National Library of Energy BETA

Sample records for magnetic thin-film nanostructures

  1. Thin film superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  2. Interface driven magnetic interactions in nanostructured thin films of iron nanocrystallites embedded in a copper matrix

    SciTech Connect (OSTI)

    Desautels, R. D. Lierop, J. van; Shueh, C.; Lin, K.-W.; Freeland, J. W.

    2015-05-07

    We have fabricated thin films of iron nanocrystallites embedded in a copper matrix using a dual ion beam assisted deposition technique. A secondary End-Hall ion beam bombarded the iron atoms during deposition altering significantly the morphology of the films and allowing for control of the intermixing between iron and copper components. Cross-sectional transmission electron microscopy and x-ray reflectometry experiments indicated that the morphology of the films was that of iron nanocrystallites embedded in a copper matrix. Rietveld refinements of the diffraction pattern identified fcc-copper and amorphous iron. An increased amount of disorder was observed with a reduction in the amount of deposited iron from a 1:1 Fe:Cu ratio to 0.25:0.75 Fe:Cu ratio. Interfacial copper-iron alloys were identified by DC susceptibility experiments through their reduced T{sub C,Alloy} (370, 310, and 280 K) compared with that of bulk iron (∼1000 K). Element specific x-ray absorption and x-ray magnetic circular dichroism experiments were performed to identify the contributions to the magnetism from the iron and the copper-iron alloy.

  3. The role of cobalt doping on magnetic and optical properties of indium oxide nanostructured thin film prepared by sol–gel method

    SciTech Connect (OSTI)

    Baqiah, H.; Ibrahim, N.B.; Halim, S.A.; Flaifel, Moayad Husein; Abdi, M.H.

    2015-03-15

    Highlights: • Cobalt doped indium oxide thin films have been prepared by a sol–gel method. • The films have a thickness less than 100 nm and grain size less than 10 nm. • The lattice parameters and grain size of films decrease as Co content increase. • The optical band gap of films increases as the grain size decrease. • The films' magnetic behaviour is sensitive to ratio of oxygen defects per Co ions. - Abstract: The effect of Co doping concentration, (x = 0.025–0.2), in In{sub 2−x}Co{sub x}O{sub 3} thin film was investigated by X-rays diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet visible spectrophotometer (UV–vis) and vibrating sample magnetometer (VSM). All films were prepared by sol–gel technique followed by spin coating process. The XRD and XPS measurements indicate that Co{sup +2} has been successfully substituted in In{sup +3} site. The TEM measurement shows nanostructure morphology of the films. The doping of Co in indium oxide resulted in a decrease in the lattice parameters and grain size while the band gap increased with increasing Co concentration. Further, by comparing VSM and XPS results, the magnetic behaviour of the films were found to be sensitive to Co concentrations, oxygen vacancies and ratio of oxygen defects to Co concentrations. The magnetic behaviour of the prepared films was explained using bound magnetic polaron (BMP) model.

  4. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    SciTech Connect (OSTI)

    Al-Bathi, S. A. M.

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  5. Optical limiting effects in nanostructured silicon carbide thin films

    SciTech Connect (OSTI)

    Borshch, A A; Starkov, V N; Volkov, V I; Rudenko, V I; Boyarchuk, A Yu; Semenov, A V

    2013-12-31

    We present the results of experiments on the interaction of nanosecond laser radiation at 532 and 1064 nm with nanostructured silicon carbide thin films of different polytypes. We have found the effect of optical intensity limiting at both wavelengths. The intensity of optical limiting at ? = 532 nm (I{sub cl} ? 10{sup 6} W cm{sup -2}) is shown to be an order of magnitude less than that at ? = 1064 nm (I{sub cl} ? 10{sup 7} W cm{sup -2}). We discuss the nature of the nonlinearity, leading to the optical limiting effect. We have proposed a method for determining the amount of linear and two-photon absorption in material media. (nonlinear optical phenomena)

  6. Low Temperature Chemical Vapor Deposition Of Thin Film Magnets

    DOE Patents [OSTI]

    Miller, Joel S.; Pokhodnya, Kostyantyn I.

    2003-12-09

    A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO).sub.6) and bis(benzene)vanalium (V(C.sub.6 H.sub.6).sub.2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90.degree. C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40.degree. C. and 70.degree. C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.

  7. Quantum states of neutrons in magnetic thin films

    SciTech Connect (OSTI)

    Radu, F.; Zabel, H.; Leiner, V.; Wolff, M.; Ignatovich, V.K.

    2005-06-01

    We have studied experimentally and theoretically the interaction of polarized neutrons with magnetic thin films and magnetic multilayers. In particular, we have analyzed the behavior of the critical edges for total external reflection in both cases. For a single film we have observed experimentally and theoretically a simple behavior: the critical edges remain fixed and the intensity varies according to the angle between the polarization axis and the magnetization vector inside the film. For the multilayer case we find that the critical edges for spin-up and spin-down polarized neutrons move toward each other as a function of the angle between the magnetization vectors in adjacent ferromagnetic films. Although the results for multilayers and single thick layers appear to be different, in fact, the same spinor method explains both results. An interpretation of the critical edges behavior for the multilyers as a superposition of ferromagnetic and antifferomagnetic states is given.

  8. Unexpected formation by pulsed laser deposition of nanostructured Fe/olivine thin films on MgO substrates

    SciTech Connect (OSTI)

    Legrand, C.; Dupont, L.; Davoisne, C.; Le Marrec, F.; Perriere, J.; Baudrin, E.

    2011-02-15

    Olivine-type LiFePO{sub 4} thin films were grown on MgO (1 0 0) substrates by pulsed laser deposition (PLD). The formation of an original nanostructure is evidenced by transmission electron microscopy measurements. Indeed, on focused ion beam prepared cross sections of the thin film, we observe, the amazing formation of metallic iron/olivine nanostructures. The appearance of such a structure is explained owing to a topotactic relation between the two phases as well as a strong Mg diffusion from the substrate to the film surface. Magnesium migration is thus concomitant with the creation of metallic iron domains that grow from the core of the film to the surface leading to large protuberances. To the best of our knowledge, this is the first report on iron extrusion from the olivine-type LiFePO{sub 4}. -- Graphical Abstract: HRTEM image of olivine/Fe nanostructure obtained by PLD. Display Omitted Research highlights: {yields} This manuscript describes the attempt to prepare textured LiFePO{sub 4} by PLD. This is presently a challenge to better understand the physical properties of the material, used as cathode in lithium ion batteries. {yields} We describe for the first time the iron extrusion from this material. Indeed, there were recent reports on the possible non-stoichiometry, i.e. lithium or oxygen. However, on the iron side, only some defect were observed for hydrothermally prepared material but the extrusion is new in this paper. {yields} We prepared interesting nanostructures which could be used for different fundamental studies: electric and magnetic measurements.

  9. A comparison of light-coupling into high and low index nanostructured photovoltaic thin films

    SciTech Connect (OSTI)

    Pfadler, T.; Stärk, M.; Zimmermann, E.; Putnik, M.; Boneberg, J.; Weickert, J. E-mail: lukas.schmidt-mende@uni-konstanz.de; Schmidt-Mende, L. E-mail: lukas.schmidt-mende@uni-konstanz.de

    2015-06-01

    Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structures are transferred via direct laser interference patterning to electron-selective TiO{sub 2} electrodes. Two representative thin-film solar cell architectures are deposited on top: an organic solar cell featuring blended P3HT:PCBM as active material, and a hybrid solar cell with Sb{sub 2}S{sub 3} as inorganic active material. A direct correlation in the asymmetry in total absorption enhancement and in structure-induced light in-coupling is spectroscopically observed for the two systems. The structuring is shown to be beneficial for the total absorption enhancement if a high n active material is deposited on TiO{sub 2}, but detrimental for a low n material. The refractive indices of the employed materials are determined via spectroscopic ellipsometry. The study outlines that the macroscopic Fresnel equations can be used to investigate the spectroscopically observed asymmetry in light in-coupling at the nanostructured TiO{sub 2} active material interfaces by visualizing the difference in reflectivity caused by the asymmetry in refractive indices.

  10. Different properties of aluminum doped zinc oxide nanostructured thin films prepared by radio frequency magnetron sputtering

    SciTech Connect (OSTI)

    Bidmeshkipour, Samina Shahtahmasebi, Nasser

    2013-06-15

    Aluminium doped zinc oxide (AZO) nanostructured thin films are prepared by radio frequency magnetron sputtering on glass substrate using specifically designed ZnO target containing different amount of Al{sub 2}O{sub 3} powder as the Al doping source. The optical properties of the aluminium doped zinc oxide films are investigated. The topography of the deposited films were investigated by Atomic Force Microscopy. Variation of the refractive index by annealing temperature are considered and it is seen that the refractive index increases by increasing the annealing temperature.

  11. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  12. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, Fred; Hoard, Ronald W.

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  13. Influence of nanostructure on charge transport in RuO{sub 2} thin films

    SciTech Connect (OSTI)

    Steeves, M. M.; Lad, R. J.

    2010-07-15

    Polycrystalline thin films of RuO{sub 2} were grown on fused-quartz substrates and a parametric study was carried out to probe the influence of film nanostructure on the four-point Van der Pauw resistivity and Hall coefficient. The films were grown via reactive rf magnetron sputtering of a Ru target in an Ar/O{sub 2} plasma using deposition rates from 0.27 to 3.5 A/s and substrate temperatures from 16 to 500 deg. C Room-temperature resistivities of the RuO{sub 2} films ranged from 58 to 360 {mu}{Omega} cm. Upon first heating following deposition, some films showed decreasing resistivity with increasing temperature, but the resistivities also decreased upon subsequent cooling suggesting that the annealing treatment reduces the film defect density. The temperature coefficient of resistance was found to be small (<0.001 K{sup -1}) in agreement with previous investigations. Hall coefficient measurements of the polycrystalline thin films demonstrated that either n-type or p-type majority carriers can be present depending on deposition conditions and the resulting nanostructure, in contrast to single-crystal RuO{sub 2}, which is an n-type metal. Grain size and homogeneous strain within the films were measured by x-ray diffraction and are correlated to the majority carrier type.

  14. Investigation of the nonlocal nonlinear optical response of copper nanostructured thin films prepared by pulsed laser deposition

    SciTech Connect (OSTI)

    Farmanfarmaei, B; RashidianVaziri, M R; Hajiesmaeilbaigi, F

    2014-11-30

    Nanostructured copper thin films have been prepared using the pulsed laser deposition method. Optical absorption spectra of these films exhibit plasmonic absorption peaks around 619 nm, which suggests the formation of copper nanoparticles on their surfaces. Scanning electron micrographs of the films confirm the nanoparticle formation on the films surfaces. After laser beam passing through the thin films, the observed diffraction rings on a far-field screen have been recorded. Despite the smallness of the maximal axial phase shifts of the films, which have been obtained using the nonlocal z-scan theory, a series of low-intensity rings can be observed on the far field screen for some specific positions of the thin films from the focal point. It is shown that the best approach to determining the sign and magnitude of the nonlinear refractive index of thin samples is the application of the conventional closeaperture z-scan method. (nanostructures)

  15. Nanostructured and wide bandgap CdS:O thin films grown by reactive RF sputtering

    SciTech Connect (OSTI)

    Islam, M. A.; Rahman, K. S.; Haque, F.; Rashid, M. J.; Akhtaruzzaman, M.; Sopian, K.; Sulaiman, Y.; Amin, N.

    2015-05-15

    In this study, CdS:O thin films were prepared from a 99.999% CdS target by reactive sputtering in a Ar:O{sub 2} (99:1) ambient with different RF power at room temperature. The deposited films were studied by means of XRD, SEM, EDX, Hall Effect and UV-Vis spectrometry. The incorporations of O{sub 2} into the films were observed to increase with the decrease of deposition power. The cryatallinity of the films were reduced, whereas the band gaps of the films were increased by the increase of O{sub 2} content on the films. The films were found in nano-structured grains with a compact surface. It has been seen that the highest carrier density is observed in the film with O{sub 2} at.% 21.10, while the values decreased with the further increase or decrease of O{sub 2} content on the films; indicating that specific amount of donor like O{sub 2} atoms substitute to the S atoms can improve the carrier density of the CdS:O thin film.

  16. Phase-selective vanadium dioxide (VO{sub 2}) nanostructured thin films by pulsed laser deposition

    SciTech Connect (OSTI)

    Masina, B. N. E-mail: slafane@cdta.dz; Lafane, S. E-mail: slafane@cdta.dz; Abdelli-Messaci, S.; Kerdja, T.; Wu, L.; Akande, A. A.; Mwakikunga, B.

    2015-10-28

    Thin films of monoclinic nanostructured vanadium dioxide are notoriously difficult to produce in a selective manner. To date, post-annealing, after pulsed laser deposition (PLD), has been used to revert the crystal phase or to remove impurities, and non-glass substrates have been employed, thus reducing the efficacy of the transparency switching. Here, we overcome these limitations in PLD by optimizing a laser-ablation and deposition process through optical imaging of the laser-induced plasma. We report high quality monoclinic rutile-type vanadium dioxide (VO{sub 2}) (M1) nanoparticles without post-annealing, and on a glass substrate. Our samples demonstrate a reversible metal-to-insulator transition at ∼43 °C, without any doping, paving the way to switchable transparency in optical materials at room temperature.

  17. Platinum-alloy nanostructured thin film catalysts for the oxygen reduction reaction.

    SciTech Connect (OSTI)

    van der Vliet, D.; Wang, C.; Debe, M.; Atanasoski, R.; Markovic, N. M.; Stamenkovic, V. R.

    2011-01-01

    In an effort to study advanced catalytic materials for the oxygen reduction reaction (ORR), a number of metallic alloy nanostructured thin film (NSTF) catalysts have been characterized by rotating disk electrode (RDE). Optimal loadings for the ORR and activity enhancement compared to conventional carbon supported nanoparticles (Pt/C) were established. The most efficient catalyst was found to be PtNi alloy with 55 wt% of Pt. The enhancement in specific activity is more than one order of magnitude, while the improvement factor in mass activity is 2.5 compared to Pt/C. Further lowering of the platinum to nickel ratio in NSTF catalysts did not lead to increased mass activity values.

  18. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts

    SciTech Connect (OSTI)

    Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; Debe, Mark; Steinbach, Andrew J.; Guetaz, L.

    2015-04-10

    In this study, the nanoscale morphology of highly active Pt3Ni7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure plays in surface area, activity, and durability.

  19. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; Debe, Mark; Steinbach, Andrew J.; Guetaz, L.

    2015-04-10

    In this study, the nanoscale morphology of highly active Pt3Ni7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure plays in surfacemore » area, activity, and durability.« less

  20. Engineering Gilbert damping by dilute Gd doping in soft magnetic Fe thin films

    SciTech Connect (OSTI)

    Zhang, W. Jiang, S.; Sun, L.; Wang, Y. K.; Zhai, Y.; Wong, P. K. J.; Wang, K.; Jong, M. P. de; Wiel, W. G. van der; Laan, G. van der

    2014-05-07

    By analyzing the ferromagnetic resonance linewidth, we show that the Gilbert damping constant in soft magnetic Fe thin films can be enhanced by ?6 times with Gd doping of up to 20%. At the same time, the magnetic easy axis remains in the film plane while the coercivity is strongly reduced after Gd inclusion. X-ray magnetic circular dichroism measurements reveal a strong increase in the orbital-to-spin moment ratio of Fe with increasing Gd concentration, in full agreement with the increase in the Gilbert damping obtained for these thin films. Combined with x-ray diffraction and vibrating sample magnetometry, the results demonstrate that the FeGd thin films with dilute Gd doping of up to 20% are promising candidates for spin-transfer-torque applications in soft magnetic devices, in which an enhanced damping is required.

  1. Phase formation, thermal stability and magnetic moment of cobalt nitride thin films

    SciTech Connect (OSTI)

    Gupta, Rachana; Pandey, Nidhi; Tayal, Akhil; Gupta, Mukul E-mail: dr.mukul.gupta@gmail.com

    2015-09-15

    Cobalt nitride (Co-N) thin films prepared using a reactive magnetron sputtering process are studied in this work. During the thin film deposition process, the relative nitrogen gas flow (R{sub N{sub 2}}) was varied. As R{sub N{sub 2}} increases, Co(N), Co{sub 4}N, Co{sub 3}N and CoN phases are formed. An incremental increase in R{sub N{sub 2}}, after emergence of Co{sub 4}N phase at R{sub N{sub 2}} = 10%, results in a linear increase of the lattice constant (a) of Co{sub 4}N. For R{sub N{sub 2}} = 30%, a maximizes and becomes comparable to its theoretical value. An expansion in a of Co{sub 4}N, results in an enhancement of the magnetic moment, to the extent that it becomes even larger than pure Co. Such larger than pure metal magnetic moment for tetra-metal nitrides (M{sub 4}N) have been theoretically predicted. Incorporation of N atoms in M{sub 4}N configuration results in an expansion of a (relative to pure metal) and enhances the itinerary of conduction band electrons leading to larger than pure metal magnetic moment for M{sub 4}N compounds. Though a higher (than pure Fe) magnetic moment for Fe{sub 4}N thin films has been evidenced experimentally, higher (than pure Co) magnetic moment is evidenced in this work.

  2. Structural controlled magnetic anisotropy in Heusler L1{sub 0}-MnGa epitaxial thin films

    SciTech Connect (OSTI)

    Wang Kangkang; Lu Erdong; Smith, Arthur R.; Knepper, Jacob W.; Yang Fengyuan

    2011-04-18

    Ferromagnetic L1{sub 0}-MnGa thin films have been epitaxially grown on GaN, sapphire, and MgO substrates using molecular beam epitaxy. Using diffraction techniques, the epitaxial relationships are determined. It is found that the crystalline orientation of the films differ due to the influence of the substrate. By comparing the magnetic anisotropy to the structural properties, a clear correlation could be established indicating that the in-plane and out-of-plane anisotropy is directly determined by the crystal orientation of the film and could be controlled via selection of the substrates. This result could be helpful in tailoring magnetic anisotropy in thin films for spintronic applications.

  3. Brownian motion of massive skyrmions in magnetic thin films

    SciTech Connect (OSTI)

    Troncoso, Roberto E.; Núñez, Álvaro S.

    2014-12-15

    We report on the thermal effects on the motion of current-driven massive magnetic skyrmions. The reduced equation for the motion of skyrmion has the form of a stochastic generalized Thiele’s equation. We propose an ansatz for the magnetization texture of a non-rigid single skyrmion that depends linearly with the velocity. By using this ansatz it is found that the skyrmion mass tensor is closely related to intrinsic skyrmion parameters, such as Gilbert damping, skyrmion-charge and dissipative force. We have found an exact expression for the average drift velocity as well as the mean-square velocity of the skyrmion. The longitudinal and transverse mobility of skyrmions for small spin-velocity of electrons is also determined and found to be independent of the skyrmion mass.

  4. Modified Magnetic Ground State in Nimn (2) O (4) Thin Films

    SciTech Connect (OSTI)

    Nelson-Cheeseman, B.B.; Chopdekar, R.V.; Iwata, J.M.; Toney, M.F.; Arenholz, E.; Suzuki, Y.; /SLAC

    2012-08-23

    The authors demonstrate the stabilization of a magnetic ground state in epitaxial NiMn{sub 2}O{sub 4} (NMO) thin films not observed in their bulk counterpart. Bulk NMO exhibits a magnetic transition from a paramagnetic phase to a collinear ferrimagnetic moment configuration below 110 K and to a canted moment configuration below 70 K. By contrast, as-grown NMO films exhibit a single magnetic transition at 60 K and annealed films exhibit the magnetic behavior found in bulk. Cation inversion and epitaxial strain are ruled out as possible causes for the new magnetic ground state in the as-grown films. However, a decrease in the octahedral Mn{sup 4+}:Mn{sup 3+} concentration is observed and likely disrupts the double exchange that produces the magnetic state at intermediate temperatures. X-ray magnetic circular dichroism and bulk magnetometry indicate a canted ferrimagnetic state in all samples at low T. Together these results suggest that the collinear ferrimagnetic state observed in bulk NMO at intermediate temperatures is suppressed in the as grown NMO thin films due to a decrease in octahedral Mn{sup 4+}, while the canted moment ferrimagnetic ordering is preserved below 60 K.

  5. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  6. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  7. Tunable giant magnetic anisotropy in amorphous SmCo thin films

    SciTech Connect (OSTI)

    Magnus, F.; Moubah, R.; Roos, A. H.; Kapaklis, V.; Hjoervarsson, B.; Andersson, G.; Kruk, A.; Hase, T.

    2013-04-22

    SmCo thin films have been grown by magnetron sputtering at room temperature with a composition of 2-35 at. % Sm. Films with 5 at. % or higher Sm are amorphous and smooth. A giant tunable uniaxial in-plane magnetic anisotropy is induced in the films which peaks in the composition range 11-22 at. % Sm. This cross-over behavior is not due to changes in the atomic moments but rather the local configuration changes. The excellent layer perfection combined with highly tunable magnetic properties make these films important for spintronics applications.

  8. Atomic moments in Mn{sub 2}CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Heiman, D.; Sterbinsky, G. E.; Arena, D. A.

    2014-12-07

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn{sub 2}CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  9. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  10. Magnetism and transport properties of epitaxial Fe-Ga thin films on GaAs(001)

    SciTech Connect (OSTI)

    Duong Anh Tuan; Shin, Yooleemi; Cho, Sunglae; Dang Duc Dung; Vo Thanh Son

    2012-04-01

    Epitaxial Fe-Ga thin films in disordered bcc {alpha}-Fe crystal structure (A2) have been grown on GaAs(001) by molecular beam epitaxy. The saturated magnetization (M{sub S}) decreased from 1371 to 1105 kA/m with increasing Ga concentration from 10.5 to 24.3 % at room temperature. The lattice parameter increased with the increase in Ga content because of the larger atomic radius of Ga atom than that of Fe. The increase in carrier density with Ga content caused in lower resistivity.

  11. Photoelectrochemical etching of epitaxial InGaN thin films: Self-limited kinetics and nanostructuring

    SciTech Connect (OSTI)

    Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; Lu, Ping; Koleske, Daniel D.; Wang, George T.; Polsky, Ronen; Tsao, Jeffrey Y.

    2014-10-22

    We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale, and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.

  12. Photoelectrochemical etching of epitaxial InGaN thin films: Self-limited kinetics and nanostructuring

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Xiaoyin; Fischer, Arthur J.; Coltrin, Michael E.; Lu, Ping; Koleske, Daniel D.; Wang, George T.; Polsky, Ronen; Tsao, Jeffrey Y.

    2014-10-22

    We report here the characteristics of photoelectrochemical (PEC) etching of epitaxial InGaN semiconductor thin films using narrowband lasers with linewidth less than ~1 nm. In the initial stages of PEC etching, when the thin film is flat, characteristic voltammogram shapes are observed. At low photo-excitation rates, voltammograms are S-shaped, indicating the onset of a voltage-independent rate-limiting process associated with electron-hole-pair creation and/or annihilation. At high photo-excitation rates, voltammograms are superlinear in shape, indicating, for the voltage ranges studied here, a voltage-dependent rate-limiting process associated with surface electrochemical oxidation. As PEC etching proceeds, the thin film becomes rough at the nanoscale,more » and ultimately evolves into an ensemble of nanoparticles. As a result, this change in InGaN film volume and morphology leads to a characteristic dependence of PEC etch rate on time: an incubation time, followed by a rise, then a peak, then a slow decay.« less

  13. Structural, magnetic, and transport properties of Fe-doped CoTiSb epitaxial thin films

    SciTech Connect (OSTI)

    Sun, N. Y.; Zhang, Y. Q.; Che, W. R.; Shan, R.; Qin, J.

    2015-11-07

    Epitaxial intrinsic and Fe-doped CoTiSb thin films with C1{sub b} structure were grown on MgO(100) substrates by magnetron sputtering. The semiconducting-like behavior in both intrinsic and Fe-doped thin films was demonstrated by temperature dependence of longitudinal resistivity. The Fe-doped CoTiSb films with a wide range of doping concentrations can maintain semiconducting-like and magnetic properties simultaneously, while the semiconducting behavior is weakening with the increasing Fe concentration. For 21 at. % Fe-doped film, low lattice magnetic moment (around 0.65 μ{sub B}) and high resistivity (larger than 800 μΩ cm) are beneficial to its application as a magnetic electrode in spintronic devices. Anomalous Hall effect of 21 at. % Fe-doped film was also investigated and its behaviors can be treated well by recent-reported anomalous Hall scaling including the contribution of spin-phonon skew scattering.

  14. Wet chemical synthesis of quantum confined nanostructured tin oxide thin films by successive ionic layer adsorption and reaction technique

    SciTech Connect (OSTI)

    Murali, K.V., E-mail: kvmuralikv@gmail.com [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Ragina, A.J. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Nehru Arts and Science College, Kanhangad, Kerala 671314 (India); Preetha, K.C. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Sree Narayana College, Kannur, Kerala 670007 (India); Deepa, K.; Remadevi, T.L. [School of Pure and Applied Physics, Department of Physics, Kannur University, Kerala 670327 (India); Department of Physics, Pazhassi Raja N.S.S. College, Mattannur, Kerala 670702 (India)

    2013-09-01

    Graphical abstract: - Highlights: Quantum confined SnO{sub 2} thin films were synthesized at 80 C by SILAR technique. Film formation mechanism is discussed. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap confirmed the quantum confinement effect. Present synthesis has advantages low cost, low temperature and green friendly. - Abstract: Quantum confined nanostructured SnO{sub 2} thin films were synthesized at 353 K using ammonium chloride (NH{sub 4}Cl) and other chemicals by successive ionic layer adsorption and reaction technique. Film formation mechanism is discussed. Structural, morphological, optical and electrical properties were investigated and compared with the as-grown and annealed films fabricated without NH{sub 4}Cl solution. SnO{sub 2} films were polycrystalline with crystallites of tetragonal structure with grain sizes lie in the 58 nm range. Films with snow like crystallite morphology offer high specific surface area. The blue-shifted value of band gap of as-grown films confirmed the quantum confinement effect of grains. Refractive index of the films lies in the 2.12.3 range. Films prepared with NH{sub 4}Cl exhibit relatively lower resistivity of the order of 10{sup 0}10{sup ?1} ? cm. The present synthesis has advantages such as low cost, low temperature and green friendly, which yields small particle size, large surfacevolume ratio, and high crystallinity SnO{sub 2} films.

  15. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  16. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    SciTech Connect (OSTI)

    Streubel, Robert; Kronast, Florian; Fischer, Peter; Parkinson, Dula; Schmidt, Oliver G.; Makarov, Denys

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomena between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.

  17. Composition dependence of electronic, magnetic, transport and morphological properties of mixed valence manganite thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, Michael R.; Jeen, H.; Biswas, A.

    2016-07-27

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1-yPry)1-xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1-xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance)more » measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.« less

  18. Self-modulated nanostructures in super-large-period Bi{sub 11}(Fe{sub 5}CoTi{sub 3}){sub 10/9}O{sub 33} epitaxial thin films

    SciTech Connect (OSTI)

    Meng, Dechao; Huang, Haoliang; Yun, Yu; Huang, Yan; Zhai, Xiaofang; Ma, Chao; Fu, Zhengping; Peng, Ranran; Mao, Xiangyu; Chen, Xiaobing; Brown, Gail; and others

    2015-05-25

    Super-large-period Aurivillius thin films with a pseudo-period of ten were grown on (0 0 1) SrTiO{sub 3} substrates using the pulsed laser deposition method. The as-grown films are found to be coherently strained to the substrate and atomically smooth. X-ray diffraction indicates an average periodicity of ten, while analysis with the high resolution scanning transmission electron microscopy reveals a self-modulated nanostructure in which the periodicity changes as the film thickness increases. Finally, we discuss the magnetic and possible ferroelectric properties of the self-modulated large period Aurivillius films at the room temperature.

  19. The magnetic ordering in high magnetoresistance Mn-doped ZnO thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Venkatesh, S.; Baras, A.; Lee, J. -S.; Roqan, I. S.

    2016-03-24

    Here, we studied the nature of magnetic ordering in Mn-doped ZnO thin films that exhibited ferromagnetism at 300 K and superparamagnetism at 5 K. We directly inter-related the magnetisation and magnetoresistance by invoking the polaronpercolation theory and variable range of hopping conduction below the metal-to-insulator transition. By obtaining a qualitative agreement between these two models, we attribute the ferromagnetism to the s-d exchange-induced spin splitting that was indicated by large positive magnetoresistance (~40 %). Low temperature superparamagnetism was attributed to the localization of carriers and non-interacting polaron clusters. This analysis can assist in understanding the presence or absence of ferromagnetismmore » in doped/un-doped ZnO.« less

  20. Thin film deposition by electric and magnetic crossed-field diode sputtering

    DOE Patents [OSTI]

    Welch, Kimo M.

    1977-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  1. Thin film deposition by electric and magnetic crossed-field diode sputtering

    DOE Patents [OSTI]

    Welch, Kimo M.

    1980-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  2. Magnetic thin-film split-domain current sensor-recorder

    DOE Patents [OSTI]

    Hsieh, Edmund J.

    1979-01-01

    A sensor-recorder for recording a representation of the direction and peak amplitude of a transient current. A magnetic thin film is coated on a glass substrate under the influence of a magnetic field so that the finished film is magnetically uniaxial and anisotropic. The film is split into two oppositely magnetized contiguous domains with a central boundary by subjecting adjacent portions of the film simultaneously to magnetic fields that are opposed 180.degree.. With the split-domain sensor-recorder placed with the film plane and domain boundary either perpendicular or parallel to the expected conductive path of a transient current, the occurrence of the transient causes switching of a portion of one domain to the direction of the other domain. The amount of the switched domain portion is indicative of the amplitude of the peak current of the transient, while the particular domain that is switched is indicative of the direction of the current. The resulting domain patterns may be read with a passive magnetic tape viewer.

  3. Direct evidence of anomalous interfacial magnetization in metamagnetic Pd doped FeRh thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennett, S. P.; Ambaye, H.; Lee, H.; LeClair, P.; Mankey, G. J.; Lauter, V.

    2015-03-16

    Palladium doped iron rhodium is a magnetic material of significant interest for it’s close to room temperature magnetostructural phase transition from antiferromagnetic (AF) to ferromagnetic (FM) ordering. Here we report on the peculiarities of the magnetization distribution in thin films of FeRh(Pd) probed by Polarized Neutron Reflectometry. Remarkably, we’ve found thin interfacial regions with strong magnetization that have unique thermomagnetic properties as compared to the rest of the system. These regions exist at the top and bottom interfaces of the films while the central regions behave similarly to the bulk with a clear AF-FM order transition. Further we explore themore » impact of an additional Pt interlayer introduced in the middle of the FeRh(Pd) film and reveal that it serves to replicate the strong interfacial magnetization found at the top and bottom interfaces. In conclusion, these results are of great value both in understanding the fundamental physics of such an order transition, and in considering FeRh(Pd) for magnetic media and spintronics applications.« less

  4. pH effect on structural and optical properties of nanostructured zinc oxide thin films

    SciTech Connect (OSTI)

    Munef, R. A.

    2015-03-30

    ZnO nanostructures were Deposited on Objekttrager glasses for various pH values by chemical bath deposition method using Zn (NO3)2·6H2O (zinc nitrate hexahydrate) solution at 75°C reaction temperature without any posterior treatments. The ZnO nanostructures obtained were characterized by X-ray Diffraction (XRD, UV). The structure was hexagonal and it was found that some peaks disappear with various pH values. The grain sizes of ZnO films increases from 22-to-29nm with increasing pH. The transmission of the films was (85-95%)

  5. Microstructure and magnetic properties of FeCo epitaxial thin films grown on MgO single-crystal substrates

    SciTech Connect (OSTI)

    Shikada, Kouhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-04-01

    FeCo epitaxial films were prepared on MgO(100), MgO(110), and MgO(111) substrates by ultrahigh vacuum molecular beam epitaxy. FeCo thin films with (100), (211), and (110) planes parallel to the substrate surface grow on respective MgO substrates. FeCo/MgO interface structures are studied by high-resolution cross-sectional transmission electron microscopy and the epitaxial growth mechanism is discussed. Atomically sharp boundaries are recognized between the FeCo thin films and the MgO substrates where misfit dislocations are introduced in the FeCo thin films presumably to decrease the lattice misfits. Misfit dislocations are observed approximately every 9 and 1.4 nm in FeCo thin film at the FeCo/MgO(100) and the FeCo/MgO(110) interfaces, respectively. X-ray diffraction analysis indicates that the lattice spacing measured parallel to the single-crystal substrate surfaces are in agreement within 0.1% with those of the respective bulk values of Fe{sub 50}Co{sub 50} alloy crystal, showing that the FeCo film strain is very small. The magnetic anisotropies of these epitaxial films basically reflect the magnetocrystalline anisotropy of bulk FeCo alloy crystal.

  6. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    SciTech Connect (OSTI)

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response of the non-circular skyrmions depends on the direction of external currents.

  7. Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Shi-Zeng; Saxena, Avadh

    2015-11-03

    Here we study the equilibrium and dynamical properties of skyrmions in thin films of chiral magnets with oblique magnetic field. The shape of an individual skyrmion is non-circular and the skyrmion density decreases with the tilt angle from the normal of films. As a result, the interaction between two skyrmions depends on the relative angle between them in addition to their separation. The triangular lattice of skyrmions under a perpendicular magnetic field is distorted into a centered rectangular lattice for a tilted magnetic field. For a low skyrmion density, skyrmions form a chain like structure. Lastly, the dynamical response ofmore » the non-circular skyrmions depends on the direction of external currents.« less

  8. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect (OSTI)

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  9. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography

    SciTech Connect (OSTI)

    Zhang, D.; Ray, N. M.; Petuskey, W. T.; Smith, D. J.; McCartney, M. R.

    2014-08-28

    We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (?90?C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

  10. Nanostructured columnar heterostructures of TiO{sub 2} and Cu{sub 2}O enabled by a thin-film self-assembly approach: Potential for photovoltaics

    SciTech Connect (OSTI)

    Polat, zgr; Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996 ; Aytug, Tolga; Lupini, Andrew R.; Paranthaman, Parans M.; Ertugrul, Mehmet; Bogorin, Daniela F.; Meyer, Harry M.; Wang, Wei; Pennycook, Stephen J.; Christen, David K.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Material self-assembly in phase-separated oxides is exploited. ? Three-dimensionally nanostructured epitaxial films are grown using sputtering. ? Films are composed of well-ordered oriented nanopillars of n-type TiO{sub 2} and p-type Cu{sub 2}O. ? Observed interfaces at adjacent TiO{sub 2}Cu{sub 2}O columns are nearly atomically distinct. ? Absorption profile of the composite film captures a wide range of the solar spectrum. -- Abstract: Significant efforts are being devoted to the development of multifunctional thin-film heterostructures and nanostructured material architectures for components with novel applications of superconductivity, multiferroicity, solar photocatalysis and energy conversion. In particular, nanostructured assemblies with well-defined geometrical shapes have emerged as possible high efficiency and economically viable alternatives to planar photovoltaic thin-film architectures. By exploiting phase-separated self-assembly, here we present advances in a vertically oriented two-component system that offers potential for future development of nanostructured thin film solar cells. Through a single-step deposition by magnetron sputtering, we demonstrate growth of an epitaxial, composite film matrix formed as self-assembled, well ordered, phase segregated, and oriented nanopillars of n-type TiO{sub 2} and p-type Cu{sub 2}O. The composite films were structurally characterized to atomic resolution by a variety of analytical tools, and evaluated for preliminary optical properties using absorption measurements. We find nearly atomically distinct TiO{sub 2}Cu{sub 2}O interfaces (i.e., needed for possible active pn junctions), and an absorption profile that captures a wide range of the solar spectrum extending from ultraviolet to visible wavelengths. This high-quality materials system could lead to photovoltaic devices that can be optimized for both incident light absorption and carrier collection.

  11. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    SciTech Connect (OSTI)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  12. Thin film deposition by electric and magnetic crossed-field diode sputtering. [Patent application

    DOE Patents [OSTI]

    Welch, K.M.

    1975-04-04

    Applying a coating of titanium nitride to a klystron window by means of a cross-field diode sputtering array is described. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent to a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate, and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thickness. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multifactoring under operating conditions of the components.

  13. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect (OSTI)

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  14. Quantum anomalous Hall effect and a nontrivial spin-texture in ultra-thin films of magnetic topological insulators

    SciTech Connect (OSTI)

    Duong, Le Quy; Das, Tanmoy; Feng, Y. P.; Lin, Hsin

    2015-05-07

    We study the evolution of quantum anomalous Hall (QAH) effect for a Z{sub 2} topological insulator (TI) thin films in a proximity induced magnetic phase by a realistic layered k·p model with interlayer coupling. We examine three different magnetic configurations in which ferromagnetic (FM) layer(s) is added either from one side (FM-TI), from both sides (FM-TI-FM), or homogeneously distributed (magnetically doped) in a TI slab. We map out the thickness-dependent topological phase diagram under various experimental conditions. The critical magnetic exchange energy for the emergence of QAH effect in the latter two cases decreases monotonically with increasing number of quintuple layers (QLs), while it becomes surprisingly independent of the film thickness in the former case. The gap size of the emergent QAH insulator depends on the non-magnetic “parent” gap of the TI thin film and is tuned by the FM exchange energy, opening a versatile possibility to achieve room-temperature QAH insulator in various topological nanomaterials. Finally, we find that the emergent spin-texture in the QAH effect is very unconventional, non-“hedgehog” type; and it exhibits a chiral out-of-plane spin-flip texture within the same valence band which is reminiscent of dynamical “skyrmion” pattern, except our results are in the momentum space.

  15. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging...

  16. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in...

  17. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  18. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M.; Sterbinsky, G.; Assaf, B.; Arena, D.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)

  19. Optimization of synthesis protocols to control the nanostructure and the morphology of metal oxide thin films for memristive applications

    SciTech Connect (OSTI)

    Baldi, G. Bosi, M.; Attolini, G.; Berzina, T.; Mosca, R.; Ponraj, J. S.; Iannotta, S.

    2015-03-10

    We propose a multi-technique approach based on in-vacuum synthesis of metal oxides to optimize the memristive properties of devices that use a metal oxide thin film as insulating layer. Pulsed Microplasma Cluster Source (PMCS) is based on supersonic beams seeded by clusters of the metal oxide. Nanocrystalline TiO{sub 2} thin films can be grown at room temperature, controlling the oxide stoichiometry from titanium metal up to a significant oxygen excess. Pulsed Electron beam Deposition (PED) is suitable to grow crystalline thin films on large areas, a step towards producing device arrays with controlled morphology and stoichiometry. Atomic Layer Deposition (ALD) is a powerful technique to grow materials layer-by-layer, finely controlling the chemical and structural properties of the film up to thickness of 50-80 nm. We will present a few examples of metal-insulator-metal structures showing a pinched hysteresis loop in their current-voltage characteristic. The structure, stoichiometry and morphology of the metal oxide layer, either aluminum oxide or titanium dioxide, is investigated by means of scanning electron microscopy (SEM) and by Raman scattering.

  20. Epitaxial Mn{sub 2.5}Ga thin films with giant perpendicular magnetic anisotropy for spintronic devices

    SciTech Connect (OSTI)

    Wu Feng; Mizukami, Shigemi; Watanabe, Daisuke; Miyazaki, Terunobu; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo

    2009-03-23

    We report on epitaxial growth and magnetic properties of Mn{sub 2.5}Ga thin films, which were deposited on Cr/MgO single crystal substrates by magnetron sputtering. X-ray diffraction results revealed the epitaxial relationships as Mn{sub 2.5}Ga(001)[100] parallel Cr(001)[110] parallel MgO(001)[100]. The presence of (002) and (011) superlattice peaks indicates that the films were crystallized into DO{sub 22} ordered structures. The perpendicular magnetic anisotropy (PMA) properties were found to be related to the extent of DO{sub 22} chemical ordering. A giant PMA (K{sub u}{sup eff}=1.2x10{sup 7} erg/cm{sup 3}) and low saturation magnetization (M{sub s}=250 emu/cm{sup 3}) can be obtained for the film with highest chemical ordering parameter (S=0.8)

  1. Influence of defects on the structural and magnetic properties of multifunctional La2NiMnO6 thin films

    SciTech Connect (OSTI)

    Guo, HZ; Burgess, J; Ada, E; Street, S; Gupta, A.; Iliev, M N; Kellock, A J; Magen Dominguez, Cesar; Varela del Arco, Maria; Pennycook, Stephen J

    2008-01-01

    Thin films of the double perovskite La2NiMnO6 (LNMO) have been grown on various lattice-matched substrates (SrTiO3, LaAlO3, NdGaO3 and MgO) by pulsed laser deposition under varying oxygen background pressure (25 - 800 mTorr). The out-of-plane lattice constant of the LNMO film initially decreases with increasing pressure, likely caused by a reduction in the defect concentration and improved structural ordering, before leveling off at higher pressures. Scanning transmission electron microscopy results show that the films are epitaxial, and the interface is sharp and coherent. While very few defects are observed by STEM in a film grown at high oxygen pressure (800 mTorr), a film grown at a lower pressure (100 mTorr) shows the formation of defects that extend throughout the thickness except for a very thin layer near the interface. The Raman spectra of the films are dominated by two broad peaks at around 540 cm-1 and 685 cm-1, which are assigned to the antisymmetric stretching (AS) and symmetric stretching (S) modes of MnO6 and NiO6 octahedra, respectively. The Raman peaks of the LNMO thin films grown in 800 mTorr background O2 are blue shifted in comparison to those of LNMO bulk, and the shift increases with decreasing film thickness, indicating the increased influence of strain. The critical thickness for strain relaxation as determined from the Raman spectra is between 40 - 80 nm. The strain is observed to have a negligible influence on the magnetic properties for films grown at high oxygen pressures. However, films grown at low pressures exhibit degraded magnetic properties, which can be attributed to a combination of B-site cation disorder and an increase in the concentration of Mn3+ and Ni3+ Jahn-Teller ions caused by oxygen defects. With increasing oxygen pressure during growth, the paramagnetic-ferromagnetic transition temperature (~280 K) gets sharper and the saturation magnetization at low temperatures is enhanced. Based on electron energy loss spectroscopy

  2. Evidence of martensitic phase transitions in magnetic Ni-Mn-In thin films

    SciTech Connect (OSTI)

    Sokolov, A.; Zhang, Le; Dubenko, I.; Samanta, T.; Ali, N.; Stadler, S.

    2013-02-18

    Ni{sub 50}Mn{sub 35}In{sub 15} Heusler alloy thin films (with thicknesses of about 10 nm) have been grown on single crystal MgO and SrTiO{sub 3} (STO) (100) substrates using a laser-assisted molecular beam epitaxy method. Films of mixed austenitic and martensitic phases and of pure martensitic phase have been detected for those grown on MgO and STO substrates, respectively. Thermomagnetic curves were measured using a SQUID magnetometer and are consistent with those of off-stoichiometric In-based bulk Heusler alloys, including a martensitic transition at T = 315 K for films grown on MgO. The differences in the properties of the films grown on MgO and STO are discussed.

  3. Ferromagnetism of magnetically doped topological insulators in Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films

    SciTech Connect (OSTI)

    Ni, Y.; Zhang, Z. Hadimani, R. L.; Tuttle, G.; Jiles, D. C.; Nlebedim, I. C.

    2015-05-07

    We investigated the effect of magnetic doping on magnetic and transport properties of Bi{sub 2}Te{sub 3} thin films. Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films with x = 0.03, 0.14, and 0.29 were grown epitaxially on mica substrate with low surface roughness (∼0.4 nm). It is found that Cr is an electron acceptor in Bi{sub 2}Te{sub 3} and increases the magnetization of Cr{sub x}Bi{sub 2−x}Te{sub 3}. When x = 0.14 and 0.29, ferromagnetism appears in Cr{sub x}Bi{sub 2−x}Te{sub 3} thin films, where anomalous Hall effect and weak localization of magnetoconductance were observed. The Curie temperature, coercivity, and remnant Hall resistance of thin films increase with increasing Cr concentration. The Arrott-Noakes plot demonstrates that the critical mechanism of the ferromagnetism can be described better with 3D-Heisenberg model than with mean field model. Our work may benefit for the practical applications of magnetic topological insulators in spintronics and magnetoelectric devices.

  4. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the

  5. Effects of ion and nanosecond-pulsed laser co-irradiation on the surface nanostructure of Au thin films on SiO{sub 2} glass substrates

    SciTech Connect (OSTI)

    Yu, Ruixuan; Meng, Xuan; Takayanagi, Shinya; Shibayama, Tamaki Yatsu, Shigeo; Ishioka, Junya; Watanabe, Seiichi

    2014-04-14

    Ion irradiation and short-pulsed laser irradiation can be used to form nanostructures on the surfaces of substrates. This work investigates the synergistic effects of ion and nanosecond-pulsed laser co-irradiation on surface nanostructuring of Au thin films deposited under vacuum on SiO{sub 2} glass substrates. Gold nanoparticles are randomly formed on the surface of the substrate after nanosecond-pulsed laser irradiation under vacuum at a wavelength of 532 nm with a repetition rate of 10 Hz and laser energy density of 0.124 kJ/m{sup 2}. Gold nanoparticles are also randomly formed on the substrate after 100-keV Ar{sup +} ion irradiation at doses of up to 3.8 × 10{sup 15} ions/cm{sup 2}, and nearly all of these nanoparticles are fully embedded in the substrate. With increasing ion irradiation dose (number of incident laser pulses), the mean diameter of the Au nanoparticles decreases (increases). However, Au nanoparticles are only formed in a periodic surface arrangement after co-irradiation with 6000 laser pulses and 3.8 × 10{sup 15} ions/cm{sup 2}. The periodic distance is ∼540 nm, which is close to the wavelength of the nanosecond-pulsed laser, and the mean diameter of the Au nanoparticles remains at ∼20 nm with a relatively narrow distribution. The photoabsorption peaks of the ion- or nanosecond-pulsed laser-irradiated samples clearly correspond to the mean diameter of Au nanoparticles. Conversely, the photoabsorption peaks for the co-irradiated samples do not depend on the mean nanoparticle diameter. This lack of dependence is likely caused by the periodic nanostructure formed on the surface by the synergistic effects of co-irradiation.

  6. Perpendicularly magnetized {tau}-MnAl (001) thin films epitaxied on GaAs

    SciTech Connect (OSTI)

    Nie, S. H.; Zhu, L. J.; Lu, J.; Pan, D.; Wang, H. L.; Yu, X. Z.; Xiao, J. X.; Zhao, J. H.

    2013-04-15

    Perpendicularly magnetized {tau}-MnAl films have been epitaxied on GaAs (001) by molecular-beam epitaxy. Crystalline quality and magnetic properties of the samples were strongly dependent on growth temperature. The highest coercivity of 10.7 kOe, saturation magnetization of 361.4 emu/cm{sup 3}, perpendicular magnetic anisotropy constant of 13.65 Merg/cm{sup 3}, and magnetic energy product of 4.44 MGOe were achieved. These tunable magnetic properties make MnAl films valuable as excellent and cost-effective alternative for not only high density perpendicular magnetic recording storage and spintronics devices but also permanent magnets.

  7. Process For Direct Integration Of A Thin-Film Silicon P-N Junction Diode With A Magnetic Tunnel Junction

    DOE Patents [OSTI]

    Toet, Daniel; Sigmon, Thomas W.

    2005-08-23

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  8. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOE Patents [OSTI]

    Toet, Daniel; Sigmon, Thomas W.

    2003-01-01

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  9. Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction

    DOE Patents [OSTI]

    Toet, Daniel; Sigmon, Thomas W.

    2004-12-07

    A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.

  10. FePtCu alloy thin films: Morphology, L1{sub 0} chemical ordering, and perpendicular magnetic anisotropy

    SciTech Connect (OSTI)

    Brombacher, C.; Schletter, H.; Daniel, M.; Matthes, P.; Joehrmann, N.; Makarov, D.; Hietschold, M.; Albrecht, M.; Maret, M.

    2012-10-01

    Rapid thermal annealing was applied to transform sputter-deposited Fe{sub 51}Pt{sub 49}/Cu bilayers into L1{sub 0} chemically ordered ternary (Fe{sub 51}Pt{sub 49}){sub 100-x}Cu{sub x} alloys with (001) texture on amorphous SiO{sub 2}/Si substrates. It was found that for thin film samples, which were processed at 600 Degree-Sign C for 30 s, the addition of Cu strongly favors the L1{sub 0} ordering and (001) texture formation. Furthermore, it could be revealed by transmission electron microscopy and electron backscatter diffraction that the observed reduction of the ordering temperature with Cu content is accompanied by an increased amount of nucleation sites forming L1{sub 0} ordered grains. The change of the structural properties with Cu content and annealing temperature is closely related to the magnetic properties. While an annealing temperature of 800 Degree-Sign C induces strong perpendicular magnetic anisotropy (PMA) in binary Fe{sub 51}Pt{sub 49} films, the addition of Cu systematically reduces the PMA. However, due to the enhancement of both the A1-L1{sub 0} phase transformation and the development of the (001) texture with increasing Cu content, lowering of the annealing temperature leads to a shift of the maximum perpendicular magnetic anisotropy towards alloys with higher Cu content. Thus, for an annealing temperature of 600 Degree-Sign C, the highest perpendicular magnetic anisotropy energy is found for the (Fe{sub 51}Pt{sub 49}){sub 91}Cu{sub 9} alloy. The smooth surface morphology, adjustable PMA, and high degree of intergranular exchange coupling make these films suitable for post-processing required for specific applications such as for sensorics or magnetic data storage.

  11. Structural and magnetic properties of magnetron sputtered Ni-Mn-Sn ferromagnetic shape memory alloy thin films

    SciTech Connect (OSTI)

    Vishnoi, Ritu; Kaur, Davinder

    2010-05-15

    In the present study, structural and magnetic properties of Mn-rich, off-stoichiometric, nanocrystalline Ni-Mn-Sn ferromagnetic shape memory alloy thin films, grown on Si (100) substrates at 550 deg. C by dc magnetron sputtering have been systematically investigated. The crystallization, surface morphology, and structural features were studied using x-ray diffraction, atomic force microscopy, and field emission scanning electron microscopy. The structural transition from austenite to martensite was observed with an increase of Mn content. Austenitic phase with mixed L2{sub 1}/A2+B2 structure has been observed at room temperature in Ni{sub 52.6}Mn{sub 23.7}Sn{sub 23.6} (S{sub 1}) and Ni{sub 51.5}Mn{sub 26.1}Sn{sub 22.2} (S{sub 2}) films, while those with composition of Ni{sub 58.9}Mn{sub 28.0}Sn{sub 13.0} (S{sub 3}) and Ni{sub 58.3}Mn{sub 29.0}Sn{sub 12.6} (S{sub 4}) show martensitic phase with 14M modulated monoclinic structures. Field induced martensite-austenite transformation has been observed in magnetization studies using superconducting quantum interference device magnetometer. Temperature dependent magnetization measurements demonstrate the influence of magnetic field on the structural phase transition temperature. The investigations reveal an increase of martensitic transformation temperature (T{sub M}) with corresponding increase in substitution of Mn. The films exhibit ferromagnetic behavior at low temperatures below Curie temperature (T{sub C}). The decrease in saturation moment with increasing Mn content, indicates the existence of antiferromagnetic correlations within ferromagnetic matrix.

  12. Magnetic properties of in-plane oriented barium hexaferrite thin films prepared by direct current magnetron sputtering

    SciTech Connect (OSTI)

    Zhang, Xiaozhi; Yue, Zhenxing Meng, Siqin; Yuan, Lixin

    2014-12-28

    In-plane c-axis oriented Ba-hexaferrite (BaM) thin films were prepared on a-plane (112{sup }0) sapphire (Al{sub 2}O{sub 3}) substrates by DC magnetron sputtering followed by ex-situ annealing. The DC magnetron sputtering was demonstrated to have obvious advantages over the traditionally used RF magnetron sputtering in sputtering rate and operation simplicity. The sputtering power had a remarkable influence on the Ba/Fe ratio, the hematite secondary phase, and the grain morphology of the as-prepared BaM films. Under 80?W of sputtering power, in-plane c-axis highly oriented BaM films were obtained. These films had strong magnetic anisotropy with high hysteresis loop squareness (M{sub r}/M{sub s} of 0.96) along the in-plane easy axis and low M{sub r}/M{sub s} of 0.03 along the in-plane hard axis. X-ray diffraction patterns and pole figures revealed that the oriented BaM films grew via an epitaxy-like growth process with the crystallographic relationship BaM (101{sup }0)//?-Fe{sub 2}O{sub 3}(112{sup }0)//Al{sub 2}O{sub 3}(112{sup }0)

  13. Porous thin films

    DOE Patents [OSTI]

    Xu, Ting

    2015-11-17

    Compositions of porous thin films and methods of making are provided. The methods involve self-assembly of a cyclic peptide in the presence of a block copolymer.

  14. Change in the magnetic structure of (Bi,Sm)FeO{sub 3} thin films at the morphotropic phase boundary probed by neutron diffraction

    SciTech Connect (OSTI)

    Maruyama, Shingo; Anbusathaiah, Varatharajan; Takeuchi, Ichiro; Fennell, Amy; Enderle, Mechthild; Ratcliff, William D.

    2014-11-01

    We report on the evolution of the magnetic structure of BiFeO{sub 3} thin films grown on SrTiO{sub 3} substrates as a function of Sm doping. We determined the magnetic structure using neutron diffraction. We found that as Sm increases, the magnetic structure evolves from a cycloid to a G-type antiferromagnet at the morphotropic phase boundary, where there is a large piezoelectric response due to an electric-field induced structural transition. The occurrence of the magnetic structural transition at the morphotropic phase boundary offers another route towards room temperature multiferroic devices.

  15. Anisotropy of electrical and magnetic transport properties of epitaxial SrRuO{sub 3} thin films

    SciTech Connect (OSTI)

    Ning, X. K.; Wang, Z. J. Zhang, Z. D.

    2015-03-07

    SrRuO{sub 3} (SRO) thin films with different thickness (2–70 nm) have been grown on (001), (110), and (111) SrTiO{sub 3} substrates. The (001)-SRO films (2–8 nm) exhibited smooth flat surfaces whereas the (110)- and (111)-SRO films featured a faceted island structure. Room temperature resistivity and residual resistivity are the lowest for the (111)-SRO films (30–70 nm). Over all thicknesses, we observed enhanced magnetization in the (111)-SRO films (∼4 μ{sub B}/Ru) compared with that for the (001)- and (110)-SRO films (∼2 μ{sub B}/Ru and ∼3 μ{sub B}/Ru, respectively), suggesting a low-spin state t{sub 2g}(3↑,1↓), high-spin state t{sub 2g}(3↑)e{sub g}(1↑), and mixed low- and high-spin states for the (001)-, (111)-, and (110)-SRO films, respectively. The dependence of resistivity on temperatures near T{sub C} follows a power law with exponent β = 0.312 and β = 0.363 for the (110)- and (111)-SRO films, respectively. These critical exponents are consistent with magnetic data with scaling law M = C (T{sub C} − T){sup β}. At low temperatures, dM/dT and dρ/dT show a linear relationship in the temperature range for the Fermi liquid. These results suggest that the intrinsic electrical and magnetic transport properties are coupled.

  16. X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging of the Dynamic Magnetic Vortex Core Deformation Print Magnetic thin-film nanostructures can exhibit a magnetic vortex state in which the magnetization vectors lie in...

  17. Imaging magnetic domain structure in sub-500 nm thin film elements

    SciTech Connect (OSTI)

    Kirk, K. J.; McVitie, S.; Chapman, J. N.; Wilkinson, C. D. W.

    2001-06-01

    Magnetic imaging in the transmission electron microscope (TEM) has been used to examine submicron elements with the aim of discovering down to what element size complex domain patterns can form. The elements were squares, circles, triangles, and pentagons in the size range 100{endash}500 nm and were made from 36 nm Co films or 8 nm Ni{sub 80}Fe{sub 20} (NiFe) with in-plane magnetization. The magnetic domain structures in these elements were imaged at high resolution using the differential phase contrast imaging mode in a TEM. Nonuniform magnetization structures were seen in the images. Vortices were present at remanence in all shapes of 36-nm-thick Co elements down to 100 nm size and in circular NiFe elements down to 116 nm diameter. Triangular NiFe elements did not have a vortex state at remanence, instead the magnetization curved round within the element but did not achieve complete flux closure. In simulations of square and circular NiFe elements, it was found that defects at the edges of the elements encouraged reversal by a vortex mechanism, whereas for simulated elements with no defects, reversal was by rotation and occurred at much lower fields. {copyright} 2001 American Institute of Physics.

  18. Electric and magnetic behaviors observed in NiO-based thin films under light-irradiation

    SciTech Connect (OSTI)

    Luo, Yi-Dong; Song, Kenan; Shun, Li; Gao, Junqi; Xu, Ben, E-mail: xuben@mail.tsinghua.edu.cn, E-mail: linyh@mail.tsinghua.edu.cn; Lin, Yuan-Hua, E-mail: xuben@mail.tsinghua.edu.cn, E-mail: linyh@mail.tsinghua.edu.cn; Nan, Ce-Wen; Liu, Wei [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-09-07

    We report the room-temperature ferromagnetic properties that can be tuned by light irradiation in the Li and Mn co-doped NiO films (LMNO) grown by the spinning coating. The optical tunable magnetic behavior is enhanced by the increase of the Li doping concentration. First-principle calculations reveal that the Li doping plays key roles in the optical tuned magnetic behavior, which brings a 3d-like impurity state to enhance a significant hybridization between the Mn{sup 3+} 3d state and the impurity band, thus strengthening the ferromagnetic coupling effects. Additionally, it can tune the band gap of the LMNO films and produce more holes under the light irradiation, enhancing the optical tuned magnetic behavior.

  19. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  20. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  1. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  2. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  3. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  4. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the

  5. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  6. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging

  7. Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films

    SciTech Connect (OSTI)

    Li, Yueqing; Liu, E. K.; Wu, G. H.; Wang, Wenhong; Liu, Zhongyuan

    2014-12-14

    We report on a systematical study of the structure, magnetism, and magnetotransport behavior of the hexagonal MnNiGa films deposited on thermally oxidized Si (001) substrates by magnetron sputtering. X-ray diffractions reveal that all the films deposited at different temperatures crystallized in hexagonal Ni{sub 2}In-type structure (space group P6{sub 3}/mmc). Scanning electron microscopy observations show that the surface morphology of the films varies with deposition temperature, and energy dispersive spectroscopy analysis shows compositions of the films remain nearly unchanged, independent of the deposition temperature. Magnetic measurements indicate that all films are ferromagnetic and exhibit a magnetic anisotropy behavior. The magnetoresistance (MR) exhibits a negative temperature- and field-dependent behavior. The possible origin of the negative MR is discussed. Furthermore, we found that the Hall effect is dominated by an anomalous Hall effect (AHE) only due to skew scattering independent of the deposition temperature of films. Moreover, the anomalous Hall resistivity presents a non-monotonously temperature-dependent behavior.

  8. Strain relaxation and enhanced perpendicular magnetic anisotropy in BiFeO{sub 3}:CoFe{sub 2}O{sub 4} vertically aligned nanocomposite thin films

    SciTech Connect (OSTI)

    Zhang, Wenrui; Jiao, Liang; Li, Leigang; Jian, Jie; Khatkhatay, Fauzia; Chu, Frank; Chen, Aiping; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2014-02-10

    Self-assembled BiFeO{sub 3}:CoFe{sub 2}O{sub 4} (BFO:CFO) vertically aligned nanocomposite thin films have been fabricated on SrTiO{sub 3} (001) substrates using pulsed laser deposition. The strain relaxation mechanism between BFO and CFO with a large lattice mismatch has been studied by X-ray diffraction and transmission electron microscopy. The as-prepared nanocomposite films exhibit enhanced perpendicular magnetic anisotropy as the BFO composition increases. Different anisotropy sources have been investigated, suggesting that spin-flop coupling between antiferromagnetic BFO and ferrimagnetic CFO plays a dominant role in enhancing the uniaxial magnetic anisotropy.

  9. Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers

    SciTech Connect (OSTI)

    Wei, Yajun Akansel, Serkan; Thersleff, Thomas; Brucas, Rimantas; Lansaker, Pia; Leifer, Klaus; Svedlindh, Peter; Harward, Ian; Celinski, Zbigniew; Ranjbar, Mojtaba; Dumas, Randy K.; Jana, Somnath; Pogoryelov, Yevgen; Karis, Olof; Åkerman, Johan

    2015-01-26

    Magnetic coupling in trilayer films of FeNi/Cu/FeCo deposited on Si/SiO{sub 2} substrates have been studied. While the thicknesses of the FeNi and FeCo layers were kept constant at 100 Å, the thickness of the Cu spacer was varied from 5 to 50 Å. Both hysteresis loop and ferromagnetic resonance results indicate that all films are ferromagnetically coupled. Micromagnetic simulations well reproduce the ferromagnetic resonance mode positions measured by experiments, enabling the extraction of the coupling constants. Films with a thin Cu spacer are found to be strongly coupled, with an effective coupling constant of 3 erg/cm{sup 2} for the sample with a 5 Å Cu spacer. The strong coupling strength is qualitatively understood within the framework of a combined effect of Ruderman-Kittel-Kasuya-Yosida and pinhole coupling, which is evidenced by transmission electron microscopy analysis. The magnetic coupling constant surprisingly decreases exponentially with increasing Cu spacer thickness, without showing an oscillatory thickness dependence. This is partially connected to the substantial interfacial roughness that washes away the oscillation. The results have implications on the design of multilayers for spintronic applications.

  10. Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sol-gel-derived Epitaxial Nanocomposite Thin Films with Large Sharp Magnetoelectric Effect Home Author: B. Liu, T. Sun, J. He, V. P. Dravid Year: 2010 Abstract: Nanostructures of...

  11. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  12. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  13. Effect of Dual-Function Nano-Structured Silicon Oxide Thin Film on Multi-Junction Solar Cells

    SciTech Connect (OSTI)

    Yan, B.; Sivec, L.; Yue, G.; Jiang, C. S.; Yang, J.; Guha, S.

    2011-01-01

    We present our recent study of using nano-structured hydrogenated silicon oxide films (nc-SiO{sub x}:H) as a dual-function layer in multi-junction solar cells. The nc-SiO{sub x}:H films were deposited using very high frequency glow discharge of a SiH{sub 4} (or Si{sub 2}H{sub 6}), CO{sub 2}, PH{sub 3}, and H{sub 2} gas mixture. By optimizing deposition parameters, we obtained 'dual function' nc-SiO{sub x}:H material characterized by a conductivity suitable for use as an n layer and optical properties suitable for use as an inter-reflection layer. We tested the nc-SiO{sub x}:H by replacing the normal n-type material in the tunnel junction of a multi-junction structure. The advantage of the dual-function nc-SiO{sub x}:H layer is twofold; one is to simplify the cell structure, and the other is to reduce any optical loss associated with the inter-reflection layer. Quantum efficiency measurements show the gain in top cell current is equal to or greater than the loss in bottom cell current for a-Si:H/nc-Si:H structures. In addition, a thinner a-Si:H top cell with the nc-SiO{sub x}:H n layer improves the top-cell stability, thereby providing higher stabilized solar cell efficiency. We also used the dual-function layer between the middle and the bottom cells in a-Si:H/a-SiGe:H/nc-Si:H triple-junction structures. The gain in the middle cell current is {approx}1.0 mA/cm{sup 2}, leading to an initial active-area efficiency of 14.8%.

  14. Thin film tritium dosimetry

    DOE Patents [OSTI]

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  15. Multifunctional thin film surface

    DOE Patents [OSTI]

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  16. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect (OSTI)

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  17. Multi-jump magnetic switching in ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20} thin films

    SciTech Connect (OSTI)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-08-07

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20}(5–75 nm) thin films grown on Si/amorphous SiO{sub 2} are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices.

  18. Mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films

    SciTech Connect (OSTI)

    Fu, Yu E-mail: cangcangzhulin@gmail.com; Meckenstock, R.; Farle, M.; Barsukov, I.; Lindner, J.; Raanaei, H.; Hjörvarsson, B.

    2014-02-17

    The mechanism of tailored magnetic anisotropy in amorphous Co{sub 68}Fe{sub 24}Zr{sub 8} thin films was investigated by ferromagnetic resonance (FMR) on samples deposited without an applied magnetic field, with an out-of-plane field and an in-plane field. Analysis of FMR spectra profiles, high frequency susceptibility calculations, and statistical simulations using a distribution of local uniaxial magnetic anisotropy reveal the presence of atomic configurations with local uniaxial anisotropy, of which the direction can be tailored while the magnitude remains at an intrinsically constant value of 3.0(2) kJ/m{sup 3}. The in-plane growth field remarkably sharpens the anisotropy distribution and increases the sample homogeneity. The results benefit designing multilayer spintronic devices based on highly homogeneous amorphous layers with tailored magnetic anisotropy.

  19. The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe{sub 16}N{sub 2} thin films

    SciTech Connect (OSTI)

    Yang, Meiyin; Department of Electrical and Computer Engineering, The Center for Micromagnetics and Information Technologies , University of Minnesota, 200 Union St SE, Minneapolis, Minnesota 55455 ; Allard, Lawrence F.; Ji, Nian; Zhang, Xiaowei; Wang, Jian-Ping; Yu, Guang-Hua

    2013-12-09

    Partially ordered Fe-N thin films were grown by a facing target sputtering process on the surface of a (001) Ag underlayer on MgO substrates. It was confirmed by x-ray diffraction that the Ag layer enlarged the in-plane lattice of the Fe-N thin films. Domains of the ordered α″-Fe{sub 16}N{sub 2} phase within an epitaxial (001) α′-Fe{sub x}N phase were identified by electron diffraction and high-resolution aberration-corrected scanning transmission electron microscopy (STEM) methods. STEM dark-field and bright-field images showed the fully ordered structure of the α″-Fe{sub 16}N{sub 2} at the atomic column level. High saturation magnetization(Ms) of 1890 emu/cc was obtained for α″-Fe{sub 16}N{sub 2} on the Ag underlayer, while only 1500 emu/cc was measured for Fe-N on the Fe underlayer. The results are likely due to a tensile strain induced in the α″-Fe{sub 16}N{sub 2} phase by the Ag structure at the interface.

  20. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo{sub 2}O{sub 5.5+?} highly epitaxial thin films

    SciTech Connect (OSTI)

    Ruiz-Zepeda, F.; Ma, C.; Bahena Uribe, D.; Cantu-Valle, J.; Wang, H.; Xu, Xing; Yacaman, M. J.; Ponce, A.; Chen, C.; Lorenz, B.; Jacobson, A. J.; Chu, P. C. W.

    2014-01-14

    A giant magnetoresistance effect (?46% at 20?K under 7?T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo{sub 2}O{sub 5.5+?} (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100){sub LBCO} || (001){sub MgO} and [001]{sub LBCO} || [100]{sub MgO} or [010]{sub MgO}. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and by atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.

  1. Structural, magnetic, and electronic properties of GdTiO{sub 3} Mott insulator thin films grown by pulsed laser deposition

    SciTech Connect (OSTI)

    Grisolia, M. N.; Bruno, F. Y.; Sando, D.; Jacquet, E.; Barthlmy, A.; Bibes, M.; Zhao, H. J.; Chen, X. M.; Bellaiche, L.

    2014-10-27

    We report on the optimization process to synthesize epitaxial thin films of GdTiO{sub 3} on SrLaGaO{sub 4} substrates by pulsed laser deposition. Optimized films are free of impurity phases and are fully strained. They possess a magnetic Curie temperature T{sub C}?=?31.8?K with a saturation magnetization of 4.2??{sub B} per formula unit at 10?K. Transport measurements reveal an insulating response, as expected. Optical spectroscopy indicates a band gap of ?0.7?eV, comparable to the bulk value. Our work adds ferrimagnetic orthotitanates to the palette of perovskite materials for the design of emergent strongly correlated states at oxide interfaces using a versatile growth technique such as pulsed laser deposition.

  2. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  3. Epitaxial thin films

    DOE Patents [OSTI]

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  4. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    SciTech Connect (OSTI)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  5. Thin-film optical initiator

    DOE Patents [OSTI]

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  6. Photocatalytic and magnetic behaviors of BiFeO{sub 3} thin films deposited on different substrates

    SciTech Connect (OSTI)

    Xu, Hao-Min; Wang, Huan-Chun; Shen, Yang; Lin, Yuan-Hua Nan, Ce-Wen

    2014-11-07

    Single phase polycrystalline BiFeO{sub 3} thin films were grown on three different substrates via chemical solution deposition. Our results indicate that the band gap of as-prepared BiFeO{sub 3} films can be tuned (2.02–2.67 eV) by the grain size effects caused by the substrates. These BiFeO{sub 3} films show good photocatalytic properties by the degradation of Congo red solution under visible-light irradiation (λ{sub  }> 400 nm). Additionally, weak ferromagnetic behaviors can be observed at room temperature in all the films, which should be correlated to the destruction of the incommensurate cycloid spin structure of BiFeO{sub 3} phase and the coexistence of Fe{sup 3+} and Fe{sup 2+} as confirmed by X-ray photoelectron spectroscopy.

  7. Pauli-limited effect in the magnetic phase diagram of FeSe{sub x}Te{sub 1−x} thin films

    SciTech Connect (OSTI)

    Zhuang, J. C.; Li, Z.; Xu, X.; Wang, L.; Yeoh, W. K.; Wang, X. L.; Du, Y. E-mail: zxshi@seu.edu.cn Dou, S. X. E-mail: zxshi@seu.edu.cn; Xing, X. Z.; Shi, Z. X. E-mail: zxshi@seu.edu.cn

    2015-11-30

    We present a detailed investigation on the doping dependence of the upper critical field H{sub c2}(T) of FeSe{sub x}Te{sub 1−x} thin films (0.18 ≤ x ≤ 0.90) by measuring the electrical resistivity as a function of magnetic field. The H{sub c2}(T) curves exhibit a downturn behavior with decreasing temperature in all the samples, owing to the Pauli-limited effect (spin paramagnetic effect). The Pauli-limited effect on the upper critical field can be monotonically modulated by variation of the Se/Te composition. Our results show that Te-doping induced disorder and excess Fe atoms give rise to enhancement of the Pauli-limited effect.

  8. Thin film composite electrolyte

    DOE Patents [OSTI]

    Schucker, Robert C. (The Woodlands, TX)

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  9. Influence of Mn concentration on magnetic topological insulator MnxBi2−xTe3 thin-film Hall-effect sensor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that ofmore »the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less

  10. Influence of Mn concentration on magnetic topological insulator MnxBi2−xTe3 thin-film Hall-effect sensor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that ofmore » the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less

  11. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films

    SciTech Connect (OSTI)

    Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.; Coldea, A. I.; Hesjedal, T.; Baker, A. A.; Harrison, S. E.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Laan, G. van der

    2014-12-15

    We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ?7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 ?{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 ?{sub B}/Mn from surface-sensitive XMCD. At ?2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

  12. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  13. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  14. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  15. Effect of deposition parameters and strontium doping on characteristics of nanostructured ZnO thin film by chemical bath deposition method

    SciTech Connect (OSTI)

    Sheeba, N. H.; Naduvath, J.; Abraham, A. Philip, R. R.; Weiss, M. P. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Diener, Z. J. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; Remillard, S. K. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu; DeYoung, P. A. E-mail: zachary.diener@hope.edu E-mail: deyoung@hope.edu

    2014-10-15

    Polycrystalline thin films of ZnO and Sr-doped ZnO (ZnO:Sr) on ultrasonically cleaned soda lime glass substrates are synthesized through successive ionic layer adsorption and reaction. The XRD profiles of ZnO and ZnO:Sr films prepared at different number of deposition cycles exhibit hexagonal wurtzite structure with preferred orientation along (002) direction. The crystallites are found to be nano sized, having variation in size with the increase in number of depositions cycles and also with Sr doping. Optical absorbance studies reveal a systematically controllable blueshift in band gap of Sr-doped ZnO films. SEM images indicate enhanced assembling of crystallites to form elongated rods as number of dips increased in Sr doped ZnO. The films are found to be n-type with the Sr doping having little effect on the electrical properties.

  16. Thin film ion conducting coating

    DOE Patents [OSTI]

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  17. Innovative Thin Films LLC | Open Energy Information

    Open Energy Info (EERE)

    Thin Films LLC Place: Toledo, Ohio Zip: 43607 Product: Provider of altnernative energy thin film deposition technology. Coordinates: 46.440613, -122.847838 Show Map Loading...

  18. Thin Film Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    help OpenEI by expanding it. Thin Film Solar Technologies is a company located in South Africa . References "Thin Film Solar Technologies" Retrieved from "http:...

  19. Thin-Film Fiber Optic Sensors for Power Control and Fault Detection. Final Report

    SciTech Connect (OSTI)

    Duncan, Paul Grems

    2003-09-30

    Described is the development of an optical current measurement device, an active power conditioning system, and sol gel type thin films for the detection of magnetic fields.

  20. Ferromagnetic thin films

    DOE Patents [OSTI]

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  1. Thin film hydrogen sensor

    DOE Patents [OSTI]

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  2. Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films on polycrystalline ferrite for magnetically tunable microwave components

    SciTech Connect (OSTI)

    Jia, Q.X.; Findikoglu, A.T.; Arendt, P.; Foltyn, S.R.; Roper, J.M.; Groves, J.R.; Coulter, J.Y.; Li, Y.Q.; Dionne, G.F.

    1998-04-01

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) thin films with a surface resistance of 0.86 m{Omega} at 10 GHz and 76 K have been grown on polycrystalline ferrite yttrium iron garnet (YIG) substrates. The chemical and structural mismatches between YBCO and YIG are solved by using a double buffer layer of biaxially oriented yttria-stabilized zirconia (YSZ) and CeO{sub 2}, where YSZ is deposited by an ion-beam-assisted-deposition technique. The YBCO films are {ital c} axis oriented with an in-plane mosaic spread [full width at half maximum of an x-ray {phi}-scan on (103) reflection] of less than 8{degree}. The films have a superconductive transition temperature above 88 K with a transition width less than 0.3 K, giving a critical current density above 10{sup 6}A/cm{sup 2} in self field at 75 K. At 75 K in an external magnetic field of 1 T perpendicular to the film surface, the films maintain a critical current density over 2{times}10{sup 5}A/cm{sup 2}. {copyright} {ital 1998 American Institute of Physics.}

  3. Structural, Magnetic and Electronic Properties of (110)-OrientedEpitaxial Thin Films of Bilayer Manganite La1.2Sr1.8Mn2O7

    SciTech Connect (OSTI)

    Takamura, Yayoi; Grepstad, Jostein K.; Chopdekar, Rajesh V.; Suzuki, Yuri; Marshall, Ann F.; Zheng, Hong; Mitchell, John F.

    2005-05-09

    We have synthesized (110)-oriented epitaxial thin films of the bilayer (n=2) manganite, La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7}, with the metallic/ferromagnetic a-b planes lying perpendicular to the substrate surface and the c-axis aligned in the plane of the film. X-ray diffraction and transmission electron microscopy confirm the alignment of the a-b planes along the [1{bar 1}0] substrate direction. The films consist primarily of the n=2 phase with a minor component of the n=1 (La,Sr){sub 2}MnO{sub 4} and n={infinity} (La,Sr)MnO{sub 3} phases. A resistivity maximum coincides with a ferromagnet/paramagnet transition at a reduced T{sub c}{approx}90K (vs. 120K for bulk), indicative of the effects of epitaxial strain. The films display similar anisotropic properties to their bulk counterpart with the magnetically easy direction confined to the a-b planes and 20-200 times lower resistivity for current flowing along the a-b planes compared to the c-axis.

  4. Nanostructured light-absorbing crystalline CuIn{sub (1x)}Ga{sub x}Se{sub 2} thin films grown through high flux, low energy ion irradiation

    SciTech Connect (OSTI)

    Hall, Allen J.; Hebert, Damon; Rockett, Angus A.; Shah, Amish B.; Bettge, Martin

    2013-10-21

    A hybrid effusion/sputtering vacuum system was modified with an inductively coupled plasma (ICP) coil enabling ion assisted physical vapor deposition of CuIn{sub 1?x}Ga{sub x}Se{sub 2} thin films on GaAs single crystals and stainless steel foils. With <80 W rf power to the ICP coil at 620740 C, film morphologies were unchanged compared to those grown without the ICP. At low temperature (600670 C) and high rf power (80400 W), a light absorbing nanostructured highly anisotropic platelet morphology was produced with surface planes dominated by (112){sub T} facets. At 80400 W rf power and 640740 C, both interconnected void and small platelet morphologies were observed while at >270 W and above >715 C nanostructured pillars with large inter-pillar voids were produced. The latter appeared black and exhibited a strong (112){sub T} texture with interpillar twist angles of 8. Application of a negative dc bias of 050 V to the film during growth was not found to alter the film morphology or stoichiometry. The results are interpreted as resulting from the plasma causing strong etching favoring formation of (112){sub T} planes and preferential nucleation of new grains, balanced against conventional thermal diffusion and normal growth mechanisms at higher temperatures. The absence of effects due to applied substrate bias suggests that physical sputtering or ion bombardment effects were minimal. The nanostructured platelet and pillar films were found to exhibit less than one percent reflectivity at angles up to 75 from the surface normal.

  5. Depth-dependent magnetism in epitaxial MnSb thin films: effects of surface passivation and cleaning

    SciTech Connect (OSTI)

    Aldous J. D.; Sanchez-Hanke C.; Burrows, C.W.; Maskery, I.; Brewer, M.S.; Hase, T.P.A.; Duffy, J.A.; Lees, M. Rs; Decoster, T.; Theis, W.; Quesada, A.; Schmid, A.K.; Bell, G.R.

    2012-03-15

    Depth-dependent magnetism in MnSb(0001) epitaxial films has been studied by combining experimental methods with different surface specificities: polarized neutron reflectivity, x-ray magnetic circular dichroism (XMCD), x-ray resonant magnetic scattering and spin-polarized low energy electron microscopy (SPLEEM). A native oxide {approx}4.5 nm thick covers air-exposed samples which increases the film's coercivity. HCl etching efficiently removes this oxide and in situ surface treatment of etched samples enables surface magnetic contrast to be observed in SPLEEM. A thin Sb capping layer prevents oxidation and preserves ferromagnetism throughout the MnSb film. The interpretation of Mn L{sub 3,2} edge XMCD data is discussed.

  6. Multiferroic oxide thin films and heterostructures

    SciTech Connect (OSTI)

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  7. Epitaxial Ni{sub 3}FeN thin films: A candidate for spintronic devices and magnetic sensors

    SciTech Connect (OSTI)

    Loloee, Reza

    2012-07-15

    A new type of epitaxial ferromagnetic nitride (Ni{sub 3} Fe N = permalloy nitride = 'PyN') compound films were grown on Al{sub 2}O{sub 3}(1120) substrates using reactive triode magnetron sputtering. The results of electron back-scattering diffraction and x-ray diffraction techniques indicate a high quality epitaxial crystalline structure with growth normal of (100). Magnetization measurements of epitaxial PyN films revealed several unique results. (1) A textbook square hysteresis loop that suggest existence of single magnetic domain in these films. (2) A coercive field is tunable from a few mOe up to a few Oe by changing the film thickness. (3) A magnetization that switches (rotate) over a very small field range of {delta}H{sub C} {<=} 0.05 Oe, independent of the film thickness. This small {delta}H indicates a very large resistive sensitivity ({delta}R/{delta}H) of the epitaxial PyN. (4) The epitaxial PyN thermal cycling through several cycles between '2 and 800 K' (-271 Degree-Sign C to +527 Degree-Sign C) shows much less degradation only about 2-5% compared to 40% degradation of a simple Py film. Four-probe transport measurements give an anisotropic magnetoresistance of Almost-Equal-To 6%, sufficiently higher than other known ferromagnetic materials. These interesting properties are ideal for a variety of spintronic devices and magnetic sensors.

  8. Oxygen-vacancy-induced room-temperature magnetization in lamellar V{sub 2}O{sub 5} thin films

    SciTech Connect (OSTI)

    Cezar, A. B.; Graff, I. L. Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2014-10-28

    In this work, we study the local atomic and electronic structures as well as oxygen-vacancy-induced magnetic properties of electrodeposited V{sub 2}O{sub 5} films. Unlike stoichiometric V{sub 2}O{sub 5}, which is a diamagnetic lamellar semiconductor, our oxygen-defective V{sub 2}O{sub 5} films are ferromagnetic at room-temperature and their saturation magnetization decreases with air exposure time. X-ray absorption spectroscopy was used to monitor the aging effect on these films, revealing that freshly-made samples exhibit only local crystalline order, whereas the aged ones undoubtedly show an enhancement of crystallinity and coordination symmetry. The mean number of oxygen atoms around V tends to increase, indicating a decrease of oxygen vacancies with time. Concurrently with the decrease of oxygen vacancies, a loss of saturation magnetization is also observed. Hence, it can be concluded that the ferromagnetism of the V{sub 2}O{sub 5} films originates from a vacancy-induced mechanism, confirming the universality of this class of ferromagnetism.

  9. Structural, electrical and magnetic properties of (Bi{sub 0.9}RE{sub 0.1})(Fe{sub 0.97}Co{sub 0.03})O{sub 3} (RE = Nd and Gd) thin films

    SciTech Connect (OSTI)

    Xue, Xu Tan, Guoqiang Liu, Wenlong; Ren, Huijun

    2014-04-01

    Highlights: • Nd–Co and Gd–Co codoped BiFeO{sub 3} thin films are synthesized by chemical solution deposition method. • Enhanced magnetic property is observed in BGFC thin film at room temperature. • The onset electric field of FN tunneling of the films is associated with band gaps. • Both ferromagnetism and diamagnetism coexist in the BNFC film. - Abstract: Rhombohedral (Bi{sub 0.9}RE{sub 0.1})(Fe{sub 0.97}Co{sub 0.03})O{sub 3} (RE = Nd and Gd) thin films were deposited on FTO substrates by using a chemical solution deposition method. Raman scattering spectra reveal that the BiFeO{sub 3} lattices are able to incorporate Nd/Gd and Co ions with no effect on the basic rhombohedral structure. The chemical shift of Bi 4f, Fe 2p and O 1s core levels of the films is investigated by the X-ray photoelectron spectroscopy (XPS) analysis. The presence of defects in the films has been estimated through XPS study, which has a great effect on the dielectric dispersion and ferroelectric polarization. The intrinsic density of free electrons associated with band gap is the dominating factor which controls the FN tunneling conductance mechanism of the films. Both ferromagnetism and diamagnetism coexist in the BNFC film, while only ferromagnetism is observed in the BGFC film.

  10. Magnetic structures of FeTiO{sub 3}-Fe{sub 2}O{sub 3} solid solution thin films studied by soft X-ray magnetic circular dichroism and ab initio multiplet calculations

    SciTech Connect (OSTI)

    Hojo, H. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Fujita, K. E-mail: fujita@dipole7.kuic.kyoto-u.ac.jp; Matoba, T.; Tanaka, K.; Ikeno, H.; Mizoguchi, T.; Tanaka, I.; Nakamura, T.; Takeda, Y.; Okane, T.

    2014-03-17

    The solid solutions between ilmenite (FeTiO{sub 3}) and hematite (α-Fe{sub 2}O{sub 3}) have recently attracted considerable attention as a spintronic material due to their interesting magnetic and electrical properties. In this study, the electronic and magnetic structures of epitaxially grown 0.6FeTiO{sub 3}·0.4Fe{sub 2}O{sub 3} solid solution thin films were investigated by combining x-ray absorption near-edge structure (XANES), x-ray magnetic circular dichroism (XMCD) for two different crystallographic projections, and first-principles theoretical calculations. The Fe L-edge XANES and XMCD spectra reveal that Fe is in the mixed-valent Fe{sup 2+}–Fe{sup 3+} states while Fe{sup 2+} ions are mainly responsible for the magnetization. Moreover, the experimental Fe L-edge XANES and XMCD spectra change depending on the incident x-ray directions, and the theoretical spectra explain such spectral features. We also find a large orbital magnetic moment, which can originate the magnetic anisotropy of this system. On the other hand, although the valence state of Ti was interpreted to be 4+ from the Ti L-edge XANES, XMCD signals indicate that some electrons are present in the Ti-3d orbital, which are coupled antiparallel to the magnetic moment of Fe{sup 2+} ions.

  11. Magnetic properties of BaTiO{sub 3}/La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films integrated on Si(100)

    SciTech Connect (OSTI)

    Singamaneni, Srinivasa Rao Prater, J. T.; Fan, Wu; Narayan, J.

    2014-12-14

    Two-phase multiferroic heterostructures composed of room-temperature ferroelectric BaTiO{sub 3} (BTO) and ferromagnetic La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) epitaxial thin films were grown on technologically important substrate Si (100). Bilayers of BTO/LSMO thin films display ferromagnetic Curie transition temperatures of ?350?K, close to the bulk value, which are independent of BTO films thickness in the range of 25100?nm. Discontinuous magnetization jumps associated with BTO structural transitions were suppressed in M(T) curves, probably due to substrate clamping effect. Interestingly, at cryogenic temperatures, the BTO/LSMO structure with BTO layer thickness of 100?nm shows almost 2-fold higher magnetic coercive field, 3-fold reduction in saturation magnetization, and improved squareness compared to the sample without BTO. We believe that the strong in-plane spin pinning of the ferromagnetic layer induced by BTO layer at BTO/LSMO interface could cause such changes in magnetic properties. This work forms a significant step forward in the integration of two-phase multiferroic heterostructures for CMOS applications.

  12. Electronic and magnetic transitions in perovskite SrRu{sub 1-x}Ir{sub x}O{sub 3} thin films

    SciTech Connect (OSTI)

    Biswas, Abhijit; Lee, Yong Woo; Jeong, Yoon Hee

    2015-09-07

    We have investigated the electronic and magnetic properties of perovskite SrRu{sub 1−x}Ir{sub x}O{sub 3} (0.0≤ x ≤ 0.25) thin films grown by pulsed laser deposition on atomically flat (001) SrTiO{sub 3} substrates. SrRuO{sub 3} has the properties of a ferromagnetic metal (resistivity ρ ∼ 200 μΩ · cm at T = 300 K) with Curie temperature T{sub C} ∼ 150 K. Substituting Ir (5d{sup 5+}) for Ru (4d{sup 4+}) in SrRuO{sub 3}, films (0.0 ≤ x ≤ 0.20) showed fully metallic behavior and ferromagnetic ordering, although ρ increased and the ferromagnetic T{sub C} decreased. Films with x = 0.25 underwent the metal-to-insulator transition (T{sub MIT}∼75 K) in ρ, and spin-glass-like ordering (T{sub SG}∼45 K) with the elimination of ferromagnetic long-range ordering caused by the electron localization at the substitution sites. In ferromagnetic films (0.0 ≤ x ≤ 0.20), ρ increased near-linearly with T at T > T{sub C}, but in paramagnetic film (x = 0.25) ρ increased as T{sup 3/2} at T > T{sub MIT}. Moreover, observed spin-glass-like (T{sub SG}) ordering with the negative magnetoresistance at T < T{sub MIT} in film with x = 0.25 validates the hypothesis that (Anderson) localization favors glassy ordering at amply disorder limit. These observations provide a promising approach for future applications and of fundamental interest in 4d and 5d mixed perovskites.

  13. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism,...

  14. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies....

  15. Effect of chemical order on the magnetic and electronic properties of epitaxial off-stoichiometry F e x S i 1 - x thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Karel, J.; Juraszek, J.; Minar, J.; Bordel, C.; Stone, K. H.; Zhang, Y. N.; Hu, J.; Wu, R. Q.; Ebert, H.; Kortright, J. B.; et al

    2015-04-06

    Off-stoichiometry, epitaxial FexSi1-x thin films (0.5more »and D0₃ and the strong enhancement for the A2 structure. The calculated electronic density of states shows many similarities in both structure and spin polarization between the D0₃ and B2 structures, while the A2 structure exhibits disorder broadening and a reduced spin polarization.« less

  16. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  17. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  18. Low work function, stable thin films

    DOE Patents [OSTI]

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  19. Thin film-coated polymer webs

    DOE Patents [OSTI]

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  20. Active superconducting devices formed of thin films

    DOE Patents [OSTI]

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  1. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  2. Thin film polymeric gel electrolytes

    DOE Patents [OSTI]

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  3. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  4. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    SciTech Connect (OSTI)

    Zhang, Yijun; Liu, Ming E-mail: wren@mail.xjtu.edu.cn Ren, Wei E-mail: wren@mail.xjtu.edu.cn; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang E-mail: wren@mail.xjtu.edu.cn

    2015-05-07

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe{sub 3}O{sub 4} thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe{sub 3}O{sub 4} thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H{sub 2}/Ar at 400 °C, the as-grown α−Fe{sub 2}O{sub 3} sample is reduced to Fe{sub 3}O{sub 4} phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications.

  5. Progress in thin film solar photovoltaic technologies

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. )

    1991-01-01

    This paper focuses on the rapid recent advances made by thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, and cadmium telluride. It also indicates the several advantages of thin films. Various consumer products and power applications using thin film solar cells are also discussed. The increasing interest among the utilities for PV system applications is also elucidated.

  6. Nanostructured Photovoltaics: - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Nanostructured Photovoltaics: Atomic Layer Deposition Thin Film Technology Enables Cost Effective Solar ...

  7. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    SciTech Connect (OSTI)

    Huang, Chen-Yu; Wei, Zung-Hang; Lai, Mei-Feng; Ger, Tzong-Rong

    2015-05-07

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering.

  8. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic...

  9. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering ...

  10. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gambino, S. Mangin, S. Roy, and P. Fischer, "X-ray diffraction microscopy of magnetic structures," Phys. Rev. Lett. 107, 033904 (2011). ALS Science Highlight 244 ALSNews Vol. 329...

  11. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. McNulty, R. Gambino, S. Mangin, S. Roy, and P. Fischer, "X-ray diffraction microscopy of magnetic structures," Phys. Rev. Lett. 107, 033904 (2011). ALS Science Highlight 244...

  12. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  13. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect (OSTI)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ?18?K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ?3?K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  14. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect (OSTI)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  15. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  16. Progress in thin film solar photovoltaic technologies

    SciTech Connect (OSTI)

    Ullal, H.S.; Zweibel, K.

    1989-12-01

    This paper focuses on the rapid recent advances made by thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, and cadmium telluride. It also indicates the several advantages of thin films. Various consumer products and power applications using thin film solar cells are also discussed. The increasing interest among the utilities for PV system applications is also elucidated. 29 refs., 8 figs., 3 tabs.

  17. Method of producing amorphous thin films

    DOE Patents [OSTI]

    Brusasco, Raymond M.

    1992-01-01

    Disclosed is a method of producing thin films by sintering which comprises: a. coating a substrate with a thin film of an inorganic glass forming parulate material possessing the capability of being sintered, and b. irridiating said thin film of said particulate material with a laser beam of sufficient power to cause sintering of said material below the temperature of liquidus thereof. Also disclosed is the article produced by the method claimed.

  18. Sputtered Thin Film Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Sputtered Thin Film Photovoltaics Naval Research Laboratory Contact NRL About This Technology ...

  19. Superhydrophobic Thin Film Coatings - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Solar Thermal Solar Photovoltaic Solar Photovoltaic Industrial Technologies ... Find More Like This Return to Search Superhydrophobic Thin Film Coatings Oak Ridge ...

  20. Thin film solar energy collector

    DOE Patents [OSTI]

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  1. Thin film buried anode battery

    DOE Patents [OSTI]

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  2. Titanium nitride thin films for minimizing multipactoring

    DOE Patents [OSTI]

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  3. Characterization of Thin Films by XAFS: Application to Spintronics Materials

    SciTech Connect (OSTI)

    Heald, Steve M.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.

    2009-10-25

    X-ray absorption fine structure (XAFS) has proven very valuable in characterizing thin films. This is illustrated with some examples from the area of diluted magnetic semiconductor (DMS) materials for spintronics applications. A promising route to DMS materials is doping of oxides such as TiO2 and ZnO with magnetic atoms such as Co. These can be grown as epitaxial thin films on various substrates. XAFS is especially valuable for characterizing the dopant atoms. The near edge region is sensitive to the symmetry of the bonding and valence of the dopants, and the extended XAFS can determine the details of the lattice site. XAFS is also valuable for detecting metallic nanoparticles. These can be difficult to detect by other methods, and can give a spurious magnetic signal. The power of XAFS is illustrated by examples from studies on Co doped ZnO films.

  4. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67?MeV/atom

    SciTech Connect (OSTI)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

    2014-05-07

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67?MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280?emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240?emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  5. Thin films of mixed metal compounds

    SciTech Connect (OSTI)

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  6. Zinc oxide thin film acoustic sensor

    SciTech Connect (OSTI)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  7. Influence of Mn concentration on magnetic topological insulator MnxBi2−xTe3 thin-film Hall-effect sensor

    SciTech Connect (OSTI)

    Ni, Y.; Zhang, Z.; Nlebedim, I. C.; Hadimani, R. L.; Jiles, D. C.

    2015-06-11

    Hall-effect (HE) sensors based on high-quality Mn-doped Bi2Te3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi2Te3. The sensors with low Mn concentrations, MnxBi2-xTe3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almost eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.

  8. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction ...

  9. Solvothermal Thin Film Deposition of Electron Blocking Layers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers...

  10. Partial Shade Stress Test for Thin-Film Photovoltaic Modules...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partial Shade Stress Test for Thin-Film Photovoltaic Modules Preprint Timothy J. ... Partial shade stress test for thin-film photovoltaic modules Timothy J Silverman , ...

  11. Partial Shading in Monolithic Thin Film PV Modules: Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module ...

  12. High Temperature Thin Film Polymer Dielectric Based Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems High Temperature Thin Film Polymer Dielectric Based Capacitors for HEV Power Electronic Systems 2009 ...

  13. Structural characterization of thin film photonic crystals

    SciTech Connect (OSTI)

    Subramania, G.; Biswas, R.; Constant, K.; Sigalas, M. M.; Ho, K. M.

    2001-06-15

    We quantitatively analyze the structure of thin film inverse-opal photonic crystals composed of ordered arrays of air pores in a background of titania. Ordering of the sphere template and introduction of the titania background were performed simultaneously in the thin film photonic crystals. Nondestructive optical measurements of backfilling with high refractive index liquids, angle-resolved reflectivity, and optical spectroscopy were combined with band-structure calculations. The analysis reveals a thin film photonic crystal structure with a very high filling fraction (92{endash}94%) of air and a substantial compression along the c axis ({similar_to}22{endash}25%).

  14. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  15. Permanent laser conditioning of thin film optical materials

    DOE Patents [OSTI]

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  16. Thin-Film Photovoltaics on Solar House

    Broader source: Energy.gov [DOE]

    In this photograph, people are reflected on Team Germany's window louvers with integrated thin-film copper indium gallium selenide (CIGS) cells during the U.S. Department of Energy Solar Decathlon...

  17. Thin film production method and apparatus

    DOE Patents [OSTI]

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  18. Polycrystalline Thin-Film Multijunction Solar Cells

    SciTech Connect (OSTI)

    Noufi, R.; Wu, X.; Abu-Shama, J.; Ramanathan, K; Dhere, R.; Zhou, J.; Coutts, T.; Contreras, M.; Gessert, T.; Ward, J. S.

    2005-11-01

    We present a digest of our research on the thin-film material components that comprise the top and bottom cells of three different material systems and the tandem devices constructed from them.

  19. Thin-Film Solar Cell Manufacturing

    Broader source: Energy.gov [DOE]

    In this b-roll, thin-film photovoltaic cells are manufactured and deployed in Arizona. Steps shown in the manufacturing process include the screen printing of conductive material onto laminated...

  20. Enhanced electrical and magnetic properties in La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films deposited on CaTiO{sub 3}-buffered silicon substrates

    SciTech Connect (OSTI)

    Adamo, C.; Méchin, L.; Guillet, B.; Wu, S.; Routoure, J.-M.; Heeg, T.; Katz, M.; Pan, X. Q.; Mercone, S.; Schubert, J.; Zander, W.; Misra, R.; Schiffer, P.; and others

    2015-06-01

    We investigate the suitability of an epitaxial CaTiO{sub 3} buffer layer deposited onto (100) Si by reactive molecular-beam epitaxy (MBE) for the epitaxial integration of the colossal magnetoresistive material La{sub 0.7}Sr{sub 0.3}MnO{sub 3} with silicon. The magnetic and electrical properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films deposited by MBE on CaTiO{sub 3}-buffered silicon (CaTiO{sub 3}/Si) are compared with those deposited on SrTiO{sub 3}-buffered silicon (SrTiO{sub 3}/Si). In addition to possessing a higher Curie temperature and a higher metal-to-insulator transition temperature, the electrical resistivity and 1/f noise level at 300 K are reduced by a factor of two in the heterostructure with the CaTiO{sub 3} buffer layer. These results are relevant to device applications of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films on silicon substrates.

  1. Magneto-optical characterizations of FeTe???Se??? thin films with critical current density over 1 MA/cm

    SciTech Connect (OSTI)

    Sun, Yue; Li, Qiang; Tsuchiya, Yuji; Pyon, Sunseng; Tamegai, Tsuyoshi; Zhang, Cheng; Ozaki, Toshinori

    2015-01-01

    We performed magneto-optical (MO) measurements on FeTe???Se??? thin films grown on LaAlO? (LAO) and Yttria-stabilized zirconia (YSZ) single-crystalline substrates. These thin films show superconducting transition temperature Tc ~19 K, 4 K higher than the bulk sample. Typical roof-top patterns can be observed in the MO images of thin films grown on LAO and YSZ, from which a large and homogeneous critical current density Jc ~ 3 - 4 x 10? A/cm at 5 K was obtained. Magnetic flux penetration measurement reveals that the current is almost isotropically distributed in the two thin films. Compared with bulk crystals, FeTe???Se??? thin film demonstrates not only higher Tc, but also much larger Jc, which is attractive for applications.

  2. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  3. Structure and Dynamics of Domains in Ferroelectric Nanostructures...

    Office of Scientific and Technical Information (OSTI)

    of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field...

  4. Thin film absorber for a solar collector

    DOE Patents [OSTI]

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. Thin film dielectric composite materials

    DOE Patents [OSTI]

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  6. Optimization of L1{sub 0} FePt/Fe{sub 45}Co{sub 55} thin films for rare earth free permanent magnet applications

    SciTech Connect (OSTI)

    Giannopoulos, G. Psycharis, V.; Niarchos, D.; Reichel, L.; Markou, A.; Panagiotopoulos, I.; Damm, C.; Fähler, S.; Khan, Imran; Hong, Jisang

    2015-06-14

    The magnetic properties of magnetron sputtered bilayers consisting of Fe{sub 45}Co{sub 55} ultrathin layers on top of L1{sub 0} FePt films epitaxially grown on MgO substrates are studied in view of their possible application as rare earth free permanent magnets. It is found that FePt layers induce a tetragonal distortion to the Fe-Co layers which leads to increased anisotropy. This allows to take advantage of the Fe-Co high magnetic moment with less significant loss of the coercivity compared to a typical hard/soft exchange spring system. A maximum energy product approaching 50 MGOe is obtained for a FePt(7 ML)/FeCo/(5 ML) sample. The results are in accordance with first-principles computational methods, which predict that even higher energy products are possible for micromagnetically optimized microstructures.

  7. Tungsten-doped thin film materials

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  8. Method for synthesizing thin film electrodes

    DOE Patents [OSTI]

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  9. Mesoscale morphologies in polymer thin films.

    SciTech Connect (OSTI)

    Ramanathan, M.; Darling, S. B. (Center for Nanoscale Materials)

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  10. Thin Film Transistors On Plastic Substrates

    DOE Patents [OSTI]

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  11. Vibration welding system with thin film sensor

    DOE Patents [OSTI]

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  12. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments [OSTI]

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  13. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect (OSTI)

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  14. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect (OSTI)

    Varghese, Binni; Piramanayagam, S. N. Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee; Okamoto, Iwao

    2014-05-07

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal directionsuitable for perpendicular magnetic recording media applicationsare reported. The films exhibited a larger coercivity of about 6.5 kOe at 8?nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  15. MultiLayer solid electrolyte for lithium thin film batteries...

    Office of Scientific and Technical Information (OSTI)

    Patent: MultiLayer solid electrolyte for lithium thin film batteries Citation Details In-Document Search Title: MultiLayer solid electrolyte for lithium thin film batteries A ...

  16. Photovoltaic Polycrystalline Thin-Film Cell Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thin films are unlike single-crystal silicon cells, which must be individually interconnected into a module. Thin-film devices can be made as a single unit-that is, ...

  17. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical, ...

  18. Solvothermal Thin Film Deposition of Electron Blocking Layers | ANSER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center | Argonne-Northwestern National Laboratory Solvothermal Thin Film Deposition of Electron Blocking Layers Home > Research > ANSER Research Highlights > Solvothermal Thin Film Deposition of Electron Blocking Layers

  19. SAW determination of surface area of thin films

    DOE Patents [OSTI]

    Frye, Gregory C.; Martin, Stephen J.; Ricco, Antonio J.

    1990-01-01

    N.sub.2 adsorption isotherms are measured from thin films on SAW devices. The isotherms may be used to determine the surface area and pore size distribution of thin films.

  20. Surfaces and thin films studied by picosecond ultrasonics

    SciTech Connect (OSTI)

    Maris, J.H.; Tauc, J.

    1992-05-01

    This research is the study of thin films and interfaces via the use of the picosecond ultrasonic technique. In these experiments ultrasonic waves are excited in a structure by means of a picosecond light pulse ( pump pulse''). The propagation of these waves is detected through the use of a probe light pulse that is time-delayed relative to the pump. This probe pulse measures the change {Delta}R(t) in the optical reflectivity of the structure that occurs because the ultrasonic wave changes the optical properties of the structure. This technique make possible the study of the attenuation and velocity of ultrasonic waves up to much higher frequencies than was previously possible (up to least 500 GHz). In addition, the excellent time-resolution of the method makes it possible to study nanostructures of linear dimensions down to 100 {Angstrom} or less by ultrasonic pulse-echo techniques. 25 refs.

  1. Negative resistance in an organic thin film

    SciTech Connect (OSTI)

    Ehara, S. ); Takagi, T. ); Yoshida, T.; Inaba, H.; Naito, H.; Okuda, M. )

    1992-08-20

    This paper reports that the negative resistance of the tunneling currents was observed in a semiconducting organic thin film on a graphite substrate by an STM (Scanning Tunneling Microscopy). This negative resistance may be understood by the theory of a molecular resonance tunneling effect.

  2. Thin film hydrous metal oxide catalysts

    DOE Patents [OSTI]

    Dosch, Robert G. (Albuquerque, NM); Stephens, Howard P. (Albuquerque, NM)

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  3. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect (OSTI)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  4. UV absorption control of thin film growth

    DOE Patents [OSTI]

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  5. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments [OSTI]

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  6. Chemical stability of highly (0001) textured Sm(CoCu){sub 5} thin films with a thin Ta capping layer

    SciTech Connect (OSTI)

    Zhao Haibao; Wang Hao; Liu Xiaoqi; Wang Jianping; Zhang Tao

    2011-04-01

    With the highest magnetocrystalline anisotropy constant (Ku) among practical magnetic materials, SmCo{sub 5} could be a very attractive candidate for future high areal density magnetic recording. However, its corrosion resistance is always a concern in recording media applications. In this paper, the chemical stability and microstructures of highly (0001) textured Sm(CoCu){sub 5} thin films with and without a 3 nm Ta capping layer were reported. For Sm(CoCu){sub 5} thin films without a capping layer, the coercivity decreases significantly (from 8kOe to 1kOe) within one month. Sm(CoCu){sub 5} thin films capped with a thin Ta layer (3 nm) behave differently. Even exposed to a laboratory environment (25 deg. C) over 3 years, the Ta-capped Sm(CoCu){sub 5} thin films are stable in terms of structural and magnetic properties, i.e., there were no changes in X-ray diffraction peaks and vibrating sample magnetometer hysteresis loops. Microstructure of Ta-capped Sm(CoCu){sub 5} thin films showed that Sm(CoCu){sub 5} formed a domelike particle assembly structure on a smooth Ru underlayer and were well covered by partially oxidized Ta capping layer, as shown by TEM cross-section micrographs. Accelerated corrosion treatment (130 deg. C, 95% relative humidity, 6 h) was performed on Ta-capped Sm(CoCu){sub 5} thin films. X-ray photoelectron spectroscopy (XPS) results showed that no Co was detected on the sample surface before the corrosion treatment, but strong XPS signals of CoOx and Co(OH)x were observed after treatment. Therefore, none of our Sm(CoCu){sub 5} thin films can pass the accelerated corrosion test. Hcp-phased CoPt-alloys are proposed as better capping materials for Sm(CoCu){sub 5} thin films in future high-density magnetic recording applications.

  7. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium

  8. Thin film bismuth iron oxides useful for piezoelectric devices

    DOE Patents [OSTI]

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  9. Substrate heater for thin film deposition

    DOE Patents [OSTI]

    Foltyn, Steve R. (111 Beryl St., Los Alamos, NM 87544)

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  10. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  11. Preparation of thin film high temperature superconductors

    SciTech Connect (OSTI)

    VenKatesan, X.X.T.; Li, Q.; Findikoglu, A.; Hemmick, D. . Dept. of Physics); Wu, X.D. ); Inam, A.; Chang, C.C.; Ramesh, R.; Hwang, D.M.; Ravi, T.S.; Etemad, S.; Martinez, J.A.; Wilkens, B. )

    1991-03-01

    This paper addresses fundamental issues in preparing high quality high T{sub c} YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} thin films. The techniques of inverted cylindrical magnetron sputtering and pulsed laser deposition are chosen as successful examples to illustrate how the key problems can be solved. The fabrication of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x}/PrBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superlattices where superconductivity in a single unit cell layer of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} was observed demonstrates the state of the art of thin film deposition of high T{sub c} materials. Systematic variations of the deposition parameters result in changes of superconducting and structural properties of the films that correlate with their microwave and infrared characteristics.

  12. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  13. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  14. Superconducting thin films on potassium tantalate substrates

    DOE Patents [OSTI]

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  15. Annealed CVD molybdenum thin film surface

    DOE Patents [OSTI]

    Carver, Gary E. (Tucson, AZ); Seraphin, Bernhard O. (Tucson, AZ)

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  16. Thin film photovoltaic panel and method

    SciTech Connect (OSTI)

    Ackerman, B.; Albright, S.P.; Jordan, J.F.

    1991-06-11

    This patent describes an improved stability photovoltaic panel. It comprises photovoltaic cells each having polycrystalline thin film layers, each of the thin film layers respectively deposited on a common vitreous substrate for allowing light to pass therethrough to reach a photovoltaic heterojunction formed by at least two of the thin film layers, at least one of the film layers forming the photovoltaic heterojunction for each of the photovoltaic cells, each of the photovoltaic cells lying within a plane substantially parallel to an interior planar surface of the vitreous substrate, each of the photovoltaic cells being connected electrically in series to pass electrical current from the photovoltaic panel, a pliable sheet material backcap opposite the vitreous substrate with respect to the photovoltaic cells and spaced from the photovoltaic cells so as to form a substantially planar spacing between the photovoltaic cells and an interior surface of the sheet material backcap, a perimeter portion of the sheet material backcap having a bend for positioning an edge strip of the sheet material backcap spaced from the interior surface of the backcap to form the planar spacing, the edge strip forming a planar surface parallel with a sealingly engaging the vitreous substrate for forming a fluid-tight seal with the vitreous substrate about the perimeter of the photovoltaic cells for protecting the photovoltaic cells from elements exterior of the photovoltaic panel, and a selected desiccant filling substantially the planar spacing for preventing water vapor within the planar spacing from adversely affecting the photovoltaic cells.

  17. Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect

    SciTech Connect (OSTI)

    Hao, Qiang; Chen, Wenzhe; Xiao, Gang

    2015-05-04

    We use a simple magnetron sputtering process to fabricate beta (β) tungsten thin films, which are capable of generating giant spin Hall effect. As-deposited thin films are always in the metastable β-W phase from 3.0 to 26.7 nm. The β-W phase remains intact below a critical thickness of 22.1 nm even after magnetic thermal annealing at 280 °C, which is required to induce perpendicular magnetic anisotropy (PMA) in a layered structure of β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO. Intensive annealing transforms the thicker films (>22.1 nm) into the stable α-W phase. We analyze the structure and grain size of both β- and α-W thin films. Electron transport in terms of resistivity and normal Hall effect is studied over a broad temperature range of 10 K to at least 300 K on all samples. Very low switching current densities are achieved in β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO with PMA. These basic properties reveal useful behaviors in β-W thin films, making them technologically promising for spintronic magnetic random access memories and spin-logic devices.

  18. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    SciTech Connect (OSTI)

    Shah, Jyoti Kotnala, Ravinder K. E-mail: rkkotnala@gmail.com

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.

  19. Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam

    SciTech Connect (OSTI)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2014-06-07

    The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17?MeV. For the n-type thin films, nanodots with a diameter of less than 10?nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

  20. Magneto-optical characterizations of FeTe₀̣₅Se₀̣₅ thin films with critical current density over 1 MA/cm²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Yue; Li, Qiang; Tsuchiya, Yuji; Pyon, Sunseng; Tamegai, Tsuyoshi; Zhang, Cheng; Ozaki, Toshinori

    2014-12-03

    We performed magneto-optical (MO) measurements on FeTe₀̣₅Se₀̣₅ thin films grown on LaAlO₃ (LAO) and Yttria-stabilized zirconia (YSZ) single-crystalline substrates. These thin films show superconducting transition temperature Tc ~19 K, 4 K higher than the bulk sample. Typical roof-top patterns can be observed in the MO images of thin films grown on LAO and YSZ, from which a large and homogeneous critical current density Jc ~ 3 - 4 x 10⁶ A/cm² at 5 K was obtained. In this study, magnetic flux penetration measurement reveals that the current is almost isotropically distributed in the two thin films. Compared with bulk crystals,more » FeTe₀̣₅Se₀̣₅ thin film demonstrates not only higher Tc, but also much larger Jc, which is attractive for applications.« less

  1. Electrochemical and microstructural characterization of magnetron-sputtered ATO thin films as Li–ion storage materials

    SciTech Connect (OSTI)

    Ouyang, Pan; Zhang, Hong; Chen, Wenhao; Wang, Ying; Zhang, Yu; Li, Zhicheng

    2015-01-15

    Highlights: • Nano-structured ATO thin films prepared by RF magnetron sputtering at 25 °C, 100 °C and 200 °C, respectively. • ATO thin films show a high reversible capacity and high rate performance. • Electrochemical reaction mechanism of the ATO thin film was revealed by transmission electron microscopy. - Abstract: Sb-doped SnO{sub 2} (ATO) nanostructured thin films were prepared by using radio frequency magnetron sputtering at the substrate temperatures of 25 °C, 100 °C and 200 °C, respectively. All the ATO thin films have the similar redox characteristics in the cyclic voltammetry measurements. The ATO thin film sputtered at 200 °C shows the lowest charge transfer resistance and best electrochemical performance, and has a high reversible capacity of 679 mA h g{sup −1} at 100 mA g{sup −1} after 200 charge–discharge cycles and high rate performance of 483 mA h g{sup −1} at 800 mA g{sup −1}. The electrochemical mechanisms were investigated by analyzing the phase evolution of the ATO electrodes that had been electrochemically induced at various stages. The results reveal that the ATO underwent reversible lithiation/delithiation processes during the electrochemical cycles, i.e., the SnO{sub 2} reacted with Li{sup +} to produce metallic Sn and followed by the formation of the Li{sub x}Sn alloys during discharge process, and then Li{sub x}Sn alloys de-alloyed, Sn reacted with Li{sub 2}O, and even partially formed SnO{sub 2} during charge process.

  2. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    SciTech Connect (OSTI)

    Nomenyo, K.; Kostcheev, S.; Lérondel, G.; Gadallah, A.-S.; Rogers, D. J.

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

  3. NANO- AND MICROSTRUCTURES FOR THIN-FILM EVAPORATION-A REVIEW

    SciTech Connect (OSTI)

    Plawsky, JL; Fedorov, AG; Garimella, SV; Ma, HB; Maroo, SC; Chen, L; Nam, Y

    2014-07-23

    Evaporation from thin films is a key feature of many processes, including energy conversion, microelectronics cooling, boiling, perspiration, and self-assembly operations. The phase change occurring in these systems is governed by transport processes at the contact line where liquid, vapor, and solid meet. Evidence suggests that altering the surface chemistry and surface topography on the micro-and the nanoscales can be used to dramatically enhance vaporization. The 2013 International Workshop on Micro- and Nanostructures for Phase-Change Heat Transfer brought together a group of experts to review the current state-of-the-art and discuss future research needs. This article is focused on the thin-film evaporation panel discussion and outlines some of the key principles and conclusions reached by that panel and the workshop attendees.

  4. Orientational Analysis of Molecules in Thin Films | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is a very powerful tool to unravel the orientation of organic molecules on surfaces or in thin films. This information on the alignment of - most often - highly anisotropic molecules can become crucial if an epitaxial or even crystalline organic growth is desired, if such thin film should serve

  5. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  6. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOE Patents [OSTI]

    Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  7. Institute of Photo Electronic Thin Film Devices and Technology...

    Open Energy Info (EERE)

    Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute of Photo-Electronic Thin...

  8. Photovoltaic Single-Crystalline, Thin-Film Cell Basics

    Broader source: Energy.gov [DOE]

    Single-crystalline thin films are made from gallium arsenide (GaAs), a compound semiconductor that is a mixture of gallium and arsenic.

  9. Fast lithium-ion conducting thin film electrolytes integrated...

    Office of Scientific and Technical Information (OSTI)

    Fast lithium-ion conducting thin film electrolytes integrated directly on flexible substrates for high power solid-state batteries. Citation Details In-Document Search Title: Fast ...

  10. New modalities of strain-control of ferroelectric thin films...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: New modalities of strain-control of ferroelectric thin films This content will become publicly available on May 17, 2017 Prev Next Title: New ...

  11. Thin-film lithiation structural transformations imaged in situ...

    Office of Scientific and Technical Information (OSTI)

    by liquid cell transmission electron microscopy. Citation Details In-Document Search Title: Thin-film lithiation structural transformations imaged in situ by liquid cell ...

  12. Solar Thin Films Inc formerly American United Global Inc | Open...

    Open Energy Info (EERE)

    Films Inc formerly American United Global Inc Jump to: navigation, search Name: Solar Thin Films Inc (formerly American United Global Inc) Place: New York, New York Zip: 10038...

  13. Utility-scale flat-plate thin film photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The thin-film photovoltaics section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  14. Rechargeable thin film battery and method for making the same

    DOE Patents [OSTI]

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  15. Structural characterization of impurified zinc oxide thin films

    SciTech Connect (OSTI)

    Trinca, L. M.; Galca, A. C. Stancu, V. Chirila, C. Pintilie, L.

    2014-11-05

    Europium doped zinc oxide (Eu:ZnO) thin films have been obtained by pulsed laser deposition (PLD). 002 textured thin films were achieved on glass and silicon substrates, while hetero-epilayers and homo-epilayers have been attained on single crystal SrTiO{sub 3} and ZnO, respectively. X-ray Diffraction (XRD) was employed to characterize the Eu:ZnO thin films. Extended XRD studies confirmed the different thin film structural properties as function of chosen substrates.

  16. Epitaxial ternary nitride thin films prepared by a chemical solution...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Epitaxial ternary nitride thin films prepared by a chemical solution method Citation Details ... This is the first report of epitaxial growth of ternary ...

  17. Thin-Film Lithium-Based Electrochromic Devices - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Thin-Film Lithium-Based Electrochromic Devices ... For lithium-based electrochromic cells, the electrolyte contains mobile lithium which ...

  18. Guided Self-Assembly of Gold Thin Films

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab and UC Berkeley scientists have made progress toward this goal, successfully directing the self--assembly of nanoparticles into device-ready thin films, which have...

  19. Thin-Film Material Science and Processing | Materials Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin-Film Material Science and Processing Photo of a stainless steel piece of equipment with multiple hoses and other equipment attached. NREL's expertise focuses on using thin ...

  20. Overview and Challenges of Thin Film Solar Electric Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Challenges of Thin Film Solar Electric Technologies H.S. Ullal Presented at the World Renewable Energy Congress X and Exhibition 2008 Glasgow, Scotland, United Kingdom July ...

  1. Tax Credits Give Thin-Film Solar a Big Boost

    Broader source: Energy.gov [DOE]

    California company will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.

  2. NREL Achieves World Record Performance For Thin Film Solar Cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Achieves World Record Performance For Thin Film Solar Cell Technology Golden, Colo., May 10, 1996 -- Scientists at the U. S. Department of Energy's National Renewable Energy ...

  3. Flexible Thin Film Solid State Lithium Ion Batteries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible Thin Film Solid State Lithium Ion Batteries National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Batteries are ...

  4. Origin of superstructures in (double) perovskite thin films

    SciTech Connect (OSTI)

    Shabadi, V. Major, M.; Komissinskiy, P.; Vafaee, M.; Radetinac, A.; Baghaie Yazdi, M.; Donner, W.; Alff, L.

    2014-09-21

    We have investigated the origin of superstructure peaks as observed by X-ray diffraction of multiferroic Bi(Fe{sub 0.5}Cr{sub 0.5})O{sub 3} thin films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates. The photon energy dependence of the contrast between the atomic scattering factors of Fe and Cr is used to rule out a chemically ordered double perovskite Bi{sub 2}FeCrO{sub 6} (BFCO). Structural calculations suggest that the experimentally observed superstructure occurs due to unequal cation displacements along the pseudo-cubic [111] direction that mimic the unit cell of the chemically ordered compound. This result helps to clarify discrepancies in the correlations of structural and magnetic order reported for Bi{sub 2}FeCrO{sub 6}. The observation of a superstructure in itself is not a sufficient proof of chemical order in double perovskites.

  5. Room-temperature magnetoelectric multiferroic thin films and applications thereof

    DOE Patents [OSTI]

    Katiyar, Ram S; Kuman, Ashok; Scott, James F.

    2014-08-12

    The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.

  6. Thin film photovoltaic device with multilayer substrate

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1984-01-01

    A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

  7. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  8. Rechargeable thin-film lithium batteries

    SciTech Connect (OSTI)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  9. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments [OSTI]

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  10. Apparatus for laser assisted thin film deposition

    DOE Patents [OSTI]

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.