solution to the system`s sensitivity to the plating solution level.

  3. Canonical equations of ideal magnetic hydrodynamics

    SciTech Connect (OSTI)

    Gorskii, V.B.

    1987-07-01

    Ideal magnetohydrodynamics is used to consider a general class of adiabatic flow in magnetic liquids. Two invariants of the canonical equations of motion--Hamiltonian and Lagrangian--are determined in terms of the canonical variables by using the approximate variational formulations. The resulting model describes adiabatic three-dimensional flow of a nonviscous compressible liquid with ideal electric conductivity and zero heat conductivity. A Clebsch transformation is used to arrive at a form of the Lagrange-Cauchy integral for a vortex flow.

  4. Dovetail spoke internal permanent magnet machine

    DOE Patents [OSTI]

    Alexander, James Pellegrino (Ballston Lake, NY); EL-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Shah, Manoj Ramprasad (Latham, NY); VanDam, Jeremy Daniel (West Coxsackie, NY)

    2011-08-23

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.

  5. Modification of vortex dynamics and transport properties of transitional axisymmetric jets using zero-net-mass-flux actuation

    SciTech Connect (OSTI)

    Önder, Asim; Meyers, Johan

    2014-07-15

    We study the near field of a zero-net-mass-flux (ZNMF) actuated round jet using direct numerical simulations. The Reynolds number of the jet Re{sub D} = 2000 and three ZNMF actuators are used, evenly distributed over a circle, and directed towards the main jet. The actuators are triggered in phase, and have a relatively low momentum coefficient of C{sub ?} = 0.0049 each. We study four different control frequencies with Strouhal numbers ranging from St{sub D} = 0.165 to St{sub D} = 1.32; next to that, also two uncontrolled baseline cases are included in the study. We find that this type of ZNMF actuation leads to strong deformations of the near-field jet region that are very similar to those observed for non-circular jets. At the end of the jet's potential core (x/D = 5), the jet-column cross section is deformed into a hexagram-like geometry that results from strong modifications of the vortex structures. Two mechanisms lead to these modifications, i.e., (i) self-deformation of the jet's primary vortex rings started by distortions in their azimuthal curvature by the actuation, and (ii) production of side jets by the development and subsequent detachment of secondary streamwise vortex pairs. Further downstream (x/D = 10), the jet transforms into a triangular pattern, as the sharp corner regions of the hexagram entrain fluid and spread. We further investigate the global characteristics of the actuated jets. In particular when using the jet preferred frequency, i.e., St{sub D} = 0.33, parameters such as entrainment, centerline decay rate, and mean turbulent kinetic energy are significantly increased. Furthermore, high frequency actuation, i.e., St{sub D} = 1.32, is found to suppress the mechanisms leading to large scale structure growth and turbulent kinetic energy production. The simulations further include a passive scalar equation, and passive scalar mixing is also quantified and visualized.

  6. Core File Settings | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the followingConcentratingPortalCool MagneticCopper Palladium-Core File

  7. Illusionist: Transforming Lightweight Cores into Aggressive Cores on Demand

    E-Print Network [OSTI]

    Torrellas, Josep

    Illusionist: Transforming Lightweight Cores into Aggressive Cores on Demand HPCA-19 February 27;Adapting to Application Demands Number of threads to execute is not constant o Many threads available

  8. A 3.55 keV line from DM ? a ? ?: predictions for cool-core and non-cool-core clusters

    SciTech Connect (OSTI)

    Conlon, Joseph P.; Powell, Andrew J., E-mail: j.conlon1@physics.ox.ac.uk, E-mail: andrew.powell2@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2015-01-01

    We further study a scenario in which a 3.55 keV X-ray line arises from decay of dark matter to an axion-like particle (ALP), that subsequently converts to a photon in astrophysical magnetic fields. We perform numerical simulations of Gaussian random magnetic fields with radial scaling of the magnetic field magnitude with the electron density, for both cool-core 'Perseus' and non-cool-core 'Coma' electron density profiles. Using these, we quantitatively study the resulting signal strength and morphology for cool-core and non-cool-core clusters. Our study includes the effects of fields of view that cover only the central part of the cluster, the effects of offset pointings on the radial decline of signal strength and the effects of dividing clusters into annuli. We find good agreement with current data and make predictions for future analyses and observations.

  9. Demagnetization using a determined estimated magnetic state

    DOE Patents [OSTI]

    Denis, Ronald J; Makowski, Nathanael J

    2015-01-13

    A method for demagnetizing comprising positioning a core within the electromagnetic field generated by a first winding until the generated first electrical current is not substantially increasing, thereby determining a saturation current. A second voltage, having the opposite polarity, is then applied across the first winding until the generated second electrical current is approximately equal to the magnitude of the determined saturation current. The maximum magnetic flux within the core is then determined using the voltage across said first winding and the second current. A third voltage, having the opposite polarity, is then applied across the first winding until the core has a magnetic flux equal to approximately half of the determined maximum magnetic flux within the core.

  10. Electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Olich, E.E.; Dahl, L.R.

    1995-01-17

    A stator core for supporting an electrical coil includes a plurality of groups of circumferentially abutting flat laminations which collectively form a bore and perimeter. A plurality of wedges are interposed between the groups, with each wedge having an inner edge and a thicker outer edge. The wedge outer edges abut adjacent ones of the groups to provide a continuous path around the perimeter. 21 figures.

  11. Disturbed core Undisturbed soil

    E-Print Network [OSTI]

    Pennycook, Steve

    Batch Disturbed core Undisturbed soil column Pedon Field Watershed Multi-scale modeling .001-1 m3 1-10 m3 10-10,000 m3 >10,000 m3 Unraveling the influence of scale on organic C transport Soil through deep soil profiles may be the "missing" C flux in global budgets. Jardine, P.M., M.A. Mayes, J. R

  12. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  13. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  14. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Gonzales, Aaron A. (San Jose, CA); Patel, Mahadeo R. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  15. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  16. Variable depth core sampler

    DOE Patents [OSTI]

    Bourgeois, Peter M. (Hamburg, NY); Reger, Robert J. (Grand Island, NY)

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  17. Decay of helical Kelvin waves on a quantum vortex filament

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-07-15

    We study the dynamics of helical Kelvin waves moving along a quantum vortex filament driven by a normal fluid flow. We employ the vector form of the quantum local induction approximation (LIA) due to Schwarz. For an isolated filament, this is an adequate approximation to the full Hall-Vinen-Bekarevich-Khalatnikov dynamics. The motion of such Kelvin waves is both translational (along the quantum vortex filament) and rotational (in the plane orthogonal to the reference axis). We first present an exact closed form solution for the motion of these Kelvin waves in the case of a constant amplitude helix. Such solutions exist for a critical wave number and correspond exactly to the Donnelly-Glaberson instability, so perturbations of such solutions either decay to line filaments or blow-up. This leads us to consider helical Kelvin waves which decay to line filaments. Unlike in the case of constant amplitude helical solutions, the dynamics are much more complicated for the decaying helical waves, owing to the fact that the rate of decay of the helical perturbations along the vortex filament is not constant in time. We give an analytical and numerical description of the motion of decaying helical Kelvin waves, from which we are able to ascertain the influence of the physical parameters on the decay, translational motion along the filament, and rotational motion, of these waves (all of which depend nonlinearly on time). One interesting finding is that the helical Kelvin waves do not decay uniformly. Rather, such waves decay slowly for small time scales, and more rapidly for large time scales. The rotational and translational velocity of the Kelvin waves depend strongly on this rate of decay, and we find that the speed of propagation of a helical Kelvin wave along a quantum filament is large for small time while the wave asymptotically slows as it decays. The rotational velocity of such Kelvin waves along the filament will increase over time, asymptotically reaching a finite value. These decaying Kelvin waves correspond to wave number below the critical value for the Donnelly-Glaberson instability, and hence our results on the Schwarz quantum LIA correspond exactly to what one would expect from prior work on the Donnelly-Glaberson instability.

  18. INTRODUCTION TO THE CORE CURRICULUM

    E-Print Network [OSTI]

    Schrag, Daniel

    1 INTRODUCTION TO THE CORE CURRICULUM The purpose of this guide is to inform members of the Freshman class about Harvard's Core Curriculum. It explains the aims and design of the program, offers some of concentration. I The Core Curriculum for undergraduate education at Harvard is both a requirement

  19. Earth's Inner Core dynamics induced by the Lorentz force

    E-Print Network [OSTI]

    Lasbleis, M; Cardin, P; Labrosse, S

    2015-01-01

    Seismic studies indicate that the Earth's inner core has a complex structure and exhibits a strong elastic anisotropy with a cylindrical symmetry. Among the various models which have been proposed to explain this anisotropy, one class of models considers the effect of the Lorentz force associated with the magnetic field diffused within the inner core. In this paper we extend previous studies and use analytical calculations and numerical simulations to predict the geometry and strength of the flow induced by the poloidal component of the Lorentz force in a neutrally or stably stratified growing inner core, exploring also the effect of different types of boundary conditions at the inner core boundary (ICB). Unlike previous studies, we show that the boundary condition that is most likely to produce a significant deformation and seismic anisotropy is impermeable, with negligible radial flow through the boundary. Exact analytical solutions are found in the case of a negligible effect of buoyancy forces in the inne...

  20. Superconducting shielded core reactor with reduced AC losses

    DOE Patents [OSTI]

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  1. High-voltage air-core pulse transformers

    SciTech Connect (OSTI)

    Rohwein, G. J.

    1981-01-01

    General types of air core pulse transformers designed for high voltage pulse generation and energy transfer applications are discussed with special emphasis on pulse charging systems which operate up to the multi-megavolt range. The design, operation, dielectric materials, and performance are described. It is concluded that high voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The principal disadvantage of high voltage air core transformers is that they are not generally available from commercial sources. Consequently, the potential user must become thoroughly familiar with all aspects of design, fabrication and system application before he can produce a high performance transformer system. (LCL)

  2. Vortex flow in the technology of radiation wave cracking (RWC)

    E-Print Network [OSTI]

    L. A. Tsoy; V. N. Kolushov; A. G. Komarov; A. N. Tsoy

    2012-09-16

    This article examines the theory of vortex flows in relation to the processes occurring in the radiation-wave cracking of crude oil, when the crude oil is sprayed into the gas stream in the form of a mist and then is fed into the reactor, where it is treated by the accelerated electrons and the UHF radiation. The output of this process are the products with the specified parameters (high-octane petroleum products). This process operates at the ambient pressure and temperature, which makes the process safer for industrial purposes. Besides the process itself, the authors described the equipment used in this process, as well as the parameters of the optimal process.

  3. Stabilization of three-wave vortex beams in the waveguide

    E-Print Network [OSTI]

    Gammal, Arnaldo

    2015-01-01

    We consider two-dimensional (2D) localized vortical modes in the three-wave system with the quadratic ($\\chi ^{(2)}$) nonlinearity, alias nondegenerate second-harmonic-generating system, guided by the isotropic harmonic-oscillator (HO) (alias parabolic) confining potential. In addition to the straightforward realization in optics, the system models mixed atomic-molecular Bose-Einstein condensates (BECs). The main issue is stability of the vortex modes, which is investigated through computation of instability growth rates for eigenmodes of small perturbations, and by means of direct simulations. The threshold of parametric instability for single-color beams, represented solely by the second harmonic (SH) with zero vorticity, is found in an analytical form with the help of the variational approximation (VA). Trapped states with vorticities $\\left( +1,-1,0\\right) $ in the two fundamental-frequency (FF) components and the SH one [the so-called \\textit{hidden-vorticity} (HV) modes] are completely unstable. Also un...

  4. Energy harvesting using vortex-induced vibrations of tensioned cables

    E-Print Network [OSTI]

    Grouthier, Clement; de Langre, Emmanuel

    2012-01-01

    The development of energy harvesting systems based on fluid/structure interactions is part of the global search for innovative tools to produce renewable energy. In this paper, the possibility to harvest energy from a flow using vortex-induced vibrations (VIV) of a tensioned flexible cable is analyzed. The fluid loading on the vibrating solid and resulting dynamics are computed using an appropriate wake-oscillator model, allowing one to perform a systematic parametric study of the efficiency. The generic case of an elastically-mounted rigid cylinder is first investigated, before considering an infinite cable with two different types of energy harvesting : a uniformly spanwise distributed harvesting and then a periodic distribution of discrete harvesting devices. The maximum harvesting efficiency is of the same order for each configuration and is always reached when the solid body and its wake are in a frequency lock-in state.

  5. Gas turbine engine combustor can with trapped vortex cavity

    DOE Patents [OSTI]

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  6. A Snowflake-Shaped Magnetic Field Holds Promise for Taming Harsh...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torus Experiment The Science Heat escaping from the core of a twelve-million degree nuclear fusion plasma device was successfully contained by a snowflake-shaped magnetic...

  7. Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    SciTech Connect (OSTI)

    Bettarini, Lapo [Katholieke Universiteit Leuven, Centrum voor Plasma Astrofysica, Celestijnenlaan 200B, B-3001 Leuven (Belgium); Dipartimento di Astronomia e Scienza dello Spazio, Universita degli Studi di Firenze, Largo E. Fermi, 2, I-50125 Firenze (Italy); Landi, Simone [Dipartimento di Astronomia e Scienza dello Spazio, Universita degli Studi di Firenze, Largo E. Fermi, 2, I-50125 Firenze (Italy); Velli, Marco [Dipartimento di Astronomia e Scienza dello Spazio, Universita degli Studi di Firenze, Largo E. Fermi, 2, I-50125 Firenze (Italy); Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91109 (United States); Londrillo, Pasquale [INAF Osservatorio Astronomico di Bologna, via C. Ranzani 1, I-40127 Bologna (Italy)

    2009-06-15

    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled as a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.

  8. Vortex Induced Vibrations of cylinders : experiments in reducing drag force and amplitude of motion

    E-Print Network [OSTI]

    Farrell, David Emmanuel

    2007-01-01

    Reducing the deleterious effect of Vortex Induced Vibrations (VIV) in marine risers is an important task for ocean engineers; and many competing factors exist in the design of VIV suppression devices. This thesis explores ...

  9. Numerically-based ducted propeller design using vortex lattice lifting line theory

    E-Print Network [OSTI]

    Stubblefield, John M

    2008-01-01

    This thesis used vortex lattice lifting line theory to model an axisymmetrical-ducted propeller with no gap between the duct and the propeller. The theory required to model the duct and its interaction with the propeller ...

  10. Effects of trailing edge flap dynamic deployment on blade-vortex interactions 

    E-Print Network [OSTI]

    Nelson, Carter T.

    1997-01-01

    A theoretical and experimental investigation is undertaken to determine the effects of an actively deployable trailing edge flap on the disturbances created during blade-vortex interactions (BVI). The theoretical model consists of an unsteady panel...

  11. An adaptive mesh method for the simulation of Blade Vortex Interaction 

    E-Print Network [OSTI]

    Kim, Kyu-Sup

    1998-01-01

    An adaptive mesh method for the simulation of parallel ics. Blade Vortex Interaction (BV1) with an active Trailing Edge Flap (TEF) is presented. The two-dimensional 1111-steady problem is solved by a higher order upwind Euler method...

  12. Variability of the polar stratospheric vortex and its impact on surface climate patterns

    E-Print Network [OSTI]

    Sheshadri, Aditi

    2015-01-01

    This thesis investigates various aspects of the variability of the stratospheric polar vortex and the effect of this variability on tropospheric weather and climate patterns on various timescales. In the first part of this ...

  13. Reduced gravity rankine cycle design and optimization with passive vortex phase separation 

    E-Print Network [OSTI]

    Supak, Kevin Robert

    2009-05-15

    turbo machinery, require kilowatts of power and are untested for high vapor flow conditions. The Interphase Transport Phenomena (ITP) laboratory has developed a low-power, passive microgravity vortex phase separator (MVS) which has already proven...

  14. Effect of traveling waves on Vortex-Induced Vibration of long flexible cylinders

    E-Print Network [OSTI]

    Jaiswal, Vivek, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    Offshore marine risers and pipelines, exposed to ocean currents, are susceptible to Vortex-Induced Vibration (VIV). Accurate prediction of VIV is necessary for estimating the fatigue life as well as for taking corrective ...

  15. Vortex-induced vibration of flexible cylinders in time-varying flows

    E-Print Network [OSTI]

    Resvanis, Themistocles L

    2014-01-01

    This thesis investigates two aspects of Vortex-Induced Vibrations (VIV) on long flexible cylinders. The work is split into a minor and major part. The minor part addresses the effect of Reynolds number on flexible cylinder ...

  16. Enhancement of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M. (Saline, MI); Raghavan, Kamaldev (Houston, TX)

    2011-11-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to increase Vortex Induced Forces and Motion. Enhancement is needed in such applications as harnessing of clean and renewable energy from ocean/river currents using the ocean energy converter VIVACE (Vortex Induced Vibration for Aquatic Clean Energy).

  17. Lagrangian analysis of fluid transport in empirical vortex ring flows Shawn C. Shadden

    E-Print Network [OSTI]

    Marsden, Jerrold

    Lagrangian analysis of fluid transport in empirical vortex ring flows Shawn C. Shadden Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125 John O. Dabiri Graduate Aeronautical Laboratories and Bioengineering, California Institute of Technology, Pasadena, California 91125

  18. Core-Collapse Supernovae

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformationContract Managementthermoelectric powerTheCore

  19. ARM - Ice Cores

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENAField ParticipantsField Campaign StatisticsPastIce Cores

  20. Explicit mean-field radius for nearly parallel vortex filaments in statistical equilibrium

    E-Print Network [OSTI]

    Timothy D. Andersen; Chjan C. Lim

    2006-11-19

    Geophysical research has focused on flows, such as ocean currents, as two dimensional. Two dimensional point or blob vortex models have the advantage of having a Hamiltonian, whereas 3D vortex filament or tube systems do not necessarily have one, although they do have action functionals. On the other hand, certain classes of 3D vortex models called nearly parallel vortex filament models do have a Hamiltonian and are more accurate descriptions of geophysical and atmospheric flows than purely 2D models, especially at smaller scales. In these ``quasi-2D'' models we replace 2D point vortices with vortex filaments that are very straight and nearly parallel but have Brownian variations along their lengths due to local self-induction. When very straight, quasi-2D filaments are expected to have virtually the same planar density distributions as 2D models. An open problem is when quasi-2D model statistics behave differently than those of the related 2D system and how this difference is manifested. In this paper we study the nearly parallel vortex filament model of Klein, Majda, Damodaran in statistical equilibrium. We are able to obtain a free-energy functional for the system in a non-extensive thermodynamic limit that is a function of the mean square vortex position $R^2$ and solve \\emph{explicitly} for $R^2$. Such an explicit formula has never been obtained for a non-2D model. We compare the results of our formula to a 2-D formula of \\cite{Lim:2005} and show qualitatively different behavior even when we disallow vortex braiding. We further confirm our results using Path Integral Monte Carlo (Ceperley (1995)) \\emph{without} permutations and that the Klein, Majda, Damodaran model's asymptotic assumptions \\emph{are valid} for parameters where these deviations occur.

  1. Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation

    E-Print Network [OSTI]

    B. Boisseau

    2004-09-14

    The Bogoliubov procedure in quantum field theory is used to describe a relativistic almost ideal Bose gas at zero temperature. Special attention is given to the study of a vortex. The radius of the vortex in the field description is compared to that obtained in the relativistic fluid approximation. The Kelvin waves are studied and, for long wavelengths, the dispersion relation is obtained by an asymptotic matching method and compared with the non relativistic result.

  2. Suppressible pinning of Abrikosov vortices : effects of magnetic vortex arrays on thin superconducting films

    E-Print Network [OSTI]

    Smith, Kevin Daniel

    2008-01-01

    penetration through the superconductive film as it relatesThus, to sustain superconductivity throughout the materialthe mixed state, type-II superconductors have characteristic

  3. UNIVERSITY OF CALIFORNIA, SAN DIEGO Experiments on Vortex Symmetrization in Magnetized Electron Plasma Columns

    E-Print Network [OSTI]

    California at San Diego, University of

    Plasma Columns A dissertation submitted in partial satisfaction of the requirements for the degree Doctor. Images of vorticity at five times for two sequences from similar initial conditions. The red arcs

  4. Suppressible pinning of Abrikosov vortices : effects of magnetic vortex arrays on thin superconducting films

    E-Print Network [OSTI]

    Smith, Kevin Daniel

    2008-01-01

    212507 (2002). [10] M.I. Montero, J.J. Akerman, A. Varilci,J.E. Villegas, M.I. Montero, C. -P. Li and I.K. Schuller,Y. Bruynserede, M.I. Montero, I.K. Schuller, Europhys. Lett.

  5. Investigation of Vortex Structures in Gas-Discharge Nonneutral Electron Plasma: III. Pulse Ejection of Electrons at the Formation and Radial Oscillations of Vortex Structure

    E-Print Network [OSTI]

    Kervalishvili, N A

    2015-01-01

    The results of experimental investigations of electron ejection from gas-discharge nonneutral electron plasma at the formation and radial oscillations of vortex structure have been presented. The electrons are injected from the vortex structure and the adjacent region of electron sheath in the form of pulses the duration and periodicity of which are determined by the processes of evolution and dynamics of this structure. The possible mechanisms of pulse ejection of electrons are considered. The influence of electron ejection on other processes in discharge electron sheath is analyzed.

  6. Creation and pinning of vortex-antivortex pairs 

    E-Print Network [OSTI]

    Kim, Sangbum; Hu, Chia-Ren; Andrews, Malcolm J.

    2006-01-01

    in a superconducting thin film, due to the magnetic field of a vertical magnetic dipole above the film, and two antidot pins inside the film. For film thickness =0.1 xi, kappa=2, and no pins, we find the film carries two V-AV pairs at steady state...

  7. Model for Dynamic Self-Assembled Magnetic Surface Structures

    E-Print Network [OSTI]

    M. Belkin; A. Glatz; A. Snezhko; I. S. Aranson

    2010-02-02

    We propose a first-principles model for self-assembled magnetic surface structures on the water-air interface reported in earlier experiments \\cite{snezhko2,snezhko4}. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended on the water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snake-like structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids. The model provides valuable insights into self-organization phenomena in a broad range of non-equilibrium magnetic and electrostatic systems with competing interactions.

  8. Conditions for up-down asymmetry in the core of tokamak equilibria

    E-Print Network [OSTI]

    Rodrigues, Paulo; Ball, Justin; Parra, Felix I

    2013-01-01

    A local magnetic equilibrium solution is sought around the magnetic axis in order to identify the key parameters defining the magnetic-surface's up-down asymmetry in the core of tokamak plasmas. The asymmetry is found to be determined essentially by the ratio of the toroidal current density flowing on axis to the fraction of the external field's odd perturbation that manages to propagate from the plasma boundary into the core. The predictions are tested and illustrated first with an analytical Solovev equilibrium and then using experimentally relevant numerical equilibria. Hollow current-density distributions, and hence reverse magnetic shear, are seen to be crucial to bring into the core asymmetry values that are usually found only near the plasma edge.

  9. HTTF Core Stress Analysis

    SciTech Connect (OSTI)

    Brian D. Hawkes; Richard Schultz

    2012-07-01

    In accordance with the need to determine whether cracking of the ceramic core disks which will be constructed and used in the High Temperature Test Facility (HTTF) for heatup and cooldown experiments, a set of calculation were performed using Abaqus to investigate the thermal stresses levels and likelihood for cracking. The calculations showed that using the material properties provided for the Greencast 94F ceramic, cracking is predicted to occur. However, this modeling does not predict the size or length of the actual cracks. It is quite likely that cracks will be narrow with rough walls which would impede the flow of coolant gases entering the cracks. Based on data recorded at Oregon State University using Greencast 94F samples that were heated and cooled at prescribed rates, it was concluded that the likelihood that the cracks would be detrimental to the experimental objectives is small.

  10. Pinning induced by inter-domain wall interactions in planar magnetic nanowires

    SciTech Connect (OSTI)

    Hayward, T.J.; Bryan, M.T.; Fry, P.W.; Fundi, P.M.; Gibbs, M.R.J.; Allwood, D.A.; Im, M.-Y.; Fischer, P.

    2009-10-30

    We have investigated pinning potentials created by inter-domain wall magnetostatic interactions in planar magnetic nanowires. We show that these potentials can take the form of an energy barrier or an energy well depending on the walls' relative monopole moments, and that the applied magnetic fields required to overcome these potentials are significant. Both transverse and vortex wall pairs are investigated and it is found that transverse walls interact more strongly due to dipolar coupling between their magnetization structures. Simple analytical models which allow the effects of inter-domain wall interactions to be estimated are also presented.

  11. Superconducting magnets

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  12. The Meissner Effect and Vortex Expulsion in Color-Superconducting Quark stars, and its Role for Re-heating of Magnetars

    E-Print Network [OSTI]

    Brian Niebergal; Rachid Ouyed; Rodrigo Negreiros; Fridolin Weber

    2010-01-29

    Compact stars made of quark matter rather than confined hadronic matter, are expected to form a color superconductor. This superconductor ought to be threaded with rotational vortex lines, within which the star's interior magnetic field is at least partially confined. The vortices (and thus magnetic flux) would be expelled from the star during stellar spin-down, leading to magnetic reconnection at the surface of the star and the prolific production of thermal energy. In this paper, we show that this energy release can re-heat quark stars to exceptionally high temperatures, such as observed for Soft Gamma Repeaters (SGRs), Anomalous X-Ray pulsars (AXPs), and X-ray dim isolated neutron stars (XDINs). Moreover, our numerical investigations of the temperature evolution, spin-down rate, and magnetic field behavior of such superconducting quark stars suggest that SGRs, AXPs, and XDINs may be linked ancestrally. Finally, we discuss the possibility of a time delay before the star enters the color superconducting phase, which can be used to estimate the density at which quarks deconfine. From observations, we find this density to be of the order of five times that of nuclear saturation.

  13. Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner core—coupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

  14. Spontaneous vortex phase and pinning in ferromagnetic-superconducting systems 

    E-Print Network [OSTI]

    Kayali, Mohammad Amin

    2004-09-30

    of vortices is possible mostly in a close vicinity of the superconducting transition temperature Ts. For every case, the threshold value of the magnetization at which vortices start to be spontaneously created in the SC is calculated as a function...

  15. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices

    E-Print Network [OSTI]

    Hugo Wioland; Francis G. Woodhouse; Jörn Dunkel; Raymond E. Goldstein

    2015-11-16

    Despite their inherent non-equilibrium nature, living systems can self-organize in highly ordered collective states that share striking similarities with the thermodynamic equilibrium phases of conventional condensed matter and fluid systems. Examples range from the liquid-crystal-like arrangements of bacterial colonies, microbial suspensions and tissues to the coherent macro-scale dynamics in schools of fish and flocks of birds. Yet, the generic mathematical principles that govern the emergence of structure in such artificial and biological systems are elusive. It is not clear when, or even whether, well-established theoretical concepts describing universal thermostatistics of equilibrium systems can capture and classify ordered states of living matter. Here, we connect these two previously disparate regimes: Through microfluidic experiments and mathematical modelling, we demonstrate that lattices of hydrodynamically coupled bacterial vortices can spontaneously organize into distinct phases of ferro- and antiferromagnetic order. The preferred phase can be controlled by tuning the vortex coupling through changes of the inter-cavity gap widths. The emergence of opposing order regimes is tightly linked to the existence of geometry-induced edge currents, reminiscent of those in quantum systems. Our experimental observations can be rationalized in terms of a generic lattice field theory, suggesting that bacterial spin networks belong to the same universality class as a wide range of equilibrium systems.

  16. ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Chapman, Nicholas L.; Matthews, Tristan G.; Novak, Giles [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Davidson, Jacqueline A. [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, MS 264-782, Pasadena, CA 91109 (United States); Houde, Martin [Department of Physics and Astronomy, University of Western Ontario, London, ON (Canada); Kwon, Woojin; Looney, Leslie W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Li Zhiyun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Matthews, Brenda [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peng Ruisheng [Caltech Submillimeter Observatory, 111 Nowelo Street, Hilo, HI 96720 (United States); Vaillancourt, John E. [SOFIA Science Center, Universities Space Research Association, NASA Ames Research Center, MS 232-11, Moffett Field, CA 94035-0001 (United States); Volgenau, Nikolaus H. [California Institute of Technology, Owens Valley Radio Observatory, Big Pine, CA 93513 (United States)

    2013-06-20

    We present 350 {mu}m polarization observations of four low-mass cores containing Class 0 protostars: L483, L1157, L1448-IRS2, and Serp-FIR1. This is the second paper in a larger survey aimed at testing magnetically regulated models for core-collapse. One key prediction of these models is that the mean magnetic field in a core should be aligned with the symmetry axis (minor axis) of the flattened young stellar object inner envelope (aka pseudodisk). Furthermore, the field should exhibit a pinched or hourglass-shaped morphology as gravity drags the field inward toward the central protostar. We combine our results for the four cores with results for three similar cores that were published in the first paper from our survey. An analysis of the 350 {mu}m polarization data for the seven cores yields evidence of a positive correlation between mean field direction and pseudodisk symmetry axis. Our rough estimate for the probability of obtaining by pure chance a correlation as strong as the one we found is about 5%. In addition, we combine together data for multiple cores to create a source-averaged magnetic field map having improved signal-to-noise ratio, and this map shows good agreement between mean field direction and pseudodisk axis (they are within 15 Degree-Sign ). We also see hints of a magnetic pinch in the source-averaged map. We conclude that core-scale magnetic fields appear to be strong enough to guide gas infall, as predicted by the magnetically regulated models. Finally, we find evidence of a positive correlation between core magnetic field direction and bipolar outflow axis.

  17. A numerical study of steady-state vortex configurations and vortex pinning in type-II superconductors 

    E-Print Network [OSTI]

    Kim, Sangbum

    2006-04-12

    In part I, a numerical study of the mixed states in a mesoscopic type-II superconducting cylinder is described. Steady-state configurations and transient behavior of the magnetic vortices for various values of the applied ...

  18. A Robust Numerical Method for Integration of Point-Vortex Trajectories in Two Dimensions

    E-Print Network [OSTI]

    Spencer A. Smith; Bruce M. Boghosian

    2010-11-19

    The venerable 2D point-vortex model plays an important role as a simplified version of many disparate physical systems, including superfluids, Bose-Einstein condensates, certain plasma configurations, and inviscid turbulence. This system is also a veritable mathematical playground, touching upon many different disciplines from topology to dynamic systems theory. Point-vortex dynamics are described by a relatively simple system of nonlinear ODEs which can easily be integrated numerically using an appropriate adaptive time stepping method. As the separation between a pair of vortices relative to all other inter-vortex length scales decreases, however, the computational time required diverges. Accuracy is usually the most discouraging casualty when trying to account for such vortex motion, though the varying energy of this ostensibly Hamiltonian system is a potentially more serious problem. We solve these problems by a series of coordinate transformations: We first transform to action-angle coordinates, which, to lowest order, treat the close pair as a single vortex amongst all others with an internal degree of freedom. We next, and most importantly, apply Lie transform perturbation theory to remove the higher-order correction terms in succession. The overall transformation drastically increases the numerical efficiency and ensures that the total energy remains constant to high accuracy.

  19. Beamed Core Antimatter Propulsion: Engine Design and Optimization

    E-Print Network [OSTI]

    Ronan Keane; Wei-Ming Zhang

    2012-05-16

    A conceptual design for beamed core antimatter propulsion is reported, where electrically charged annihilation products directly generate thrust after being deflected and collimated by a magnetic nozzle. Simulations were carried out using the Geant4 (Geometry and tracking) software toolkit released by the CERN accelerator laboratory for Monte Carlo simulation of the interaction of particles with matter and fields. Geant permits a more sophisticated and comprehensive design and optimization of antimatter engines than the software environment for simulations reported by prior researchers. The main finding is that effective exhaust speeds Ve ~ 0.69c (where c is the speed of light) are feasible for charged pions in beamed core propulsion, a major improvement over the Ve ~ 0.33c estimate based on prior simulations. The improvement resulted from optimization of the geometry and the field configuration of the magnetic nozzle. Moreover, this improved performance is realized using a magnetic field on the order of 10 T at the location of its highest magnitude. Such a field could be produced with today's technology, whereas prior nozzle designs anticipated and required major advances in this area. The paper also briefly reviews prospects for production of the fuel needed for a beamed core engine.

  20. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    SciTech Connect (OSTI)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards flashback regime. Even a small amount of hydrogen in a fuel blend triggers the onset of flashback by altering the kinetics and thermophysical characteristics of the mixture. Additionally, the presence of hydrogen in the fuel mixture modifies the response of the flame to the global effects of stretch and preferential diffusion. Despite its immense importance in fuel flexible combustor design, little is known about the magnitude of fuel effects on CIVB induced flashback mechanism. Hence, this project investigates the effects of syngas compositions on flashback resulting from combustion induced vortex breakdown. The project uses controlled experiments and parametric modeling to understand the velocity field and flame interaction leading to CIVB driven flashback.

  1. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN)

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  2. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  3. Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open channel flow

    E-Print Network [OSTI]

    Boyer, Edmond

    Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open the obstacle, two main flow structures are observed: i a hydraulic jump in the near-surface region and ii turbulent regime , the detachment length of the hydraulic jump exceeds the one of the horseshoe vortex

  4. A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies

    E-Print Network [OSTI]

    Cottet, Georges-Henri

    in a non laminar flow. Here we consider a different approach. The fluid­ solid system is considered rights reserved. Keywords: Incompressible flow; Fluid­solid interaction; Vortex method; Level set methodA vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid

  5. Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube array: A numerical study

    E-Print Network [OSTI]

    Luo, Xiaoyu

    Effect of tube spacing on the vortex shedding characteristics of laminar flow past an inline tube the tubes. Complex flow dynamic phenomena such as reattachment of shear layers, in- duced separation, vortex Accepted 27 October 2008 Available online 14 November 2008 a b s t r a c t The effect of tube spacing

  6. Two-dimensional model problem to explain counter-rotating vortex pair formation in a transverse jet

    E-Print Network [OSTI]

    Mahesh, Krishnan

    Two-dimensional model problem to explain counter-rotating vortex pair formation in a transverse jet A two-dimensional model problem is used to study the evolution of the cross section of a transverse jet and the counter-rotating vortex pair CVP . The solution to the model problem shows deformation of the jet similar

  7. arXiv:cond-mat/0606001v222Jul2006 Electronic states near a quantum fluctuating point vortex in a d-wave superconductor

    E-Print Network [OSTI]

    -wave superconductor. The vortex is treated as a point flux tube, carrying flux of an auxiliary U(1) gauge fieldarXiv:cond-mat/0606001v222Jul2006 Electronic states near a quantum fluctuating point vortex in a d energy electronic states in the vicinity of a vortex under- going quantum zero-point motion in a d

  8. Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

    2009-10-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  9. Shear Banding and Spatiotemporal Oscillations in Vortex Matter in Nanostructured Superconductors

    E-Print Network [OSTI]

    C. Reichhardt; C. J. Olson Reichhardt

    2009-12-16

    We propose a simple nanostructured pinning array geometry where a rich variety of complex vortex shear banding phenomena can be realized. A single row of pinning sites is removed from a square pinning array. Shear banding effects arise when vortex motion in the pin-free channel nucleates motion of vortices in the surrounding pinned regions, creating discrete steps in the vortex velocity profile away from the channel. Near the global depinning transition, the width of the band of moving vortices undergoes oscillations or fluctuations that can span the entire system. We use simulations to show that these effects should be observable in the transport properties of the system. Similar large oscillations and shear banding effects are known to occur for sheared complex fluids in which different dynamical phases coexist.

  10. Reduction of vortex induced forces and motion through surface roughness control

    DOE Patents [OSTI]

    Bernitsas, Michael M; Raghavan, Kamaldev

    2014-04-01

    Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.

  11. Random Vortex-Street Model for a Self-Similar Plane Turbulent Jet

    E-Print Network [OSTI]

    Victor L'vov; Anna Pomyalov; Itamar Procaccia; Rama Govindarajan

    2008-03-18

    We ask what determines the (small) angle of turbulent jets. To answer this question we first construct a deterministic vortex-street model representing the large scale structure in a self-similar plane turbulent jet. Without adjustable parameters the model reproduces the mean velocity profiles and the transverse positions of the large scale structures, including their mean sweeping velocities, in a quantitative agreement with experiments. Nevertheless the exact self similar arrangement of the vortices (or any other deterministic model) necessarily leads to a collapse of the jet angle. The observed (small) angle results from a competition between vortex sweeping tending to strongly collapse the jet and randomness in the vortex structure, with the latter resulting in a weak spreading of the jet.

  12. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    DOE Patents [OSTI]

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  13. Bent core liquid crystal elastomers

    SciTech Connect (OSTI)

    Verduzco, R.; DiMasi, E.; Luchette, P.; Ho Hong, S.; Harden, J.; Palffy-Muhoray, P.; Kilbey II, S.M.; Sprunt, S.; Gleeson, G.T. Jakli, A.

    2010-07-28

    Liquid crystal (LC) elastomers with bent-core side-groups incorporate the properties of bent-core liquid crystals in a flexible and self-supporting polymer network. Bent-core liquid crystal elastomers (BCEs) with uniform alignment were prepared by attaching a reactive bent-core LC to poly(hydrogenmethylsiloxane) and crosslinking with a divinyl crosslinker. Phase behavior studies indicate a nematic phase over a wide temperature range that approaches room temperature, and thermoelastic measurements show that these BCEs can reversibly change their length by more than a factor of two upon heating and cooling. Small-angle X-ray scattering studies reveal multiple, broad low-angle peaks consistent with short-range smectic C order of the bent-core side groups. A comparison of these patterns with predictions of a Landau model for short-range smectic C order shows that the length scale for smectic ordering in BCEs is similar to that seen in pure bent-core LCs. The combination of rubber elasticity and smectic ordering of the bent-core side groups suggests that BCEs may be promising materials for sensing, actuating, and other advanced applications.

  14. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  15. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A. (Livermore, CA); Stone, Roger R. (Walnut Creek, CA); Fabyan, Joseph (Livermore, CA)

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  16. Vice President of Core Facilities

    E-Print Network [OSTI]

    MacAdam, Keith

    ) Research Integrity Federal Relations Sponsored Projects Administration, AVPR Advanced Science & Technology Veterinarian Research Communications Centers & Institutes · Center for Applied Energy Research (CAER) · CenterVice President of Research Core Facilities · Clinical Research Development and Operations Center

  17. Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor

    E-Print Network [OSTI]

    Ophir M. Auslaender; Lan Luan; Eric W. J. Straver; Jennifer E. Hoffman; Nicholas C. Koshnick; Eli Zeldov; Douglas A. Bonn; Ruixing Liang; Walter N. Hardy; Kathryn A. Moler

    2008-09-16

    Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa2Cu3O6.991 (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential. We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.

  18. Synthesis and magnetic reversal of bi-conical Ni nanostructures

    SciTech Connect (OSTI)

    Biziere, N.; Lassalle Ballier, R.; Viret, M.

    2011-09-15

    Template synthesis in polyethylene terephthalate (PET) membranes has been used to grow hour glass shaped nickel nanowires with a constriction in the range of tens of nanometers at the center. Anisotropic magnetoresistance measurements have been performed on a single nanowire to follow magnetization reversal of the structure. The results are explained via 3D micromagnetic simulations showing the appearance of a complex vortex state close to the constriction whose propagation depends on the angle between the cone axis and the applied field. The interest of this original growth process for spintronics is discussed.

  19. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  20. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  1. Holistic design for multi-core architectures

    E-Print Network [OSTI]

    Kumar, Rakesh

    2006-01-01

    Design for Adaptability: Power Advantages of A. Discussion of Core Switching . . . . . . . . . . . .power dissipation and expected performance. This simpli?es the design of core- switching

  2. Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  3. Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal

    SciTech Connect (OSTI)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark E.; Engelhard, Mark H.; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-06-26

    Chromium (Cr) forms a solid solution with iron (Fe) lattice when doped in core-shell iron -iron oxide nanocluster (NC) and shows a mixed phase of sigma (?) FeCr and bcc Fe. The Cr dopant affects heavily the magnetization and magnetic reversal process, and causes the hysteresis loop to shrink near the zero field axis. Dramatic transformation happens from dipolar interaction (0 at. % Cr) to strong exchange interaction (8 at. % of Cr) is confirmed from the Henkel plot and delta M plot, and is explained by a water-melon model of core-shell NC system.

  4. Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    E-Print Network [OSTI]

    Osorio, M R; Suderow, H

    2012-01-01

    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics.

  5. Vortex reconnections in atomic condensates at finite temperature A. J. Allen1

    E-Print Network [OSTI]

    Zuccher, Simone

    superfluid turbu- lence, a phenomenon recently also reported in trapped atomic Bose­Einstein condensates, vortex dynamics, quantum turbulence, Bose-Einstein condensates, Superfluid He In classical hydrodynamics 3 He and atomic Bose­Einstein condensates (BECs) is currently debated. For example, one would like

  6. Detection of vortex tubes in solar granulation from observations with Sunrise

    E-Print Network [OSTI]

    Steiner, O; Gonzalez, N Bello; Nutto, Ch; Rezaei, R; Pillet, V Martinez; Navarro, J A Bonet; Iniesta, J C del Toro; Domingo, V; Solanki, S K; Knolker, M; Schmidt, W; Barthol, P; Gandorfer, A

    2010-01-01

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory Sunrise. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these `granular lanes' are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  7. The tangential velocity profile and momentum transfer within a microgravity, vortex separator 

    E-Print Network [OSTI]

    Ellis, Michael Clay

    2009-05-15

    &M University (TAMU) have developed a microgravity vortex separator (MVS) capable of handling both a wide range of inlet conditions and changes in these conditions. To optimize the MVS design, the effects of nozzle area, separator geometry, and inlet flow rate...

  8. RESEARCH ARTICLE Drag and lift reduction of a 3D bluff-body using active vortex

    E-Print Network [OSTI]

    Wesfreid, José Eduardo

    apparatus (chemical industry, energy production). From the academic point of view, it is an exciting-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending academic and industrial research. From the indus- trial point of view, flow control is a way to increase

  9. Model of coarsening and vortex formation in vibrated granular rods Igor S. Aranson

    E-Print Network [OSTI]

    Tsimring, Lev S.

    Model of coarsening and vortex formation in vibrated granular rods Igor S. Aranson Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 Lev S. Tsimring Institute for Nonlinear Science spontaneous formation of the long-range orientational order and large- scale vortices in a system of vibrated

  10. 2094 OPTICS LETTERS / Vol. 28, No. 21 / November 1, 2003 Fundamental and vortex solitons in a

    E-Print Network [OSTI]

    Yang, Jianke

    2094 OPTICS LETTERS / Vol. 28, No. 21 / November 1, 2003 Fundamental and vortex solitons in a two-dimensional optical lattice Jianke Yang Department of Mathematics and Statistics, University of Vermont, Burlington-dimensional optically induced waveguide array are reported. In the strong localization regime the fundamental soliton

  11. "Development of a Free Vortex Wake Method Code for Offshore Floating Wind Turbines"

    E-Print Network [OSTI]

    Mountziaris, T. J.

    "Development of a Free Vortex Wake Method Code for Offshore Floating Wind Turbines" Andrew Sciotti Professor Matthew Lackner Shujian Liu Offshore floating wind turbines (OFWTs) require a unique aerodynamic in refining current mathematical models of offshore wind turbines while also allowing efficient simulations

  12. Sediment resuspension and erosion by vortex rings R. J. Munro,1,a

    E-Print Network [OSTI]

    Dalziel, Stuart

    Sediment resuspension and erosion by vortex rings R. J. Munro,1,a N. Bethke,2 and S. B. Dalziel2 1; accepted 26 January 2009; published online 8 April 2009 Particle resuspension and erosion induced-ring propagation speed. The critical conditions for resuspension whereby particles are only just resuspended were

  13. Vortex Ring Interaction with a Particle Layer: Implications for Sediment Transport

    E-Print Network [OSTI]

    Dalziel, Stuart

    resuspension has been studied much less. This is an important mechanism, however, as it represents an integral conducted to study particle resuspension by vortex rings colliding with a particle bed. The dynamics at the resuspension onset are investigated, showing that the deformable particle bed resembles a free slip boundary

  14. Microoptomechanical pumps assembled and driven by holographic optical vortex Kosta Ladavac

    E-Print Network [OSTI]

    Grier, David

    Microoptomechanical pumps assembled and driven by holographic optical vortex arrays Kosta Ladavac into dynamically reconfigurable microoptomechanical pumps assembled by optical gradient forces and actuated systems has created a need for new meth­ ods to pump and steer fluids through micrometer­scale channels

  15. Microoptomechanical pumps assembled and driven by holographic optical vortex Kosta Ladavac

    E-Print Network [OSTI]

    Grier, David

    Microoptomechanical pumps assembled and driven by holographic optical vortex arrays Kosta Ladavac into dynamically reconfigurable microoptomechanical pumps assembled by optical gradient forces and actuated systems has created a need for new meth- ods to pump and steer fluids through micrometer-scale channels

  16. Hierarchical Colloidal Vortex Rings in a Constant Electric Field Yilong Han and David G. Grier

    E-Print Network [OSTI]

    Grier, David

    in the bulk of charge­stabilized colloidal suspensions when electrohydrodynamic forces due to constant appliedHierarchical Colloidal Vortex Rings in a Constant Electric Field Yilong Han and David G. Grier used [1, 2] to study interfacial col­ loidal electrokinetic phenomena. An aqueous suspension

  17. Hierarchical Colloidal Vortex Rings in a Constant Electric Field Yilong Han and David G. Grier

    E-Print Network [OSTI]

    Grier, David

    in the bulk of charge-stabilized colloidal suspensions when electrohydrodynamic forces due to constant appliedHierarchical Colloidal Vortex Rings in a Constant Electric Field Yilong Han and David G. Grier used [1, 2] to study interfacial col- loidal electrokinetic phenomena. An aqueous suspension

  18. Self-consistent anisotropic oscillator with cranked angular and vortex velocities

    E-Print Network [OSTI]

    G. Rosensteel

    1992-11-05

    The Kelvin circulation is the kinematical Hermitian observable that measures the true character of nuclear rotation. For the anisotropic oscillator, mean field solutions with fixed angular momentum and Kelvin circulation are derived in analytic form. The cranking Lagrange multipliers corresponding to the two constraints are the angular and vortex velocities. Self-consistent solutions are reported with a constraint to constant volume.

  19. Vortex-Pair Dynamics in Anisotropic Bistable Media: A Kinematic Approach Aric Hagberg1

    E-Print Network [OSTI]

    Meron, Ehud

    Alamos, New Mexico 87545, USA 2 Department of Solar Energy and Environmental Physics, BIDR, Ben Gurion type upon rotation by =2. We study vortex-pair dynamics by deriving kinematic equations for a front with contour lines that form a closed loop. Equations of this kind, but for isotropic systems and infinite

  20. A Lagrangian approach to identifying vortex pinch-off Clara O'Farrell1

    E-Print Network [OSTI]

    Dabiri, John O.

    A Lagrangian approach to identifying vortex pinch-off Clara O'Farrell1 and John O. Dabiri2 1 Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, USA 2 Graduate Aeronautical Laboratories and Bioengineering, California Institute of Technology, Pasadena

  1. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillationa...

    E-Print Network [OSTI]

    Mascia, Corrado

    Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament, or filament. This twist can then significantly alter the dynamics of the filament. This paper explores transmural filament and cause a transition to a wave turbulent state characterized by a high density

  2. Under consideration for publication in J. Fluid Mech. 1 Drop impact into a deep pool: vortex

    E-Print Network [OSTI]

    Deegan, Robert

    Under consideration for publication in J. Fluid Mech. 1 Drop impact into a deep pool: vortex of Michigan, Ann Arbor, Michigan 48109, USA 2 Division of Physical Sciences and Engineering & Clean Combustion Arabia 3 Physics of Fluids Group, Faculty of Science and Technology, Mesa+ Institute, University

  3. Instabilities due a vortex at a density interface: gravitational and centrifugal effects

    E-Print Network [OSTI]

    Dixit, Harish

    Instabilities due a vortex at a density interface: gravitational and centrifugal effects Harish N showed recently that the flow is subject to centrifugal Rayleigh-Taylor and spiral Kelvin for example [5]). In the absence of gravity, centrifugal forces are predominant, and we showed recently [4

  4. Aging memory and glassiness of a driven vortex , Guohong Li1

    E-Print Network [OSTI]

    Andrei, Eva Y.

    1 Aging memory and glassiness of a driven vortex system. Xu Du1 , Guohong Li1 , Eva Y. Andrei1 , M memory, aging and nonlinear-dynamics. Glasses[1-11], interfaces[12] and fractures are some examples[13 the deviation from equilibrium. After removing the force, the system ages with time and its subsequent response

  5. Superconducting and magnetic properties of Sr?Ir?Sn??

    SciTech Connect (OSTI)

    Biswas, P. K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wang, Kefeng [Brookhaven National Lab. (BNL), Upton, NY (United States); Amato, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Khasanov, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Luetkens, H. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Petrovic, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Cook, R. M. [Univ. of Warwick, Coventry (United Kingdom); Lees, M. R. [Univ. of Warwick, Coventry (United Kingdom); Morenzoni, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2014-10-01

    Magnetization and muon spin relaxation or rotation (µSR) measurements have been performed to study the superconducting and magnetic properties of Sr?Ir?Sn??. From magnetization measurements the lower and upper critical fields of Sr?Ir?Sn?? are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field µSR data show no sign of any magnetic ordering or weak magnetism in Sr?Ir?Sn??. Transverse-field µSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth ?. The dependence of ??² with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr?Ir?Sn?? with a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature ?(0) is 291(3) nm. The ratio ?(0)/kBTc = 2.1(1) indicates that Sr?Ir?Sn?? should be considered as a strong-coupling superconductor.

  6. Superconducting and magnetic properties of Sr?Ir?Sn??

    SciTech Connect (OSTI)

    Biswas, P. K.; Wang, Kefeng; Amato, A.; Khasanov, R.; Luetkens, H.; Petrovic, C.; Cook, R. M.; Lees, M. R.; Morenzoni, E.

    2014-10-10

    Magnetization and muon spin relaxation or rotation (µSR) measurements have been performed to study the superconducting and magnetic properties of Sr?Ir?Sn??. From magnetization measurements the lower and upper critical fields of Sr?Ir?Sn?? are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field µSR data show no sign of any magnetic ordering or weak magnetism in Sr?Ir?Sn??. Transverse-field µSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth ?. The dependence of ??² with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr?Ir?Sn?? with a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature ?(0) is 291(3) nm. The ratio ?(0)/kBTc = 2.1(1) indicates that Sr?Ir?Sn?? should be considered as a strong-coupling superconductor.

  7. Superconducting and magnetic properties of Sr?Ir?Sn??

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biswas, P. K.; Wang, Kefeng; Amato, A.; Khasanov, R.; Luetkens, H.; Petrovic, C.; Cook, R. M.; Lees, M. R.; Morenzoni, E.

    2014-10-10

    Magnetization and muon spin relaxation or rotation (µSR) measurements have been performed to study the superconducting and magnetic properties of Sr?Ir?Sn??. From magnetization measurements the lower and upper critical fields of Sr?Ir?Sn?? are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field µSR data show no sign of any magnetic ordering or weak magnetism in Sr?Ir?Sn??. Transverse-field µSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth ?. The dependence of ??² with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr?Ir?Sn?? with a gap valuemore »of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature ?(0) is 291(3) nm. The ratio ?(0)/kBTc = 2.1(1) indicates that Sr?Ir?Sn?? should be considered as a strong-coupling superconductor.« less

  8. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2012-02-21

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  9. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2011-06-14

    A permanent-magnet switched-flux (PMSF) device has an outer rotor mounted to a shaft about a central axis extending axially through the PMSF device. First and second pluralities of permanent-magnets (PMs) are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the outer rotor. An inner stator is coupled to the shaft and has i) a stator core having a core axis co-axial with the central axis; and ii) first and second pluralities of stator poles mounted in first and second circles, radially outwardly from the stator core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  10. Permanent-magnet switched-flux machine

    DOE Patents [OSTI]

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  11. XT Node Architecture Let's Review: Dual Core v. Quad Core

    E-Print Network [OSTI]

    DDR2 · 10GB/s peak @ 667MHz · 8GB/s nominal STREAMs Quad Core · Core · 2.1Ghz clock frequency · SSE to L1,L2,L3 · Memory · Dual Channel DDR2 · 12GB/s peak @ 800MHz · 10GB/s nominal STREAMs #12;Cray XT4 Node 9.6 GB/sec 9.6GB/sec 9.6 GB/sec 9.6GB/sec 2 ­ 8 GB 12.8 GB/sec direct connect memory (DDR 800) 6

  12. Periodic magnetic structures generated by spin–polarized currents in nanostripes

    SciTech Connect (OSTI)

    Volkov, Oleksii M. Sheka, Denis D.; Kravchuk, Volodymyr P.; Gaididei, Yuri; Mertens, Franz G.

    2013-11-25

    The influence of a transverse spin–polarized current on long ferromagnetic nanostripes is studied numerically. The magnetization behavior is analyzed for all range of the applied currents, up to the saturation. It is shown that the saturation current is a nonmonotonic function of the stripe width. A number of stable periodic magnetization structures are observed below the saturation. Type of the periodical structure depends on the stripe width. Besides the one–dimensional domain structure, typical for narrow wires, and the two–dimensional vortex–antivortex lattice, typical for wide films, a number of intermediate structures are observed, e.g., cross–tie and diamond state.

  13. PROTOSTELLAR DISK FORMATION ENABLED BY WEAK, MISALIGNED MAGNETIC FIELDS

    SciTech Connect (OSTI)

    Krumholz, Mark R.; Crutcher, Richard M.; Hull, Charles L. H.

    2013-04-10

    The gas from which stars form is magnetized, and strong magnetic fields can efficiently transport angular momentum. Most theoretical models of this phenomenon find that it should prevent formation of large (>100 AU), rotationally supported disks around most protostars, even when non-ideal magnetohydrodynamic (MHD) effects that allow the field and gas to decouple are taken into account. Using recent observations of magnetic field strengths and orientations in protostellar cores, we show that this conclusion is incorrect. The distribution of magnetic field strengths is very broad, and alignments between fields and angular momentum vectors within protostellar cores are essentially random. By combining the field strength and misalignment data with MHD simulations showing that disk formation is expected for both weak and misaligned fields, we show that these observations imply that we should expect disk fractions of {approx}10%-50% even when protostars are still deeply embedded in their parent cores, and even if the gas is governed by ideal MHD.

  14. 80 units of core courses 70 units of core courses 70 units of core courses 80 units of core courses Semester 1 Semester 1 Semester 1 Semester 1

    E-Print Network [OSTI]

    Fleming, Andrew J.

    80 units of core courses 70 units of core courses 70 units of core courses 80 units of core courses Semester 1 Semester 1 Semester 1 Semester 1 ARBE1303 10 units ARBE2101 10 units ARBE3100 10 units ARBE4101 10 units Introduction to the Construction Industry Construction Ecology 2 Construction Technology 3

  15. Magnetic monopoles

    SciTech Connect (OSTI)

    Fryberger, D.

    1984-12-01

    In this talk on magnetic monopoles, first the author briefly reviews some historical background; then, the author describes what several different types of monopoles might look like; and finally the author discusses the experimental situation. 81 references.

  16. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  17. Reactor core isolation cooling system

    DOE Patents [OSTI]

    Cooke, Franklin E. (San Jose, CA)

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  18. Kansalliskirjasto Dublin Core Dublin Core metadataformaatin suomalainen versio

    E-Print Network [OSTI]

    Rodriguez, Carlos

    - Medical Subject Headings 3. DDC - Dewey Decimal Classification 4. LCC - Library of Congress Classification: - Merkintäjärjestelmät: #12;Kansalliskirjasto Dublin Core 2(6) 1. LCSH - Library of Congress Subject Headings 2. MESH 5. UDC - Universal Decimal Classification Suomalaiset merkintäjärjestelmät katso sfs_aihe.pdf Kuvaus

  19. Massive Quiescent Cores in Orion. -- II. Core Mass Function

    E-Print Network [OSTI]

    Li, D; Goldsmith, P F; Langer, W D

    2006-01-01

    We have surveyed submillimeter continuum emission from relatively quiescent regions in the Orion molecular cloud to determine how the core mass function in a high mass star forming region compares to the stellar initial mass function. Such studies are important for understanding the evolution of cores to stars, and for comparison to formation processes in high and low mass star forming regions. We used the SHARC II camera on the Caltech Submillimeter Observatory telescope to obtain 350 \\micron data having angular resolution of about 9 arcsec, which corresponds to 0.02 pc at the distance of Orion. Our analysis combining dust continuum and spectral line data defines a sample of 51 Orion molecular cores with masses ranging from 0.1 \\Ms to 46 \\Ms and a mean mass of 9.8 \\Ms, which is one order of magnitude higher than the value found in typical low mass star forming regions, such as Taurus. The majority of these cores cannot be supported by thermal pressure or turbulence, and are probably supercritical.They are th...

  20. PUBLISHED ONLINE: 18 JANUARY 2009 DOI: 10.1038/NPHYS1177 Evidence for an oscillating soliton/vortex ring by

    E-Print Network [OSTI]

    Loss, Daniel

    soliton/vortex ring by density engineering of a Bose­Einstein condensate I. Shomroni, E. Lahoud, S. Levy and J. Steinhauer* When two Bose­Einstein condensates collide with high collisional energy

  1. A scatter diagram approach to the selection of design currents for prediction of marine riser vortex-induced vibration

    E-Print Network [OSTI]

    Donnelly, Jessica Mary

    2004-01-01

    This paper describes a scatter diagram approach for the classification of large numbers of current profiles for use in the prediction of riser fatigue damage due to vortex-induced vibration. Scatter diagrams have long been ...

  2. arXiv:1206.2498v2[cond-mat.other]19Nov2012 Quantum vortex reconnections

    E-Print Network [OSTI]

    Caliari, Marco

    (Dated: 21 November 2012) We study reconnections of quantum vortices by numerically solving the governing . They are the key to understanding quantum turbulence8 , a disordered state of vortex lines which is easily created

  3. Contributions of the wall boundary layer to the formation of the counter-rotating vortex pair in transverse jets

    E-Print Network [OSTI]

    Schlegel, Fabrice

    Using high-resolution 3-D vortex simulations, this study seeks a mechanistic understanding of vorticity dynamics in transverse jets at a finite Reynolds number. A full no-slip boundary condition, rigorously formulated in ...

  4. Large core fiber optic cleaver

    DOE Patents [OSTI]

    Halpin, J.M.

    1996-03-26

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 {micro}m. 30 figs.

  5. Chemflex Overview: Common Chemistry core

    E-Print Network [OSTI]

    Gilchrist, James F.

    Advanced chemistry laboratory I CHM 335 3 Advanced chemistry laboratory II Mat 33 3 Engineering materialsChemflex Overview: Common Chemistry core CHM 40, 41 (or CHM 30, 31) 8 Introductory chemistry CHM 110,111,112,113 8 Organic chemistry CHM 332 3 Analytical chemistry CHM 201*** 2 Technical writing CHM

  6. Large core fiber optic cleaver

    DOE Patents [OSTI]

    Halpin, John M. (Livermore, CA)

    1996-01-01

    The present invention relates to a device and method for cleaving optical fibers which yields cleaved optical fiber ends possessing high damage threshold surfaces. The device can be used to cleave optical fibers with core diameters greater than 400 .mu.m.

  7. Stability of Molten Core Materials

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze

    2013-01-01

    The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

  8. Logging-while-coring method and apparatus

    DOE Patents [OSTI]

    Goldberg, David S.; Myers, Gregory J.

    2007-01-30

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  9. Logging-while-coring method and apparatus

    DOE Patents [OSTI]

    Goldberg, David S. (New York, NY); Myers, Gregory J. (Cornwall, NY)

    2007-11-13

    A method and apparatus for downhole coring while receiving logging-while-drilling tool data. The apparatus includes core collar and a retrievable core barrel. The retrievable core barrel receives core from a borehole which is sent to the surface for analysis via wireline and latching tool The core collar includes logging-while-drilling tools for the simultaneous measurement of formation properties during the core excavation process. Examples of logging-while-drilling tools include nuclear sensors, resistivity sensors, gamma ray sensors, and bit resistivity sensors. The disclosed method allows for precise core-log depth calibration and core orientation within a single borehole, and without at pipe trip, providing both time saving and unique scientific advantages.

  10. Fusion Engineering and Design 80 (2006) 7998 Advanced power core system for the

    E-Print Network [OSTI]

    California at San Diego, University of

    2006-01-01

    C) for high power cycle efficiency while maintaining SiCf/SiC at a substantially lower temperature studies; Power core system; Blanket and divertor design; Power cycle Corresponding author. Tel.: +1 858 magnet, high power cycle efficiency, and lower-cost advanced manufacturing techniques. Fig. 1 shows

  11. ur solid Earth undergoes constant change from motions within its core

    E-Print Network [OSTI]

    McLeod, Dennis

    O ur solid Earth undergoes constant change from motions within its core to the surface. Solid Earth is the physical planet we live on, not the oceans or atmosphere. Motions near Earth's cen- ter affect the geodynamo, which generates the Earth's magnetic field. Convection within Earth's mantle drives plate

  12. Fusion and Plasma Physics are at the Core of Nature's Most Intriguing Self-Driven Systems

    E-Print Network [OSTI]

    University Presented at Columbia University Plasma Physics Colloquium in the City of New York http for a Major Next Step Magnetic Fusion Experiment Explore and understand the strong non-linear couplingFusion and Plasma Physics are at the Core of Nature's Most Intriguing Self-Driven Systems CHANDRA

  13. General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation

    SciTech Connect (OSTI)

    Van Gorder, Robert A.

    2014-06-15

    In his study of superfluid turbulence in the low-temperature limit, Svistunov [“Superfluid turbulence in the low-temperature limit,” Phys. Rev. B 52, 3647 (1995)] derived a Hamiltonian equation for the self-induced motion of a vortex filament. Under the local induction approximation (LIA), the Svistunov formulation is equivalent to a nonlinear dispersive partial differential equation. In this paper, we consider a family of rotating vortex filament solutions for the LIA reduction of the Svistunov formulation, which we refer to as the 2D LIA (since it permits a potential formulation in terms of two of the three Cartesian coordinates). This class of solutions holds the well-known Hasimoto-type planar vortex filament [H. Hasimoto, “Motion of a vortex filament and its relation to elastica,” J. Phys. Soc. Jpn. 31, 293 (1971)] as one reduction and helical solutions as another. More generally, we obtain solutions which are periodic in the space variable. A systematic analytical study of the behavior of such solutions is carried out. In the case where vortex filaments have small deviations from the axis of rotation, closed analytical forms of the filament solutions are given. A variety of numerical simulations are provided to demonstrate the wide range of rotating filament behaviors possible. Doing so, we are able to determine a number of vortex filament structures not previously studied. We find that the solution structure progresses from planar to helical, and then to more intricate and complex filament structures, possibly indicating the onset of superfluid turbulence.

  14. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    SciTech Connect (OSTI)

    Poidevin, Frédérick; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Netterfield, Calvin B.; Chapin, Edward L.; Fissel, Laura M.; Gandilo, Natalie N.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Matthews, Tristan G.; Novak, Giles; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 ?m maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 ?m with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  15. Magnet Cable Manufacturing

    E-Print Network [OSTI]

    Royet, J.M.

    2011-01-01

    J. Royet, "Magnet Cable Manufacturing", oral presentation atDivision Magnet Cable Manufacturing J. Royet October 1990J I Magnet Cable Manufacturing* John Royet Accelerator &

  16. CORE SHAPES AND ORIENTATIONS OF CORE-SÉRSIC GALAXIES

    SciTech Connect (OSTI)

    Dullo, Bililign T.; Graham, Alister W., E-mail: Bdullo@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2015-01-01

    The inner and outer shapes and orientations of core-Sérsic galaxies may hold important clues to their formation and evolution. We have therefore measured the central and outer ellipticities and position angles for a sample of 24 core-Sérsic galaxies using archival Hubble Space Telescope (HST) images and data. By selecting galaxies with core-Sérsic break radii R{sub b} —a measure of the size of their partially depleted core—that are ? 0.''2, we find that the ellipticities and position angles are quite robust against HST seeing. For the bulk of the galaxies, there is a good agreement between the ellipticities and position angles at the break radii and the average outer ellipticities and position angles determined over R {sub e}/2 < R < R {sub e}, where R {sub e} is the spheroids' effective half light radius. However there are some interesting differences. We find a median ''inner'' ellipticity at R{sub b} of ?{sub med} = 0.13 ± 0.01, rounder than the median ellipticity of the ''outer'' regions ?{sub med} = 0.20 ± 0.01, which is thought to reflect the influence of the central supermassive black hole at small radii. In addition, for the first time we find a trend, albeit weak (2? significance), such that galaxies with larger (stellar deficit-to-supermassive black hole) mass ratios—thought to be a measure of the number of major dry merger events—tend to have rounder inner and outer isophotes, suggesting a connection between the galaxy shapes and their merger histories. We show that this finding is not simply reflecting the well known result that more luminous galaxies are rounder, but it is no doubt related.

  17. Effect of Side Permanent Magnets for Reluctance Interior Permanent Magnet Reluctance Machines

    SciTech Connect (OSTI)

    Hsu, John S; Lee, Seong T; Wiles, Randy H; Coomer, Chester; Lowe, Kirk T

    2007-01-01

    A traditional electric machine uses two dimensional magnetic flux paths in its rotor. This paper presents the development work on the utilization of the third dimension of a rotor. As an example, the air gap flux of a radial gap interior permanent magnet motor can be significantly enhanced by additional permanent magnets (PM) mounted at the sides of the rotor. A prototype motor built with this concept provided higher efficiency and required a shorter stator core length for the same power output as the Toyota/Prius traction drive motor.

  18. Fe{sub 3}O{sub 4} and CdS based bifunctional core–shell nanostructure

    SciTech Connect (OSTI)

    Joseph, Joshy; Nishad, K.K.; Sharma, M.; Gupta, D.K.; Singh, R.R.; Pandey, R.K.

    2012-06-15

    Highlights: ? First report on a room temperature aqueous process for growth of a hybrid core shell nanostructure containing a magnetic core and a semiconducting shell. ? Formation of distinct core shell nanostructure revealed by high resolution transmission electron microscopy. ? A bifunctional nature combining magnetic as well as photoresponce for the as synthesised core shell nanostructures demonstrated. ? A tendency towards self organisation of the core–shell nanostructure. ? Possible applications including purification and isolation of biological materials, drug delivery system, bio-labels, spintronics, etc. -- Abstract: A room temperature solution process for synthesis of Fe{sub 3}O{sub 4} nanoparticles and their hybrid core shell nanostructures using CdS as the shell material has been described. The as grown particles have been characterised using XRD, Rietveld refinement, high resolution transmission electron microscopy, atomic force microscopy, superconducting quantum interference device, optical absorbance and photoluminescence spectroscopy. A superparamagnetic response revealed from the magnetisation measurements of the as synthesised magnetite nanoparticles was retained even after the growth of the CdS shell. From luminescence and high resolution atomic force microscopy measurements, it is shown that the core–shell structures advantageously combine magnetic as well as fluorescence response with a tendency towards self-organization.

  19. Vortex Formation and Evolution in Planet Harboring Disks under Thermal Relaxation

    E-Print Network [OSTI]

    Gomes, A Lobo; Uribe, A L; Pinilla, P; Surville, C

    2015-01-01

    We study the evolution of planet-induced vortices in radially stratified disks, with initial conditions allowing for radial buoyancy. For this purpose we run global two dimensional hydrodynamical simulations, using the PLUTO code. Planet-induced vortices are a product of the Rossby wave instability (RWI) triggered in the edges of a planetary gap. In this work we assess the influence of radial buoyancy for the development of the vortices. We found that radial buoyancy leads to smoother planetary gaps, which generates weaker vortices. This effect is less pronounced for locally isothermal and quasi-isothermal (very small cooling rate) disks. We observed the formation of two generations of vortices. The first generation of vortices is formed in the outer wall of the planetary gap. The merged primary vortex induces accretion, depleting the mass on its orbit. This process creates a surface density enhancement beyond the primary vortex position. The second generation of vortices arise in this surface density enhance...

  20. Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe and flutter

    E-Print Network [OSTI]

    B. G. Konopelchenko; G. Ortenzi

    2012-06-13

    Quasiclassical approximation in the intrinsic description of the vortex filament dynamics is discussed. Within this approximation the governing equations are given by elliptic system of quasi-linear PDEs of the first order. Dispersionless Da Rios system and dispersionless Hirota equation are among them. They describe motion of vortex filament with slow varying curvature and torsion without or with axial flow. Gradient catastrophe for governing equations is studied. It is shown that geometrically this catastrophe manifests as a fast oscillation of a filament curve around the rectifying plane which resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve' I equation.

  1. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    SciTech Connect (OSTI)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  2. Magnetic Stereoscopy

    E-Print Network [OSTI]

    Thomas Wiegelmann; Bernd Inhester

    2006-12-21

    The space mission STEREO will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently the 3D coronal magnetic field provides a proxy for the stereoscopy which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.

  3. Comment on “General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation” [Phys. Fluids 26, 065105 (2014)

    SciTech Connect (OSTI)

    Hietala, Niklas Hänninen, Risto

    2014-11-15

    Van Gorder considers a formulation of the local induction approximation, which allows the vortex to move in the direction of the reference axis [“General rotating quantum vortex filaments in the low-temperature Svistunov model of the local induction approximation,” Phys. Fluids 26, 065105 (2014)]. However, in his analytical and numerical study he does not use it. A mistake in the torsion of a helical vortex is also corrected.

  4. Laminated electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  5. GaN/Fe core/shell nanowires for nonvolatile spintronics on Si

    SciTech Connect (OSTI)

    Gao Cunxu; Farshchi, Rouin; Roder, Claudia; Dogan, Pinar; Brandt, Oliver

    2011-06-15

    We explore the relationship between the structural and magnetic properties of GaN/Fe core/shell nanowires grown epitaxially on Si substrates. The magnetic properties are consistent with the coexistence of two magnetic contributions: a ferromagnetic response from the single-crystalline Fe particles formed at the nanowire tips, and a superparamagnetic response originating from the granular Fe clusters grown on the nanowire sidewalls, giving them a corncob-like morphology. We show that our interpretation of the origin of the magnetic behavior can be confirmed by the viscous decay of magnetic remanence in the nanowires. Ferromagnetic remanence is observed both parallel and perpendicular to the nanowire axis, making such structures appealing as high-density nonvolatile spintronic components on Si.

  6. Termination of the magnetorotational instability via parasitic instabilities in core-collapse supernovae

    E-Print Network [OSTI]

    Rembiasz, Tomasz; Cerdá-Durán, Pablo; Müller, Ewald; Aloy, Miguel-Ángel

    2015-01-01

    The magnetorotational instability (MRI) can be a powerful mechanism amplifying the magnetic field in core collapse supernovae. However, whether initially weak magnetic fields can be amplified by this instability to dynamically relevant strengths is still a matter of active scientific debate. One of the main uncertainties concerns the process that terminates the growth of the instability. Parasitic instabilities of both Kelvin-Helmholtz (KH) and tearing-mode type have been suggested to play a crucial role in this process, disrupting MRI channel flows and quenching magnetic field amplification. We performed two-dimensional and three-dimensional sheering-disc simulations of a differentially rotating proto-neutron star layer in non-ideal MHD with unprecedented high numerical resolution. Our simulations show that KH parasitic modes dominate tearing modes in the regime of large hydrodynamic and magnetic Reynolds numbers, as encountered in proto-neutron stars. They also determine the maximum magnetic field stress ac...

  7. Coring in deep hardrock formations

    SciTech Connect (OSTI)

    Drumheller, D.S.

    1988-08-01

    The United States Department of Energy is involved in a variety of scientific and engineering feasibility studies requiring extensive drilling in hard crystalline rock. In many cases well depths extend from 6000 to 20,000 feet in high-temperature, granitic formations. Examples of such projects are the Hot Dry Rock well system at Fenton Hill, New Mexico and the planned exploratory magma well near Mammoth Lakes, California. In addition to these programs, there is also continuing interest in supporting programs to reduce drilling costs associated with the production of geothermal energy from underground sources such as the Geysers area near San Francisco, California. The overall progression in these efforts is to drill deeper holes in higher temperature, harder formations. In conjunction with this trend is a desire to improve the capability to recover geological information. Spot coring and continuous coring are important elements in this effort. It is the purpose of this report to examine the current methods used to obtain core from deep wells and to suggest projects which will improve existing capabilities. 28 refs., 8 figs., 2 tabs.

  8. Magnetic properties of Pleistocene-Pliocene sediments from hole 810C, Shatsky Rise, and implications for the origin and correlatibility of their magnetic susceptibility variations 

    E-Print Network [OSTI]

    Polgreen, Evelyn Louise

    1993-01-01

    the summit of the rise, using the advanced hydraulic piston corer to achieve virtually complete recovery in the upper 127 meters below the sea floor. The down-core stratigraphy of whole-core magnetic susceptibility displayed peaks with amplitudes of 30-40 x...

  9. Granular Dynamics in Pebble Bed Reactor Cores

    E-Print Network [OSTI]

    Laufer, Michael Robert

    2013-01-01

    a simulant fluid to match the dynamics of fuel pebbles andfuel pebbles through reactor cores with and without coupled fluid

  10. Short wavelength topography on the inner-core boundary

    E-Print Network [OSTI]

    Cao, A.; Masson, Y.; Romanowicz, B.

    2006-01-01

    Short wavelength topography on the inner-core boundary Aimin94720 Constraining the topography of the inner-core boundaryindicates the presence of topography at the inner- core

  11. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  12. Core Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewableGlobal LInformationCore Analysis

  13. Patterned Magnetic Nanostructures and Quantized Magnetic Disks

    E-Print Network [OSTI]

    -increasing demands in data storage and to new applications of magnetic devices in the field of sensors. NewPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra

  14. Core refueling subsystem design description. Revision 1

    SciTech Connect (OSTI)

    Anderson, J.K.; Harvey, E.C.

    1987-07-01

    The Core Refueling Subsystem of the Fuel Handling and Storage System provides the mechanisms and tools necessary for the removal and replacement of the hexagonal elements which comprise the reactor core. The Core Refueling Subsystem is not "safety-related." The Core Refueling Subsystem equipment is used to prepare the plant for element removal and replacement, install the machines which handle the elements, maintain control of air inleakage and radiation release, transport the elements between the core and storage, and control the automatic and manual operations of the machines. Much of the element handling is performed inside the vessel, and the entire exchange of elements between storage and core is performed with the elements in a helium atmosphere. The core refueling operations are conducted with the reactor module shutdown and the primary coolant pressure slightly subatmospheric. The subsystem is capable of accomplishing the refueling in a reliable manner commensurate with the plant availability requirements.

  15. The core legion object model

    SciTech Connect (OSTI)

    Lewis, M.; Grimshaw, A.

    1996-12-31

    The Legion project at the University of Virginia is an architecture for designing and building system services that provide the illusion of a single virtual machine to users, a virtual machine that provides secure shared object and shared name spaces, application adjustable fault-tolerance, improved response time, and greater throughput. Legion targets wide area assemblies of workstations, supercomputers, and parallel supercomputers, Legion tackles problems not solved by existing workstation based parallel processing tools; the system will enable fault-tolerance, wide area parallel processing, inter-operability, heterogeneity, a single global name space, protection, security, efficient scheduling, and comprehensive resource management. This paper describes the core Legion object model, which specifies the composition and functionality of Legion`s core objects-those objects that cooperate to create, locate, manage, and remove objects in the Legion system. The object model facilitates a flexible extensible implementation, provides a single global name space, grants site autonomy to participating organizations, and scales to millions of sites and trillions of objects.

  16. Two-step liquid-solid vortex transition with the field along the ab planes in YBa2Cu3O7 crystals

    E-Print Network [OSTI]

    Grigera, Santiago

    , in the mixed state of clean and twinned YBa2Cu3O7 single crystals, support the existence of a vortex and Instituto Balseiro, Comisio´n Nacional de Energi´a Ato´mica, 8400 San Carlos de Bariloche, Argentina-smectic phase when the vortices interact with an attractive periodic potential. The transition from the vortex

  17. Copper laser modulator driving assembly including a magnetic compression laser

    DOE Patents [OSTI]

    Cook, Edward G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Ball, Don G. (Livermore, CA)

    1994-01-01

    A laser modulator (10) having a low voltage assembly (12) with a plurality of low voltage modules (14) with first stage magnetic compression circuits (20) and magnetic assist inductors (28) with a common core (91), such that timing of the first stage magnetic switches (30b) is thereby synchronized. A bipolar second stage of magnetic compression (42) is coupled to the low voltage modules (14) through a bipolar pulse transformer (36) and a third stage of magnetic compression (44) is directly coupled to the second stage of magnetic compression (42). The low voltage assembly (12) includes pressurized boxes (117) for improving voltage standoff between the primary winding assemblies (34) and secondary winding (40) contained therein.

  18. A vortex tube is a device of a simple structure with no moving parts that can be used to separate a compressed gas into a hot stream and a cold stream. Many studies have been

    E-Print Network [OSTI]

    A vortex tube is a device of a simple structure with no moving parts that can be used to separate of the energy separation in the vortex tube. Recent rapid development in computational fluid dynamics is providing a powerful tool to investigate the complex flow in the vortex tube. However various issues

  19. Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery

    E-Print Network [OSTI]

    Boriskina, Svetlana V; 10.1039/C1NR11406A

    2011-01-01

    Efficient delivery of light into nanoscale volumes by converting free photons into localized charge-density oscillations (surface plasmons) enables technological innovation in various fields from biosensing to photovoltaics and quantum computing. Conventional plasmonic nanostructures are designed as nanoscale analogs of radioantennas and waveguides. Here, we discuss an alternative approach for plasmonic nanocircuit engineering that is based on molding the optical powerflow through 'vortex nanogears' around a landscape of local phase singularities 'pinned' to plasmonic nanostructures. We show that coupling of several vortex nanogears into transmission-like structures results in dramatic optical effects, which can be explained by invoking a hydrodynamic analogy of the 'photon fluid'. The new concept of vortex nanogear transmissions (VNTs) provides new design principles for the development of complex multi-functional phase-operated photonics machinery and, therefore, generates unique opportunities for light gene...

  20. Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery

    E-Print Network [OSTI]

    Svetlana V. Boriskina; Bjoern M. Reinhard

    2011-12-07

    Efficient delivery of light into nanoscale volumes by converting free photons into localized charge-density oscillations (surface plasmons) enables technological innovation in various fields from biosensing to photovoltaics and quantum computing. Conventional plasmonic nanostructures are designed as nanoscale analogs of radioantennas and waveguides. Here, we discuss an alternative approach for plasmonic nanocircuit engineering that is based on molding the optical powerflow through 'vortex nanogears' around a landscape of local phase singularities 'pinned' to plasmonic nanostructures. We show that coupling of several vortex nanogears into transmission-like structures results in dramatic optical effects, which can be explained by invoking a hydrodynamic analogy of the 'photon fluid'. The new concept of vortex nanogear transmissions (VNTs) provides new design principles for the development of complex multi-functional phase-operated photonics machinery and, therefore, generates unique opportunities for light generation, harvesting and processing on the nanoscale.

  1. Superconducting Magnet Division

    E-Print Network [OSTI]

    Gupta, Ramesh

    Superconducting Magnet Division Permanent Magnet Designs with Large Variations in Field Strength the residual field of the magnetized bricks by concentrating flux lines at the iron pole. Low Field Design Medium Field Design Superconducting Magnet Division Dipole and Quadrupole Magnets for RHIC e

  2. Ultrasound scattering and the study of vortex correlations in disordered flows

    E-Print Network [OSTI]

    Denis Boyer; Fernando Lund

    1999-12-14

    In an idealized way, some turbulent flows can be pictured by assemblies of many vortices characterized by a set of particle distribution functions. Ultrasound provide an useful, nonintrusive, tool to study the spatial structure of vorticity in flows. This is analogous to the use of elastic neutron scattering to determine liquid structure. We express the dispersion relation, as well as the scattering cross section, of sound waves propagating in a ``liquid'' of identical vortices as a function of vortex pair correlation functions. In two dimensions, formal analogies with ionic liquids are pointed out.

  3. Extraordinary optical transmission and vortex excitation by periodic arrays of Fresnel zone plates

    E-Print Network [OSTI]

    Roszkiewicz, A

    2013-01-01

    Extraordinary optical transmission and good focusing properties of a two-dimensional scattering structure is presented. The structure is made of Fresnel zone plates periodically arranged along two orthogonal directions. Each plate consists of two ring-shaped waveguides supporting modes that match the symmetry of a circularly polarized incident plane wave. High field concentration at the focal plane is obtained with short transverse and long longitudinal foci diameters. Optical vortex excitation in a paraxial region of the transmitted field is also observed and analysed in terms of cross-polarisation coupling. The structure presented may appear useful in visualization, trapping and precise manipulations of nanoparticles.

  4. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  5. MAGNETIC FIELD STRUCTURE AROUND LOW-MASS CLASS 0 PROTOSTARS: B335, L1527, AND IC348-SMM2

    SciTech Connect (OSTI)

    Davidson, J. A. [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009 (Australia); Novak, G.; Matthews, T. G. [Department of Physics and Astronomy, Northwestern University, 2131 Tech Dr., Evanston, IL 60208 (United States); Matthews, B. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Goldsmith, P. F.; Chapman, N. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Ms 264-782, Pasadena, CA 91109 (United States); Volgenau, N. H. [California Institute of Technology, Owens Valley Radio Observatory, Big Pine, CA 93513 (United States); Vaillancourt, J. E. [Universities Space Research Association, SOFIA, NASA Ames Research Center, MS 211-3, Moffett Field, CA 94035-0001 (United States); Attard, M. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d'Astrophysique, CEA Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette (France)

    2011-05-10

    We report new 350 {mu}m polarization observations of the thermal dust emission from the cores surrounding the low-mass, Class 0 young stellar objects L1527, IC348-SMM2, and B335. We have inferred magnetic field directions from these observations and have used them together with results in the literature to determine whether magnetically regulated core-collapse and star formation models are consistent with the observations. These models predict a pseudo-disk with its symmetry axis aligned with the core magnetic field. The models also predict a magnetic field pinch structure on a scale less than or comparable to the infall radii for these sources. In addition, if the core magnetic field aligns (or nearly aligns) the core rotation axis with the magnetic field before core collapse, then the models predict the alignment (or near alignment) of the overall pinch field structure with the bipolar outflows in these sources. We show that if one includes the distorting effects of bipolar outflows on magnetic fields, then in general the observational results for L1527 and IC348-SMM2 are consistent with these magnetically regulated models. We can say the same for B335 only if we assume that the distorting effects of the bipolar outflow on the magnetic fields within the B335 core are much greater than for L1527 and IC348-SMM2. We show that the energy densities of the outflows in all three sources are large enough to distort the magnetic fields predicted by magnetically regulated models.

  6. Probing the spin polarization of current by soft x-ray imaging of current-induced magnetic vortex dynamics

    E-Print Network [OSTI]

    Kasai, Shinya

    2009-01-01

    for realizing new spintronic devices such as magnetica key technology for future spintronics because it does not

  7. Cool Core Clusters from Cosmological Simulations

    E-Print Network [OSTI]

    Rasia, E; Murante, G; Planelles, S; Beck, A M; Biffi, V; Ragone-Figueroa, C; Granato, G L; Steinborn, L K; Dolag, K

    2015-01-01

    We present results obtained from a set of cosmological hydrodynamic simulations of galaxy clusters, aimed at comparing predictions with observational data on the diversity between cool-core and non-cool-core clusters. Our simulations include the effects of stellar and AGN feedback and are based on an improved version of the Smoothed-Particle-Hydrodynamics code GADGET-3, which ameliorates gas mixing and better captures gas-dynamical instabilities by including a suitable artificial thermal diffusion. In this Letter, we focus our analysis on the entropy profiles, our primary diagnostic to classify the degree of cool-coreness of clusters, and on the iron profiles. In keeping with observations, our simulated clusters display a variety of behaviors in entropy profiles: they range from steadily decreasing profiles at small radii, characteristic of cool-core systems, to nearly flat core isentropic profiles, characteristic of non cool-core systems. Using observational criteria to distinguish between the two classes of...

  8. Revised 60-day safety screening and ferrocyanide results for tank 241-BY-108, rotary samples core 98 and core 104

    SciTech Connect (OSTI)

    Baldwin, J.H.

    1996-02-01

    Revised Report for 60-Day Safety Screening Results, Rotary Samples Core 98 and Core 104, Safety Screening and Ferrocyanide Results.

  9. In-plane electric fields in magnetic islands during collisionless magnetic reconnection

    SciTech Connect (OSTI)

    Chen Lijen; Bhattacharjee, Amitava; Torbert, Roy B.; Bessho, Naoki; Daughton, William; Roytershteyn, Vadim

    2012-11-15

    Magnetic islands are a common feature in both the onset and nonlinear evolution of magnetic reconnection. In collisionless regimes, the onset typically occurs within ion-scale current layers leading to the formation of magnetic islands when multiple X lines are involved. The nonlinear evolution of reconnection often gives rise to extended electron current layers (ECL) which are also unstable to formation of magnetic islands. Here, we show that the excess negative charge and strong out-of-plane electron velocity in the ECL are passed on to the islands generated therein, and that the corresponding observable distinguishing the islands generated in the ECL is the strongly enhanced in-plane electric fields near the island core. The islands formed in ion-scale current layers do not have these properties of the ECL-generated islands. The above result provides a way to assess the occurrence and importance of extended ECLs that are unstable to island formation in space and laboratory plasmas.

  10. Chiral Magnetic Effect in Protoneutron Stars and Magnetic Field Spectral Evolution

    E-Print Network [OSTI]

    Sigl, Günter

    2015-01-01

    We investigate the evolution of the chiral magnetic instability in a protoneutron star and compute the resulting magnetic power and helicity spectra. The instability may act during the early cooling phase of the hot protoneutron star after supernova core collapse, where it can contribute to the buildup of magnetic fields of strength up to the order of $10^{14}$ G. The maximal field strengths generated by this instability, however, depend considerably on the temperature of the protoneutron star, on density fluctuations and turbulence spectrum of the medium. At the end of the hot cooling phase the magnetic field tends to be concentrated around the submillimeter to cm scale, where it is subject to slow resistive damping.

  11. Improved superconducting magnet wire

    DOE Patents [OSTI]

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  12. Material with core-shell structure

    DOE Patents [OSTI]

    Luhrs, Claudia (Rio Rancho, NM); Richard, Monique N. (Ann Arbor, MI); Dehne, Aaron (Maumee, OH); Phillips, Jonathan (Rio Rancho, NM); Stamm, Kimber L. (Ann Arbor, MI); Fanson, Paul T. (Brighton, MI)

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  13. December 2011 | 41 Suspended Core Subwavelength

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    fabricated a polyethylene microstructured fiber featuring a subwavelength-size core suspended by very thin shielded from the environment. e experimental modal field distributions were also well reproduced

  14. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  15. Magnetic polarity stratigraphy and paleolatitude of the Triassic^Jurassic Blomidon Formation in the Fundy basin

    E-Print Network [OSTI]

    Olsen, Paul E.

    Magnetic polarity stratigraphy and paleolatitude of the Triassic^Jurassic Blomidon Formation form 7 April 2000; accepted 9 April 2000 Abstract A magnetic polarity stratigraphy is established for a continuously cored 360 m thick section of the entire cyclical lacustrine sequence and part of the sandy fluvial

  16. Steady-state and equilibrium vortex configurations, transitions, and evolution in a mesoscopic superconducting cylinder 

    E-Print Network [OSTI]

    Kim, S.; Hu, Chia-Ren; Andrews, MJ.

    2004-01-01

    A numerical scheme to study the mixed states in a mesoscopic type-II superconducting cylinder is described. Steady-state configurations and transient behavior of the magnetic vortices for various values of the applied magnetic field H are presented...

  17. Venturi/vortex scrubber technology for controlling/recycling chromium electroplating emissions. Final report

    SciTech Connect (OSTI)

    Hay, K.J.; Qi, S.; Holden, B.; Helgeson, N.; Fraser, M.E.

    1999-03-01

    Chromium electroplating is an essential DOD process. Chromium has a combination of qualities that are very difficult to substitute, however, the process itself is inefficient, resulting in the production of byproduct gases that rise and create a mist of chromic acid (strongly regulated as an air pollutant) above the plating tank. Venturi/Vortex Scrubber Technology (VVST) was designed to control chromium electroplating emissions by collecting the gas bubbles before they burst at the solution`s surface. This project demonstrated the Venturi/Vortex Scrubber Technology at the Marine Corps Logistics Base (MCLB) in Albany, GA. This study concluded that the PLRS was able to reduce the flow rate of the current conventional ventilation system at the one tank chromium electroplating facility at MCLB Albany by 63 percent. If new ventilation and control equipment were to be installed at MCLB Albany, this system would offer a 25 percent reduction in capital costs and a 48 percent reduction in annual costs, representing 36 percent in life-cycle cost savings. This study also presented a strong case for the use of Spark-Induced Breakdown Spectroscopy for monitoring real-time chromium emissions above a chromium electroplating tank.

  18. Vortex and structural dynamics of a flexible cylinder in cross-flow

    SciTech Connect (OSTI)

    Shang, Jessica K., E-mail: jshang@princeton.edu; Stone, Howard A. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Smits, Alexander J. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Monash University, VIC 3800 (Australia)

    2014-05-15

    A low-density, flexible cantilevered cylinder was permitted to vibrate freely under the influence of vortex shedding in the laminar flow regime. We find that the vortex-induced vibrations (VIV) of a flexible cantilever depart from those of a flexible cylinder that is fixed at both ends. In particular, we find discontinuous regions of VIV behavior – here called states – as a function of the reduced velocity U{sup *}. These states are demarcated by discrete changes in the dominant eigenmodes of the structural response as the cylinder vibrates in progressively higher structural modes with increasing U{sup *}. The contribution of structural modes can be identified readily by a modal projection of the cylinder oscillation onto known cantilever beam modes. Oscillation frequencies do not monotonically increase with U{sup *}. The wake response between different states is also found to have distinct characteristics; of particular note is the occurrence of a P+S wake over one of these regions, which is associated with a high-amplitude vibration of the cylinder that is due to the constructive interference of contributing eigenmodes.

  19. Direct femtosecond laser ablation of copper with an optical vortex beam

    SciTech Connect (OSTI)

    Anoop, K. K.; Rubano, A.; Marrucci, L.; Bruzzese, R.; Amoruso, S., E-mail: amoruso@na.infn.it [Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); CNR-SPIN, UOS Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Fittipaldi, R.; Vecchione, A. [CNR-SPIN, UOS Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Italy); Wang, X.; Paparo, D. [CNR-SPIN, UOS Napoli, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy)

    2014-09-21

    Laser surface structuring of copper is induced by laser ablation with a femtosecond optical vortex beam generated via spin-to-orbital conversion of the angular momentum of light by using a q-plate. The variation of the produced surface structures is studied as a function of the number of pulses, N, and laser fluence, F. After the first laser pulse (N=1), the irradiated surface presents an annular region characterized by a corrugated morphology made by a rather complex network of nanometer-scale ridges, wrinkles, pores, and cavities. Increasing the number of pulses (21000) and a deep crater is formed. The nanostructure variation with the laser fluence, F, also evidences an interesting dependence, with a coarsening of the structure morphology as F increases. Our experimental findings demonstrate that direct femtosecond laser ablation with optical vortex beams produces interesting patterns not achievable by the more standard beams with a Gaussian intensity profile. They also suggest that appropriate tuning of the experimental conditions (F, N) can allow generating micro- and/or nano-structured surface for any specific application.

  20. Magnets and Power Supplies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Up: APS Storage Ring Parameters Previous: Longitudinal bunch profile and Magnets and Power Supplies Dipole Magnets and Power Supplies Value Dipole Number 80+1 No. of power...

  1. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  2. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOE Patents [OSTI]

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  3. 30-MHz Power Inductor Using Nano-Granular Magnetic Material

    E-Print Network [OSTI]

    -impedance applications. In order to achieve higher inductance values and high Q values, we stack multiple polyimide constructed a core for an inductor by stacking multiple 50 µm polyimide substrates, each with 6 µm of Co travelling in one direction in the 2 mm Fig. 1. Segments of magnetic material deposited on thin polyimide

  4. Core Science Requirement Final Document Page 1 THE CORE SCIENCE REQUIREMENT and

    E-Print Network [OSTI]

    Frey, Jesse C.

    Core Science Requirement ­ Final Document ­ Page 1 THE CORE SCIENCE REQUIREMENT and MENDEL SCIENCE EXPERIENCE COURSES Core requirement of 2 semesters of science with laboratory; requirement to be met by the end of the sophomore year Rationale Science literacy is an integral part of the intellectual

  5. Superconducting and magnetic properties of Sr3Ir4Sn13

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biswas, P. K.; Amato, A.; Khasanov, R.; Luetkens, H.; Wang, Kefeng; Petrovic, C.; Cook, R. M.; Lees, M. R.; Morenzoni, E.

    2014-10-10

    In this research, magnetization and muon spin relaxation or rotation (µSR) measurements have been performed to study the superconducting and magnetic properties of Sr?Ir?Sn??. From magnetization measurements the lower and upper critical fields of Sr?Ir?Sn?? are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field µSR data show no sign of any magnetic ordering or weak magnetism in Sr?Ir?Sn??. Transverse-field µSR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth ?. The dependence of ??² with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr?Ir?Sn?? withmore »a gap value of 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature ?(0) is 291(3) nm. The ratio ?(0)/kBTc = 2.1(1) indicates that Sr?Ir?Sn?? should be considered as a strong-coupling superconductor.« less

  6. UNL Core for Applied Genomics and Ecology

    E-Print Network [OSTI]

    Farritor, Shane

    UNL Core for Applied Genomics and Ecology Bioinformatics training Roche 454 GS-FLX Registration, Microbiomes, Variant Analysis, Whole Genomes, Transcriptomes Data Analysis and Statistics CAGE database and employer. University of Nebraska-Lincoln*Core for Applied Genomics and Ecology* 323 Filley Hall *Lincoln

  7. Idealized Test Cases for Dynamical Core Experiments

    E-Print Network [OSTI]

    Jablonowski, Christiane

    Idealized Test Cases for Dynamical Core Experiments Christiane Jablonowski (University of Michigan-13/2006 #12;Motivation · Test cases for 3D dynamical cores on the sphere ­ are hard to find in the literature groups ­ lack standardized & easy-to-use analysis techniques · Idea: Establish a collection of test cases

  8. UW-Milwaukee Strategic Planning Core Team

    E-Print Network [OSTI]

    Saldin, Dilano

    UW-Milwaukee Strategic Planning Core Team MINUTES November 19, 2012 Regents Room, Chapman Hall, 10 Strategic Planning Core team with oversight, coordination, and providing campus leadership with strategic plan, per the planning document. Last campus strategic plan was developed in 1996. b. Provost J. Britz

  9. Module Handbook Core Univ. of Oldenburg

    E-Print Network [OSTI]

    Habel, Annegret

    /EUREC Course 2008/2009 #12;EUREC Core Courses at University of Oldenburg, 1st Semester Wind Energy Module Module Description: Wind Energy Field: Core Oldenburg Courses: Wind Energy Wind Energy Technology Wind Energy Conversion (Lab) Excursion Tutorial Study Semester: First Semester Module

  10. Core sampling system spare parts assessment

    SciTech Connect (OSTI)

    Walter, E.J.

    1995-04-04

    Soon, there will be 4 independent core sampling systems obtaining samples from the underground tanks. It is desirable that these systems be available for sampling during the next 2 years. This assessment was prepared to evaluate the adequacy of the spare parts identified for the core sampling system and to provide recommendations that may remediate overages or inadequacies of spare parts.

  11. FISSION REACTORS KEYWORDS: core-barrel vibra-

    E-Print Network [OSTI]

    Demazière, Christophe

    FISSION REACTORS KEYWORDS: core-barrel vibra- tions, in-core neutron noise, shell- mode vibrations-REGION SLAB REACTOR MODEL CARL SUNDE,* CHRISTOPHE DEMAZIÈRE, and IMRE PÁZSIT Chalmers University of Technology. 5 gives a self-contained description of the principles of fluctuation analysis for the diagnostics

  12. Method and apparatus for recovering unstable cores

    DOE Patents [OSTI]

    McGuire, Patrick L. (Los Alamos, NM); Barraclough, Bruce L. (Los Alamos, NM)

    1983-01-01

    A method and apparatus suitable for stabilizing hydrocarbon cores are given. Such stabilized cores have not previously been obtainable for laboratory study, and such study is believed to be required before the hydrate reserves can become a utilizable resource. The apparatus can be built using commercially available parts and is very simple and safe to operate.

  13. Moving core beam energy absorber and converter

    DOE Patents [OSTI]

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  14. Pre-supernova neutrino emissions from ONe cores in the progenitors of core-collapse supernovae: are they distinguishable from those of Fe cores?

    E-Print Network [OSTI]

    Kato, Chinami; Yamada, Shoichi; Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi; Ishidoshiro, Koji

    2015-01-01

    Aiming to distinguish two types of progenitors of core collapse supernovae, i.e., one with a core composed mainly of oxygen and neon (abbreviated as ONe core) and the other with an iron core (or Fe core), we calculated the luminosities and spectra of neutrinos emitted from these cores prior to gravitational collapse, taking neutrino oscillation into account. We found that the total energies emitted as $\\bar{\

  15. Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect

    E-Print Network [OSTI]

    Kim, Keun-Young; Seo, Yunseok; Sin, Sang-Jin

    2015-01-01

    We study electric, thermoelectric, and thermal conductivities of a strongly correlated system in the presence of magnetic field by gauge/gravity duality. We consider a general class of Einstein-Maxwell-Dilaton theory with axion fields imposing momentum relaxation. Analytic general formulas for DC conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study we analyse in detail the Dyonic black hole modified by momentum relaxation effect. In this model, the Nernst signal shows a typical vortex-liquid effect when momentum relaxation effect is comparable to chemical potential. We compute all AC electric, thermal, and thermal conductivities by numerical analysis and confirms that their zero frequency limits precisely reproduce our analytic formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effect on conductivities including cyclotron frequencies.

  16. EARLIEST STAGES OF PROTOCLUSTER FORMATION: SUBSTRUCTURE AND KINEMATICS OF STARLESS CORES IN ORION

    SciTech Connect (OSTI)

    Lee, Katherine; Looney, Leslie W.; Schnee, Scott; Li Zhiyun

    2013-08-01

    We study the structure and kinematics of nine 0.1 pc scale cores in Orion with the IRAM 30 m telescope and at higher resolution eight of the cores with CARMA, using CS(2-1) as the main tracer. The single-dish moment zero maps of the starless cores show single structures with central column densities ranging from 7 to 42 Multiplication-Sign 10{sup 23} cm{sup -2} and LTE masses from 20 M{sub Sun} to 154 M{sub Sun }. However, at the higher CARMA resolution (5''), all of the cores except one fragment into 3-5 components. The number of fragments is small compared to that found in some turbulent fragmentation models, although inclusion of magnetic fields may reduce the predicted fragment number and improve the model agreement. This result demonstrates that fragmentation from parsec-scale molecular clouds to sub-parsec cores continues to take place inside the starless cores. The starless cores and their fragments are embedded in larger filamentary structures, which likely played a role in the core formation and fragmentation. Most cores show clear velocity gradients, with magnitudes ranging from 1.7 to 14.3 km s{sup -1} pc{sup -1}. We modeled one of them in detail, and found that its spectra are best explained by a converging flow along a filament toward the core center; the gradients in other cores may be modeled similarly. We infer a mass inflow rate of {approx}2 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, which is in principle high enough to overcome radiation pressure and allow for massive star formation. However, the core contains multiple fragments, and it is unclear whether the rapid inflow would feed the growth of primarily a single massive star or a cluster of lower mass objects. We conclude that fast, supersonic converging flow along filaments play an important role in massive star and cluster formation.

  17. PF coil voltage optimization for start-up scenarios in air core tokamaks

    SciTech Connect (OSTI)

    Albanese, R.; Martone, R.; Ambrosino, G.; Pironti, A.

    1994-09-01

    The basic features of a procedure for the optimization of the plasma scenario in an air core tokamak are presented. The method takes into account the eddy currents in the passive conducting structures. The problem is reduced to the synthesis of time-varying magnetic field. The solution of this inverse electromagnetic problem is carried out by means of an optimization procedure based on the receding horizon approach. The paper includes an example of application to the ITER tokamak.

  18. A finite element method with mesh adaptivity for computing vortex states in fastrotating BoseEinstein condensates

    E-Print Network [OSTI]

    Recanati, Catherine

    A finite element method with mesh adaptivity for computing vortex states in fast­rotating Bose­Einstein Abstract Numerical computations of stationary states of fast­rotating Bose­Einstein condensates require rotation rates). Key words: Gross--Pitaevskii equation, finite element method, mesh adaptivity, Bose­Einstein

  19. 1242 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 8, AUGUST 2002 Performances of the Data Vortex Switch Architecture

    E-Print Network [OSTI]

    Bergman, Keren

    the efficient scalability of the architecture under uniform and random traffic conditions while maintaining high1242 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 8, AUGUST 2002 Performances of the Data Vortex Switch Architecture Under Nonuniform and Bursty Traffic Qimin Yang, Member, IEEE, and Keren Bergman

  20. Vortex Nucleation in a Stirred Bose-Einstein Condensate Dissipation and turbulence in superfluid flow often involves the creation and

    E-Print Network [OSTI]

    . This observation confirms the role of discrete surface modes in vortex formation. However, when we used a tightly. The nucleation process has been a subject of much theoretical interest [1]. Experiments with Bose. These resonances were close to the frequencies of excitation for surface modes of different multipolarity

  1. Nonequilibrium dynamic phases and plastic flow of driven vortex lattices in superconductors with periodic arrays of pinning sites

    E-Print Network [OSTI]

    Nori, Franco

    of lattices as a driving force is increased. For superconducting systems, experimental work in neutron conductivity. By monitoring the moving vortex lattice, we show that these features coincide with pronounced by elastic theories. Different system parameters produce other phases, including an ordered channel flow

  2. Effect of time-dependent piston velocity program on vortex ring formation in a piston/cylinder arrangement

    E-Print Network [OSTI]

    Dabiri, John O.

    Graduate Aeronautical Laboratories and Bioengineering, California Institute of Technology, Pasadena velocity fixed. It turned out that the pinch-off was always observed to occur at a stroke ratio L time scale for the pinch-off process formation number was tested by generating vortex rings

  3. To appear in the ACM SIGGRAPH conference proceedings Filament-based smoke with vortex shedding and variational reconnection

    E-Print Network [OSTI]

    Weissmann, Steffen

    To appear in the ACM SIGGRAPH conference proceedings Filament-based smoke with vortex shedding filaments is highly attractive for the creation of special effects because it gives artists full control filaments over time. Because filaments offer a very compact description of fluid flow, real time

  4. arXiv:nlin.SI/0612065v129Dec2006 FINITE-GAP SOLUTIONS OF THE VORTEX FILAMENT EQUATION

    E-Print Network [OSTI]

    Calini, Annalisa

    arXiv:nlin.SI/0612065v129Dec2006 FINITE-GAP SOLUTIONS OF THE VORTEX FILAMENT EQUATION: ISOPERIODIC filament equation in a neighborhood of multiply covered circles. We construct these solutions by means that matches the deformation data with the knot type of the resulting filament. 1. Introduction In this sequel

  5. Stationary Vortex Loops Induced by Filament Interaction and Local Pinning in a Chemical Reaction-Diffusion System

    E-Print Network [OSTI]

    Steinbock, Oliver

    Stationary Vortex Loops Induced by Filament Interaction and Local Pinning in a Chemical Reaction rings are three-dimensional excitation waves rotating around one-dimensional filament loops but curved filaments. The absence of filament motion can be explained by repulsive interaction

  6. Paper No. 2004-JSC-396 Srivilairit Identification and Analysis of Vortex-Induced Vibrations of a Drilling Riser

    E-Print Network [OSTI]

    Manuel, Lance

    of a deepwater drilling riser. We examine such data from the monitoring of riser accelerations and vortex a deepwater drilling riser. The site has a water depth of 1,000 meters. These riser acceleration data consist of a Drilling Riser using Empirical and Spectral Procedures Tanapat Srivilairit and Lance Manuel Department

  7. Heat transfer in sunspot penumbrae. Origin of dark-cored penumbral filaments

    E-Print Network [OSTI]

    B. Ruiz Cobo; L. R. Bellot Rubio

    2008-10-07

    Context: Observations at 0.1" have revealed the existence of dark cores in the bright filaments of sunspot penumbrae. Expectations are high that such dark-cored filaments are the basic building blocks of the penumbra, but their nature remains unknown. Aims: We investigate the origin of dark cores in penumbral filaments and the surplus brightness of the penumbra. To that end we use an uncombed penumbral model. Methods: The 2D stationary heat transfer equation is solved in a stratified atmosphere consisting of nearly horizontal magnetic flux tubes embedded in a stronger and more vertical field. The tubes carry an Evershed flow of hot plasma. Results: This model produces bright filaments with dark cores as a consequence of the higher density of the plasma inside the tubes, which shifts the surface of optical depth unity toward higher (cooler) layers. Our calculations suggest that the surplus brightness of the penumbra is a natural consequence of the Evershed flow, and that magnetic flux tubes about 250 km in diameter can explain the morphology of sunspot penumbrae.

  8. Framework Application for Core Edge Transport Simulation (FACETS)

    SciTech Connect (OSTI)

    Krasheninnikov, Sergei; Pigarov, Alexander

    2011-10-15

    The FACETS (Framework Application for Core-Edge Transport Simulations) project of Scientific Discovery through Advanced Computing (SciDAC) Program was aimed at providing a high-fidelity whole-tokamak modeling for the U.S. magnetic fusion energy program and ITER through coupling separate components for each of the core region, edge region, and wall, with realistic plasma particles and power sources and turbulent transport simulation. The project also aimed at developing advanced numerical algorithms, efficient implicit coupling methods, and software tools utilizing the leadership class computing facilities under Advanced Scientific Computing Research (ASCR). The FACETS project was conducted by a multi-discipline, multi-institutional teams, the Lead PI was J.R. Cary (Tech-X Corp.). In the FACETS project, the Applied Plasma Theory Group at the MAE Department of UCSD developed the Wall and Plasma-Surface Interaction (WALLPSI) module, performed its validation against experimental data, and integrated it into the developed framework. WALLPSI is a one-dimensional, coarse grained, reaction/advection/diffusion code applied to each material boundary cell in the common modeling domain for a tokamak. It incorporates an advanced model for plasma particle transport and retention in the solid matter of plasma facing components, simulation of plasma heat power load handling, calculation of erosion/deposition, and simulation of synergistic effects in strong plasma-wall coupling.

  9. Simulating Astrophysical Magnetic Fields with Smoothed Particle Magnetohydrodynamics

    E-Print Network [OSTI]

    Tricco, Terrence S

    2015-01-01

    Numerical methods to improve the treatment of magnetic fields in smoothed field magnetohydrodynamics (SPMHD) are developed and tested. Chapter 2 is a review of SPMHD. In Chapter 3, a mixed hyperbolic/parabolic scheme is developed which cleans divergence error from the magnetic field. Average divergence error is an order of magnitude lower for all test cases considered, and allows for the stable simulation of the gravitational collapse of magnetised molecular cloud cores. The effectiveness of the cleaning may be improved by explicitly increasing the hyperbolic wave speed or by cycling the cleaning equations between timesteps. In the latter, it is possible to achieve DivB=0. Chapter 4 develops a switch to reduce dissipation of the magnetic field from artificial resistivity. Compared to the existing switch in the literature, this leads to sharper shock profiles in shocktube tests, lower overall dissipation of magnetic energy, and importantly, is able to capture magnetic shocks in the highly super-Alfvenic regime...

  10. High speed internal permanent magnet machine and method of manufacturing the same

    DOE Patents [OSTI]

    Alexander, James Pellegrino (Ballston Lake, NY); EL-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Shah, Manoj Ramprasad (Latham, NY); VanDam, Jeremy Daniel (West Coxsackie, NY)

    2011-09-13

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.

  11. Magnetic Damping For Maglev

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, S.; Cai, Y.; Rote, D.M.; Chen, S.S.

    1998-01-01

    Magnetic damping is one of the important parameters that control the response and stability of maglev systems. An experimental study to measure magnetic damping directly is presented. A plate attached to a permanent magnet levitated on a rotating drum was tested to investigate the effect of various parameters, such as conductivity, gap, excitation frequency, and oscillation amplitude, on magnetic damping. The experimental technique is capable of measuring all of the magnetic damping coefficients, some of which cannot be measured indirectly.

  12. Development of venturi/vortex scrubber technology for controlling chromium electroplating hazardous air emissions. Final report

    SciTech Connect (OSTI)

    Hay, K.J.; Qi, S.; Northrup, J.I.; Heck, S.R.

    1998-07-01

    Chromium has a combination of qualities that give chromium electroplating an important role in coating military hardware and armament. However, chromium electroplating and chromium anodizing operations create hazardous air pollutants in the form of hexavalent chromium. Conventional technologies for controlling this pollutant are expensive, noisy, and use a lot of energy and water. Consequently, an air pollution problem is turned into a water pollution problem that also requires treatment. There is a need for an economical control option that pollutes less than conventional technologies. This project developed control technologies to effectively and economically control hazardous air emissions from Army chromium electroplating and anodizing operations, primarily focusing on the development of the Venturi/Vortex Scrubber technology (VVST).

  13. Non-Diffracting Electron Vortex Beams Balancing Their Electron-Electron Interactions

    E-Print Network [OSTI]

    Maor Mutzafi; Ido Kaminer; Gal Harari; Mordechai Segev

    2015-10-10

    By introducing concepts of beam shaping into quantum mechanics, we show how interference effects of the quantum wavefunction describing multiple electrons can exactly balance the repulsion among the electrons. With proper shaping of the fermionic wavefunction, we propose non-diffracting quantum wavepackets of multiple electrons that can also carry orbital angular momentum, in the form of multi-electron non-diffracting vortex beams. The wavefunction is designed to compensate for both the repulsion between electrons and for the diffraction-broadening. This wavefunction shaping facilitates the use of electron beams of higher current in numerous applications, thereby improving the signal-to-noise-ratio in electron microscopy and related systems without compromising on the spatial resolution. Our scheme potentially applies for any beams of charged particles, such as protons, muons and ion beams.

  14. Optimized focal and pupil plane masks for vortex coronagraphs on telescopes with obstructed apertures

    E-Print Network [OSTI]

    Ruane, Garreth J; Huby, Elsa; Mawet, Dimitri; Delacroix, Christian; Carlomagno, Brunella; Piron, Pierre; Swartzlander, Grover A

    2015-01-01

    We present methods for optimizing pupil and focal plane optical elements that improve the performance of vortex coronagraphs on telescopes with obstructed or segmented apertures. Phase-only and complex masks are designed for the entrance pupil, focal plane, and the plane of the Lyot stop. Optimal masks are obtained using both analytical and numerical methods. The latter makes use of an iterative error reduction algorithm to calculate "correcting" optics that mitigate unwanted diffraction from aperture obstructions. We analyze the achieved performance in terms of starlight suppression, contrast, off-axis image quality, and chromatic dependence. Manufacturing considerations and sensitivity to aberrations are also discussed. This work provides a path to joint optimization of multiple coronagraph planes to maximize sensitivity to exoplanets and other faint companions.

  15. Bounds on topological Abelian string-vortex and string-cigar from information-entropic measure

    E-Print Network [OSTI]

    Correa, R A C; Almeida, C A S; da Rocha, Roldao

    2016-01-01

    In this work we obtain bounds on topological Abelian string-vortex in six dimensions using a new measure of configurational complexity known as configurational entropy. In this way, the information-theoretical measure of six dimensional braneworlds scenarios are capable to probe situations where the parameters responsible for the thickness are arbitrary. The so-called Configurational Entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimizing the CE, namely, by selecting the most appropriate parameters in the model that correspond to the most organized system, based upon Shannon information theory. This information-theoretical measure of complexity provides a complementary perspective to situations where strictly energy-based arguments are inconclusive. We show that the higher the energy the higher the configurational entropy, what shows an important correlation between the energy of the a localized field configuration and its associated entropic measure.

  16. Analytical description of high-aperture STED resolution with 0-2$\\pi$ vortex phase modulation

    E-Print Network [OSTI]

    Xie, Hao; Jin, Dayong; Xi, Peng

    2013-01-01

    Stimulated emission depletion (STED) can achieve optical super-resolution, with the optical diffraction limit broken by the suppression on the periphery of the fluorescent focal spot. Previously, it is generally experimentally accepted that there exists an inverse square root relationship with the STED power and the resolution, yet without strict analytical description. In this paper, we have analytically verified the relationship between the STED power and the achievable resolution from vector optical theory for the widely used 0-2$\\pi$ vortex phase modulation. Electromagnetic fields of the focal region of a high numerical aperture objective are calculated and approximated into polynomials, and analytical expression of resolution as a function of the STED intensity has been derived. As a result, the resolution can be estimated directly from the measurement of the saturation power of the dye and the STED power applied.

  17. 510 Plant Disease / Vol. 97 No. 4 Etiology of Moldy Core, Core Browning, and Core Rot of Fuji Apple in China

    E-Print Network [OSTI]

    Biggs, Alan R.

    510 Plant Disease / Vol. 97 No. 4 Etiology of Moldy Core, Core Browning, and Core Rot of Fuji Apple, and core rot of Fuji apple in China. Plant Dis. 97:510-516. `Fuji' apple fruit were collected in Shaanxi to species. Pathogenicity was determined by cutting apple fruit into halves and daubing spore suspensions

  18. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  19. OSCAR Parallelizing Compiler Cooperative Heterogeneous Multi-core Architecture

    E-Print Network [OSTI]

    Kasahara, Hironori

    OSCAR Parallelizing Compiler Cooperative Heterogeneous Multi-core Architecture Akihiro Hayashi, powerful parallelizing compiler for hetero- geneous multi-core architectures is expected. Furthermore, cooperative work between parallelizing compiler and hetero- geneous multi-core architectures is important

  20. Environmental impact of various kayak core materials

    E-Print Network [OSTI]

    Kirkland, David R. (David Roger)

    2008-01-01

    This thesis compares the environmental impact of fiberglass, Kevlar, carbon fiber, and cork. A kayak company is interested in using cork as a core material, and would like to claim that it is the most environmentally ...