Powered by Deep Web Technologies
Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Controlled nanostructuration of polycrystalline tungsten thin films  

SciTech Connect (OSTI)

Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l'Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d'Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

2013-05-07T23:59:59.000Z

2

Two-color Laser Desorption of Nanostructured MgO Thin Films....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

3

National High Magnetic Field Laboratory: Magnetic Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recorded work with magnetic thin films took place in the 1880s and was carried out by German physicist August Kundt. Well known for his research on sound and optics, Kundts...

4

Avalanches through windows: Multiscale visualization in magnetic thin films  

E-Print Network [OSTI]

Avalanches through windows: Multiscale visualization in magnetic thin films Alessandro Magni, Cornell University, Ithaca, NY 14853-2501 Abstract--The dynamics of domain walls motion in thin films dynamics, but are strongly dependent on the size of the windows chosen. Here we investigate how to properly

Sethna, James P.

5

Role of Microstructural Phenomena in Magnetic Thin Films. Final Report  

SciTech Connect (OSTI)

Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

Laughlin, D. E.; Lambeth, D. N.

2001-04-30T23:59:59.000Z

6

Nanostructured thin films for solid oxide fuel cells  

E-Print Network [OSTI]

The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

Yoon, Jongsik

2009-05-15T23:59:59.000Z

7

Ion Beam Deposition of Thin Films: Growth Processes and Nanostructure Formation  

SciTech Connect (OSTI)

Ion beam deposition is a process far from thermodynamic equilibrium and is in particular suited to grow metastable thin films with diamond-like properties, such as tetrahedral amorphous carbon (ta-C) and cubic boron nitride (c-BN). In this contribution the atomistic description of the deposition and growth processes are reviewed and compared to experimental results, obtained from mass selected ion beam deposition. The focus will be set to the nucleation and growth processes of boron nitride as a model system for ion based thin film formation. Furthermore, recent examples for nanostructure formation in ion deposited compound thin films will be presented. Ion beam deposited metal-carbon nano-composite thin films exhibit a variety of different morphologies such as rather homogeneous nanocluster distributions embedded in an a-C matrix, but also the self-organized formation of nanoscale multilayer structures.

Hofsaess, Hans C. [II. Physikalisches Institut, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany)

2004-12-01T23:59:59.000Z

8

Control of magnetization reversal in oriented strontium ferrite thin films  

SciTech Connect (OSTI)

Oriented Strontium Ferrite films with the c axis orientation were deposited with varying oxygen partial pressure on Al{sub 2}O{sub 3}(0001) substrate using Pulsed Laser Deposition technique. The angle dependent magnetic hysteresis, remanent coercivity, and temperature dependent coercivity had been employed to understand the magnetization reversal of these films. It was found that the Strontium Ferrite thin film grown at lower (higher) oxygen partial pressure shows Stoner-Wohlfarth type (Kondorsky like) reversal. The relative importance of pinning and nucleation processes during magnetization reversal is used to explain the type of the magnetization reversal with different oxygen partial pressure during growth.

Roy, Debangsu, E-mail: debangsu@physics.iisc.ernet.in; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

2014-02-21T23:59:59.000Z

9

Preliminary study of CdTe and CdTe:Cu thin films nanostructures deposited by using DC magnetron sputtering  

SciTech Connect (OSTI)

Growth and properties of CdTe and CdTe:Cu thin films nanostrucures deposited by using dc magnetron sputtering are reported. Scanning electron microscope (SEM) was used to observe the surface morphologies of the thin films. At growth conditions of 250 °C and 14 W, CdTe films did not yet evenly deposited. However, at growth temperature and plasma power of 325 °C and 43 W, both CdTe and CdTe:Cu(2%) have deposited on the substrates. In this condition, the morphology of the films indicate that the films have a grain-like nanostructures. Grain size diameter of about 200 nm begin to appear on top of the films. Energy Dispersive X-rays spectroscopy (EDX) was used to investigate chemical elements of the Cu doped CdTe film deposited. It was found that the film deposited consist of Cd, Te and Cu elements. XRD was used to investigate the full width at half maximum (FWHM) values of the thin films deposited. The results show that CdTe:Cu(2%) thin film has better crystallographic properties than CdTe thin film. The UV-Vis spectrometer was used to investigate the optical properties of thin films deposited. The transmittance spectra showed that transmittance of CdTe:Cu(2%) film is lower than CdTe film. It was found that the bandgap energy of CdTe and CdTe:Cu(2%) thin films of about 1.48 eV.

Marwoto, Putut; Made, D. P. Ngurah; Sugianto [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia)] [Departement of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Wibowo, Edy; Astuti, Santi Yuli; Aryani, Nila Prasetya [Materials Research Group, Laboratory of Thin Film, Department of Physics, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia)] [Materials Research Group, Laboratory of Thin Film, Department of Physics, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Othaman, Zulkafli [Departement of Physics, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru (Malaysia)] [Departement of Physics, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru (Malaysia)

2013-09-03T23:59:59.000Z

10

High-field magnets using high-critical-temperature superconducting thin films  

DOE Patents [OSTI]

High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

Mitlitsky, F.; Hoard, R.W.

1994-05-10T23:59:59.000Z

11

High-field magnets using high-critical-temperature superconducting thin films  

DOE Patents [OSTI]

High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

Mitlitsky, Fred (Livermore, CA); Hoard, Ronald W. (Livermore, CA)

1994-01-01T23:59:59.000Z

12

Structural, magnetic, and optical properties of orthoferrite thin films  

E-Print Network [OSTI]

Pulsed laser deposition was used to create thin films of Ce-Fe-O and Y-Fe-O systems. Deposition temperature and ambient oxygen pressure were varied systematically between samples to determine which deposition conditions ...

Supplee, William Wagner

2007-01-01T23:59:59.000Z

13

Phase-field simulation of strain-induced domain switching in magnetic thin films  

E-Print Network [OSTI]

Phase-field simulation of strain-induced domain switching in magnetic thin films Jia-Mian Hu, G of the Bloch point in a magnetic film with strong uniaxial magnetic anisotropy Low Temp. Phys. 37, 690 (2011) Evolution of magnetic bubble domains in manganite films Appl. Phys. Lett. 99, 042503 (2011) 360° domain wall

Chen, Long-Qing

14

Effect of deposition pressure on the structural and magnetic properties of cobalt ferrite thin films  

SciTech Connect (OSTI)

We present the influence of deposition pressure on the structural and magnetic properties of cobalt ferrite thin films. Thin films of Co ferrite were deposited by rf sputtering on Si (100) substrate and characterized by X - Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and Vibrating Sample Magnetometer (VSM). The XRD patterns showed the formation of crystalline single phase of the films. The particle size and surface roughness of the films were strongly influence by gas pressure. Hysteresis loops measured at room temperature showed the enhancement of magnetic properties with the increase of gas pressure which is attributed to the decrease of particle size.

Nongjai, R.; Khan, S.; Ahmad, H.; Khan, I. [Department of Applied Physics, Zakir Hussain College of Engineering and Technology, A.M.U., Aligarh (India); Asokan, K. [Material Science Division, Inter University Accelerator Centre, New Delhi (India)

2013-06-03T23:59:59.000Z

15

Electric control of magnetization relaxation in thin film magnetic insulators.  

SciTech Connect (OSTI)

Control of magnetization relaxation in magnetic insulators via interfacial spin scattering is demonstrated. The experiments use nanometer-thick yttrium iron garnet (YIG)/Pt layered structures, with the Pt layer biased by an electric voltage. The bias voltage produces a spin current across the Pt thickness. As this current scatters off the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduce or enhance the damping and thereby decrease or increase the ferromagnetic resonance linewidth of the YIG film, depending on the field/current configuration.

Wang, Z.; Sun, Y.; Song, Y-Y.; Wu, M.; Schultheiss, H.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Colorado State Univ.)

2011-10-01T23:59:59.000Z

16

Comparative study of the mechanical properties of nanostructured thin films on stretchable substrates  

SciTech Connect (OSTI)

Comparative studies of the mechanical behavior between copper, tungsten, and W/Cu nanocomposite based on copper dispersoïd thin films were performed under in-situ controlled tensile equi-biaxial loadings using both synchrotron X-ray diffraction and digital image correlation techniques. The films first deform elastically with the lattice strain equal to the true strain given by digital image correlation measurements. The Cu single thin film intrinsic elastic limit of 0.27% is determined below the apparent elastic limit of W and W/Cu nanocomposite thin films, 0.30% and 0.49%, respectively. This difference is found to be driven by the existence of as-deposited residual stresses. Above the elastic limit on the lattice strain-true strain curves, we discriminate two different behaviors presumably footprints of plasticity and fracture. The Cu thin film shows a large transition domain (0.60% true strain range) to a plateau with a smooth evolution of the curve which is associated to peak broadening. In contrast, W and W/Cu nanocomposite thin films show a less smooth and reduced transition domain (0.30% true strain range) to a plateau with no peak broadening. These observations indicate that copper thin film shows some ductility while tungsten/copper nanocomposites thin films are brittle. Fracture resistance of W/Cu nanocomposite thin film is improved thanks to the high compressive residual stress and the elimination of the metastable ?-W phase.

Djaziri, S. [Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, 40237 Düsseldorf (Germany); Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Renault, P.-O.; Le Bourhis, E.; Goudeau, Ph., E-mail: Philippe.goudeau@univ-poitiers.fr [Institut P' (UPR 3346 CNRS), Université de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Faurie, D. [LSPM, (UPR 3407 CNRS), Université Paris 13, Institut Galilée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Geandier, G. [Institut Jean Lamour (UMR 3079 CNRS), Université de Lorraine, Parc de Saurupt, CS 50840, 54011 NANCY Cedex (France); Mocuta, C.; Thiaudière, D. [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France)

2014-09-07T23:59:59.000Z

17

Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture  

E-Print Network [OSTI]

In this paper, an optoelectronic device simulation framework valid for arbitrary spatial variation of electronic potentials and optical modes, and for transport regimes ranging from ballistic to diffusive, is used to study non-local photon absorption, photocurrent generation and carrier extraction in ultra-thin film and nanostructure-based solar cell devices at the radiative limit. Among the effects that are revealed by the microscopic approach and which are inaccessible to macroscopic models is the impact of structure, doping or bias induced nanoscale potential variations on the local photogeneration rate and the photocarrier transport regime.

Aeberhard, Urs

2014-01-01T23:59:59.000Z

18

654 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 2, FEBRUARY 2005 Thin-Film Recording Media on Flexible Substrates  

E-Print Network [OSTI]

654 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 2, FEBRUARY 2005 Thin-Film Recording Media of information has considerably increased the market demand for high capacity and high performance data storage

Laughlin, David E.

19

Magnetism of Complex Oxide Thin Films and Heterostructures  

E-Print Network [OSTI]

Introduction to Frustrated Magnetism, edited by C. Lacroix,Stöhr and H.C. Siegmann, in Magnetism: From Fundamentals to18] J. B. Goodenough, in Magnetism and the Chemical Bond, (

Iwata, Jodi

2012-01-01T23:59:59.000Z

20

Many-body Interactions in Magnetic Films and Nanostructures  

SciTech Connect (OSTI)

We describe results supported by DOE grant DE-FG02-04ER46158, which focused on magnetic interaction at surfaces, in thin films, and in metallic nanostructures. We report on three general topics: 1) The Rashba spin splitting at magnetic surfaces of rare earth metals, 2) magnetic nanowires self-assembled on stepped tungsten single crystals, and 3) magnetic interaction in graphene films doped with hydrogen atoms.

Stephen D. Kevan

2012-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modified magnetic ground state in NiMn2O4 thin films  

SciTech Connect (OSTI)

We demonstrate the stabilization of a magnetic ground state in epitaxial NiMn2O4 (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low temperature. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+} while the canted moment ferrimagnetic ordering is preserved below 60 K.

Nelson-Cheeseman, B. B.; Chopdekar, R. V.; Toney, M. F.; Arenholz, E.; Suzuki, Y.; Iwata, J.M.

2010-08-03T23:59:59.000Z

22

Modified Magnetic Ground State in Nimn (2) O (4) Thin Films  

SciTech Connect (OSTI)

The authors demonstrate the stabilization of a magnetic ground state in epitaxial NiMn{sub 2}O{sub 4} (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low T. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+}, while the canted moment ferrimagnetic ordering is preserved below 60 K.

Nelson-Cheeseman, B.B.; Chopdekar, R.V.; Iwata, J.M.; Toney, M.F.; Arenholz, E.; Suzuki, Y.; /SLAC

2012-08-23T23:59:59.000Z

23

Electric control of magnetization relaxation in thin film ferromagnetic insulators.  

SciTech Connect (OSTI)

Control of magnetization relaxation in magnetic insulators via interfacial spin scattering is demonstrated. The experiments use nanometer-thick yttrium iron garnet (YIG)/Pt layered structures, with the Pt layer biased by an electric voltage. The bias voltage produces a spin current across the Pt thickness. As this current scatters off the YIG surface, it exerts a torque on the YIG surface spins. This torque can reduce or enhance the damping and thereby decrease or increase the ferromagnetic resonance linewidth of the YIG film, depending on the field/current configuration.

Wang, Z.; Sun, Y.; Song, Y-Y.; Wu, M.; Schultheib, H.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Colorado State Univ.)

2011-01-01T23:59:59.000Z

24

Nanostructured nickel doped ?-V{sub 2}O{sub 5} thin films for supercapacitor applications  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • Nanorod with pores has been observed for 5 wt.% nickel doped ?-V{sub 2}O{sub 5} thin films. • Film with 5 wt.% of nickel exhibits a specific capacitance of 417 F g{sup ?1}. • These films exhibit high energy density. • The charge transfer resistance is 103 ?. - Abstract: Interesting thin film electrodes of nickel doped vanadium pentoxide with different levels of doping (2.5–10 wt.%) are prepared on FTO and glass substrate at 300 °C using sol–gel spin coating method. The structural and morphological studies are made to understand the nature of the surface of the thin films. The electrochemical characteristics have been investigated through cyclic voltammetry and ac impedance spectroscopy measurements. The doping of nickel with ?-V{sub 2}O{sub 5} has led to enhanced intercalation and deintercalation of ions. ?-V{sub 2}O{sub 5} films with 5 wt.% of Ni exhibit the maximum specific capacitance of 417 F/g at a scan rate of 5 mV/s, with a good cyclic stability making it a promising candidate for supercapacitor application.

Jeyalakshmi, K. [Department of Physics, PSNA College of Engineering and Technology, Dindigul 624622 (India); Vijayakumar, S. [Department of Physics, Gandhigram Rural Institute, Gandhigram 624302 (India); Purushothaman, K.K. [Department of Physics, TRP Engineering College, Trichy (India); Muralidharan, G., E-mail: muralg@rediffmail.com [Department of Physics, Gandhigram Rural Institute, Gandhigram 624302 (India)

2013-07-15T23:59:59.000Z

25

Solid-to-solid phase transformations of nanostructured selenium-tin thin films induced by thermal annealing in oxygen atmosphere  

SciTech Connect (OSTI)

The structural and morphological evolution of nanostructured thin films obtained from thermal evaporation of polycrystalline Sn-Se starting charge as a function of the subsequent annealing temperature in an oxygen flow has been analysed. High-resolution transmission electron microscopy, small area electron diffraction, digital image processing, x-ray diffraction and Raman spectroscopy have been employed in order to investigate the structure and the morphology of the obtained films. The results evidenced, in the temperature range from RT to 500°C, the transition of the material from a homogeneous mixture of SnSe and SnSe{sub 2} nanocrystals, towards a homogeneous mixture of SnO{sub 2} and SeO{sub 2} nanocrystals, with an intermediate stage in which only SnSe{sub 2} nanocrystals are present.

Serra, A. [Physics Applied to Material Science interdepartmental Laboratory (PAMS-Lab) - Dipartimento di Beni Culturali - Università del Salento - Lecce (Italy); Rossi, M. [Dipartimento Scienze di Base ed Applicate all'Ingegneria, and CNIS - Sapienza Università di Roma, Roma (Italy); Buccolieri, A.; Manno, D. [Physics Applied to Material Science interdepartmental Laboratory (PAMS-Lab) - Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali - Università del Salento - Lecce (Italy)

2014-06-19T23:59:59.000Z

26

Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)

Jamer M.; Sterbinsky G.; Assaf, B.; Arena, D.; Heiman, D.

2014-12-07T23:59:59.000Z

27

Investigation of the magnetic properties of insulating thin films using the longitudinal spin Seebeck effect  

SciTech Connect (OSTI)

The longitudinal spin Seebeck effect is used as a detector for the magnetic properties and switching characteristics of magnetic thin insulating films. We use a 300 nm and a 20?nm thick Yttrium Iron Garnet (YIG, Y{sub 3}Fe{sub 5}O{sub 12}) film prepared by pulsed laser deposition and afterwards coated by platinum for the detection of the thermally excited magnons by the inverse spin Hall effect. The inverse spin Hall signals reveal a magnetic uniaxial anisotropy along the direction of the platinum stripe in the thicker film. For the thin film we find a more isotropic behavior, which is complementarily observed using the magnetoresistance occurring at the platinum/YIG interface. We explain our results on the basis of x-ray diffraction data, which reveal a miscut of the substrate and film surface and an expansion of the YIG lattice. Both findings favor a growth-induced magnetic anisotropy that we observe.

Kehlberger, A., E-mail: kehlberg@uni-mainz.de; Jakob, G.; Kläui, M. [Institute of Physics, University of Mainz, 55099 Mainz (Germany); Onbasli, M. C.; Kim, D. H.; Ross, C. A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2014-05-07T23:59:59.000Z

28

Electron theory of perpendicular magnetic anisotropy of Co-ferrite thin films  

SciTech Connect (OSTI)

We develop an electron theory for the t{sub 2g} electrons of Co{sup 2+} ions to clarify the perpendicular magnetic anisotropy (PMA) mechanism of Co-ferrite thin films by considering the spin-orbit interaction (SOI) and crystal-field (CF) potentials induced by the local symmetry around the Co ions and the global tetragonal symmetry of the film. Uniaxial and in-plane MA constants K{sub u} and K{sub 1} at 0 K, respectively, are calculated for various values of SOI and CF. We show that reasonable parameter values explain the observed PMA and that the orbital moment for the in-plane magnetization reduces to nearly half of that of the out-of-plane magnetization.

Inoue, Jun-ichiro; Yanagihara, Hideto; Kita, Eiji [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan)] [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan); Niizeki, Tomohiko [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan) [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan); AIMR, Tohoku University, Sendai 980-8577 (Japan); Itoh, Hiroyoshi [Department of Pure and Applied Physics, Kansai University, Suita 564-8680 (Japan)] [Department of Pure and Applied Physics, Kansai University, Suita 564-8680 (Japan)

2014-02-15T23:59:59.000Z

29

Nanostructured magnetic materials  

E-Print Network [OSTI]

Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

Chan, Keith T.

2011-01-01T23:59:59.000Z

30

Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation deposition  

E-Print Network [OSTI]

Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation ferrite structures. Our investigations were performed on NiZn and Zn ferrite films deposited on silicon of the blocking temperature in both NiZn and Zn ferrite systems. © 2005 American Institute of Physics. DOI: 10

McHenry, Michael E.

31

Ultrafast Magnetization Dynamics of SrRuO3 Thin Films  

SciTech Connect (OSTI)

Itinerant ferromagnet SrRuO3 has drawn interest from physicists due to its unusual transport and magnetic properties as well as from engineers due to its low resistivity and good lattice-matching to other oxide materials. The exact electronic structure remains a mystery, as well as details of the interactions between magnetic and electron transport properties. This thesis describes the use of time-resolved magneto-optical Kerr spectroscopy to study the ferromagnetic resonance of SrRuO3 thin films, where the ferromagnetic resonance is initiated by a sudden change in the easy axis direction in response to a pump pulse. The rotation of the easy axis is induced by laser heating, taking advantage of a temperature-dependent easy axis direction in SrRuO3 thin films. By measuring the change in temperature of the magnetic system in response to the laser pulse, we find that the specific heat is dominated by magnons up to unusually high temperature, ~;;100 K, and thermal diffusion is limited by a boundary resistance between the film and the substrate that is not consistent with standard phonon reflection and scattering models. We observe a high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ~;; 1, consistent with strong spin-orbit coupling. We observe a time-dependent change in the easy axis direction on a ps time-scale, and we find that parameters associated with the change in easy axis, as well as the damping parameter, have a non-monotonic temperature dependence similar to that observed in anomalous Hall measurements.

Langner, Matthew C

2009-05-19T23:59:59.000Z

32

Thin film deposition by electric and magnetic crossed-field diode sputtering  

DOE Patents [OSTI]

Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

Welch, Kimo M. (Mountain View, CA)

1980-01-01T23:59:59.000Z

33

Nanostructured ceria based thin films ({<=}1 {mu}m) As cathode/electrolyte interfaces  

SciTech Connect (OSTI)

Gadolinium doped cerium oxide (CGO: Ce{sub 0,9}Gd{sub 0,1}O{sub 2-{delta}}) films were used as an oxygen anion diffusion layer at the cathode/electrolyte interface of Solid Oxide Fuel Cells (SOFCs), between LSCF (lanthanum strontium cobalt ferrite) and YSZ (yttria-stabilized zirconia). Thin ({approx}100 nm) and thick ({approx}700 nm) mesoporous CGO layers were synthesized through a sol-gel process including organic template coupled with the dip-coating method. Structural and microstructural characterizations were performed, highlighting a well-bonded crystalline CGO nanoparticles network which delineates a 3-D inter-connected mesoporous network. Their electrical behaviors were investigated by impedance spectroscopy analysis of YSZ/mesoporous-CGO/LSCF half-cell. Anode-supported SOFCs, operating at 800 Degree-Sign C, with either dense or mesoporous CGO dip-coated interlayers were also fabricated [NiO-YSZ anode/YSZ/CGO/LSCF cathode]. The impact of the mesoporous CGO interlayers on SOFCs performances was investigated by galvanostatic analysis and compared to the behavior of a dense CGO interlayer. The polarization curves revealed an enhancement in the electrical performance of the cell, which is assigned to a decrease of the polarization resistance at the cathode/electrolyte interface. The integrity and connectivity of the CGO nanoparticles bonded network facilitates O{sup 2-} transport across the interface. - Graphical abstract: Thin and thick CGO films have been prepared through a sol-gel process and their potential application as SOFC cathode/electrolyte interlayer in SOFC has been investigated. Highlights: Black-Right-Pointing-Pointer Mesoporous ceria based thin films exhibit interesting performances for Solid Oxide Fuel Cell. Black-Right-Pointing-Pointer Mesoporous films were synthesized through the sol-gel process combined with the dip-coating. Black-Right-Pointing-Pointer Integrity and connectivity of the nanoparticles facilitates O{sup 2-} transport across the interface.

Hierso, J. [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France); Boy, P.; Valle, K. [CEA-Le Ripault, LSCG, BP 15, 37000 Monts (France); Vulliet, J.; Blein, F. [CEA-Le Ripault, LCCA, BP 15, 37000 Monts (France); Laberty-Robert, Ch., E-mail: christel.laberty@upmc.fr [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France); Sanchez, C. [Laboratoire de Chimie de la Matiere Condensee de Paris, Universite Paris 6-UMR 7574-College de France, 11 Place Marcelin Berthelot, 75005 Paris (France)

2013-01-15T23:59:59.000Z

34

Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu, T. N. Yang, L. Q. Chen, and C. W. Nan  

E-Print Network [OSTI]

Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu, T. N. Yang://scitation.aip.org/termsconditions. Downloaded to ] IP: 146.186.211.66 On: Thu, 09 Jan 2014 19:48:21 #12;Engineering domain structures in nanoscale magnetic thin films via strain Jia-Mian Hu,1,a) T. N. Yang,2 L. Q. Chen,1,2 and C. W. Nan1,a) 1

Chen, Long-Qing

35

Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography  

SciTech Connect (OSTI)

We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (?90?°C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

Zhang, D., E-mail: dzhang28@asu.edu [School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106 (United States); Ray, N. M.; Petuskey, W. T. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States); Smith, D. J.; McCartney, M. R. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

2014-08-28T23:59:59.000Z

36

Structural and magnetic properties of NiZn-ferrite thin films prepared by radio frequency magnetron sputtering  

SciTech Connect (OSTI)

Polycrystalline NiZn-ferrite thin films were deposited on Si(100) substrate by rf magnetron sputtering, using targets with a nominal composition of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}. The effects of substrate condition, sputtering pressure, and postannealing on the structure and magnetic properties of thin films have been investigated. Our results show that the preferred orientation of the NiZn spinel film changed from (311) to (400) with increasing the Ar pressure from 0.8 to 1.6 Pa, meanwhile, the grain size also increased. Atomic force microscopy analysis indicates that perfect surface morphology of the film can be obtained at a relatively lower sputtering pressure of 1.0 Pa. The relative percentage of residual oxygen increases significantly on a condition of lower sputtering pressure, and plays an important role in film structure due to the strong molecular adsorption tendency of oxygen on the film surface during the deposition process. A thin film with a typical thickness of 1 {mu}m, a saturation magnetization of 150 emu/cm{sup 3}, and a coercivity of 8.8 kA/m has been obtained after annealing at 800 deg. C, which has the potential application in magnetic integrated circuits.

Liu Yingli; Li Yuanxun; Zhang Huaiwu; Chen Daming; Mu Chunhong [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

2011-04-01T23:59:59.000Z

37

x-ray resonant magnetic reflectivity of stratified magnetic structures: eigen-wave formalism and application to a Fe thin film  

E-Print Network [OSTI]

x-ray resonant magnetic reflectivity of stratified magnetic structures: eigen-wave formalism regime up to soft and hard x-rays. The originality of the present formalism lies in the use of eigen-waves throughout the treatment. An application to a Fe thin film illustrates the methodology. I. INTRODUCTION X-ray

38

Nanostructural analysis of ZnO:Al thin films for carrier-transport Seung-Yoon Lee a,b  

E-Print Network [OSTI]

Il Jang a , Sungeun Lee a , Heon-Min Lee a , Byungwoo Park b,* a Emerging Technology Laboratory, LG Electronics Advanced Research Institute, Seoul 137-724, Republic of Korea b WCU Hybrid Materials Program important research themes. Carrier-transport mechanisms for the electron mobility of doped ZnO thin films

Park, Byungwoo

39

Shape and strain-induced magnetization reorientation and magnetic anisotropy in thin film Ti/CoCrPt/Ti lines and rings  

E-Print Network [OSTI]

The contributions to the magnetic anisotropy of thin-film rings and lines of width 50 nm and above made from Ti(5?nm)/Co[subscript 0.66]Cr[subscript 0.22]Pt[subscript 0.12] (10 and 20 nm)/Ti (3 nm) with a perpendicular ...

Velazquez, D.

40

Magnetization reversal in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque  

SciTech Connect (OSTI)

We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current is present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.

Li, Jia, E-mail: lijia@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

2014-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism  

SciTech Connect (OSTI)

Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)

Jamer M.; Sterbinsky G.; Assaf, B.; Arena, D.; Heiman, D.

2014-12-07T23:59:59.000Z

42

The interplay between spatially separated ferromagnetic and superconducting thin films  

E-Print Network [OSTI]

Ferromagnetic thin films have been grown via physical vapor deposition utilizing the technique of flash evaporation and characterized by measuring magnetization as a function of magnetic field. An Al thin film was evaporated atop the ferromagnetic...

Sullivan, Isaac John

2013-02-22T23:59:59.000Z

43

New strategy to promote conversion efficiency using high-index nanostructures in thin-film solar cells  

E-Print Network [OSTI]

Nano-scaled metallic or dielectric structures may provide various ways to trap light into thin-film solar cells for improving the conversion efficiency. In most schemes, the textured active layers are involved into light trapping structures that can provide perfect optical benefits but also bring undesirable degradation of electrical performance. Here we propose a novel approach to design high-performance thin-film solar cells. In our strategy, a flat active layer is adopted for avoiding electrical degradation, and an optimization algorithm is applied to seek for an optimized light trapping structure for the best optical benefit. As an example, we show that the efficiency of a flat a-Si:H thin-film solar cell can be promoted close to the certified highest value. It is also pointed out that, by choosing appropriate dielectric materials with high refractive index (>3) and high transmissivity in wavelength region of 350nm-800nm, the conversion efficiency of solar cells can be further enhanced.

Wang, DongLin

2014-01-01T23:59:59.000Z

44

Patterned Magnetic Nanostructures and Quantized Magnetic Disks  

E-Print Network [OSTI]

, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra of magnetic nanostructures as small as 10 nm; 2) engineering of unique magnetic properties (such as domainPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper

45

Magnetism at spinel thin film interfaces probed through soft x-ray spectroscopy techniques  

E-Print Network [OSTI]

Magnetism at spinel thin ?lm interfaces probed through softachievable in bulk form. Magnetism at the interface regionand the origin of the magnetism from multiple magnetic

Chopdekar, R.V.

2010-01-01T23:59:59.000Z

46

Acta Physicae Superficierum Vol VII 2004 EXPLORING ARTIFICIAL MAGNETISM  

E-Print Network [OSTI]

Acta Physicae Superficierum · Vol VII · 2004 EXPLORING ARTIFICIAL MAGNETISM FROM THIN FILMS of artificially structured, new magnetic materials play a fundamental role in modern science and technology. From thin films to patterned magnetic nano-structures, these magnetic materials and systems can be utilized

Rau, Carl

47

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in...

48

Normal-state transport in electron-doped La2-xCexCuO4 thin films in magnetic fields up to 40 Tesla  

E-Print Network [OSTI]

Normal-state transport in electron-doped La2-xCexCuO4 thin films in magnetic fields up to 40 Tesla.17 are studied in magnetic fields up to 40 Tesla. For the whole doping region investigated, the negative, the upper critical mag- netic field Bc2 order of 100 Tesla 8 is too high to be achieved. The n-type HTSCs

Moshchalkov, Victor V.

49

Fabrication of thin films for a small alternating gradient field magnetometer for biomedical magnetic sensing applications  

E-Print Network [OSTI]

. This is due to the addition of Cr, which decreases the magnetic moment of the films; magnetoelas- tic coupling magnetometers (AGFM) composed of permanent magnets are being developed for measuring magnetic moments in soil Si membrane with a cylindrical SmCo permanent magnet.2,3 The magnetic material attached

McHenry, Michael E.

50

Enhanced Magnetism in Epitaxial SrRuO3 Thin Films  

E-Print Network [OSTI]

Enhanced Magnetism in Epitaxial SrRuO 3 A. J. Grutter, 1, 2and their e?ects on magnetism. In this paper we demonstrateXMCD con?rmed that the magnetism originates from the Ru 4+

Grutter, A.J.

2010-01-01T23:59:59.000Z

51

Structure, Magnetism, and Transport of CuCr2Se4 Thin Films  

E-Print Network [OSTI]

Structure, Magnetism, and Transport of CuCr 2 Se 4 Thindichroism shows that the magnetism persists to the surfacesuch as the nature of magnetism at surfaces and interfaces.

2008-01-01T23:59:59.000Z

52

Temperature dependence of magnetic properties of La0.7Sr0.3MnO3SrTiO3 thin films on silicon substrates  

E-Print Network [OSTI]

by a 20-nm-thick SrTiO3 001 buffer layer. X-ray diffraction and atomic force microscopy studies. INTRODUCTION Perovskite manganites RE 1-x AE xMnO3, where RE =rare earth and AE=alkaline earth formTemperature dependence of magnetic properties of La0.7Sr0.3MnO3Ã?SrTiO3 thin films on silicon

Boyer, Edmond

53

Perpendicular magnetic anisotropy in epitaxially strained cobalt-ferrite (001) thin films  

SciTech Connect (OSTI)

We investigated the dependencies of both the magnetization characteristics and the perpendicular magnetic anisotropy of Co{sub x}Fe{sub 3–x}O{sub 4}(001) epitaxial films (x?=?0.5 and 0.75) on the growth conditions of the reactive magnetron sputtering process. Both saturation magnetization and the magnetic uniaxial anisotropy constant K{sub u} are strongly dependent on the reactive gas (O{sub 2}) flow rate, although there is little difference in the surface structures for all samples observed by reflection high-energy electron diffraction. In addition, certain dead-layer-like regions were observed in the initial stage of the film growth for all films. Our results suggest that the magnetic properties of Co{sub x}Fe{sub 3–x}O{sub 4} epitaxial films are governed by the oxidation state and the film structure at the vicinity of the interface.

Yanagihara, H., E-mail: yanagiha@bk.tsukuba.ac.jp; Utsumi, Y.; Niizeki, T., E-mail: t-niizeki@imr.tohoku.ac.jp; Inoue, J.; Kita, Eiji [Institute of Applied Physics, University of Tsukuba, Tsukuba 305-8573 (Japan)

2014-05-07T23:59:59.000Z

54

Structural and Magnetic Properties of Co-Mn-Sb Thin films  

SciTech Connect (OSTI)

Thin Co-Mn-Sb films of different compositions were investigated and utilized as electrodes in alumina based magnetic tunnel junctions with CoFe counterelectrode. The preparation conditions were optimized with respect to magnetic and structural properties. The Co-Mn-Sb/Al-O interface was analyzed by x-ray absorption spectroscopy and magnetic circular dichroism with particular focus on the element-specific magnetic moments. Co-Mn-Sb crystallizes in different complex cubic structures depending on its composition. The magnetic moments of Co and Mn are ferromagnetically coupled in all cases. A tunnel magnetoresistance ratio of up to 24% at 13 K was found and indicates that Co-Mn-Sb is not a ferromagnetic half-metal. These results are compared to recent works on the structure and predictions of the electronic properties.

Meinert, M.; Schmalhorst, J.-M.; Ebke, D.; Liu, N. N.; Thomas, A.; Reiss, G.; Kanak, J.; Stobiecki, T.; Arenholz, E.

2009-12-17T23:59:59.000Z

55

Strain induced electronic structure changes in magnetic transition metal oxides thin films  

SciTech Connect (OSTI)

We show that the angular dependence of x-ray magnetic circular dichroism (XMCD) is strongly sensitive to strain-induced electronic structure changes in magnetic transition metal oxides. We observe a pronounced dependence of the XMCD spectral shape on the experimental geometry as well as nonvanishing XMCD with distinct spectral features in transverse geometry in compressively strained MnCr{sub 2}O{sub 4} films. The angular dependent XMCD can be described as a sum over an isotropic and anisotropic contribution, the latter linearly proportional to the axial distortion due to strain. The XMCD spectra are well reproduced by atomic multiplet calculations.

van der Laan, G.; Chopdekar, R.V.; Suzuki, Y.; Arenholz, E.

2010-07-08T23:59:59.000Z

56

Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO{sub 3}:CoFe{sub 2}O{sub 4} vertically aligned nanocomposite thin films  

SciTech Connect (OSTI)

Self-assembled BiFeO{sub 3}:CoFe{sub 2}O{sub 4} (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO{sub 3} (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy.

Zhang, Wenrui; Jiao, Liang; Li, Leigang [Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Jian, Jie; Khatkhatay, Fauzia; Chu, Frank [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States); Chen, Aiping [Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States); Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Jia, Quanxi [Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); MacManus-Driscoll, Judith L. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Wang, Haiyan, E-mail: wangh@ece.tamu.edu [Department of Materials Science and Engineering, Texas A and M University, College Station, Texas 77843 (United States); Department of Electrical and Computer Engineering, Texas A and M University, College Station, Texas 77843 (United States)

2014-02-10T23:59:59.000Z

57

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

58

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

59

Magnetic properties of epitaxial Co-doped anatase TiO2 thin films with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration -Lowell L.FallU .Magnetic Vortexbehavior

60

Thin Film Photovoltaics Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

335Nanostructured ZnO and ZAO transparent thin films by sputteringsurface characterization Corresponding author: M. Suchea, e-mail: mirasuchea@iesl.forth.gr  

E-Print Network [OSTI]

as transparent electrode in solar cells and flat panel displays as well as for the fabrication of gratings Abstract. Zinc oxide (ZnO) and aluminum zinc oxide (ZAO) transparent thin films with different thickness Zinc oxide is one of the earliest discovered metal oxide gas sensing materials. It is an n-type semi

62

Stoichiometry dependent phase transition in Mn-Co-Ga-based thin films: From cubic in-plane, soft magnetized to tetragonal perpendicular, hard magnetized  

SciTech Connect (OSTI)

Epitaxial thin films of Mn{sub 3-x}Co{sub x}Ga were grown on MgO by magnetron co-sputtering with different Co content. Dependent on the Co content tetragonal or cubic structures are obtained. The composition dependence of saturation magnetization M{sub S} and uniaxial magnetic anisotropy K{sub u} in the epitaxial films were investigated. A high magnetic anisotropy K{sub u} of 1.2 MJ m{sup -3} was achieved for the Mn{sub 2.6}Co{sub 0.3}Ga{sub 1.1} film with low magnetic moment of 0.84 {mu}{sub B}. The valence band spectra of the films were investigated mainly by hard x-ray photoelectron spectroscopy. The evidence of sharp states in the cubic case, which are smeared out in the tetragonal case, proof the existence of a van Hove singularity that causes a band Jahn-Teller effect accompanied by a tetragonal distortion. These differences are in well agreement to the ab-initio calculations of the electronic structure.

Ouardi, Siham; Fecher, Gerhard H.; Stinshoff, Rolf; Felser, Claudia [Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Kubota, Takahide; Mizukami, Shigemi; Miyazaki, Terunobu [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577 (Japan); Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute, SPring-8, Hyogo 679-5198 (Japan)

2012-12-10T23:59:59.000Z

63

Combinatorial exploration of rare-earth-free permanent magnets: Magnetic and microstructural properties of Fe-Co-W thin films  

E-Print Network [OSTI]

at least one rare earth element such as Nd, Sm, Tb, or Pr.1­3 However, rare-earth elements are increasCombinatorial exploration of rare-earth-free permanent magnets: Magnetic and microstructural://apl.aip.org/about/rights_and_permissions #12;Combinatorial exploration of rare-earth-free permanent magnets: Magnetic and microstructural

Rubloff, Gary W.

64

Thin Film Reliability SEMICONDUCTORS  

E-Print Network [OSTI]

Thin Film Reliability SEMICONDUCTORS Our goal is to develop new ways to evaluate the reliability $250 billion per year. As semiconductor devices become ultra miniaturized, reliability testing becomes-world conditions as possible will enable product designers to better balance performance and reliability

65

Thin film photovoltaic cell  

DOE Patents [OSTI]

A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

1982-01-01T23:59:59.000Z

66

Epitaxial thin films  

DOE Patents [OSTI]

Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

2006-04-25T23:59:59.000Z

67

Structural, magnetic, and electronic properties of GdTiO{sub 3} Mott insulator thin films grown by pulsed laser deposition  

SciTech Connect (OSTI)

We report on the optimization process to synthesize epitaxial thin films of GdTiO{sub 3} on SrLaGaO{sub 4} substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature T{sub C}?=?31.8?K with a saturation magnetization of 4.2??{sub B} per formula unit at 10?K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of ?0.7?eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growth technique such as pulsed laser deposition.

Grisolia, M. N.; Bruno, F. Y.; Sando, D.; Jacquet, E.; Barthélémy, A.; Bibes, M., E-mail: manuel.bibes@thalesgroup.com [Unité Mixte de Physique, CNRS-Thales, 1 Av. Augustin Fresnel, Campus de l'Ecole Polytechnique, 91120 Palaiseau, France and Université Paris-Sud, 91405 Orsay (France); Zhao, H. J. [Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chen, X. M. [Laboratory of Dielectric Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Bellaiche, L. [Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States)

2014-10-27T23:59:59.000Z

68

Thin-film optical initiator  

DOE Patents [OSTI]

A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

Erickson, Kenneth L. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

69

Biomimetic thin film deposition  

SciTech Connect (OSTI)

Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

1995-09-01T23:59:59.000Z

70

Thin film composite electrolyte  

DOE Patents [OSTI]

The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

Schucker, Robert C. (The Woodlands, TX)

2007-08-14T23:59:59.000Z

71

Enhancement of conduction noise absorption by hybrid absorbers composed of indium-tin-oxide thin film and magnetic composite sheet on a microstrip line  

SciTech Connect (OSTI)

In order to develop wide-band noise absorbers with a focused design for low frequency performance, this study investigates hybrid absorbers that are composed of conductive indium-tin-oxide (ITO) thin film and magnetic composite sheets. The ITO films prepared via reactive sputtering exhibit a typical value of electrical resistivity of ?10{sup ?4} ? m. Rubber composites with flaky Fe-Si-Al particles are used as the magnetic sheet with a high permeability and high permittivity. For the ITO film with a low surface resistance and covered by the magnetic sheet, approximately 90% power absorption can be obtained at 1?GHz, which is significantly higher than that of the original magnetic sheet or ITO film. The high power absorption of the hybrid absorber is attributed to the enhanced ohmic loss of the ITO film through increased electric field strength bounded by the upper magnetic composite sheet. However, for the reverse layering sequence of the ITO film, the electric field experienced by ITO film is very weak due to the electromagnetic shielding by the under layer of magnetic sheet, which does not result in enhanced power absorption.

Kim, Sun-Hong; Kim, Sung-Soo, E-mail: sskim@chungbuk.ac.kr [Department of Advanced Materials Engineering, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

2014-05-05T23:59:59.000Z

72

Pressure effect on the magnetization of Sr{sub 2}FeMoO{sub 6} thin films grown by pulsed laser deposition  

SciTech Connect (OSTI)

Thin films of Sr{sub 2}FeMoO{sub 6} (SFMO) are grown on SrTiO{sub 3} (001) substrates by pulsed laser deposition. The best films provide 3.2{mu}{sub B}/f.u. at 5 K, a Curie temperature above 400 K, low roughness, high crystallinity, and low splashing. Therefore, the use of such SFMO electrodes in magnetic tunnel junctions patterned with conventional lithography is promising. Pseudomorphic epitaxial growth is obtained for thicknesses under 50 nm. Above this thickness the films do not relax homogeneously. A coherent and systematic variation of the magnetization with the deposition conditions is obtained, which highlights a high reproducibility. Under a reasonable O{sub 2} partial pressure to avoid parasite phases, the limiting factor for high magnetization is the total pressure or the deposition rate. Therefore, the deposition rate is suspected to have a strong influence on the Fe/Mo ordering. Highly magnetic samples are obtained under a low gas flow of either a 20% O{sub 2}+N{sub 2} or a 0.3% O{sub 2}+Ar.

Fix, T.; Versini, G.; Loison, J.L.; Colis, S.; Schmerber, G.; Pourroy, G.; Dinia, A. [Institut de Physique et de Chimie des Materiaux de Strasbourg (IPCMS) Unite Mixte de Recherche 7504 du Centre National de la Recherche Scientifique (UMR 7504 du CNRS), Universite Louis Pasteur-Ecole Europeenne de Chimie, Polymeres et Materiaux de Strasbourg - ULP-ECPM, 23 rue du Loess BP43 F-67034 Strasbourg (France)

2005-01-15T23:59:59.000Z

73

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

Catalano, A.W.; Bhushan, M.

1982-08-03T23:59:59.000Z

74

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

1982-01-01T23:59:59.000Z

75

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

76

Nanostructured light-absorbing crystalline CuIn{sub (1–x)}Ga{sub x}Se{sub 2} thin films grown through high flux, low energy ion irradiation  

SciTech Connect (OSTI)

A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn{sub 1?x}Ga{sub x}Se{sub 2} thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620–740 °C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600–670 °C) and high rf power (80–400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by (112){sub T} facets. At 80–400 W rf power and 640–740 °C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 °C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong (112){sub T} texture with interpillar twist angles of ±8°. Application of a negative dc bias of 0–50 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of (112){sub T} planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75° from the surface normal.

Hall, Allen J.; Hebert, Damon; Rockett, Angus A. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States)] [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304 W. Green St., Urbana, Illinois 61801 (United States); Shah, Amish B. [Center for Microanalysis of Materials, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Ave, Urbana, Illinois 61801 (United States)] [Center for Microanalysis of Materials, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Ave, Urbana, Illinois 61801 (United States); Bettge, Martin [Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60438 (United States)] [Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60438 (United States)

2013-10-21T23:59:59.000Z

77

Thin film ion conducting coating  

DOE Patents [OSTI]

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

78

Study of Gd-doped Bi{sub 2}Te{sub 3} thin films: Molecular beam epitaxy growth and magnetic properties  

SciTech Connect (OSTI)

Incorporation of magnetic dopants into topological insulators to break time-reversal symmetry is a prerequisite for observing the quantum anomalous Hall (QAHE) effect and other novel magnetoelectric phenomena. GdBiTe{sub 3} with a Gd:Bi ratio of 1:1 is a proposed QAHE system, however, the reported solubility limit for Gd doping into Bi{sub 2}Te{sub 3} bulk crystals is between ?0.01 and 0.05. We present a magnetic study of molecular beam epitaxy grown (Gd{sub x}Bi{sub 1–x}){sub 2}Te{sub 3} thin films with a high Gd concentration, up to x ? 0.3. Magnetometry reveals that the films are paramagnetic down to 1.5?K. X-ray magnetic circular dichroism at the Gd M{sub 4,5} edge at 1.5?K reveals a saturation field of ?6?T, and a slow decay of the magnetic moment with temperature up to 200?K. The Gd{sup 3+} ions, which are substitutional on Bi sites in the Bi{sub 2}Te{sub 3} lattice, exhibit a large atomic moment of ?7??{sub B}, as determined by bulk-sensitive superconducting quantum interference device magnetometry. Surface oxidation and the formation of Gd{sub 2}O{sub 3} lead to a reduced moment of ?4??{sub B} as determined by surface-sensitive x-ray magnetic circular dichroism. Their large atomic moment makes these films suitable for incorporation into heterostructures, where interface polarization effects can lead to the formation of magnetic order within the topological insulators.

Harrison, S. E.; Huo, Y.; Harris, J. S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Collins-McIntyre, L. J.; Hesjedal, T., E-mail: Thorsten.Hesjedal@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Li, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot, Oxfordshire OX11 0DE (United Kingdom); Shelford, L. R.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot, Oxfordshire OX11 0DE (United Kingdom); Pushp, A.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Arenholz, E. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2014-01-14T23:59:59.000Z

79

Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg{sub 4}I{sub 5} thin film composite nanostructures  

SciTech Connect (OSTI)

We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg{sub 4}I{sub 5} films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I–V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg{sub 4}I{sub 5} and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

Sun, Jia-Lin [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zhang, Wei, E-mail: zhang-wei@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009(28), Beijing 100088 (China); Wei, Jinquan [Key Laboratory for Advanced Materials Processing Technology of Education Ministry, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Gu, Bingfu [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China)

2014-01-28T23:59:59.000Z

80

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

1994-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Itinerant and localized magnetic moments in ferrimagnetic Mn{sub 2}CoGa thin films identified with x-ray magnetic linear dichroism: experiment and ab initio theory  

SciTech Connect (OSTI)

Epitaxial thin films of the half-metallic X{sub a}-compound Mn{sub 2}CoGa (Hg{sub 2}CuTi prototype) were prepared by dc magnetron co-sputtering with different heat treatments on MgO (001) substrates. High-quality #12;lms with a bulk magnetization of 1.95(5) {mu}{sub #22;}B per unit cell were obtained. The average Mn magnetic moment and the Co moment are parallel, in agreement with theory. The x-ray magnetic circular dichroism spectra agree with calculations based on density functional theory and reveal the antiparallel alignment of the two inequivalent Mn moments. X-ray magnetic linear dichroism allows to distinguish between itinerant and localized Mn moments. It is shown that one of the two Mn moments has localized character, whereas the other Mn moment and the Co moment are itinerant.

Meinert, M.; Schmalhorst, J; Klewe, C.; Reiss, G.; Arenholz, E.; Bohnert, T.; Nielsch, K.

2011-08-08T23:59:59.000Z

82

Magnetization curves for thin films of layered type-II superconductors, Kolmogorov-Arnold-Moser theory, and the devil's staircase  

SciTech Connect (OSTI)

Magnetization curves for a thin-layered superconducting film in parallel magnetic field have been shown to become devil's staircases provided the superconducting layers are perpendicular to the film plane. The transition from an incomplete to a complete devil's staircase with decreasing temperature is predicted. A chain of vortices is described by the generalized Frenkel-Kontorova model.

Burkov, S.E. (Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University, Ithaca, New York (USA) Landau Institute for Theoretical Physics, Moscow (U.S.S.R))

1991-08-01T23:59:59.000Z

83

Vertically Aligned Nanocomposite Thin Films  

E-Print Network [OSTI]

and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

Bi, Zhenxing

2012-07-16T23:59:59.000Z

84

Fabrication and Characterization of Nano-Sized Magnetic Structures and Their Flux-Pinning Effects on Superconducting Thin Films  

E-Print Network [OSTI]

Energy Dissipation due to Vortex Motion .................................. 7 Vortex Pinning in the Ferromagnet-Superconductor Hybrid (FSH) . 9 II FABRICATION OF EMBEDDED FERROMAGNET..., as the external magnetic field increases above the lower critical field and below an upper critical field ??2 (?), the magnetic flux partially penetrates the sample in the form of tubes, or vortices (Fig.4). This state is said to be a vortex state or mixed...

Lee, Han Gil

2011-02-22T23:59:59.000Z

85

Modeling and control of thin film surface morphology: application to thin film solar cells  

E-Print Network [OSTI]

of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

Huang, Jianqiao

2012-01-01T23:59:59.000Z

86

Magnetic domain pinning in an anisotropy-engineered GdTbFe thin film Stan Konings,a  

E-Print Network [OSTI]

fields, these do- mains collapse to bubble domains which are found to local- ize on the irradiated dots lattices of 50 nm sized dots. The effect of the anisotropy patterns, differing in ion fluence and interdot of the irregularly shaped domains is observed. In perpendicular magnetic fields, however, the high field bubble

87

Oxygen-vacancy-induced room-temperature magnetization in lamellar V{sub 2}O{sub 5} thin films  

SciTech Connect (OSTI)

In this work, we study the local atomic and electronic structures as well as oxygen-vacancy-induced magnetic properties of electrodeposited V{sub 2}O{sub 5} films. Unlike stoichiometric V{sub 2}O{sub 5}, which is a diamagnetic lamellar semiconductor, our oxygen-defective V{sub 2}O{sub 5} films are ferromagnetic at room-temperature and their saturation magnetization decreases with air exposure time. X-ray absorption spectroscopy was used to monitor the aging effect on these films, revealing that freshly-made samples exhibit only local crystalline order, whereas the aged ones undoubtedly show an enhancement of crystallinity and coordination symmetry. The mean number of oxygen atoms around V tends to increase, indicating a decrease of oxygen vacancies with time. Concurrently with the decrease of oxygen vacancies, a loss of saturation magnetization is also observed. Hence, it can be concluded that the ferromagnetism of the V{sub 2}O{sub 5} films originates from a vacancy-induced mechanism, confirming the universality of this class of ferromagnetism.

Cezar, A. B. [Instituto Federal do Paraná (IFPR), Campus Paranaguá (Brazil); Graff, I. L., E-mail: graff@fisica.ufpr.br; Varalda, J.; Schreiner, W. H.; Mosca, D. H. [Departamento de Física, Universidade Federal do Paraná (UFPR), Curitiba (Brazil)

2014-10-28T23:59:59.000Z

88

Synthesis of thin films and materials utilizing a gaseous catalyst  

DOE Patents [OSTI]

A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

2013-10-29T23:59:59.000Z

89

Magnetic properties of epitaxial Co-doped anatase TiO2 thin films with excellent structural quality  

SciTech Connect (OSTI)

The heteroepitaxy of Co-doped anatase TiO2 on LaAlO3(001) has been refined with the goal of determining the relationship between structural quality and magnetic ordering. By significantly reducing the deposition rate and substrate temperature, well-ordered Co:TiO2 films with unprecedented crystalline quality were obtained by oxygen-plasma-assisted molecular beam epitaxy, as characterized by x-ray diffraction. These films exhibit uniform Co doping, with no evidence of Co segregation or secondary phases throughout the film depth or on the surface. Despite the improvement in crystalline quality and Co distribution, the films exhibit negligible ferromagnetism, with saturation moments of only ~0.1 ?B/Co. This loss of ferromagnetism is in stark contrast to faster-grown Co:TiO2 films, where a higher growth rate and substrate temperature typically result in lower crystalline quality, a highly non-uniform Co distribution, and average saturation moments of ~1.2 ?B/Co. The presence of ferromagnetism in faster-grown Co:TiO2 does not appear to arise from intrinsic point defects present in the bulk material, such as charge-compensating oxygen vacancies, but is instead attributed to the presence of extended structural defects.

Kaspar, Tiffany C.; Droubay, Timothy C.; McCready, David E.; Nachimuthu, Ponnusamy; Heald, Steve M.; Wang, Chong M.; Lea, Alan S.; Shutthanandan, V.; Chambers, Scott A.; Toney, Michael F.

2006-07-26T23:59:59.000Z

90

Epitaxial Thin Film XRD | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRD Epitaxial Thin Film XRD Systems

91

Semiconductor-nanocrystal/conjugated polymer thin films  

DOE Patents [OSTI]

The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

2010-08-17T23:59:59.000Z

92

Low work function, stable thin films  

DOE Patents [OSTI]

Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

2000-01-01T23:59:59.000Z

93

Thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

1996-01-01T23:59:59.000Z

94

Thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

1996-12-31T23:59:59.000Z

95

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LawrenceE C H N ILensless Imaging of Magnetic

96

E-Print Network 3.0 - alloys thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

au no 12, Tome 49, decembre 1988 Summary: film are not enough to use for thin film magnetic recording head 2, 31. On the other hand... that intermedi- ate alloy layer is...

97

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

98

Thin film solar energy collector  

DOE Patents [OSTI]

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

99

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability| EMSLforThin Thin-Film

100

Thin films of mixed metal compounds  

DOE Patents [OSTI]

A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Direct Measurement of Oxygen Incorporation into Thin Film Oxides...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

102

amorphous biophotonic nanostructure: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanostructure Anitescu, Mihai 169 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

103

BDS thin film damage competition  

SciTech Connect (OSTI)

A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

Stolz, C J; Thomas, M D; Griffin, A J

2008-10-24T23:59:59.000Z

104

Visible spectrometer utilizing organic thin film absorption  

E-Print Network [OSTI]

In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

Tiefenbruck, Laura C. (Laura Christine)

2004-01-01T23:59:59.000Z

105

Solid State Thin Film Lithium Microbatteries  

E-Print Network [OSTI]

Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

Shi, Z.

106

Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films  

E-Print Network [OSTI]

Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

Hart, Gus

107

Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films  

DOE Patents [OSTI]

A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

1999-01-01T23:59:59.000Z

108

Tailoring Magnetic Properties in Bulk Nanostructured Solids  

E-Print Network [OSTI]

permanent magnets). Under specific temperature and applied magnetic field conditions, exchange coupling

Morales, Jason R.

2011-01-01T23:59:59.000Z

109

Thin film absorber for a solar collector  

DOE Patents [OSTI]

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

110

Thin film dielectric composite materials  

DOE Patents [OSTI]

A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

2002-01-01T23:59:59.000Z

111

Tungsten-doped thin film materials  

DOE Patents [OSTI]

A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

2003-12-09T23:59:59.000Z

112

Thin Film Transistors On Plastic Substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

2004-01-20T23:59:59.000Z

113

Vibration welding system with thin film sensor  

DOE Patents [OSTI]

A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

2014-03-18T23:59:59.000Z

114

Electron cyclotron resonance microwave ion sources for thin film processing  

SciTech Connect (OSTI)

Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs.

Berry, L.A.; Gorbatkin, S.M.

1990-01-01T23:59:59.000Z

115

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical,...

116

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

117

aluminium thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 Thin-Film Metamaterials called Sculptured Thin Films CERN Preprints Summary: Morphology...

118

Equiatomic CoPt thin films with extremely high coercivity  

SciTech Connect (OSTI)

In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

Varghese, Binni; Piramanayagam, S. N., E-mail: Prem-SN@dsi.a-star.edu.sg; Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee [Data Storage Institute, (A-STAR) Agency for Science, Technology and Research, DSI Building, 5, Engineering Drive 1, Singapore 117608 (Singapore); Okamoto, Iwao [Western Digital Corporation, Singapore 638552 (Singapore)

2014-05-07T23:59:59.000Z

119

Magnetic nanostructures patterned by block copolymer lithography  

E-Print Network [OSTI]

The aim of this research was twofold: understanding the methods of patterning magnetic films using self-assembled block copolymer masks and examining the magnetic reversal mechanisms of as deposited and patterned magnetic ...

Ilievski, Filip, 1980-

2008-01-01T23:59:59.000Z

120

SINGLE AND DUAL LAYER THIN FILM BULGE TESTING  

E-Print Network [OSTI]

film windows that are used in Next Generation Lithography masks and certain MEMS devices. The bulge testing method measures the mechanical properties of a thin film by isolating it in a thin film window of the system. Figure 6 Dual Layer Thin Film Membrane Window For a dual layer membrane the effective total

Huston, Dryver R.

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

THIN FILM MECHANICS BULGING AND Ph.D Dissertation  

E-Print Network [OSTI]

for the intensive effort in research in materials and processing techniques. Thin film windows are window underneath. The thin film window has such a small thickness to span ratio that it can usually be considered and precision-stretching of thin film windows are examined. Bulge Testing is a method used to evaluate

Huston, Dryver R.

122

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES  

E-Print Network [OSTI]

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES S. Suresh1 , T.-G. Nieh2 and B.W. Choi2: Mechanical properties; Nano-indentation; Thin films; Copper; Dislocations Introduction Indentation methods films on substrates (e.g., [2,3]) using instrumented indentation. Nano-indentation studies of thin films

Suresh, Subra

123

Influence of a TiO{sub 2} buffer layer on the magnetic properties of anatase Co:TiO{sub 2} thin films  

SciTech Connect (OSTI)

Our study addresses the influence of a TiO{sub 2} buffer layer on the morphological, structural, and magnetic properties of Co:TiO{sub 2} films grown on (001) SrTiO{sub 3} substrates by RF sputtering. We demonstrate that a direct correlation exist between the morphology, the Co heterogeneity, and the magnetic properties measured in the films. Correlated analysis by cross section transmission electron microscopy, energy dispersive x-ray, and x-ray photoemission spectroscopy reveals that the Co is not uniformly distributed in the film but concentrated in the surface clusters. Atomic force microscopy analysis illustrates that the unbuffered films present a large density of surface clusters. These clusters are not metallic Co but Co rich TiO{sub 2} anatase phase and they are accompanied by structural defects in the film: dislocations, small angle grain boundaries. Magnetometry analysis shows that the unbuffered films have a net ferromagnetic behavior, while in the buffered ones the ferromagnetism is quenched. Therefore, we conclude that the magnetism in unbuffered samples is related to the surface clusters and seems to have an extrinsic nature.

Gabor, M. S.; Petrisor, T. Jr.; Tiusan, C. [Technical University of Cluj-Napoca, Materials Science Laboratory, Cluj-Napoca (Romania); Institut Jean Lamour, P2M, CNRS - Nancy University, Nancy (France); Hehn, M. [Institut Jean Lamour, P2M, CNRS - Nancy University, Nancy (France); Vasile, B. S. [Faculty of Applied Chemistry and Material Science, Department of Science and Engineering of Oxide Materials and Nanomaterials, University POLITEHNICA Bucharest, Bucharest (Romania); Petrisor, T. [Technical University of Cluj-Napoca, Materials Science Laboratory, Cluj-Napoca (Romania)

2012-04-15T23:59:59.000Z

124

US polycrystalline thin film solar cells program  

SciTech Connect (OSTI)

The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

1989-11-01T23:59:59.000Z

125

Enhanced Thin Film Organic Photovoltaic Devices  

Energy Innovation Portal (Marketing Summaries) [EERE]

A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. The waveguided structure permits reduction of the active layer thickness, resulting in enhanced charge collection and extraction, leading to improved power conversion efficiency compared to standard OPV devices....

2014-01-10T23:59:59.000Z

126

Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam  

SciTech Connect (OSTI)

The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17?MeV. For the n-type thin films, nanodots with a diameter of less than 10?nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

2014-06-07T23:59:59.000Z

127

Radiation Damage in Nanostructured Metallic Films  

E-Print Network [OSTI]

with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe...

Yu, Kaiyuan

2013-04-15T23:59:59.000Z

128

Biomedical applications of nanostructured polymer films  

E-Print Network [OSTI]

Functional polymeric thin films are often stratified with nanometer level structure and distinct purposes for each layer. These nanostructured polymeric materials are useful in a wide variety of applications including drug ...

Gilbert, Jonathan Brian

2014-01-01T23:59:59.000Z

129

Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring  

SciTech Connect (OSTI)

Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

Nomenyo, K.; Kostcheev, S.; Lérondel, G. [Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Gadallah, A.-S. [Laboratoire de Nanotechnologie et d'Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt); Rogers, D. J. [Nanovation, 8, route de Chevreuse, 78117 Châteaufort (France)

2014-05-05T23:59:59.000Z

130

Polycrystalline thin films FY 1992 project report  

SciTech Connect (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. [ed.

1993-01-01T23:59:59.000Z

131

Electrostatic thin film chemical and biological sensor  

DOE Patents [OSTI]

A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

2010-01-19T23:59:59.000Z

132

Thin film photovoltaic panel and method  

DOE Patents [OSTI]

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

133

Fabrication and characterization of nanostructured magnetic particles for applications in data storage  

E-Print Network [OSTI]

Arrays of nanostructured magnetic particles ('nanomagnets') have potential applications in ultra-high-density data storage devices and dynamic magnetic memories, and are model systems for the study of magnetic phenomena ...

Farhoud, Maya S. (Maya Sami)

2001-01-01T23:59:59.000Z

134

Packaging material for thin film lithium batteries  

DOE Patents [OSTI]

A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

1996-01-01T23:59:59.000Z

135

Annealed CVD molybdenum thin film surface  

DOE Patents [OSTI]

Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

Carver, Gary E. (Tucson, AZ); Seraphin, Bernhard O. (Tucson, AZ)

1984-01-01T23:59:59.000Z

136

Nanostructured Thin Film Electrolyte for Thin Film Solid Oxide Fuel Cells  

E-Print Network [OSTI]

Solid oxide fuel cells (SOFCs) are very attractive as energy generation devices because they are clean, reliable, and almost entirely pollution-free. SOFCs have flexible fuel selections compared with other fuel cell technologies. The main...

Cho, Sungmee

2012-10-19T23:59:59.000Z

137

Rechargeable thin film battery and method for making the same  

DOE Patents [OSTI]

A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

2006-01-03T23:59:59.000Z

138

Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization  

E-Print Network [OSTI]

Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

Bielecki, Anthony

2013-01-01T23:59:59.000Z

139

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Technology of Nankai University Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute...

140

applications thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nikolay 27 Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application Engineering Websites Summary: Solvent-enhanced dye diffusion in...

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Low-Cost Light Weigh Thin Film Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

Light Weight Thin Film Solar Concentrators PI: Gani B. Ganapathi (JPLCaltech) Other Contributors: L'Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian JPL: Bill Nesmith,...

142

antibacterial thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Skovlin, Dean Oliver 2012-06-07 138 Uncooled Thin Film Pyroelectric IR Detector with Aerogel Thermal Isolation CiteSeer Summary: Uncooled pyroelectric IR imaging systems, such...

143

acid thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

144

almgb14 thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

145

aggase2 thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

146

ablation thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

147

aln thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

deposited by the reactive dc magnetron sputtering technique at room, amorphous and polycrystalline GaN thin films have been deposited using the magnetron sputtering...

148

anatase thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

149

area thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

150

aluminide thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

151

antiferroelectric thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

152

ain thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

153

advanced thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

154

arsenide thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

155

Uncooled thin film pyroelectric IR detector with aerogel thermal isolation  

SciTech Connect (OSTI)

A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

1999-01-01T23:59:59.000Z

156

Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria...

157

Room-temperature magnetoelectric multiferroic thin films and applications thereof  

DOE Patents [OSTI]

The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

Katiyar, Ram S; Kuman, Ashok; Scott, James F.

2014-08-12T23:59:59.000Z

158

Casimir effect for thin films from imperfect materials  

E-Print Network [OSTI]

We propose an approach for investigation of interaction of thin material films with quantum electrodynamic fields. Using main principles of quantum electrodynamics (locality, gauge invariance, renormalizability) we construct a single model for Casimir-like phenomena arising near the film boundary on distances much larger then Compton wavelength of the electron where fluctuations of Dirac fields are not essential. In this model the thin film is presented by a singular background field concentrated on a 2-dimensional surface. All properties of the film material are described by one dimensionless parameter. For two parallel plane films we calculate the photon propagator and the Casimir force, which appears to be dependent on film material and can be both attractive and repulsive. We consider also an interaction of plane film with point charge and straight line current. Here, besides usual results of classical electrodynamics the model predicts appearance of anomalous electric and magnetic fields.

V. N. Markov; Yu. M. Pis'mak

2006-06-04T23:59:59.000Z

159

Properties of ferroelectric/ferromagnetic thin film heterostructures  

SciTech Connect (OSTI)

Ferroelectric/ferromagnetic thin film heterostructures, SrBi{sub 2}Ta{sub 2}O{sub 9}/BaFe{sub 12}O{sub 19} (SBT/BaM), were grown on platinum-coated Si substrates using metal-organic decomposition. X-ray diffraction patterns confirmed that the heterostructures contain only SBT and BaM phases. The microwave properties of these heterostructures were studied using a broadband ferromagnetic resonance (FMR) spectrometer from 35 to 60 GHz, which allowed us to determine gyromagnetic ratio and effective anisotropy field. The FMR linewidth is as low as140 Oe at 58 GHz. In addition, measurements of the effective permittivity of the heterostructures were carried out as a function of bias electric field. All heterostructures exhibit hysteretic behavior of the effective permittivity. These properties indicate that such heterostructures have potential for application in dual electric and magnetic field tunable resonators, filters, and phase shifters.

Chen, Daming, E-mail: chendaming1986@gmail.com [Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan (China); Harward, Ian; Linderman, Katie; Economou, Evangelos; Celinski, Zbigniew [Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); Nie, Yan [Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

2014-05-07T23:59:59.000Z

160

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells  

E-Print Network [OSTI]

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke in thin film solar cells. In particular, the ability of plasmonic structures to localize light sunlight into guided modes in thin film Si and GaAs plasmonic solar cells whose back interface is coated

Atwater, Harry

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Angular behavior of the absorption limit in thin film silicon solar cells  

E-Print Network [OSTI]

We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic pola...

Naqavi, Ali; Söderström, Karin; Battaglia, Corsin; Paeder, Vincent; Scharf, Toralf; Herzig, Hans Peter; Ballif, Christophe

2013-01-01T23:59:59.000Z

162

Thin film photovoltaic device with multilayer substrate  

DOE Patents [OSTI]

A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

Catalano, Anthony W. (Rushland, PA); Bhushan, Manjul (Wilmington, DE)

1984-01-01T23:59:59.000Z

163

Investigation of deep level defects in CdTe thin films  

SciTech Connect (OSTI)

In the past few years, a large body of work has been dedicated to CdTe thin film semiconductors, as the electronic and optical properties of CdTe nanostructures make them desirable for photovoltaic applications. The performance of semiconductor devices is greatly influenced by the deep levels. Knowledge of parameters of deep levels present in as-grown materials and the identification of their origin is the key factor in the development of photovoltaic device performance. Photo Induced Current Transient Spectroscopy technique (PICTS) has proven to be a very powerful method for the study of deep levels enabling us to identify the type of traps, their activation energy and apparent capture cross section. In the present work, we report the effect of growth parameters and LASER irradiation intensity on the photo-electric and transport properties of CdTe thin films prepared by Close-Space Sublimation method using SiC electrical heating element. CdTe thin films were grown at three different source temperatures (630, 650 and 700 °C). The grown films were irradiated with Nd:YAG LASER and characterized by Photo-Induced Current Transient Spectroscopy, Photocurrent measurementand Current Voltage measurements. The defect levels are found to be significantly influenced by the growth temperature.

Shankar, H.; Castaldini, A. [Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Dieguez, E.; Rubio, S. [Crystal Growth Lab, Department of Materials Physics, Faculty of Science, University Autonoma of Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid (Spain); Dauksta, E.; Medvid, A. [Institute of Technical Physics, Riga Technical University, 14 Azenes Str, Riga, Latvia, Department of Materials (Latvia); Cavallini, A. [Department of Physics and Astronomy,University of Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy)

2014-02-21T23:59:59.000Z

164

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

nanowire networks as window layers in thin film solar cells.window layer for fully solution-deposited thin filmITO) thin films by silver nanowire composite window layers

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

165

Synthesis and application perspective of advanced plasma polymerized organic thin films  

E-Print Network [OSTI]

Synthesis and application perspective of advanced plasma polymerized organic thin films I.-S. Bae a November 2005 Abstract Plasma polymerized cyclohexane and ethylcyclohexane organic thin films were rights reserved. Keywords: Plasma polymerization; Ethylcyclohexane and cyclohexane organic thin films

Boo, Jin-Hyo

166

Apparatus for laser assisted thin film deposition  

DOE Patents [OSTI]

A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

Warner, B.E.; McLean, W. II

1996-02-13T23:59:59.000Z

167

Apparatus for laser assisted thin film deposition  

DOE Patents [OSTI]

A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

Warner, Bruce E. (Pleasanton, CA); McLean, II, William (Oakland, CA)

1996-01-01T23:59:59.000Z

168

Rechargeable thin-film lithium batteries  

SciTech Connect (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

169

STRESSES AND FAILURE MODES IN THIN FILMS AND MULTILAYERS  

E-Print Network [OSTI]

Stressesin a Thin Film 4 2.3 Stresses in a Multilayer: Layer by Layer Deposition and Release from of the Interface a Bilayer under Residual Stress 30 5.2 Delamination of a Bilayer by Layer Cracking Parallel FOR THIN FILMS UNDER RESIDUAL COMPRESSION 36 6.1 Straight-sided Blisters 36 6.2 Circular Blisters 40 6

Hutchinson, John W.

170

CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS  

E-Print Network [OSTI]

CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

Hart, Gus

171

Fracture patterns in thin films and multilayers Alex A. Volinsky  

E-Print Network [OSTI]

Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

Volinsky, Alex A.

172

APPLIED PHYSICS REVIEWS Erbium implanted thin film photonic materials  

E-Print Network [OSTI]

, phosphosilicate, borosilicate, and soda-lime glasses , ceramic thin films Al2O3, Y2O3, LiNbO3 , and amorphous. Phosphosilicate glass. . . . . . . . . . . . . . . . . . . . . . 7 C. Soda-lime silicate glass Er-doped thin film photonic materials is described. It focuses on oxide glasses pure SiO2

Polman, Albert

173

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network [OSTI]

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

174

Wave propagation in highly inhomogeneous thin films: exactly solvable models  

E-Print Network [OSTI]

Wave propagation in highly inhomogeneous thin films: exactly solvable models Guillaume Petite(1 of wave propagation in some inhomogeneous thin films with highly space- dependent dielectric constant will show that depending on the type of space dependence, an incident wave can either propagate or tunnel

Boyer, Edmond

175

E-Print Network 3.0 - alumina thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

constant in RF devices. Some unique features of thin-film silica and alumina aerogels have been... aerogel thin films, silica and alumina aerogel cantilevers were...

176

Room temperature ferromagnetism in Co defused CdTe nanocrystalline thin films  

SciTech Connect (OSTI)

Nanocrystalline Co defused CdTe thin films were prepared using electron beam evaporation technique by depositing CdTe/Co/CdTe stacked layers with different Co thickness onto glass substrate at 373 K followed by annealing at 573K for 2 hrs. Structural, morphological and magnetic properties of of all the Co defused CdTe thin films has been investigated. XRD pattern of all the films exhibited zinc blende structure with <111> preferential orientation without changing the crystal structure of the films. The grain size of the films increased from 31.5 nm to 48.1 nm with the increase of Co layer thickness from 25nm to 100nm. The morphological studies showed that uniform texture of the films and the presence of Co was confirmed by EDAX. Room temperature magnetization curves indicated an improved ferromagnetic behavior in the films with increase of the Co thickness.

Rao, N. Madhusudhana; Kaleemulla, S.; Begam, M. Rigana [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore - 632 014 (India)

2014-04-24T23:59:59.000Z

177

Growth, structure and electrical properties of epitaxial thulium silicide thin films on silicon  

SciTech Connect (OSTI)

Thulium silicide thin films were grown on (100) and (111) Si by evaporation of Tm metal and Si layers and annealing in a vacuum. Electron microscopy and x-ray diffraction results showed that the TmSi{sub 2{minus}x} layers are of high crystalline quality grown epitaxially on Si. Electrical resistivity measurements showed that TmSi{sub 2{minus}x} layers are metallic exhibiting magnetic ordering below 3 K. {copyright} {ital 1997 American Institute of Physics.}

Travlos, A.; Salamouras, N.; Boukos, N. [Institute of Materials Science, National Centre for Scientific Research Demokritos, Athens, (Greece) 15310] [Institute of Materials Science, National Centre for Scientific Research Demokritos, Athens, (Greece) 15310

1997-02-01T23:59:59.000Z

178

Growth and characterization of Pt-protected Gd5Si4 thin films  

SciTech Connect (OSTI)

Successful growth and characterization of thin films of giant magnetocaloric Gd5(SixGe1?x)4 were reported in the literature with limited success. The inherent difficulty in producing this complex material makes it difficult to characterize all the phases present in the thin films of this material. Therefore, thin film of binary compound of Gd5Si4 was deposited by pulsed laser deposition. It was then covered with platinum on the top of the film to protect against any oxidation when the film was exposed to ambient conditions. The average film thickness was measured to be approximately 350?nm using a scanning electron microscopy, and the composition of the film was analyzed using energy dispersive spectroscopy. X-ray diffraction analysis indicates the presence of Gd5Si4 orthorhombic structure along with Gd5Si3 secondary phase. The transition temperature of the film was determined from magnetic moment vs. temperature measurement. The transition temperature was between 320 and 345?K which is close to the transition temperature of the bulk material. Magnetic moment vs. magnetic field measurement confirmed that the film was ferromagnetic below 342?K.

Hadimani, R. L.; Mudryk, Y.; Prost, T. E.; Pecharsky, V. K.; Gschneidner, K. A.; Jiles, D. C.

2014-05-07T23:59:59.000Z

179

Optoelectronics Devices Based on Zinc Oxide Thin Films and Nanostructures  

E-Print Network [OSTI]

is promising for UV optoelectronics, such as photodetectors,for future ZnO optoelectronics. References Ü. Özgür, Ya. I.OF THE DISSERTATION Optoelectronics Devices Based on Zinc

Chu, Sheng

2011-01-01T23:59:59.000Z

180

Glow discharge plasma deposition of thin films  

DOE Patents [OSTI]

A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

1984-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Rechargeable thin-film electrochemical generator  

DOE Patents [OSTI]

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2000-09-15T23:59:59.000Z

182

Thin films of mixed metal compounds  

DOE Patents [OSTI]

Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

Mickelsen, R.A.; Chen, W.S.

1985-06-11T23:59:59.000Z

183

Thin Film Femtosecond Laser Damage Competition  

SciTech Connect (OSTI)

In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

2009-11-14T23:59:59.000Z

184

All-thin-film multilayered multiferroic structures with a slot-line for spin-electromagnetic wave devices  

SciTech Connect (OSTI)

Spin-electromagnetic waves propagating in thin-film multilayered multiferroic structures containing a slot transmission line have been investigated both experimentally and theoretically. The thin-film structure was composed of a ferrite film, a ferroelectric film, and a slot-line. It was shown that the spectrum of the spin-electromagnetic wave was formed as a result of hybridization of the spin wave in the ferrite film with the electromagnetic wave in the slot-line and was electrically and magnetically tunable. For the experimental investigations, a microwave phase shifter based on the multiferroic structure has been fabricated. Performance characteristics are presented.

Nikitin, Andrey A.; Ustinov, Alexey B. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 Finland (Finland); Semenov, Alexander A.; Kalinikos, Boris A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Lähderanta, E. [Department of Mathematics and Physics, Lappeenranta University of Technology, Lappeenranta 53850 Finland (Finland)

2014-03-03T23:59:59.000Z

185

Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells  

E-Print Network [OSTI]

, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active for electron holography of a thin film solar cell using conventional lift-out specimen preparation and a homeFocused ion beam specimen preparation for electron holography of electrically biased thin film

Dunin-Borkowski, Rafal E.

186

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

Sites, James R.

187

Bulge testing of single and dual layer thin films Dryver R. Huston*ab  

E-Print Network [OSTI]

to a thin film window. By comparing the pressure- displacement relation with a mechanical model, the elastic structures, such as the thin film windows that are used in Next Generation Lithography masks and certain MEMS it in a thin film window. Thin film windows are fabricated by removing the thick substrate out from underneath

Huston, Dryver R.

188

Antimony-Doped Tin(II) Sulfide Thin Films  

E-Print Network [OSTI]

Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

Chakraborty, Rupak

189

A Review of Thin Film Silicon for Solar Cell Applications  

E-Print Network [OSTI]

A Review of Thin Film Silicon for Solar Cell Applications May 99 Contents 1 Introduction 3 2 Low 2.2.3 Deposition onto foreign substrates with the intention of improving crystallographic nature Field Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11

190

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

191

Modeling of thin-film solar thermoelectric generators  

E-Print Network [OSTI]

Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

Weinstein, Lee Adragon

192

Fluorination of amorphous thin-film materials with xenon fluoride  

DOE Patents [OSTI]

A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

Weil, R.B.

1987-05-01T23:59:59.000Z

193

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

SciTech Connect (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

194

Multimonth controlled small molecule release from biodegradable thin films  

E-Print Network [OSTI]

Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

Hammond, Paula T.

195

amorphous thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

196

amorphous thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

197

Initiated chemical vapor deposition of functional polyacrylic thin films  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

Mao, Yu, 1975-

2005-01-01T23:59:59.000Z

198

al thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

199

al thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

200

Monolithic integration of thin-film coolers with optoelectronic devices  

E-Print Network [OSTI]

Monolithic integration of thin-film coolers with optoelectronic devices Christopher La Barbara, California 93106-9560 Abstract. Active refrigeration of optoelectronic components through the use manuscript received June 30, 2000; accepted for publication June 30, 2000. 1 Introduction Optoelectronic

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Self-Assembling Process for Fabricating Tailored Thin Films  

ScienceCinema (OSTI)

A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

Sandia

2009-09-01T23:59:59.000Z

202

Self-Assembling Process for Fabricating Tailored Thin Films  

ScienceCinema (OSTI)

A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

None

2010-01-08T23:59:59.000Z

203

Orientational Analysis of Molecules in Thin Films | Stanford...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is...

204

Enabling integration of vapor-deposited polymer thin films  

E-Print Network [OSTI]

Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

Petruczok, Christy D. (Christy Danielle)

2014-01-01T23:59:59.000Z

205

Method for making surfactant-templated thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

2010-08-31T23:59:59.000Z

206

Method for making surfactant-templated thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

2002-01-01T23:59:59.000Z

207

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

208

Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis  

E-Print Network [OSTI]

on the surface. Ultrafast laser pulses are shorter than thethe advantages of ultrafast laser pulses for thin film LIBS,each time. While ultrafast laser pulses are effective in

Owens, Travis Nathan

2011-01-01T23:59:59.000Z

209

ag thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MgO, Ref. 21 Marcon, Marco 2 Multi-level surface enhanced Raman scattering using AgOx thin film Physics Websites Summary: by applying laser-direct writing (LDW) technique on...

210

Properties and sensor performance of zinc oxide thin films  

E-Print Network [OSTI]

Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

Min, Yongki, 1965-

2003-01-01T23:59:59.000Z

211

Functionalized multilayer thin films for protection against acutely toxic agents  

E-Print Network [OSTI]

The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

Krogman, Kevin Christopher

2009-01-01T23:59:59.000Z

212

Direct printing of lead zirconate titanate thin films  

E-Print Network [OSTI]

Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

Bathurst, Stephen, 1980-

2008-01-01T23:59:59.000Z

213

Recent technological advances in thin film solar cells  

SciTech Connect (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

214

Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis  

E-Print Network [OSTI]

NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE AUGUST 1993 Major Subject: Aerospace Engineering NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Approved as to style and content by: Thomas W...

Payne, Debbie Flowers

1993-01-01T23:59:59.000Z

215

Picoseconds-Laser Modification of Thin Films  

SciTech Connect (OSTI)

The interaction of a Nd:YAG laser, pulse duration of 40 ps, with a titanium nitride (TiN) and tungsten-titanium (W-Ti) thin films deposited at silicon was studied. The peak intensity on targets was up to 1012 W/cm2. Results have shown that the TiN surface was modified, by the laser beam, with energy density of {>=}0.18 J/cm2 ({lambda}laser= 532 nm) as well as of 30.0 J/cm2 ({lambda}laser= 1064 nm). The W-Ti was surface modified with energy density of 5.0 J/cm2 ({lambda}laser= 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of molten materials, dissociation and ionization of the vaporized material, appearance of plasma, etc. The following morphological changes of both targets were observed: (i) The appearance of periodic microstructures, in the central zone of the irradiated area, for laser irradiation at 532 nm. Accumulation of great number of laser pulses caused film ablation and silicon modification. (ii) Hole formation on the titanium nitride/silicon target was registered at 1064 nm. The process of the Nd:YAG laser interaction with both targets was accompanied by plasma formation above the target.

Gakovic, Biljana; Trtica, Milan [Institute of Nuclear Sciences 'VINCA' 522, 11001 Belgrade (Serbia and Montenegro); Batani, Dimitri; Desai, Tara; Redaelli, Renato [Dipartimento di Fisica 'G. Occhialini', Universita' degli Studi Milano-Bicocca, Piazza della Scienza 3, Milan 20126 (Italy)

2006-04-07T23:59:59.000Z

216

Electrochromism in copper oxide thin films  

SciTech Connect (OSTI)

Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

Richardson, T.J.; Slack, J.L.; Rubin, M.D.

2000-08-15T23:59:59.000Z

217

Adhesion and Thin-Film Module Reliability  

SciTech Connect (OSTI)

Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

McMahon, T. J.; Jorgenson, G. J.

2006-01-01T23:59:59.000Z

218

Josephson junction in a thin film  

SciTech Connect (OSTI)

The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

2001-04-01T23:59:59.000Z

219

Nitrogen doped zinc oxide thin film  

SciTech Connect (OSTI)

To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

Li, Sonny X.

2003-12-15T23:59:59.000Z

220

Nanoassembly control and optical absorption in CdTe-ZnO nanocomposite thin films  

SciTech Connect (OSTI)

The spatial distribution of CdTe nanoparticles within a ZnO thin-film matrix was manipulated using a dual-source, sequential radio-frequency (RF)-sputter deposition technique to produce nanocomposite materials with tuned spectral absorption characteristics. The relative substrate exposure time to each sputtering source was used to control the semiconductor phase connectivity, both within the film plane and along the film growth direction, to influence the degree of photocarrier confinement and the resulting optical transition energies exhibited by the CdTe phase. Significant changes (up to {Delta}E {approx_equal} 0.3 eV) in the absorption onset energy for the CdTe nanoparticle ensemble were produced through modification in the extended structure of the semiconductor phase. Raman spectroscopy, cross-sectional transmission electron microscopy, and x-ray diffraction were used to confirm the phase identity of the CdTe and ZnO and to characterize the nanostructures produced in these composite films. Isochronal annealing for 5 min at temperatures up to 800 deg. C further indicated the potential to improve film crystallinity as well as to establish the post-deposition thermal processing limits of stability for the semiconductor phase. The study highlights the significance of ensemble behavior as a means to influence quantum-scale semiconductor optical characteristics of import to the use of such materials as the basis for a variety of optoelectronic devices, including photosensitized heterojunction components in thin film photovoltaics.

Potter, B. G. Jr. [Materials Science and Engineering Department, University of Arizona, Tucson, Arizona 85721 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Beal, R. J.; Allen, C. G. [Materials Science and Engineering Department, University of Arizona, Tucson, Arizona 85721 (United States)

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

SciTech Connect (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

222

Uncooled thin film pyroelectric IR detector with aerogel thermal isolation  

SciTech Connect (OSTI)

Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

1998-01-01T23:59:59.000Z

223

Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures  

SciTech Connect (OSTI)

We demonstrate the existence and control of inter-particle magnetic exchange coupling in densely packed nanostructures fabricated by focused electron beam induced deposition. With Xe beam post-processing, we have achieved the controlled reduction and eventual elimination of the parasitic halo-like cobalt deposits formed in the proximity of intended nanostructures, which are the identified source of the magnetic exchange coupling. The elimination of the halo-mediated exchange coupling is demonstrated by magnetic measurements using Kerr microscopy on Co pillar arrays. Electron microscopy studies allowed us to identify the mechanisms underlying this process and to verify the efficiency and opportunities of the described nano-scale fabrication approach.

Nikulina, E.; Idigoras, O.; Porro, J. M.; Berger, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian (Spain)] [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian (Spain); Vavassori, P.; Chuvilin, A. [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian (Spain) [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian (Spain); Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, 48011 Bilbao (Spain)

2013-09-16T23:59:59.000Z

224

Tailoring the coercivity in ferromagnetic ZnO thin films by 3d and 4f elements codoping  

SciTech Connect (OSTI)

Cluster free, Co (3d) and Eu (4f) doped ZnO thin films were prepared using ion implantation technique accompanied by post annealing treatments. Compared with the mono-doped ZnO thin films, the samples codoped with Co and Eu exhibit a stronger magnetization with a giant coercivity of 1200?Oe at ambient temperature. This was further verified through x-ray magnetic circular dichroism analysis, revealing the exchange interaction between the Co 3d electrons and the localized carriers induced by Eu{sup 3+} ions codoping. The insight gained with modulating coercivity in magnetic oxides opens up an avenue for applications requiring non-volatility in spintronic devices.

Lee, J. J.; Xing, G. Z., E-mail: guozhong.xing@unsw.edu.au; Yi, J. B.; Li, S. [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia)] [School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052 (Australia); Chen, T. [Department of Physics, The Chinese University of Hong Kong, Shatin (Hong Kong)] [Department of Physics, The Chinese University of Hong Kong, Shatin (Hong Kong); Ionescu, M. [Australian Nuclear Science and Technology Organization, Sydney, New South Wales 2234 (Australia)] [Australian Nuclear Science and Technology Organization, Sydney, New South Wales 2234 (Australia)

2014-01-06T23:59:59.000Z

225

Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial  

E-Print Network [OSTI]

single magnetic domain nanoparticles at ambient temperature is challenging1,2 . In nature, magnetosomes. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can- settes comprising the MycoMar (tps) or Tn5 transposase gene, two corresponding inverted repeats

Cai, Long

226

Properties of zirconia thin films deposited by laser ablation  

SciTech Connect (OSTI)

Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (?=193 nm, ?=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup ?2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

Cancea, V. N. [Department of Physics, University of Craiova, Craiova 200585 (Romania); Filipescu, M.; Colceag, D.; Dinescu, M. [Department of Lasers, National Institute for Laser, Plasma and Radiation Physics, Magurele 077125 (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Bucharest (Romania)

2013-11-13T23:59:59.000Z

227

Polycrystalline thin-film solar cells and modules  

SciTech Connect (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

228

Polycrystalline thin-film solar cells and modules  

SciTech Connect (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

229

Shape variation of micelles in polymer thin films  

SciTech Connect (OSTI)

The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

Zhou, Jiajia, E-mail: zhou@uni-mainz.de; Shi, An-Chang, E-mail: shi@mcmaste.ca [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)] [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2014-01-14T23:59:59.000Z

230

Method of improving field emission characteristics of diamond thin films  

DOE Patents [OSTI]

A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

1999-01-01T23:59:59.000Z

231

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell  

E-Print Network [OSTI]

We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

Li, Tong; Jiang, Chun

2010-01-01T23:59:59.000Z

232

Method of improving field emission characteristics of diamond thin films  

DOE Patents [OSTI]

A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

Krauss, A.R.; Gruen, D.M.

1999-05-11T23:59:59.000Z

233

A comparison of thick film and thin film traffic stripes  

E-Print Network [OSTI]

Striys. . . Pigmented Bitusmn Stripes . Asphalt %uilt-Upa Striye vith Pigmented Portland Cement Mortar Cover Course 38 . ~ 41 Thin Film Stripes Used for Comparison Results of Comparing Thick Film Stripes and Thin Film Paint Stripes . ~ ~ ~ ~ ~ 43... was aspbaltio oonorets. The pavement in Test Areas 2y 3p and 4 vas portland cesmnh ooncrete, Two test areas (3 and 4) vere located in such manner as to provide uninterrupted flow of traffic over tbs entire length of the test area. The other two test areas (1...

Keese, Charles J

1952-01-01T23:59:59.000Z

234

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents [OSTI]

A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

1998-02-03T23:59:59.000Z

235

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents [OSTI]

A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

1998-02-03T23:59:59.000Z

236

Study of Martensitic Phase transformation in a NiTiCu Thin Film...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy. Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape...

237

Tax Credits Give Thin-Film Solar a Big Boost | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Thin-Film Solar a Big Boost October 18, 2010 - 2:00pm Addthis MiaSol will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery...

238

The development of a thin-film rollforming process for pharmaceutical continuous manufacturing  

E-Print Network [OSTI]

In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

Slaughter, Ryan (Ryan R.)

2013-01-01T23:59:59.000Z

239

PID Failure of c-Si and Thin-Film Modules and Possible Correlation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents...

240

Epoxy/Single Walled Carbon Nanotube Nanocomposite Thin Films for Composites Reinforcement  

E-Print Network [OSTI]

This work is mainly focused upon the preparation, processing and evaluation of mechanical and material properties of epoxy/single walled carbon nanotube (SWCNT) nanocomposite thin films. B-staged epoxy/SWCNT nanocomposite thin films at 50% of cure...

Warren, Graham

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Characterization of LiNi?.?Mn?.?O? Thin Film Cathode Prepared by Pulsed Laser Deposition  

E-Print Network [OSTI]

LiNi?.?Mn?.?O? thin films have been grown by pulsed laser deposition (PLD) on stainless steel (SS) substrates. The crystallinity and structure of thin films were investigated by X-ray diffraction (XRD). Microstructure and ...

Xia, Hui

242

High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing  

E-Print Network [OSTI]

One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

243

Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study. Adsorption of iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study....

244

Influence of samaria doping on the resistance of ceria thin films...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Influence of samaria doping on the resistance of ceria thin films and...

245

Generation of low work function, stable compound thin films by laser ablation  

DOE Patents [OSTI]

Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

2001-01-01T23:59:59.000Z

246

Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals Probed by Femtosecond Transient Absorption and Reflectivity. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and...

247

Initiated chemical vapor deposition of polymeric thin films : mechanism and applications  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

248

Iron Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly. Iron Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly. Abstract: This paper reports findings of an...

249

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

250

Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film  

SciTech Connect (OSTI)

We investigated the growth mechanism of amorphous silicon thin films by implementing hot-wire chemical vapor deposition and fabricated thin film solar cell devices. The fabricated cells showed efficiencies of 7.5 and 8.6% for the samples without and with the rear-reflector decomposed by sputtering, respectively. The rear-reflector enhances the quantum efficiency in the infrared spectral region from 550 to 750?nm. The more stable quantum efficiency of the sample with the inclusion of a rear-reflector than the sample without the rear-reflector due to the bias effect is related to the enhancement of the short circuit current.

Park, Seungil [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Yong Ji, Hyung; Jun Kim, Myeong; Hyeon Peck, Jong [Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Kim, Keunjoo, E-mail: kimk@chonbuk.ac.kr [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2014-02-17T23:59:59.000Z

251

Barium ferrite thin film media with perpendicular c-axis orientation and small grain size  

E-Print Network [OSTI]

Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

Laughlin, David E.

252

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a)  

E-Print Network [OSTI]

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a) Bulang Li, and Xinghua for publication 16 February 2000 We have demonstrated the operation of a thin-film thermo-optical beam deflector in a three-layer optical planar waveguide. The fabricated waveguide beam deflector consists of a thin-film Si

Chen, Ray

253

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b  

E-Print Network [OSTI]

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

Paris-Sud XI, Université de

254

Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova*  

E-Print Network [OSTI]

1 Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova* , I be minimized throughout the fabrication process. Amorphous silicon thin-film transistors and solar cells, thin-film transistor, solar cell, flexible electronics Phone: (609) 258-4626, Fax: (609) 258-3585, E

255

Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells  

E-Print Network [OSTI]

Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells D.L. Pulfrey*, J. Dell): pulfrey@ece.ubc.ca ABSTRACT Cadmium telluride thin-film solar cells are now commercially available be attainable. 1. INTRODUCTION Thin film solar cells based on polycrystalline CdTe have been investigated

Pulfrey, David L.

256

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1; * Corresponding author: buonassisi@mit.edu; ABSTRACT We investigate earth abundant materials for thin- film solar cuprous oxide (Cu2O) as a prototype candidate for investigation as an absorber layer in thin film solar

Ceder, Gerbrand

257

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle  

E-Print Network [OSTI]

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

Sites, James R.

258

Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells  

E-Print Network [OSTI]

Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells Qiumei Bian in the fabrication and assembly of thin film solar cells. Using a femtosecond (fs) laser, we selectively removed a unique scheme to ablate the indium tin-oxide layer for the fabrication of thin film solar cells

Van Stryland, Eric

259

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

Sites, James R.

260

Plasmonic enhancement of thin-film solar cells using gold-black C.J. Fredricksena  

E-Print Network [OSTI]

Plasmonic enhancement of thin-film solar cells using gold-black coatings C.J. Fredricksena , D. R thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum and locally enhance the field strength. Keywords: plasmonics, thin-film, solar cell, metallic nanoparticles

Peale, Robert E.

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell  

E-Print Network [OSTI]

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic­4]. In this context, a basic idea is to periodically texture the metallic back reflector of a thin-film solar cell

262

DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME  

E-Print Network [OSTI]

DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

Hart, Gus

263

Josephson junction in a thin film V. G. Kogan, V. V. Dobrovitski, and J. R. Clem  

E-Print Network [OSTI]

Josephson junction in a thin film V. G. Kogan, V. V. Dobrovitski, and J. R. Clem Ames Laboratory The phase difference (y) for a vortex at a line Josephson junction in a thin film attenuates at large was normal to the film faces unlike traditional thin-film large- area Josephson junctions in which

Mints, Roman G.

264

Metal-black scattering centers to enhance light harvesting by thin-film solar cells  

E-Print Network [OSTI]

Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

Peale, Robert E.

265

Microwave plasma assisted supersonic gas jet deposition of thin film materials  

DOE Patents [OSTI]

An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

1993-01-01T23:59:59.000Z

266

Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices  

SciTech Connect (OSTI)

SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

Martin U. Pralle; James E. Carey

2010-07-31T23:59:59.000Z

267

Stress and Moisture Effects on Thin Film Buckling Delamination  

E-Print Network [OSTI]

­2 GPa compres- sive residual stresses were sputter deposited on top of thin (below 100 nm) copper superlayer with com- pressive residual stress was sputter deposited on top of the films in order to help Mechanics 2006 Abstract Deposition processes control the properties of thin films; they can also introduce

Volinsky, Alex A.

268

Thin film cracking and ratcheting caused by temperature cycling  

E-Print Network [OSTI]

Thin film cracking and ratcheting caused by temperature cycling M. Huang and Z. Suo Mechanical caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads

Suo, Zhigang

269

Perovskite phase thin films and method of making  

DOE Patents [OSTI]

The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

270

Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films  

E-Print Network [OSTI]

MRSEC Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films NSF Grant # 1121262 A. U. Adler of varying oxygen partial pressure. Oxygen exchange was confirmed by 18O tracer diffusion (time of carrier content vs. pO2) analysis should be applicable for studying the underlying carrier generation

Shahriar, Selim

271

Critical fields in ferromagnetic thin films: Identification of four regimes  

E-Print Network [OSTI]

Critical fields in ferromagnetic thin films: Identification of four regimes Rub´en Cantero­film elements is a paradigm for a multi­scale pattern­forming system. On one hand, there is a material length functional ceases to be positive definite. The degenerate subspace consists of the "unstable modes

Otto, Felix

272

Method of preparing thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

1997-01-01T23:59:59.000Z

273

Preparation and characterization of TL-based superconducting thin films  

E-Print Network [OSTI]

A simple method for growth of Tl-based superconducting thin films is described. In this method, the precursor was prepared in a vacuum chamber by deposition of Ba, Ca and Cu metals or a Ba-Ca alloy and Cu metal. The precursor was then oxidized...

Wang, Pingshu

1995-01-01T23:59:59.000Z

274

Method of preparing thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

Derzon, D.K.; Arnold, C. Jr.

1997-11-25T23:59:59.000Z

275

Method for double-sided processing of thin film transistors  

DOE Patents [OSTI]

This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

2008-04-08T23:59:59.000Z

276

Front and backside processed thin film electronic devices  

DOE Patents [OSTI]

This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

2012-01-03T23:59:59.000Z

277

Front and backside processed thin film electronic devices  

DOE Patents [OSTI]

This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

2010-10-12T23:59:59.000Z

278

Chemical analysis of thin films at Sandia National Laboratories  

SciTech Connect (OSTI)

The characterization of thin films produced by chemical and physical vapor deposition requires special analytical techniques. When the average compositions of the films are required, dissolution of the thin films and measurement of the concentrations of the solubilized species is the appropriate analytical approach. In this report techniques for the wet chemical analysis of thin films of Si:Al, P/sub 2/O/sub 5/:SiO/sub 2/, B/sub 2/O/sub 3/:SiO/sub 2/, TiB/sub x/ and TaB/sub x/ are described. The analyses are complicated by the small total quantities of these analytes present in the films, the refractory characters of these analytes, and the possibility of interferences from the substrates on which the films are deposited. Etching conditions are described which dissolve the thin films without introducing interferences from the substrates. A chemical amplification technique and inductively coupled plasma atomic emission spectrometry are shown to provide the sensitivity required to measure the small total quantities (micrograms to milligrams) of analytes present. Also the chemical analysis data has been used to calibrate normal infrared absorption spectroscopy to give fast estimates of the phosphorus and/or boron dopant levels in thin SiO/sub 2/ films.

Tallant, D.R.; Taylor, E.L.

1980-05-01T23:59:59.000Z

279

Micromachined thin-film gas flow sensor for microchemical reactors  

E-Print Network [OSTI]

Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

Besser, Ronald S.

280

Thin Films and the Systems-Driven Approach  

SciTech Connect (OSTI)

A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

Zweibel, K.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Long-wave models of thin film fluid dynamics  

E-Print Network [OSTI]

Centre manifold techniques are used to derive rationally a description of the dynamics of thin films of fluid. The derived model is based on the free-surface $\\eta(x,t)$ and the vertically averaged horizontal velocity $\\avu(x,t)$. The approach appears to converge well and has significant differences from conventional depth-averaged models.

A. J. Roberts

1994-11-04T23:59:59.000Z

282

Growth and characterization of Pt-protected Gd{sub 5}Si{sub 4} thin films  

SciTech Connect (OSTI)

Successful growth and characterization of thin films of giant magnetocaloric Gd{sub 5}(Si{sub x}Ge{sub 1?x}){sub 4} were reported in the literature with limited success. The inherent difficulty in producing this complex material makes it difficult to characterize all the phases present in the thin films of this material. Therefore, thin film of binary compound of Gd{sub 5}Si{sub 4} was deposited by pulsed laser deposition. It was then covered with platinum on the top of the film to protect against any oxidation when the film was exposed to ambient conditions. The average film thickness was measured to be approximately 350?nm using a scanning electron microscopy, and the composition of the film was analyzed using energy dispersive spectroscopy. X-ray diffraction analysis indicates the presence of Gd{sub 5}Si{sub 4} orthorhombic structure along with Gd{sub 5}Si{sub 3} secondary phase. The transition temperature of the film was determined from magnetic moment vs. temperature measurement. The transition temperature was between 320 and 345?K which is close to the transition temperature of the bulk material. Magnetic moment vs. magnetic field measurement confirmed that the film was ferromagnetic below 342?K.

Hadimani, R. L., E-mail: hadimani@iastate.edu; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Mudryk, Y.; Prost, T. E. [Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Pecharsky, V. K.; Gschneidner, K. A. [Materials and Engineering Physics Program, Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

2014-05-07T23:59:59.000Z

283

Polycrystalline thin-film technology: Recent progress in photovoltaics  

SciTech Connect (OSTI)

Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1991-12-01T23:59:59.000Z

284

Coherent growth of superconducting TiN thin films by plasma enhanced molecular beam epitaxy  

SciTech Connect (OSTI)

We have investigated the formation of titanium nitride (TiN) thin films on (001) MgO substrates by molecular beam epitaxy and radio frequency acitvated nitrogen plasma. Although cubic TiN is stabile over a wide temperature range, superconducting TiN films are exclusively obtained when the substrate temperature exceeds 710 Degree-Sign C. TiN films grown at 720 Degree-Sign C show a high residual resistivity ratio of approximately 11 and the superconducting transition temperature (T{sub c}) is well above 5 K. Superconductivity has been confirmed also by magnetiztion measurements. In addition, we determined the upper critical magnetic field ({mu}{sub 0}H{sub c2}) as well as the corresponding coherence length ({xi}{sub GL}) by transport measurements under high magnetic fields. High-resolution transmission electron microscopy data revealed full in plane coherency to the substrate as well as a low defect density in the film, in agreement with a mean-free path length Script-Small-L Almost-Equal-To 106 nm, which is estimated from the residual resistivity value. The observations of reflection high energy electron diffraction intensity oscillations during the growth, distinct Laue fringes around the main Bragg peaks, and higher order diffraction spots in the reciprocal space map suggest the full controlability of the thickness of high quality superconducting TiN thin films.

Krockenberger, Yoshiharu; Karimoto, Shin-ichi; Yamamoto, Hideki; Semba, Kouich [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

2012-10-15T23:59:59.000Z

285

Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition  

SciTech Connect (OSTI)

R-Fe-O (R?=?rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850?°C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

2014-05-07T23:59:59.000Z

286

Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment  

SciTech Connect (OSTI)

We present the investigation on the modifications of structural and magnetic properties of MnAs thin film epitaxially grown on GaAs induced by slow highly charged ions bombardment under well-controlled conditions. The ion-induced defects facilitate the nucleation of one phase with respect to the other in the first-order magneto-structural MnAs transition, with a consequent suppression of thermal hysteresis without any significant perturbation on the other structural and magnetic properties. In particular, the irradiated film keeps the giant magnetocaloric effect at room temperature opening new perspective on magnetic refrigeration technology for everyday use.

Trassinelli, M., E-mail: martino.trassinelli@insp.jussieu.fr; Marangolo, M.; Eddrief, M.; Etgens, V. H.; Gafton, V.; Hidki, S.; Lacaze, E.; Lamour, E.; Prigent, C.; Rozet, J.-P.; Steydli, S.; Zheng, Y.; Vernhet, D. [CNRS, UMR 7588, Institut des NanoSciences de Paris (INSP), F-75005 Paris (France); Sorbonne Universités, UPMC Univ. Paris 06, UMR 7588, INSP, F-75005 Paris (France)

2014-02-24T23:59:59.000Z

287

Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors  

SciTech Connect (OSTI)

Metglas{sup TM} 2826MB foils of 25-30 {mu}m thickness with the composition of Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of {approx}3 {mu}m thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum (Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magnetic properties of FeNi is also observed as the Mo dopant level increases. The coercivity of FeNi films doped with Mo decreases to a value less than one third of the value without dopant. Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropy properties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The film material that is fabricated using an optimized process is magnetically as soft as amorphous Metglas{sup TM} 2826MB with a coercivity of less than 40 Am{sup -1}. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin film materials on their magnetic properties.

Liang Cai; Gooneratne, Chinthaka; Cha, Dongkyu; Chen Long; Kosel, Jurgen [Computer Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955 (Saudi Arabia); Gianchandani, Yogesh [Department of Electrical Engineering and Computer Science, 1301 Beal Ave., University of Michigan, Ann Arbor, Michigan 48109 (United States)

2012-12-01T23:59:59.000Z

288

Classical Casimir-Polder force between polarizable microparticles and thin films including graphene  

E-Print Network [OSTI]

We derive analytic expressions for the classical Casimir-Polder free energy and force for a polarizable (magnetizable) atom (microparticle) interacting with thin films, made of different materials, or graphene. It is shown that for an isolated dielectric film the free energy and force decrease quicker with separation, as compared to the case of atom interacting with a thick plate (semispace). For metallic films some peculiar features depending on the model of a metal used are analyzed. For an atom interacting with graphene we demonstrate that at room temperature the classical regime is achieved at about $1.5\\,\\mu$m separation. In this regime the contributions to the free energy and force due to atomic magnetic polarizability are suppressed, as compared to main terms caused by the atomic electric polarizability. According to our results, at separations above $5\\,\\mu$m the Casimir-Polder interaction of atoms with graphene is of the same strength as with an ideal-metal plane. The classical interaction of atoms with thin films deposited on substrates is also considered.

G. L. Klimchitskaya; V. M. Mostepanenko

2014-01-17T23:59:59.000Z

289

Thin film battery and method for making same  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

1994-01-01T23:59:59.000Z

290

Thin film photovoltaic device and process of manufacture  

DOE Patents [OSTI]

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

1999-02-09T23:59:59.000Z

291

Thin film photovoltaic device and process of manufacture  

DOE Patents [OSTI]

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

1997-10-07T23:59:59.000Z

292

Thin film photovoltaic device and process of manufacture  

DOE Patents [OSTI]

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

Albright, S.P.; Chamberlin, R.

1997-10-07T23:59:59.000Z

293

Thin film photovoltaic device and process of manufacture  

DOE Patents [OSTI]

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

Albright, S.P.; Chamberlin, R.

1999-02-09T23:59:59.000Z

294

Thin-Film Reliability Trends Toward Improved Stability: Preprint  

SciTech Connect (OSTI)

Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

Jordan, D. C.; Kurtz, S. R.

2011-07-01T23:59:59.000Z

295

Method for formation of thin film transistors on plastic substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

1998-10-06T23:59:59.000Z

296

Method for formation of thin film transistors on plastic substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

1998-10-06T23:59:59.000Z

297

Thin film battery and method for making same  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

1994-08-16T23:59:59.000Z

298

TI--CR--AL--O thin film resistors  

DOE Patents [OSTI]

Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

2000-01-01T23:59:59.000Z

299

Thin-Film Reliability Trends Toward Improved Stability  

SciTech Connect (OSTI)

Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (R{sub d}) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2 {+-} 0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

Jordan, D. C.; Kurtz, S. R.

2011-01-01T23:59:59.000Z

300

Strain mapping on gold thin film buckling and siliconblistering  

SciTech Connect (OSTI)

Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Preparation of redox polymer cathodes for thin film rechargeable batteries  

DOE Patents [OSTI]

The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

1994-11-08T23:59:59.000Z

302

Optical sensors and multisensor arrays containing thin film electroluminescent devices  

DOE Patents [OSTI]

Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

2001-12-18T23:59:59.000Z

303

Fabrication and testing of thermoelectric thin film devices  

SciTech Connect (OSTI)

Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

1996-03-01T23:59:59.000Z

304

Substrates suitable for deposition of superconducting thin films  

DOE Patents [OSTI]

A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

305

Formation of thin-film resistors on silicon substrates  

DOE Patents [OSTI]

The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

1988-11-01T23:59:59.000Z

306

Thin film adhesion by nanoindentation-induced superlayers. Final report  

SciTech Connect (OSTI)

This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

Gerberich, William W.; Volinsky, A.A.

2001-06-01T23:59:59.000Z

307

Study of Copper Diffusion Through Ruthenium Thin Film by Photoemission  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide Thin Films.AdministrationAerosol

308

Electrical properties of quench-condensed thin film  

E-Print Network [OSTI]

cryopump is used for high vacuum pumping. Materials to be evaporated (evaporant) are held by evaporation sources, like a crucible, boat or wire coil. Tungsten wire is commonly used as an evaporation source for materials like aluminum, nickel, chromium... films were evaporated at room temperature with NRC 3114 commercial thermal evaporator. We deposited aluminum and nickel thin films in a form of bar with shadow mask. A commercial tungsten basket was used for the evaporation source. The evaporation...

Lee, Kyoungjin

2009-05-15T23:59:59.000Z

309

Diamond Magnetometry of Superconducting Thin Films  

E-Print Network [OSTI]

In recent years diamond magnetometers based on the nitrogen-vacancy (NV) center have been of considerable interest for magnetometry applications at the nanoscale. An interesting application which is well suited for NV centers is the study of nanoscale magnetic phenomena in superconducting materials. We employ the magnetic sensitivity of NV centers in diamond to interrogate the magnetic properties of a thin-layer yttrium barium copper oxide (YBCO) superconductor. Using fluorescence-microscopy methods and samples integrated with an NV sensor on a microchip, we measure the temperature of phase transition in the layer to be 70.0(2) K, and the penetration field of vortices to be 46(4) G. We observe the pinning of the vortices in the layer at 65 K, and estimate their density after cooling the sample in a ~ 10 G field to be 0.45(1) \\mu m^{-2}. These measurements are done with a 10 nm thick NV layer, so that high spatial resolution may be enabled in the future. Based on these results, we anticipate that this magnetometer could be useful for imaging the structure and dynamics of vortices. As an outlook, we present a fabrication method for a superconductor chip designed for this purpose.

A. Waxman; H. Schlussel; D. Groswasser; V. M. Acosta; L. -S. Bouchard; D. Budker; R. Folman

2014-02-05T23:59:59.000Z

310

MEMS-based thin-film fuel cells  

DOE Patents [OSTI]

A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

Jankowksi, Alan F.; Morse, Jeffrey D.

2003-10-28T23:59:59.000Z

311

Geometric shape control of thin film ferroelectrics and resulting structures  

DOE Patents [OSTI]

A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

312

Crystallization Behavior, Nanostructure and Magnetic Properties of Melt-spun (Nd,Pr,Dy)2(Fe,Co,Mo)14B/-Fe Nanocomposite Magnets  

E-Print Network [OSTI]

behavior, phase evolution, nanostructure, exchange coupling and hard magnetic properties of melt-spun Nd2 extensive attention for the development of novel permanent magnets with high magnetic performance [1, exchange coupling and magnetic properties of the nanocomposites. In the present work, the crystallization

Garmestani, Hamid

313

International Conference on Technological Advances of Thin Films & Surface Coatings (Thin Films 2008), Singapore, 13-16 July 2008  

E-Print Network [OSTI]

were examined by XRD, UV-Vis, AFM and SEM. Compared with pure titania, the UV-Vis spectra of some Mn by the degradation of mono-chloroacetic acid in a microwave field using mercury electrodeless discharge lamp. The degradation efficiency of MCAA on some Mn+ doped TiO2 was higher than those of pure TiO2. Thin Films 212 #12;

Cirkva, Vladimir

314

Instrument for in-situ orientation of superconducting thin-film resonators used for electron-spin resonance experiments  

E-Print Network [OSTI]

When used in Electron-Spin Resonance (ESR) measurements, superconducting thin-film resonators must be precisely oriented relative to the external magnetic field in order to prevent the trapping of magnetic flux and the associated degradation of resonator performance. We present a compact design solution for this problem that allows in-situ control of the orientation of the resonator at cryogenic temperatures. Tests of the apparatus show that when proper alignment is achieved, there is almost no hysteresis in the field dependence of the resonant frequency.

Mowry, Andrew; Kuabsek, James; Friedman, Jonathan R

2015-01-01T23:59:59.000Z

315

Methods for fabricating thin film III-V compound solar cell  

DOE Patents [OSTI]

The present invention utilizes epitaxial lift-off in which a sacrificial layer is included in the epitaxial growth between the substrate and a thin film III-V compound solar cell. To provide support for the thin film III-V compound solar cell in absence of the substrate, a backing layer is applied to a surface of the thin film III-V compound solar cell before it is separated from the substrate. To separate the thin film III-V compound solar cell from the substrate, the sacrificial layer is removed as part of the epitaxial lift-off. Once the substrate is separated from the thin film III-V compound solar cell, the substrate may then be reused in the formation of another thin film III-V compound solar cell.

Pan, Noren; Hillier, Glen; Vu, Duy Phach; Tatavarti, Rao; Youtsey, Christopher; McCallum, David; Martin, Genevieve

2011-08-09T23:59:59.000Z

316

Microwave plasma assisted supersonic gas jet deposition of thin film materials  

DOE Patents [OSTI]

An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures. 5 figures.

Schmitt, J.J. III; Halpern, B.L.

1993-10-26T23:59:59.000Z

317

Studies of Block Copolymer Thin Films and Mixtures with an Ionic Liquid  

E-Print Network [OSTI]

identification of structure and domain size in block copolymer thin films using RSoXS enables a quantitative comparison of the bulk

Virgili, Justin

2009-01-01T23:59:59.000Z

318

Electrochemical kinetics of thin film vanadium pentoxide cathodes for lithium batteries  

E-Print Network [OSTI]

Electrochemical experiments were performed to investigate the processing-property-performance relations of thin film vanadium pentoxide cathodes used in lithium batteries. Variations in microstructures were achieved via ...

Mui, Simon C., 1976-

2005-01-01T23:59:59.000Z

319

E-Print Network 3.0 - active thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Western Ontario a JOINT presentation of the Summary: and conducting thin films for optoelectronic applications from carbon nanotubes and graphene" ABSTRACT: Low... . The interest...

320

Study of GaN:Eu3+ Thin Films Deposited by Metallorganic  

E-Print Network [OSTI]

as an advantageous architecture for transparent electrodes in optoelectronic devices due primarily to high characteristics of electrodes in optoelectronic devices and in supercapactiors, we introduced oxide thin films

McKittrick, Joanna

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy  

SciTech Connect (OSTI)

Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Yanmin; Hu, Ran; Ren, Naifei [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); Ge, Daohan [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

2013-11-14T23:59:59.000Z

322

Chemical vapor deposition of organosilicon composite thin films for porous low-k dielectrics  

E-Print Network [OSTI]

Pulsed plasma enhanced chemical vapor deposition has produced organosilicon thin films with the potential use as low dielectric constant interconnect materials in microelectronic circuits. Both diethylsilane and ...

Ross, April Denise, 1977-

2005-01-01T23:59:59.000Z

323

Synthesis of nanomesh, thin film nanocomposite, nanocomposite membranes and synthesis of potassium ion selective membrane electrodes  

E-Print Network [OSTI]

Synthesis of nanomesh, thin film nanocomposite, nanocomposite membranes and synthesis of potassium and naofibers, which has potential use in protection of agricultural products from hailing. We developed

Singh, Jayant K.

324

abrasion-resistant thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

325

al-cu-fe thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

326

alendronate-hydroxyapatite thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

327

as2s3 thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

328

amorphous silicon thin-film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amorphous silicon Kanicki, Jerzy 17 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

329

ag-in-se thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

330

Alta Devices Develops World Record Setting Thin-Film Solar Cell  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of Alta Devices' thin film Gallium Arsenide photovoltaic technology that set a world record for conversion efficiency.

331

Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal  

SciTech Connect (OSTI)

We study the effect of one-side metallization of a uniform ferromagnetic thin film on its spin-wave dispersion relation in the Damon–Eshbach geometry. Due to the finite conductivity of the metallic cover layer on the ferromagnetic film, the spin-wave dispersion relation may be nonreciprocal only in a limited wave-vector range. We provide an approximate analytical solution for the spin-wave frequency, discuss its validity, and compare it with numerical results. The dispersion is analyzed systematically by varying the parameters of the ferromagnetic film, the metal cover layer and the value of the external magnetic field. The conclusions drawn from this analysis allow us to define a structure based on a 30?nm thick CoFeB film with an experimentally accessible nonreciprocal dispersion relation in a relatively wide wave-vector range.

Mruczkiewicz, M.; Krawczyk, M. [Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Pozna? 61-614 (Poland)

2014-03-21T23:59:59.000Z

332

Electrically induced insulator to metal transition in epitaxial SmNiO{sub 3} thin films  

SciTech Connect (OSTI)

We report on the electrically induced insulator to metal transition (IMT) in SmNiO{sub 3} thin films grown on (001) LaAlO{sub 3} by pulsed laser deposition. The behavior of the resistivity as a function of temperature suggests that the primary transport mechanism in the SmNiO{sub 3} insulating state is dominated by Efros-Shklovskii variable range hopping (ES-VRH). Additionally, the magnetic transition in the insulating state of SmNiO{sub 3} modifies the characteristics of the ES-VRH transport. Systematic DC and pulsed current-voltage measurements indicate that current-induced joule heating is the fundamental mechanism driving the electrically induced IMT in SmNiO{sub 3}. These transport properties are explained in context of the IMT in SmNiO{sub 3} being related to the strong electron-lattice coupling.

Shukla, Nikhil, E-mail: nss152@psu.edu; Dasgupta, Sandeepan; Datta, Suman [Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Joshi, Toyanath; Borisov, Pavel; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

2014-07-07T23:59:59.000Z

333

Ion implantation of rare-earth dopants in ferromagnetic thin films  

SciTech Connect (OSTI)

We show that high-dose ion implantation can be used to introduce rare-earth dopants for the control of precessional dynamics in magnetic thin films. Tb and Gd ions have been implanted in Ni{sub 81}Fe{sub 19} through Ta masks at dosages from 1x10{sup 14}/cm{sup 2} to 1x10{sup 15}/cm{sup 2}. Effects on dynamics are found to be similar to those contributed by cosputtered Tb and Gd dopants in Ni{sub 81}Fe{sub 19} (50 nm). Broadband ferromagnetic resonance measurements from 0 to 18 GHz show that adjustments in damping {alpha} from 0.008 to 0.040 are fully intrinsic (Gilbert type) and roughly proportional to dose. The technique enables the creation of films with spatially modulated precessional characteristics.

Dasgupta, V.; Litombe, N.; Bailey, W. E.; Bakhru, H. [Materials Science Program, Department of Applied Physics, Columbia University, 500 West 120th Street, New York, New York 10027 (United States); College of Nanoscale Science and Engineering, SUNY Albany, 251 Fuller Road, Albany, New York 12203 (United States)

2006-04-15T23:59:59.000Z

334

B{sub 4}C thin films for neutron detection  

SciTech Connect (OSTI)

Due to the very limited availability of {sup 3}He, new kinds of neutron detectors, not based on {sup 3}He, are urgently needed. Here, we present a method to produce thin films of {sup 10}B{sub 4}C, with maximized detection efficiency, intended to be part of a new generation of large area neutron detectors. B{sub 4}C thin films have been deposited onto Al-blade and Si wafer substrates by dc magnetron sputtering from {sup nat}B{sub 4}C and {sup 10}B{sub 4}C targets in an Ar discharge, using an industrial deposition system. The films were characterized with scanning electron microscopy, elastic recoil detection analysis, x-ray reflectivity, and neutron radiography. We show that the film-substrate adhesion and film purity are improved by increased substrate temperature and deposition rate. A deposition rate of 3.8 A/s and substrate temperature of 400 deg. C result in films with a density close to bulk values and good adhesion to film thickness above 3 {mu}m. Boron-10 contents of almost 80 at. % are obtained in 6.3 m{sup 2} of 1 {mu}m thick {sup 10}B{sub 4}C thin films coated on Al-blades. Initial neutron absorption measurements agree with Monte Carlo simulations and show that the layer thickness, number of layers, neutron wavelength, and amount of impurities are determining factors. The study also shows the importance of having uniform layer thicknesses over large areas, which for a full-scale detector could be in total {approx}1000 m{sup 2} of two-side coated Al-blades with {approx}1 {mu}m thick {sup 10}B{sub 4}C films.

Hoeglund, Carina [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Birch, Jens; Jensen, Jens; Hultman, Lars [Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linkoeping University, SE-581 83 Linkoeping (Sweden); Andersen, Ken; Hall-Wilton, Richard [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Bigault, Thierry; Buffet, Jean-Claude; Correa, Jonathan; Esch, Patrick van; Guerard, Bruno; Piscitelli, Francesco [Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Khaplanov, Anton [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); Institute Laue Langevin, Rue Jules Horowitz, FR-380 00 Grenoble (France); Vettier, Christian [European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund (Sweden); European Synchrotron Radiation Facility, BP 220, FR-380 43 Grenoble Cedex 9 (France); Vollenberg, Wilhelmus [Vacuum, Surfaces and Coatings Group (TE/VSC), CERN, CH-1211 Geneva 23 (Switzerland)

2012-05-15T23:59:59.000Z

335

Symposuim on Biological Applications Sarah Majetich, of Magnetic Nanostructures Chairman  

E-Print Network [OSTI]

, and to optimize functionalization of two-segment gold­nickel nanowires for selectivity and stability. One type of particle with significant potential in this area is electrodeposited magnetic nanowires

Chen, Christopher S.

336

Thin film solar cell including a spatially modulated intrinsic layer  

DOE Patents [OSTI]

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

337

Durable silver thin film coating for diffraction gratings  

DOE Patents [OSTI]

A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

2006-05-30T23:59:59.000Z

338

Oriented niobate ferroelectric thin films for electrical and optical devices  

DOE Patents [OSTI]

Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

2001-01-01T23:59:59.000Z

339

Laser-induced metallic nanograined thin films processing  

SciTech Connect (OSTI)

A direct laser writing method for designing metallic nanograined thin films is presented. This method takes advantage of photon conversion within a chemical process localized at the focal point. A computer controlled positioning system allows the control of experimental parameters and spatial resolution of the pattern. Spectroscopic investigations reveal variable attenuation of the optical properties in UV-visible range and a spectral imaging processing algorithm simulated the functionality of these films in visible light. This could be an important step for obtaining neutral density attenuators.

Tosa, Nicoleta, E-mail: nicoleta.tosa@itim-cj.ro, E-mail: florin.toadere@itim-cj.ro; Toadere, Florin, E-mail: nicoleta.tosa@itim-cj.ro, E-mail: florin.toadere@itim-cj.ro; Hojbota, Calin, E-mail: nicoleta.tosa@itim-cj.ro, E-mail: florin.toadere@itim-cj.ro; Tosa, Valer, E-mail: nicoleta.tosa@itim-cj.ro, E-mail: florin.toadere@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath., 400293 Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath., 400293 Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

340

Photoresponse of Tb{sup 3+} doped phosphosilicate thin films  

SciTech Connect (OSTI)

Phosphosilicate ceramic was doped with Tb{sup 3+} using sol-gel technique to prepare thin films. The films were prepared by spin coating the phosphosilicate sols on SiO{sub x}/indium-tin-oxide/glass substrates. The photocurrent of the films at 355 nm laser excitation was observed. The photoresponse as a function of applied field and laser energy was linear and showed no sign of saturation. The films exhibited very stable photoresponse under a very high number of laser shots.

Lee, B.L.; Cao, Z. [Clemson Univ., SC (United States). Gilbert C. Robinson Dept. of Ceramic and Materials Engineering] [Clemson Univ., SC (United States). Gilbert C. Robinson Dept. of Ceramic and Materials Engineering; Sisk, W.N.; Hudak, J. [Univ. of North Carolina, Charlotte, NC (United States)] [Univ. of North Carolina, Charlotte, NC (United States); Samuels, W.D.; Exarhos, G.J. [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Science] [Pacific Northwest National Lab., Richland, WA (United States). Materials and Chemical Science

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fractal-Mound Growth of Pentacene Thin Films  

E-Print Network [OSTI]

The growth mechanism of pentacene film formation on SiO2 substrate was investigated with a combination of atomic force microscopy measurements and numerical modeling. In addition to the diffusion-limited aggregation (DLA) that has already been shown to govern the growth of the ordered pentacene thin films, it is shown here for the first time that the Schwoebel barrier effect steps in and disrupts the desired epitaxial growth for the subsequent layers, leading to mound growth. The terraces of the growing mounds have a fractal dimension of 1.6, indicating a lateral DLA shape. This novel growth morphology thus combines horizontal DLA-like growth with vertical mound growth.

Serkan Zorba; Yonathan Shapir; Yongli Gao

2006-10-19T23:59:59.000Z

342

Thin-film electrochemical power cells. Final report  

SciTech Connect (OSTI)

Fundamental properties of research cells were correlated with the projected performance of full scale power sources, considering both battery and supercapacitor concepts. In addition to establishing the data base for modelling and performance projections, the program had the additional objective of identifying loss mechanisms and degradation reactions, especially those unique to polymer thin film cell designs. Because of the intrinsic high electrode/electrolyte interface areas, interfacial reactions must be understood. Many applications require power under extreme conditions, and low temperature performance needs to be improved.

Owens, B.B.; Smyrl, W.H.

1991-01-01T23:59:59.000Z

343

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of Gold Thin Films Print

344

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of Gold Thin Films PrintGuided

345

NANOSCALE STRUCTURALAND MAGNETIC CHARACTERIZATION USING  

E-Print Network [OSTI]

by magnetic materials as their dimensions are reduced towards the nanoscale. Important examples include coupling between magnetic thin films, which depends on the thickness of the non-magnetic spacer layer [2

Dunin-Borkowski, Rafal E.

346

Magnetic assisted statistical assembly  

E-Print Network [OSTI]

The objective of this thesis is to develop a process using magnetic forces to assemble micro-components into recesses on silicon based integrated circuits. Patterned SmCo magnetic thin films at the bottom of recesses are ...

Cheng, Diana I

2008-01-01T23:59:59.000Z

347

Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor  

E-Print Network [OSTI]

The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

Nominanda, Helinda

2004-01-01T23:59:59.000Z

348

Sputter deposition for multi-component thin films  

DOE Patents [OSTI]

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

1990-01-01T23:59:59.000Z

349

Sputter deposition for multi-component thin films  

DOE Patents [OSTI]

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

Krauss, A.R.; Auciello, O.

1990-05-08T23:59:59.000Z

350

Magnetic thin films formed in a glow discharge. Final report  

SciTech Connect (OSTI)

Since this project is a continuation of a cooperative effort between UMR and General Motor Research Laboratories (GMR), it seemed fitting to provide some background information which was instrumental in the evolution of this program. A family of filled epoxies that can be cast-to-size into sheet metal stamping dies has been developed by GMR. Advantages of this material over commercial plastic tooling materials are a fast curing rate, high strength, and negligible volume shrinkage after curing. Superior Tooling And Molding Plastic (STAMP) tooling dies are considerably cheaper and faster to make than steel tooling dies; therefore, they are currently used for prototype applications throughout General Motors. With improvement of wear resistance, STAMP dies can be used for limited production applications involving 10,000 or 20,000 parts. GMR proposed to provide a thin (< 25 {micro}m) wear surface for the cast-to-size STAMP die to extend its wear performance. The objective of the University of Missouri-Rolla (UMR) research effort is to technically evaluate methodologies to coat STAMP material to appreciably improve wear resistance. This does not necessarily mean that various types of coatings will be developed and evaluated. Rather, the primary responsibility is to characterize the nature of the STAMP material and design engineered films which will lead to an optimized system. An example of this was the finding that a thin polymer layer existed on the surface of an as-cast STAMP die necessitating removal if satisfactory adherence and toughness were to be attained. The next important finding involved the influence of particle size on wear. The theme of the research approach was maintained throughout the course of the project, with improvements being made as the causes of failure were determined and appropriate corrections or improvements were made.

O`Keefe, T.J.; James, W.J.

1994-10-28T23:59:59.000Z

351

Residual Stress Relaxation and Microstructure in ZnO Thin Films Istem Ozena  

E-Print Network [OSTI]

to be eliminated during deposition. Introduction In this study, the decay of the residual stressesResidual Stress Relaxation and Microstructure in ZnO Thin Films Istem Ozena and Mehmet Ali Gulgunb. a istem@sabanciuniv.edu b m-gulgun@sabanciuniv.edu Keywords: ZnO, thin films, residual stress

Yanikoglu, Berrin

352

NONLINEAR SAW PROPAGATION IN THIN-FILM SYSTEMS WITH RESIDUAL STRESS* R. E. Kumon  

E-Print Network [OSTI]

harmonics. I. INTRODUCTION AND MOTIVATION The thin-film deposition process can create large residualNONLINEAR SAW PROPAGATION IN THIN-FILM SYSTEMS WITH RESIDUAL STRESS* R. E. Kumon National Institute is the residual stress. The effective elas- tic constants and density are given by Ceff ijkl = Cijkl(1 - eres

353

Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films  

E-Print Network [OSTI]

Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films of the crystallization process, which ultimately determines the grain size, were studied in barium ferrite thin films. Rapid thermal annealing was used to crystallize the amorphous as-deposited barium ferrite films

Laughlin, David E.

354

Study of lithium diffusion in RF sputtered Nickel/Vanadium mixed oxides thin films  

E-Print Network [OSTI]

Study of lithium diffusion in RF sputtered NickelÁ/Vanadium mixed oxides thin films F. Artuso a lithium insertion inside RF sputtered Ni/V mixed oxides thin films have been investigated employing, showed three steps clearly involved in the intercalation mechanism of lithium in the oxide films: (i

Artuso, Florinda

355

Thin-film Lithium Niobate Contour-mode Resonators Renyuan Wang and Sunil A. Bhave  

E-Print Network [OSTI]

Thin-film Lithium Niobate Contour-mode Resonators Renyuan Wang and Sunil A. Bhave School Micro Devices, Inc. Greensboro, North Carolina, USA Abstract--This paper presents Lithium Niobate (LN this platform, we demonstrate, on a black Y136 cut Lithium Niobate thin-film, one-port high-order width

Afshari, Ehsan

356

The effect of stress on the dielectric properties of barium strontium titanate thin films  

E-Print Network [OSTI]

The effect of stress on the dielectric properties of barium strontium titanate thin films T. M Barium strontium titanate thin films are being developed as capacitors in dynamic random access memories to their large permittivities, barium strontium titan- ate BST bulk ceramics have long been used to make high

Suo, Zhigang

357

High tunability barium strontium titanate thin films for rf circuit applications  

E-Print Network [OSTI]

High tunability barium strontium titanate thin films for rf circuit applications N. K. Pervez,a) P) Large variations in the permittivity of rf magnetron sputtered thin-film barium strontium titanate have/cm. © 2004 American Institute of Physics. [DOI: 10.1063/1.1818724] Barium strontium titanate (BST) is a solid

York, Robert A.

358

Optimization of High Tunability Barium Strontium Titanate Thin Films Grown by RF Magnetron  

E-Print Network [OSTI]

Optimization of High Tunability Barium Strontium Titanate Thin Films Grown by RF Magnetron Abstract-- Barium strontium titanate is a solid solution perovskite with a field-dependent permittivity.7 MV/cm. I. INTRODUCTION In recent years there has been much interest in thin-film barium strontium

York, Robert A.

359

Discrete Barium Strontium Titanate (BST) Thin-Film Interdigital Varactors on Alumina: Design, Fabrication, Characterization, and  

E-Print Network [OSTI]

Discrete Barium Strontium Titanate (BST) Thin-Film Interdigital Varactors on Alumina: Design, Raleigh, NC-27695-7914, USA. Email:jayeshnath@ieee.org Abstract -- Discrete Barium Strontium Titanate (BST, capacitors, BST, ferroelectric, thin-film, barium strontium titanate, bandpass filter, IP3, ACPR, temperature

360

Self-similar solutions for a fractional thin film equation governing hydraulic fractures  

E-Print Network [OSTI]

Self-similar solutions for a fractional thin film equation governing hydraulic fractures C. Imbert equation governing hydraulic fractures are constructed. One of the boundary con- ditions, which accounts, 35R11, 35C06 Keywords: Hydraulic fractures, higher order equation, thin films, fractional Laplacian

Boyer, Edmond

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries  

E-Print Network [OSTI]

Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries Patrick E. Trapa to be stable over a wide temperature range and voltage window. Solid-state, thin-film batteries comprised triflate-doped POEM-g-PDMS, which exhibited solid-like mechanical behavior, were nearly identical to those

Sadoway, Donald Robert

362

Organic thin film devices with stabilized threshold voltage and mobility, and method for preparing the devices  

DOE Patents [OSTI]

Organic thin film devices that included an organic thin film subjected to a selected dose of a selected energy of ions exhibited a stabilized mobility (.mu.) and threshold voltage (VT), a decrease in contact resistance R.sub.C, and an extended operational lifetime that did not degrade after 2000 hours of operation in the air.

Nastasi, Michael Anthony; Wang, Yongqiang; Fraboni, Beatrice; Cosseddu, Piero; Bonfiglio, Annalisa

2013-06-11T23:59:59.000Z

363

Fully Integrated Applications of Thin Films on Low Temperature Cofired Ceramic (LTCC)  

SciTech Connect (OSTI)

Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC), as well as initial thin film capacitors on LTCC. The ruggedness of a multipurpose Ti-Cu-Pt-Au stack for connectivity and RF conductivity has continued to benefit fabrication and reliability in state of-the-art modules, while the capacitors have followed the traditional Metal-Insulator-Metal (MIM) style. The full integration of thin film passives with thin film connectivity traces is presented. Certain passives, such as capacitors, require specifically tailored and separately patterned thin film (multi-)layers, including a dielectric. Different capacitance values are achieved by variation of both the insulator layer thickness and the active area of the capacitor. Other passives, such as filters, require only the conductor - a single thin film multilayer. This can be patterned from the same connectivity thin film material (Ti-Cu-Pt-Au), or a specially tailored thin film material (e.g. Ti-Cu-Au) can be deposited. Both versions are described, including process and integration details. Examples are discussed, ranging from patterning for maximum tolerances, to space and performance-optimized designs. Cross-sectional issues associated with integration are also highlighted in the discussion.

Ambrose Wolf; Ken Peterson; Matt O'Keefe; Wayne Huebner; Bill Kuhn

2012-04-19T23:59:59.000Z

364

High temperature thermoelectric characterization of III-V semiconductor thin films by oxide bonding  

E-Print Network [OSTI]

-W-N diffusion barrier. A thermoelectric material, thin film ErAs:InGaAlAs metal/semiconductor nanocomposite temperature to 840 K for this material and the results show the thermoelectric power factor multiplied material characterization of semiconductor thin films for thermoelectric power generation, photovoltaic

Bowers, John

365

High-Temperature Thermoelectric Characterization of IIIV Semiconductor Thin Films by Oxide Bonding  

E-Print Network [OSTI]

-temperature thermoelectric charac- terization of thin-film III­V semiconductor materials that suffer from the side- effect-temperature surface passivation, and metallization with a Ti-W-N diffusion barrier. A thermoelectric material, thin-temperature material characterization of semiconductor thin films for thermoelectric power generation, photovoltaic

366

Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films  

E-Print Network [OSTI]

Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films A. Bulusu and D. G. Walker1 Interdisciplinary Program in Material Science Vanderbilt University Nashville on device characteristics of 1D and 2D thin film superlattices whose applications include thermoelectric

Walker, D. Greg

367

High Frequency Characteristicsof NanocompositeThin Film "Supercapacitors" and their Suitability For EmbeddedDecoupling  

E-Print Network [OSTI]

High Frequency Characteristicsof NanocompositeThin Film "Supercapacitors" and their Suitability, the capacitance density would be much lower. Newer capacitor concepts such as supercapacitors can overcome and the suitability of the thin film supercapacitors for high-frequency decoupling applications will be discussed. 1

Swaminathan, Madhavan

368

LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin  

E-Print Network [OSTI]

1 LIQUID PHASE DEPOSITION OF ELECTROCHROMIC THIN FILMS T. J. Richardson and M. D. Rubin electrochromism with high coloration efficiencies. These nickel oxide films were particularly stable compared, and readily scalable to larger substrates. Keywords: liquid phase deposition; electrochromic films; thin film

369

Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells  

E-Print Network [OSTI]

Resonant cavity enhanced light harvesting in flexible thin-film organic solar cells Nicholas P of solar energy conversion be- cause they use thin films of photoactive material and can be manufactured and photocurrent in flexible organic solar cells. We demonstrate that this enhancement is attributed to a broadband

Fan, Shanhui

370

Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells  

E-Print Network [OSTI]

Diffusion of indium and gallium in Cu(In,Ga)Se2 thin film solar cells O. Lundberga,*, J. Lua , A. Rockettb , M. Edoffa , L. Stolta a A°ngstro¨m Solar Center, Uppsala University, P.O. Box 534, SE-751 21 Abstract The diffusion of indium and gallium in polycrystalline thin film Cu(In,Ga)Se2 layers has been

Rockett, Angus

371

Nano-photonic Light Trapping In Thin Film Solar Dennis M. Callahan Jr.  

E-Print Network [OSTI]

Nano-photonic Light Trapping In Thin Film Solar Cells Thesis by Dennis M. Callahan Jr. In Partial. Jeremy Munday for helping me get started on the thin-film GaAs project and for all the time we spent to thank Dr. Jonathan Grandidier for working closely with me for a couple years on the nano sphere solar

Winfree, Erik

372

METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

METAL BLACKS AS SCATTERING CENTERS TO INCREASE THE EFFICIENCY OF THIN FILM SOLAR CELLS by DEEP R surface of thin-film solar cells to improve efficiency. The principle is that scattering, which film solar cell. The particular types of particles investigated here are known as "metal-black", well

Peale, Robert E.

373

EPMA Instructions for Thin Film Samples General guidelines to reading computer related commands  

E-Print Network [OSTI]

EPMA Instructions for Thin Film Samples General guidelines to reading computer related commands: `Single quote' = menu item, window, or icon "Double quote" = something you type = button you your sample, thin film up, on the dot of epoxy 4. Repeat until all samples are on the puck 5. Flip your

374

Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films  

E-Print Network [OSTI]

Electric Field Induced Sphere-to-Cylinder Transition in Diblock Copolymer Thin Films Ting Xu, A. V Manuscript Received June 21, 2004 ABSTRACT: An electric field induced sphere-to-cylinder transition in thin. In the absence of an applied electric field, thin films of the asymmetric diblock copolymer consisted of layers

Ocko, Ben

375

Energy harvesting properties of all-thin-film multiferroic cantilevers Tiberiu-Dan Onuta,1,a)  

E-Print Network [OSTI]

Energy harvesting properties of all-thin-film multiferroic cantilevers Tiberiu-Dan Onuta,1,a) Yi 18 November 2011) We have measured electromagnetic energy harvesting properties of all piezoelectric thin film. The harvested peak power at 1 Oe is 0.7 mW/cm3 (RMS) at the resonant frequency (3.8 k

Rubloff, Gary W.

376

Measuring the fracture toughness of ultra-thin films with application to AlTa coatings  

E-Print Network [OSTI]

1 Measuring the fracture toughness of ultra-thin films with application to AlTa coatings Yong Xiang Abstract An experimental technique is presented for measuring the fracture toughness of brittle thin films with a focused ion beam and the membranes are pressurized until rupture. The fracture stress of the membrane

377

Carbon nanotube thin films with ordered structures Chunsheng Du,a  

E-Print Network [OSTI]

Carbon nanotube thin films with ordered structures Chunsheng Du,a Jeff Yehb and Ning Pan*a Received December 2004 DOI: 10.1039/b414682d Carbon nanotube thin films with ordered structures have been developed properties, carbon nanotubes have aroused a great deal of research interest, and a wider range of potential

Pan, Ning

378

Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films  

E-Print Network [OSTI]

Mathematical Model of Charge and Density Distributions in Interfacial Polymerization of Thin Films INTRODUCTION Interfacial polymerization (IP) as a method of prepa- ration of thin film composite (TFC, and waste treatment. IP is also highly suitable for manufacturing polymeric films, such as polyamides

Freger, Viatcheslav "Slava"

379

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films  

E-Print Network [OSTI]

X-ray Absorption Spectroscopy of Transition Metal-Magnesium Hydride Thin Films T. J. Richardsona@lbl.gov Abstract Mixed metal thin films containing magnesium and a first-row transition element exhibit very large and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic

380

Extended light scattering model incorporating coherence for thin-film silicon solar cells  

E-Print Network [OSTI]

Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non potential for light trapping in textured thin film silicon solar cells. VC 2011 American Institute

Lenstra, Arjen K.

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Plasticity in Cu thin films: an experimental investigation of the effect of microstructure  

E-Print Network [OSTI]

Plasticity in Cu thin films: an experimental investigation of the effect of microstructure A thesis Author Joost J. Vlassak Yong Xiang Plasticity in Cu thin films: an experimental investigation is constructed. The elastic-plastic behavior of Cu films is studied with emphasis on the effects

382

Plasticity contributions to interface adhesion in thin-film interconnect structures  

E-Print Network [OSTI]

Plasticity contributions to interface adhesion in thin-film interconnect structures Michael Lanea of plasticity in thin copper layers on the interface fracture resistance in thin-film interconnect structures yield properties together with a plastic flow model for the metal layers were used to predict

Vainchtein, Anna

383

High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams  

E-Print Network [OSTI]

High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams Hyun-throughput residual stress measurements on thin films by means of micromachined cantilever beams and an array of parallel laser beams. In this technique, the film of interest is deposited onto a silicon substrate

384

Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the  

E-Print Network [OSTI]

Bill Shafarman 1 May 15, 2013 Thin Film Photovoltaics Research at the Institute of Energy of Photovoltaics 2. IEC: History and Capabilities 3. Current Research at IEC #12;Bill Shafarman 2 May 15, 2013 Concentrators #12;Bill Shafarman 5 May 15, 2013 Thin Film Photovoltaics Potential for low cost PV using " a

Firestone, Jeremy

385

Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer Encapsulation  

E-Print Network [OSTI]

Highly Stable Hysteresis-Free Carbon Nanotube Thin-Film Transistors by Fluorocarbon Polymer report hysteresis-free carbon nanotube thin-film transistors (CNT-TFTs) employing a fluorocarbon polymer (Teflon-AF) as an encapsulation layer. Such fluorocarbon encapsulation improves device uniformity

Javey, Ali

386

Electrochemical Behavior and Li Diffusion Study of LiCoO? Thin Film Electrodes Prepared by PLD  

E-Print Network [OSTI]

Preferred c-axis oriented LiCoO? thin films were prepared on the SiO?/Si (SOS) substrates by pulsed laser deposition (PLD). Thin film electrodes without carbon and binder are ideal samples to study the electrochemical ...

Xia, H.

387

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa  

E-Print Network [OSTI]

HIGH EFFICIENCY CdTe/CdS THIN FILM SOLAR CELLS WITH A NOVEL BACK-CONTACT Nicola Romeoa , Alessio in the fabrication of high efficiency CdTe/CdS thin film solar cells. Usually, it is done first by etching the Cd: Back Contact, CdTe, Thin Film 1 INTRODUCTION The back contact in the CdTe/CdS thin film solar cell

Romeo, Alessandro

388

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS  

E-Print Network [OSTI]

INCREASED CELL EFFICIENCY IN InGaAs THIN FILM SOLAR CELLS WITH DIELECTRIC AND METAL BACK REFLECTORS solar cells using back reflectors. We studied absorption enhancement in InGaAs and InGaAsP thin film and metal, on InGaAs thin film solar cell performance by device modeling and nu- merical simulations. DEVICE

Atwater, Harry

389

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a  

E-Print Network [OSTI]

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

Alam, Muhammad A.

390

Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings  

E-Print Network [OSTI]

Enhancement of optical absorption in thin-film organic solar cells through the excitation 2010 We theoretically investigate the enhancement of optical absorption in thin-film organic solar.1063/1.3377791 Thin-film organic solar cells OSCs are a promising candidate for low-cost energy conversion.1­6 However

Veronis, Georgios

391

THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)  

E-Print Network [OSTI]

195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te This paper is a short status report on the continuing development of Cu22014xTe-CdTe thin film solar cells Company has had a conti- nuous effort on thin film solar cells for the past four and a half years

Paris-Sud XI, Université de

392

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property  

E-Print Network [OSTI]

Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High-conductor-free organic lead iodide thin film solar cells have been fabricated with a sequential deposition method are comparable to that of the high-efficiency thin-film solar cells. VC 2014 AIP Publishing LLC. [http

Wang, Wei Hua

393

Growth of plasma-polymerized thin films by PECVD method and study on their surface and optical characteristics  

E-Print Network [OSTI]

Growth of plasma-polymerized thin films by PECVD method and study on their surface and optical properties of plasma-polymerized organic thin films with various RF power. AFM data showed that the plasma-polymerized. The surface and optical properties of as-grown plasma-polymerized thin films were analyzed by contact angle

Boo, Jin-Hyo

394

Ferrimagnetism and disorder of epitaxial Mn2-xCoxVAl Heusler compound thin films  

SciTech Connect (OSTI)

The quaternary full Heusler compound Mn{sub 2-x}Co{sub x}VAl with x = 1 is predicted to be a half-metallic antiferromagnet. Thin films of the quaternary compounds with x = 0-2 were prepared by dc and RF magnetron co-sputtering on heated MgO (0 0 1) substrates. The magnetic structure was examined by x-ray magnetic circular dichroism and the chemical disorder was characterized by x-ray diffraction. Ferrimagnetic coupling of V to Mn was observed for Mn{sub 2}VAl (x = 0). For x = 0.5, we also found ferrimagnetic order with V and Co antiparallel to Mn. The observed reduced magnetic moments are interpreted with the help of band structure calculations in the coherent potential approximation. Mn{sub 2}VAl is very sensitive to disorder involving Mn, because nearest-neighbour Mn atoms couple antiferromagnetically. Co{sub 2}VAl has B2 order and has reduced magnetization. In the cases with x {ge} 0.9 conventional ferromagnetism was observed, closely related to the atomic disorder in these compounds.

Meinert, Markus; Schmalhorst, Jan-Michael; Reiss, Gunter; Arenholz, Elke

2011-01-29T23:59:59.000Z

395

Dielectric nanostructures for broadband light trapping in organic solar cells  

E-Print Network [OSTI]

Dielectric nanostructures for broadband light trapping in organic solar cells Aaswath Raman, Zongfu light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501 (2007). 8. M@stanford.edu Abstract: Organic bulk heterojunction solar cells are a promising candidate for low-cost next

Fan, Shanhui

396

Coulomb impurity scattering in topological insulator thin films  

SciTech Connect (OSTI)

Inter-surface coupling in thin-film topological insulators can reduce the surface state mobility by an order of magnitude in low-temperature transport measurements. The reduction is caused by a reduction in the group velocity and an increased s{sub z} component of the surface-state spin which weakens the selection rule against large-angle scattering. An intersurface potential splits the degenerate bands into a Rashba-like bandstructure. This reduces the intersurface coupling, it largely restores the selection rule against large angle scattering, and the ring-shaped valence band further reduces backscattering by requiring, on average, larger momentum transfer for backscattering events. The effects of temperature, Fermi level, and intersurface potential on the Coulomb impurity scattering limited mobility are analyzed and discussed.

Yin, Gen; Wickramaratne, Darshana; Lake, Roger K., E-mail: rlake@ee.ucr.edu [Department of Electrical Engineering, University of California, Riverside, California 92521 (United States); Zhao, Yuanyuan [Texas Center for Superconductivity and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

2014-07-21T23:59:59.000Z

397

Studies on nickel-tungsten oxide thin films  

SciTech Connect (OSTI)

Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup ?1} and 1100 cm{sup ?1} correspond to Ni-O vibration and the peak at 860 cm{sup ?1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

Usha, K. S. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

2014-10-15T23:59:59.000Z

398

Gain properties of dye-doped polymer thin films  

E-Print Network [OSTI]

The demonstration of an electrically pumped organic laser remains a major issue of organic optoelectronics for several decades. Nowadays, hybrid pumping seems a promising compromise where the organic material is optically pumped by an electrically pumped inorganic device on chip. This technical solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of gain features of dye-doped polymer thin films, in particular we introduce the gain efficiency $K$, in order to facilitate comparison between material and experimental conditions. First, we measure the bulk gain by the means of a pump-probe setup, and then present in details several factors which modify the actual gain of the layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. The usual model to evaluate the gain leads to an overestimation by more than one order of magnitude, which stresses the importance to design the devices accordin...

Gozhyk, I; Rabbani, H; Djellali, N; Forget, S; Chenais, S; Ulysse, C; Brosseau, A; Gauvin, S; Zyss, J; Lebental, M

2014-01-01T23:59:59.000Z

399

Order on disorder: Copper phthalocyanine thin films on technical substrates  

SciTech Connect (OSTI)

We have studied the molecular orientation of the commonly used organic semiconductor copper phthalocyanine (CuPC) grown as thin films on the technically relevant substrates indium tin oxide, oxidized Si, and polycrystalline gold using polarization-dependent x-ray absorption spectroscopy, and compare the results with those obtained from single crystalline substrates [Au(110) and GeS(001)]. Surprisingly, the 20{endash}50 nm thick CuPC films on the technical substrates are as highly ordered as on the single crystals. Importantly, however, the molecular orientation in the two cases is radically different: the CuPC molecules stand on the technical substrates and lie on the single crystalline substrates. The reasons for this and its consequences for our understanding of the behavior of CuPC films in devices are discussed. {copyright} 2001 American Institute of Physics.

Peisert, H.; Schwieger, T.; Auerhammer, J. M.; Knupfer, M.; Golden, M. S.; Fink, J.; Bressler, P. R.; Mast, M.

2001-07-01T23:59:59.000Z

400

Improvement in electrochromic stability of electrodeposited nickel hydroxide thin film  

SciTech Connect (OSTI)

The electrochromic nickel hydroxide thin film was anodically deposited from an aqueous solution. The effect of solution temperature, postheat-treatment temperature, and addition of cadmium on the electrochromic behavior (color/bleach durability cycle, response time, and coloration efficiency of the nickel hydroxide films in NaOH) were investigated. A significant increase in the color/bleach durability cycle from 500 (for the as-deposited film) to more than 5000 cycles (for the heat-treated film) was observed. The addition of cadmium increased the utilization of the active materials. It was found that the coloration efficiency was 40 cm{sup 2}/C and coloration and bleaching response time were 20 to 30 s and 8 to 10 s, respectively. The change in the electrochromic properties with heat-treatment temperature is discussed based on the physical and electrochemical analysis.

Natarajan, C.; Matsumoto, H.; Nogami, G. [Kyushu Inst. of Tech., Kitakyushu (Japan). Dept. of Electrical Engineering

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Long-laser-pulse method of producing thin films  

DOE Patents [OSTI]

A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

1991-01-01T23:59:59.000Z

402

Generation of mirage effect by heated carbon nanotube thin film  

SciTech Connect (OSTI)

Mirage effect, a common phenomenon in nature, is a naturally occurring optical phenomenon in which lights are bent due to the gradient variation of refraction in the temperature gradient medium. The theoretical analysis of mirage effect generated by heated carbon nanotube thin film is presented both for gas and liquid. Excellent agreement is demonstrated through comparing the theoretical prediction with published experimental results. It is concluded from the theoretical prediction and experimental observation that the mirage effect is more likely to happen in liquid. The phase of deflected optical beam is also discussed and the method for measurement of thermal diffusivity of medium is theoretically verified. Furthermore, a method for measuring the refractive index of gas by detecting optical beam deflection is also presented in this paper.

Tong, L. H. [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu 215123 (China); Lim, C. W., E-mail: bccwlim@cityu.edu.hk [USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu 215123 (China); Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (China); Li, Y. C. [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Chuanzeng; Quoc Bui, Tinh [Department of Civil Engineering, University of Siegen, Paul-Bonatz-Str. 9-11, D-57076 Siegen (Germany)

2014-06-28T23:59:59.000Z

403

Monitoring plasma treatment of thin films by surface plasmon resonance  

SciTech Connect (OSTI)

We report the surface plasmon resonance (SPR) measurements during plasma treatment of thin films by an indigenously designed setup. From the measurements on Al (6.3 nm)/Ag (38 nm) bi-layer at a pressure of 0.02 mbar, the SPR position was found to be shifted by ?20° after a plasma treatment of ?7 h. The formation of oxide layers during plasma oxidation was confirmed by glancing angle x-ray diffraction (GXRD) measurements. Combined analysis of GXRD and SPR data confirmed that while top Al layer enables controlling plasma oxidation of Ag, the setup enables monitoring the same. The setup designed is a first of its kind for in situ SPR studies where creation of low pressure is a prerequisite.

Laha, Ranjit, E-mail: laharanjit@gmail.com [Department of Physics, National Institute of Technology Raipur, 492010 Raipur (India)] [Department of Physics, National Institute of Technology Raipur, 492010 Raipur (India); Manivannan, A. [US Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia 26507 (United States)] [US Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia 26507 (United States); Kasiviswanathan, S. [Department of Physics, Indian Institute of Technology Madras, 600036 Chennai (India)] [Department of Physics, Indian Institute of Technology Madras, 600036 Chennai (India)

2014-03-15T23:59:59.000Z

404

Characterization of Field Exposed Thin Film Modules: Preprint  

SciTech Connect (OSTI)

Test arrays of thin film modules have been deployed at the Solar Energy Centre near New Delhi, India since 2002-2003. Performances of these arrays were reported by O.S. Sastry [1]. This paper reports on NREL efforts to support SEC by performing detailed characterization of selected modules from the array. Modules were selected to demonstrate both average and worst case power loss over the 8 years of outdoor exposure. The modules characterized included CdTe, CIS and three different types of a-Si. All but one of the a-Si types were glass-glass construction. None of the modules had edge seals. Detailed results of these tests are presented along with our conclusions about the causes of the power loss for each technology.

Wohlgemuth, J. H.; Sastry, O. S.; Stokes, A.; Singh, Y. K.; Kumar, M.

2012-06-01T23:59:59.000Z

405

Absorption of surface acoustic waves by topological insulator thin films  

SciTech Connect (OSTI)

We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

Li, L. L., E-mail: lllihfcas@foxmail.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, W., E-mail: wenxu-issp@aliyun.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics, Yunnan University, Kunming 650091 (China)

2014-08-11T23:59:59.000Z

406

Manipulating Josephson junctions in thin-films by nearby vortices  

SciTech Connect (OSTI)

It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

Kogan, V.G.; Mints, R.G.

2014-07-01T23:59:59.000Z

407

Isothermal dehydration of thin films of water and sugar solutions  

SciTech Connect (OSTI)

The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

Heyd, R. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France)] [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Rampino, A. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France) [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Bellich, B.; Elisei, E. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy)] [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Cesàro, A. [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy) [Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste (Italy); Elettra Sincrotrone Trieste, Area Science Park, I-34149 Trieste (Italy); Saboungi, M.-L. [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France) [Centre de Recherche sur la Matière Divisée, University of Orleans and CNRS, rue de la Férollerie 1B, 45071 Orléans Cedex 2 (France); Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Univ-UPMC, Univ Paris 06, UMR CNRS 7590, Museum National d’Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris (France)

2014-03-28T23:59:59.000Z

408

Photoconductivity in reactively evaporated copper indium selenide thin films  

SciTech Connect (OSTI)

Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup ?5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (?) of 10{sup 6} cm{sup ?1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

Urmila, K. S., E-mail: urmilaks7@gmail.com; Asokan, T. Namitha, E-mail: urmilaks7@gmail.com; Pradeep, B., E-mail: urmilaks7@gmail.com [Solid State Physics Laboratory, Cochin University of Science and Technology, Kochi, Kerala (India); Jacob, Rajani; Philip, Rachel Reena [Thin Film Research Laboratory, Union Christian College, Aluva, Kerala (India)

2014-01-28T23:59:59.000Z

409

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents [OSTI]

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

410

Silicon-integrated thin-film structure for electro-optic applications  

DOE Patents [OSTI]

A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

411

Thin-film CdTe and CuInSe{sub 2} photovoltaic technologies  

SciTech Connect (OSTI)

Total-area conversion efficiency of 15%--15.8% have been achieved for thin-film CdTe and CIS solar cells. Modules with power output of 5--53 W have been demonstrated by several groups world-wide. Critical processes and reaction pathways for achieving excellent PV devices have been eluciated. Research, development and technical issues have been identified, which could result in potential improvements in device and module performance. A 1-kW thin-film CdTe array has been installed and is being tested. Multimegawatt thin-film CdTe manufacturing plants are expected to be completed in 1-2 years.

Ullal, H.S.; Zweibel, K.; von Roedern, B.G.

1993-08-01T23:59:59.000Z

412

Notes 08. Turbulence flow in thin film bearings : Characteristics and Modeling  

E-Print Network [OSTI]

NOTES 8. TURBULENCE IN THIN FILM FLOWS. Dr. Luis San Andr?s ? 2009 1 Notes 8. Turbulence in Thin Film Flows Notes 8 detail the characteristics of turbulent flows and provide insight into the flow instabilities that precede transition from a... for averaging of turbulent flow velocities [s] NOTES 8. TURBULENCE IN THIN FILM FLOWS. Dr. Luis San Andr?s ? 2009 2 Ta 2 Re C R ?? ?? ?? . Taylor number ?? 1, 2, 3 i i u ? Components of velocity field [m/s] = ? ? ii uu?? ?? 1, 2, 3 , ii i uu...

San Andres, Luis

2009-01-01T23:59:59.000Z

413

E-Print Network 3.0 - au thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanoparticle assembly during dewetting and sublimation of a solid thin film. Metal... and surface tension causes hole spreading and film breakup. For Au on Xe we show that, as for...

414

Transparent and Conductive Carbon Nanotube Multilayer Thin Films Suitable as an Indium Tin Oxide Replacement  

E-Print Network [OSTI]

Transparent electrodes made from metal oxides suffer from poor flexibility and durability. Highly transparent and electrically conductive thin films based on carbon nanotubes (CNTs) were assembled as a potential indium tin oxide (ITO) replacement...

Park, Yong Tae

2012-07-16T23:59:59.000Z

415

Polymeric precursor derived nanocrystalline ZnO thin films using EDTA as chelating agent  

E-Print Network [OSTI]

properties, ZnO has plausible electro-optical applications, such as, solar cells [1, 2], light- emitting diodes [3, 4], UV lasers [5], thin film transistors [6,7], and UV photodetectors [8]. Besides

Mohanty, Saraju P.

416

Bi-Sr-Ca-Cu-O thin films grown by flash evaporation and pulsed laser deposition  

E-Print Network [OSTI]

-phase 2212 films were grown on a MgO substrate using the pulsed laser deposition technique from commercially available 2212 powder. The effect of annealing on the thin films was also studied....

Ganapathy Subramanian, Santhana

2004-09-30T23:59:59.000Z

417

Structure-property Relationships in Pure and Doped Epitaxial Tungsten Trioxide Thin Films  

E-Print Network [OSTI]

Structure-property Relationships in Pure and Doped Epitaxial Tungsten Trioxide Thin Films Principal-property relationships of well- defined epitaxial tungsten trioxide (WO3) films with and without dopants, and thereby

418

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents [OSTI]

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

419

Strain engineered barium strontium titanate for tunable thin film resonators H. Khassaf,1  

E-Print Network [OSTI]

Strain engineered barium strontium titanate for tunable thin film resonators H. Khassaf,1 N of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit

Alpay, S. Pamir

420

Impurity and back contact effects on CdTe/CdS thin film solar cells.  

E-Print Network [OSTI]

??CdTe/CdS thin film solar cells are the most promising cost-effective solar cells. The goal of this project is to improve the performance for CdS/CdTe devices… (more)

Zhao, Hehong

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Development of CdTe thin film solar cells on flexible foil substrates.  

E-Print Network [OSTI]

??Cadmium telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal band gap of 1.45 eV, its high optical absorption… (more)

Hodges, Deidra Ranel

2009-01-01T23:59:59.000Z

422

CdTe/CdS Thin Film Solar Cells Fabricated on Flexible Substrates.  

E-Print Network [OSTI]

??Cadmium Telluride (CdTe) is a leading thin film photovoltaic (PV) material due to its near ideal bandgap of 1.45 eV and its high optical absorption… (more)

Palekis, Vasilios

2011-01-01T23:59:59.000Z

423

Electron-reflector strategy for CdTe thin-film solar cells.  

E-Print Network [OSTI]

??The CdTe thin-film solar cell has a large absorption coefficient and high theoretical efficiency. Moreover, large-area photovoltaic panels can be economically fabricated. These features potentially… (more)

Hsiao, Kuo-Jui

2010-01-01T23:59:59.000Z

424

Solid-state dewetting of continuous and patterned single crystal Ni thin films  

E-Print Network [OSTI]

Solid-state dewetting of thin films is a process through which continuous solid films agglomerate to form islands. This process is driven by capillary forces, often occurring via surface self-diffusion. Solid-state dewetting ...

Ye, Jongpil

2011-01-01T23:59:59.000Z

425

Antimicrobial Activity of Cationic Antiseptics in Layer-by-Layer Thin Film Assemblies  

E-Print Network [OSTI]

Layer-by-layer (LbL) assembly has proven to be a powerful technique for assembling thin films with a variety of properties including electrochromic, molecular sensing, oxygen barrier, and antimicrobial. LbL involves the deposition of alternating...

Dvoracek, Charlene M.

2010-07-14T23:59:59.000Z

426

Micro/nano devices fabricated from Cu-Hf thin films  

DOE Patents [OSTI]

An all-metal microdevice or nanodevice such as an atomic force microscope probe is manufactured from a copper-hafnium alloy thin film having an x-ray amorphous microstructure.

Luber, Erik J; Ophus, Colin; Mitlin, David; Olsen, Brian; Harrower, Christopher; Radmilovi, Velimir

2013-06-04T23:59:59.000Z

427

Analysis of potential applications for the templated dewetting of metal thin films  

E-Print Network [OSTI]

Thin films have a high surface-to-volume ratio and are therefore usually morphologically unstable. They tend to reduce their surface energy through transport of mass by diffusion. As a result, they decay into a collection ...

Frantzeskakis, Emmanouil

2005-01-01T23:59:59.000Z

428

Chemical vapor deposition of conjugated polymeric thin films for photonic and electronic applications  

E-Print Network [OSTI]

(cont.) Conjugated polymers have delocalized electrons along the backbone, facilitating electrical conductivity. As thin films, they are integral to organic semiconductor devices emerging in the marketplace, such as flexible ...

Lock, John P

2005-01-01T23:59:59.000Z

429

Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film  

E-Print Network [OSTI]

This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly ...

Schmidt, Daniel J.

430

Metallic to insulating transition in disordered pulsed laser deposited silicide thin films.  

E-Print Network [OSTI]

??A metal-to-insulating transition has been observed in iron, iron oxide, iron silicide and cobalt silicide thin films when deposited on Si substrate with a native… (more)

Abou Mourad, Houssam

2005-01-01T23:59:59.000Z

431

Lateral heterojunction photodetector consisting of molecular organic and colloidal quantum dot thin films  

E-Print Network [OSTI]

exception being the dye- sensitized solar cell.3 Owing to its unique geometry, the present device also and that is sensitized across visible wavelengths by a thin film of colloidal CdSe nanocrystal quantum dots QDs . High

432

Thin film lithium-based batteries and electrochromic devices fabricated with nanocomposite electrode materials  

DOE Patents [OSTI]

Thin-film lithium-based batteries and electrochromic devices (10) are fabricated with positive electrodes (12) comprising a nanocomposite material composed of lithiated metal oxide nanoparticles (40) dispersed in a matrix composed of lithium tungsten oxide.

Gillaspie, Dane T; Lee, Se-Hee; Tracy, C. Edwin; Pitts, John Roland

2014-02-04T23:59:59.000Z

433

Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar ...

Mailoa, Jonathan P

2012-01-01T23:59:59.000Z

434

Earth abundant materials for high efficiency heterojunction thin film solar cells  

E-Print Network [OSTI]

We investigate earth abundant materials for thin-film solar cells that can meet tens of terawatts level deployment potential. Candidate materials are identified by combinatorial search, large-scale electronic structure ...

Buonassisi, Tonio

435

Chemical vapor deposition thin films as biopassivation coatings and directly patternable dielectrics  

E-Print Network [OSTI]

Organosilicon thin films deposited by pulsed plasma-enhanced chemical vapor deposition (PPECVD) and hot-filament chemical vapor deposition (HFCVD) were investigated as potential biopassivation coatings for neural probes. ...

Pryce Lewis, Hilton G. (Hilton Gavin), 1973-

2001-01-01T23:59:59.000Z

436

Efficient Föster energy transfer : from phosphorescent organic molecules to J-aggregate thin film  

E-Print Network [OSTI]

This thesis demonstrates the first ever use of Forster resonance energy transfer (FRET) to increase the quantum efficiency of a electrically pumped J-aggregate light emitting device (JLED). J-aggregate thin films are highly ...

Shirasaki, Yasuhiro

2008-01-01T23:59:59.000Z

437

Integration of pentacene-based thin film transistors via photolithography for low and high voltage applications  

E-Print Network [OSTI]

An organic thin film transistor (OTFT) technology platform has been developed for flexible integrated circuits applications. OTFT performance is tuned by engineering the dielectric constant of the gate insulator and the ...

Smith, Melissa Alyson

2012-01-01T23:59:59.000Z

438

Apparatus for making cathodo- and photo- luminescent measurements of thin film phosphors  

E-Print Network [OSTI]

the understanding of the thin film phosphor, tungsten doped zinc oxide. Principally, a vacuum system is constructed and provides for both photo-and cathode-phosphor excitations. A measurement capability is then included. Finally, additions are mentioned...

Babuchna, Paul Michael

1998-01-01T23:59:59.000Z

439

Femtosecond pump-probe studies of reduced graphene oxide thin films  

E-Print Network [OSTI]

The dynamics of photocarriers in reduced graphene oxide thin films is studied by using ultrafast pump-probe spectroscopy. Time dependent differential transmissions are measured with sample temperatures ranging from 9 to 300 K. At each sample...

Ruzicka, Brian Andrew; Werake, Lalani Kumari; Zhao, Hui; Wang, Shuai; Loh, Kian Ping

2010-04-01T23:59:59.000Z

440

Organic-inorganic nanocomposite membranes from highly ordered mesoporous thin films for solubility-based separations  

E-Print Network [OSTI]

properties. In this study, we synthesized the organic-inorganic nanocomposite membranes by decorating the surfaces of commercially available mesoporous alumina substrates, and surfactant-templated highly ordered mesoporous silicate thin films placed...

Yoo, Suk Joon

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Evaluation on the thin-film phase change material-based technologies  

E-Print Network [OSTI]

Two potential applications of thin film phase-change materials are considered, non-volatile electronic memories and MEMS (Micro-Electro-Mechanical Systems) actuators. The markets for those two applications are fast growing ...

Guo, Qiang, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

442

Method for making surfactant-templated, high-porosity thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a surfactant-templated thin film by mixing a silica sol, a surfactant, and a hydrophobic polymer and then evaporating a portion of the solvent during coating onto a substrate and then heating to form a liquid-phase, thin film material with a porosity greater than approximately 50 percent. The high porosity thin films can have dielectric constants less than 2 to be suitable for applications requiring low-dielectric constants. An interstitial compound can be added to the mixture, with the interstitial compound either covalently bonded to the pores or physically entrapped within the porous structure. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

2001-01-01T23:59:59.000Z

443

Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium Reduction of Polymer-  

E-Print Network [OSTI]

Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium-assembly of mesoporous silica followed by magnesium reduction. The periodic ordering of pores in mesoporous silicon

Pilon, Laurent

444

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network [OSTI]

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

445

Thin Film Solar Cells with Light Trapping Transparent Conducting Oxide Layer  

E-Print Network [OSTI]

Thin film solar cells, if film thickness is thinner than the optical absorption length, typically give lower cell performance. For the thinner structure, electric current loss due to light penetration can offset the electric current gain obtained...

Lu, Tianlin

2012-07-16T23:59:59.000Z

446

Integrated photonic structures for light trapping in thin-film Si solar cells  

E-Print Network [OSTI]

We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

Sheng, Xing

447

MELT-MEDIATED LASER CRYSTALLIZATION OF THIN FILM NITI SHAPE MEMORY ALLOYS  

E-Print Network [OSTI]

matrix displays (e.g. LCD and OLED) as well as the active medium in thin film solar cells [4 of furnace, solid phase crystallization parameters (i.e. annealing temperature and dwell time

Yao, Y. Lawrence

448

Structural, optical and photocatalytic properties of ZnO thin films and  

E-Print Network [OSTI]

emitting diodes, gas sensors and transparent conducting thin films for solar cells. In this work, Zn an electronic furnace. Fig. 1. Grain size (black) and RMS variations (blue) of 1-6 layered ZnO films vs

449

Near-infrared photodetector consisting of J-aggregating cyanine dye and metal oxide thin films  

E-Print Network [OSTI]

We demonstrate a near-infrared photodetector that consists of a thin film of the J-aggregating cyanine dye, U3, and transparent metal-oxide charge transport layers. The high absorption coefficient of the U3 film, combined ...

Osedach, Timothy P.

450

anti-reflective thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mailoa, Jonathan P 2012-01-01 3 Technological assessment of light-trapping technology for thin-film Si solar cell MIT - DSpace Summary: The proposed light trapping technology of...

451

amorphous-silicon-based thin-film photovoltaic: Topics by E-print...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

devices have been obtained by a direct polymerization of undoped (or p-type doped) thin film (CH)x layer onto a polycrystalline cadmium sulfide film Paris-Sud XI, Universit...

452

Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering  

E-Print Network [OSTI]

Cuprous oxide (Cu[subscript 2]O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu[subscript 2]O thin films deposited by reactive dc magnetron ...

Lee, Yun Seog

453

ag sn thin-film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by x-ray diffractogram. The deposition parameters were optimized to obtain good quality thin films. The film deposited with 10.0ml TEA showed good uniformity, good surface...

454

Defect engineering of cuprous oxide thin-films for photovoltaic applications  

E-Print Network [OSTI]

Thin-film solar cells are promising for renewable-energy applications due to their low material usage and inexpensive manufacturing potential, making them compatible with terawatts-level deployment. Cuprous oxide (Cu?O) ...

Lee, Yun Seog

2013-01-01T23:59:59.000Z

455

Scanning tunneling microscopic studies of SiO2 thin film supported metal nano-clusters  

E-Print Network [OSTI]

This dissertation is focused on understanding heterogeneous metal catalysts supported on oxides using a model catalyst system of SiO2 thin film supported metal nano-clusters. The primary technique applied to this study is scanning tunneling...

Min, Byoung Koun

2005-11-01T23:59:59.000Z

456

Design and modeling of a PZT thin film based piezoelectric micromachined ultrasonic transducer (PMUT)  

E-Print Network [OSTI]

The design and modelling framework for a piezoelectric micromachined ultrasonic transducer (PMUT) based on the piezoelectric thin film deposition of lead zirconate titanate (PZT) is defined. Through high frequency vibration ...

Smyth, Katherine Marie

2012-01-01T23:59:59.000Z

457

Nanoindentation of Silicate Low-K Dielectric Thin Films Joseph B. Vella1  

E-Print Network [OSTI]

Nanoindentation of Silicate Low-K Dielectric Thin Films Joseph B. Vella1 , Alex A. Volinsky1, Minneapolis, MN. ABSTRACT The capabilities of nanoindentation to characterize low-k organo silicate glass (OSG

Volinsky, Alex A.

458

Processing and properties of ytterbium-erbium silicate thin film gain media  

E-Print Network [OSTI]

The structural and photoluminescence properties of ytterbium-erbium silicate thin films have been investigated. The films were fabricated by RF-magnetron co-sputtering of Er[subscript 2]O[subscript 3], Yb[subscript ...

Kimerling, Lionel C.

459

Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint  

SciTech Connect (OSTI)

This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

von Roedern, B.; Ullal, H. S.

2008-05-01T23:59:59.000Z

460

Thick and Thin Film Polymer CNT Nanocomposites for Thermoelectric Energy Conversion and Transparent Electrodes  

E-Print Network [OSTI]

Thick and Thin Film Polymer ­ CNT Nanocomposites for Thermoelectric Energy Conversion gradient. Thermoelectric materials harvest electricity from waste heat or any temperature gradient]. The PDDA/(SWNT+DOC) system produced transparent (> 82% visible light transmittance) and electrically

Fisher, Frank

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Annual report, April 1981 - May 1982 : laser induced deposition of thin films  

E-Print Network [OSTI]

A new chemical vapor deposition (CVD) process has been demonstrated with Si thin films. In this process, reactant gases are heated by absorbing light energy emitted from an IR laser. No other surfaces are heated by the ...

Gattuso, Todd Richard

1982-01-01T23:59:59.000Z

462

Zinc vacancy and erbium cluster jointly promote ferromagnetism in erbium-doped ZnO thin film  

SciTech Connect (OSTI)

Zn{sub 1-x}Er{sub x}O (0.005 ? x ? 0.04) thin films have been prepared by inductively coupled plasma enhanced physical vapor deposition method. Ferromagnetism, crystal structure, microstructure and photoluminescence properties of the films were characterized. It is found that the chemical valence state of Er is trivalent, and the Er{sup 3+} cations play an important role in ferromagnetism. Both saturated magnetization (M{sub s}) and zinc vacancy (V{sub Zn}) are decreased with the increase of x from 0.005 to 0.03. However, further increasing x to 0.04, the M{sub s} is quenched due to the generation of Er clusters. It reveals that the intensity of M{sub s} is not only associated with the V{sub Zn} concentration, but also related to the Er clusters. The V{sub Zn} concentration and the Er clusters can jointly boost the ferromagnetism in the Zn{sub 1-x}Er{sub x}O thin films.

Chen, Hong-Ming; Zhou, Ren-Wei; Li, Fei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Shanghai 201800 (China) [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Xue-Chao, E-mail: xcliu@mail.sic.ac.cn; Zhuo, Shi-Yi; Shi, Er-Wei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Shanghai 201800 (China)] [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 215 Chengbei Road, Shanghai 201800 (China); Xiong, Ze [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)] [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

2014-04-15T23:59:59.000Z

463

An ultrahigh vacuum facility for the co-deposition of amorphous transition metal alloy thin films  

E-Print Network [OSTI]

AN ULTRAHIGH VACUUM FACILITY FOR THE CO-DEPOSITION OF AMORPHOUS TRANSITION METAL ALLOY THIN FILMS A Thesis by VICTOR MICHAEL NICOLI Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1984 Major Subject: Physics AN ULTRAHIGH VACUUM FACILITY FOR THE CO-DEPOSITION OF AMORPHOUS TRANSITION METAL ALLOY THIN FILMS A Thes1s by VICTOR MICHAEL NICOLI Approved as to style and content by: ona . aug (Cha...

Nicoli, Victor Michael

1984-01-01T23:59:59.000Z

464

Metal-semiconductor hybrid thin films in field-effect transistors  

SciTech Connect (OSTI)

Metal-semiconductor hybrid thin films consisting of an amorphous oxide semiconductor and a number of aluminum dots in different diameters and arrangements are formed by electron beam lithography and employed for thin-film transistors (TFTs). Experimental and computational demonstrations systematically reveal that the field-effect mobility of the TFTs enhances but levels off as the dot density increases, which originates from variations of the effective channel length that strongly depends on the electric field distribution in a transistor channel.

Okamura, Koshi, E-mail: koshi.okamura@kit.edu; Dehm, Simone [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany)] [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Hahn, Horst [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); KIT-TUD Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt, Petersenstr. 32, 64287 Darmstadt (Germany)

2013-12-16T23:59:59.000Z

465

Free-Space Time-Domain Method for Measuring Thin Film Dielectric Properties  

DOE Patents [OSTI]

A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.

Li, Ming; Zhang, Xi-Cheng; Cho, Gyu Cheon

2000-05-02T23:59:59.000Z

466

Method for bonding thin film thermocouples to ceramics  

DOE Patents [OSTI]

A method is provided for adhering a thin film metal thermocouple to a ceramic substrate used in an environment up to 700 degrees Centigrade, such as at a cylinder of an internal combustion engine. The method includes the steps of: depositing a thin layer of a reactive metal on a clean ceramic substrate; and depositing thin layers of platinum and a platinum-10% rhodium alloy forming the respective legs of the thermocouple on the reactive metal layer. The reactive metal layer serves as a bond coat between the thin noble metal thermocouple layers and the ceramic substrate. The thin layers of noble metal are in the range of 1-4 micrometers thick. Preferably, the ceramic substrate is selected from the group consisting of alumina and partially stabilized zirconia. Preferably, the thin layer of reactive metal is in the range of 0.015-0.030 micrometers (15-30 nanometers) thick. The preferred reactive metal is chromium. Other reactive metals may be titanium or zirconium. The thin layer of reactive metal may be deposited by sputtering in ultra high purity argon in a vacuum of approximately 2 milliTorr (0.3 Pascals).

Kreider, Kenneth G. (Potomac, MD)

1993-01-01T23:59:59.000Z

467

Hydrogen adsorption in thin films of Prussian blue analogue  

SciTech Connect (OSTI)

Quartz crystal microbalance with dissipation (QCM-D) measurement was used to investigate the kinetics of the molecular hydrogen adsorption into thin films of prussian blue analogues - Cu{sub 3}[Co(CN){sub 6}]{sub 2} at ambient conditions. Although the equilibrium adsorption seems to be independent of the thickness, the adsorption rate substantially decreases with the thickness of the films. In addition, the reversibility of H{sub 2} adsorption into the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films was investigated. The results indicate that the Cu{sub 3}[Co(CN){sub 6}]{sub 2} maily interacts with H{sub 2} molecules physically. The highest H{sub 2} uptake by the Cu{sub 3}[Co(CN){sub 6}]{sub 2} films is obtained when the gas phase is stagnant inside the testing cell. However, the unusual high H{sub 2} uptake obtained from the QCM-D measurement makes us question how reliable this analytic methodology is.

Yang, Dali [Los Alamos National Laboratory; Ding, Vivian [Los Alamos National Laboratory; Luo, Junhua [Los Alamos National Laboratory; Currier, Robert P [Los Alamos National Laboratory; Obrey, Steve [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

468

Compositional depth profiling of TaCN thin films  

SciTech Connect (OSTI)

The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accurate results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.

Adelmann, Christoph; Conard, Thierry; Franquet, Alexis; Brijs, Bert; Munnik, Frans; Burgess, Simon; Witters, Thomas; Meersschaut, Johan; Kittl, Jorge A.; Vandervorst, Wilfried; Van Elshocht, Sven [Imec, B-3001 Leuven (Belgium); Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Oxford Instruments NanoAnalysis, High Wycombe, HP12 3SE (United Kingdom); Imec, B-3001 Leuven (Belgium); Imec, B-3001 Leuven, Belgium and Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven (Belgium); Imec, B-3001 Leuven (Belgium)

2012-07-15T23:59:59.000Z

469

Highly textured oxypnictide superconducting thin films on metal substrates  

SciTech Connect (OSTI)

Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y{sub 2}O{sub 3}/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (T{sub c}) of 43?K with a self-field critical current density (J{sub c}) of 7.0×10{sup 4}?A/cm{sup 2} at 5?K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher T{sub c} as well as better crystalline quality than Co-doped BaFe{sub 2}As{sub 2} coated conductors, in-field J{sub c} of NdFeAs(O,F) was lower than that of Co-doped BaFe{sub 2}As{sub 2}. These results suggest that grain boundaries in oxypnictides reduce J{sub c} significantly compared to that in Co-doped BaFe{sub 2}As{sub 2} and, hence biaxial texture is necessary for high J{sub c.}.

Iida, Kazumasa, E-mail: iida@nuap.nagoya-u.ac.jp; Kurth, Fritz; Grinenko, Vadim; Hänisch, Jens [Institute for Metallic Materials, IFW Dresden, D-01171 Dresden (Germany); Chihara, Masashi; Sumiya, Naoki; Hatano, Takafumi; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matias, Vladimir [iBeam Materials, Inc., 2778A Agua Fria Street, Santa Fe, New Mexico 87507 (United States); Holzapfel, Bernhard [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

2014-10-27T23:59:59.000Z

470

Adhesion and Thin-Film Module Reliability: Preprint  

SciTech Connect (OSTI)

Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90{sup o} or 180{sup o} and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are << 1 N/mm. This is far below the normal Instron mechanical testing unit Instron mechanical testing unit; glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

McMahon, T. J.; Jorgensen, G. J.

2006-05-01T23:59:59.000Z

471

Interaction of acetonitrile with thin films of solid water  

SciTech Connect (OSTI)

Thin films of water were prepared on Ag at 124 K. Their properties were studied with metastable impact electron spectroscopy, reflection absorption infrared spectroscopy, and temperature programmed desorption. The interaction of acetonitrile (ACN) with these films was studied with the abovementioned techniques. From the absence of any infrared activity in the initial adsorption stage, it is concluded that ACN adsorbs linearly and that the C{identical_to}N axis is aligned parallel to the water surface (as also found on neat Ag). Initially, the interaction with water surface species involves their dangling OD groups. During the completion of the first adlayer the ACN-ACN lateral interaction becomes of importance as well, and the ACN molecules become tilted with respect to the water surface. ACN shows propensity to stay at the surface after surface adsorption even during annealing up to the onset of desorption. The present results for the ACN-water interaction are compared with available classical molecular dynamics calculations providing the orientation profile for ACN on water as well as the ACN bonding properties.

Bahr, S.; Kempter, V. [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstr. 4, D-38678 Clausthal-Zellerfeld (Germany)

2009-06-07T23:59:59.000Z

472

Low-temperature CVD of iron, cobalt, and nickel nitride thin films from bis[di(tert-butyl)amido]metal(II) precursors and ammonia  

SciTech Connect (OSTI)

Thin films of late transition metal nitrides (where the metal is iron, cobalt, or nickel) are grown by low-pressure metalorganic chemical vapor deposition from bis[di(tert-butyl)amido]metal(II) precursors and ammonia. These metal nitrides are known to have useful mechanical and magnetic properties, but there are few thin film growth techniques to produce them based on a single precursor family. The authors report the deposition of metal nitride thin films below 300?°C from three recently synthesized M[N(t-Bu){sub 2}]{sub 2} precursors, where M?=?Fe, Co, and Ni, with growth onset as low as room temperature. Metal-rich phases are obtained with constant nitrogen content from growth onset to 200?°C over a range of feedstock partial pressures. Carbon contamination in the films is minimal for iron and cobalt nitride, but similar to the nitrogen concentration for nickel nitride. X-ray photoelectron spectroscopy indicates that the incorporated nitrogen is present as metal nitride, even for films grown at the reaction onset temperature. Deposition rates of up to 18?nm/min are observed. The film morphologies, growth rates, and compositions are consistent with a gas-phase transamination reaction that produces precursor species with high sticking coefficients and low surface mobilities.

Cloud, Andrew N.; Abelson, John R., E-mail: abelson@illinois.edu [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 201 Materials Science and Engineering Building, 1304 W. Green St., Urbana, Illinois 61801 (United States); Davis, Luke M.; Girolami, Gregory S., E-mail: girolami@scs.illinois.edu [School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801 (United States)

2014-03-15T23:59:59.000Z

473

Compositional analysis and depth profiling of thin film CrO{sub 2} by heavy ion ERDA and standard RBS: a comparison  

SciTech Connect (OSTI)

Chromium dioxide (CrO{sub 2}) thin film has generated considerable interest in applied research due to the wide variety of its technological applications. It has been extensively investigated in recent years, attracting the attention of researchers working on spintronic heterostructures and in the magnetic recording industry. However, its synthesis is usually a difficult task due to its metastable nature and various synthesis techniques are being investigated. In this work a polycrystalline thin film of CrO{sub 2} was prepared by electron beam vaporization of Cr{sub 2}O{sub 3} onto a Si substrate. The polycrystalline structure was confirmed through XRD analysis. The stoichiometry and elemental depth distribution of the deposited film were measured by ion beam nuclear analytical techniques heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS), which both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Moreover, the analysis carried out highlights the importance of complementary usage of the two techniques to obtain a more complete description of elemental content and depth distribution in thin films. - Graphical abstract: Heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS) both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Highlights: Black-Right-Pointing-Pointer Thin films of CrO{sub 2} have been grown by e-beam evaporation of Cr{sub 2}O{sub 3} target in vacuum. Black-Right-Pointing-Pointer The composition was determined by heavy ion-ERDA and RBS. Black-Right-Pointing-Pointer HI-ERDA and RBS provided information on the light and heavy elements, respectively.

Khamlich, S., E-mail: skhamlich@gmail.com [Nano-Sciences Laboratories, Materials Research Department, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Department of Chemistry, Tshwane University of Technology, Private Bag X 680, Pretoria, 0001 (South Africa); The African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Msimanga, M., E-mail: mandla@tlabs.ac.za [Nano-Sciences Laboratories, Materials Research Department, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); iThemba LABS Gauteng, Private Bag 11, WITS 2050, Johannesburg (South Africa); Pineda-Vargas, C.A. [Nano-Sciences Laboratories, Materials Research Department, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health and Wellness Sciences, C.P.U.T., P.O. Box 1906, Bellville 7535 (South Africa); Nuru, Z.Y. [Nano-Sciences Laboratories, Materials Research Department, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); McCrindle, R. [Department of Chemistry, Tshwane University of Technology, Private Bag X 680, Pretoria, 0001 (South Africa); Maaza, M. [Nano-Sciences Laboratories, Materials Research Department, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Department of Chemistry, Tshwane University of Technology, Private Bag X 680, Pretoria, 0001 (South Africa); The African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa)

2012-08-15T23:59:59.000Z

474

Improving thermostability of CrO{sub 2} thin films by doping with Sn  

SciTech Connect (OSTI)

Chromium dioxide (CrO{sub 2}) is an ideal material for spin electronic devices since it has almost 100% spin polarization near Fermi level. However, it is thermally unstable and easily decomposes to Cr{sub 2}O{sub 3} even at room temperature. In this study, we try to improve the thermal stability of CrO{sub 2} thin films by doping with Sn whose oxide has the same structure as CrO{sub 2}. High quality epitaxial CrO{sub 2} and Sn-doped CrO{sub 2} films were grown on single crystalline TiO{sub 2} (100) substrates by chemical vapor deposition. Sn{sup 4+} ions were believed to be doped into CrO{sub 2} lattice and take the lattice positions of Cr{sup 4+}. The magnetic measurements show that Sn-doping leads to a decrease of magnetocrystalline anisotropy. The thermal stabilities of the films were evaluated by annealing the films at different temperatures. Sn-doped films can withstand a temperature up to 510?°C, significantly higher than what undoped films can do (lower than 435?°C), which suggests that Sn-doping indeed enhances the thermal stability of CrO{sub 2} films. Our study also indicates that Sn-doping may not change the essential half metallic properties of CrO{sub 2}. Therefore, Sn-doped CrO{sub 2} is expected to be very promising for applications in spintronic devices.

Ding, Yi; Wang, Ziyu; Liu, Shuo; Shi, Jing; Yin, Di, E-mail: dyin@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yuan, Cheng; Lu, Zhihong, E-mail: zludavid@live.com [School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081 (China); Xiong, Rui, E-mail: xiongrui@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062 (China)

2014-09-01T23:59:59.000Z

475

Ferromagnetism in Doped Thin-Film Oxide and Nitride Semiconductors and Dielectrics  

SciTech Connect (OSTI)

The principal goal in the field of high-Tc ferromagnetic semiconductors is the synthesis, characterization and utilization of semiconductors which exhibit substantial carrier spin polarization at and above room temperature. Such materials are of critical importance in the emerging field of semiconductor spintronics. The interaction leading to carrier spin polarization, exchange coupling between the dopant spins and the valence or conduction band, is known to be sufficiently weak in conventional semiconductors, such as GaAs and Si, that magnetic ordering above cryogenic temperatures is essentially impossible. Since the provocative theoretical predictions of Tc above ambient in p-Mn:ZnO and p-Mn:GaN (T. Dietl et al., Science 287 1019 (2000)), and the observation of room-temperature ferromagnetism in Co:TiO2 anatase (Y. Matsumoto et al., Science 291 854 (2001)), there has been a flurry of work in oxides and nitrides doped with transition metals with unpaired d electrons. It has even been claimed that room-temperature ferromagnetism can be obtained in certain d0 transition metals oxides without a dopant. In this Report, the field of transition metal doped oxides and nitrides is critically reviewed and assessed from a materials science perspective. Since much of the field centers around thin film growth, this Report focuses on films prepared not only by conventional vacuum deposition methods, but also by spin coating colloidal nanoparticles.

Chambers, Scott A.

2006-10-01T23:59:59.000Z

476

Electronic structure of fully epitaxial Co2TiSn thin films  

SciTech Connect (OSTI)

In this article we report on the properties of thin films of the full Heusler compound Co{sub 2}TiSn prepared by DC magnetron co-sputtering. Fully epitaxial, stoichiometric films were obtained by deposition on MgO (001) substrates at substrate temperatures above 600 C. The films are well ordered in the L2{sub 1} structure, and the Curie temperature exceeds slightly the bulk value. They show a significant, isotropic magnetoresistance and the resistivity becomes strongly anomalous in the paramagnetic state. The films are weakly ferrimagnetic, with nearly 1 {mu}{sub B} on the Co atoms, and a small antiparallel Ti moment, in agreement with theoretical expectations. From comparison of x-ray absorption spectra on the Co L{sub 3,2} edges, including circular and linear magnetic dichroism, with ab initio calculations of the x-ray absorption and circular dichroism spectra we infer that the electronic structure of Co{sub 2}TiSn has essentially non-localized character. Spectral features that have not been explained in detail before, are explained here in terms of the final state band structure.

Meinert, Markus; Schmalhorst, Jan; Wulfmeier, Hendrik; Reiss, Gunter; Arenholz, Elke; Graf, Tanja; Felser, Claudia

2010-10-28T23:59:59.000Z

477

Carbon Nanosheets and Nanostructured Electrodes in Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-08-321  

SciTech Connect (OSTI)

Carbon nanosheet thin films were employed as nanostructured electrodes in organic solar cells. Due to the nanostructured texture of the carbon nanosheet electrodes, there was an increase in performance over standard ITO electrodes with very thick active layers. ZnO deposited via atomic layer deposition (ALD) was used as a hole blocking layer to provide for carrier selectivity of the carbon nanosheets.

Olson, D.

2012-04-01T23:59:59.000Z

478

1 000 000 "C/s thin film electrical heater: ln situ resistivity measurements of Al and Ti/Si thin films during ultra rapid thermal annealing  

E-Print Network [OSTI]

introduce a new technique for rapidly heating (10' "C/s) thin films using an electrical thermal annealing- ently, most commercial RTA systems use radiation-heating techniques via tungsten-halogen lamps. These systems typi- cally have a maximum heating rate of 100-300 "C/s. We introduce an alternative methodfor

Allen, Leslie H.

479

High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the Period  

E-Print Network [OSTI]

High Efficiency Thin Film CdTe and a-Si Based Solar Cells Final Technical Report for the PeriodTe-based thin-film solar cells and on high efficiency a-Si-based thin-film solar cells. Phases I and II have the performance of a-SiGe solar cells and properties of a-SiGe single layer films with different Ge contents

Deng, Xunming

480

Dopant Ion Size and Electronic Structure Effects on Transparent Conducting Oxides. Sc-Doped CdO Thin Films  

E-Print Network [OSTI]

-doped CdO (CSO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates metallic conductivities, and relatively simple crystal structures.2,4-7 Sn doping of CdO thin films grown with the highest carrier mobilities grown to date.7 In addition, Cd2SnO4, CdIn2O4, and CdO-ZnO thin films have been

Medvedeva, Julia E.

Note: This page contains sample records for the topic "magnetic thin-film nanostructures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fabrication and application of patterned magnetic media  

E-Print Network [OSTI]

In order to overcome the superparamagnetism in thin film magnetic recording media, a novel magnetic medium, called patterned medium, is studied here as a potential candidate for the future hard disk storage application. ...

Yao, Guhua

2006-01-01T23:59:59.000Z

482

Nanostructure, Chemistry and Crystallography of Iron Nitride...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

483

Dielectric relaxation of thin films of polyamide random copolymers  

E-Print Network [OSTI]

We investigate the relaxation behavior of thin films of a polyamide random copolymer, PA66/6I, with various film thicknesses using dielectric relaxation spectroscopy. Two dielectric signals are observed at high temperatures, the $\\alpha$-process and the relaxation process due to electrode polarization (the EP-process), in addition to the conductivity component. The relaxation time of the EP-process has a Vogel-Fulcher-Tammann type of temperature dependence, and the glass transition temperature, $T_{\\rm g}$, evaluated from the EP-process agrees very well with the $T_{\\rm g}$ determined from the thermal measurements. The fragility index derived from the EP-process increases with decreasing film thickness. The relaxation time and the dielectric relaxation strength of the EP-process are described by a linear function of the film thickness $d$ for large values of $d$, which can be regarded as experimental evidence for the validity of attributing the observed signal to the EP-process. Furthermore, there is distinct deviation from this linear law for thicknesses smaller than a critical value. This deviation observed in thinner films is associated with an increase in the mobility and/or diffusion constant of the charge carriers responsible for the EP-process. The $\\alpha$-process is located in a high frequency region than the EP-process at high temperatures, but merges with the EP-process at lower temperatures near the glass transition region. The thickness dependence of the relaxation time of the $\\alpha$-process is different from that of the EP-process. This suggests that there is decoupling between the segmental motion of the polymers and the translational motion of the charge carriers in confinement.

Natsumi Taniguchi; Koji Fukao; Paul Sotta; Didier R. Long

2015-02-13T23:59:59.000Z

484

Low Cost Thin Film Building-Integrated Photovoltaic Systems  

SciTech Connect (OSTI)

The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

Dr. Subhendu Guha; Dr. Jeff Yang

2012-05-25T23:59:59.000Z

485

The origin of white luminescence from silicon oxycarbide thin films  

SciTech Connect (OSTI)

Silicon oxycarbide (SiC{sub x}O{sub y}) is a promising material for achieving strong room-temperature white luminescence. The present work investigated the mechanisms for light emission in the visible/ultraviolet range (1.5–4.0?eV) from chemical vapor deposited amorphous SiC{sub x}O{sub y} thin films, using a combination of optical characterizations and electron paramagnetic resonance (EPR) measurements. Photoluminescence (PL) and EPR studies of samples, with and without post-deposition passivation in an oxygen and forming gas (H{sub 2} 5 at.?% and N{sub 2} 95 at.?%) ambient, ruled out typical structural defects in oxides, e.g., Si-related neutral oxygen vacancies or non-bridging oxygen hole centers, as the dominant mechanism for white luminescence from SiC{sub x}O{sub y}. The observed intense white luminescence (red, green, and blue emission) is believed to arise from the generation of photo-carriers by optical absorption through C-Si-O related electronic transitions, and the recombination of such carriers between bands and/or at band tail states. This assertion is based on the realization that the PL intensity dramatically increased at an excitation energy coinciding with the E{sub 04} band gaps of the material, as well as by the observed correlation between the Si-O-C bond density and the PL intensity. An additional mechanism for the existence of a blue component of the white emission is also discussed.

Nikas, V.; Gallis, S., E-mail: sgalis@us.ibm.com; Huang, M.; Kaloyeros, A. E. [College of Nanoscale Sciences and Engineering, State University of New York, Albany, New York 12203 (United States); Nguyen, A. P. D.; Stesmans, A.; Afanas'ev, V. V. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

2014-02-10T23:59:59.000Z

486

Thin Film Si Bottom Cells for Tandem Device Structures: Final Technical Report, 15 December 2003 - 15 October 2007  

SciTech Connect (OSTI)

GIT and IEC developed thin-film Si bottom cell and showed that deposition of top cell in tandem device did not reduce bottom cell performance.

Yelundur, V.; Hegedus, S.; Rohatgi, A.; Birkmire, R.

2008-11-01T23:59:59.000Z

487

Nucleation and growth of nanostructures and films  

E-Print Network [OSTI]

- electrical conductors, electrical barriers, diffusion barriers . . . · Sensors: magnetic sensors, gas sensors (Physisorption and Chemisorption) 3. surface diffusion (Larger than bulk diffusion) 4. nucleation 5. island of higher bonding energy Highly ordered thin films can be grown at much lower temperatures than for bulk

Glashausser, Charles

488

High-efficiency, thin-film cadmium telluride photovoltaic cells. Annual subcontract report, 20 January 1994--19 January 1995  

SciTech Connect (OSTI)

This report describes work performed to develop and optimize the process of radio frequency (RF) sputtering for the fabrication of thin-film solar cells on glass. The emphasis is on CdTe-related materials including CdTe, CdS, ZnTe, and ternary alloy semiconductors. Pulsed laser physical vapor deposition (LPVD) was used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. For the sputtering work, a two-gun sputtering chamber was implemented, with optical access for monitoring temperature and growth rate. We studied the optical and electrical properties of the plasmas produced by two different kinds of planar magnetron sputter guns with different magnetic field configurations and strengths. Using LPVD, we studied alloy semiconductors such as CdZnTe and heavily doped semiconductors such as ZnTe:Cu for possible incorporation into graded band gap CdTe-based photovoltaic devices.

Compaan, A.D.; Bohn, R.G.; Rajakarunanayake, Y. [Toledo Univ., OH (United States)

1995-08-01T23:59:59.000Z

489

Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films  

SciTech Connect (OSTI)

Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2? = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (?E) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, ?. The value of n and k increases with the increase of substrate temperature.

Kumar, B. Rajesh, E-mail: rajphyind@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati - 517 502, A.P, India and Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India); Hymavathi, B.; Rao, T. Subba [Department of Physics, Sri Krishnadevaraya University, Anantapur - 515 003, A.P (India)

2014-01-28T23:59:59.000Z

490

Hierarchical Assemblies of Block-Copolymer-Based Supramolecules in Thin Films  

SciTech Connect (OSTI)

The hierarchical assemblies of supramolecules, which consisted of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) with 3-pentadecylphenol (PDP) hydrogen-bonded to the 4VP, were investigated in thin films after solvent annealing in a chloroform atmosphere. The synergistic coassembly of PS-b-P4VP and PDP was utilized to generate oriented hierarchical structures in thin films. Hierarchical assemblies, including lamellae-within-lamellae and cylinders-within-lamellae, were simultaneously ordered and oriented from a few to several tens of nanometers over macroscopic length scales. The macroscopic orientation of supramolecular assembly depends on the P4VP(PDP) fraction and can be tailored by varying the PDP to P4VP ratio without interfering with the supramolecular morphologies. The lamellar and cylindrical microdomains, with a periodicity of {approx}40 nm, could be oriented normal to the surface, while the assembly of comb blocks, P4VP(PDP), with a periodicity of {approx}4 nm, were oriented parallel to the surface. Furthermore, using one PS-b-P4VP copolymer, thin films with different hierarchical structures, i.e., lamellae-within-lamellae and cylinders-within-lamellae, were obtained by varying the ratio of PDP to 4VP units. The concepts described in these studies can be potentially applied to other BCP-based supramolecular thin films, thus creating an avenue to functional, hierarchically ordered thin films.

Tung, Shih-Huang; Kalarickal, Nisha C.; Mays, Jimmy W.; Xu, Ting (UCB); (ORNL)

2009-09-08T23:59:59.000Z

491

Magnetic properties and scale-up of nanostructured cobalt carbide permanent magnetic powders  

SciTech Connect (OSTI)

Co{sub x}C magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 45?emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of surfactants, reaction temperature, and reaction duration on the crystallographic structure and magnetic properties of Co{sub x}C, while tetraethylene glycol was employed as a reducing agent. The role of the ratios of Co{sub 2}C and Co{sub 3}C phases in the admixture magnetic properties is discussed. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

Zamanpour, Mehdi, E-mail: zamanpour.m@husky.neu.edu; Bennett, Steven; Taheri, Parisa; Chen, Yajie [Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115 (United States); Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115 (United States); Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

2014-05-07T23:59:59.000Z

492

The catalytic reactivity of thin film crystal surfaces: Annual technical progress report  

SciTech Connect (OSTI)

Research is being conducted on Cu/Pd and Pd/Cu thin films. Work has been completed on the following: Work Function Studies on Epitaxial Cu/Pd Bilayer Films; Kinetics of CO and Oxygen Adsorption on Smooth and Sputtered Epitaxial Pd(lll) Films on Mica; A Simple Model for the Auger Electron Spectroscopy Evaluation of Thin Film Layer Growth Systems in Which Substrate-Overgrowth Mixing Occurs. Work in progress includes: AES of the Growth of Pd on (lll)Cu and Cu on (lll)Pd; Catalysis of the CO Oxidation Reaction on Epitaxial Cu/Pd Bilayer Films; Thermal Desorption Spectroscopy of CO from Various Thin Film Cu/Pd Bilayers; LEED Measurements; Kinetics of Adsorption of CO on Various Cu/Pd Bilayers. 7 figs.

Vook, R.W.

1988-02-15T23:59:59.000Z

493

Enhanced Efficiency of Light-Trapping Nanoantenna Arrays for Thin Film Solar Cells  

E-Print Network [OSTI]

We suggest a novel concept of efficient light-trapping structures for thin-film solar cells based on arrays of planar nanoantennas operating far from plasmonic resonances. The operation principle of our structures relies on the excitation of chessboard-like collective modes of the nanoantenna arrays with the field localized between the neighboring metal elements. We demonstrated theoretically substantial enhancement of solar-cell short-circuit current by the designed light-trapping structure in the whole spectrum range of the solar-cell operation compared to conventional structures employing anti-reflecting coating. Our approach provides a general background for a design of different types of efficient broadband light-trapping structures for thin-film solar-cell technologically compatible with large-area thin-film fabrication techniques.

Simovski, Constantin R; Voroshilov, Pavel M; Guzhva, Michael E; Belov, Pavel A; Kivshar, Yuri S

2013-01-01T23:59:59.000Z

494

Aluminum recycling from reactor walls: A source of contamination in a-Si:H thin films  

SciTech Connect (OSTI)

In this article, the authors investigate the contamination of hydrogenated amorphous silicon thin films with aluminum recycled from the walls and electrodes of the deposition reactor. Thin films of hydrogenated amorphous silicon were prepared under various conditions by a standard radio frequency plasma enhanced chemical vapor deposition process in two reactors, the chambers of which were constructed of either aluminum or stainless steel. The authors have studied the electronic properties of these thin films and have found that when using an aluminum reactor chamber, the layers are contaminated with aluminum recycled from the chamber walls and electrode. This phenomenon is observed almost independently of the deposition conditions. The authors show that this contamination results in slightly p-doped films and could be detrimental to the deposition of device grade films. The authors also propose a simple way to control and eventually suppress this contamination.

Longeaud, C.; Ray, P. P.; Bhaduri, A.; Daineka, D.; Johnson, E. V.; Roca i Cabarrocas, P. [Laboratoire de Genie Electrique de Paris (UMR 8507 CNRS), Supelec, Universites Paris VI and XI, 11 Rue Joliot-Curie, Plateau de Moulon, 91190 Gif sur Yvette (France); Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France)

2010-11-15T23:59:59.000Z

495

Method for producing textured substrates for thin-film photovoltaic cells  

DOE Patents [OSTI]

The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

496

Method for producing textured substrates for thin-film photovoltaic cells  

DOE Patents [OSTI]

The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

Lauf, Robert J. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

497

Method for producing textured substrates for thin-film photovoltaic cells  

DOE Patents [OSTI]

The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

Lauf, R.J.

1994-04-26T23:59:59.000Z

498

Method for producing textured substrates for thin-film photovoltaic cells  

DOE Patents [OSTI]

The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

Lauf, R.J.

1996-04-02T23:59:59.000Z

499

Titanium and Magnesium Co-Alloyed Hematite Thin Films for Photoelectrochemical Water Splitting  

SciTech Connect (OSTI)

Using a combination of density functional theory calculation and materials synthesis and characterization we examine the properties of charge-compensated Ti and Mg co-alloyed hematite thin films for the application of photoelectrochemical (PEC) water splitting. We find that the charge-compensated co-alloying results in the following effects: (1) It enhances the solubility of Mg and Ti, which leads to reduced electron effective mass and therefore increased electron mobility; (2) It tunes the carrier density and therefore allows the optimization of electrical conductivity; and (3) It reduces the density of charged defects and therefore reduces carrier recombination. As a result, the Ti and Mg co-alloyed hematite thin films exhibit improved water oxidation photocurrent magnitudes as compared to pure hematite thin films. Our results suggest that charge-compensated co-alloying is a plausible approach for engineering hematite for the application of PEC water splitting.

Tang, H.; Yin, W. J.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M. M.; Turner, J. A.; Yan, Y.

2012-04-01T23:59:59.000Z

500

Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates  

SciTech Connect (OSTI)

We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

2014-08-25T23:59:59.000Z