National Library of Energy BETA

Sample records for magnetic resonance nmr

  1. Edward Purcell and Nuclear Magnetic Resonance (NMR)

    Office of Scientific and Technical Information (OSTI)

    Edward Mills Purcell and Nuclear Magnetic Resonance (NMR) Resources with Additional Information Edward M. Purcell was awarded the 1952 Nobel Prize in Physics for his "development...

  2. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOE Patents [OSTI]

    Fukushima, Eiichi (Los Alamos, NM); Roeder, Stephen B. W. (La Mesa, CA); Assink, Roger A. (Albuquerque, NM); Gibson, Atholl A. V. (Bryan, TX)

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  3. Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most

    E-Print Network [OSTI]

    Maroncelli, Mark

    Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most laboratory environments. The NMR facilities maintain superconducting magnets which have the units. Facility design and installation: Design and installation of a new NMR facility requires a number

  4. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOE Patents [OSTI]

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  5. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    SciTech Connect (OSTI)

    Altobelli, Stephen A; Fukushima, Eiichi

    2006-08-14

    In concentrated suspensions, there is a tendency for the solid phase to migrate from regions of high shear rate to regions of low shear (Leighton & Acrivos, 1987). In the early years that our effort was funded by the DOE Division of Basic Energy Science, quantitative measurement of this process in neutrally buoyant suspensions was a major focus (Abbott, et al., 1991; Altobelli, et al., 1991). Much of this work was used to improve multi-phase numerical models at Sandia National Laboratories. Later, our collaborators at Sandia and the University of New Mexico incorporated body forces into their numerical models of suspension flow (Rao, Mondy, Sun, et al., 2002). We developed experiments that allow us to study flows driven by buoyancy, to characterize these flows in well-known and useful engineering terms (Altobelli and Mondy, 2002) and to begin to explore the less well-understood area of flows with multiple solid phases (Beyea, Altobelli, et al., 2003). We also studied flows that combine the effects of shear and buoyancy, and flows of suspensions made from non-Newtonian liquids (Rao, Mondy, Baer, et al, 2002). We were able to demonstrate the usefulness of proton NMR imaging of liquid phase concentration and velocity and produced quantitative data not obtainable by other methods. Fluids flowing through porous solids are important in geophysics and in chemical processing. NMR techniques have been widely used to study liquid flow in porous media. We pioneered the extension of these studies to gas flows (Koptyug, et al, 2000, 2000, 2001, 2002). This extension allows us to investigate a wider range of Peclet numbers, and to gather data on problems of interest in catalysis. We devised two kinds of NMR experiments for three-phase systems. Both experiments employ two NMR visible phases and one phase that gives no NMR signal. The earlier method depends on the two visible phases differing in a NMR relaxation property. The second method (Beyea, Altobelli, et al., 2003) uses two different nuclei, protons and 19F. It also uses two different types of NMR image formation, a conventional spin-echo and a single-point method. The single-point method is notable for being useful for imaging materials which are much more rigid than can usually be studied by NMR imaging. We use it to image “low density” polyethylene (LDPE) plastic in this application. We have reduced the imaging time for this three-phase imaging method to less than 10 s per pair of profiles by using new hardware. Directly measuring the solid LDPE signal was a novel feature for multi-phase flow studies. We also used thermally polarized gas NMR (as opposed to hyper-polarized gas) which produces low signal to noise ratios because gas densities are on the order of 1000 times smaller than liquid densities. However since we used multi-atom molecules that have short T1's and operated at elevated pressures we could overcome some of the losses. Thermally polarized gases have advantages over hyperpolarized gases in the ease of preparation, and in maintaining a well-defined polarization. In these studies (Codd and Altobelli, 2003), we used stimulated echo sequences to successfully obtain propagators of gas in bead packs out to observation times of 300 ms. Zarraga, et al. (2000) used laser-sheet profilometry to investigate normal stress differences in concentrated suspensions. Recently we developed an NMR imaging analog for comparison with numerical work that is being performed by Rekha Rao at Sandia National Laboratories (Rao, Mondy, Sun, et al, 2002). A neutrally buoyant suspension of 100 mm PMMA spheres in a Newtonian liquid was sheared in a vertical Couette apparatus inside the magnet. The outer cylinder rotates and the inner cylinder is fixed. At these low rotation rates, the free-surface of the Newtonian liquid shows no measurable deformation, but the suspension clearly shows its non-Newtonian character.

  6. Evaluation Of Automated Low-Field Nuclear Magnetic Resonance (NMR) Relaxometry For Analysis Of Silicone Polymers

    SciTech Connect (OSTI)

    M. H. Wilson

    2009-10-02

    Screening studies and Design of Experiments (DoE) were performed to evaluate measurement variation of a new, non-destructive Nuclear Magnetic Resonance (NMR) test system designed to assess age-induced degradation of Outer Pressure Pads (OPP). The test method and results from 54,275 measurements are described. A reduction in measurement error was obtained after metal support struts were replaced with plastic support struts adjacent to the front position of the test chamber. However, remaining interference and a lack of detecting any age-related degradation prevent the use of the NMR system as a non-destructive surveillance test for OPPs. A cursory evaluation of the system with cellular silicone samples obtained more uniform results with increased error as measurements approached the sample’s edge.

  7. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  8. Z .Solid State Nuclear Magnetic Resonance 11 1998 139156 SQUID detected NMR and NQR

    E-Print Network [OSTI]

    Augustine, Mathew P.

    obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin. Augustine a,c,) , Dinh M. TonThat b,c , John Clarke b,c a Department of Chemistry, UniÕersity of California-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 m

  9. Sequence dependent structure and thermodynamics of DNA oligonucleotides and polynucleotides: uv melting and NMR (nuclear magnetic resonance) studies

    SciTech Connect (OSTI)

    Aboul-ela, F.M.

    1987-12-01

    Thermodynamic parameters for double strand formation have been measured for the twenty-five DNA double helices made by mixing deoxyoligonucleotides of the sequence dCA/sub 3/XA/sub 3/G with the complement dCT/sub 3/YT/sub 3/G. Each of the bases A, C, G, T, and I (I = hypoxanthine) have been substituted at the positions labeled X and Y. The results are analyzed in terms of nearest neighbors. At higher temperatures the sequences containing a G)centerreverse arrowdot)C base pair become more stable than those containing only A)centerreverse arrowdot)T. All molecules containing mismatcher are destabilized with respect to those with only Watson-Crick pairing, but there is a wide range of destabilization. Large neighboring base effects upon stability were observed. For example, when (X, Y) = (I, A), the duplex is eightfold more stable than when (X, Y) = (A, I). Independent of sequence effects the order of stabilities is: I)centerreverse arrowdot)C )succ) I)centerreverse arrowdot) A)succ) I)centerreverse arrowdot)T approx. I)centerreverse arrowdot)G. All of these results are discussed within the context of models for sequence dependent DNA secondary structure, replication fidelity and mechanisms of mismatch repair, and implications for probe design. The duplex deoxyoligonucleotide d(GGATGGGAG))centerreverse arrowdot)d(CTCCCATCC) is a portion of the gene recognition sequence of the protein transcription factor IIIA. The crystal structure of this oligonucleotide was shown to be A-form The present study employs Nuclear Magnetic Resonance, optical, chemical and enzymatic techniques to investigate the solution structure of this DNA 9-mer. (157 refs., 19 figs., 10 tabs.

  10. Molecular structure and motion in zero field magnetic resonance

    SciTech Connect (OSTI)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed.

  11. Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics

    E-Print Network [OSTI]

    Seager, Sara

    Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments-factor in atomic spectroscopy and is given by g = (µ/µN )/I, (2) and µN is the nuclear magneton, e /2mp

  12. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    DOE Patents [OSTI]

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  13. Investigation of Peptide Folding by Nuclear Magnetic Resonance Spectroscopy 

    E-Print Network [OSTI]

    Hwang, SoYoun

    2012-07-16

    . Solution-state nuclear magnetic resonance (NMR) is a powerful technique to investigate protein structure, dynamics, and folding mechanisms, since it provides residue-specific information. One of the major contributions that govern protein structure appears...

  14. Nuclear magnetic resonance imaging and analysis for determination of porous media properties 

    E-Print Network [OSTI]

    Uh, Jinsoo

    2007-04-25

    Advanced nuclear magnetic resonance (NMR) imaging methodologies have been developed to determine porous media properties associated with fluid flow processes. This dissertation presents the development of NMR experimental and analysis methodologies...

  15. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-12-31

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  16. Resonant and non-resonant magnetic scattering

    SciTech Connect (OSTI)

    McWhan, D.B.; Hastings, J.B.; Kao, C.C.; Siddons, D.P.

    1991-01-01

    The tunability and the polarization of synchrotron radiation open upon new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and thy fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation.

  17. Motion of free spins and NMR imaging without a radio-frequency magnetic field

    E-Print Network [OSTI]

    Kees van Schenk Brill; Jassem Lahfadi; Tarek Khalil; Daniel Grucker

    2015-04-19

    NMR imaging without any radio-frequency magnetic field is explained by a quantum treatment of independent spin~$\\tfrac 12$. The total magnetization is determined by means of their individual wave function. The theoretical treatment, based on fundamental axioms of quantum mechanics and solving explicitly the Schr\\"{o}dinger equation with the kinetic energy part which gives the motion of free spins, is recalled. It explains the phase shift of the spin noise spectrum with its amplitude compared to the conventional NMR spectrum. Moreover it explains also the relatively good signal to noise ratio of NMR images obtained without a RF pulse. This derivation should be helpful for new magnetic resonance imaging sequences or for developing quantum computing by NMR.

  18. Nuclear magnetic resonance contrast agents

    DOE Patents [OSTI]

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  19. Nuclear magnetic resonance contrast agents

    DOE Patents [OSTI]

    Smith, Paul H. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Jarvinen, Gordon D. (Los Alamos, NM); Ryan, Robert R. (Los Alamos, NM)

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  20. Nuclear magnetic resonance readable sensors

    E-Print Network [OSTI]

    Ling, Yibo

    2010-01-01

    The monitoring of physiological biomarkers is fundamental to the diagnosis and treatment of disease. We describe here the development of molecular sensors which can be read by magnetic resonance (MR) relaxometry. MR is an ...

  1. Ultrafast-based projection-reconstruction three-dimensional nuclear magnetic resonance spectroscopy

    E-Print Network [OSTI]

    Frydman, Lucio

    Ultrafast-based projection-reconstruction three-dimensional nuclear magnetic resonance spectroscopy Eriks Kupce Varian Ltd., 28 Manor Road, Walton-on-Thames, Surrey KT12 2QF, United Kingdom Lucio Frydmana the accelerated acquisition of multidimensional nuclear magnetic resonance nD NMR spectra. Among the methods

  2. Noble gas magnetic resonator

    DOE Patents [OSTI]

    Walker, Thad Gilbert; Lancor, Brian Robert; Wyllie, Robert

    2014-04-15

    Precise measurements of a precessional rate of noble gas in a magnetic field is obtained by constraining the time averaged direction of the spins of a stimulating alkali gas to lie in a plane transverse to the magnetic field. In this way, the magnetic field of the alkali gas does not provide a net contribution to the precessional rate of the noble gas.

  3. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  4. Nuclear magnetic resonance spectroscopy of single subnanoliter ova

    E-Print Network [OSTI]

    Grisi, Marco; Guidetti, Roberto; Harris, Nicola; Boero, Giovanni

    2015-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is, in principle, a promising candidate to study the intracellular chemistry of single microscopic living entities. However, due to sensitivity limitations, NMR experiments were reported only on very few and relatively large single cells down to a minimum volume of 10 nl. Here we show NMR spectroscopy of single ova at volume scales (0.1 and 0.5 nl) where life development begins for a broad variety of animals, humans included. We demonstrate that the sensitivity achieved by miniaturized inductive NMR probes (few pmol of 1H nuclei in some hours at 7 T) is sufficient to observe chemical heterogeneities among subnanoliter ova of tardigrades. Such sensitivities should allow to non-invasively monitor variations of concentrated intracellular compounds, such as glutathione, in single mammalian zygotes.

  5. Edward Purcell and Nuclear Magnetic Resonance (NMR)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010MesoscopyStaff » EdmundEducationEdward J.

  6. Optically Detected Magnetic Resonance Studies on ?-conjugated...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Optically Detected Magnetic Resonance Studies on -conjugated semiconductor systems Citation Details In-Document Search Title: Optically Detected Magnetic...

  7. Magnetic resonance apparatus

    DOE Patents [OSTI]

    Jackson, J.A.; Cooper, R.K.

    1980-10-10

    The patent consists of means for producing a region of homogeneous magnetic field remote from the source of the field, wherein two equal field sources are arranged axially so their fields oppose, producing a region near the plane perpendicular to the axis midway between the sources where the radial correspondent of the field goes through a maximum. Near the maximum, the field is homogeneous over prescribed regions.

  8. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect (OSTI)

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  9. Nuclear magnetic resonance imaging with hyper-polarized noble gases

    SciTech Connect (OSTI)

    Schmidt, D.M.; George, J.S.; Penttila, S.I.; Caprihan, A.

    1997-10-01

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The nuclei of noble gases can be hyper polarized through a laser-driven spin exchange to a degree many orders of magnitude larger than that attainable by thermal polarization without requiring a strong magnetic field. The increased polarization from the laser pumping enables a good nuclear magnetic resonance (NMR) signal from a gas. The main goal of this project was to demonstrate diffusion-weighted imaging of such hyper-polarized noble gas with magnetic resonance imaging (MRI). Possible applications include characterizing porosity of materials and dynamically imaging pressure distributions in biological or acoustical systems.

  10. Reciprocity and gyrotropism in magnetic resonance transduction

    SciTech Connect (OSTI)

    Tropp, James

    2006-12-15

    We give formulas for transduction in magnetic resonance - i.e., the appearance of an emf due to Larmor precession of spins - based upon the modified Lorentz reciprocity principle for gyrotropic (also called 'nonreciprocal') media, i.e., in which a susceptibility tensor is carried to its transpose by reversal of an external static field [cf., R. F. Harrington and A. T. Villeneuve IRE Trans. Microwave Theory and Technique MTT6, 308 (1958)]. Prior applications of reciprocity to magnetic resonance, despite much success, have ignored the gyrotropism which necessarily arises due to nuclear and/or unpaired electronic spins. For detection with linearly polarized fields, oscillating at the Larmor frequency, the emf is written in terms of a volume integral containing a product of two factors which we define as the antenna patterns, i.e. (H{sub 1x}{+-}iH{sub 1y}), where, e.g., for a single transceive antenna, the H's are just the spatially dependent oscillatory magnetic field strengths, per the application of some reference current at the antenna terminals, with the negative sign obtaining for transmission, and the positive for reception. Similar expressions hold for separate transmit and receive antennas; expressions are also given for circular polarization of the fields. We then exhibit a receive-only array antenna of two elements for magnetic resonance imaging of protons, which, due an intensity artifact arising from stray reactive coupling of the elements, produces, despite its own bilateral symmetry, asymmetric proton NMR images of a symmetric cylindrical phantom containing aqueous saline solution [J. Tropp and T. Schirmer, J. Magn. Reson. 151, 146 (2001)]. Modification of this two-port antenna, to function in transmit-receive mode, allows us to demonstrate highly nonreciprocal behavior: that is, to record images (of cylindrical test phantoms containing aqueous saline solution) whose appearance dramatically changes, when the roles of transmission and reception are swapped between the two antenna ports--giving in one instance a signal intensity pattern whose form resembles an umbrella (i.e., with a central column of moderate intensity surmounted by a bright canopy), and in the other, a distorted oval with slight concavities at its horizontal extremes, whose outline suggests that of a cat's eye. The relation between image patterns and drive scheme can be shown to reverse if the static polarizing field is reversed. Electromagnetic and circuit calculations, together with the modified reciprocity principle, allow us to reproduce these pattern changes in numerical simulations, closely and convincingly. Although the imaging experiments are performed at a static field of 3.0 T, and consequently a Larmor frequency of 128 MHz, the nonreciprocal effects are not related to the shortness of the wavelength in aqueous medium, but appear equally in simulations based in either the quasistatic or full electromagnetic regimes. Finally, we show that although antenna patterns for transmission and reception are swapped with reversal of the polarizing field, meaning that the receive pattern equals the transmit pattern with the field reversed, this in no way invalidates the familiar rotating wave model of spin dynamics in magnetic resonance.

  11. Low-field classroom nuclear magnetic resonance system

    E-Print Network [OSTI]

    Zimmerman, Clarissa Lynette

    2010-01-01

    The goal of this research was to develop a Low-field Classroom NMR system that will enable hands-on learning of NMR and MRI concepts in a Biological-Engineering laboratory course. A permanent magnet system, designed using ...

  12. Measurement of Untruncated Nuclear Spin Interactions via Zero- to Ultra-Low-Field Nuclear Magnetic Resonance

    E-Print Network [OSTI]

    John W. Blanchard; Tobias F. Sjolander; Jonathan P. King; Micah P. Ledbetter; Emma H. Levine; Vikram S. Bajaj; Dmitry Budker; Alexander Pines

    2015-07-09

    Zero- to ultra-low-field nuclear magnetic resonance (ZULF NMR) provides a new regime for the measurement of nuclear spin-spin interactions free from effects of large magnetic fields, such as truncation of terms that do not commute with the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole coupling, is a valuable source of spatial information in NMR, though many terms are unobservable in high-field NMR, and the coupling averages to zero under isotropic molecular tumbling. Under partial alignment, this information is retained in the form of so-called residual dipolar couplings. We report zero- to ultra-low-field NMR measurements of residual dipolar couplings in acetonitrile-2-$^{13}$C aligned in stretched polyvinyl acetate gels. This represents the first investigation of dipolar couplings as a perturbation on the indirect spin-spin $J$-coupling in the absence of an applied magnetic field. As a consequence of working at zero magnetic field, we observe terms of the dipole-dipole coupling Hamiltonian that are invisible in conventional high-field NMR. This technique expands the capabilities of zero- to ultra-low-field NMR and may have applications in precision measurement of subtle physical interactions, chemical analysis, and characterization of local mesoscale structure in materials.

  13. Spectrally Resolved Magnetic Resonance Imaging of the XenonBiosensor

    SciTech Connect (OSTI)

    Hilty, Christian; Lowery, Thomas; Wemmer, David; Pines, Alexander

    2005-07-15

    Due to its ability to non-invasively record images, as well as elucidate molecular structure, nuclear magnetic resonance is the method of choice for applications as widespread as chemical analysis and medical diagnostics. Its detection threshold is, however, limited by the small polarization of nuclear spins in even the highest available magnetic fields. This limitation can, under certain circumstances, be alleviated by using hyper-polarized substances. Xenon biosensors make use of the sensitivity gain of hyperpolarized xenon to provide magnetic resonance detection capability for a specific low-concentration target. They consist of a cryptophane cage, which binds one xenon atom, and which has been connected via a linker to a targeting moiety such as a ligand or antibody. Recent work has shown the possibility of using the xenon biosensor to detect small amounts of a substance in a heterogeneous environment by NMR. Here, we demonstrate that magnetic resonance (MR) provides the capability to obtain spectrally and spatially resolved images of the distribution of immobilized biosensor, opening the possibility for using the xenon biosensor for targeted imaging.

  14. Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI

    E-Print Network [OSTI]

    Iwasa, Yukikazu

    This paper describes a solid-cryogen cooling technique currently being developed at the M.I.T. Francis Bitter Magnet Laboratory for application to superconducting magnets of NMR and MRI. The technique is particularly ...

  15. Gradient characterization in magnetic resonance imaging

    E-Print Network [OSTI]

    Cheng, Joseph Yitan

    2007-01-01

    Special magnetic resonance (MR) scans, such as spiral imaging and echo-planar imaging, require speed and gradient accuracy while putting high demands on the MR gradient system that may cause gradient distortion. Additionally, ...

  16. Magnetic resonance imaging in cardiovascular disease 

    E-Print Network [OSTI]

    Richards, Jennifer Margaret Jane

    2013-07-06

    Background Superparamagnetic particles of iron oxide (SPIO) are part of a novel and exciting class of ‘smart’ magnetic resonance imaging (MRI) contrast agents that are taken up by inflammatory cells. Ultrasmall SPIO ...

  17. Enhancement of artificial magnetism via resonant bianisotropy

    E-Print Network [OSTI]

    Markovich, Dmitry; Shalin, Alexander; Samusev, Anton; Krasnok, Alexander; Belov, Pavel; Ginzburg, Pavel

    2015-01-01

    All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here a new approach for increasing magnetic response via resonant bianisotropy effect is proposed and analyzed. The key mechanism of enhancement is based on electric-magnetic interaction between two electrically and magnetically resonant nanoparticles of all-dielectric dimer nanoantenna. It was shown that proper geometrical arrangement of the dimer in respect to the incident illumination direction allows flexible control over all vectorial components of magnetic polarizability, tailoring the later in the dynamical range of 100 % and enhancement up to 36 % relative to performances of standalone spherical particles....

  18. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    SciTech Connect (OSTI)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R. James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-03-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.

  19. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    SciTech Connect (OSTI)

    Vinante, A. Falferi, P.; Mezzena, R.

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 ?m SQUID loops.

  20. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    SciTech Connect (OSTI)

    Urban, Jeffry Todd

    2004-12-21

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding module for the recently developed NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129 gas as a sensor is discussed. This work also reports the use of an optical atomic magnetometer to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as a detection module for NMR remote detection experiments.

  1. Physical Background OfPhysical Background Of Nuclear Magnetic ResonanceNuclear Magnetic Resonance

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    Physical Background OfPhysical Background Of Nuclear Magnetic ResonanceNuclear Magnetic Resonance SpectroscopySpectroscopy Michael McClellan Spring 2009 Department of Physics and Physical Oceanography Theoretically the nucleus can have any of these allowed spins #12;General Characteristics of Nuclear Spin

  2. Characterization of polyxylylenes with solid state {sup 13}C nuclear magnetic resonance spectroscopy

    SciTech Connect (OSTI)

    Schneider, D.A.; Loy, D.A.; Assink, R.A. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1996-10-01

    Polyxylylenes are an important class of thermoplastics that are readily prepared by thermolysis of [2.2]paracyclophane or xylene precursors to afford xylylene monomers that condense and polymerize on solid surfaces to give polymer films. As most polyxylylenes are insoluble due to a high degree of crystallinity, characterization by solid state nuclear magnetic resonance spectroscopic techniques is necessary. In this paper we describe the preparation of polyxylylene, poly-2-ethylxylylene, poly-2-chloroxylylene, poly-2, 3-dichloroxylylene, and poly({alpha}, {alpha}, {alpha}{prime}, {alpha}{prime}-tetrafluoroxylylene) and their characterization using solid state {sup 13}C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS NMR) spectroscopy.

  3. Nuclear magnetic resonance offers new insights into Pu 239

    E-Print Network [OSTI]

    - 1 - Nuclear magnetic resonance offers new insights into Pu 239 May 29, 2012 Nuclear magnetic signal of plutonium 239's unique nuclear magnetic resonance signature has been detected by scientists on the subject, "Observation of 239 Pu Nuclear Magnetic Resonance," was published in the May 18 issue of Science

  4. A design flux injector for NMR superconducting magnets : results of operation with superconducting insert cells

    E-Print Network [OSTI]

    Mai, Rocky D. (Rocky Dikang)

    2006-01-01

    It has been known for some time that high-temperature superconductors (HTS) are critical for the construction of NMR magnets generating 1 GHz and above. Such systems generally require an HTS insert to be placed in the inner ...

  5. Coaxial probe for nuclear magnetic resonance diffusion and relaxation correlation experiments

    SciTech Connect (OSTI)

    Tang, Yiqiao; Hürlimann, Martin; Mandal, Soumyajit; Paulsen, Jeffrey; Song, Yi-Qiao

    2014-02-21

    A coaxial nuclear magnetic resonance (NMR) probe is built to measure diffusion and relaxation properties of liquid samples. In particular, we demonstrate the acquisition of two-dimensional (2D) distribution functions (T{sub 1}-T{sub 2} and diffusion–T{sub 2}), essential for fluids characterization. The compact design holds promise for miniaturization, thus enabling the measurement of molecular diffusion that is inaccessible to conventional micro-NMR setups. Potential applications range from crude oil characterization to biomolecular screening and detections.

  6. Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents

    E-Print Network [OSTI]

    Costantino S. Yannoni; Mark H. Sherwood; Lieven M. K. Vandersypen; Dolores C. Miller; Mark G. Kubinec; Isaac L. Chuang

    1999-12-12

    Liquid crystals offer several advantages as solvents for molecules used for nuclear magnetic resonance quantum computing (NMRQC). The dipolar coupling between nuclear spins manifest in the NMR spectra of molecules oriented by a liquid crystal permits a significant increase in clock frequency, while short spin-lattice relaxation times permit fast recycling of algorithms, and save time in calibration and signal-enhancement experiments. Furthermore, the use of liquid crystal solvents offers scalability in the form of an expanded library of spin-bearing molecules suitable for NMRQC. These ideas are demonstrated with the successful execution of a 2-qubit Grover search using a molecule ($^{13}$C$^{1}$HCl$_3$) oriented in a liquid crystal and a clock speed eight times greater than in an isotropic solvent. Perhaps more importantly, five times as many logic operations can be executed within the coherence time using the liquid crystal solvent.

  7. High field DNP and cryogenic MAS NMR : novel instrumentation and applications

    E-Print Network [OSTI]

    Markhasin, Evgeny

    2014-01-01

    Solid State Nuclear Magnetic Resonance (ssNMR) spectroscopy has blossomed over the last two decades. As ssNMR is progressively applied to more challenging systems, the sensitivity remains one of its major limiting factors. ...

  8. Electrical noise model for detection circuitry of an NMR-based formation evaluation Tool

    E-Print Network [OSTI]

    Maison, Julie Laure K

    2011-01-01

    The RF signals received from Nuclear Magnetic Resonance (NMR) measurements in logging while drilling NMR instruments are often of the same amplitude as the noise generated by the instruments. Designers of these devices are ...

  9. Squid detected NMR and MRI at ultralow fields

    DOE Patents [OSTI]

    Clarke, John (Berkeley, CA); Pines, Alexander (Berkeley, CA); McDermott, Robert F. (Monona, WI); Trabesinger, Andreas H. (London, GB)

    2008-12-16

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  10. SQUID detected NMR and MRI at ultralow fields

    DOE Patents [OSTI]

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-10-03

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  11. Squid detected NMR and MRI at ultralow fields

    DOE Patents [OSTI]

    Clarke, John; McDermott, Robert; Pines, Alexander; Trabesinger, Andreas Heinz

    2006-05-30

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  12. Squid detected NMR and MRI at ultralow fields

    DOE Patents [OSTI]

    Clarke, John (Berkeley, CA); McDermott, Robert (Louisville, CO); Pines, Alexander (Berkeley, CA); Trabesinger, Andreas Heinz (CH-8006 Zurich, CH)

    2007-05-15

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  13. Magnetic and electric excitations in split ring resonators

    E-Print Network [OSTI]

    Magnetic and electric excitations in split ring resonators Jiangfeng Zhou1,2,, Thomas Koschny1 studied the electric and magnetic resonances of U-shaped SRRs. We showed that higher order excitation modes exist in both of the electric and magnetic resonances. The nodes in the current distribution were

  14. A nuclear magnetic resonance probe of group IV clathrates 

    E-Print Network [OSTI]

    Gou, Weiping

    2008-10-10

    (NMR) technique. NMR is a local probe, which can tell us local electronic and magnetic information. The long coherence times allow NMR to be used to study relatively low-frequency atomic dynamics. 13 CHAPTER II INTRODUCTION TO SOLID STATE NMR Nuclear... University, China; M.S., Academy of Science of China; M.S., Texas A&M University Chair of Advisory Committee: Dr. Joseph H. Ross, Jr. The clathrates feature large cages of silicon, germanium, or tin, with guest atoms in the cage centers. The group IV...

  15. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    SciTech Connect (OSTI)

    Heaney, M.B. . Dept. of Physics Lawrence Berkeley Lab., CA )

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al{sub 2}O{sub 3}/Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 {times} 10{sup 17} in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO{sub 3} crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies.

  16. Antiferromagnetic resonance excitation by terahertz magnetic field resonantly enhanced with split ring resonator

    SciTech Connect (OSTI)

    Mukai, Y. [Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Hirori, H., E-mail: hirori@icems.kyoto-u.ac.jp [Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Yamamoto, T. [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Kageyama, H. [Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Tanaka, K., E-mail: kochan@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-07-14

    Excitation of antiferromagnetic resonance (AFMR) in a HoFeO{sub 3} crystal combined with a split ring resonator (SRR) is studied using terahertz (THz) electromagnetic pulses. The magnetic field in the vicinity of the SRR is induced by the incident THz electric field component and excites spin oscillations that correspond to the AFMR, which are directly probed by the Faraday rotation of the polarization of a near-infrared probe pulse. The good agreement of the temperature-dependent magnetization dynamics with the calculation using the two-lattice Landau-Lifshitz-Gilbert equation confirms that the AFMR is excited by the THz magnetic field, which is enhanced at the SRR resonance frequency by a factor of 20 compared to the incident magnetic field.

  17. Electro-Mechanical Resonant Magnetic Field Sensor

    E-Print Network [OSTI]

    Temnykh, A B; Temnykh, Alexander B.; Lovelace, Richard V. E.

    2002-01-01

    We describe a new type of magnetic field sensor which is termed an Electro-Mechanical Resonant Sensor (EMRS). The key part of this sensor is a small conductive elastic element with low damping rate and therefore a high Q fundamental mode of frequency $f_1$. An AC current is driven through the elastic element which, in the presence of a magnetic field, causes an AC force on the element. When the frequency of the AC current matches the resonant frequency of the element, maximum vibration of the element occurs and this can be measured precisely by optical means. We have built and tested a model sensor of this type using for the elastic element a length of copper wire of diameter 0.030 mm formed into a loop shape. The wire motion was measured using a light emitting diode photo-transistor assembly. This sensor demonstrated a sensitivity better than 0.001G for an applied magnetic field of $ \\sim 1$G and a good selectivity for the magnetic field direction. The sensitivity can be easily improved by a factor of $\\sim ...

  18. Nuclear Magnetic Resonance: Portable and integrated Lead: P. Poulichet.

    E-Print Network [OSTI]

    Baudoin, Geneviève

    Nuclear Magnetic Resonance: Portable and integrated Lead: P. Poulichet. Permanent members: L. Rousseau, A. Fakri. Associated researchers: C. Delabie, A. Exertier. Portable Nuclear Magnetic Resonance : our work in the field of nuclear magneto resonance is focused on the design and the realization

  19. Solid State Nuclear Magnetic Resonance 29 (2006) 5265 Dynamic nuclear polarization and nuclear magnetic resonance in the

    E-Print Network [OSTI]

    Gusev, Guennady

    2006-01-01

    Solid State Nuclear Magnetic Resonance 29 (2006) 52­65 Dynamic nuclear polarization and nuclear Nuclear magnetic resonance is detected via the in-plane conductivity of a two-dimensional electron system edge states at the perimeter of the 2DES. Interpretation of the electron-nuclear double resonance

  20. 2007 Nature Publishing Group Nuclear magnetic resonance imaging

    E-Print Network [OSTI]

    Leonardo, Degiorgi

    to sense the magnetic force generated between the tip and spins in a sample. Magnetic resonance is used for the present work is the development of magnetic tips that generate magnetic field gradients as high as 1 of the technique on a patterned CaF2 test object. Unlike the permanent magnet tips previously used for

  1. Compact orthogonal NMR field sensor

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL)

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  2. Nuclear magnetic Trond Saue (LCPQ, Toulouse) Nuclear magnetic resonance Virginia Tech 2015 1 / 51

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Nuclear magnetic resonance Trond Saue Trond Saue (LCPQ, Toulouse) Nuclear magnetic resonance Virginia Tech 2015 1 / 51 #12;Nuclear spin The atomic nucleus is a composite particle built from Z protons (LCPQ, Toulouse) Nuclear magnetic resonance Virginia Tech 2015 1 / 51 #12;Gyromagnetic ratio: classical

  3. Science Drivers and Technical Challenges for Advanced Magnetic Resonance

    SciTech Connect (OSTI)

    Mueller, Karl T.; Pruski, Marek; Washton, Nancy M.; Lipton, Andrew S.

    2013-03-07

    This report recaps the "Science Drivers and Technical Challenges for Advanced Magnetic Resonance" workshop, held in late 2011. This exploratory workshop's goal was to discuss and address challenges for the next generation of magnetic resonance experimentation. During the workshop, participants from throughout the world outlined the science drivers and instrumentation demands for high-field dynamic nuclear polarization (DNP) and associated magnetic resonance techniques, discussed barriers to their advancement, and deliberated the path forward for significant and impactful advances in the field.

  4. Functional Magnetic Resonance Imaging of Motor Cortex Activation in Schizophrenia

    E-Print Network [OSTI]

    2015-01-01

    Magnetic Resonance Imaging of Motor Cortex Activation inBrain dysfunction during motor activation and corpus callo-Lee HJ, et al. • FMRI of Motor Cortex Activation in

  5. Novel nuclear magnetic resonance techniques for studying biological molecules

    E-Print Network [OSTI]

    Laws, David D.

    2010-01-01

    parameters by solid-state nuclear magnetic resonance." J.and R. V. Pound. "Nuclear audiofrequency spectroscopy byresonant heating of the nuclear spin system." Phys. Rev. ,

  6. Methods for chemical exchange saturation transfer magnetic resonance imaging

    E-Print Network [OSTI]

    Scheidegger, Rachel Nora

    2013-01-01

    Chemical exchange saturation transfer (CEST) is a relatively new magnetic resonance imaging (MRI) acquisition technique that generates contrast dependent on tissue microenvironment, such as protein concentration and ...

  7. Magnetic resonance imaging of self-assembled biomaterial scaffolds

    DOE Patents [OSTI]

    Bull, Steve R; Meade, Thomas J; Stupp, Samuel I

    2014-09-16

    Compositions and/or mixtures comprising peptide amphiphile compounds comprising one or more contrast agents, as can be used in a range of magnetic resonance imaging applications.

  8. I. I. Rabi, Nuclear Magnetic Resonance (NMR), and Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower, Wave and TidalChangI. I. Rabi,

  9. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    DOE Patents [OSTI]

    Volegov, Petr L. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Mosher, John C. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Kraus, Jr., Robert H. (Los Alamos, NM)

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  10. MAGNETIC RESONANCE IMAGE VIEWING ``SCREEN REAL ESTATE'' PROBLEM

    E-Print Network [OSTI]

    Atkins, M. Stella

    MAGNETIC RESONANCE IMAGE VIEWING AND THE ``SCREEN REAL ESTATE'' PROBLEM By Johanna van der Heyden B Degree: Master of Science Title of thesis: Magnetic Resonance Image Viewing and the ``Screen Real Estate. These ``screen real estate'' issues are extensively explored in the literature but not consistently applied

  11. NMR and MRI apparatus and method

    DOE Patents [OSTI]

    Clarke, John; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Myers, Whittier; McDermott, Robert; ten Haken, Bernard; Pines, Alexander; Trabesinger, Andreas

    2007-03-06

    Nuclear magnetic resonance (NMR) signals are detected in microtesla fields. Prepolarization in millitesla fields is followed by detection with an untuned dc superconducting quantum interference device (SQUID) magnetometer. Because the sensitivity of the SQUID is frequency independent, both signal-to-noise ratio (SNR) and spectral resolution are enhanced by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. Additional signal to noise benefits are obtained by use of a low noise polarization coil, comprising litz wire or superconducting materials. MRI in ultralow magnetic field is based on the NMR at ultralow fields. Gradient magnetic fields are applied, and images are constructed from the detected NMR signals.

  12. General classical and quantum-mechanical description of magnetic resonance

    E-Print Network [OSTI]

    Alexander J. Silenko

    2015-08-04

    A general theoretical description of the magnetic resonance is given. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are derived in the case of an arbitrary initial polarization. The equations obtained are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance without neglecting the above-mentioned field. A quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is proven. Distinguishing features of magnetic and quasimagnetic resonances for nuclei and particles moving in accelerators and storage rings which include resonances caused by the electric dipole moment are considered.

  13. General classical and quantum-mechanical description of magnetic resonance

    E-Print Network [OSTI]

    Silenko, Alexander J

    2015-01-01

    A general theoretical description of the magnetic resonance is given. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are derived in the case of an arbitrary initial polarization. The equations obtained are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance without neglecting the above-mentioned field. A quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is proven. Distinguishing features of magnetic and quasimagnetic resonances for nuclei and particles moving in accelerators and storage rings which include resonances caused by the electric dipole moment are considered.

  14. Protein MAS NMR methodology and structural analysis of protein assemblies

    E-Print Network [OSTI]

    Bayro, Marvin J

    2010-01-01

    Methodological developments and applications of solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, with particular emphasis on the analysis of protein structure, are described in this thesis. ...

  15. Exploring large coherent spin systems with solid state NMR

    E-Print Network [OSTI]

    Cho, HyungJoon, Ph. D. Massachusetts Institute of Technology

    2005-01-01

    Solid state Nuclear Magnetic Resonance (NMR) allows us to explore a large coherent spin system and provides an ideal test-bed for studying strongly interacting multiple-spin system in a large Hilbert space. In this thesis, ...

  16. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    SciTech Connect (OSTI)

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  17. High-sensitivity cooled coil system for nuclear magnetic resonance in kHz range

    SciTech Connect (OSTI)

    Lin, Tingting; Zhao, Jing; Zhang, Yi; Krause, Hans-Joachim; Lee, Yong-Ho; Lin, Jun

    2014-11-15

    In several low-field Nuclear Magnetic Resonance (LF-NMR) and surface nuclear magnetic resonance applications, i.e., in the frequency range of kHz, high sensitivity magnetic field detectors are needed. Usually, low-T{sub c} superconducting quantum interference devices (SQUIDs) with a high field sensitivity of about 1 fT/Hz{sup 1/2} are employed as detectors. Considering the flux trapping and operational difficulties associated with low-T{sub c} SQUIDs, we designed and fabricated liquid-nitrogen-cooled Cu coils for NMR detection in the kHz range. A cooled coil system consisting of a 9-cm diameter Cu coil and a low noise preamplifier was systematically investigated and reached a sensitivity of 2 fT/Hz{sup 1/2} at 77 K, which is 3 times better compared to the sensitivity at 300 K. A Q-switch circuit as an essential element for damping the ringing effects of the pickup coil was developed to acquire free induction decay signals of a water sample with minimum loss of signal. Our studies demonstrate that cooled Cu coils, if designed properly, can provide a comparable sensitivity to low-T{sub c} SQUIDs.

  18. A METHODOLOGY TO INTEGRATE MAGNETIC RESONANCE AND ACOUSTIC MEASUREMENTS FOR RESERVOIR CHARACTERIZATION

    SciTech Connect (OSTI)

    Jorge O. Parra; Chris L. Hackert; Lorna L. Wilson

    2002-09-20

    The work reported herein represents the third year of development efforts on a methodology to interpret magnetic resonance and acoustic measurements for reservoir characterization. In this last phase of the project we characterize a vuggy carbonate aquifer in the Hillsboro Basin, Palm Beach County, South Florida, using two data sets--the first generated by velocity tomography and the second generated by reflection tomography. First, we integrate optical macroscopic (OM), scanning electron microscope (SEM) and x-ray computed tomography (CT) images, as well as petrography, as a first step in characterizing the aquifer pore system. This pore scale integration provides information with which to evaluate nuclear magnetic resonance (NMR) well log signatures for NMR well log calibration, interpret ultrasonic data, and characterize flow units at the field scale between two wells in the aquifer. Saturated and desaturated NMR core measurements estimate the irreducible water in the rock and the variable T{sub 2} cut-offs for the NMR well log calibration. These measurements establish empirical equations to extract permeability from NMR well logs. Velocity and NMR-derived permeability and porosity relationships integrated with velocity tomography (based on crosswell seismic measurements recorded between two wells 100 m apart) capture two flow units that are supported with pore scale integration results. Next, we establish a more detailed picture of the complex aquifer pore structures and the critical role they play in water movement, which aids in our ability to characterize not only carbonate aquifers, but reservoirs in general. We analyze petrography and cores to reveal relationships between the rock physical properties that control the compressional and shear wave velocities of the formation. A digital thin section analysis provides the pore size distributions of the rock matrix, which allows us to relate pore structure to permeability and to characterize flow units at the core and borehole scales. Vp, density, porosity, and permeability logs are integrated with crosswell reflection data to produce impedance, permeability, and porosity images. These images capture three flow units that are characterized at the pore and borehole scales. The upper flow units are thin, continuous beds, and the deeper flow unit is thicker and heterogeneous. NMR well log calibration data and thin section analysis demonstrate that interwell region permeability is controlled mainly by micropores and macropores, which represent the flow unit matrices of the confined aquifer. Reflection image-derived impedance provides lateral detail and the depth of the deeper confining unit. The permeable regions identified in both parts of this phase of the study are consistent with the hydrological results of high water production being monitored between two wells in the South Florida aquifer. Finally, we describe the two major methodologies developed to support the aquifer characterization efforts--(1) a method to estimate frequency-dependent scattering attenuation based on the volume fraction and typical size of vugs or karsts, and (2) a method to more accurately interpret NMR well logs by taking into account the diffusion of magnetization between large and small pores. For the first method, we take the exact vug structure from x-ray CT scans of two carbonate cores and use 3-D finite difference modeling to determine the P-wave scattering attenuation in these cores at ultrasonic frequencies. In spite of the sharp contrast in medium properties between cavity and rock and the violation of the small perturbation assumption, the computed scattering attenuation is roughly comparable to that predicted by various random medium scattering theories. For the second method, we investigate how the diffusion of magnetization between macropores and micropores influences NMR log interpretation through 2D simulation of magnetization diffusion in realistic macropore geometries derived from digital images of thin sections. In most cases, our simulations show that the resulting simulate

  19. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  20. Resonant x-ray magnetic scattering in holmium

    SciTech Connect (OSTI)

    Gibbs, D.

    1991-01-01

    We review the results of resonant x-ray magnetic scattering experiments on the rare earth metal holmium. When the incident incident x-ray energy is tuned near the L{sub III} absorption edge, large resonant enhancements of the magnetic scattering and resonant integer harmonics are observed. These results are analyzed within the theory of x-ray resonance exchange scattering assuming electric dipole (2p {yields} 5d) and quadrupole (2p {yields} 4f) transitions among atomic orbitals. 30 refs., 5 figs.

  1. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    SciTech Connect (OSTI)

    Mitchell, Jonathan Fordham, Edmund J.

    2014-11-15

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  2. Sensitive magnetic force detection with a carbon nanotube resonator

    SciTech Connect (OSTI)

    Willick, Kyle; Haapamaki, Chris; Baugh, Jonathan

    2014-03-21

    We propose a technique for sensitive magnetic point force detection using a suspended carbon nanotube (CNT) mechanical resonator combined with a magnetic field gradient generated by a ferromagnetic gate electrode. Numerical calculations of the mechanical resonance frequency show that single Bohr magneton changes in the magnetic state of an individual magnetic molecule grafted to the CNT can translate to detectable frequency shifts, on the order of a few kHz. The dependences of the resonator response to device parameters such as length, tension, CNT diameter, and gate voltage are explored and optimal operating conditions are identified. A signal-to-noise analysis shows that, in principle, magnetic switching at the level of a single Bohr magneton can be read out in a single shot on timescales as short as 10??s. This force sensor should enable new studies of spin dynamics in isolated single molecule magnets, free from the crystalline or ensemble settings typically studied.

  3. Detection of magnetic resonance signals using a magnetoresistive sensor

    DOE Patents [OSTI]

    Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

    2013-10-01

    A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

  4. Magnetic resonance imaging contrast agents for chemical sensing

    E-Print Network [OSTI]

    Liu, Vincent Hok

    2014-01-01

    Magnetic resonance imaging (MRI) is frequently used for examining the human body. MRI contrast agents currently used in the clinic assist physicians in locating problematic areas, but other tools are needed to interrogate ...

  5. Model-based reconstruction of magnetic resonance spectroscopic imaging

    E-Print Network [OSTI]

    Chatnuntawech, Itthi

    2013-01-01

    Magnetic resonance imaging (MRI) is a medical imaging technique that is used to obtain images of soft tissue throughout the body. Since its development in the 1970s, MRI has gained tremendous importance in clinical practice ...

  6. Magnetic resonance spectroscopic imaging using parallel transmission at 7T

    E-Print Network [OSTI]

    Gagoski, Borjan Aleksandar

    2011-01-01

    Conventional magnetic resonance spectroscopic imaging (MRSI), also known as phase-encoded (PE) chemical shift imaging (CSI), suffers from both low signal-to-noise ratio (SNR) of the brain metabolites, as well as inflexible ...

  7. Designing and characterizing hyperpolarizable silicon nanoparticles for magnetic resonance imaging

    E-Print Network [OSTI]

    Anahtar, Melis Nuray

    2008-01-01

    Magnetic Resonance Imaging (MRI) is one of the most powerful noninvasive tools for diagnosing human disease, but its utility is limited because current contrast agents are ineffective when imaging air-tissue interfaces, ...

  8. Imaging agents for in vivo magnetic resonance and scintigraphic imaging

    DOE Patents [OSTI]

    Engelstad, B.L.; Raymond, K.N.; Huberty, J.P.; White, D.L.

    1991-04-23

    Methods are provided for in vivo magnetic resonance imaging and/or scintigraphic imaging of a subject using chelated transition metal and lanthanide metal complexes. Novel ligands for these complexes are provided. No Drawings

  9. Design algorithms for parallel transmission in magnetic resonance imaging

    E-Print Network [OSTI]

    Setsompop, Kawin

    2008-01-01

    The focus of this dissertation is on the algorithm design, implementation, and validation of parallel transmission technology in Magnetic Resonance Imaging (MRI). Novel algorithms are proposed which yield excellent excitation ...

  10. Magnetic structure of the low-dimensional magnet NaCu{sub 2}O{sub 2}: {sup 63,65}Cu and {sup 23}Na NMR studies

    SciTech Connect (OSTI)

    Sadykov, A. F., E-mail: sadykov@imp.uran.ru; Gerashchenko, A. P.; Piskunov, Yu. V.; Ogloblichev, V. V.; Smol’nikov, A. G.; Verkhovskii, S. V.; Buzlukov, A. L.; Arapova, I. Yu. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Furukawa, Y. [Iowa State University, Ames Laboratory (United States); Yakubovskii, A. Yu. [National Research Centre Kurchatov Institute (Russian Federation); Bush, A. A. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2014-11-15

    The magnetic structure of a quasi-one-dimensional frustrated NaCu{sub 2}O{sub 2} magnet single crystal is studied by NMR. The spatial orientation of the planar spin spirals in the copper-oxygen Cu{sup 2+}-O chains is determined, and its evolution as a function of the applied magnetic field direction is analyzed.

  11. Method for nuclear magnetic resonance imaging

    DOE Patents [OSTI]

    Kehayias, J.J.; Joel, D.D.; Adams, W.H.; Stein, H.L.

    1988-05-26

    A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D/sub 2/O in a solution with water.

  12. Magnetization and 13C NMR spin-lattice relaxation of nanodiamond powder

    SciTech Connect (OSTI)

    Levin, E.M.; Fang, X.W.; Bud'ko, S.L.; Straszheim, W.E.; McCallum, R.W.; Schmidt-Rohr, K.

    2008-02-15

    The bulk magnetization at temperatures of 1.8-400 K and in magnetic fields up to 70 kOe, the ambient temperature {sup 13}C NMR spin-lattice relaxation, T{sub 1,c}, and the elemental composition of three nanodiamond powder samples have been studied. The total magnetization of nanodiamond can be explained in terms of contributions from (1) the diamagnetic effect of carbon, (2) the paramagnetic effect of unpaired electrons present in nanodiamond grains, and (3) ferromagnetic-like and (4) superparamagnetic contributions from Fe-containing particles detected in spatially resolved energy-dispersive spectroscopy. Contributions (1) and (2) are intrinsic to nanodiamond, while contributions (3) and (4) arise from impurities naturally present in detonation nanodiamond samples. {sup 13}C NMR T{sub 1,c} relaxation would be unaffected by the presence of the ferromagnetic particles with the bulk magnetization of {approx} 0.01 emu/g at 300 K. Thus, a reduction of T{sub 1,c} by 3 orders of magnitude compared to natural and synthetic microdiamonds confirms the presence of unpaired electrons in the nanodiamond grains. The spin concentration in nanodiamond powder corresponds to {approx}30 unpaired electrons per {approx}4.6 nm diameter nanodiamond grain.

  13. Advanced slow-magic angle spinning probe for magnetic resonance imaging and spectroscopy

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi; Minard, Kevin R.; Rommereim, Donald N.

    2006-01-24

    The present invention relates to a probe and processes useful for magnetic resonance imaging and spectroscopy instruments. More particularly, the invention relates to a MR probe and processes for obtaining resolution enhancements of fluid objects, including live specimens, using an ultra-slow (magic angle) spinning (MAS) of the specimen combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in a 2T field, while spinning the animal at a speed of 1.5 Hz. Results show that even in this relatively low field with PHORMAT, an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. Resolution of 1H NMR metabolite spectra are thus significantly enhanced. Results indicate that PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for in vivo biochemical, biomedical and/or medical applications involving large-sized biological objects such as mice, rats and even humans within a hospital setting. For small-sized objects, including biological objects, such as excised tissues, organs, live bacterial cells, and biofilms, use of PASS at a spinning rate of 30 Hz and above is preferred.

  14. H-1 Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function

    SciTech Connect (OSTI)

    MCClay, Joseph L.; Adkins, Daniel E.; Isern, Nancy G.; O'Connell, Thomas M.; Wooten, Jan B.; Zedler, Barbara K.; Dasika, Madhukar S.; Webb, B. T.; Webb-Robertson, Bobbie-Jo M.; Pounds, Joel G.; Murrelle, Edward L.; Leppert, Mark F.; van den Oord, Edwin J.

    2010-06-04

    Chronic obstructive pulmonary disease (COPD), characterized by chronic airflow limitation, is a serious and growing public health concern. The major environmental risk factor for COPD is tobacco smoking, but the biological mechanisms underlying COPD are not well understood. In this study, we used proton nuclear magnetic resonance (1H-NMR) spectroscopy to identify and quantify metabolites associated with lung function in COPD. Plasma and urine were collected from 197 adults with COPD and from 195 adults without COPD. Samples were assayed using a 600 MHz NMR spectrometer, and the resulting spectra were analyzed against quantitative spirometric measures of lung function. After correcting for false discoveries and adjusting for covariates (sex, age, smoking) several spectral regions in urine were found to be significantly associated with baseline lung function. These regions correspond to the metabolites trigonelline, hippurate and formate. Concentrations of each metabolite, standardized to urinary creatinine, were associated with baseline lung function (minimum p-value = 0.0002 for trigonelline). No significant associations were found with plasma metabolites. Two of the three urinary metabolites positively associated with baseline lung function, i.e. hippurate and formate, are often related to gut microflora. This suggests that the microbiome composition is variable between individuals with different lung function. Alternatively, the nature and origins of all three associated metabolites may reflect lifestyle differences affecting overall health. Our results will require replication and validation, but demonstrate the utility of NMR metabolomics as a screening tool for identifying novel biomarkers of lung disease or disease risk.

  15. Optical pumping and xenon NMR

    SciTech Connect (OSTI)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  16. Optical pumping and xenon NMR

    SciTech Connect (OSTI)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  17. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2010-06-29

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  18. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2009-11-10

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  19. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  20. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2009-10-27

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  1. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2010-07-13

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  2. Integrated microchip incorporating atomic magnetometer and microfluidic channel for NMR and MRI

    DOE Patents [OSTI]

    Ledbetter, Micah P. (Oakland, CA); Savukov, Igor M. (Los Alamos, NM); Budker, Dmitry (El Cerrito, CA); Shah, Vishal K. (Plainsboro, NJ); Knappe, Svenja (Boulder, CO); Kitching, John (Boulder, CO); Michalak, David J. (Berkeley, CA); Xu, Shoujun (Houston, TX); Pines, Alexander (Berkeley, CA)

    2011-08-09

    An integral microfluidic device includes an alkali vapor cell and microfluidic channel, which can be used to detect magnetism for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Small magnetic fields in the vicinity of the vapor cell can be measured by optically polarizing and probing the spin precession in the small magnetic field. This can then be used to detect the magnetic field of in encoded analyte in the adjacent microfluidic channel. The magnetism in the microfluidic channel can be modulated by applying an appropriate series of radio or audio frequency pulses upstream from the microfluidic chip (the remote detection modality) to yield a sensitive means of detecting NMR and MRI.

  3. Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping

    E-Print Network [OSTI]

    Augustine, Mathew P.

    Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping Matthew P. Augustine and Kurt W. Zilm Department of Chemistry, Yale University, New Haven exchange with optically pumped Rb vapor is investigated in high magnetic field. Operation in a high field

  4. On the dynamics of magnetic fluids in magnetic resonance imaging

    E-Print Network [OSTI]

    Cantillon-Murphy, Pádraig J

    2008-01-01

    The hydrodynamics of magnetic fluids, often termed ferrofluids, has been an active area of research since the mid 1960s. However, it is only in the past twenty years that these fluids have begun to be used in magnetic ...

  5. Capillary toroid cavity detector for high pressure NMR

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Chen, Michael J. (Downers Grove, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Honer Glen, IL); ter Horst, Marc (Chapel Hill, NC)

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  6. Type-I superconductor pick-up coil in superconducting quantum interference device-based ultra-low field nuclear magnetic resonance

    SciTech Connect (OSTI)

    Hwang, Seong-min, E-mail: smhwang@kriss.re.kr; Kim, Kiwoong; Kyu Yu, Kwon; Lee, Seong-Joo; Hyun Shim, Jeong [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Körber, Rainer [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany); Magnicon GmbH, Division Berlin, Abbestraße 2-12, D-10587 Berlin (Germany); Burghoff, Martin [Physikalisch-Technische Bundesanstalt (PTB), Abbestraße 2-12, 10587 Berlin (Germany)

    2014-02-10

    In ultra-low field nuclear magnetic resonance (ULF-NMR) with strong prepolarization field (B{sub p}), type-II superconducting pick-up coils may be vulnerable to flux pinning from the strong B{sub p}. Pick-up coils made of NbTi, Nb, and Pb were evaluated in terms of acquired NMR signal quality. The type-II pick-up coils showed degraded signals above 61?mT maximum exposure, while the Pb pick-up coil exhibited no such degradation. Furthermore, a negative counter pulse following a strong B{sub p} was shown to follow magnetic hysteresis loop to unpin the trapped flux in the type-II pick-up coil and restore the NMR signal.

  7. Study of gas flow dynamics in porous and granular media with laser-polarized ¹²?Xe NMR

    E-Print Network [OSTI]

    Wang, Ruopeng, 1972-

    2005-01-01

    This thesis presents Nuclear Magnetic Resonance (NMR) studies of gas flow dynamics in porous and granular media by using laser-polarized ¹²?Xe . Two different physical processes, the gas transport in porous rock cores and ...

  8. Development of new parameters for structure determination and dynamic investigations on biomacromolecules by NMR

    E-Print Network [OSTI]

    Duchardt, Elke, 1975-

    2005-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is unique in the content of structural as well as dynamic information that it can provide at atomic resolution. The aim of this PhD-thesis was to contribute to the understanding ...

  9. Liquid State NMR Quantum Computing Lieven M. K. Vandersypen, Costantino S. Yannoni, and Isaac L. Chuang

    E-Print Network [OSTI]

    . Chuang Volume 9, pp 687­697 in Encyclopedia of Nuclear Magnetic Resonance Volume 9: Advances in NMR (ISBN molecules in chemistry and biology. Furthermore, it was pointed out early on in 1955, almost as an anecdote

  10. High Field DNP NMR probe design and application in crystalline solids

    E-Print Network [OSTI]

    Wilson, Christopher Blake

    2013-01-01

    Dynamic nuclear polarization (DNP) is a valuable tool which can be used to enhance nuclear magnetic resonance (NMR) signal intensities in a variety of biological and materials science systems, by transferring polarization ...

  11. NMR Studies of Membrane Associating Peptides and Implications in Autotransporter Function 

    E-Print Network [OSTI]

    Sekar, Giridhar

    2014-10-07

    the peptide and the biological membrane. This change in structure can be investigated in vitro, by performing circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy experiments with peptide solutions in membrane mimetic such as detergent...

  12. On transition from Alfvén resonance to forced magnetic reconnection

    SciTech Connect (OSTI)

    Luan, Q. [MOE Key Lab of Materials Modification by Beams and School of Physics and Optoelectrical Technology, Dalian University of Technology, Dalian 116024 (China); Wang, X., E-mail: xgwang@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)

    2014-07-15

    We revisit the transition from Alfvén resonance to forced magnetic reconnection with a focus on the property of their singularities. As the driven frequency tends to zero, the logarithmic singularity of Alfvén resonance shifts to the power-law singularity of forced reconnection, due to merging of the two resonance layers. The transition criterion depends on either kinetic effects or dissipations that resolve the singularity. As an example, a small but finite resistivity ? is introduced to investigate the transition process. The transition threshold is then obtained as the driven frequency reaches a level of ?O((?/k){sup 1/3})

  13. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    E-Print Network [OSTI]

    sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic, metabolism, blood flow, diffusion, and brain activity. Most applications to inanimate samples and living

  14. Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

    SciTech Connect (OSTI)

    Casadei, Cecilia

    2012-05-09

    The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.

  15. Amyloid Oligomer Formation Probed by Water Proton Magnetic Resonance Spectroscopy

    E-Print Network [OSTI]

    Berry, R. Stephen

    Amyloid Oligomer Formation Probed by Water Proton Magnetic Resonance Spectroscopy J. H. Walton, R, Chicago, Illinois; and § Department of Pharmacology, University of California, Davis, California ABSTRACT Formation of amyloid oligomers, the most toxic species of amyloids in degenerative diseases, is critically

  16. Surface-Based Analysis of Functional Magnetic Resonance Imaging Data

    E-Print Network [OSTI]

    Thompson, Paul

    Surface-Based Analysis of Functional Magnetic Resonance Imaging Data Theo G.M. van Erp1, Vikas Y School of Medicine, Los Angeles, CA 90095, USA Abstract. Surface-based visualization, atlases the integration of surface-based tech- niques with functional imaging data, combining surface-based nonlinear

  17. The Future of Real-time Cardiac Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Southern California, University of

    Address *Electrical Engineering-Systems, 3740 McClintock Avenue, EEB 406, University of Southern. These and other factors require real-time imaging. Magnetic resonance imaging (MRI) is a powerful and flexible with excellent image quality. In this article, the term real-time refers to imaging sys- tems that acquire

  18. Wavelets and functional magnetic resonance imaging of the human brain

    E-Print Network [OSTI]

    Breakspear, Michael

    Wavelets and functional magnetic resonance imaging of the human brain Ed Bullmore,a,* Jalal Fadili Breakspeare a Brain Mapping Unit and Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke of Psychiatry (King's College), London, UK e Brain Dynamics Centre (Westmead Hospital) and School of Physics

  19. Chromatic Light Adaptation Measured using Functional Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Wandell, Brian A.

    Chromatic Light Adaptation Measured using Functional Magnetic Resonance Imaging Alex R. Wade- nisms within cone photoreceptor classes. Key words: fMRI; light adaptation; cones; simulation; V1; Naka regulation is part of a process called light adaptation. Light adaptation is an important computational step

  20. Modeling Left Ventricle Wall Motion Using Tagged Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Alenezy, Mohammed D.

    2009-04-17

    A two-parameter computational model is proposed for the study of the regional motion of the left ventricle (LV) wall using tagged magnetic resonance imaging (tMRI) data. In this model, the LV wall motion is mathematically decomposed into two...

  1. Array combination for parallel imaging in Magnetic Resonance Imaging 

    E-Print Network [OSTI]

    Spence, Dan Kenrick

    2007-09-17

    In Magnetic Resonance Imaging, the time required to generate an image is proportional to the number of steps used to encode the spatial information. In rapid imaging, an array of coil elements and receivers are used to reduce the number of encoding...

  2. Original Research In Vivo Magnetic Resonance Imaging of the Human

    E-Print Network [OSTI]

    Gorassini, Monica

    Original Research In Vivo Magnetic Resonance Imaging of the Human Cervical Spinal Cord at 3 Tesla is feasible at 3 T. Key Words: MRI; 3 Tesla; cervical spinal cord; gradient echo; gray matter; white matter J, and pulsatile flow (9,10). Deficits in motor and sensory function from damage to the spinal cord are mainly due

  3. Edge stability and transport control with resonant magnetic perturbations in

    E-Print Network [OSTI]

    Loss, Daniel

    ARTICLES Edge stability and transport control with resonant magnetic perturbations in collisionless, California 92186-5608, USA 2 University of California, San Diego, California 92093-0417, USA 3 Lawrence Livermore National Laboratory, Livermore, California 94551-0808, USA 4 Association EURATOM-CEA, CEA

  4. Rf coil design for multi-frequency magnetic resonance imaging & spectroscopy 

    E-Print Network [OSTI]

    Dabirzadeh, Arash

    2009-05-15

    Magnetic Resonance Spectroscopy is known as a valuable diagnostic tool for physicians as well as a research tool for biochemists. In addition to hydrogen (which is the most abundant atom with nuclear magnetic resonance capability), other species...

  5. Single Spin Optically Detected Magnetic Resonance with E-Band Microwave Resonators

    E-Print Network [OSTI]

    Nabeel Aslam; Matthias Pfender; Rainer Stöhr; Philipp Neumann; Marc Scheffler; Hitoshi Sumiya; Hiroshi Abe; Shinobu Onoda; Takeshi Ohshima; Junichi Isoya; Jörg Wrachtrup

    2015-03-13

    Magnetic resonance with ensembles of electron spins is nowadays performed in frequency ranges up to 240 GHz and in corresponding magnetic fields of up to 10 T. However, experiments with single electron and nuclear spins so far only reach into frequency ranges of several 10 GHz, where existing coplanar waveguide structures for microwave (MW) delivery are compatible with single spin readout techniques (e.g. electrical or optical readout). Here, we explore the frequency range up to 90 GHz, respectively magnetic fields of up to $\\approx 3\\,$T for single spin magnetic resonance in conjunction with optical spin readout. To this end, we develop MW resonators with optical single spin access. In our case, rectangular E-band waveguides guarantee low-loss supply of microwaves to the resonators. Three dimensional cavities, as well as coplanar waveguide resonators enhance MW fields by spatial and spectral confinement with a MW efficiency of $1.36\\,\\mathrm{mT/\\sqrt{W}}$. We utilize single NV centers as hosts for optically accessible spins, and show, that their properties regarding optical spin readout known from smaller fields (fields of 3 T. In addition, we demonstrate coherent control of single nuclear spins under these conditions. Furthermore, our results extend the applicable magnetic field range of a single spin magnetic field sensor. Regarding spin based quantum registers, high fields lead to a purer product basis of electron and nuclear spins, which promises improved spin lifetimes. For example, during continuous single-shot readout the $^{14}$N nuclear spin shows second-long longitudinal relaxation times.

  6. Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery

    SciTech Connect (OSTI)

    Vijayakumar, M.; Burton, Sarah D.; Huang, Cheng; Li, Liyu; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jian Z.; Skyllas-Kazacos, Maria

    2010-11-15

    The vanadium (IV) electrolyte solutions with various vanadium concentrations are studied by variable temperature 1H and 17O Nuclear Magnetic Resonance (NMR) spectroscopy. The structure and kinetics of vanadium (IV) species in the electrolyte solutions are explored with respect to vanadium concentration and temperature. It was found that the vanadium (IV) species exist as hydrated vanadyl ion, i.e. [VO(H2O)5]2+ forming an octahedral coordination with vanadyl oxygen in the axial position and the remaining positions occupied by water molecules. This hydrated vanadyl ion structure is stable in vanadium concentrations up to 3M and in the temperature range of 240 to 340 K. The sulfate anions in the electrolyte solutions are found to be weekly bound to this hydrated vanadyl ion and occupies its second coordination sphere. The possible effects of these sulfate anions in proton and water exchange between vanadyl ion and solvent molecules are discussed based on 1H and 17O NMR results.

  7. Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion

    E-Print Network [OSTI]

    Jochen Scheuer; Alexander Stark; Matthias Kost; Martin B. Plenio; Boris Naydenov; Fedor Jelezko

    2015-07-14

    Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. We show that the main peaks in the spectrum can be obtained with only 10 % of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.

  8. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    SciTech Connect (OSTI)

    Kong, Zueqian

    2010-03-15

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  9. Magnetic Resonance Imaging 1 A new global optimization algorithm and its application to a

    E-Print Network [OSTI]

    Neumaier, Arnold

    by the uniformity of the magnetic field generated by this magnet, in that, the more uniform is the magnetic field a low field dedicated magnet is that of using permanent magnets surrounded by an iron yoke to amplifyMagnetic Resonance Imaging 1 A new global optimization algorithm and its application to a Magnetic

  10. Resolving the Impact of Biological Processes on DNAPL Transport in Unsaturated Porous Media through Nuclear Magnetic Resonance Relaxation Time Measurements

    SciTech Connect (OSTI)

    Hertzog, Russel; Geesey, Gill G.; White, Timothy A.; Ho, Clifford K.; Straley, Christian; Bryar, Traci R.; Seymour, Joseph; Codd, Sarah L.; Oram, Libbie

    2003-06-01

    This research leads to a better understanding of how physical and biological properties of porous media influence water and dense non-aqueous phase liquid (DNAPL) distribution under saturated and unsaturated conditions. Knowing how environmental properties affect DNAPL solvent flow in the subsurface is essential for developing models of flow and transport that are needed for designing remediation and long-term stewardship strategies. This project investigates the capability and limitations of low-field nuclear magnetic resonance (NMR) relaxation decay-rate measurements for determining environmental properties affecting DNAPL solvent flow in the subsurface. For in-situ subsurface environmental applications, lowfield proton NMR measurements are preferred to the conventional high-field techniques commonly used to obtain chemical shift data, because the low field measurements are much less degraded by the magnetic susceptibility variations between the rock grains and the pore fluid s that significantly interfere with the high-field NMR measurements. Our research scope includes determining whether DNAPLs exist in water-wet or solvent-wet environments, the pore-size distribution of the soils containing DNAPLs, and the impact of biological processes on their transport mechanisms in porous media. Knowledge of the in situ flow properties and pore distributions of organic contaminants are critical to understanding where and when these fluids will enter subsurface aquifers.

  11. "Development of an Integrated EMSL MS and NMR Metabolic Flux Analysis Capability In Support of Systems Biology

    E-Print Network [OSTI]

    fluxes using stable isotope labeling and either nuclear magnetic resonance (NMR) or mass spectrometry (MS research in systems biology and metabolic engineering. It will allow us to provide a complete package

  12. Low-noise pulsed pre-polarization magnet system for ultra-low field NMR

    SciTech Connect (OSTI)

    Sims, James R [Los Alamos National Laboratory; Schilling, Josef B [Los Alamos National Laboratory; Swenson, Charles A [Los Alamos National Laboratory; Gardner, David L [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Ammerman, Curti N [Los Alamos National Laboratory

    2009-01-01

    A liquid cooled, pulsed electromagnet of solenoid configuration suitable for duty in an ultra-low field nuclear magnetic resonance system has been designed, fabricated and successfully operated. The magnet design minimizes Johnson noise, minimizes the hydrogen signal and incorporates minimal metal and no ferromagnetic materials. In addition, an acoustically quiet cooling system permitting 50% duty cycle operation was achieved by designing for single-phase, laminar flow, forced convection cooling. Winding, conductor splicing and epoxy impregnation techniques were successfully developed to produce a coil winding body with integral cooling passageways and adequate structural integrity. Issues of material compatibility, housing, coolant flow system and heat rejection system design will be discussed. Additionally, this pulsed electromagnet design has been extended to produce a boiling liquid cooled version in a paired solenoid configuration suitable for duty in an ultra-low field nuclear magnetic resonance system. This pair of liquid nitrogen cooled coils is currently being tested and commissioned. Issues of material compatibility, thermal insulation, thermal contraction, housing and coolant flow design are discussed.

  13. Effect of energy and momentum conservation on fluid resonances for resonant magnetic perturbations in a tokamak

    SciTech Connect (OSTI)

    Leitner, Peter; Heyn, Martin F.; Kernbichler, Winfried [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, TU Graz, Petersgasse 16, A-8010 Graz (Austria); Ivanov, Ivan B. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, TU Graz, Petersgasse 16, A-8010 Graz (Austria); St. Petersburg State University, Institute of Physics, Ulyanovskaya 1, Petrodvoretz 198504 (Russian Federation); Petersburg Nuclear Physics Institute, 188300 Gatchina, Leningrad Oblast (Russian Federation); Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, TU Graz, Petersgasse 16, A-8010 Graz (Austria); Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and Technology,” Ul. Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2014-06-15

    In this paper, the impact of momentum and energy conservation of the collision operator in the kinetic description for Resonant Magnetic Perturbations (RMPs) in a tokamak is studied. The particle conserving differential collision operator of Ornstein-Uhlenbeck type is supplemented with integral parts such that energy and momentum are conserved. The application to RMP penetration in a tokamak shows that energy conservation in the electron collision operator is important for the quantitative description of plasma shielding effects at the resonant surface. On the other hand, momentum conservation in the ion collision operator does not significantly change the results.

  14. Calculation of NMR Shielding in Paramagnetic Molecules: Roadmap and Magnetic Couplings

    E-Print Network [OSTI]

    Vaara, Juha; Mareš, Ji?í

    2015-01-01

    We present a simple derivation of the nuclear shielding in paramagnetic molecules, extendable to strong spin-orbit coupling cases of relevance to lanthanides and actinides, as well as encompassing contributions from excited multiplets. While our general formulation does not need electron paramagnetic resonance parameters, using them a simple and practical expression is obtained for the special case of the zero-field-split ground-state manifold, including magnetic (Zeeman and hyperfine) couplings between the sublevels. The latter method is implemented computationally and applied in the context of first-principles calculations on example Ni(II) and Co(II) complexes.

  15. NMR/MRI with hyperpolarized gas and high Tc SQUID

    DOE Patents [OSTI]

    Schlenga, Klaus (Eggenstein, DE); de Souza, Ricardo E. (Recife, BR); Wong-Foy, Annjoe (Berkeley, CA); Clarke, John (Berkeley, CA); Pines, Alexander (Berkeley, CA)

    2000-01-01

    A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

  16. Methods for magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Hu, Jian Zhi (Richland, WA); Wind, Robert A. (Kennewick, WA); Minard, Kevin R. (Kennewick, WA); Majors, Paul D. (Kennewick, WA)

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  17. Magnetic resonance imaging of living systems by remote detection

    DOE Patents [OSTI]

    Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah

    2013-10-29

    A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.

  18. A new combined nuclear magnetic resonance and Raman spectroscopic probe applied to in situ investigations of catalysts and catalytic processes

    SciTech Connect (OSTI)

    Camp, Jules C. J.; Mantle, Michael D.; York, Andrew P. E.; McGregor, James

    2014-06-15

    Both Raman and nuclear magnetic resonance (NMR) spectroscopies are valuable analytical techniques capable of providing mechanistic information and thereby providing insights into chemical processes, including catalytic reactions. Since both techniques are chemically sensitive, they yield not only structural information but also quantitative analysis. In this work, for the first time, the combination of the two techniques in a single experimental apparatus is reported. This entailed the design of a new experimental probe capable of recording simultaneous measurements on the same sample and/or system of interest. The individual datasets acquired by each spectroscopic method are compared to their unmodified, stand-alone equivalents on a single sample as a means to benchmark this novel piece of equipment. The application towards monitoring reaction progress is demonstrated through the evolution of the homogeneous catalysed metathesis of 1?hexene, with both experimental techniques able to detect reactant consumption and product evolution. This is extended by inclusion of magic angle spinning (MAS) NMR capabilities with a custom made MAS 7 mm rotor capable of spinning speeds up to 1600 Hz, quantified by analysis of the spinning sidebands of a sample of KBr. The value of this is demonstrated through an application involving heterogeneous catalysis, namely the metathesis of 2-pentene and ethene. This provides the added benefit of being able to monitor both the reaction progress (by NMR spectroscopy) and also the structure of the catalyst (by Raman spectroscopy) on the very same sample, facilitating the development of structure-performance relationships.

  19. Comparison of glucose fermentation by suspended and gel-entrapped yeast cells: An in vivo nuclear magnetic resonance study

    SciTech Connect (OSTI)

    Taipa, M.A.; Cabral, J.M.S. Inst. Superior Tecnico, Lisboa ); Santos, H. U.N.L., Monte de Caparica )

    1993-03-15

    Phosphorus-31 nuclear magnetic resonance ([sup 31]P NMR) was used to compare the anaerobic metabolism of glucose by suspended and gel-entrapped Saccaromyces bayanus cells. The fermentation of glucose was carried out in a reaction system with continuous circulation through the NMR sample tube. The intracellular pH and the levels of some phosphorylated compounds were noninvasively monitored by [sup 31]P NMR while glucose, fermentation products, and biomass were determined by analytical techniques. Qualitative comparisons showed that no significant differences are observed in the relative concentrations of the major phosphorylated metabolites in the spectra, but distinct profile for the variation of both intracellular and extracellular pH of immobilized cells is maintained at a constant value throughout the fermentation as opposed to freely suspended cells for which a steady decrease in the internal pH occurs. A faster and stronger acidification is also observed in the external medium of the assays with suspended cells. Furthermore, higher yields for ethanol and biomass production and lower yields of fermentation by-products are obtained with immobilized cells. It is concluded that the higher intracellular pH achieved in the presence of the gel matrix had a regulatory effect on the metabolism which favored the ethanol production pathway.

  20. Electrically driven nuclear spin resonance in a single-molecule magnet

    E-Print Network [OSTI]

    Vallette, Bruno

    Electrically driven nuclear spin resonance in a single-molecule magnet Institut Néel : Nanospin Institut Néel, CNRS-UJF, Grenoble NanoSpin #12;· Molecular magnets are characterised by : a magnetic moment a strong uniaxial anisotropy Mn12 Molecular magnets Fe8 #12;· Molecular magnets are characterised

  1. Single-scan 2D NMR spectroscopy on a 25 T bitter magnet Boaz Shapira a

    E-Print Network [OSTI]

    Frydman, Lucio

    of the experiments reported in this study, the thermal and electrical stabilities of the DC power supplies operating,4]. A significant leap in the strength (and quality) of the fields available for analytical NMR experiments occurred of field instability--at least by the usually exacting NMR standards. For example, in the 25 T Keck system

  2. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    SciTech Connect (OSTI)

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze; Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 ; Garlatti, E.; Dipartimento di Fisica e Scienze della Terra, Università di Parma, Viale G. P. Usberti 7 Casadei, C. M.; Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 ; Furukawa, Y.; Lascialfari, A.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze; Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano ; Carretta, S.; Timco, G.; Winpenny, R. E. P.

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup ?} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup ?}-Ni{sup 2+} and the F{sup ?}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup ?}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup ?}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup ?} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

  3. Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers

    E-Print Network [OSTI]

    Cannon, Benjamin Louis

    Wireless power transfer via magnetic resonant coupling is experimentally demonstrated in a system with a large source coil and either one or two small receivers. Resonance between source and load coils is achieved with ...

  4. Resonances and spectral shift function for a magnetic Schroedinger operator

    SciTech Connect (OSTI)

    Khochman, Abdallah

    2009-04-15

    We consider the three-dimensional Schroedinger operator H{sub 0} with a constant magnetic field and subject to an electric potential v{sub 0} depending only on the variable along the magnetic field x{sub 3}. The operator H{sub 0} has infinitely many eigenvalues of infinite multiplicity embedded in its continuous spectrum. We perturb H{sub 0} by smooth scalar potentials V=O(<(x{sub 1},x{sub 2})>{sup -{delta}{sub perpendicular}}{sup -{delta}{sub ||}}), {delta}{sub perpendicular}>2, {delta}{sub ||}>1. We assume also that V and v{sub 0} have an analytic continuation, in the magnetic field direction, in a complex sector outside a compact set. We define the resonances of H=H{sub 0}+V as the eigenvalues of the nonself-adjoint operator obtained from H by analytic distortions of R{sub x{sub 3}}. We study their distribution near any fixed real eigenvalue of H{sub 0}, 2bq+{lambda} for q is an element of N. In a ring centered at 2bq+{lambda} with radii (r,2r), we establish an upper bound, as r tends to 0, of the number of resonances. This upper bound depends on the decay of V at infinity only in the directions (x{sub 1},x{sub 2}). Finally, we deduce a representation of the derivative of the spectral shift function for the operator pair (H{sub 0},H) in terms of resonances. This representation justifies the Breit-Wigner approximation and implies a local trace formula.

  5. A Magnetic Resonance Realization of Decoherence-Free Quantum Computation

    E-Print Network [OSTI]

    Jason E. Ollerenshaw; Daniel A. Lidar; Lewis E. Kay

    2003-09-24

    We report the realization, using nuclear magnetic resonance techniques, of the first quantum computer that reliably executes an algorithm in the presence of strong decoherence. The computer is based on a quantum error avoidance code that protects against a class of multiple-qubit errors. The code stores two decoherence-free logical qubits in four noisy physical qubits. The computer successfully executes Grover's search algorithm in the presence of arbitrarily strong engineered decoherence. A control computer with no decoherence protection consistently fails under the same conditions.

  6. Algorithmic Cooling in Liquid State NMR

    E-Print Network [OSTI]

    Yosi Atia; Yuval Elias; Tal Mor; Yossi Weinstein

    2015-08-05

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level, namely it reduces the qubit-system's entropy. We utilized gradient ascent pulse engineering (GRAPE), an optimal control algorithm, to implement algorithmic cooling in liquid state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of $^{13}$C$_2$-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic resonance spectroscopy.

  7. Algorithmic Cooling in Liquid State NMR

    E-Print Network [OSTI]

    Yosi Atia; Yuval Elias; Tal Mor; Yossi Weinstein

    2015-11-08

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level, namely it reduces the qubit-system's entropy. We utilized gradient ascent pulse engineering (GRAPE), an optimal control algorithm, to implement algorithmic cooling in liquid state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of $^{13}$C$_2$-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic resonance spectroscopy.

  8. Characterization of polyxylylenes with solid state {sup 13}C nuclear magnetic resonance spectroscopy

    SciTech Connect (OSTI)

    Loy, D.A.; Assink, R.A.; Jamison, G.M.; McNamara, W.F.; Schneider, D.A. [Sandia National Labs., Livermore, CA (United States); Prabakar, S. [New Mexico Univ., Albuquerque, NM (United States)

    1996-02-01

    Polyxylylenes are thermoplastics used as encapsulants for electronic devices. Five polyxylylenes were prepared by pyrolysis of [2.2]paracyclophanes and characterized by solid state {sup 13}C NMR spectroscopy. The chemical shift data, in combination with interrupted decoupling experiments, allowed assignment of resonances to their carbon sources in the polymers. This confirmed the integrity of the xylylene building block in the polymers and is consistent with linear polymers. No crosslinking could be detected within the NMR sensitivity limits. Residual paracyclophane was detected by {sup 13}C CP MAS NMR spectroscopy in the polyxylylene samples prepared at room temperature; however discrete {sup 13}C resonances due to amorphous and crystalline phases in the polymers were not resolved.

  9. Rotational resonance NMR: separation of dipolar coupling and zero quantum relaxation

    E-Print Network [OSTI]

    Griffin, Robert G.

    . Costa,1 Boqin Sun,2 and Robert G. Griffin* Francis Bitter Magnet Laboratory, Department of Chemistry-617-253-5405. E-mail address: rgg@mit.edu (R.G. Griffin). 1 Present address: Dean & Company, 8065 Leesburg Pike attenuates the dipolar interactions between low-c nuclei (e.g., 13 C; 15 N). Because observing the ef- fects

  10. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    E-Print Network [OSTI]

    Firpo, Marie-Christine; 10.1063/1.3562493

    2011-01-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possibl...

  11. Bioagent detection using miniaturized NMR and nanoparticle amplification : final LDRD report.

    SciTech Connect (OSTI)

    Clewett, C. F. M.; Adams, David Price; Fan, Hongyou; Williams, John D.; Sillerud, Laurel O.; Alam, Todd Michael; Aldophi, Natalie L. (New Mexico Resonance, Albuquerque, NM); McDowell, Andrew F.

    2006-11-01

    This LDRD program was directed towards the development of a portable micro-nuclear magnetic resonance ({micro}-NMR) spectrometer for the detection of bioagents via induced amplification of solvent relaxation based on superparamagnetic nanoparticles. The first component of this research was the fabrication and testing of two different micro-coil ({micro}-coil) platforms: namely a planar spiral NMR {micro}-coil and a cylindrical solenoid NMR {micro}-coil. These fabrication techniques are described along with the testing of the NMR performance for the individual coils. The NMR relaxivity for a series of water soluble FeMn oxide nanoparticles was also determined to explore the influence of the nanoparticle size on the observed NMR relaxation properties. In addition, The use of commercially produced superparamagnetic iron oxide nanoparticles (SPIONs) for amplification via NMR based relaxation mechanisms was also demonstrated, with the lower detection limit in number of SPIONs per nanoliter (nL) being determined.

  12. Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes

    E-Print Network [OSTI]

    E. A. Donley; J. L. Long; T. C. Liebisch; E. R. Hodby; T. A. Fisher; J. Kitching

    2008-12-10

    We present the first experimental study that maps the transformation of nuclear quadrupole resonances from the pure nuclear quadrupole regime to the quadrupole-perturbed Zeeman regime. The transformation presents an interesting quantum-mechanical problem, since the quantization axis changes from being aligned along the axis of the electric-field gradient tensor to being aligned along the magnetic field. We achieve large nuclear quadrupole shifts for I = 3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When the magnetic and quadrupolar interactions are of comparable size, perturbation theory is not suitable for calculating the transition energies. Rather than use perturbation theory, we compare our data to theoretical calculations using a Liouvillian approach and find excellent agreement.

  13. NMR and SR study of magnetic dilution in the triangular Heisenberg antiferromagnet This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Paris-Sud 11, Université de

    the specific heat peak at TN 41 K, and characterized by a peak of the relaxation rate that appears at 0.75TNNMR and SR study of magnetic dilution in the triangular Heisenberg antiferromagnet NaCrO 2 Collections Journals About Contact us My IOPscience #12;NMR and µSR study of magnetic dilution

  14. The MagLab's ultra-wide-bore (105mm) 21.1T NMR/MRI magnet provides an opportunity to use low gamma, low

    E-Print Network [OSTI]

    McQuade, D. Tyler

    The MagLab's ultra-wide-bore (105mm) 21.1T NMR/MRI magnet provides an opportunity to use low gamma, low sensitive nuclei for MR imaging. The potential of nuclei such as chlorine remains largely and the capability of MRI at ultra high magnetic fields to observe glioma. The finding of an increased concentration

  15. Abstract--Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    groups have employed magnetized micro/ nanoparticles and have implemented magnetic propulsion techniquesAbstract-- Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules

  16. A 64-channel personal computer based image reconstruction system and applications in single echo acquisition magnetic resonance elastography and ultra-fast magnetic resonance imaging. 

    E-Print Network [OSTI]

    Yallapragada, Naresh

    2009-05-15

    Emerging technologies in parallel magnetic resonance imaging (MRI) with massive receiver arrays have paved the way for ultra-fast imaging at increasingly high frame rates. With the increase in the number of receiver channels ...

  17. Improved evolution equations for magnetic island chains in toroidal pinch plasmas subject to externally applied resonant magnetic perturbations

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    inside the plasma. Such island chains degrade plasma confinement be- cause both heat and particlesImproved evolution equations for magnetic island chains in toroidal pinch plasmas subject nonlinear dynamics of magnetic islands due to resonant magnetic perturbations Phys. Plasmas 21, 122502 (2014

  18. Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field

    SciTech Connect (OSTI)

    Mao, Kanmi; Kennedy, Gordon J.; Althaus, Stacey M.; Pruski, Marek

    2013-01-07

    We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the 13C spectra using the recently reported MAS-synchronized spin–echo, which alleviated the problem of rotational recoupling of 1H-13C dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy.

  19. Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite $ Benjamin P, Massachusetts Institute of Technology, Cambridge, MA 02139, USA c Jet Propulsion Laboratory, California two rock magnetic analyses--the low-temperature Moskowitz test and ferromagnetic resonance (FMR

  20. Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances

    E-Print Network [OSTI]

    Chandrasekar, Rohith; Lagutchev, Alexei; Shalaev, Vladimir M; Ciraci, Cristian; Smith, David R; Kildishev, Alexander V

    2015-01-01

    Plasmonic resonances in metallic nanostructures have been shown to drastically enhance local electromagnetic fields, and thereby increase the efficiency of nonlinear optical phenomena, such as second harmonic generation (SHG). While it has been experimentally observed that enhanced fields can significantly boost SHG, to date it proved difficult to probe electrical and magnetic resonances in one and the same nanostructure. This however is necessary to directly compare relative contributions of electrical and magnetic components of SHG enhancement. In this paper we report an experimental study of a metasurface capable of providing electrical and magnetic resonant SHG enhancement for TM polarization. Our metasurface could be engineered such that the peak frequencies of electrical and magnetic resonances could be adjusted independently. We used this feature to distinguish their relative contributions. Experimentally it was observed that the magnetic resonance provides only 50% as much enhancement to SHG as compar...

  1. Gravitational resonance spectroscopy with an oscillating magnetic field gradient in the GRANIT flow through arrangement

    E-Print Network [OSTI]

    G. Pignol; S. Baessler; V. V. Nesvizhevsky; K. Protasov; D. Rebreyend; A. Yu. Voronin

    2014-08-05

    Gravitational resonance spectroscopy consists in measuring the energy spectrum of bouncing ultracold neutrons above a mirror by inducing resonant transitions between different discrete quantum levels. We discuss how to induce the resonances with a flow through arrangement in the GRANIT spectrometer, excited by an oscillating magnetic field gradient. The spectroscopy could be realized in two distinct modes (so called DC and AC) using the same device to produce the magnetic excitation. We present calculations demonstrating the feasibility of the newly proposed AC mode.

  2. Using NMR to Validate First-Principles Granular Flow Equations

    E-Print Network [OSTI]

    D. Candela; C. Huan; K. Facto; R. Wang; R. W. Mair; R. L. Walsworth

    2005-10-23

    Nuclear magnetic resonance (NMR) experiments are described for two granular-flow systems, the vibrofluidized bed and the gas-fluidized bed. Using pulsed field gradient, magnetic resonance imaging, and hyperpolarized gas NMR, detailed information is obtained for the density and motions of both grains and interstitial gas. For the vibrofluidized bed, the granular temperature profile is measured and compared with a first-principles formulation of granular hydrodynamics. For the gas-fluidized bed, dynamic correlations in the grain density are used to measure the bubble velocity and hyperpolarized xenon gas NMR is used to measure the bubble-emulsion exchange rate. A goal of these measurements is to verify in earth gravity first-principles theories of granular flows, which then can be used to make concrete predictions for granular flows in reduced gravity.

  3. Toroid cavity/coil NMR multi-detector

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Meadows, Alexander D. (Indianapolis, IN); Gregar, Joseph S. (Naperville, IL); Rathke, Jerome W. (Homer Glen, IL)

    2007-09-18

    An analytical device for rapid, non-invasive nuclear magnetic resonance (NMR) spectroscopy of multiple samples using a single spectrometer is provided. A modified toroid cavity/coil detector (TCD), and methods for conducting the simultaneous acquisition of NMR data for multiple samples including a protocol for testing NMR multi-detectors are provided. One embodiment includes a plurality of LC resonant circuits including spatially separated toroid coil inductors, each toroid coil inductor enveloping its corresponding sample volume, and tuned to resonate at a predefined frequency using a variable capacitor. The toroid coil is formed into a loop, where both ends of the toroid coil are brought into coincidence. Another embodiment includes multiple micro Helmholtz coils arranged on a circular perimeter concentric with a central conductor of the toroid cavity.

  4. Observations of Multi-Resonance Effect in ELM Control with Magnetic Perturbation Fields on the JET Tokamak

    E-Print Network [OSTI]

    Observations of Multi-Resonance Effect in ELM Control with Magnetic Perturbation Fields on the JET Tokamak

  5. 4D flow cardiovascular magnetic resonance consensus statement

    E-Print Network [OSTI]

    2015-01-01

    Edelman ER. Cardiology Is Flow. Circulation. 2006;113:2679–Bolger A. Passing strange: flow in the failing ventricle.CT. NMR measurements and flow. J Nucl Med. 1982;23:1044–5.

  6. Spatial encoding strategies for ultrafast multidimensional nuclear magnetic resonance

    E-Print Network [OSTI]

    Frydman, Lucio

    field gradient waveform manipulations, designed so as to impart on the sample a coherent spin, and as tools to study metabolism and diagnose disease.5­8 In spite of the hundreds of multidimensional NMR

  7. Inversion of surface nuclear magnetic resonance data by an adapted Monte Carlo method applied to water resource characterization

    E-Print Network [OSTI]

    Sailhac, Pascal

    Inversion of surface nuclear magnetic resonance data by an adapted Monte Carlo method applied, France Abstract Inversion of surface nuclear magnetic resonance (SNMR) provides important information Science B.V. All rights reserved. Keywords: Inversion; Surface nuclear magnetic resonance; Monte Carlo 1

  8. Resonances Width in Crossed Electric and Magnetic Christian Ferrari a and Hynek Kova r k b

    E-Print Network [OSTI]

    Resonances Width in Crossed Electric and Magnetic Fields Christian Ferrari a and Hynek Kova#20;r#19 con#12;ned to a two- dimensional plane and submitted to homogeneous magnetic and electric #12;elds dimensions in the presence of crossed magnetic and electric #12;elds and a potential type perturbation. We

  9. MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution conductivity imaging

    E-Print Network [OSTI]

    Eyüboðlu, Murat

    MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY (MR-EIT): A new technique for high resolution are measured by using conventional electrical impedance tomography techniques and high resolution magnetic and the point spread function is not space invariant. On the other hand, magnetic field and electrical current

  10. Using High-Resolution NMR to Examine the Components that Contribute to the Activity and Stability of Phosphatase of Regenerating Liver (PRL-1) and Their Dependence on the Redox State of Cysteine Residues

    E-Print Network [OSTI]

    Skinner, Andria L.

    2009-12-15

    number R-017708. The mas spectrometers used in this study were purchased with support from KSTAR, Kansas administered NSF EPSCoR, the University of Kansas and KCALSI (ww.kclifesciences.org). This study also made use of the National Magnetic Resonance... Vander Velde and Dr. Asokan Anabanadam for their support, training and maintenance of the NMR spectrometers here at KU. Additional NMR training was received at the National Magnetic Resonance Facility at Madison (NMRFAM) Protein Structure Determination...

  11. Advances in Zero-Field Nuclear Magnetic Resonance Spectroscopy

    E-Print Network [OSTI]

    Theis, Thomas

    2012-01-01

    in order to apply oscillating magnetic fields (test signals)x field, an oscillating magnetic field in the z direction isused to apply an oscillating magnetic field ranging from 2

  12. Tunable multiple Fano resonances in magnetic single-layered core-shell particles

    E-Print Network [OSTI]

    Arruda, Tiago Jose; Pinheiro, Felipe Arruda

    2015-01-01

    We investigate multiple Fano, comblike scattering resonances in single-layered, concentric core-shell nanoparticles composed of magnetic materials. Using the Lorenz-Mie theory, we derive, in the long-wavelength limit, an analytical condition for the occurrence of comblike resonances in the single scattering by coated spheres. This condition establishes that comblike scattering response uniquely depends on material parameters and thickness of the shell, provided that it is magnetic and thin compared to the scatterer radius. We also demonstrate that comblike scattering response shows up beyond the long-wavelength limit and it is robust against absorption. Since multiple Fano resonances are shown to depend explicitly on the magnetic permeability of the shell, we argue that both the position and profile of the comblike, morphology-dependent resonances could be externally tuned by exploiting the properties of engineered magnetic materials.

  13. Bounds on the entanglability of thermal states in liquid-state nuclear magnetic resonance

    E-Print Network [OSTI]

    Yu, Terri M. (Terri Mak), 1981-

    2003-01-01

    Theorists have recently shown that the states used in current nuclear magnetic resonance (NMIR) quantum computing experiments are not entangled. Yet it is widely believed that entanglement is a necessary resource in the ...

  14. An iterative technique for refinement of selective excitations for magnetic resonance imaging 

    E-Print Network [OSTI]

    Lebsack, Eliot Todd

    1999-01-01

    Selective RF pulses are needed or many application in magnetic resonance imaging (MRI). The desired excitation profile is omen used as the spectrum of the applied RF pulse; the modulation waveform of the RF pulse which approximately excites...

  15. Rapid Determination of Moisture and Fat in Meats By Microwave And Nuclear Magnetic Resonance Analysis 

    E-Print Network [OSTI]

    Claflin, Amy Elizabeth

    2013-08-30

    methods that require less time, labor, skill, and cost. Microwave drying and nuclear magnetic resonance technologies for the determination of moisture and fat in meat products, respectively, have been incorporated into the CEM Smart Trac 5 System...

  16. Performing temperature feedback controlled tissue photo-coagulation using magnetic resonance thermometry 

    E-Print Network [OSTI]

    Sampath, Smita

    1999-01-01

    controlled photo-coagulation using magnetic resonance imaging as the non-invasive means of temperature feedback. The desired coagulation depth was controlled at a constant temperature of 40 degrees for different amounts of time and the actual coagulation...

  17. Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sources 

    E-Print Network [OSTI]

    Kurpad, Krishna Nagaraj

    2005-11-01

    The primary design criterion for RF transmit coils for MRI is uniform transverse magnetic (B1) field. Currently, most high frequency transmit coils are designed as periodic, symmetric structures that are resonant at the imaging frequency...

  18. Multimodal neuroimaging with simultaneous electroencephalogram and high-field functional magnetic resonance imaging

    E-Print Network [OSTI]

    Purdon, Patrick L. (Patrick Lee), 1974-

    2005-01-01

    Simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (tMRI) is an important emerging tool in functional neuroimaging with the potential to reveal new mechanisms for brain function ...

  19. Implementation of State Transfer Hamiltonians in Spin Chains with Magnetic Resonance Techniques

    E-Print Network [OSTI]

    Cappellaro, Paola

    2014-01-01

    Nuclear spin systems and magnetic resonance techniques have provided a fertile platform for experimental investigation of quantum state transfer in spin chains. From the first observation of polarization transfer, predating ...

  20. Highly Parallel Magnetic Resonance Imaging with a Fourth Gradient Channel for Compensation of RF Phase Patterns 

    E-Print Network [OSTI]

    Bosshard, John 1983-

    2012-08-20

    A fourth gradient channel was implemented to provide slice dependent RF coil phase compensation for arrays in dual-sided or "sandwich" configurations. The use of highly parallel arrays for single echo acquisition magnetic resonance imaging allows...

  1. Phase-based regional oxygen metabolism in magnetic resonance imaging at high field

    E-Print Network [OSTI]

    Fan, Audrey Peiwen

    2010-01-01

    Venous oxygen saturation (Yv) in cerebral veins and the cerebral metabolic rate of oxygen (CMRO?) are important indicators for brain function and disease. Phase-susceptibility measurements in magnetic resonance imaging ...

  2. Design and Simulation of Coils for High Field Magnetic Resonance Imaging and Spectroscopy 

    E-Print Network [OSTI]

    Rispoli, Joseph V

    2015-06-05

    The growing availability of high-field magnetic resonance (MR) scanners has reignited interest in the in vivo investigation of metabolics in the body. In particular, multinuclear MR spectroscopy (MRS) data reveal physiological details inaccessible...

  3. Detecting tumor responses to treatment using hyperpolarized 13C magnetic resonance spectroscopic imaging

    E-Print Network [OSTI]

    2010-09-24

    2008, 453:940-943. doi:10.1038/nrc2289 Cite this article as: Brindle: Detecting tumor responses to treatment using hyperpolarized 13C magnetic resonance spectroscopic imaging. BMC Proceedings 2010 4(Suppl 2):O24. Correspondence: kmb1001@cam... Detecting tumor responses to treatment using hyperpolarized 13C magnetic resonance spectroscopic imaging Kevin M Brindle From 16th International Charles Heidelberger Symposium on Cancer Research Coimbra, Portugal. 26–28 September 2010 Patients with similar...

  4. Nuclear Magnetic Resonance Studies of Resorcinol-Formaldehyde Aerogels

    SciTech Connect (OSTI)

    Moudrakovski, Igor L.; Ratcliffe, C I.; Ripmeester, J A.; Wang, Li Q.; Exarhos, Gregory J.; Baumann, T; Satcher, J H.

    2005-06-09

    In this article we report a detailed study of resorcinol-formaldehyde (RF) aerogels prepared under different processing conditions, [resorcinol]/[catalyst] (R/C) ratios in the starting sol-gel solutions, using continuous flow hyperpolarized 129Xe NMR in combination with solid-state 13C and two-dimensional wide-line separation (2D-WISE) NMR techniques. The degree of polymerization and the mobility of the cross-linking functional groups in RF aerogels are examined and correlated with the R/C ratios. The origin of different adsorption regions is evaluated using both co-adsorption of chloroform and 2D EXSY 129Xe NMR. A hierarchical set of Xe exchange processes in RF aerogels is found using 2D EXSY 129Xe NMR. The exchange of Xe gas follows the sequence (from fastest to slowest): mesopores with free gas, gas in meso- and micro-pores, free gas with micropores, and, finally, among micropore sites. The volume-to-surface-area (Vg/S) ratios for aerogels are measured for the first time without the use of geometric models. The Vg/S parameter, which is related both to the geometry and the interconnectivity of the pore space, has been found to correlate strongly with the R/C ratio and exhibits an unusually large span: an increase in the R/C ratio from 50 to 500 results in about a 5-fold rise in Vg/S.

  5. JOURNAL OF MAGNETIC RESONANCE 63, 622-628 (1985) An Efficient, Highly Hokogeneous RadiofrequencyCoil

    E-Print Network [OSTI]

    California at San Diego, University of

    1985-01-01

    that of a saddle coil or slotted tube resonator. The improved Br homogeneity is needed to generate accurateJOURNAL OF MAGNETIC RESONANCE 63, 622-628 (1985) An Efficient, Highly Hokogeneous RadiofrequencyCoil have developed radiofrequency coils for high-field head and whole-body imaging which achieve near

  6. Magnetic Resonant Wireless Power Delivery for Distributed Sensor and Wireless Systems

    E-Print Network [OSTI]

    Cervesato, Iliano

    Magnetic Resonant Wireless Power Delivery for Distributed Sensor and Wireless Systems Brian J. Lee, Andrew Hillenius and David S. Ricketts Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 Abstract-- In this paper we report on a resonant wireless power delivery system using

  7. Universal doping dependence of the ground-state staggered magnetization of cuprate superconductors

    E-Print Network [OSTI]

    Keren, Amit

    in a con- trolled manner. Such measurements could shed light on the effective Hamiltonian governing the families. In addition, the level of disorder as detected by Ca nuclear magnetic resonance NMR Ref. 5 and Cu

  8. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    SciTech Connect (OSTI)

    Firpo, M.-C. [Laboratoire de Physique des Plasmas, CNRS--Ecole Polytechnique, 91128 Palaiseau Cedex (France); Constantinescu, D. [Department of Applied Mathematics, Association Euratom-MECI, University of Craiova, Craiova 200585 (Romania)

    2011-03-15

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including nonaxisymmetric ones such as the important single-helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possible explanation of diverse experimental and numerical signatures of their collapses.

  9. Continuity conditions and torsion angles from ssNMR orientational restraints

    E-Print Network [OSTI]

    resonance (ssNMR) spec- troscopy has the unique capability to characterize mem- brane protein structure

  10. Nuclear Magnetic Resonance (NMR) is the only logging technique available to estimate pore-size

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    , such as irreducible bulk volume (BVI), clay-bound water volume (CBW), irreducible bulk movable bulk volume (BVM

  11. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    SciTech Connect (OSTI)

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  12. Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth's

    E-Print Network [OSTI]

    Loss, Daniel

    LETTERS Chemical analysis by ultrahigh-resolution nuclear magnetic resonance in the Earth spectroscopy2 in the Earth's magnetic field. We show that in the Earth's field the transverse relaxation time T electronics Data acquisition d.c. transmission coil Earth's field N S B0 B0 = 1 T Figure 1 Setup of mobile

  13. Detection of Tumors in Dynamic Magnetic Resonance Images using Principal Component Analysis

    E-Print Network [OSTI]

    Detection of Tumors in Dynamic Magnetic Resonance Images using Principal Component Analysis David Alberg Holm (1-2), Thomas Bøvith (2), Cecilia Cappellin (3) (1) Danish Research Centre for Magnetic different tissue classes. For this purpose, two methods were developed and combined. Data Eight mice bearing

  14. A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING

    E-Print Network [OSTI]

    Schumann, Heidrun

    A REAL TIME 3D VISUALIZATION PROTOTYPE FOR INTERVENTIONAL MAGNETIC RESONANCE IMAGING JENS FISCHER­invasive examinations. This prototype allows simultaneous visualization of three different types of data: a 3D­Magnetic@informatik.uni­rostock.de Abstract: This paper describes a prototype of a visualization system which is designed to support

  15. Magnetically tunable resonance frequency beam utilizing a stress-sensitive film

    DOE Patents [OSTI]

    Davis, J. Kenneth (Kingston, TN); Thundat, Thomas G. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

    2001-01-01

    Methods and apparatus for detecting particular frequencies of vibration utilize a magnetically-tunable beam element having a stress-sensitive coating and means for providing magnetic force to controllably deflect the beam element thereby changing its stiffness and its resonance frequency. It is then determined from the response of the magnetically-tunable beam element to the vibration to which the beam is exposed whether or not a particular frequency or frequencies of vibration are detected.

  16. A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments

    SciTech Connect (OSTI)

    Smith, Doran D.; Alexson, Dimitri A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)] [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); Garbini, Joseph L. [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)] [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2013-09-15

    The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

  17. NMR apparatus for in situ analysis of fuel cells

    DOE Patents [OSTI]

    Gerald, II, Rex E; Rathke, Jerome W

    2012-11-13

    The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.

  18. proteinsSTRUCTURE O FUNCTION O BIOINFORMATICS Improving NMR protein structure quality

    E-Print Network [OSTI]

    Baker, David

    of Biological Sciences and Northeast Structural Genomics Consortium, Columbia University, New York, New York 5 conformational sampling and/or a superior force field, was capable of find- ing alternative low energy protein, New Jersey INTRODUCTION The use of nuclear magnetic resonance (NMR) spec- troscopy-derived protein

  19. Nondestructive NMR technique for moisture determination in radioactive materials.

    SciTech Connect (OSTI)

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-12-04

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ({sup 3}H, {sup 3}He, {sup 239}Pu, {sup 241}Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO{sub 2} and UO{sub 2} systems. The total moisture was quantified by means of {sup 1}H NMR detection of H{sub 2}O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96.

  20. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2004-12-28

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  1. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2003-12-30

    A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

  2. Resonant interaction of trapped cold atoms with a magnetic cantilever tip

    E-Print Network [OSTI]

    Montoya, Cris; Geraci, Andrew A; Eardley, Matthew; Moreland, John; Hollberg, Leo; Kitching, John

    2015-01-01

    Magnetic resonance in an ensemble of laser-cooled trapped Rb atoms is excited using a micro- cantilever with a magnetic tip. The cantilever is mounted on a multi-layer chip designed to capture, cool, and magnetically transport cold atoms. The coupling is observed by measuring the loss from a magnetic trap as the oscillating cantilever induces Zeeman state transitions in the atoms. Interfacing cold atoms with mechanical devices could enable probing and manipulating atomic spins with nanometer spatial resolution and single-spin sensitivity, leading to new capabilities in quantum computation, quantum simulation, or precision sensing.

  3. Resonant interaction of trapped cold atoms with a magnetic cantilever tip

    E-Print Network [OSTI]

    Cris Montoya; Jose Valencia; Andrew A. Geraci; Matthew Eardley; John Moreland; Leo Hollberg; John Kitching

    2015-03-26

    Magnetic resonance in an ensemble of laser-cooled trapped Rb atoms is excited using a micro- cantilever with a magnetic tip. The cantilever is mounted on a multi-layer chip designed to capture, cool, and magnetically transport cold atoms. The coupling is observed by measuring the loss from a magnetic trap as the oscillating cantilever induces Zeeman state transitions in the atoms. Interfacing cold atoms with mechanical devices could enable probing and manipulating atomic spins with nanometer spatial resolution and single-spin sensitivity, leading to new capabilities in quantum computation, quantum simulation, or precision sensing.

  4. Sub-natural $N$-type Resonance in Cesium Atomic Vapor: splitting in magnetic fields

    E-Print Network [OSTI]

    Slavov, D; Sarkisyan, D; Mirzoyan, R; Krasteva, A; Wilson-Gordon, A D; Cartaleva, S

    2013-01-01

    The sub-natural-width $N$-type resonance in {\\Lambda}-system, on the $D_2$ line of Cs atoms is studied for the first time in the presence of a buffer gas (neon) and the radiations of two continuous narrow band diode lasers. $L$ = 1 cm long cell is used to investigate $N$-type process. The $N$-type resonance in a magnetic field for $^{133}$Cs atoms is shown to split into seven or eight components, depending on the magnetic field and laser radiation directions. The results obtained indicate that levels $F_g$ = 3, 4 are initial and final in the N resonance formation. The experimental results with magnetic field agree well with the theoretical curves.

  5. Calibration of NMR well logs from carbonate reservoirs with laboratory NMR measurements and ?XRCT

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mason, Harris E.; Smith, Megan M.; Hao, Yue; Carroll, Susan A.

    2014-12-31

    The use of nuclear magnetic resonance (NMR) well log data has the potential to provide in-situ porosity, pore size distributions, and permeability of target carbonate CO? storage reservoirs. However, these methods which have been successfully applied to sandstones have yet to be completely validated for carbonate reservoirs. Here, we have taken an approach to validate NMR measurements of carbonate rock cores with independent measurements of permeability and pore surface area to volume (S/V) distributions using differential pressure measurements and micro X-ray computed tomography (?XRCT) imaging methods, respectively. We observe that using standard methods for determining permeability from NMR data incorrectlymore »predicts these values by orders of magnitude. However, we do observe promise that NMR measurements provide reasonable estimates of pore S/V distributions, and with further independent measurements of the carbonate rock properties that universally applicable relationships between NMR measured properties may be developed for in-situ well logging applications of carbonate reservoirs.« less

  6. A 200-MHz fully-differential CMOS front-end with an on-chip inductor for magnetic resonance imaging 

    E-Print Network [OSTI]

    Ayala, Julio Enqrique, II

    2007-04-25

    with an observed liquid sample. In [5], an implantable solenoidal microcoil is designed to be 5 used in NMR microspectroscopy experiments in a 2-Tesla magnet (85.13-MHz). The outer diameter of the coil was approximately 200 µm and the length was 580 µm. The coil... microspec- troscopy. Liquid samples were loaded into a fused silica capillary positioned 50 µm above a 3.5-turn microcoil so that approximately 1 nL of the sample was present above the sensitive region of the microcoil. At 5.9-Tesla magnet (250-MHz), NMR...

  7. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    SciTech Connect (OSTI)

    Roach, David J. [Pennsylvania State University, University Park, PA (United States); Dou, Shichen [Pennsylvania State University, University Park, PA (United States); Colby, Ralph H. [Pennsylvania State University, University Park, PA (United States); Mueller, Karl T. [Pacific Northwest Lab., Richland, WA (United States). Environmental Molecular Sciences Lab.

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.

  8. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roach, David J. [Pennsylvania State University, University Park, PA (United States); Dou, Shichen [Pennsylvania State University, University Park, PA (United States); Colby, Ralph H. [Pennsylvania State University, University Park, PA (United States); Mueller, Karl T. [Pacific Northwest Lab., Richland, WA (United States). Environmental Molecular Sciences Lab.

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.

  9. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2012-01-06

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies formore »motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less

  10. Raman spectroscopy of graphite in high magnetic fields: Electron-phonon coupling and magnetophonon resonance

    SciTech Connect (OSTI)

    Kim, Younghee; Smirnov, Dmitry; Kalugin, Nikolai G.; Lombardo, Antonio; Ferrari, Andrea C.

    2013-12-04

    The magneto-Raman measurements of graphite were performed in a back-scattering Faraday geometry at temperature 10 K in magnetic fields up to 45 T. The experimental data reveal the rich structure of Raman-active excitations dominated by K-point massive electrons. At high magnetic fields the graphite E{sub 2g} Raman line shows complex multi- component behavior interpreted as magnetophonon resonance coupled electron-phonon modes at graphite’s K-point. Also we found the clear signature of the fundamental, strongly dumped, n=0 magnetophonon resonance associated with H point massless holes.

  11. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOE Patents [OSTI]

    Xu,Shoujun (Berkeley, CA); Lowery, Thomas L. (Belmont, MA); Budker, Dmitry (El Cerrito, CA); Yashchuk, Valeriy V. (Richmond, CA); Wemmer, David E. (Berkeley, CA); Pines, Alexander (Berkeley, CA)

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  12. Registration and Analysis of Myocardial Perfusion Magnetic Resonance Images

    E-Print Network [OSTI]

    - imum upslope, peak and time-to-peak. Qualitative and quantitative validation is carried out of Denmark, DTU #12;2 #12;3 Preface This thesis is based on five months work at the section for Image This thesis presents the registration and analysis of myocardial perfusion mag- netic resonance images

  13. NMR of thin layers using a meanderline surface coil

    DOE Patents [OSTI]

    Cowgill, Donald F. (San Ramon, CA)

    2001-01-01

    A miniature meanderline sensor coil which extends the capabilities of nuclear magnetic resonance (NMR) to provide analysis of thin planar samples and surface layer geometries. The sensor coil allows standard NMR techniques to be used to examine thin planar (or curved) layers, extending NMRs utility to many problems of modern interest. This technique can be used to examine contact layers, non-destructively depth profile into films, or image multiple layers in a 3-dimensional sense. It lends itself to high resolution NMR techniques of magic angle spinning and thus can be used to examine the bonding and electronic structure in layered materials or to observe the chemistry associated with aging coatings. Coupling this sensor coil technology with an arrangement of small magnets will produce a penetrator probe for remote in-situ chemical analysis of groundwater or contaminant sediments. Alternatively, the sensor coil can be further miniaturized to provide sub-micron depth resolution within thin films or to orthoscopically examine living tissue. This thin-layer NMR technique using a stationary meanderline coil in a series-resonant circuit has been demonstrated and it has been determined that the flat meanderline geometry has about he same detection sensitivity as a solenoidal coil, but is specifically tailored to examine planar material layers, while avoiding signals from the bulk.

  14. Current-induced torque driven ferromagnetic resonance in magnetic microstructures

    E-Print Network [OSTI]

    Fang, Dong

    2011-03-15

    of this Thesis a b Figure 1.2: An illustration of the spin-transfer torque effect in spin-valve device structures, adapted from [36]. a, A single magnetic layer with a spin- polarised electron passing through it. The magnet transmits and scatters the collinear... when an electric current passes through the pinned layer of a spin-valve, which can then act on the magnetisation in the free layer. 5 1.2 Context of this Thesis The current-induced torque in uniform ferromagnets has its origin in two quantum mechanical...

  15. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    E-Print Network [OSTI]

    Zhaokai Li; Man-Hong Yung; Hongwei Chen; Dawei Lu; James D. Whitfield; Xinhua Peng; Alán Aspuru-Guzik; Jiangfeng Du

    2011-06-02

    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than classical computers.

  16. Probing Water Phases in Cement Blends using 1 Magnetic Resonance Relaxometry

    E-Print Network [OSTI]

    Sheffield, University of

    Probing Water Phases in Cement Blends using 1 H Nuclear Magnetic Resonance Relaxometry Jean)114 222 5973 Fax: +44 (0)114 222 5943 E-Mail: j.gorce@sheffield.ac.uk Extended Abstract: Cement and Concrete Science, Warwick, 16th + 17th September 2004 Introduction The nuclear industry uses blended cement

  17. Bistable illusory rebound motion: Event-related functional magnetic resonance imaging of perceptual states and switches

    E-Print Network [OSTI]

    Bucci, David J.

    Bistable illusory rebound motion: Event-related functional magnetic resonance imaging of perceptual of a recently discovered visual illusion that we call Fillusory rebound motion_ (IRM) are described. This illusion is remarkable because motion is perceived in the absence of any net motion energy in the stimulus

  18. JOURNAL OF MAGNETIC RESONANCE 75, 509-5 12 ( 1987) Recursive Evaluation of Interaction Pictures

    E-Print Network [OSTI]

    Suter, Dieter

    JOURNAL OF MAGNETIC RESONANCE 75, 509-5 12 ( 1987) Recursive Evaluation of Interaction Pictures D quadratically with the number of pulsesin the sequence.In addition, the apparent time reversal in 161,together with the lack of a recursion formula, makes the values of k(t) in the different windows appear to be unrelated

  19. Donna Rose Addis, TWRI, May 2004 1 ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE

    E-Print Network [OSTI]

    Addis, Donna Rose

    Donna Rose Addis, TWRI, May 2004 1 ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA USING SPM-ordinates (with signs reversed) into table as translations right, fwd and up · Check origin is at the AC · Select images (a_seg1.img, a_seg2 and brain_a.img) · Name output file (grey_clean) · Enter formula

  20. Wavelets and statistical analysis of functional magnetic resonance images of the human brain

    E-Print Network [OSTI]

    Breakspear, Michael

    Wavelets and statistical analysis of functional magnetic resonance images of the human brain Ed Bullmore Brain Mapping Unit and Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke CNRS UMR 6072, Caen, France, Michael Breakspear Brain Dynamics Centre (Westmead Hospital) and School

  1. He Lung Imaging in an Open Access, Very-Low-Field Human Magnetic Resonance Imaging System

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    3 He Lung Imaging in an Open Access, Very-Low-Field Human Magnetic Resonance Imaging System R. W. Butler,6 F. W. Hersman,4 and R. L. Walsworth1 The human lung and its functions are extremely sensitive lung restrict sub- jects to lying horizontally. Imaging of human lungs using inhaled laser-polarized 3

  2. Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects

    SciTech Connect (OSTI)

    Pankin, Alexei Y.; Kritz, Arnold H.

    2011-07-19

    Topics covered are: anomalous transport and E x B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

  3. Morphology of the Small-Animal Lung Using Magnetic Resonance Microscopy

    E-Print Network [OSTI]

    Morphology of the Small-Animal Lung Using Magnetic Resonance Microscopy Laurence W. Hedlund and G motion control and animal support, the lungs of the live, small animal can be imaged. Although in vivo He, it is possible to image the tissue and gas compartments of the lung. This capability

  4. Solid State Nuclear Magnetic Resonance 29 (2006) 105117 Electron-nuclear cross polarization

    E-Print Network [OSTI]

    Griffin, Robert G.

    2006-01-01

    Solid State Nuclear Magnetic Resonance 29 (2006) 105­117 Electron-nuclear cross polarization V from an unpaired electron to neighboring nuclei via electron-nuclear cross polarization (e­Hahn cross polarization (CP) process introduced by Pines et al., that is widely used in solid-state nuclear

  5. Pulsed Gradient Spin Echo Nuclear Magnetic Resonance Imaging of Diffusion in Granular Flow

    SciTech Connect (OSTI)

    Seymour, Joseph D.; Caprihan, Arvind; Altobelli, Stephen A.; Fukushima, Eiichi

    2000-01-10

    We derive the formalism to obtain spatial distributions of collisional correlation times for macroscopic particles undergoing granular flow from pulsed gradient spin echo nuclear magnetic resonance diffusion data. This is demonstrated with an example of axial motion in the shear flow regime of a 3D granular flow in a horizontal rotating cylinder at one rotation rate. (c) 2000 The American Physical Society.

  6. Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual processing

    E-Print Network [OSTI]

    Event-related single-shot volumetric functional magnetic resonance inverse imaging of visual head coil array data and then apply inverse reconstruction methods to obtain volumetric fMRI estimates-related brain activity. We demonstrate the sensitivity and inter-subject reliability of volumetric InI using

  7. Effect of Electric and Magnetic Fields on Spin Dynamics in the Resonant Electric Dipole Moment Experiment

    E-Print Network [OSTI]

    Alexander J. Silenko

    2007-10-02

    A buildup of the vertical polarization in the resonant electric dipole moment (EDM) experiment [Y. F. Orlov, W. M. Morse, and Y. K. Semertzidis, Phys. Rev. Lett. 96, 214802 (2006)] is affected by a horizontal electric field in the particle rest frame oscillating at a resonant frequency. This field is defined by the Lorentz transformation of an oscillating longitudinal electric field and a uniform vertical magnetic one. The effect of a longitudinal electric field is significant, while the contribution from a magnetic field caused by forced coherent longitudinal oscillations of particles is dominant. The effect of electric field on the spin dynamics was not taken into account in previous calculations. This effect is considerable and leads to decreasing the EDM effect for the deuteron and increasing it for the proton. The formula for resonance strengths in the EDM experiment has been derived. The spin dynamics has been calculated.

  8. RF Pulse Design for Parallel Excitation in Magnetic Resonance Imaging 

    E-Print Network [OSTI]

    Liu, Yinan

    2012-07-16

    ? ?= (2.1) where ? is the gyromagnetic ratio. For 1H, ? = 42.58MHz/Tesla. 5 Figure 2.1. Precession of a nuclear spin about an external magnetic field. The imaging of an object relies on the bulk precession of the hydrogen spins in water...

  9. Effect of magnetic field profile on the uniformity of a distributed electron cyclotron resonance plasma

    SciTech Connect (OSTI)

    Huang, C. C.; Chou, S. F. [Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan (China)] [Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan (China); Chang, T. H.; Chao, H. W. [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China)] [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Chen, C. C. [Chung-Shan Institute of Science and Technology, Lung-Tan, Taoyuan, Taiwan (China)] [Chung-Shan Institute of Science and Technology, Lung-Tan, Taoyuan, Taiwan (China)

    2013-07-15

    This study extensively measured the uniformity of an electron cyclotron resonance (ECR) plasma versus the magnetic field distribution. The influence of magnetic field distribution on the generation of uniform ECR plasma was examined. It is suggested that in addition to the uniformity of the magnetic field distribution at ECR zone and at the downstream zone near the substrate, the transition of the magnetic field between these two zones is also crucial. A uniform ECR plasma with the electron density uniformity of ±7.7% over 500 × 500 mm{sup 2} was measured at the downstream. The idea of generating uniform ECR plasma can be scaled up to a much larger area by using an n × n microwave input array and a well-designed magnetic system.

  10. Approved Module Information for CH3114, 2014/5 Module Title/Name: Advanced NMR Spectroscopy Module Code: CH3114

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Credits: 10 Module Management Information Module Leader Name Rob Evans Email Address evansr2@aston students with an understanding of the underlying principles and knowledge of practical use of well- established, modern nuclear magnetic resonance (NMR) techniques. Module Learning Outcomes: At the end

  11. Florence, 28/02/2011: Two applied inverse problems: Introduction 1 -Problem #1: Studying the protein fold via NMR constraints.

    E-Print Network [OSTI]

    Pedicini, Marco

    the protein fold via NMR constraints. In collaboration with the CERM (Centre for Magnetic Resonance problems. #12;Florence, 28/02/2011: Two applied inverse problems: The problem of protein folding 2 H CCN) Backbone #12;Florence, 28/02/2011: Two applied inverse problems: The problem of protein folding 3 Genoma

  12. Amplification of Xenon NMR and MRI by remote detection

    SciTech Connect (OSTI)

    Moule, Adam J.; Spence, Megan M.; Han, Song-I.; Seeley, JulietteA.; Pierce, Kimberly L.; Saxena, Sunil; Pines, Alexander

    2003-03-31

    A novel technique is proposed in which a nuclear magneticresonance (NMR) spectrum or magnetic resonance image (MRI) is encoded andstored as spin polarization and is then moved to a different physicallocation to be detected. Remote detection allows the separateoptimization of the encoding and detection steps, permitting theindependent choice of experimental conditions, and excitation anddetection methodologies. In the first experimental demonstration of thistechnique, we show that NMR signal can be amplified by taking diluted129Xe from a porous sample placed inside a large encoding coil, andconcentrating it into a smaller detection coil. In general, the study ofNMR active molecules at low concentration that have low physical fillingfactor is facilitated by remote detection. In the second experiment, MRIinformation encoded in a very low field magnet (4-7mT) is transferred toa high field magnet (4.2 T) in order to be detected under optimizedconditions. Furthermore, remote detection allows the utilization ofultra-sensitive optical or superconducting detection techniques, whichbroadens the horizon of NMR experimentation.

  13. Nuclear magnetic resonance study of methane adsorbed on porous silicon 

    E-Print Network [OSTI]

    Li, Feng

    1992-01-01

    and the pirani gauge respectively. Gs is a pressure gauge used to monitor the pressure in the standard volume. has a field homogeneity of 0. 7 ppm for a sample 1 cm in diameter and 1 cm long in the center of the magnet. The maximum field strength is 4. 7 Tesla... in this study was approximately 0. 7 Tesla. Pulse sequences were generated by an Interface Technology timing simulator which could produce pulses from 50 nano-seconds to 1 second on 8 output channels. The timing simulator could be programmed either manually...

  14. Magnetism studies using resonant, coherent, x-ray scattering | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS on the internetMagnetic

  15. Resonant absorption of kink MHD waves by magnetic twist in coronal loops

    E-Print Network [OSTI]

    Ebrahimi, Z

    2015-01-01

    There is ample evidences of twisted magnetic structures in the corona. This motivates us to consider the magnetic twist as the cause of Alfven frequency continuum in coronal loops, which can support the resonant absorption as the rapid damping mechanism for the observed coronal kink MHD oscillations. For a straight cylindrical compressible zero-beta thin flux tube with a magnetic twist in a thin boundary and straight magnetic field in the interior and exterior regions as well as a step-like radial density profile, we derive the dispersion relation and solve it analytically. Consequently, we obtain the frequencies and damping rates of the fundamental (l=1) and first/second overtones (l=2,3) kink (m=1) MHD modes. We conclude that the resonant absorption by the magnetic twist can justify the rapid damping of kink MHD waves observed in coronal loops. Furthermore, the magnetic twist in the inhomogeneous layer can achieve deviations from P_1/P_2=2 and P_1/P_3=3 of the same order of magnitude as in the observations.

  16. Flow units from integrated WFT and NMR data

    SciTech Connect (OSTI)

    Kasap, E.; Altunbay, M.; Georgi, D.

    1997-08-01

    Reliable and continuous permeability profiles are vital as both hard and soft data required for delineating reservoir architecture. They can improve the vertical resolution of seismic data, well-to-well stratigraphic correlations, and kriging between the well locations. In conditional simulations, permeability profiles are imposed as the conditioning data. Variograms, covariance functions and other geostatistical indicators are more reliable when based on good quality permeability data. Nuclear Magnetic Resonance (NMR) logging and Wireline Formation Tests (WFT) separately generate a wealth of information, and their synthesis extends the value of this information further by providing continuous and accurate permeability profiles without increasing the cost. NMR and WFT data present a unique combination because WFTs provide discrete, in situ permeability based on fluid-flow, whilst NMR responds to the fluids in the pore space and yields effective porosity, pore-size distribution, bound and moveable fluid saturations, and permeability. The NMR permeability is derived from the T{sub 2}-distribution data. Several equations have been proposed to transform T{sub 2} data to permeability. Regardless of the transform model used, the NMR-derived permeabilities depend on interpretation parameters that may be rock specific. The objective of this study is to integrate WFT permeabilities with NMR-derived, T{sub 2} distribution-based permeabilities and thereby arrive at core quality, continuously measured permeability profiles. We outlined the procedures to integrate NMR and WFT data and applied the procedure to a field case. Finally, this study advocates the use of hydraulic unit concepts to extend the WFT-NMR derived, core quality permeabilities to uncored intervals or uncored wells.

  17. Convective radial energy flux due to resonant magnetic perturbations and magnetic curvature at the tokamak plasma edge

    E-Print Network [OSTI]

    Marcus, F A; Fuhr, G; Monnier, A; Benkadda, S

    2014-01-01

    With the resonant magnetic perturbations (RMPs) consolidating as an important tool to control the transport barrier relaxation, the mechanism on how they work is still a subject to be clearly understood. In this work we investigate the equilibrium states in the presence of RMPs for a reduced MHD model using 3D electromagnetic fluid numerical code (EMEDGE3D) with a single harmonic RMP (single magnetic island chain) and multiple harmonics RMPs in cylindrical and toroidal geometry. Two different equilibrium states were found in the presence of the RMPs with different characteristics for each of the geometries used. For the cylindrical geometry in the presence of a single RMP, the equilibrium state is characterized by a strong convective radial thermal flux and the generation of a mean poloidal velocity shear. In contrast, for toroidal geometry the thermal flux is dominated by the magnetic flutter. For multiple RMPs, the high amplitude of the convective flux and poloidal rotation are basically the same in cylindr...

  18. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOE Patents [OSTI]

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  19. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy

    SciTech Connect (OSTI)

    Gunasekara, Nirosha [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)] [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada); Sykes, Brian, E-mail: brian.sykes@ualberta.ca [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada)] [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada); Hugh, Judith, E-mail: judithh@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)] [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this study forms the foundation for the design of specific inhibitors of this interaction which may target breast cancer metastases with exquisite specificity.

  20. Method for high resolution magnetic resonance analysis using magic angle technique

    DOE Patents [OSTI]

    Wind, Robert A.; Hu, Jian Zhi

    2003-11-25

    A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

  1. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    SciTech Connect (OSTI)

    Chang-Hwan Kim

    2003-12-12

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  2. Origin of the positive spin- 12 photoluminescence-detected magnetic resonance in ?-conjugated materials and devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ying; Cai, Min; Hellerich, Emily; Shinar, Ruth; Shinar, Joseph

    2015-09-02

    The spin-1/2 single-modulation (SM) and double-modulation (DM) photoluminescence (PL) detected magnetic resonance (PLDMR) in poly(2-methoxy-5-(2'-ethyl)–hexoxy-1,4- phenylene vinylene) (MEH-PPV) films and poly(3-hexylthiophene) (P3HT) films is described, analyzed, and discussed. In particular, the models based on spin-dependent recombination of charge pairs (SDR) and triplet-polaron quenching (TPQ) are evaluated. By analyzing the dependence of the resonance amplitude on the microwave chopping (modulation) frequency using rate equations, it is demonstrated that the TPQ model can well explain the observed resonance behavior, while SDR model cannot reproduce the results of the observed DM-PLDMR. As a result, the observed spin-1/2 PLDMR is assigned to TPQ rathermore »than SDR, even though the latter may also be present.« less

  3. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect (OSTI)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ?18?K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ?3?K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  4. Solid state nuclear magnetic resonance methodology and applications to structure determination of peptides, proteins and amyloid fibrils

    E-Print Network [OSTI]

    Jaroniec, Christopher P

    2003-01-01

    Several methodological developments and applications of multidimensional solid-state nuclear magnetic resonance to biomolecular structure determination are presented. Studies are performed in uniformly 3C, 15N isotope ...

  5. Minute Effects of Sex on the Aging Brain: A Multisample Magnetic Resonance Imaging Study of Healthy Aging and Alzheimer's Disease

    E-Print Network [OSTI]

    Fjell, Anders M.

    Age is associated with substantial macrostructural brain changes. While some recent magnetic resonance imaging studies have reported larger age effects in men than women, others find no sex differences. As brain morphometry ...

  6. Magnetic structure and domain conversion of the quasi-2D frustrated antiferromagnet CuCrO{sub 2} probed by NMR

    SciTech Connect (OSTI)

    Sakhratov, Yu. A. [National High Magnetic Field Laboratory (United States); Svistov, L. E., E-mail: svistov@kapitza.ras.ru [Russian Academy Sciences, Kapitza Institute for Physical Problems (Russian Federation); Kuhns, P. L.; Zhou, H. D.; Reyes, A. P. [National High Magnetic Field Laboratory (United States)

    2014-11-15

    We have carried out {sup 63,65}Cu NMR spectra measurements in a magnetic field up to about 15.5 T on a single crystal of the multiferroic triangular-lattice antiferromagnet CuCrO{sub 2}. The measurements were performed for perpendicular and parallel orientations of the magnetic field with respect to the c axis of the crystal, and the detailed angle dependence of the spectra on the magnetic field direction in the ab plane was studied. The shape of the spectra can be well described in the model of spiral spin structure proposed by recent neutron diffraction experiments. When the field is rotated perpendicular to the crystal c axis, we observed, directly for the first time, a remarkable reorientation of the spin plane simultaneous with rotation of the incommensurate wavevector, by quantitatively deducing the conversion of the energetically less favorable domain to a more favorable one. At high enough fields parallel to the c axis, the data are consistent with either a field-induced commensurate spiral magnetic structure or an incommensurate spiral magnetic structure with a disorder in the c direction, suggesting that high fields may have influence on interplanar ordering.

  7. Observations of thermally excited ferromagnetic resonance on spin torque oscillators having a perpendicularly magnetized free layer

    SciTech Connect (OSTI)

    Tamaru, S. Kubota, H.; Yakushiji, K.; Konoto, M.; Nozaki, T.; Fukushima, A.; Imamura, H.; Taniguchi, T.; Arai, H.; Tsunegi, S.; Yuasa, S.; Suzuki, Y.

    2014-05-07

    Measurements of thermally excited ferromagnetic resonance were performed on spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer (abbreviated as PMF-STO in the following) for the purpose of obtaining magnetic properties in the PMF-STO structure. The measured spectra clearly showed a large main peak and multiple smaller peaks on the high frequency side. A Lorentzian fit on the main peak yielded Gilbert damping factor of 0.0041. The observed peaks moved in proportion to the out-of-plane bias field. From the slope of the main peak frequency as a function of the bias field, Lande g factor was estimated to be about 2.13. The mode intervals showed a clear dependence on the diameter of the PMF-STOs, i.e., intervals are larger for a smaller diameter. These results suggest that the observed peaks should correspond to eigenmodes of lateral spin wave resonance in the perpendicularly magnetized free layer.

  8. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    DOE Patents [OSTI]

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  9. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    DOE Patents [OSTI]

    Pines, Alexander (Berkeley, CA); Budinger, Thomas (Berkeley, CA); Navon, Gil (Ramat Gan, IL); Song, Yi-Qiao (Berkeley, CA); Appelt, Stephan (Waiblingen, DE); Bifone, Angelo (Rome, IT); Taylor, Rebecca (Berkeley, CA); Goodson, Boyd (Berkeley, CA); Seydoux, Roberto (Berkeley, CA); Room, Toomas (Albany, CA); Pietrass, Tanja (Socorro, NM)

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  10. MHD Field Line Resonances and Global Modes in Three-Dimensional Magnetic Fields

    SciTech Connect (OSTI)

    C.Z. Cheng

    2002-05-30

    By assuming a general isotropic pressure distribution P = P (y,a), where y and a are three-dimensional scalar functions labeling the field lines with B = -y x -a, we have derived a set of MHD eigenmode equations for both global MHD modes and field line resonances (FLR). Past MHD theories are restricted to isotropic pressures with P = P (y only). The present formulation also allows the plasma mass density to vary along the field line. The linearized ideal-MHD equations are cast into a set of global differential equations from which the field line resonance equations of the shear Alfvin waves and slow magnetosonic modes are naturally obtained for general three-dimensional magnetic field geometries with flux surfaces. Several new terms associated with the partial derivative of P with respect to alpha are obtained. In the FLR equations, a new term is found in the shear Alfvin FLR equation due to the geodesic curvature and the pressure gradient in the poloidal flux surface. The coupling between the shear Alfvin waves and the magnetosonic waves is through the combined effects of geodesic magnetic field curvature and plasma pressure as previously derived. The properties of the FLR eigenfunctions at the resonance field lines are investigated, and the behavior of the FLR wave solutions near the FLR surface are derived. Numerical solutions of the FLR equations for three-dimensional magnetospheric fields in equilibrium with high plasma pressure will be presented in a future publication.

  11. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 6, JUNE 2009 1805 A Spectral-Scanning Nuclear Magnetic Resonance

    E-Print Network [OSTI]

    Hajimiri, Ali

    resonance detection and analysis is tunable from 1 kHz to 37 MHz, corresponding to 0­0.9 T magnetization- troscopy, magnetic resonance imaging (MRI), coherent detection, Torrey-Bloch equation, nuclear magnetic keeping the sensitivity, detection time, spectral resolution, and the relative-to-sample-size spatial res

  12. 31P Solid State NMR Studies of Metal Selenophosphates Containing [P2Se6]4-, [P4Se10]4-, [PSe4]3-, [P2Se7]4-, and [P2Se9]4-Ligands

    E-Print Network [OSTI]

    Weliky, David

    31P Solid State NMR Studies of Metal Selenophosphates Containing [P2Se6]4-, [P4Se10]4-, [PSe4]3-, [P2Se7]4-, and [P2Se9]4- Ligands Christian G. Canlas, Mercouri G. Kanatzidis, and David P. Weliky P solid-state nuclear magnetic resonance (NMR) spectra of 12 metal-containing selenophosphates have

  13. Phosphorus-31 NMR magnetization-transfer measurements of ATP turnover during steady-state isometric muscle contraction in the rat hind limb in vivo

    SciTech Connect (OSTI)

    Brindle, K.M.; Blackledge, M.J.; Challiss, R.A.J.; Radda, G.K. )

    1989-05-30

    Phosphorus-31 NMR magnetization-transfer measurement have been used to measure the flux between ATP and inorganic phosphate during steady-state isometric muscle contraction in the rat hind limb in vivo. Steady-state contraction was obtained by supramaximal sciatic nerve stimulation. Increasing the stimulation pulse width from 10 to 90 ms, at a pulse frequency of 1 Hz, or increasing the frequency of a 10-ms pulse from 0.5 to 2 Hz resulted in an increase in the flux which was an approximately linear function of the increase in the tension-time integral. The flux showed an approximately linear dependence on the calculated free cytosolic ADP concentration up to an ADP concentration of about 90 {mu}M. The data are consistent with control of mitochondrial ATP synthesis by the cytosolic ADP concentration and indicate that the apparent K{sub m} of the mitochondria for ADP is at least 30 {mu}M.

  14. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect (OSTI)

    Parra, J.O.

    2001-01-26

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate magnetic resonance (MR) techniques and acoustic measurements to improve predictability of the pay zone in two hydrocarbon reservoirs. This was accomplished by extracting the fluid property parameters using MR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurements were compared with petrographic analysis results to determine the relative roles of petrographic elements such as porosity type, mineralogy, texture, and distribution of clay and cement in creating permeability heterogeneity.

  15. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. NMR characterization of thin films

    DOE Patents [OSTI]

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  17. In-Vivo NMR of Hyperpolarized Helium-3 in the Human Lung at Very Low Magnetic Fields

    E-Print Network [OSTI]

    Bidinosti, C P; Nacher, P J; Tastevin, G; Bidinosti, Christopher P.; Choukeife, Jamal; Nacher, Pierre-Jean; Tastevin, Genevi\\`eve

    2002-01-01

    We present NMR measurements of the diffusion of hyperpolarized helium-3 in the human lung performed at fields much lower than those of conventional MRI scanners. The measurements were made on standing subjects using homebuilt apparatus operating at 3 mT. Oxygen-limited transverse relaxation (T2 up to 15-35 s) could be measured in-vivo. Accurate global diffusion measurements have been performed in-vivo and in-vitro. 1D ADC mapping with high SNR demonstrates the real possibility of performing quality lung imaging at extremely low fields.

  18. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    SciTech Connect (OSTI)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob, E-mail: ihahn@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States)

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  19. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect (OSTI)

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  20. Simulation of chemical reaction dynamics on an NMR quantum computer

    E-Print Network [OSTI]

    Dawei Lu; Nanyang Xu; Ruixue Xu; Hongwei Chen; Jiangbin Gong; Xinhua Peng; Jiangfeng Du

    2011-05-21

    Quantum simulation can beat current classical computers with minimally a few tens of qubits and will likely become the first practical use of a quantum computer. One promising application of quantum simulation is to attack challenging quantum chemistry problems. Here we report an experimental demonstration that a small nuclear-magnetic-resonance (NMR) quantum computer is already able to simulate the dynamics of a prototype chemical reaction. The experimental results agree well with classical simulations. We conclude that the quantum simulation of chemical reaction dynamics not computable on current classical computers is feasible in the near future.

  1. Electrically detected magnetic resonance modeling and fitting: An equivalent circuit approach

    SciTech Connect (OSTI)

    Leite, D. M. G.; Batagin-Neto, A.; Nunes-Neto, O.; Gómez, J. A.; Graeff, C. F. O.

    2014-01-21

    The physics of electrically detected magnetic resonance (EDMR) quadrature spectra is investigated. An equivalent circuit model is proposed in order to retrieve crucial information in a variety of different situations. This model allows the discrimination and determination of spectroscopic parameters associated to distinct resonant spin lines responsible for the total signal. The model considers not just the electrical response of the sample but also features of the measuring circuit and their influence on the resulting spectral lines. As a consequence, from our model, it is possible to separate different regimes, which depend basically on the modulation frequency and the RC constant of the circuit. In what is called the high frequency regime, it is shown that the sign of the signal can be determined. Recent EDMR spectra from Alq{sub 3} based organic light emitting diodes, as well as from a-Si:H reported in the literature, were successfully fitted by the model. Accurate values of g-factor and linewidth of the resonant lines were obtained.

  2. Ultra-low field magnetic resonance using optically pumped noble gases and SQUID detection

    E-Print Network [OSTI]

    Wong-Foy, Annjoe G.

    2010-01-01

    MRI: Xenon in Triangle of Aerogel MRI: Visualization ofXenon Flow through Aerogel Phosphorous-31 NMR in Phosphorica triangular prism of aerogel. Aerogel is a silicon based,

  3. Ultra-low field magnetic resonance using optically pumped noble gases and SQUID detection

    E-Print Network [OSTI]

    Wong-Foy, Annjoe G.

    2010-01-01

    Enhancement . . . . Ultra Low Field Xenon NMR ShowingIntroduction.. 4.2 Ultra Low FieldNuclear Polarization 5.10.3 Ultra Low Field Chemical Shift

  4. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    E-Print Network [OSTI]

    Goodson, B.M.

    2010-01-01

    r I- t of silica aerogels by Xe-129 NMR spectroscopy andcatalysts, ceramics, aerogels, food products, and antiquatedxenon penetration within an aerogel sample as a function of

  5. Nuclear-electronic spin systems, magnetic resonance, and quantum information processing

    E-Print Network [OSTI]

    M. H. Mohammady

    2013-05-04

    A promising platform for quantum information processing is that of silicon impurities, where the quantum states are manipulated by magnetic resonance. Such systems, in abstraction, can be considered as a nucleus of arbitrary spin coupled to an electron of spin one-half via an isotropic hyperfine interaction. We therefore refer to them as "nuclear-electronic spin systems". The traditional example, being subject to intensive experimental studies, is that of phosphorus doped silicon (Si:P) which couples a spin one-half electron to a nucleus of the same spin, with a hyperfine strength of 117.5 MHz. More recently, bismuth doped silicon (Si:Bi) has been suggested as an alternative instantiation of nuclear-electronic spin systems, differing from Si:P by its larger nuclear spin and hyperfine strength of 9/2 and 1.4754 GHz respectively. The aim of this thesis has been to develop a model that is capable of predicting the magnetic resonance properties of nuclear-electronic spin systems. The theoretical predictions of this model have been tested against experimental data collected on Si:Bi at 4.044 GHz, and have proven quite successful. Furthermore, the larger nuclear spin and hyperfine strength of Si:Bi, compared with that of Si:P, are predicted to offer advantages for quantum information processing. Most notable amongst these is that magnetic field-dependent two-dimensional decoherence free subspaces, called optimal working points, have been identified to exist in Si:Bi, but not Si:P.

  6. Method and apparatus for magnetic resonance imaging and spectroscopy using microstrip transmission line coils

    DOE Patents [OSTI]

    Zhang, Xiaoliang; Ugurbil, Kamil; Chen, Wei

    2006-04-04

    Apparatus and method for MRI imaging using a coil constructed of microstrip transmission line (MTL coil) are disclosed. In one method, a target is positioned to be imaged within the field of a main magnetic field of a magnet resonance imaging (MRI) system, a MTL coil is positioned proximate the target, and a MRI image is obtained using the main magnet and the MTL coil. In another embodiment, the MRI coil is used for spectroscopy. MRI imaging and spectroscopy coils are formed using microstrip transmission line. These MTL coils have the advantageous property of good performance while occupying a relatively small space, thus allowing MTL coils to be used inside restricted areas more easily than some other prior art coils. In addition, the MTL coils are relatively simple to construct of inexpensive components and thus relatively inexpensive compared to other designs. Further, the MTL coils of the present invention can be readily formed in a wide variety of coil configurations, and used in a wide variety of ways. Further, while the MTL coils of the present invention work well at high field strengths and frequencies, they also work at low frequencies and in low field strengths as well.

  7. Diffusion-Weighted Magnetic Resonance Imaging in Monitoring Rectal Cancer Response to Neoadjuvant Chemoradiotherapy

    SciTech Connect (OSTI)

    Barbaro, Brunella; Vitale, Renata; Valentini, Vincenzo; Illuminati, Sonia; Vecchio, Fabio M.; Rizzo, Gianluca; Gambacorta, Maria Antonietta; Coco, Claudio; Crucitti, Antonio; Persiani, Roberto; Sofo, Luigi; Bonomo, Lorenzo

    2012-06-01

    Purpose: To prospectively monitor the response in patients with locally advanced nonmucinous rectal cancer after chemoradiotherapy (CRT) using diffusion-weighted magnetic resonance imaging. The histopathologic finding was the reference standard. Methods and Materials: The institutional review board approved the present study. A total of 62 patients (43 men and 19 women; mean age, 64 years; range, 28-83) provided informed consent. T{sub 2}- and diffusion-weighted magnetic resonance imaging scans (b value, 0 and 1,000 mm{sup 2}/s) were acquired before, during (mean 12 days), and 6-8 weeks after CRT. We compared the median apparent diffusion coefficients (ADCs) between responders and nonresponders and examined the associations with the Mandard tumor regression grade (TRG). The postoperative nodal status (ypN) was evaluated. The Mann-Whitney/Wilcoxon two-sample test was used to evaluate the relationships among the pretherapy ADCs, extramural vascular invasion, early percentage of increases in ADCs, and preoperative ADCs. Results: Low pretreatment ADCs (<1.0 Multiplication-Sign 10{sup -3}mm{sup 2}/s) were correlated with TRG 4 scores (p = .0011) and associated to extramural vascular invasion with ypN+ (85.7% positive predictive value for ypN+). During treatment, the mean percentage of increase in tumor ADC was significantly greater in the responders than in the nonresponders (p < .0001) and a >23% ADC increase had a 96.3% negative predictive value for TRG 4. In 9 of 16 complete responders, CRT-related tumor downsizing prevented ADC evaluations. The preoperative ADCs were significantly different (p = .0012) between the patients with and without downstaging (preoperative ADC {>=}1.4 Multiplication-Sign 10{sup -3}mm{sup 2}/s showed a positive and negative predictive value of 78.9% and 61.8%, respectively, for response assessment). The TRG 1 and TRG 2-4 groups were not significantly different. Conclusion: Diffusion-weighted magnetic resonance imaging seems to be a promising tool for monitoring the response to CRT.

  8. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect (OSTI)

    Mamone, Salvatore Concistrè, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H.; Lei, Xuegong; Li, Yongjun; Goh, Kelvin; Horsewill, Anthony J.

    2014-05-21

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  9. Effect of a high-frequency magnetic field on the resonant behavior displayed by a spin-$1/2$ particle under the influence of a rotating magnetic field

    E-Print Network [OSTI]

    Jesús Casado-Pascual

    2010-07-29

    In this paper, we investigate the role of a high-frequency magnetic field in the resonant behavior displayed by a spin-$1/2$ particle under the influence of a rotating magnetic field. We propose two alternative methods for analyzing the system dynamics, namely, the averaging method and the multiple scale method. The analytical results achieved by applying these two methods are compared with those obtained from the numerical solution of the Schr\\"odinger equation. This comparison leads to the conclusion that the multiple scale method provides a better understanding of the system dynamics than the averaging method. In particular, the averaging method predicts the complete destruction of the resonant behavior by an appropriate choice of the parameter values of the high-frequency magnetic field. This conclusion is disproved both by the numerical results, and also by the results obtained from the multiple scale method.

  10. Simulation of magnetic island dynamics under resonant magnetic perturbation with the TEAR code and validation of the results on T-10 tokamak data

    SciTech Connect (OSTI)

    Ivanov, N. V.; Kakurin, A. M. [National Research Centre “Kurchatov Institute,” 123182 Moscow (Russian Federation)

    2014-10-15

    Simulation of the magnetic island evolution under Resonant Magnetic Perturbation (RMP) in rotating T-10 tokamak plasma is presented with intent of TEAR code experimental validation. In the T-10 experiment chosen for simulation, the RMP consists of a stationary error field, a magnetic field of the eddy current in the resistive vacuum vessel and magnetic field of the externally applied controlled halo current in the plasma scrape-off layer (SOL). The halo-current loop consists of a rail limiter, plasma SOL, vacuum vessel, and external part of the circuit. Effects of plasma resistivity, viscosity, and RMP are taken into account in the TEAR code based on the two-fluid MHD approximation. Radial distribution of the magnetic flux perturbation is calculated with account of the externally applied RMP. A good agreement is obtained between the simulation results and experimental data for the cases of preprogrammed and feedback-controlled halo current in the plasma SOL.

  11. Parametric Resonance Amplification of Neutrino Oscillations in Electromagnetic Wave with Varying Amplitude and "Castle Wall" Magnetic Field

    E-Print Network [OSTI]

    M. S. Dvornikov; A. I. Studenikin

    2001-07-10

    Within the Lorentz invariant formalizm for description of neutrino evolution in electromagnetic fields and matter we consider neutrino spin oscillations in the electromagnetic wave with varying amplitude and in "castle wall" magnetic field. It is shown for the first time that the parametric resonances of neutrino oscillations in such systems can occur.

  12. K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems

    E-Print Network [OSTI]

    MRI InI Visual MRI Neuroimaging K-InI Inverse solution MEG EEG Electroencephalography channels of a radio-frequency coil array, magnetic resonance inverse imaging (InI) can achieve ultra. Mathematically, the InI reconstruction is a generalization of parallel MRI (pMRI), which includes image space

  13. Clustering Dynamics in Water/Methanol Mixtures: A Nuclear Magnetic Resonance Study at 205 K < T < 295 K

    E-Print Network [OSTI]

    Stanley, H. Eugene

    Clustering Dynamics in Water/Methanol Mixtures: A Nuclear Magnetic Resonance Study at 205 K functional groups in water/methanol mixtures at different methanol molar fractions (XMeOH ) 0, 0.04, 0.1, 0 in the mixtures, at all the methanol molar fractions, are faster than those of pure water and methanol because

  14. In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain , M. Augath2

    E-Print Network [OSTI]

    In vivo chlorine-35, sodium-23 and proton magnetic resonance imaging of the rat brain S. Kirsch1 of the cytoplasm and the volume of cells [1]. In order to investigate the feasibility of combined in vivo 35 Cl, 23 Na and 1 H MRI we developed a rf coil setup to measure 35 Cl, 23 Na and 1 H signals in one scanning

  15. Pore-structure determinations of silica aerogels by {sup 129}Xe NMR spectroscopy and imaging.

    SciTech Connect (OSTI)

    Gregory, D. M.; Gerald, R. E., II; Botto, R. E.; Chemistry

    1998-04-01

    Silica aerogels represent a new class of open-pore materials with pore dimensions on a scale of tens of nanometers, and are thus classified as mesoporous materials. In this work, we show that the combination of NMR spectroscopy and chemical-shift selective magnetic resonance imaging (MRI) can resolve some of the important aspects of the structure of silica aerogels. The use of xenon as a gaseous probe in combination with spatially resolved NMR techniques is demonstrated to be a powerful, new approach for characterizing the average pore structure and steady-state spatial distributions of xenon atoms in different physicochemical environments. Furthermore, dynamic NMR magnetization transfer experiments and pulsed-field gradient (PFG) measurements have been used to characterize exchange processes and diffusive motion of xenon in samples at equilibrium. In particular, this new NMR approach offers unique information and insights into the nanoscopic pore structure and microscopic morphology of aerogels and the dynamical behavior of occluded adsorbates. MRI provides spatially resolved information on the nature of the flaw regions found in these materials. Pseudo-first-order rate constants for magnetization transfer among the bulk and occluded xenon phases indicate xenon-exchange rate constants on the order of 1 s-1 for specimens having volumes of 0.03 cm3. PFG diffusion measurements show evidence of anisotropic diffusion for xenon occluded within aerogels, with nominal self-diffusivity coefficients on the order of D= 10-3cm2/s.

  16. High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    E-Print Network [OSTI]

    Viktor Stepanov; Franklin H. Cho; Chathuranga Abeywardana; Susumu Takahashi

    2015-02-11

    We present the development of an optically detected magnetic resonance (ODMR) system, which enables us to perform the ODMR measurements of a single defect in solids at high frequencies and high magnetic fields. Using the high-frequency and high-field ODMR system, we demonstrate 115 GHz continuous-wave and pulsed ODMR measurements of a single nitrogen-vacancy (NV) center in a diamond crystal at the magnetic field of 4.2 Tesla as well as investigation of field dependence ($0-8$ Tesla) of the longitudinal relaxation time ($T_1$) of NV centers in nanodiamonds.

  17. Nuclear Magnetic Resonance based Characterization of the Protein Binding Pocket using Hyperpolarized Ligand 

    E-Print Network [OSTI]

    Min, Hlaing

    2014-08-04

    .447 500 6900 0.019 2651 0.1 0.205 0.127 0.432 0.2 475 2.5 131.5789 500 10557 0.0124 * Time for the 1st data point=stabilization time + ½ injection time + pulse seq. time prior to acquisition 18 *pb (fraction of bound ligand) is needed...) ............................................................ 7 1.5 Saturation Transfer Difference NMR (STD-NMR) ................................ 11 2. EXPERIMENTAL METHODS .................................................................................. 15 2.1 DNP-NMR experimental setup and method...

  18. Use of earth field spin echo NMR to search for liquid minerals

    DOE Patents [OSTI]

    Stoeffl, Wolfgang (Livermore, CA)

    2001-01-01

    An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.

  19. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    SciTech Connect (OSTI)

    Singamaneni, Srinivasa Rao; Stesmans, Andre; Tol, Johan van; Kosynkin, D. V.; Tour, James M.; Department of Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005; Smalley Institute for Nanoscale Science and Technology, Rice University, MS-222, 6100 Main Street, Houston, Texas 77005, USA.

    2014-04-15

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH{sub 3} adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and {sup 13}C atoms. With the provided identification of intrinsic point magnetic defects such as proton and {sup 13}C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  20. Applications of Magnetic Resonance to Current Detection and Microscale Flow Imaging

    E-Print Network [OSTI]

    Halpern-Manners, Nicholas Wm

    2011-01-01

    field and an oscillating magnetic field in the sample and,static and oscillating magnetic fields when consideringthe sample produce oscillating magnetic fields that can be

  1. Application of nuclear magnetic resonance imaging and spectroscopy to fluids in porous media 

    E-Print Network [OSTI]

    Mandava, Shanthi Sree

    1991-01-01

    and resolution of those saturations were developed with regards to the imaging method employed. The estimates so developed show that MRI can effectively monitor dynamic displacements for quantitative property estimation. An NMR spin-echo technique... in porous media was conducted with NMR Spectroscopy. A study of the effect of surrounding physical barriers on the diffusion of fluids in porous media was attempted. A Pulsed Gradient Spin-Echo sequence was developed to determine apparent self...

  2. A study of Overhauser pumping in weak magnetic fields 

    E-Print Network [OSTI]

    Gondran, Gregory Rhea

    1986-01-01

    RESONANCE THEORY. . Basic Dynamics Larmor Precession; Effect of a Rotating Field III. SPIN ENSEMBLES Paramagnetism The Bloch Equation Relaxation Effects Steady State Solutions. IV. OVERHAUSER PUMPING . V. EXPERIMENTAL DETECTION METHOD . . The DC... for positive gyromagnetic ratio. III. SPIN ENSEMBLES Paramagnetism NMR deals with samples which have a net macroscopic magnetization due to the nuclear spins when placed in a static magnetic field B, . This effect is known as:nuclear paramagnetism...

  3. Evaluation of the Prostate Bed for Local Recurrence After Radical Prostatectomy Using Endorectal Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Liauw, Stanley L., E-mail: sliauw@radonc.uchicago.edu [Department of Radiation Oncology, University of Chicago, Chicago, Illinois (United States); Pitroda, Sean P. [Department of Radiation Oncology, University of Chicago, Chicago, Illinois (United States)] [Department of Radiation Oncology, University of Chicago, Chicago, Illinois (United States); Eggener, Scott E. [Department of Urology, University of Chicago, Chicago, Illinois (United States)] [Department of Urology, University of Chicago, Chicago, Illinois (United States); Stadler, Walter M. [Department of Medical Oncology, University of Chicago, Chicago, Illinois (United States)] [Department of Medical Oncology, University of Chicago, Chicago, Illinois (United States); Pelizzari, Charles A. [Department of Radiation Oncology, University of Chicago, Chicago, Illinois (United States)] [Department of Radiation Oncology, University of Chicago, Chicago, Illinois (United States); Vannier, Michael W.; Oto, Aytek [Department of Radiology, University of Chicago, Chicago, Illinois (United States)] [Department of Radiology, University of Chicago, Chicago, Illinois (United States)

    2013-02-01

    Purpose: To summarize the results of a 4-year period in which endorectal magnetic resonance imaging (MRI) was considered for all men referred for salvage radiation therapy (RT) at a single academic center; to describe the incidence and location of locally recurrent disease in a contemporary cohort of men with biochemical failure after radical prostatectomy (RP), and to identify prognostic variables associated with MRI findings in order to define which patients may have the highest yield of the study. Methods and Materials: Between 2007 and 2011, 88 men without clinically palpable disease underwent eMRI for detectable prostate-specific antigen (PSA) after RP. The median interval between RP and eMRI was 32 months (interquartile range, 14-57 months), and the median PSA level was 0.30 ng/mL (interquartile range, 0.19-0.72 ng/mL). Magnetic resonance imaging scans consisting of T2-weighted, diffusion-weighted, and dynamic contrast-enhanced imaging were evaluated for features consistent with local recurrence. The prostate bed was scored from 0-4, whereby 0 was definitely normal, 1 probably normal, 2 indeterminate, 3 probably abnormal, and 4 definitely abnormal. Local recurrence was defined as having a score of 3-4. Results: Local recurrence was identified in 21 men (24%). Abnormalities were best appreciated on T2-weighted axial images (90%) as focal hypointense lesions. Recurrence locations were perianastomotic (67%) or retrovesical (33%). The only risk factor associated with local recurrence was PSA; recurrence was seen in 37% of men with PSA >0.3 ng/mL vs 13% if PSA {<=}0.3 ng/mL (P<.01). The median volume of recurrence was 0.26 cm{sup 3} and was directly associated with PSA (r=0.5, P=.02). The correlation between MRI-based tumor volume and PSA was even stronger in men with positive margins (r=0.8, P<.01). Conclusions: Endorectal MRI can define areas of local recurrence after RP in a minority of men without clinical evidence of disease, with yield related to PSA. Further study is necessary to determine whether eMRI can improve patient selection and success of salvage RT.

  4. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    SciTech Connect (OSTI)

    Usmani, Nawaid, E-mail: Nawaid.Usmani@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Department of Oncology, University of Alberta, Edmonton, AB (Canada); Sloboda, Ron [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada); Kamal, Wafa [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Ghosh, Sunita [Department of Oncology, University of Alberta, Edmonton, AB (Canada); Department of Experimental Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB (Canada); Department of Oncology, University of Alberta, Edmonton, AB (Canada); Monajemi, Tara [Department of Medical Physics, Cross Cancer Institute, Edmonton, AB (Canada)

    2011-07-01

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  5. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    SciTech Connect (OSTI)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-15

    The {sup 19}F isotropic chemical shifts (?{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F ?{sub iso} values and calculated {sup 19}F isotropic chemical shielding ?{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F ?{sub iso} values, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds. Display Omitted - Highlights: • The {sup 19}F ?{sub iso} values of NbF{sub 5} and TaF{sub 5} have been determined. • The {sup 19}F chemical shielding tensors have been calculated using the GIPAW method. • A confident assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained. • The relationships between the {sup 19}F?{sub iso} values and the M–F bonds features are established.

  6. Resolving the Impact of Biological Processes on Water Transport in Unsaturated Porous Media Through Nuclear Magnetic Resonance Micro-Imaging

    SciTech Connect (OSTI)

    Seymour, Joseph D.

    2005-06-01

    The magnetic resonance microscopy (MRM) work at Montana State University has extended the imaging of a single biofilm in a 1 mm capillary reactor to correlate T2 magnetic relaxation maps displaying biofilm structure with the corresponding velocity patterns in three dimensions in a Staphylococcus epidermidis biofilm fouled square capillary. A square duct geometry is chosen to provide correlation with existing experiments and simulations, as research bioreactors tend to be of square or rectangular cross section for optical or microelectrode access. The spatially resolved velocity data provide details on the impact of biofilm induced advection on mass transport from the bulk fluid to the biofilm and through the capillary bioreactor.

  7. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    DOE Patents [OSTI]

    Hu, Jian Zhi (Richland, WA); Sears, Jr., Jesse A. (Kennewick, WA); Hoyt, David W. (Richland, WA); Wind, Robert A. (Kennewick, WA)

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  8. Radiation-Induced Alterations in Mouse Brain Development Characterized by Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Gazdzinski, Lisa M.; Cormier, Kyle; Lu, Fred G.; Lerch, Jason P.; Department of Medical Biophysics, University of Toronto, Toronto ; Wong, C. Shun; Department of Medical Biophysics, University of Toronto, Toronto; Department of Radiation Oncology, University of Toronto, Toronto ; Nieman, Brian J.

    2012-12-01

    Purpose: The purpose of this study was to identify regions of altered development in the mouse brain after cranial irradiation using longitudinal magnetic resonance imaging (MRI). Methods and Materials: Female C57Bl/6 mice received a whole-brain radiation dose of 7 Gy at an infant-equivalent age of 2.5 weeks. MRI was performed before irradiation and at 3 time points following irradiation. Deformation-based morphometry was used to quantify volume and growth rate changes following irradiation. Results: Widespread developmental deficits were observed in both white and gray matter regions following irradiation. Most of the affected brain regions suffered an initial volume deficit followed by growth at a normal rate, remaining smaller in irradiated brains compared with controls at all time points examined. The one exception was the olfactory bulb, which in addition to an early volume deficit, grew at a slower rate thereafter, resulting in a progressive volume deficit relative to controls. Immunohistochemical assessment revealed demyelination in white matter and loss of neural progenitor cells in the subgranular zone of the dentate gyrus and subventricular zone. Conclusions: MRI can detect regional differences in neuroanatomy and brain growth after whole-brain irradiation in the developing mouse. Developmental deficits in neuroanatomy persist, or even progress, and may serve as useful markers of late effects in mouse models. The high-throughput evaluation of brain development enabled by these methods may allow testing of strategies to mitigate late effects after pediatric cranial irradiation.

  9. Interpretation of Nuclear Magnetic Resonance Measurements in Formations with Complex Pore Structure 

    E-Print Network [OSTI]

    Chi, Lu

    2015-08-10

    Irreducible BVM Bulk Volume Movable CT Computed Tomography CPMG Carr-Purcell-Meiboom-Gill EPC Euler-Poincare Characteristics FIB-SEM Focused Ion Beam Scanning Electron Microscope ILT Inverse Laplace Transform LBM Lattice Boltzmann Method NMR Nuclear... relaxation, (msec) T2B,eff Effective bulk relaxation time in the two-phase NMR simulations, (msec) T2B,hc Bulk relaxation time of hydrocarbon, (msec) T2B,w Bulk relaxation time of water or brine, (msec) T2cutoff T2 cutoff value between BVI and BVM...

  10. A Methodology to Integrate Magnetic Resonance and Acoustic Measurements for Reservoir Characterization

    SciTech Connect (OSTI)

    Parra, Jorge O.; Hackert, Chris L.; Collier, Hughbert A.; Bennett, Michael

    2002-01-29

    The objective of this project was to develop an advanced imaging method, including pore scale imaging, to integrate NMR techniques and acoustic measurements to improve predictability of the pay zone in hydrocarbon reservoirs. This is accomplished by extracting the fluid property parameters using NMR laboratory measurements and the elastic parameters of the rock matrix from acoustic measurements to create poroelastic models of different parts of the reservoir. Laboratory measurement techniques and core imaging are being linked with a balanced petrographical analysis of the core and theoretical model.

  11. Electrically detected magnetic resonance in a W-band microwave cavity

    E-Print Network [OSTI]

    Lang, V.

    2012-01-01

    resonance in a W-band microwave cavity V. Lang, 1, ? C. C.resonant W-band (94 GHz) microwave cavity. The advantages ofmagnetic ?elds and high microwave frequencies is therefore a

  12. Two-fluid magnetic island dynamics in slab geometry. II. Islands interacting with resistive walls or resonant magnetic perturbations

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    magnetic islands. Such islands degrade plasma confinement because heat and particles are able to travelTwo-fluid magnetic island dynamics in slab geometry. II. Islands interacting with resistive walls-fluid magnetic island dynamics in slab geometry: Determination of the island phase velocity Phys. Plasmas 12

  13. JOURNAL OF MAGNETIC RESONANCE 81,2 12-2 16(1989) Three-Dimensional Homonuclear Hartmann-Hahn-Nuclear

    E-Print Network [OSTI]

    Clore, G. Marius

    1989-01-01

    JOURNAL OF MAGNETIC RESONANCE 81,2 12-2 16(1989) Three-Dimensional Homonuclear Hartmann)-homonuclear Hartmann-Hahn (HOHAHA) spectrum of the protein (Ye-purothionin in 90% H20. In this particular sequence

  14. Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy 

    E-Print Network [OSTI]

    Zeng, Haifeng

    2012-07-16

    of indirect spectral dimensions similarly to conventional 2D NMR. Additionally, small flip angle pulses can be used to obtain a succession of scans separated in time. A model describing the combined effects of the evolution of a chemical process and of spin...

  15. Method for nuclear magnetic resonance imaging using deuterum as a contrast agent

    DOE Patents [OSTI]

    Kehayias, Joseph J. (Chestnut Hill, MA); Joel, Darrel D. (Setauket, NY); Adams, William H. (Eastport, NY); Stein, Harry L. (Glen Head, NY)

    1990-01-01

    A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D.sub.2 O in a solution with water.

  16. Feshbach resonances, weakly bound states and coupled-channel potentials for cesium molecules at high magnetic field

    E-Print Network [OSTI]

    Berninger, Martin; Huang, Bo; Harm, Walter; Nägerl, Hanns-Christoph; Ferlaino, Francesca; Grimm, Rudolf; Julienne, Paul S; Hutson, Jeremy M

    2012-01-01

    We explore the scattering properties of ultracold ground-state Cs atoms at magnetic fields between 450 G (45 mT) and 1000 G. We identify 17 new Feshbach resonances, including two very broad ones near 549 G and 787 G. We measure the binding energies of several different dimer states by magnetic field modulation spectroscopy. We use least-squares fitting to these experimental results, together with previous measurements at lower field, to determine a new 6-parameter model of the long-range interaction potential, designated M2012. Coupled-channels calculations using M2012 provide an accurate mapping between the s-wave scattering length and the magnetic field over the entire range of fields considered. This mapping is crucial for experiments that rely on precise tuning of the scattering length, such as those on Efimov physics.

  17. Rest period duration of the coronary arteries: Implications for magnetic resonance coronary angiography

    SciTech Connect (OSTI)

    Shechter, Guy; Resar, Jon R.; McVeigh, Elliot R. [Lab of Cardiac Energetics, NHLBI, NIH Building 10, Room B1D-412, msc-1061, Bethesda, Maryland 20892-1061 (United States); Division of Cardiology, Department of Medicine, Johns Hopkins University, 600 North Wolfe Street, Blalock 524B, Baltimore, Maryland 21287 (United States); Lab of Cardiac Energetics, NHLBI, NIH Building 10, Room B1D-412, msc-1061, Bethesda, Maryland 20892-1061 (United States)

    2005-01-01

    Magnetic resonance (MR) and computed tomography coronary imaging is susceptible to artifacts caused by motion of the heart. The presence of rest periods during the cardiac and respiratory cycles suggests that images free of motion artifacts could be acquired. In this paper, we studied the rest period (RP) duration of the coronary arteries during a cardiac contraction and a tidal respiratory cycle. We also studied whether three MR motion correction methods could be used to increase the respiratory RP duration. Free breathing x-ray coronary angiograms were acquired in ten patients. The three-dimensional (3D) structure of the coronary arteries was reconstructed from a biplane acquisition using stereo reconstruction methods. The 3D motion of the arterial model was then recovered using an automatic motion tracking algorithm. The motion field was then decomposed into separate cardiac and respiratory components using a cardiac respiratory parametric model. For the proximal-to-middle segments of the right coronary artery (RCA), a cardiac RP (<1 mm 3D displacement) of 76{+-}34 ms was measured at end systole (ES), and 65{+-}42 ms in mid-diastole (MD). The cardiac RP was 80{+-}25 ms at ES and 112{+-}42 ms at MD for the proximal 5 cm of the left coronary tree. At end expiration, the respiratory RP (in percent of the respiratory period) was 26{+-}8% for the RCA and 27{+-}17% for the left coronary tree. Left coronary respiratory RP (<0.5 mm 3D displacement) increased with translation (32% of the respiratory period), rigid body (51%), and affine (79%) motion correction. The RCA respiratory RP using translational (27%) and rigid body (33%) motion correction were not statistically different from each other. Measurements of the cardiac and respiratory rest periods will improve our understanding of the temporal and spatial resolution constraints for coronary imaging.

  18. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect (OSTI)

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which could aid in individualizing therapy, particularly for patients at risk for liver injury after RT.

  19. Image-Based Monitoring of Magnetic Resonance-Guided Thermoablative Therapies for Liver Tumors

    SciTech Connect (OSTI)

    Rempp, Hansjoerg, E-mail: hansjoerg.rempp@med.uni-tuebingen.de; Clasen, Stephan [Eberhard Karls University of Tuebingen, Department of Diagnostic and Interventional Radiology (Germany); Pereira, Philippe L. [SLK-Kliniken, Clinic for Radiology, Nuclear Medicine, and Minimal Invasive Therapies (Germany)

    2012-12-15

    Minimally invasive treatment options for liver tumor therapy have been increasingly used during the last decade because their benefit has been proven for primary and inoperable secondary liver tumors. Among these, radiofrequency ablation has gained widespread consideration. Optimal image-guidance offers precise anatomical information, helps to position interventional devices, and allows for differentiation between already-treated and remaining tumor tissue. Patient safety and complete ablation of the entire tumor are the overriding objectives of tumor ablation. These may be achieved most elegantly with magnetic resonance (MR)-guided therapy, where monitoring can be performed based on precise soft-tissue imaging and additional components, such as diffusion-weighted imaging and temperature mapping. New MR scanner types and newly developed sequence techniques have enabled MR-guided intervention to move beyond the experimental phase. This article reviews the current role of MR imaging in guiding radiofrequency ablation. Signal characteristics of primary and secondary liver tumors are identified, and signal alteration during therapy is described. Diffusion-weighted imaging (DWI) and temperature mapping as special components of MR therapy monitoring are introduced. Practical information concerning coils, sequence selection, and parameters, as well as sequence gating, is given. In addition, sources of artifacts are identified and techniques to decrease them are introduced, and the characteristic signs of residual tumor in T1-, T2-, and DWI are described. We hope to enable the reader to choose MR sequences that allow optimal therapy monitoring depending on the initial signal characteristics of the tumor as well as its size and location in the liver.

  20. Identification of breast contour for nipple segmentation in breast magnetic resonance images

    SciTech Connect (OSTI)

    Gwo, Chih-Ying [Department of Information Management, Chien Hsin University of Science and Technology, Taoyuan 320, Taiwan (China)] [Department of Information Management, Chien Hsin University of Science and Technology, Taoyuan 320, Taiwan (China); Gwo, Allen [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712 (United States)] [Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712 (United States); Wei, Chia-Hung, E-mail: rogerwei@uch.edu.tw [Department of Information Management, Chien Hsin University of Science and Technology, Taoyuan 320, Taiwan and Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan (China)] [Department of Information Management, Chien Hsin University of Science and Technology, Taoyuan 320, Taiwan and Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan (China); Huang, Pai Jung [Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan and Comprehensive Breast Health Center, Taipei Medical University Hospital, Taipei 110, Taiwan (China)] [Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan and Comprehensive Breast Health Center, Taipei Medical University Hospital, Taipei 110, Taiwan (China)

    2014-02-15

    Purpose: The purpose of this study is to develop a method to simulate the breast contour and segment the nipple in breast magnetic resonance images. Methods: This study first identifies the chest wall and removes the chest part from the breast MR images. Subsequently, the cleavage and its motion artifacts are removed, distinguishing the separate breasts, where the edge points are sampled for curve fitting. Next, a region growing method is applied to find the potential nipple region. Finally, the potential nipple region above the simulated curve can be removed in order to retain the original smooth contour. Results: The simulation methods can achieve the least root mean square error (RMSE) for certain cases. The proposed YBnd and (Dmin+Dmax)/2 methods are significant due toP = 0.000. The breast contour curve detected by the two proposed methods is closer than that determined by the edge detection method. The (Dmin+Dmax)/2 method can achieve the lowest RMSE of 1.1029 on average, while the edge detection method results in the highest RMSE of 6.5655. This is only slighter better than the comparison methods, which implies that the performance of these methods depends upon the conditions of the cases themselves. Under this method, the maximal Dice coefficient is 0.881, and the centroid difference is 0.36 pixels. Conclusions: The contributions of this study are twofold. First, a method was proposed to identify and segment the nipple in breast MR images. Second, a curve-fitting method was used to simulate the breast contour, allowing the breast to retain its original smooth shape.

  1. Magnetic Resonance Imaging of Therapy-Induced Necrosis Using Gadolinium-Chelated Polyglutamic Acids

    SciTech Connect (OSTI)

    Jackson, Edward F.; Esparza-Coss, Emilio; Wen Xiaoxia; Ng, Chaan S.; Daniel, Sherita L.; Price, Roger E.; Rivera, Belinda; Charnsangavej, Chusilp; Gelovani, Juri G.; Li Chun . E-mail: cli@di.mdacc.tmc.edu

    2007-07-01

    Purpose: Necrosis is the most common morphologic alteration found in tumors and surrounding normal tissues after radiation therapy or chemotherapy. Accurate measurement of necrosis may provide an early indication of treatment efficacy or associated toxicity. The purpose of this report is to evaluate the selective accumulation of polymeric paramagnetic magnetic resonance (MR) contrast agents-gadolinium p-aminobenzyl-diethylenetriaminepentaacetic acid-poly(glutamic acid) (L-PG-DTPA-Gd and D-PG-DTPA-Gd)-in necrotic tissue. Methods and Materials: Two different solid tumor models, human Colo-205 xenograft and syngeneic murine OCA-1 ovarian tumors, were used in this study. Necrotic response was induced by treatment with poly(L-glutamic acid)-paclitaxel conjugate (PG-TXL). T{sub 1}-weighted spin-echo images were obtained immediately and up to 4 days after contrast injection and compared with corresponding histologic specimens. Two low-molecular-weight contrast agents, DTPA-Gd and oligomeric(L-glutamic acid)-DTPA-Gd, were used as nonspecific controls. Results: Initially, there was minimal tumor enhancement after injection of either L-PG-DTPA-Gd or D-PG-DTPA-Gd, but rapid enhancement after injection of low-molecular-weight agents. However, polymeric contrast agents, but not low-molecular-weight contrast agents, caused sustained enhancement in regions of tumor necrosis in both tumors treated with PG-TXL and untreated tumors. These data indicate that high molecular weight, rather than in vivo biodegradation, is necessary for the specific localization of polymeric MR contrast agents to necrotic tissue. Moreover, biotinylated L-PG-DTPA-Gd colocalized with macrophages in the tumor necrotic areas, suggesting that selective accumulation of L- and D-PG-DTPA-Gd in necrotic tissue was mediated through residing macrophages. Conclusions: Our data suggest that MR imaging with PG-DTPA-Gd may be a useful technique for noninvasive characterization of treatment-induced necrosis.

  2. Evaluation of Angiographic and Technical Aspects of Carotid Stenting with Diffusion-Weighted Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Blasel, Stella, E-mail: Stella.Blasel@kgu.de; Hattingen, Elke; Berkefeld, Joachim; Kurre, Wiebke [University of Frankfurt, Institute of Neuroradiology (Germany); Morawe, Gerald [University of Frankfurt, Department of Biomathematics (Germany); Zanella, Friedhelm; Rochemont, Richard Du Mesnil de [University of Frankfurt, Institute of Neuroradiology (Germany)

    2009-07-15

    The detection of clinically silent ischemic lesions on postprocedural diffusion-weighted magnetic resonance images has become a preferred method for the description of embolic risks. The purpose of this single-center study was to evaluate whether diffusion-weighted imaging (DWI) could determine material related or technical risk factors of filter-protected carotid stenting. Eighty-four patients with symptomatic severe ({>=}60%) carotid artery stenoses received filter-protected carotid stenting. Standard DWI (b = 1000) was performed within 48 h before and after carotid stenting. The occurrence and load of new postinterventional DWI lesions were assessed. Multivariate analysis was performed to determine risk factors associated with DWI lesions, with emphasis on technical factors such as use of different access devices (guiding catheter method vs. long carotid sheath method), type of stent (open-cell nitinol stent vs. closed-cell Wallstent), and protective device (filters with 80-{mu}m vs. 110-120-{mu}m pore size). Markers for generalized atherosclerosis and for degree and site of stenosis were assessed to allow comparison of adequate risk profiles. Access, protective device, and stent type were not significantly associated with new embolic DWI lesions when we compared patients with equivalent risk profiles (long carotid sheath method 48% [11 of 23] vs. guiding catheter method 44% [27 of 61], Wallstent 47% [15 of 32] vs. nitinol stent 44% [23 of 52], and small pore size filter 61% [11 of 18] vs. large pore size filter 41% [27 of 66]). Single-center DWI studies with a moderate number of cases are inadequate for proper assessment of the embolic risk of technical- or material-related risk factors in carotid stenting. Larger multicenter studies with more cases are needed.

  3. Multiplicative or t1 Noise in NMR Spectroscopy

    SciTech Connect (OSTI)

    Granwehr, Josef

    2005-01-25

    The signal in an NMR experiment is highly sensitive to fluctuations of the environment of the sample. If, for example, the static magnetic field B{sub 0}, the amplitude and phase of radio frequency (rf) pulses, or the resonant frequency of the detection circuit are not perfectly stable and reproducible, the magnetic moment of the spins is altered and becomes a noisy quantity itself. This kind of noise not only depends on the presence of a signal, it is in fact proportional to it. Since all the spins at a particular location in a sample experience the same environment at any given time, this noise primarily affects the reproducibility of an experiment, which is mainly of importance in the indirect dimensions of a multidimensional experiment, when intense lines are suppressed with a phase cycle, or for difference spectroscopy techniques. Equivalently, experiments which are known to be problematic with regard to their reproducibility, like flow experiments or experiments with a mobile target, tend to be affected stronger by multiplicative noise. In this article it is demonstrated how multiplicative noise can be identified and characterized using very simple, repetitive experiments. An error estimation approach is developed to give an intuitive, yet quantitative understanding of its properties. The consequences for multidimensional NMR experiments are outlined, implications for data analysis are shown, and strategies for the optimization of experiments are summarized.

  4. AB Proton NMR Analysis for 2,3dibromothiophene Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    AB Proton NMR Analysis for 2,3dibromothiophene Frank Rioux CSB|SJU The purpose proton nmr spectrum. The nuclear magnetic energy operator for the AB system is given below. ^ ^ ^ ^ ^A B

  5. Applications of Magnetic Resonance to Current Detection and Microscale Flow Imaging

    E-Print Network [OSTI]

    Halpern-Manners, Nicholas Wm

    2011-01-01

    and biomarker screening. Analytical Chemistry 78, 15 (2006),by remote detection. Analytical Chemistry 77, [96] Menon, R.resonance spectroscopy. Analytical Chemistry 79, 7 (2007),

  6. First test of the Siberian snake magnet arrangement to overcome depolarizing resonances in a circular accelerator

    SciTech Connect (OSTI)

    Krisch, A.D.; Mane, S.R.; Raymond, R.S.; Roser, T.; Stewart, J.A.; Terwilliger, K.M.; Vuaridel, B. (Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109 (US)); Goodwin, J.E.; Meyer, H.; Minty, M.G.; and others

    1989-09-11

    We studied the {ital G}{gamma}=2 imperfection depolarizing resonance at 108 MeV, both with and without a Siberian snake, by varying the resonance strength while storing beams of 104- and 120-MeV polarized protons at the Indiana University Cooler Ring. We used a cylindrically symmetric polarimeter to simultaneously study the effect of a depolarizing resonance on both the vertical and radial components of the polarization. AT 104 MeV we found that the Siberian snake eliminated the effect of the nearby {ital G}{gamma}=2 depolarizing resonance.

  7. Carbon-13 nuclear magnetic resonance studies of metabolism in Crithidia fasciculata 

    E-Print Network [OSTI]

    McCloskey, Diane Elizabeth

    1986-01-01

    Chairman of Advisory Committee: Dr. A. I. Scott Pathways of metabolism utilized by the mosquito parasite Crithidia fasciculara have been investigated using "C NMR spectroscopy. Analysis of the complex "C-"C coupling patterns derived from uniformly... enriched substrates resulted in the assignment of the TCA cycle as the major route for succinate production from glucose during aerobiosis. The glyoxylate cycle, not previously reported in C. fasci cur ara, was determined to be the primary metabolic...

  8. Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field

    SciTech Connect (OSTI)

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-07-15

    Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

  9. NMR bioreactor development for live in-situ microbial functional analysis

    SciTech Connect (OSTI)

    Majors, Paul D.; Mclean, Jeffrey S.; Scholten, Johannes C.

    2008-05-01

    A live in-situ metabolomics capability was developed for prokaryotic cultures under controlled-growth conditions. Toward this goal, a radiofrequency-transparent bioreactor was developed and integrated with a commercial wide-bore nuclear magnetic resonance (NMR) imaging spectrometer and a commercial bioreactor controller. Water suppressed 1H NMR spectroscopy was used to monitor glucose and fructose utilization and byproduct excretion by Eubacterium aggregans (an anaerobic bacterial species relevant for biofuels production) under controlled batch and continuous culture conditions. The resulting metabolite profiles (short chain organic acids and ethanol) and trends are consistent with existing knowledge of its metabolism. However, our study showed the Eubacterium aggregans produces lactate end product in significant concentrations – a result not previously reported. The advantages of live in-situ microbial metabolomics analysis and its complementariness with functional genomics / systems biology methods are discussed.

  10. Simulation of High-Resolution Magnetic Resonance Images on the IBM Blue Gene/L Supercomputer Using SIMRI

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baum, K. G.; Menezes, G.; Helguera, M.

    2011-01-01

    Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256 3 voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.

  11. Magnetic resonance as a structural probe of a uranium (VI) sol-gel process

    SciTech Connect (OSTI)

    King, C.M.; Thompson, M.C.; Buchanan, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); King, R.B. [Georgia Univ., Athens, GA (United States). Dept. of Chemistry; Garber, A.R. [South Carolina Univ., Columbia, SC (United States). Dept. of Chemistry

    1989-12-31

    NMR investigations on the ORNL process for sol-gel synthesis of microspherical nuclear fuel (UO{sub 2}), has been useful in sorting out the chemical mechanism in the sol-gel steps. {sup 13}C, {sup 15}N, and {sup 1}H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C{sub 6}H{sub l2}N{sub 4}) has revealed near quantitative stability of this adamantane-like compound in the sol-Gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. {sub 17}0 NMR of uranyl (UO{sub 2}{sup ++}) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, [(UO{sub 2}){sub 3}({mu}{sub 3}-O)({mu}{sub 2}-OH){sub 3}]{sup +}, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results show that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH{sup +} is occluded as an ``intercalation`` cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH{sub 4}){sub 2}[(UO{sub 2}){sub 8}O{sub 4}(OH){sub 10}] {center_dot} 8H{sub 2}0. This compound is the precursor to sintered U0{sub 2} ceramic fuel.

  12. Magnetic resonance as a structural probe of a uranium (VI) sol-gel process

    SciTech Connect (OSTI)

    King, C.M.; Thompson, M.C.; Buchanan, B.R. (Westinghouse Savannah River Co., Aiken, SC (United States)); King, R.B. (Georgia Univ., Athens, GA (United States). Dept. of Chemistry); Garber, A.R. (South Carolina Univ., Columbia, SC (United States). Dept. of Chemistry)

    1989-01-01

    NMR investigations on the ORNL process for sol-gel synthesis of microspherical nuclear fuel (UO{sub 2}), has been useful in sorting out the chemical mechanism in the sol-gel steps. {sup 13}C, {sup 15}N, and {sup 1}H NMR studies on the HMTA gelation agent (Hexamethylene tetramine, C{sub 6}H{sub l2}N{sub 4}) has revealed near quantitative stability of this adamantane-like compound in the sol-Gel process, contrary to its historical role as an ammonia source for gelation from the worldwide technical literature. {sub 17}0 NMR of uranyl (UO{sub 2}{sup ++}) hydrolysis fragments produced in colloidal sols has revealed the selective formation of a uranyl trimer, ((UO{sub 2}){sub 3}({mu}{sub 3}-O)({mu}{sub 2}-OH){sub 3}){sup +}, induced by basic hydrolysis with the HMTA gelation agent. Spectroscopic results show that trimer condensation occurs during sol-gel processing leading to layered polyanionic hydrous uranium oxides in which HMTAH{sup +} is occluded as an intercalation'' cation. Subsequent sol-gel processing of microspheres by ammonia washing results in in-situ ion exchange and formation of a layered hydrous ammonium uranate with a proposed structural formula of (NH{sub 4}){sub 2}((UO{sub 2}){sub 8}O{sub 4}(OH){sub 10}) {center dot} 8H{sub 2}0. This compound is the precursor to sintered U0{sub 2} ceramic fuel.

  13. The development of magnetic resonance imaging for the determination of porosity in reservoir core samples 

    E-Print Network [OSTI]

    Sherman, Byron Blake

    1991-01-01

    16 Calculated Pomsities and Experimental Errors: Trial 2 17 NMR Parameters for Trial 3 . . . 40 41 41 18 Observed Signal Intensities for Core KMS - TE=4: Trial 3 19 Observed Signal Intensities for Core AH8 ? TE=4; Trial 3 20 Observed Signal... Intensities for Core JCR2 - TE=4: Trial 3 . . . 42 . . . 43 Table 21 Observed Signal Intensities for Core AH5 - TE=4: Trial 3 22 Observed Signal Intensities for Glass Bead A: Trial 3 23 Observed Signal Intensities for Glass Bead B: Trial 3 24 Observed...

  14. One- and two-dimensional nuclear magnetic resonance spectroscopy with a diamond quantum sensor

    E-Print Network [OSTI]

    J. M. Boss; K. Chang; J. Armijo; K. Cujia; T. Rosskopf; J. R. Maze; C. L. Degen

    2015-12-10

    We report on Fourier spectroscopy experiments performed with near-surface nitrogen-vacancy centers in a diamond chip. By detecting the free precession of nuclear spins rather than applying a multipulse quantum sensing protocol, we are able to unambiguously identify the NMR species devoid of harmonics. We further show that by engineering different Hamiltonians during free precession, the hyperfine coupling parameters as well as the nuclear Larmor frequency can be selectively measured with high precision (here 5 digits). The protocols can be combined to demonstrate two-dimensional Fourier spectroscopy. The technique will be useful for mapping nuclear coordinates in molecules en route to imaging their atomic structure.

  15. Magnetic-dipolar-mode Fano resonances for microwave spectroscopy of high absorption matter

    E-Print Network [OSTI]

    Vaisman, G; Shavit, R

    2015-01-01

    Study of interaction between high absorption matter and microwave radiated energy is a subject of great importance. Especially, this concerns microwave spectroscopic characterization of biological liquids. Use of effective testing methods to obtain information about physical properties of different liquids on the molecular level is one of the most important problems in biophysics. However, the standard methods based on the microwave resonant techniques are not sufficiently suitable for biological liquids because the resonance peak in a resonator with high-loss liquids is so broad that the material parameters cannot be measured correctly. Although molecular vibrations of biomolecules may have microwave frequencies, it is not thought that such resonant coupling is significant due to their low energy compared with thermal energy and the strongly dampening aqueous environment. This paper presents an innovative microwave sensing technique for different types of lossy materials, including biological liquids. The te...

  16. Developing improved nuclear magnetic resonance marginal oscillator spectrometers for advanced teaching laboratories 

    E-Print Network [OSTI]

    Willingham, Frank Phillip

    1988-01-01

    about one. The longitudinal relaxation time, Ti In a liquid macroscopic sample of nuclear dipoles at thermal equilibrium there is no preferred orientatiou of the dipoles vrhen there is no externally applied magnetic field. As discussed earlier, when... coherent precession of the magnetization about the magnetic field and introducing a "dephasing" effect among the dipoles. This de- phasing of the transverse component of M combined with the longitudinal relaxs. tion described above has been shown...

  17. Improved evolution equations for magnetic island chains in toroidal pinch plasmas subject to externally applied resonant magnetic perturbations

    E-Print Network [OSTI]

    Rossi, Enrico

    confinement be- cause both heat and particles are able to travel radially from one side of an island chainImproved evolution equations for magnetic island chains in toroidal pinch plasmas subject Received 1 May 2001; accepted 30 July 2001 An improved set of island evolution equations is derived

  18. Application of nuclear magnetic resonance spectroscopy to the structure determination of the integral membrane proteins of the Mer operon

    E-Print Network [OSTI]

    Howell, Stanley Casimir

    2007-01-01

    solid-state NMR spectra of integral membrane proteinstruncated versions of the integral membrane protein Vpu frompreparation for helical integral membrane proteins. J Struct

  19. The study of skin permeation mechanism and terpene-skin lipid interaction via nuclear magnetic resonance

    E-Print Network [OSTI]

    Lim, P. F. C.; Liu, Xiang Yang; Huang, Meng; Ho, P. C. L.; Chan, S. Y.

    2006-10-27

    :1 (?) and 5:1(?). Enhancer:Lipid Molar Ratio 1:1 3:1 5:1 Enhancer Class log P a ? (ppm) ?? b (ppm) ? (ppm) ?? b (ppm) ? (ppm) ?? b (ppm) Linalool Alcohol 2.97 1.2566 0.0013 1.2566 0.0013 1.2591 0... (ketone); (e) menthol (alcohol). O OH(a) Fig 2. NMR spectra of (a) palmitic acid and (b) equimolar mixture of palmitic acid and limonene in CDCl3 with TMS. (a) (b) 1.2553 ppm 1.2566 ppm R2 = 0.4219 R2 = 0.2705 R2 = 0.7948 0 0.002 0.004 0.006 -1 0 1 2 3 4...

  20. Fast and contrast-enhanced phase-sensitive magnetic resonance imaging 

    E-Print Network [OSTI]

    Son, Jong Bum

    2009-05-15

    as the resonance frequency (w0) of interested protons, 11 00w= ?B [2.1] where ? is the gyromagnetic ratio of a proton. MRI is primarily dependant on signals from the hydrogen proton (? = 2??42.5759 radians / Tesla) due to its...

  1. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine

    E-Print Network [OSTI]

    Shapiro, Mikhail G.

    The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic ...

  2. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    E-Print Network [OSTI]

    Goodson, B.M.

    2010-01-01

    ized helium gas at such low fields. CONVENTIONAL DETECTION jDETECTION optical pumping. Following respiration of laser-polarized heliumand helium at low magnetic fields. 9.3. SQUID DETECTION OF

  3. Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth

    SciTech Connect (OSTI)

    Su, Zhijuan; Bennett, Steven; Hu, Bolin; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115, USA and The Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07

    U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ?8 kOe, and the saturation magnetization (4?M{sub s}) of ?3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0?n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s}?=?92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibited an FMR linewidth of ?200?Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.

  4. Design and Simulation of Coils for High Field Magnetic Resonance Imaging and Spectroscopy 

    E-Print Network [OSTI]

    Rispoli, Joseph V

    2015-06-05

    radiative losses and becomes increasingly compelling at higher fields (38). Adriany et al. characterized the performance of a variety of 7T surface coils with conventional shielding, reporting appreciable benefits over unshielded versions... Alternating current ACR American College of Radiology AP Anterior–posterior AWG American wire gauge B0 Static magnetic flux density B1 RF magnetic flux density B1 - Circularly-polarized receive B1 B1 + Circularly-polarized transmit B1 B2 Proton...

  5. Heat flux modeling using ion drift effects in DIII-D H-mode plasmas with resonant magnetic perturbations

    SciTech Connect (OSTI)

    Wingen, A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States) [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany); Schmitz, O. [Institut für Energie und Klimaforschung-Plasma Physik, Forschungszentrum Jülich, 52428 Jülich (Germany)] [Institut für Energie und Klimaforschung-Plasma Physik, Forschungszentrum Jülich, 52428 Jülich (Germany); Evans, T. E. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)] [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Spatschek, K. H. [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany)] [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf (Germany)

    2014-01-15

    The heat flux patterns measured in low-collisionality DIII-D H-mode plasmas strongly deviate from simultaneously measured CII emission patterns, used as indicator of particle flux, during applied resonant magnetic perturbations. While the CII emission clearly shows typical striations, which are similar to magnetic footprint patterns obtained from vacuum field line tracing, the heat flux is usually dominated by one large peak at the strike point position. The vacuum approximation, which only considers applied magnetic fields and neglects plasma response and plasma effects, cannot explain the shape of the observed heat flux pattern. One possible explanation is the effect of particle drifts. This is included in the field line equations and the results are discussed with reference to the measurement. Electrons and ions show different drift motions at thermal energy levels in a guiding center approximation. While electrons hardly deviate from the field lines, ions can drift several centimetres away from field line flux surfaces. A model is presented in which an ion heat flux, based on the ion drift motion from various kinetic energies as they contribute to a thermal Maxwellian distribution, is calculated. The simulated heat flux is directly compared to measurements with a varying edge safety factor q{sub 95}. This analysis provides evidence for the dominate effect of high-energy ions in carrying heat from the plasma inside the separatrix to the target. High-energy ions are deposited close to the unperturbed strike line, while low-energy ions can travel into the striated magnetic topology.

  6. Methods for Determination of Structure and Kinetics in the Study of Macromolecules Using Dissolution DNP NMR 

    E-Print Network [OSTI]

    Chen, Hsueh-Ying

    2015-05-07

    device for D-DNP spectroscopy using a flow NMR probe. b) Timing diagram of sample injection. c) NMR pulse sequence for [13C,1H]-HSQC Hadamard experiment utilizing 13C hyper- polarization... magnetic field (800 MHz) in real time7 by acquiring multi-dimensional NMR spectra. Two important keys are respon- sible for success of this experiment. First, NMR acquisition time for multi-dimensional spectra is greatly reduced by implementing fast pulsing...

  7. Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2

    SciTech Connect (OSTI)

    Lumsden, Mark D; Christianson, Andrew D; Parshall, Daniel; Stone, Matthew B; Nagler, Stephen E; Mook Jr, Herbert A; Lokshin, Konstantin A; Egami, Takeshi; Abernathy, Douglas L; Goremychkin, E. A.; Osborn, R.; McGuire, Michael A; Safa-Sefat, Athena; Jin, Rongying; Sales, Brian C; Mandrus, David

    2009-01-01

    Inelastic neutron scattering measurements on single crystals of superconducting BaFe1.84Co0.16As2 clearly reveal a magnetic excitation located at wavevectors (1/2 1/2 L) in tetragonal notation. The scattering is much broader in L than are spin waves observed in the parent compound BaFe2As2 indicating that the excitations in the superconducting material are more two-dimensional in nature. The excitation appears gapless for T > TC and becomes gapped on cooling below TC. The observed gap energy is approximately 9.6 meV corresponding to 5 kBTC which is remarkably similar to the canonical value for the resonance energy in the cuprates.

  8. Classification System for Identifying Women at Risk for Altered Partial Breast Irradiation Recommendations After Breast Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Kowalchik, Kristin V.; Vallow, Laura A.; McDonough, Michelle; Thomas, Colleen S.; Heckman, Michael G.; Peterson, Jennifer L.; Adkisson, Cameron D.; Serago, Christopher; McLaughlin, Sarah A.

    2013-09-01

    Purpose: To study the utility of preoperative breast MRI for partial breast irradiation (PBI) patient selection, using multivariable analysis of significant risk factors to create a classification rule. Methods and Materials: Between 2002 and 2009, 712 women with newly diagnosed breast cancer underwent preoperative bilateral breast MRI at Mayo Clinic Florida. Of this cohort, 566 were retrospectively deemed eligible for PBI according to the National Surgical Adjuvant Breast and Bowel Project Protocol B-39 inclusion criteria using physical examination, mammogram, and/or ultrasound. Magnetic resonance images were then reviewed to determine their impact on patient eligibility. The patient and tumor characteristics were evaluated to determine risk factors for altered PBI eligibility after MRI and to create a classification rule. Results: Of the 566 patients initially eligible for PBI, 141 (25%) were found ineligible because of pathologically proven MRI findings. Magnetic resonance imaging detected additional ipsilateral breast cancer in 118 (21%). Of these, 62 (11%) had more extensive disease than originally noted before MRI, and 64 (11%) had multicentric disease. Contralateral breast cancer was detected in 28 (5%). Four characteristics were found to be significantly associated with PBI ineligibility after MRI on multivariable analysis: premenopausal status (P=.021), detection by palpation (P<.001), first-degree relative with a history of breast cancer (P=.033), and lobular histology (P=.002). Risk factors were assigned a score of 0-2. The risk of altered PBI eligibility from MRI based on number of risk factors was 0:18%; 1:22%; 2:42%; 3:65%. Conclusions: Preoperative bilateral breast MRI altered the PBI recommendations for 25% of women. Women who may undergo PBI should be considered for breast MRI, especially those with lobular histology or with 2 or more of the following risk factors: premenopausal, detection by palpation, and first-degree relative with a history of breast cancer.

  9. Magnetic resonance investigation of Zn{sub 1?x}Fe{sub x}O properties influenced by annealing atmosphere

    SciTech Connect (OSTI)

    Raita, O.; Popa, A.; Toloman, D.; Stan, M.; Giurgiu, L. M.

    2013-11-13

    ZnO is an attractive system for a wide variety of practical applications, being a chemically stable oxide semiconductor. It has been shown that Fe doping produces ferromagnetic semiconductor at room temperature. This material, therefore, has the potential for use in spintronic devices such as spin transistors, spin light emitting diodes, very high density nonvolatile semiconductor memory and optical emitters. It is believed that oxygen vacancies and substitutional incorporation are important to produce ferromagnetism in semiconductor oxide doped with transition metal ions. The present paper reports detailed electron paramagnetic resonance investigations (EPR) of the samples in order to investigate how annealing atmosphere (Air and Argon) influenced the magnetic behavior of the samples. X-band electron paramagnetic resonance (EPR) studies of Fe{sup 3+} ions in Zn{sub 1?x}Fe{sub x}O powders with x = 1%, 3% is reported. These samples are interesting to investigate as Fe doping produce ferromagnetism in ZnO, making a promising ferromagnetic semiconductor at room temperature.

  10. Electron spin resonance and magnetic characterization of the Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}

    SciTech Connect (OSTI)

    Pires, M.J.M.; Carvalho, A. Magnus G.; Gama, S.; Silva, E.C. da; Coelho, A.A.; Mansanares, A.M. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Unicamp, Cx. P. 6165, 13083-970, Campinas, Sao Paulo (Brazil)

    2005-12-01

    Electron spin resonance was applied on samples of Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88}. The results are discussed under the scope of magnetization measurements, optical metallography, and wavelength dispersive spectroscopy. Polycrystalline arc-melted samples submitted to different heat treatments were investigated. The correlation of the electron spin resonance and magnetization results permitted a characterization of the present phases and their transitions. Two coexisting phases in the temperature range between two phase transitions have been identified and associated to distinct crystallographic phases. Additionally, the magnetic moment at high temperatures has been estimated from the measured effective g factor. A peak value of 21.5 J/kg K for the magnetocaloric effect was obtained for a sample heat treated at 1500 deg. C for 16 h.

  11. Isotropic proton-detected local-field nuclear magnetic resonancein solids

    SciTech Connect (OSTI)

    Havlin, Robert H.; Walls, Jamie D.; Pines, Alexander

    2004-08-04

    A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-detected local-field spectra for InS spin systems in powdered samples. The method, HETeronuclear Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling frequencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways. The theory behind HETIE is represented along with experimental studies conducted on a powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural determination in solid-state NMR are discussed.

  12. Distortion-free magnetic resonance imaging in the zero-field limit

    SciTech Connect (OSTI)

    Kelso, Nathan; Lee, Seung-Kyun; Bouchard, Louis-S.; Demas, Vasiliki; Muck, Michael; Pines, Alexander; Clarke, John

    2009-07-09

    MRI is a powerful technique for clinical diagnosis and materials characterization. Images are acquired in a homogeneous static magnetic field much higher than the fields generated across the field of view by the spatially encoding field gradients. Without such a high field, the concomitant components of the field gradient dictated by Maxwell's equations lead to severe distortions that make imaging impossible with conventional MRI encoding. In this paper, we present a distortion-free image of a phantom acquired with a fundamentally different methodology in which the applied static field approaches zero. Our technique involves encoding with pulses of uniform and gradient field, and acquiring the magnetic field signals with a SQUID. The method can be extended to weak ambient fields, potentially enabling imaging in the Earth's field without cancellation coils or shielding. Other potential applications include quantum information processing and fundamental studies of long-range ferromagnetic interactions.

  13. NMR logging apparatus

    DOE Patents [OSTI]

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  14. Measurement of laser heating in spin exchange optical pumping by NMR diffusion sensitization gradients

    SciTech Connect (OSTI)

    Parnell, Steven R.; Deppe, Martin H.; Ajraoui, Salma; Parra-Robles, Juan; Wild, Jim M.; Boag, Stephen

    2010-05-15

    This paper details pulsed gradient NMR measurements of the {sup 3}He diffusion coefficient in sealed cells during spin exchange optical pumping. The potential of ultra low field magnetic resonance imgaing (MRI) and NMR for noninvasive measurement of cell pressure is demonstrated. Diffusion sensitization gradients allow measurement of the {sup 3}He diffusion coefficient from which the pressure and/or temperature of the gas can be determined during optical pumping. The pressure measurements were compared with neutron time of flight transmission measurements. Good agreement was observed between the temperature/pressure measurements and predictions based on Chapman-Enskog theory. The technique had sufficient sensitivity to observe the diffusion coefficient increasing with temperature in a sealed cell. With this method, evidence for laser heating of the {sup 3}He during optical pumping was found. The results show that NMR diffusion measurements allow noninvasive measurement of the cell temperature and/or pressure in an optical pumping setup. The method can be expanded using MRI to probe the spatial distribution of the diffusion coefficient. These techniques can be applied to the further investigation of polarization limiting effects such as laser heating.

  15. Asynchronous symmetry-based sequences for homonuclear dipolar recoupling in solid-state nuclear magnetic resonance

    SciTech Connect (OSTI)

    Tan, Kong Ooi; Ernst, Matthias E-mail: maer@ethz.ch; Rajeswari, M.; Madhu, P. K. E-mail: maer@ethz.ch

    2015-02-14

    We show a theoretical framework, based on triple-mode Floquet theory, to analyze recoupling sequences derived from symmetry-based pulse sequences, which have a non-vanishing effective field and are not rotor synchronized. We analyze the properties of one such sequence, a homonuclear double-quantum recoupling sequence derived from the C7{sub 2}{sup 1} sequence. The new asynchronous sequence outperforms the rotor-synchronized version for spin pairs with small dipolar couplings in the presence of large chemical-shift anisotropy. The resonance condition of the new sequence is analyzed using triple-mode Floquet theory. Analytical calculations of second-order effective Hamiltonian are performed to compare the efficiency in suppressing second-order cross terms. Experiments and numerical simulations are shown to corroborate the results of the theoretical analysis.

  16. Stress Analysis of a High Temperature Superconductor Coil Wound With Bi-2223/Ag Tapes for High Field HTS/LTS NMR Magnet Application

    E-Print Network [OSTI]

    Kiyoshi, Tsukasa

    The electromagnetic stress distribution inside a HTS insert is one of the key issues for construction of a high field high/low temperature superconductor (HTS/LTS) magnet. The rmiddotJmiddotB formulae is widely used for ...

  17. Large-Scale Magnetic Field Re-generation by Resonant MHD Wave Interactions

    E-Print Network [OSTI]

    S. Galtier; S. Nazarenko

    2007-10-24

    We investigate numerically the long-time behavior of balanced Alfven wave turbulence forced at intermediate scales. Whereas the usual constant-flux solution is found at the smallest scales, two new scalings are obtained at the forcing scales and at the largest scales of the system. In the latter case we show, in particular, that the spectrum evolves first to a state determined by Loitsyansky invariant and later a state close to the thermodynamic equipartition solution predicted by wave turbulence. The astrophysical implications for galactic magnetic field generation are discussed.

  18. X-ray resonant magnetic scattering and x-ray magnetic circular dichroism branching ratios, L[subscript 3] / L[subscript 2], for heavy rare earths

    SciTech Connect (OSTI)

    Lee, Yongbin; Kim, Jong-Woo; Goldman, Alan I.; Harmon, Bruce N. (Iowa State)

    2010-07-19

    In this study we have used first principles electronic structure methods to investigate the detailed contributions to the L{sub 3}/L{sub 2} branching ratio in the heavy rare earth elements. The calculations use the full potential, relativistic, linear augmented plane wave method with the LSDA+U approach for consideration of the local 4f electronic orbitals. With no spin orbit coupling (SOC) in the conducting bands, and with the same radial function for the 2p{sub 3/2} and 2p{sub 1/2} core states, the branching ratio (BR) is exactly 1:-1 for the x-ray magnetic circular dichroism spectra of the ferromagnetic heavy rare earth metals. However, with full SOC the BR ranges from 1.5 to 6.0 in going from Gd to Er. The energy and spin dependence of the 5d radial functions are important. The results point to problems with modified atomic models which have been proposed to explain the BR. Recent x-ray resonant magentic scattering experiments on (Gd,Tb,Dy,Ho,Er,Tm)Ni{sub 2}Ge{sub 2} are discussed.

  19. Minimally Invasive Magnetic Resonance Imaging-Guided Free-Hand Aspiration of Symptomatic Nerve Route Compressing Lumbosacral Cysts Using a 1.0-Tesla Open Magnetic Resonance Imaging System

    SciTech Connect (OSTI)

    Bucourt, Maximilian de, E-mail: mdb@charite.de; Streitparth, Florian, E-mail: florian.streitparth@charite.de; Collettini, Federico [Charite-University Medicine, Department of Radiology (Germany); Guettler, Felix [Jena University, Department of Radiology (Germany); Rathke, Hendrik; Lorenz, Britta; Rump, Jens; Hamm, Bernd [Charite-University Medicine, Department of Radiology (Germany); Teichgraeber, U. K. [Jena University, Department of Radiology (Germany)

    2012-02-15

    Purpose: To evaluate the feasibility of minimally invasive magnetic resonance imaging (MRI)-guided free-hand aspiration of symptomatic nerve route compressing lumbosacral cysts in a 1.0-Tesla (T) open MRI system using a tailored interactive sequence. Materials and Methods: Eleven patients with MRI-evident symptomatic cysts in the lumbosacral region and possible nerve route compressing character were referred to a 1.0-T open MRI system. For MRI interventional cyst aspiration, an interactive sequence was used, allowing for near real-time position validation of the needle in any desired three-dimensional plane. Results: Seven of 11 cysts in the lumbosacral region were successfully aspirated (average 10.1 mm [SD {+-} 1.9]). After successful cyst aspiration, each patient reported speedy relief of initial symptoms. Average cyst size was 9.6 mm ({+-}2.6 mm). Four cysts (8.8 {+-} 3.8 mm) could not be aspirated. Conclusion: Open MRI systems with tailored interactive sequences have great potential for cyst aspiration in the lumbosacral region. The authors perceive major advantages of the MR-guided cyst aspiration in its minimally invasive character compared to direct and open surgical options along with consecutive less trauma, less stress, and also less side-effects for the patient.

  20. Pellet fuelling of plasmas with ELM mitigation by resonant magnetic perturbations in MAST

    E-Print Network [OSTI]

    Valovic, M; Garzotti, L; Gurl, C; Kirk, A; Naylor, G; Patel, A; Scannell, R; Thornton, A J

    2013-01-01

    Shallow fuelling pellets are injected from the high field side into plasmas in which ELMs have been mitigated using external magnetic perturbation coils. The data are compared with ideal assumptions in the ITER fuelling model, namely that mitigated ELMs are not affected by fuelling pellets. Firstly it is shown that during the pellet evaporation an ELM is triggered, during which the amount particle loss could be larger (factor ~1.5) than the particle loss during an ELM which was not induced by pellet. Secondly, a favourable example is shown in which post-pellet particle losses due to mitigated ELMs are similar to the non-pellet case, however unfavourable counter-examples also exist.

  1. Comparison among Magnus/Floquet/Fer expansion schemes in solid-state NMR

    SciTech Connect (OSTI)

    Takegoshi, K. Miyazawa, Norihiro; Sharma, Kshama; Madhu, P. K.

    2015-04-07

    We here revisit expansion schemes used in nuclear magnetic resonance (NMR) for the calculation of effective Hamiltonians and propagators, namely, Magnus, Floquet, and Fer expansions. While all the expansion schemes are powerful methods there are subtle differences among them. To understand the differences, we performed explicit calculation for heteronuclear dipolar decoupling, cross-polarization, and rotary-resonance experiments in solid-state NMR. As the propagator from the Fer expansion takes the form of a product of sub-propagators, it enables us to appreciate effects of time-evolution under Hamiltonians with different orders separately. While 0th-order average Hamiltonian is the same for the three expansion schemes with the three cases examined, there is a case that the 2nd-order term for the Magnus/Floquet expansion is different from that obtained with the Fer expansion. The difference arises due to the separation of the 0th-order term in the Fer expansion. The separation enables us to appreciate time-evolution under the 0th-order average Hamiltonian, however, for that purpose, we use a so-called left-running Fer expansion. Comparison between the left-running Fer expansion and the Magnus expansion indicates that the sign of the odd orders in Magnus may better be reversed if one would like to consider its effect in order.

  2. Magnetic resonance visualization of conductive structures by sequence-triggered direct currents and spin-echo phase imaging

    SciTech Connect (OSTI)

    Eibofner, Frank; Wojtczyk, Hanne; Graf, Hansjörg E-mail: drGraf@t-online.de; Clasen, Stephan

    2014-06-15

    Purpose: Instrument visualization in interventional magnetic resonance imaging (MRI) is commonly performed via susceptibility artifacts. Unfortunately, this approach suffers from limited conspicuity in inhomogeneous tissue and disturbed spatial encoding. Also, susceptibility artifacts are controllable only by sequence parameters. This work presents the basics of a new visualization method overcoming such problems by applying sequence-triggered direct current (DC) pulses in spin-echo (SE) imaging. SE phase images allow for background free current path localization. Methods: Application of a sequence-triggered DC pulse in SE imaging, e.g., during a time period between radiofrequency excitation and refocusing, results in transient field inhomogeneities. Dependent on the additional z-magnetic field from the DC, a phase offset results despite the refocusing pulse. False spatial encoding is avoided by DC application during periods when read-out or slice-encoding gradients are inactive. A water phantom containing a brass conductor (water equivalent susceptibility) and a titanium needle (serving as susceptibility source) was used to demonstrate the feasibility. Artifact dependence on current strength and orientation was examined. Results: Without DC, the brass conductor was only visible due to its water displacement. The titanium needle showed typical susceptibility artifacts. Applying triggered DC pulses, the phase offset of spins near the conductor appeared. Because SE phase images are homogenous also in regions of persistent field inhomogeneities, the position of the conductor could be determined with high reliability. Artifact characteristic could be easily controlled by amperage leaving sequence parameters unchanged. For an angle of 30° between current and static field visualization was still possible. Conclusions: SE phase images display the position of a conductor carrying pulsed DC free from artifacts caused by persistent field inhomogeneities. Magnitude and phase images are acquired simultaneously under the same conditions without the use of extra measurement time. The presented technique offers many advantages for precise instrument localization in interventional MRI.

  3. Development of a System for Rapid Detection of Contaminants in Water Supplies Using Magnetic Resonance and Nanoparticles

    SciTech Connect (OSTI)

    Lowery, Thomas J; Neely, Lori; Chepin, James; Wellman, Parris; Toso, Ken; Murray, Paul; Audeh, Mark; Demas, Vasiliki; Palazzolo, Robert; Min, Michael; Phung, Nu; Blanco, Matt; Raphel, Jordan; O'Neil, Troy

    2010-09-14

    To keep the water supply safe and to ensure a swift and accurate response to a water supply contamination event, rapid and robust methods for microbial testing are necessary. Current technologies are complex, lengthy and costly and there is a need for rapid, reliable, and precise approaches that can readily address this fundamental security and safety issue. T2 Biosystems is focused on providing solutions to this problem by making breakthroughs in nanotechnology and biosensor techniques that address the current technical restrictions facing rapid, molecular analysis in complex samples. In order to apply the T2 Biosystems nucleic acid detection procedure to the analysis of nucleic acid targets in unprocessed water samples, Bacillus thuringeinsis was selected as a model organism and local river water was selected as the sample matrix. The initial assay reagent formulation was conceived with a manual magnetic resonance reader, was optimized using a high throughput system, and transferred back to the MR reader for potential field use. The final assay employing the designed and manufactured instruments was capable of detecting 10 CFU/mL of B. thuringiensis directly within the environmental water sample within 90 minutes. Further, discrimination of two closely related species of Bacilli was accomplished using the methods of this project; greater than 3-fold discrimination between B. cereus and B. thuringiensis at a concentrations spanning 10 CFU/mL to 10{sup 5} CFU/mL was observed.

  4. 1,2-Hydroxypyridonates as Contrast Agents for Magnetic ResonanceImaging: TREN-1,2-HOPO

    SciTech Connect (OSTI)

    Jocher, Christoph J.; Moore, Evan G.; Xu, Jide; Avedano, Stefano; Botta, Mauro; Aime, Silvio; Raymond, Kenneth N.

    2007-05-08

    1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for Magnetic Resonance Imaging (MRI). X-ray diffraction of single crystals established that the solid state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 5452] Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence allow direct measurement of the number if water molecules in the metal complex. Fluorescence measurements of the Eu(III) complex corroborate that in solution two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescence measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (K{sub A} = 82.7 {+-} 6.5 M{sup -1}). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2); pZn = 15.2 (2), pCa = 8.8 (3)].

  5. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    SciTech Connect (OSTI)

    Zhu, Changlian [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden) [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Gao, Jianfeng [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden) [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Department of Physiology, Henan Traditional Medical University (China); Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden) [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University (China); Kuhn, Hans-Georg [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden)] [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Blomgren, Klas, E-mail: klas.blomgren@neuro.gu.se [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden) [Center for Brain Repair and Rehabilitation, University of Gothenburg (Sweden); Department of Pediatric Oncology, The Queen Silvia Children's Hospital, Gothenburg (Sweden)

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  6. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, III, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; et al

    2014-10-29

    A combined experimental-theoretical study of optically pumped NMR (OPNMR) has been performed in a GaAs/Al0.1Ga0.9As quantum well film with thermally induced biaxial strain. The photon energy dependence of the Ga-71 OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from differential absorption to spin-up and spin-down states of the conduction band using a modified Pidgeon Brown model. Reasonable agreement between theory and experiment is obtained, facilitating assignment of features in the OPNMR energy dependence to specific interband transitions. Despite the approximationsmore »made in the quantum-mechanical model and the inexact correspondence between the experimental and calculated observables, the results provide insight into how effects of strain and quantum confinement are manifested in OPNMR signals« less

  7. Velocity and concentration studies of flowing suspensions by nuclear magnetic resonance imaging. Technical progress report, April--June 1996

    SciTech Connect (OSTI)

    1997-05-01

    Our search for a suitable combination of imageable particles in a carrier liquid which will not dissolve the particles has led us to try pharmaceutical particles in silicon oil. This combination doses not seem to last long enough for adequate NMR measurements. Results are discussed.

  8. Advances in the Understanding of ELM Suppression by Resonant Magnetic Perturbations (RMPs) in DIII-D and Implications for ITER

    SciTech Connect (OSTI)

    Nazikian, R.

    2014-09-01

    Experiments on DIII-D have expanding the operating window for RMP ELM suppression to higher q95 with dominant electron heating and fully non-inductive current drive relevant to advanced modes of ITER operation. Robust ELM suppression has also been obtained with a reduced coil set, mitigating the risk of coil failure in maintaining ELM suppression in ITER. These results significantly expand the operating space and reduce risk for obtaining RMP ELM suppression in ITER. Efforts have also been made to search for 3D cause of ELM suppression. No internal non-axisymmetric structure is detected at the top of the pedestal, indicating that the dominant effect of the RMP is to produce an n=0 transport modification of the profiles. Linear two fluid MHD simulations using M3D-C1 indicate resonant field penetration and significant magnetic stochasticity at the top of the pedestal, consistent with the absence of detectable 3D structure in that region. A profile database was developed to compare the scaling of the pedestal and global confinement with the applied 3D field strength in ELM suppressed and ELM mitigated plasmas. The EPED pedestal model accurately predicts the measured pedestal pressure at the threshold of ELM suppression, increasing confidence in theoretical projections to ITER pedestal conditions. Both the H-factor (H(sub)98y2) and thermal energy confinement time do not degrade substantially with applied RMP fields near the threshold of ELM suppression, enhancing confidence in the compatibility of ITER high performance operation with RMP ELM suppression.

  9. A Signal-Inducing Bone Cement for Magnetic Resonance Imaging-Guided Spinal Surgery Based on Hydroxyapatite and Polymethylmethacrylate

    SciTech Connect (OSTI)

    Wichlas, Florian, E-mail: florian.wichlas@charite.de; Seebauer, Christian J.; Schilling, Rene [University Charite, Center for Musculoskeletal Surgery (Germany); Rump, Jens [University Charite, Department of Radiology (Germany); Chopra, Sascha S. [University Charite, Center for Musculoskeletal Surgery (Germany); Walter, Thula; Teichgraeber, Ulf K. M. [University Charite, Department of Radiology (Germany); Bail, Hermann J. [University Charite, Center for Musculoskeletal Surgery (Germany)

    2012-06-15

    The aim of this study was to develop a signal-inducing bone cement for magnetic resonance imaging (MRI)-guided cementoplasty of the spine. This MRI cement would allow precise and controlled injection of cement into pathologic lesions of the bone. We mixed conventional polymethylmethacrylate bone cement (PMMA; 5 ml methylmethacrylate and 12 g polymethylmethacrylate) with hydroxyapatite (HA) bone substitute (2-4 ml) and a gadolinium-based contrast agent (CA; 0-60 {mu}l). The contrast-to-noise ratio (CNR) of different CA doses was measured in an open 1.0-Tesla scanner for fast T1W Turbo-Spin-Echo (TSE) and T1W TSE pulse sequences to determine the highest signal. We simulated MRI-guided cementoplasty in cadaveric spines. Compressive strength of the cements was tested. The highest CNR was (1) 87.3 (SD 2.9) in fast T1W TSE for cements with 4 {mu}l CA/ml HA (4 ml) and (2) 60.8 (SD 2.4) in T1W TSE for cements with 1 {mu}l CA/ml HA (4 ml). MRI-guided cementoplasty in cadaveric spine was feasible. Compressive strength decreased with increasing amounts of HA from 46.7 MPa (2 ml HA) to 28.0 MPa (4 ml HA). An MRI-compatible cement based on PMMA, HA, and CA is feasible and clearly visible on MRI images. MRI-guided spinal cementoplasty using this cement would permit direct visualization of the cement, the pathologic process, and the anatomical surroundings.

  10. Direct Numerical Simulation of Pore-Scale Flow in a Bead Pack: Comparison with Magnetic Resonance Imaging Observations

    SciTech Connect (OSTI)

    Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; Mckinley, Matthew I.

    2013-04-01

    A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental error in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods.

  11. Nuclear spin noise in NMR revisited

    E-Print Network [OSTI]

    Ferrand, Guillaume; Luong, Michel; Desvaux, Hervé

    2015-01-01

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite, preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparison to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the Spin-Noise and Frequency-Shift Tuning Optima.

  12. X-ray resonant magnetic scattering investigations of hexagonal multiferroics RMnO3 (R = Dy, Ho, Er)

    SciTech Connect (OSTI)

    Nandi, Shibabrata

    2009-12-19

    Electricity and magnetism were unified into a common subject by James Clerk Maxwell in the nineteenth century yielding the electromagnetic theory. Four equations govern the dynamics of electric charges and magnetic fields, commonly known as Maxwell's equations. Maxwell's equations demonstrate that an accelerated charged particle can produce magnetic fields and a time varying magnetic field can induce a voltage - thereby linking the two phenomena. However, in solids, electric and magnetic ordering are most often considered separately and usually with good reason: the electric charges of electrons and ions are responsible for the charge effects, whereas the electron spin governs magnetic properties.

  13. Low Temperature Solid-State NMR Spectroscopy. A Strategy for the Direct Observation of Quadrupolar Nuclides of Biological Interest.

    SciTech Connect (OSTI)

    Ellis, Paul D.; Lipton, Andrew S.

    2007-01-01

    This review presents a self-contained summary of the experimental methods necessary to perform a low temperature solid-state NMR experiment. Specific references are made for Zn²? and Mg²?. However, this is not a comprehensive review of the NMR literature of these nuclides. As the review is concerned with solid-state NMR spectroscopy of quadrupolar nuclides, we limit the discussions to odd-half-integral spin systems, i.e. 3/2, 5/2, 7/2, and 9/2 spins. The reason for the limitation is due to the “relative ease” of observing the central transition, which is common to all of these nuclides. The review is divided into two major sections; the first dealing with experimental methods, e.g. use of low temperature, magnetization transfer, spin echo methods, and questions dealing with nonspecific binding. Following those discussions we turn to the introduction of structure into the experiment, i.e. the use triple resonance experiments to selectively introduce dipolar interactions and the use of molecular theory.

  14. A compact high-performance low-field NMR apparatus for measurements on fluids at very high pressures and temperatures

    SciTech Connect (OSTI)

    Freedman, R.; Anand, V. Ganesan, K.; Tabrizi, P.; Torres, R.; Grant, B.; Catina, D.; Ryan, D.; Borman, C.; Krueckl, C.

    2014-02-15

    We discuss an innovative new high-performance apparatus for performing low-field Nuclear Magnetic Resonance (NMR) relaxation times and diffusion measurements on fluids at very high pressures and high temperatures. The apparatus sensor design and electronics specifications allow for dual deployment either in a fluid sampling well logging tool or in a laboratory. The sensor and electronics were designed to function in both environments. This paper discusses the use of the apparatus in a laboratory environment. The operating temperature and pressure limits, and the signal-to-noise ratio (SNR) of the new system exceed by a very wide margin what is currently possible. This major breakthrough was made possible by a revolutionary new sensor design that breaks many of the rules of conventional high pressure NMR sensor design. A metallic sample holder capable of operating at high pressures and temperatures is provided to contain the fluid under study. The sample holder has been successfully tested for operation up to 36 Kpsi. A solenoid coil wound on a slotted titanium frame sits inside the metallic sample holder and serves as an antenna to transmit RF pulses and receive NMR signals. The metal sample holder is sandwiched between a pair of gradient coils which provide a linear field gradient for pulsed field gradient diffusion measurements. The assembly sits in the bore of a low-gradient permanent magnet. The system can operate over a wide frequency range without the need for tuning the antenna to the Larmor frequency. The SNR measured on a water sample at room temperature is more than 15 times greater than that of the commercial low-field system in our laboratory. Thus, the new system provides for data acquisition more than 200 times faster than was previously possible. Laboratory NMR measurements of relaxations times and diffusion coefficients performed at pressures up to 25 Kpsi and at temperatures up to 175?°C with crude oils enlivened with dissolved hydrocarbon gases (referred to as “live oils”) are shown. This is the first time low-field NMR measurements have been performed at such high temperatures and pressures on live crude oil samples. We discuss the details of the apparatus design, tuning, calibration, and operation. NMR data acquired at multiple temperatures and pressures on a live oil sample are discussed.

  15. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  16. A Prospective Study of the Utility of Magnetic Resonance Imaging in Determining Candidacy for Partial Breast Irradiation

    SciTech Connect (OSTI)

    Dorn, Paige L.; Al-Hallaq, Hania A.; Haq, Farah; Goldberg, Mira; Abe, Hiroyuki; Hasan, Yasmin; Chmura, Steven J.

    2013-03-01

    Purpose: Retrospective data have demonstrated that breast magnetic resonance imaging (MRI) may change a patient's eligibility for partial breast irradiation (PBI) by identifying multicentric, multifocal, or contralateral disease. The objective of the current study was to prospectively determine the frequency with which MRI identifies occult disease and to establish clinical factors associated with a higher likelihood of MRI prompting changes in PBI eligibility. Methods and Materials: At The University of Chicago, women with breast cancer uniformly undergo MRI in addition to mammography and ultrasonography. From June 2009 through May 2011, all patients were screened prospectively in a multidisciplinary conference for PBI eligibility based on standard imaging, and the impact of MRI on PBI eligibility according to National Surgical Adjuvant Breast and Bowel Project protocol B-39/Radiation Therapy Oncology Group protocol 0413 entry criteria was recorded. Univariable analysis was performed using clinical characteristics in both the prospective cohort and in a separate cohort of retrospectively identified patients. Pooled analysis was used to derive a scoring index predictive of the risk that MRI would identify additional disease. Results: A total of 521 patients were screened for PBI eligibility, and 124 (23.8%) patients were deemed eligible for PBI based on standard imaging. MRI findings changed PBI eligibility in 12.9% of patients. In the pooled univariable analysis, tumor size ?2 cm on mammography or ultrasonography (P=.02), age <50 years (P=.01), invasive lobular histology (P=.01), and HER-2/neu amplification (P=.01) were associated with a higher likelihood of MRI changing PBI eligibility. A predictive score was generated by summing the number of significant risk factors. Patients with a score of 0, 1, 2, and 3 had changes to eligibility based on MRI findings in 2.8%, 13.2%, 38.1%, and 100%, respectively (P<.0001). Conclusions: MRI identified additional disease in a significant number of patients eligible for PBI, based on standard imaging. Clinical characteristics may be useful in directing implementation of MRI in the staging of PBI candidates.

  17. Sensitive Magnetic Control of Ensemble Nuclear Spin Hyperpolarisation in Diamond

    E-Print Network [OSTI]

    Wang, Hai-Jing; Avalos, Claudia E; Seltzer, Scott J; Budker, Dmitry; Pines, Alexander; Bajaj, Vikram S

    2012-01-01

    Dynamic nuclear polarisation, which transfers the spin polarisation of electrons to nuclei, is routinely applied to enhance the sensitivity of nuclear magnetic resonance; it is also critical in spintronics, particularly when spin hyperpolarisation can be produced and controlled optically or electrically. Here we show the complete polarisation of nuclei located near the optically-polarised nitrogen-vacancy (NV) centre in diamond. When approaching the ground-state level anti-crossing condition of the NV electron spins, 13C nuclei in the first-shell are polarised in a pattern that depends sensitively and sharply upon the magnetic field. Based on the anisotropy of the hyperfine coupling and of the optical polarisation mechanism, we predict and observe a complete reversal of the nuclear spin polarisation with a few-mT change in the magnetic field. The demonstrated sensitive magnetic control of nuclear polarisation at room temperature will be useful for sensitivity-enhanced NMR, nuclear-based spintronics, and quant...

  18. Structural and magnetic phase transitions near optimal superconductivity in BaFe2(As1-xPx)2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Ding; Lu, Xingye; Zhang, Wenliang; Luo, Huiqian; Li, Shiliang; Wang, Peipei; Chen, Genfu; Han, Fei; Banjara, Shree R.; Sapkota, A.; et al

    2015-04-17

    We use nuclear magnetic resonance (NMR), high-resolution x-ray and neutron scattering to study structural and magnetic phase transitions in phosphorus-doped BaFe2(As1-xPx)2. Thus, previous transport, NMR, specific heat, and magnetic penetration depth measurements have provided compelling evidence for the presence of a quantum critical point (QCP) near optimal superconductivity at x = 0.3. However, we show that the tetragonal-to-orthorhombic structural (Ts) and paramagnetic to antiferromagnetic (AF, TN ) transitions in BaFe2(As1-xPx)2 are always coupled and approach to TN ? Ts ? Tc (? 29 K) for x = 0.29 before vanishing abruptly for x ? 0.3. These results suggest that AFmore »order in BaFe2(As1-xPx)2 disappears in a weakly first order fashion near optimal superconductivity, much like the electron-doped iron pnictides with an avoided QCP.« less

  19. Enhanced production of electron cyclotron resonance plasma by exciting selective microwave mode on a large-bore electron cyclotron resonance ion source with permanent magnet

    SciTech Connect (OSTI)

    Kimura, Daiju, E-mail: kimura@nf.eie.eng.osaka-u.ac.jp; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Imai, Youta; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)] [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2014-02-15

    We are constructing a tandem type ECRIS. The first stage is large-bore with cylindrically comb-shaped magnet. We optimize the ion beam current and ion saturation current by a mobile plate tuner. They change by the position of the plate tuner for 2.45 GHz, 11–13 GHz, and multi-frequencies. The peak positions of them are close to the position where the microwave mode forms standing wave between the plate tuner and the extractor. The absorbed powers are estimated for each mode. We show a new guiding principle, which the number of efficient microwave mode should be selected to fit to that of multipole of the comb-shaped magnets. We obtained the excitation of the selective modes using new mobile plate tuner to enhance ECR efficiency.

  20. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 23, DECEMBER 1, 2008 1905 A Magnetically Actuated Resonant Mass Sensor With

    E-Print Network [OSTI]

    Alaca, B. Erdem

    of the resonating structure and the diffraction grating by electroplating of Ni, which also brings about motion. The typical surface roughness associated with the electroplating of Ni as the moving reflector

  1. Methane storage in nanoporous media as observed via high field NMR relaxometry

    E-Print Network [OSTI]

    Papaioannou, Antonios

    2015-01-01

    The storage properties of methane gas in Vycor porous glass (5.7 nm) are characterized in a wide pressure range from 0.7 MPa-89.7 MPa using Nuclear Magnetic Resonance (NMR). We demonstrate the capability of high field NMR relaxometry for the determination of the methane gas storage capacity and the measurement of the Hydrogen Index, to a high degree of accuracy. This helps determine the excess gas in the pore space which can be identified to exhibit Langmuir properties in the low pressure regime of 0.7 MPa to 39.6 Mpa. The Langmuir model enables us to determine the equilibrium density of the monolayer of adsorbed gas to be 8.5% lower than that of liquid methane. We also identify the signatures of multilayer adsorption at the high pressure regime from 39.6 Mpa to 89.7 Mpa and use the Brunauer-Emmet-Teller (BET) theory to determine the number of adsorbed layers of methane gas. We show how these measurements help us differentiate the gas stored in the Vycor pore space into free and adsorbed fractions for the ent...

  2. MRI Magnet Design: Search Space Analysis, EDAs and a Real-World Problem with Significant Dependencies

    E-Print Network [OSTI]

    Gallagher, Marcus

    of superconductive magnet configurations in Magnetic Resonance Imaging (MRI) systems as a challenging real

  3. Remote NMR/MRI detection of laser polarized gases

    DOE Patents [OSTI]

    Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef

    2006-06-13

    An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.

  4. Final Report: Characterization of Hydrogen Adsorption in Carbon-Based Materials by NMR

    SciTech Connect (OSTI)

    Wu, Yue; Kleinhammes, Alfred

    2011-07-11

    In support of DOE/EERE's Fuel Cell Technologies Program Hydrogen Sorption Center of Excellence (HSCoE), UNC conducted Nuclear Magnetic Resonance (NMR) measurements that contributed spectroscopic information as well as quantitative analysis of adsorption processes. While NMR based Langmuir isotherms produce reliable H2 capacity measurements, the most astute contribution to the center is provided by information on dihydrogen adsorption on the scale of nanometers, including the molecular dynamics of hydrogen in micropores, and the diffusion of dihydrogen between macro and micro pores. A new method to assess the pore width using H2 as probe of the pore geometry was developed and is based on the variation of the observed chemical shift of adsorbed dihydrogen as function of H2 pressure. Adsorbents designed and synthesized by the Center were assessed for their H2 capacity, the binding energy of the adsorption site, their pore structure and their ability to release H2. Feedback to the materials groups was provided to improve the materials’ properties. To enable in situ NMR measurements as a function of H2 pressure and temperature, a unique, specialized NMR system was designed and built. Pressure can be varied between 10-4 and 107 Pa while the temperature can be controlled between 77K and room temperature. In addition to the 1H investigation of the H2 adsorption process, NMR was implemented to measure the atomic content of substituted elements, e.g. boron in boron substituted graphitic material as well as to determine the local environment and symmetry of these substituted nuclei. The primary findings by UNC are the following: • Boron substituted for carbon in graphitic material in the planar BC3 configuration enhances the binding energy for adsorbed hydrogen. • Arrested kinetics of H2 was observed below 130K in the same boron substituted carbon samples that combine enhanced binding energy with micropore structure. • Hydrogen storage material made from activated PEEK is well suited for hydrogen storage due to its controlled microporous structure and large surface area. • A new porosimetry method for evaluating the pore landscape using H2 as a probe was developed. 1H NMR can probe the nanoscale pore structure of synthesized material and can assess the pore dimension over a range covering 1.2 nm to 2.5 nm, the size that is desired for H2 adsorption. • Analysis of 1H NMR spectra in conjunction with the characterization of the bonding structure of the adsorbent by 13C NMR distinguishes between a heterogeneous and homogeneous pore structure as evidenced by the work on AX21 and activated PEEK. • Most of the sorbents studied are suited to hydrogen storage at low temperature (T < 100K). Of the materials investigated, only boron substituted graphite has the potential to work at higher temperatures if the boron content in the favorable planar BC3 configuration that actively contributes to adsorption can be increased.

  5. Nanomole-scale protein solid-state NMR by

    E-Print Network [OSTI]

    Cai, Long

    an approach that accelerates protein solid-state NMR 5­20-fold using paramagnetic doping to condense data idling delays required for magnetization recovery between scans. Even in modern multidimensional SSNMR, yet recycle delays longer than 3T1 (2­4 s) are often needed to avoid sample heating by radiofrequency

  6. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    SciTech Connect (OSTI)

    Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, III, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; Bowers, C. R.

    2014-10-29

    A combined experimental-theoretical study of optically pumped NMR (OPNMR) has been performed in a GaAs/Al0.1Ga0.9As quantum well film with thermally induced biaxial strain. The photon energy dependence of the Ga-71 OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from differential absorption to spin-up and spin-down states of the conduction band using a modified Pidgeon Brown model. Reasonable agreement between theory and experiment is obtained, facilitating assignment of features in the OPNMR energy dependence to specific interband transitions. Despite the approximations made in the quantum-mechanical model and the inexact correspondence between the experimental and calculated observables, the results provide insight into how effects of strain and quantum confinement are manifested in OPNMR signals

  7. NMR analysis on microfluidic devices by remote detection

    SciTech Connect (OSTI)

    McDonnell, Erin E.; Han, SongI; Hilty, Christian; Pierce,Kimberly; Pines, Alexander

    2005-08-15

    We present a novel approach to perform high-sensitivity NMR imaging and spectroscopic analysis on microfluidic devices. The application of NMR, the most information rich spectroscopic technique, to microfluidic devices remains a challenge because the inherently low sensitivity of NMR is aggravated by small fluid volumes leading to low NMR signal, and geometric constraints resulting in poor efficiency for inductive detection. We address the latter by physically separating signal detection from encoding of information with remote detection. Thereby, we use a commercial imaging probe with sufficiently large diameter to encompass the entire device, enabling encoding of NMR information at any location on the chip. Because large-diameter coils are too insensitive for detection, we store the encoded information as longitudinal magnetization and flow it into the outlet capillary. There, we detect the signal with optimal sensitivity using a solenoidal microcoil, and reconstruct the information encoded in the fluid. We present a generally applicable design for a detection-only microcoil probe that can be inserted into the bore of a commercial imaging probe. Using hyperpolarized 129Xe gas, we show that this probe enables sensitive reconstruction of NMR spectroscopic information encoded by the large imaging probe while keeping the flexibility of a large coil.

  8. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    SciTech Connect (OSTI)

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil recovery.

  9. Satellite Magnetic Resonances of a Bound Pair of Half-Quantum Vortices in Rotating Superfluid He-3-a 

    E-Print Network [OSTI]

    Hu, Chia-Ren; MAKI, K.

    1987-01-01

    choice for the phase of the spin wave function for the transverse satellite spin resonance. M. M. Salomaa, ROTA-86 Symposium, Helsinki University of Technology, Espoo, Finland, 1986; M. M. Salomaa and G. E. Volovik, Europhys. Lett. 2, 781 (1986). o...

  10. Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance

    E-Print Network [OSTI]

    Torrezan de Sousa, Antonio Carlos

    The design, operation, and characterization of a continuous-wave (CW) tunable second-harmonic 460-GHz gyrotron are reported. The gyrotron is intended to be used as a submillimeter-wave source for 700-MHz nuclear magnetic ...

  11. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOE Patents [OSTI]

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  12. Phase II Trial of Radiosurgery to Magnetic Resonance Spectroscopy-Defined High-Risk Tumor Volumes in Patients With Glioblastoma Multiforme

    SciTech Connect (OSTI)

    Einstein, Douglas B.; Wessels, Barry; Bangert, Barbara; Fu, Pingfu; Nelson, A. Dennis; Cohen, Mark; Sagar, Stephen; Lewin, Jonathan; Sloan, Andrew; Zheng Yiran; Williams, Jordonna; Colussi, Valdir; Vinkler, Robert; Maciunas, Robert

    2012-11-01

    Purpose: To determine the efficacy of a Gamma Knife stereotactic radiosurgery (SRS) boost to areas of high risk determined by magnetic resonance spectroscopy (MRS) functional imaging in addition to standard radiotherapy for patients with glioblastoma (GBM). Methods and Materials: Thirty-five patients in this prospective Phase II trial underwent surgical resection or biopsy for a GBM followed by SRS directed toward areas of MRS-determined high biological activity within 2 cm of the postoperative enhancing surgical bed. The MRS regions were determined by identifying those voxels within the postoperative T2 magnetic resonance imaging volume that contained an elevated choline/N-acetylaspartate ratio in excess of 2:1. These voxels were marked, digitally fused with the SRS planning magnetic resonance image, targeted with an 8-mm isocenter per voxel, and treated using Radiation Therapy Oncology Group SRS dose guidelines. All patients then received conformal radiotherapy to a total dose of 60 Gy in 2-Gy daily fractions. The primary endpoint was overall survival. Results: The median survival for the entire cohort was 15.8 months. With 75% of recursive partitioning analysis (RPA) Class 3 patients still alive 18 months after treatment, the median survival for RPA Class 3 has not yet been reached. The median survivals for RPA Class 4, 5, and 6 patients were 18.7, 12.5, and 3.9 months, respectively, compared with Radiation Therapy Oncology Group radiotherapy-alone historical control survivals of 11.1, 8.9, and 4.6 months. For the 16 of 35 patients who received concurrent temozolomide in addition to protocol radiotherapeutic treatment, the median survival was 20.8 months, compared with European Organization for Research and Treatment of Cancer historical controls of 14.6 months using radiotherapy and temozolomide. Grade 3/4 toxicities possibly attributable to treatment were 11%. Conclusions: This represents the first prospective trial using selective MRS-targeted functional SRS combined with radiotherapy for patients with GBM. This treatment is feasible, with acceptable toxicity and patient survivals higher than in historical controls. This study can form the basis for a multicenter, randomized trial.

  13. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying...

  14. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with themore »previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.« less

  15. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-01

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.

  16. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    SciTech Connect (OSTI)

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the ?-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  17. Design and characterization of 2.45 GHz electron cyclotron resonance plasma source with magnetron magnetic field configuration for high flux of hyperthermal neutral beam

    SciTech Connect (OSTI)

    Kim, Seong Bong [Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of); Convergence Plasma Research Center, National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Kim, Dae Chul; Yoo, Suk Jae [Convergence Plasma Research Center, National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Namkung, Won; Cho, Moohyun [Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of)

    2010-08-15

    A 2.45 GHz electron cyclotron resonance (ECR) source with a magnetron magnetic field configuration was developed to meet the demand of a hyperthermal neutral beam (HNB) flux on a substrate of more than 1x10{sup 15} cm{sup -2} s{sup -1} for industrial applications. The parameters of the operating pressure, ion density, electron temperature, and distance between the neutralization plate and the substrate for the HNB source are specified in a theoretical analysis. The electron temperature and the ion density are measured to characterize the ECR HNB source using a Langmuir probe and optical emission spectroscopy. The parameters of the ECR HNB source are in good agreement with the theoretically specified parameters.

  18. A liquid-helium-free superconducting coil system forming a flat minimum-magnetic-field distribution of an electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Yoshida, Ken-ichi, E-mail: yoshida.kennichi71@jaea.go.jp; Nara, Takayuki; Saitoh, Yuichi; Yokota, Watalu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)] [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A flat distribution of the minimum magnetic field (flat-B{sub min}) of an electron cyclotron resonance ion source (ECRIS) is expected to perform better in highly charged ion production than classical B{sub min}. To form a flat-B{sub min} structure with a liquid helium-free superconducting device, a coil system of seven coils with four current leads has been designed. The lead number was reduced by connecting the plural coils in series to maintain the flat-B{sub min} structure even when the coil currents are changed for adjustment. This coil system can be operated with a helium-free cryostat, since the estimation of heat from the leads to the coils is nearly equivalent to the existing superconducting ECRIS of a similar type.

  19. Repetitive resonant railgun power supply

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

    1988-01-01

    A repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. The supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles.

  20. Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic resonance: Theory and experiments

    E-Print Network [OSTI]

    Frydman, Lucio

    Fast radio-frequency amplitude modulation in multiple-quantum magic-angle-spinning nuclear magnetic of this experiment has been the poor efficiency of the radio-frequency pulses used in converting multiple-modulated radio-frequency pulses, and which can yield substantial signal and even resolution enhancements over

  1. Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging

    E-Print Network [OSTI]

    Glover, Gary H.

    and becomes a larger fraction of the total noise at 3.0 T. Activation of the primary motor and visual cortex a magnetic field strength of 1.5 Tesla (T) seems to represent a good compromise. Functional MRI (f

  2. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by /sup 31/P-nuclear magnetic resonance

    SciTech Connect (OSTI)

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-03-05

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. /sup 31/P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (approx. 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites.

  3. Backbone 1H, 13C, and 15N NMR assignments for the Cyanothece 51142 protein cce_0567: a protein associated with nitrogen fixation in the DUF683 family

    SciTech Connect (OSTI)

    Buchko, Garry W.; Sofia, Heidi J.

    2008-06-01

    The recently sequenced genome of the diurnal cyanobacterium Cyanothece sp. PCC 51142 (contig 83.1_1_243_746) contains the sequence for an hypothetical protein that falls into the DUF683 family. As observed for the other 54 DUF683 proteins currently listed in the GenBank database, this 78-residue (9.0 kDa) protein in Cyanothece is also found in a nitrogen fixation gene cluster suggesting that it is involved in the process. To date no structural information exists for any of the proteins in the DUF683 family. In an effort to elucidate the biochemical role DUF683 may play in nitrogen fixation and to obtain structural information for a member of the DUF683 protein family, a construct containing DUF683 from Cyanothece 51142 was generated, expressed, purified, and the solution properties characterized. A total rotational correlation time (tc) of 17.1 ns was estimated by nuclear magnetic resonance (NMR) spectroscopy suggesting a molecular weight of ~ 40 kDa, an observation dictating that DUF683 is a tetramer in solution. Using triple-labeled (2H, 13C, 15N) and residue-specific 15N-labeled amino acids (L, K, V, and E/Q) samples, most of the backbone and side chain resonances for DUF683 were assigned. The 13C alpha chemical shifts and NOESY NMR data indicate that the protein is helical from K18-E75.

  4. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    SciTech Connect (OSTI)

    Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)

    2013-02-15

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. Results: At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. Conclusions: The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.

  5. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    SciTech Connect (OSTI)

    Lu Qing; Wei Daixu; Cheng Jiejun; Xu Jianrong; Zhu Jun

    2012-08-15

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF{sub 4}:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF{sub 4}:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T{sub 1}-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and both high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future. - Graphical abstract: We have synthesized magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. Highlights: Black-Right-Pointing-Pointer A novel magnetic-luminescent multifunctional nanoparticles are synthesized. Black-Right-Pointing-Pointer The nanoparticles are highly efficient for luminescence and T{sub 1}-weighted MR imaging. Black-Right-Pointing-Pointer The nanoparticles are small in size and highly solubility in water. Black-Right-Pointing-Pointer The nanoparticles hold great potential usage for future biomedical engineering.

  6. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    SciTech Connect (OSTI)

    Hu, Yanyan

    2011-02-07

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm){sup 2}, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of {approx}3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites. Meanwhile, we have developed new methods to achieve broadband high resolution NMR and improve the accuracy of inter-nuclear distance measurements involving quadrupolar spins. Broadband high resolution NMR of spin-1/2 nuclei has been accomplished by the adaptation of the magic angle turning (MAT) method to fast magic angle spinning, termed fast MAT, by solving technical problems such as off resonance effects. Fast MAT separates chemical shift anisotropy and isotropic chemical shifts over a spectral range of {approx}1.8 {gamma}B{sub 1} without significant distortions. Fast MAT {sup 125}Te NMR has been applied to study technologically important telluride materials with spectra spreading up to 190 kHz. The signal-to-noise ratio of the spectra is significantly improved by using echo-matched Gaussian filtering in offline data processing. The accuracy of the measured distances between spin-1/2 and quadrupolar nuclei with methods such as SPIDER and REAPDOR has been improved by compensating for the fast longitudinal quadrupolar relaxation on the sub-millisecond with a modified S{sub 0} pulse sequence. Also, the T1Q effect on the spin coherence and its spinning speed dependency has been explored and documented with analytical and numerical simulations as well as experimental measurements.

  7. Coexistence of antiferromagnetic and ferromagnetic spin correlations in SrCo2As2 revealed by Co59 and As75 NMR

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiecki, P.; Ogloblichev, V.; Pandey, Abhishek; Johnston, D. C.; Furukawa, Y.

    2015-06-15

    In nonsuperconducting, metallic paramagnetic SrCo2As2, inelastic neutron scattering measurements have revealed strong stripe-type q=(?,0) antiferromagnetic (AFM) spin correlations. Using nuclear magnetic resonance (NMR) measurements on 59Co and 75Asnuclei, we demonstrate that stronger ferromagnetic (FM) spin correlations coexist in SrCo2As2. Our NMR data are consistent with density functional theory (DFT) calculations which show enhancements at both q=(?,0) and the in-plane FM q=0 wave vectors in static magnetic susceptibility ?(q). We suggest that the strong FM fluctuations prevent superconductivity in SrCo2As2, despite the presence of stripe-type AFM fluctuations. Since DFT calculations have consistently revealed similar enhancements of the ?(q) at both q=(?,0)more »and q=0 in the iron-based superconductors and parent compounds, our observation of FM correlations in SrCo2As2 calls for detailed studies of FM correlations in the iron-based superconductors.« less

  8. A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging

    SciTech Connect (OSTI)

    Nguyen, Dang Van; Li, Jing-Rebecca; Grebenkov, Denis; Le Bihan, Denis

    2014-04-15

    The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch–Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the Bloch–Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explicit Runge–Kutta–Chebyshev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.

  9. Localized In Vivo 1H NMR Detection of Neurotransmitter Labeling in Rat Brain During Infusion of [1-13C] D-Glucose

    E-Print Network [OSTI]

    Localized In Vivo 1H NMR Detection of Neurotransmitter Labeling in Rat Brain During Infusion of [1 infusions of 13C-labeled glucose. Magn Reson Med 41:1077­1083, 1999. 1999 Wiley-Liss, Inc. Key words] glucose infusion In vivo 13C NMR spectroscopy with localization is emerg- ing as an important tool

  10. The D0 solenoid NMR magnetometer

    SciTech Connect (OSTI)

    Sten Uldall Hansen Terry Kiper, Tom Regan, John Lofgren et al.

    2002-11-20

    A field monitoring system for the 2 Tesla Solenoid of the D0 detector is described. It is comprised of a very small NMR probe cabled to a DSP based signal processing board. The design magnetic field range is from 1.0 to 2.2 Tesla, corresponding to an RF frequency range of 42.57 to 93.67 MHz. The desired an accuracy is one part in 10{sup 5}. To minimize material in the interaction region of the D0 detector, the overall thickness of the NMR probe is 4 mm, including its mounting plate, and its width is 10 mm. To minimize cable mass, 4mm diameter IMR-100A cables are used for transmitting the RF signals from a nearby patch panel 25 meters to each of four probes mounted within the bore of the solenoid. RG213U cables 45 meters long are used to send the RF from the movable counting house to the patch panel. With this setup, the detector signal voltage at the moving counting room is in the range of 250-400 mV.

  11. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOE Patents [OSTI]

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  12. Cs{sub 4}P{sub 2}Se{sub 10}: A new compound discovered with the application of solid-state and high temperature NMR

    SciTech Connect (OSTI)

    Gave, Matthew A.; Canlas, Christian G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Chung, In [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Iyer, Ratnasabapathy G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Kanatzidis, Mercouri G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)], E-mail: m-kanatzidis@northwestern.edu; Weliky, David P. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)], E-mail: weliky@chemistry.msu.edu

    2007-10-15

    The new compound Cs{sub 4}P{sub 2}Se{sub 10} was serendipitously produced in high purity during a high-temperature synthesis done in a nuclear magnetic resonance (NMR) spectrometer. {sup 31}P magic angle spinning (MAS) NMR of the products of the synthesis revealed that the dominant phosphorus-containing product had a chemical shift of -52.8 ppm that could not be assigned to any known compound. Deep reddish brown well-formed plate-like crystals were isolated from the NMR reaction ampoule and the structure was solved with X-ray diffraction. Cs{sub 4}P{sub 2}Se{sub 10} has the triclinic space group P-1 with a=7.3587(11) A, b=7.4546(11) A, c=10.1420(15) A, {alpha}=85.938(2){sup o}, {beta}=88.055(2){sup o}, and {gamma}=85.609(2){sup o} and contains the [P{sub 2}Se{sub 10}]{sup 4-} anion. To our knowledge, this is the first compound containing this anion that is composed of two tetrahedral (PSe{sub 4}) units connected by a diselenide linkage. It was also possible to form a glass by quenching the melt in ice water, and Cs{sub 4}P{sub 2}Se{sub 10} was recovered upon annealing. The static {sup 31}P NMR spectrum at 350 deg. C contained a single peak with a -35 ppm chemical shift and a {approx}7 ppm peak width. This study highlights the potential of solid-state and high-temperature NMR for aiding discovery of new compounds and for probing the species that exist at high temperature. - Graphical abstract: The new compound Cs{sub 4}P{sub 2}Se{sub 10} was discovered following a high-temperature in situ synthesis in the NMR spectrometer and the structure was determined by single-crystal X-ray diffraction. It contains the new [P{sub 2}Se{sub 10}]{sup 4-} anion.

  13. Three-Dimensional Mapping of Ozone-Induced Injury in the Nasal Airways of Monkeys Using Magnetic Resonance Imaging and Morphometric Techniques

    SciTech Connect (OSTI)

    Carey, Stephen A.; Minard, Kevin R.; Trease, Lynn L.; Wagner, James G.; Garcia, Guilherme M.; Ballinger, Carol A.; Kimbell, Julia; Plopper, Charles G.; Corley, Rick A.; Postlewait, Ed; Harkema, Jack R.

    2007-03-01

    ABSTRACT Age-related changes in gross and microscopic structure of the nasal cavity can alter local tissue susceptibility as well as the dose of inhaled toxicant delivered to susceptible sites. This article describes a novel method for the use of magnetic resonance imaging, 3-dimensional airway modeling, and morphometric techniques to characterize the distribution and magnitude of ozone-induced nasal injury in infant monkeys. Using this method, we are able to generate age-specific, 3-dimensional, epithelial maps of the nasal airways of infant Rhesus macaques. The principal nasal lesions observed in this primate model of ozone-induced nasal toxicology were neutrophilic rhinitis, along with necrosis and exfoliation of the epithelium lining the anterior maxilloturbinate. These lesions, induced by acute or cyclic (episodic) exposures, were examined by light microscopy, quantified by morphometric techniques, and mapped on 3-dimensional models of the nasal airways. Here, we describe the histopathologic, imaging, and computational biology methods developed to efficiently characterize, localize, quantify, and map these nasal lesions. By combining these techniques, the location and severity of the nasal epithelial injury were correlated with epithelial type, nasal airway geometry, and local biochemical and molecular changes on an individual animal basis. These correlations are critical for accurate predictive modeling of exposure-dose-response relationships in the nasal airways, and subsequent extrapolation of nasal findings in animals to humans for developing risk assessment.

  14. Geophysical applications of nuclear resonant spectroscopy Wolfgang Sturhahn and Jennifer M. Jackson*

    E-Print Network [OSTI]

    Jackson, Jennifer M.

    Geophysical applications of nuclear resonant spectroscopy Wolfgang Sturhahn and Jennifer M. Jackson summarize recent developments of nuclear resonant spectroscopy methods like nuclear resonant inelastic x important information on valence, spin state, and magnetic ordering. Both methods use a nuclear resonant

  15. A magnetically shielded room with ultra low residual field and gradient

    SciTech Connect (OSTI)

    Altarev, I.; Chesnevskaya, S.; Gutsmiedl, E.; Kuchler, F.; Lins, T.; Marino, M.; McAndrew, J.; Niessen, B.; Paul, S.; Petzoldt, G.; Singh, J.; Stoepler, R.; Stuiber, S.; Sturm, M.; Taubenheim, B. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Babcock, E. [Jülich Center for Neutron Science, Lichtenbergstrasse 1, D-85748 Garching (Germany); Beck, D.; Sharma, S. [Physics Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Burghoff, M.; Fan, I. [Physikalisch-Technische Bundesanstalt Berlin, D-10587 Berlin (Germany); and others

    2014-07-15

    A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.

  16. Water confined in carbon nanotubes: Magnetic response and proton chemical shieldings

    SciTech Connect (OSTI)

    Huang, P; Schwegler, E; Galli, G

    2008-11-14

    We study the proton nuclear magnetic resonance ({sup 1}H-NMR) of a model system consisting of liquid water in infinite carbon nanotubes (CNT). Chemical shieldings are evaluated from linear response theory, where the electronic structure is derived from density functional theory (DFT) with plane-wave basis sets and periodic boundary conditions. The shieldings are sampled from trajectories generated via first-principles molecular dynamics simulations at ambient conditions, for water confined in (14,0) and (19,0) CNTs with diameters d = 11 {angstrom} and 14.9 {angstrom}, respectively. We find that confinement within the CNT leads to a large ({approx} -23 ppm) upfield shift relative to bulk liquid water. This shift is a consequence of strongly anisotropic magnetic fields induced in the CNT by an applied magnetic field.

  17. Study of dibenzofuran-based amino acid nucleated antiparallel Beta-sheet using 1D- and 2D- nuclear magnetic resonance spectroscopy 

    E-Print Network [OSTI]

    Espina, Jose Roberto

    1994-01-01

    -competitive solvents is a 15-membered ring hydrogen bonded conformation. Water soluble peptides containing 1 were studied using I D-and 2D-NMR techniques to determine the capability of 1 to nucleate 0-sheet structure formation. The sequence specific assigrunents...

  18. Apparatus and method for generating a magnetic field by rotation of a charge holding object

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Vukovic, Lela (Westchester, IL); Rathke, Jerome W. (Homer Glenn, IL)

    2009-10-13

    A device and a method for the production of a magnetic field using a Charge Holding Object that is mechanically rotated. In a preferred embodiment, a Charge Holding Object surrounding a sample rotates and subjects the sample to one or more magnetic fields. The one or more magnetic fields are used by NMR Electronics connected to an NMR Conductor positioned within the Charge Holding Object to perform NMR analysis of the sample.

  19. Electronic Characterization of Lithographically Patterned Microcoils for High Sensitivity NMR Detection

    SciTech Connect (OSTI)

    Demas, V; Bernhardt, A; Malba, V; Adams, K L; Evans, L; Harvey, C; Maxwell, R S; Herberg, J L

    2009-01-13

    Nuclear magnetic resonance (NMR) offers a non-destructive, powerful, structure-specific analytical method for the identification of chemical and biological systems. The use of radio frequency (RF) microcoils has been shown to increase the sensitivity in mass limited samples. Recent advances in micro-receiver technology have further demonstrated a substantial increase in mass sensitivity [1]. Lithographic methods for producing solenoid microcoils possess a level of flexibility and reproducibility that exceeds previous production methods, such as hand winding microcoils. This paper presents electrical characterizations of RF microcoils produced by a unique laser lithography system that can pattern three dimensional surfaces and compares calculated and experimental results to those for wire wound RF microcoils. We show that existing optimization conditions for RF coil design still hold true for RF microcoils produced by lithography. Current lithographic microcoils show somewhat inferior performance to wire wound RF microcoils due to limitations in the existing electroplating technique. In principle, however, when the pitch of the RF microcoil is less than 100 {micro}m lithographic coils should show comparable performance to wire wound coils. In the cases of larger pitch, wire cross sections can be significantly larger and resistances lower than microfabricated conductors.

  20. Noninvasive Monitoring of Microvascular Changes With Partial Irradiation Using Dynamic Contrast-Enhanced and Blood Oxygen Level-Dependent Magnetic Resonance Imaging

    SciTech Connect (OSTI)

    Lin, Yu-Chun [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China) [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Department of Electrical Engineering, Chang Gung University, Linkou, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Wang, Jiun-Jie [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China) [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Hong, Ji-Hong [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China) [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Lin, Yi-Ping [Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China)] [Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Lee, Chung-Chi [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China) [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Wai, Yau-Yau; Ng, Shu-Hang; Wu, Yi-Ming [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China) [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taiwan (China); Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Wang, Chun-Chieh, E-mail: jjwang@adm.cgmh.org.tw [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China) [Department of Medical Imaging and Radiological Sciences, Chang Gung University, Linkou, Taiwan (China); Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan (China)

    2013-04-01

    Purpose: The microvasculature of a tumor plays an important role in its response to radiation therapy. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) and blood oxygen level-dependent (BOLD) MRI are both sensitive to vascular characteristics. The present study proposed a partial irradiation approach to a xenograft tumor to investigate the intratumoral response to radiation therapy using DCE and BOLD MRI. Methods and Materials: TRAMP-C1 tumors were grown in C57BL/6J mice. Partial irradiation was performed on the distal half of the tumor with a single dose of 15 Gy. DCE MRI was performed to derive the endothelium transfer constant, K{sup trans}, using pharmacokinetic analysis. BOLD MRI was performed using quantitative R2* measurements with carbogen breathing. The histology of the tumor was analyzed using hematoxylin and eosin staining and CD31 staining to detect endothelial cells. The differences between the irradiated and nonirradiated regions of the tumor were assessed using K{sup trans} values, ?R2* values in response to carbogen and microvascular density (MVD) measurements. Results: A significantly increased K{sup trans} and reduced BOLD response to carbogen were found in the irradiated region of the tumor compared with the nonirradiated region (P<.05). Histologic analysis showed a significant aggregation of giant cells and a reduced MVD in the irradiated region of the tumor. The radiation-induced difference in the BOLD response was associated with differences in MVD and K{sup trans}. Conclusions: We demonstrated that DCE MRI and carbogen-challenge BOLD MRI can detect differential responses within a tumor that may potentially serve as noninvasive imaging biomarkers to detect microvascular changes in response to radiation therapy.

  1. Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After ?-Particle-Emitting {sup 227}Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts

    SciTech Connect (OSTI)

    Heyerdahl, Helen; Røe, Kathrine; Brevik, Ellen Mengshoel; Dahle, Jostein

    2013-09-01

    Purpose: The purpose of this study was to investigate the effect of ?-particle-emitting {sup 227}Th-trastuzumab radioimmunotherapy on tumor vasculature to increase the knowledge about the mechanisms of action of {sup 227}Th-trastuzumab. Methods and Materials: Human HER2-expressing SKOV-3 ovarian cancer xenografts were grown bilaterally in athymic nude mice. Mice with tumor volumes 253 ± 36 mm{sup 3} (mean ± SEM) were treated with a single injection of either {sup 227}Th-trastuzumab at a dose of 1000 kBq/kg body weight (treated group, n=14 tumors) or 0.9% NaCl (control group, n=10 tumors). Dynamic T1-weighted contrast-enhanced magnetic resonance imaging (DCEMRI) was used to study the effect of {sup 227}Th-trastuzumab on tumor vasculature. DCEMRI was performed before treatment and 1, 2, and 3 weeks after therapy. Tumor contrast-enhancement curves were extracted voxel by voxel and fitted to the Brix pharmacokinetic model. Pharmacokinetic parameters for the tumors that underwent radioimmunotherapy were compared with the corresponding parameters of control tumors. Results: Significant increases of k{sub ep}, the rate constant of diffusion from the extravascular extracellular space to the plasma (P<.05), and k{sub el,} the rate of clearance of contrast agent from the plasma (P<.01), were seen in the radioimmunotherapy group 2 and 3 weeks after injection, compared with the control group. The product of k{sub ep} and the amplitude parameter A, associated with increased vessel permeability and perfusion, was also significantly increased in the radioimmunotherapy group 2 and 3 weeks after injection (P<.01). Conclusions: Pharmacokinetic modeling of MRI contrast-enhancement curves evidenced significant alterations in parameters associated with increased tumor vessel permeability and tumor perfusion after {sup 227}Th-trastuzumab treatment of HER2-expressing ovarian cancer xenografts.

  2. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models

    SciTech Connect (OSTI)

    Corley, Richard A.; Minard, Kevin R.; Kabilan, Senthil; Einstein, Daniel R.; Kuprat, Andrew P.; harkema, J. R.; Kimbell, Julia; Gargas, M. L.; Kinzell, John H.

    2009-06-01

    The percentages of total air?ows over the nasal respiratory and olfactory epithelium of female rabbits were cal-culated from computational ?uid dynamics (CFD) simulations of steady-state inhalation. These air?ow calcula-tions, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, mon-keys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the ?ne structures of the nasal turbinates and air?ows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired air?ows that reached the ethmoid turbinate region (~50%) that is presumably lined with olfactory epithelium. These latter results (air?ows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These di?erences in regional air?ows can have signi?cant implications in interspecies extrapolations of nasal dosimetry.

  3. NMR study of the molecular dynamics of ethanol and 2,2,2-trifluoroethanol liquids confined to nanopores of porous silica glasses

    SciTech Connect (OSTI)

    Ballard, L.; Jonas, J.

    1996-05-29

    A dynamic nuclear magnetic resonance (NMR) study of the polar fluids ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE) confined to porous silica sol-gel glasses is reported. The {sup 13}C NMR spin-lattice relaxation times, T{sub 1}, were measured in glasses with pore radii ranging from 18.9 to 54.8 A, over a temperature range from -13.6 to 30.5{degree}C. The data were analyzed in terms of the two-state, fast exchange model, and surface layer relaxation times, T{sub 1s}, were calculated. On the basis of surface enhancement factors, T{sub 1b}/T{sub 1s}, where T{sub 1b} is the relaxation time of the bulk liquid, it was concluded that the more acidic TFE has a weaker hydrogen bond interaction with silica, due to the fact that the alcohols serve as hydrogen bond acceptors. The experiment shows that EtOH and TFE have nearly identical surface layer viscosities, originating from the differences in hydrogen bonding with the silica surface. Confinement was found to have little effect on the internal rotation of terminal CF{sub 3} or CH{sub 3} groups. 32 refs., 2 figs., 3 tabs.

  4. Strong reduction of V{sup 4+} amount in vanadium oxide/hexadecylamine nanotubes by doping with Co{sup 2+} and Ni{sup 2+} ions: Electron paramagnetic resonance and magnetic studies

    SciTech Connect (OSTI)

    Saleta, M. E.; Troiani, H. E.; Ribeiro Guevara, S.; Ruano, G.; Sanchez, R. D.; Malta, M.; Torresi, R. M.

    2011-05-01

    In this work we present a complete characterization and magnetic study of vanadium oxide/hexadecylamine nanotubes (VO{sub x}/Hexa NT's) doped with Co{sup 2+} and Ni{sup 2+} ions. The morphology of the NT's has been characterized by transmission electron microscopy, while the metallic elements have been quantified by the instrumental neutron activation analysis technique. The static and dynamic magnetic properties were studied by collecting data of magnetization as a function of magnetic field and temperature and by electron paramagnetic resonance. At difference of the majority reports in the literature, we do not observe magnetic dimers in vanadium oxide nanotubes. Also, we observed that the incorporation of metallic ions (Co{sup 2+}, S = 3/2 and Ni{sup 2+}, S = 1) decreases notably the amount of V{sup 4+} ions in the system, from 14-16% (nondoped case) to 2%-4%, with respect to the total vanadium atoms (fact corroborated by XPS experiments) anyway preserving the tubular nanostructure. The method to decrease the amount of V{sup 4+} in the nanotubes improves considerably their potential technological applications as Li-ion batteries cathodes.

  5. Magnetic Resonance Imaging of concrete

    E-Print Network [OSTI]

    Burgoyne, Chris

    it for babies, why not for concrete? #12;2 Non-destructive-testing Methods for Concrete Structures. Irie et al structure · In both cases procedure is destructive Systems to monitor concrete modulus · Ultra-sonic pulse and examined under microscope Limited number of sections can be obtained and only after unloading Destructive

  6. High Occurrence of Aberrant Lymph Node Spread on Magnetic Resonance Lymphography in Prostate Cancer Patients With a Biochemical Recurrence After Radical Prostatectomy

    SciTech Connect (OSTI)

    Meijer, Hanneke J.M., E-mail: H.Meijer@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Lin, Emile N. van [Department of Radiation Oncology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Debats, Oscar A. [Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Witjes, J. Alfred [Department of Urology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Span, Paul N.; Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands); Barentsz, Jelle O. [Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen (Netherlands)

    2012-03-15

    Purpose: To investigate the pattern of lymph node spread in prostate cancer patients with a biochemical recurrence after radical prostatectomy, eligible for salvage radiotherapy; and to determine whether the clinical target volume (CTV) for elective pelvic irradiation in the primary setting can be applied in the salvage setting for patients with (a high risk of) lymph node metastases. Methods and Materials: The charts of 47 prostate cancer patients with PSA recurrence after prostatectomy who had positive lymph nodes on magnetic resonance lymphography (MRL) were reviewed. Positive lymph nodes were assigned to a lymph node region according to the guidelines of the Radiation Therapy Oncology Group (RTOG) for delineation of the CTV for pelvic irradiation (RTOG-CTV). We defined four lymph node regions for positive nodes outside this RTOG-CTV: the para-aortal, proximal common iliac, pararectal, and paravesical regions. They were referred to as aberrant lymph node regions. For each patient, clinical and pathologic features were recorded, and their association with aberrant lymph drainage was investigated. The distribution of positive lymph nodes was analyzed separately for patients with a prostate-specific antigen (PSA) <1.0 ng/mL. Results: MRL detected positive aberrant lymph nodes in 37 patients (79%). In 20 patients (43%) a positive lymph node was found in the pararectal region. Higher PSA at the time of MRL was associated with the presence of positive lymph nodes in the para-aortic region (2.49 vs. 0.82 ng/mL; p = 0.007) and in the proximal common iliac region (1.95 vs. 0.59 ng/mL; p = 0.009). There were 18 patients with a PSA <1.0 ng/mL. Ten of these patients (61%) had at least one aberrant positive lymph node. Conclusion: Seventy-nine percent of the PSA-recurrent patients had at least one aberrant positive lymph node. Application of the standard RTOG-CTV for pelvic irradiation in the salvage setting therefore seems to be inappropriate.

  7. An Atlas-Based Electron Density Mapping Method for Magnetic Resonance Imaging (MRI)-Alone Treatment Planning and Adaptive MRI-Based Prostate Radiation Therapy

    SciTech Connect (OSTI)

    Dowling, Jason A., E-mail: jason.dowling@csiro.au [Australian e-Health Research Center, CSIRO ICT Commonwealth Scientific and Industrial Research Organisation Information and Communication Technologies Centre, Queensland (Australia); Lambert, Jonathan [Calvary Mater Newcastle Hospital, New South Wales (Australia); University of Newcastle, New South Wales (Australia); Parker, Joel [Calvary Mater Newcastle Hospital, New South Wales (Australia); Salvado, Olivier; Fripp, Jurgen [Australian e-Health Research Center, CSIRO ICT Commonwealth Scientific and Industrial Research Organisation Information and Communication Technologies Centre, Queensland (Australia); Capp, Anne; Wratten, Chris; Denham, James W.; Greer, Peter B. [Calvary Mater Newcastle Hospital, New South Wales (Australia); University of Newcastle, New South Wales (Australia)

    2012-05-01

    Purpose: Prostate radiation therapy dose planning directly on magnetic resonance imaging (MRI) scans would reduce costs and uncertainties due to multimodality image registration. Adaptive planning using a combined MRI-linear accelerator approach will also require dose calculations to be performed using MRI data. The aim of this work was to develop an atlas-based method to map realistic electron densities to MRI scans for dose calculations and digitally reconstructed radiograph (DRR) generation. Methods and Materials: Whole-pelvis MRI and CT scan data were collected from 39 prostate patients. Scans from 2 patients showed significantly different anatomy from that of the remaining patient population, and these patients were excluded. A whole-pelvis MRI atlas was generated based on the manually delineated MRI scans. In addition, a conjugate electron-density atlas was generated from the coregistered computed tomography (CT)-MRI scans. Pseudo-CT scans for each patient were automatically generated by global and nonrigid registration of the MRI atlas to the patient MRI scan, followed by application of the same transformations to the electron-density atlas. Comparisons were made between organ segmentations by using the Dice similarity coefficient (DSC) and point dose calculations for 26 patients on planning CT and pseudo-CT scans. Results: The agreement between pseudo-CT and planning CT was quantified by differences in the point dose at isocenter and distance to agreement in corresponding voxels. Dose differences were found to be less than 2%. Chi-squared values indicated that the planning CT and pseudo-CT dose distributions were equivalent. No significant differences (p > 0.9) were found between CT and pseudo-CT Hounsfield units for organs of interest. Mean {+-} standard deviation DSC scores for the atlas-based segmentation of the pelvic bones were 0.79 {+-} 0.12, 0.70 {+-} 0.14 for the prostate, 0.64 {+-} 0.16 for the bladder, and 0.63 {+-} 0.16 for the rectum. Conclusions: The electron-density atlas method provides the ability to automatically define organs and map realistic electron densities to MRI scans for radiotherapy dose planning and DRR generation. This method provides the necessary tools for MRI-alone treatment planning and adaptive MRI-based prostate radiation therapy.

  8. SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM

    E-Print Network [OSTI]

    Bluemel, Janet

    @ Pergamon SOLID STATE NMR STUDY SUPPORTING THE LITHIUM VACANCY DEFECT MODEL IN CONGRUENT LITHIUM performed on powdered and single crystal lithium niobate of defectivecongruent composition (48.4%LirO;51.6% NbrOr) using a magnetic field strength of 7.05 Tesla with the aim to distinguish between a lithium

  9. Proton NMR Studies of the Interaction of Heparin-Derived Oligosaccharide with Biological Molecules and the Cis/Trans Isomerization of Amide Bonds in Peptides and Peptide/Peptoid Hybrids

    E-Print Network [OSTI]

    Nguyen, Khanh Trong

    2009-01-01

    corresponds to the Ab-H3 proton of tetrasaccharide III. [NaTable 4.2. Assignment of proton resonances for the disulfideCALIFORNIA RIVERSIDE Proton NMR Studies of the Interaction

  10. Lensless Imaging of Magnetic Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying...

  11. Journal of Biomolecular NMR, 11: 135152, 1998. KLUWER/ESCOM

    E-Print Network [OSTI]

    Ikura, Mitsuhiko

    Stryerb & Mitsuhiko Ikuraa,d, aCenter for Tsukuba Advanced Research Alliance and Institute of Applied heteronuclear magnetic resonance, recoverin, solution structure Abstract The three-dimensional solution), 140 distance restraints for 70 backbone hydrogen bonds, and 297 torsion angle restraints. The atomic

  12. Solid-state NMR studies of the adsorption of acetylene on platinum/alumina catalysts 

    E-Print Network [OSTI]

    Lambregts, Marsha Jo Lupher

    1991-01-01

    /y-alumina and subsequently evacuated. 25 "C Bloch Decay/MAS NMR spectra of cyclohexane adsorbed onto 10%Pt/y-alumina. 27 FT mass spectra taken at a field strength of 3-Tesla. 28 CAVERN uC CP/MAS NMR spectra of an overpressure of acetylene on 10%Pt/y-alumina adsorbed... pumped two-section ion cell, an Extrel 2001 data system, and a 3-Tesla Oxford superconducting magnet. ~~ Samples were introduced into the cell by a variable leak valve (at sample pressure of 4 x 10' torr). Ionization was performed by electron impact...

  13. Dynamic control of spin states in interacting magnetic elements

    DOE Patents [OSTI]

    Jain, Shikha; Novosad, Valentyn

    2014-10-07

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  14. Biomedical Applications of NMR Imaging and Diffusion Studies

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    Biomedical Applications of NMR Imaging and Diffusion Studies Using Thermal And Hyperpolarized Xenon by ..................................................................................................... David Nelson Chairman, Department of Physics #12;Biomedical Applications of NMR Imaging and Diffusion

  15. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  16. Magnetostrictive resonance excitation

    DOE Patents [OSTI]

    Schwarz, Ricardo B. (Los Alamos, NM); Kuokkala, Veli-Tapani (Tampere, FI)

    1992-01-01

    The resonance frequency spectrum of a magnetostrictive sample is remotely determined by exciting the magnetostrictive property with an oscillating magnetic field. The permeability of a magnetostrictive material and concomitant coupling with a detection coil varies with the strain in the material whereby resonance responses of the sample can be readily detected. A suitable sample may be a magnetostrictive material or some other material having at least one side coated with a magnetostrictive material. When the sample is a suitable shape, i.e., a cube, rectangular parallelepiped, solid sphere or spherical shell, the elastic moduli or the material can be analytically determined from the measured resonance frequency spectrum. No mechanical transducers are required and the sample excitation is obtained without contact with the sample, leading to highly reproducible results and a measurement capability over a wide temperature range, e.g. from liquid nitrogen temperature to the Curie temperature of the magnetostrictive material.

  17. Differences in span task performance recorded in a functional magnetic resonance imaging (fMRI) simulator compared to a standard laboratory condition 

    E-Print Network [OSTI]

    Harcourt-Brown, Sally

    2006-01-01

    Forty-eight participants completed a working memory span task in a functional magnetic imaging (fMRI) simulator and laboratory. Differences in performance between the two conditions were investigated. The trends in the ...

  18. Kinetic studies of the [NpO? (CO?)?]?? ion at alkaline conditions using ¹³C NMR

    SciTech Connect (OSTI)

    Panasci, Adele F. [Univ. of California, Davis, CA (United States); Harley, Stephen J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casey, William H. [Univ. of California, Davis, CA (United States)

    2014-04-21

    Carbonate ligand-exchange rates on the [NpO? (CO?)?]?? ion were determined using a saturation-transfer ¹³C nuclear magnetic resonance (NMR) pulse sequence in the pH range of 8.1 ? pH ? 10.5. Over the pH range 9.3 ? pH ? 10.5, which compares most directly with previous work of Stout et al.,1 we find an average rate, activation energy, enthalpy, and entropy of k298ex = 40.6(±4.3) s?¹, Ea =45.1(±3.8) kJ mol?¹, ?H = 42.6(±3.8) kJ mol?¹, and ?S = -72(±13) J mol?¹ K?¹, respectively. These activation parameters are similar to the Stout et al. results at pH 9.4. However, their room-temperature rate at pH 9.4, k298ex = 143(±1.0) s?¹, is ~3 times faster than what we experimentally determined at pH 9.3: k298ex = 45.4(±5.3) s?¹. Our rates for [NpO? (CO?)?]?? are also faster by a factor of ~3 relative to the isoelectronic [UO?(CO?)?]?? as reported by Brucher et al.2 of k298ex = 13(±3) s?¹. Consistent with results for the [UO?(CO?)?]?? ion, we find evidence for a proton-enhanced pathway for carbonate exchange for the [NpO?(CO?)?]?? ion at pH < 9.0.

  19. Multiple resonant railgun power supply

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM); Nunnally, William C. (Los Alamos, NM)

    1988-01-01

    A multiple repetitive resonant railgun power supply provides energy for repetitively propelling projectiles from a pair of parallel rails. A plurality of serially connected paired parallel rails are powered by similar power supplies. Each supply comprises an energy storage capacitor, a storage inductor to form a resonant circuit with the energy storage capacitor and a magnetic switch to transfer energy between the resonant circuit and the pair of parallel rails for the propelling of projectiles. The multiple serial operation permits relatively small energy components to deliver overall relatively large amounts of energy to the projectiles being propelled.

  20. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    E-Print Network [OSTI]

    Eddy, Matthew Thomas

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease ...

  1. Methods for Increasing Sensitivity and Throughput of Solid-State NMR Spectroscopy of Pharmaceutical Solids

    E-Print Network [OSTI]

    Schieber, Loren

    2010-01-22

    Solid-state nuclear magnetic resonance (SSNMR) spectroscopy has been demonstrated to be a powerful technique for investigating solid dosage formulations. SSNMR has the ability to determine physical form, molecular structure, ...

  2. Toroids as NMR detectors in metal pressure probes and in flow systems

    DOE Patents [OSTI]

    Rathke, Jerome W. (Bolingbrook, IL)

    1991-01-01

    A nuclear magnetic resonance probe to measure the properties of a sample under high pressure conditions. The apparatus employs a free standing, elongated toroidal coil as the RF transmitter and receiver.

  3. Composite arrays of superconducting microstrip line resonators

    SciTech Connect (OSTI)

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  4. Application of /sup 13/C, /sup 2/H, /sup 1/H NMR and GPC to the study of structural evolution of subbituminous coal in tetralin at 427/sup 0/C

    SciTech Connect (OSTI)

    Franz, J.A.; Camaioni, D.M.; Skiens, W.E.

    1981-01-01

    The products from the treatment of subbituminous coal at 427/sup 0/C in tetralin or 1,1-d/sub 2/-tetralin for times varying from 2.5 to 120 min were examined by /sup 13/C, /sup 2/H, and /sup 1/H Fourier transform nuclear magnetic resonance (FTNMR), gel permeation chromatography (GPC), and elemental and hydroxyl group analysis. NMR and elemental analysis revealed that the flash hydroliquefaction products contained about 10% of aromatic ether carbon and phenolic carbon in roughly equal amounts, but no aliphatic ether, carboxyl, or quinine carbon. The combined asphaltenes and preasphaltenes from a 10-min reaction exhibited 68% carbon, 30% hydrogen, and 30% deuterium aromaticity, with aromaticity slowly increasing at longer reaction times. GPC analysis revealed that approximately 10% of the products were greater than 1500 mol wt, with number-average molecular weights reduced from 840 to 500 over a 2-hr reaction. Deuterium NMR revealed that the majority of deuterium transferred to coal appeared at benzylic carbons.

  5. Measurements of magnetic field alignment

    SciTech Connect (OSTI)

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  6. Frontiers of NMR in Molecular Biology

    SciTech Connect (OSTI)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  7. Resonant-cavity antenna for plasma heating

    DOE Patents [OSTI]

    Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.

    1984-01-10

    This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.

  8. Nuclear magnetic resonance evidence for a strong modulation of the Bose-Einstein condensate in BaCuSi2O6

    E-Print Network [OSTI]

    Fisher, Ian

    Mexico 87545, USA 4Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford-Einstein condensation BEC has been considerably renewed since it was shown to occur in cold atomic gases.1 In condensed by an energy gap from a band of triplet excita- tions. Applying an external magnetic field H lowers the energy

  9. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect (OSTI)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup ?}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup ?} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup ?} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup ?} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup ?} deer mouse model. Analysis of NMR data of ADH{sup ?} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were also mildly increased in ADH{sup ?} deer mice fed 1 or 2% ethanol. Only small increases were observed for allylic and diallylic protons, FAMEs and unsaturations in ADH{sup +} deer mice fed 3.5% ethanol vs. pair-fed controls. PCA of NMR data showed increased clustering by gradual separation of ethanol-fed ADH{sup ?} deer mice groups from their respective pair-fed control groups and corresponding ethanol-fed ADH{sup +} deer mice groups. Our data indicate that dose of ethanol and hepatic ADH deficiency are two key factors involved in initiation and progression of alcoholic fatty liver disease. Further studies on characterization of individual lipid entities and associated metabolic pathways altered in our deer mouse model after different durations of ethanol feeding could be important to delineate mechanism(s) and identify potential biomarker candidate(s) of early stage ALD. -- Highlights: ? Dose-dependent ethanol-induced fatty liver was studied in deer mouse model. ? A NMR-based lipidomic approach with histology and dry lipid weights was used. ? We used principal component analysis (PCA) to analyze the NMR lipidomic data. ? Dose-dependent clustering patterns by PCA were compared among the groups.

  10. Nanoscale constrictions in superconducting coplanar waveguide resonators

    SciTech Connect (OSTI)

    Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando; Sesé, Javier; Atkinson, James; Barco, Enrique del; Sánchez-Azqueta, Carlos; Majer, Johannes

    2014-10-20

    We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50?nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.

  11. Stability of the electron cyclotron resonance

    E-Print Network [OSTI]

    Joachim Asch; Olivier Bourget; Cédric Meresse

    2015-10-15

    We consider the magnetic AC Stark effect for the quantum dynamics of a single particle in the plane under the influence of an oscillating homogeneous electric and a constant perpendicular magnetic field. We prove that the electron cyclotron resonance is insensitive to impurity potentials.

  12. AB Proton NMR Using Tensor Algebra Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    AB Proton NMR Using Tensor Algebra Frank Rioux Professor Emeritus of Chemistry CSB|SJU The purpose of this tutorial is to deviate from the usual matrix mechanics approach to the ABC proton nmr system in order

  13. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    SciTech Connect (OSTI)

    Jansen, Jacobus F.A.; Schoeder, Heiko; Lee, Nancy Y.; Stambuk, Hilda E.; Wang Ya; Fury, Matthew G.; Patel, Senehal G.; Pfister, David G.; Shah, Jatin P.; Koutcher, Jason A.; Shukla-Dave, Amita

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentration relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.

  14. Nuclear magnetic absorption line widths in weak magnetic fields with a Robinson oscillator 

    E-Print Network [OSTI]

    Flugum, Timothy Lee

    1987-01-01

    precession Effects of a weak transverse rotating field C. Nuclear Magnetic Relaxation Introduction The Boltzmann factor The longitudinal relaxation time, T, The transverse relaxation time. Tz Instrument Tq and magnetic field homogeneity requirements... the oscillating (effectively rotating) magnetic field, Bt, was used by Bloch in his pioneer "nuclear induction" NMR experiments using bulk matter. The nuclear induction method thus uses "crossed coils" with their axes both perpendicular to the strong, steady...

  15. Measuring and shimming the magnetic field of a 4 Tesla MRI magnet 

    E-Print Network [OSTI]

    Kyriazis, Georgios

    1993-01-01

    The Biomedical Magnetic Resonance Laboratory (BMRL) of the University of Illinois at Urbana-Champaign (UIUC) has ordered from the Texas Accelerator Center (TAC) a superconducting, self-shielded, solenoidal magnet with a maximum field of 4 Tesla...

  16. Algorithmic cooling and scalable NMR quantum computers

    E-Print Network [OSTI]

    Mor, Tal

    Algorithmic cooling and scalable NMR quantum computers P. Oscar Boykin*, Tal Mor§ , Vwani cooling (via polarization heat bath)--a powerful method for obtaining a large number of highly polarized (quantum) bits, algorithmic cooling cleans dirty bits beyond the Shannon's bound on data compression

  17. Effectiveness of electron-cyclotron and transmission resonance heating in inductively coupled plasmas

    E-Print Network [OSTI]

    Economou, Demetre J.

    Effectiveness of electron-cyclotron and transmission resonance heating in inductively coupled October 2005 The electron-cyclotron and transmission resonances in magnetically enhanced low-pressure one-cyclotron and transmission resonances, but normally does not exhibit a sharp peak at the electron-cyclotron resonance ECR

  18. Resonant spin tunneling in randomly oriented nanospheres of Mn?? acetate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lendinez, S.; Billinge, S. J. L.; Zarzuela, R.; Tejada, J.; Terban, M. W.; Espin, J.; Imaz, I.; Maspoch, D.; Chudnovsky, E. M.

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn?? acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn?? acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore »single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn?? acetate. Our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  19. Resonant spin tunneling in randomly oriented nanospheres of Mn?? acetate

    SciTech Connect (OSTI)

    Lendinez, S. [Univ. de Barcelona, Barcelona, Spain (Europe); Billinge, S. J. L. [Columbia Univ., New York, NY (United States); Zarzuela, R. [Univ. de Barcelona, Barcelona, Spain (Europe); Tejada, J. [Univ. de Barcelona, Barcelona, Spain (Europe); Terban, M. W. [Columbia Univ., New York, NY (United States); Espin, J. [Univ. Autonoma Barcelona, Barcelona, Spain (Europe); Imaz, I. [Univ. Autonoma Barcelona, Barcelona, Spain (Europe); Maspoch, D. [Univ. Autonoma Barcelona, Barcelona, Spain (Europe); Chudnovsky, E. M. [City Univ. of New York, Bronx, NY (United States)

    2015-01-01

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn?? acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn?? acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for a single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn?? acetate. Our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.

  20. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore, K.

    2001-07-13

    The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

  1. Density functional investigation of intermolecular effects on {sup 13}C NMR chemical-shielding tensors modeled with molecular clusters

    SciTech Connect (OSTI)

    Holmes, Sean T.; Dybowski, Cecil; Iuliucci, Robbie J.; Mueller, Karl T.

    2014-10-28

    A quantum-chemical method for modeling solid-state nuclear magnetic resonance chemical-shift tensors by calculations on large symmetry-adapted clusters of molecules is demonstrated. Four hundred sixty five principal components of the {sup 13}C chemical-shielding tensors of 24 organic materials are analyzed. The comparison of calculations on isolated molecules with molecules in clusters demonstrates that intermolecular effects can be successfully modeled using a cluster that represents a local portion of the lattice structure, without the need to use periodic-boundary conditions (PBCs). The accuracy of calculations which model the solid state using a cluster rivals the accuracy of calculations which model the solid state using PBCs, provided the cluster preserves the symmetry properties of the crystalline space group. The size and symmetry conditions that the model cluster must satisfy to obtain significant agreement with experimental chemical-shift values are discussed. The symmetry constraints described in the paper provide a systematic approach for incorporating intermolecular effects into chemical-shielding calculations performed at a level of theory that is more advanced than the generalized gradient approximation. Specifically, NMR parameters are calculated using the hybrid exchange-correlation functional B3PW91, which is not available in periodic codes. Calculations on structures of four molecules refined with density plane waves yield chemical-shielding values that are essentially in agreement with calculations on clusters where only the hydrogen sites are optimized and are used to provide insight into the inherent sensitivity of chemical shielding to lattice structure, including the role of rovibrational effects.

  2. Applications of highly spin-polarized xenon in NMR

    SciTech Connect (OSTI)

    Long, H.W. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; [Lawrence Berkeley Lab., CA (United States)

    1993-09-01

    The main goal of the work presented in this thesis is produce highly spin-polarized xenon to create much greater signal intensities (up to 54,000 times greater) so as to allow studies to be made on systems with low surface area and long spin-lattice relaxation times. The spin-exchange optical pumping technique used to create high nuclear spin polarization is described in detail in chapter two. This technique is initially applied to some multiple-pulse optically detected NMR experiments in low magnetic field (50G) that allow the study of quadrupoler interactions with a surface of only a few square centimeters. In chapter three the apparatus used to allow high field {sup 129}Xe NMR studies to be performed with extremely high sensitivity is described and applied to experiments on diamagnetic susceptibility effects in thin ({approximately}2000 layers) films of frozen xenon. Preliminary surface investigations of laser polarized {sup 129}Xe adsorbed an a variety of materials (salts, molecular crystals, amorphous carbon, graphite) are then discussed. A full detailed study of the surface of a particular polymer, poly(acrylic acid), is presented in chapter four which shows the kind of detailed information that can be obtained from this technique. Along with preliminary results for several similar polymers, a summary is given of xenon studies of a novel ultra-high surface area polymer, poly(triarylcarbinol). Finally in chapter five the exciting possibility of transferring the high spin order of the laser polarized xenon has been used to transfer nuclear spin order to {sup 13}CO{sub 2} in a xenon matrix and to protons on poly(triarylcarbinol).

  3. Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; Sinclair, Michael B.

    2015-01-28

    In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity dielectric cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometrymore »in a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole resonances to achieve local behavior. These properties are confirmed through the multipolar expansion and show that the use of geometries suggested by perturbation theory is a viable route to achieve purely dipole resonances for metamaterial applications such as wave-front manipulation with Huygens’ metasurfaces. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.« less

  4. Electrodynamics of a ring-shaped spiral resonator

    SciTech Connect (OSTI)

    Maleeva, N.; Karpov, A.; Averkin, A.; Fistul, M. V.; Zhuravel, A. P.; Jung, P.; Ustinov, A. V.

    2014-02-14

    We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f{sub 1}:f{sub 2}:f{sub 3}:f{sub 4}…?=?1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.

  5. Magnetic Transitions in the Spin-5/2 Frustrated Magnet BiMn2PO6 and Strong Lattice Softening in BiMn2PO6 and BiZn2PO6 Below 200 K

    SciTech Connect (OSTI)

    Nath, R; Ranjith, K M; Roy, B; Johnston, D C; Furukawa, Y; Tsirlin, A A

    2014-07-01

    The crystallographic, magnetic, and thermal properties of polycrystalline BiMn2PO6 and its nonmagnetic analog BiZn2PO6 are investigated by x-ray diffraction, magnetization M, magnetic susceptibility ?, heat capacity Cp, and P31 nuclear magnetic resonance (NMR) measurements versus applied magnetic field H and temperature T as well as by density-functional band theory and molecular-field calculations. Both compounds show a strong monotonic lattice softening on cooling, where the Debye temperature decreases by a factor of two from ?D?650 K at T=300 K to ?D?300 K at T=2 K. The ?(T) data for BiMn2PO6 above 150 K follow a Curie-Weiss law with a Curie constant consistent with a Mn+2 spin S=5/2 with g factor g=2 and an antiferromagnetic (AFM) Weiss temperature ?CW??78 K. The ? data indicate long-range AFM ordering below TN?30 K, confirmed by a sharp ?-shaped peak in Cp(T) at 28.8 K. The magnetic entropy at 100 K extracted from the Cp(T) data is consistent with spin S=5/2 for the Mn+2 cations. The band-theory calculations indicate that BiMn2PO6 is an AFM compound with dominant interactions J1/kB?6.7 K and J3/kB?5.6 K along the legs and rungs of a Mn two-leg spin-ladder, respectively. However, sizable and partially frustrating interladder couplings lead to an anisotropic three-dimensional magnetic behavior with long-range AFM ordering at TN?30 K observed in the ?, Cp, and NMR measurements. A second magnetic transition at ?10 K is observed from the ? and NMR measurements but is not evident in the Cp data. The Cp data at low T suggest a significant contribution from AFM spin waves moving in three dimensions and the absence of a spin-wave gap. A detailed analysis of the NMR spectra indicates commensurate magnetic order between 10 and 30 K, while below 10 K additional features appear that may arise from an incommensurate modulation and/or spin canting. The commensurate order is consistent with microscopic density functional calculations that yield a collinear Néel-type AFM spin arrangement both within and between the ladders, despite the presence of multiple weak interactions frustrating this magnetic structure of the Mn spins. Frustration for AFM ordering and the one-dimensional spatial anisotropy of the three-dimensional spin interactions are manifested in the frustration ratio f=|?CW|/TN?2.6, indicating a suppression of TN from 68 K in the absence of these effects to the observed value of about 30 K in BiMn2PO6.

  6. Microfabricated teeter-totter resonator

    DOE Patents [OSTI]

    Adkins, Douglas Ray; Heller, Edwin J.; Shul, Randy J.

    2004-11-23

    A microfabricated teeter-totter resonator comprises a frame, a paddle pivotably anchored to the frame by pivot arms that define an axis of rotation, a current conductor line on a surface of the paddle, means for applying a static magnetic field substantially perpendicular to the rotational axis and in the plane of the paddle, and means for energizing the current conductor line with an alternating current. A Lorentz force is generated by the interaction of the magnetic field with the current flowing in the conductor line, causing the paddle to oscillate about the axis of rotation. The teeter-totter resonator can be fabricated with micromachining techniques with materials used in the integrated circuits manufacturing industry. The microfabricated teeter-totter resonator has many varied applications, both as an actuation device and as a sensor. When used as a chemical sensor, a chemically sensitive coating can be disposed on one or both surfaces of the paddle to enhance the absorption of chemical analytes from a fluid stream. The resulting mass change can be detected as a change in the resonant frequency or phase of the oscillatory motion of the paddle.

  7. Investigation of the Transmission of Substituent Effects by (29)si NMR

    SciTech Connect (OSTI)

    Assink, Roger A.; Loy, Douglas A.; Myers, Sharon A.; Shea, Kenneth J.

    1999-06-18

    Long range substituent effects on the 29Si NMR chemical shifts in a series of alkylene and arylene-bridged triethoxysilanes were observed over as many as 11 bonds. The hydrolysis reaction of an ethoxide caused the resonance of the silicon on the opposing end of the bridging unit to move downfield. The alkylene bridging units ranged from ethylene to octylene while the arylene bridging units included phenyl and biphenyl. Resonance assignments were confirmed by the absence of these shifts for the triethoxysilyl in l-triphenylsilyl-2-triethoxysilylethane. The magnitude of the downfield shift decreased as the length of the bridging unit between silicon atoms increased. Transmission of the substituent effect along a polyethylene chain was successfully modeled by a through-bond mechanism with an attenuation factor of 1.88 for each methylene unit.

  8. Resonant-cavity antenna for plasma heating

    DOE Patents [OSTI]

    Perkins, Jr., Francis W. (Princeton, NJ); Chiu, Shiu-Chu (San Diego, CA); Parks, Paul (San Diego, CA); Rawls, John M. (Del Mar, CA)

    1987-01-01

    Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

  9. Locally Advanced Prostate Cancer: Three-Dimensional Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Locally Advanced Prostate Cancer: Three-Dimensional Magnetic Resonance Spectroscopy to Monitor Prostate Response to Therapy Citation Details In-Document Search Title: Locally...

  10. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  11. Stability of discrete breathers in magnetic metamaterials

    E-Print Network [OSTI]

    Pelinovsky, Dmitry

    Stability of discrete breathers in magnetic metamaterials Dmitry Pelinovsky1 and Vassilis Rothos2 1 describing magnetic metamaterials which consist of periodic arrays of split- ring resonators [4, 7]: ¨qn + V criterion to the multi-site breathers in magnetic metamaterials. 2 Formalism In what follows, we shall use

  12. The use of NMR techniques for the analysis of water in coal and the effect of different coal drying techniques on the structure and reactivity of coal. Final report

    SciTech Connect (OSTI)

    Netzel, D.A.; Miknis, F.P.; Wallace, J.C. Jr.; Butcher, C.H.; Mitzel, J.M.; Turner, T.F.; Hurtubise, R.J.

    1995-02-01

    Western Research Institute has conducted a study of different methods of coal drying as pretreatment steps before liquefaction. The objectives of this study were to develop a combined chemical dehydration/nuclear magnetic resonance (NMR) method for measuring the moisture content of coal, to measure the changes in coal structure that occur during drying, and to determine the effects of different drying methods on liquefaction reactivity of coals. Different methods of drying were investigated to determine whether coal drying can be accomplished without reducing the reactivity of coals toward liquefaction. Drying methods included thermal, microwave, and chemical dehydration. Coals of rank lignite to high volatile bituminous were studied. Coals that were dried or partially dried thermally and with microwaves had lower liquefaction conversions than coals containing equilibrium moisture contents. However, chemically dried coals had conversions equal to or greater than the premoisturized coals. The conversion behavior is consistent with changes in the physical structure and cross linking reactions because of drying. Thermal and microwave drying appear to cause a collapse in the pore structure, thus preventing donor solvents such as tetralin from contacting reactive sites inside the coals. Chemical dehydration does not appear to collapse the pore structure. These results are supported by the solvent swelling measurements in which the swelling ratios of thermally dried and microwave-dried coals were lower than those of premoisturized coals, indicating a greater degree of cross linking in the dried coals. The swelling ratios of the chemically dried coals were greater than those of the premoisturized coals because the pore structure remaining unchanged or increased when water was removed. These results are consistent with the NMR results, which did not show significant changes in coal chemical structure.

  13. Cyclotron resonance in plasma flow

    SciTech Connect (OSTI)

    Artemyev, A. V.; Agapitov, O. V.; Krasnoselskikh, V. V.

    2013-12-15

    This paper is devoted to the mechanism of particle acceleration via resonant interaction with the electromagnetic circular wave propagating along the inhomogeneous background magnetic field in the presence of a plasma flow. We consider the system where the plasma flow velocity is large enough to change the direction of wave propagation in the rest frame. This system mimics a magnetic field configuration typical for inner structure of a quasi-parallel shock wave. We consider conditions of gyroresonant interaction when the force corresponding to an inhomogeneity of the background magnetic field is compensated by the Lorentz force of the wave-magnetic field. The wave-amplitude is assumed to be about 10% of the background magnetic field. We show that particles can gain energy if kv{sub sw}>?>kv{sub sw}??{sub c} where k is the wave number, v{sub sw} is a plasma flow velocity, and ? and ?{sub c} are the wave frequency and the particle gyrofrequency, respectively. This mechanism of acceleration resembles the gyrosurfing mechanism, but the effect of the electrostatic field is replaced by the effect of the magnetic field inhomogeneity.

  14. Regenerative feedback resonant circuit

    SciTech Connect (OSTI)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  15. NMR, MRI, and spectroscopic MRI in inhomogeneous fields

    DOE Patents [OSTI]

    Demas, Vasiliki; Pines, Alexander; Martin, Rachel W; Franck, John; Reimer, Jeffrey A

    2013-12-24

    A method for locally creating effectively homogeneous or "clean" magnetic field gradients (of high uniformity) for imaging (with NMR, MRI, or spectroscopic MRI) both in in-situ and ex-situ systems with high degrees of inhomogeneous field strength. THe method of imaging comprises: a) providing a functional approximation of an inhomogeneous static magnetic field strength B.sub.0({right arrow over (r)}) at a spatial position {right arrow over (r)}; b) providing a temporal functional approximation of {right arrow over (G)}.sub.shim(t) with i basis functions and j variables for each basis function, resulting in v.sub.ij variables; c) providing a measured value .OMEGA., which is an temporally accumulated dephasing due to the inhomogeneities of B.sub.0({right arrow over(r)}); and d) minimizing a difference in the local dephasing angle .phi.({right arrow over (r)},t)=.gamma..intg..sub.0.sup.t{square root over (|{right arrow over (B)}.sub.1({right arrow over (r)},t')|.sup.2+({right arrow over (r)}{right arrow over (G)}.sub.shimG.sub.shim(t')+.parallel.{right arrow over (B)}.sub.0({right arrow over (r)}).parallel..DELTA..omega.({right arrow over (r)},t'/.gamma/).sup.2)}dt'-.OMEGA. by varying the v.sub.ij variables to form a set of minimized v.sub.ij variables. The method requires calibration of the static fields prior to minimization, but may thereafter be implemented without such calibration, may be used in open or closed systems, and potentially portable systems.

  16. Sandia National Laboratories: NMR Spectroscopy Facility: Homepage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of thePrograms:Mode Stirred Chamber The Mode StirredNMR

  17. Solid-State NMR | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performedValley |SolarSole UseSolid-State NMR

  18. Catheter based magnetic resonance compatible perfusion probe

    E-Print Network [OSTI]

    Toretta, Cara Lynne

    2007-01-01

    Neurosurgeons are using a thermal based technique to quantify brain perfusion. The thermal diffusion probe (TDP) technology measures perfusion in a relatively small volume of brain tissue. The neurosurgeon chooses the ...

  19. Instrumentation for parallel magnetic resonance imaging 

    E-Print Network [OSTI]

    Brown, David Gerald

    2007-04-25

    FIGURE 1 An example of a 2D Fourier encoded pulse sequence for MR imaging ..............20 2 Block diagram for an ideal analog mixer with an output bandpass filter ............28 3 Undersampling of a bandpass signal...

  20. Next Generation Magnetic Resonance Imaging Contrast Agents

    E-Print Network [OSTI]

    Klemm, Piper Julia

    2012-01-01

    Meade, T. J. Gd(III)-Nanodiamond conjugates for MRI contrastMeade, T. J. Gd(III)-Nanodiamond conjugates for MRI contrastMeade, T. J. Gd(III)-Nanodiamond conjugates for MRI contrast

  1. Next Generation Magnetic Resonance Imaging Contrast Agents

    E-Print Network [OSTI]

    Klemm, Piper Julia

    2012-01-01

    and environmental impact of Fe make it a promising candidate for more sustainable contrast agent development.

  2. Next Generation Magnetic Resonance Imaging Contrast Agents

    E-Print Network [OSTI]

    Klemm, Piper Julia

    2012-01-01

    were filtered over 0.45 ! m PTFE filters to remove dust andsolids through a 0.45 ! m PTFE filter the red solution wasand filtered over a 0.45 ! m PTFE filter. After evaporation

  3. Magnetic resonance imaging of plantar plate rupture

    E-Print Network [OSTI]

    Yao, L; Cracchiolo, A; Farahani, K; Seeger, LL

    1996-01-01

    had an ipsilateral hallux valgus, and five had a hammertoe8), and an ipsilateral hallux valgus (6 of 8). Patients with

  4. Nuclear magnetic resonances in weak fields 

    E-Print Network [OSTI]

    Mitchell, Richard Warren

    1953-01-01

    nosent per unit votune~ is related to p ~ the relation A h rp u 5I ~ 71 y, ths constant appearing in (3), is the gyroauupxetie ratio of the nu?ious+ Conbination of {2) and (3) yields the equation d8/dt e 8'8 ~ He A Rquati?n (4) with the value... whish depends on the dif fersnoe between 8? and Ho. kssuadng that the rate nf ?hangs of 8 is proportdonal to (8 Ha)x it follows that d/dt (8, - Ho) s 1/Tl (Ha - 8, ), where Tl is a constant having the dimensions of time. Upon integration of (6), Tl...

  5. Bayesian Optimization of Magnetic Resonance Imaging Sequences

    E-Print Network [OSTI]

    Seeger, Matthias

    Imaging 2 Bayesian Experimental Design 3 Scalable Approximate Inference 4 Experiments Seeger (MMCI Healthcare: Growing number of MRI diagnoses Brain research: Ethical human subject studies Seeger (MMCI Extremely versatile Noninvasive, no ionizing radiation Seeger (MMCI) Bayesian MRI Optimization 28 November

  6. Danti with Nuclear Magnetic Resonance Machine 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  7. Nanoscale magnetic resonance imaging C. L. Degena

    E-Print Network [OSTI]

    Leonardo, Degiorgi

    tobacco mosaic virus particles sitting on a nanometer-thick layer of ad- sorbed hydrocarbons. This result, which represents a 100 million- fold improvement in volume resolution over conventional MRI considerable effort, attempts to push the spatial resolution of conventional MRI into the realm of high

  8. Magnetic Resonance Pulse Sequences for Fluorine-19 

    E-Print Network [OSTI]

    Terry, Robin

    2014-07-11

    Cellular therapy is the transplantation of live cells or a cell population in a patient for the treatment of complex diseases. The success of cellular therapy will rely heavily on delivering the cells to their targeted organs or areas of interest...

  9. Portable low-cost magnetic resonance imaging

    E-Print Network [OSTI]

    Cooley, Clarissa Zimmerman

    2014-01-01

    Purpose: As the premiere modality for brain imaging, MRI could find wider applicability if lightweight, portable systems were available for siting in unconventional locations such as intensive care units (ICUs), physician ...

  10. NUCLEAR MAGNETIC RESONANCE STUDIES OF URANOCENES

    E-Print Network [OSTI]

    Luke, Wayne D.

    2012-01-01

    both pseudocontac~ ar:.d contac;;:: interactions cont:::-one of two things: both the contac= and pseudocontact shiftsof these results suggests that contac~ shifts-con- tribute

  11. Parallel magnetic resonance imaging: characterization and comparison 

    E-Print Network [OSTI]

    Rane, Swati Dnyandeo

    2005-11-01

    coil configuration, k-space subsampling factor, k-space coverage in the imaging environment, there is a critical need to find the method giving the best results under certain imaging conditions. The tools developed in this research help the selection...

  12. Single echo acquisition magnetic resonance imaging 

    E-Print Network [OSTI]

    McDougall, Mary Preston

    2006-04-12

    limitations are already being approached. Parallel imaging methods (using multiple receiver coils to partially encode k-space) have offered some relief in the efforts and are rapidly becoming the focus of current endeavors to decrease scan time. Ideally...

  13. Plutonium less mysterious with nuclear magnetic resonance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/OPerformancePi Day Pi Day Pi DayPlasmaandAbout Us

  14. Theory of Off Resonance Heat:ing J .C. SPROTI

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    The heating rate for a cold, tenuous, unifonn plasma in a unifonn magnetic field can be written as (1) where E previously proved successful for calculating resonance heating rates. II. Upper off Resonance Heating, and the resulting heating rate is independent of the collision frequency v . It is often said that there can

  15. THE JOURNAL OF CHEMICAL PHYSICS 138, 174203 (2013) Sideband separation experiments in NMR with phase incremented

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    2013-01-01

    Avenue, Columbus, Ohio 43210, USA 2 Center of Biomedical Magnetic Resonance, SGPGIMS Campus, Lucknow-Purcell-Meiboom-Gill ac- quisition. Additionally, an intuitive approach is presented for designing and processing echo to relate the two-dimensional signals acquired in TOP, MAT, and PASS experiments to a common coor- dinate

  16. Continuous wave approach for simulating Ferromagnetic Resonance in nanosized elements

    E-Print Network [OSTI]

    Wagner, K; Farle, M

    2015-01-01

    We present a numerical approach to simulate the Ferromagnetic Resonance (FMR) of micron and nanosized magnetic elements by a micromagnetic finite di?erence method. In addition to a static magnetic field a linearly polarized oscillating magnetic field is utilized to excite and analyze the spin wave excitations observed by Ferromagnetic Resonance in the space- and time-domain. Our continuous wave approach (CW) provides an alternative to the common simulation method, which uses a pulsed excitation of the magnetic system. It directly models conventional FMR-experiments and permits the determination of the real and imaginary part of the complex dynamic susceptibility without the need of post-processing. Furthermore not only the resonance fields, but also linewidths, ellipticity, phase relations and relative intensities of the excited spin wave modes in a spectrum can be determined and compared to experimental data. The magnetic responses can be plotted as a function of spatial dimensions yielding a detailed visual...

  17. Threshold Doses for Focal Liver Reaction After Stereotactic Ablative Body Radiation Therapy for Small Hepatocellular Carcinoma Depend on Liver Function: Evaluation on Magnetic Resonance Imaging With Gd-EOB-DTPA

    SciTech Connect (OSTI)

    Sanuki, Naoko; Takeda, Atsuya; Oku, Yohei; Eriguchi, Takahisa; Nishimura, Shuichi; Aoki, Yosuke; Mizuno, Tomikazu; Iwabuchi, Shogo; Kunieda, Etsuo

    2014-02-01

    Purpose: Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). Methods and Materials: In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computed tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dose–volume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. Results: A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. Conclusion: The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR.

  18. Probe for high resolution NMR with sample reorientation

    DOE Patents [OSTI]

    Pines, A.; Samoson, A.

    1990-02-06

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero. 8 figs.

  19. Probe for high resolution NMR with sample reorientation

    DOE Patents [OSTI]

    Pines, Alexander (Berkeley, CA); Samoson, Ago (Tallinn, SU)

    1990-01-01

    An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.

  20. AB3 Proton NMR Using Tensor Algebra Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    AB3 Proton NMR Using Tensor Algebra Frank Rioux Professor Emeritus of Chemistry CSB|SJU The purpose of this tutorial is to calculate the NMR spectrum of a four proton AB3 system in Hz) are for the AB3 proton system 1,1dichloroethane at 60 MHz. A 350.0 B 120.0 Jab 10.00 Hamiltonian

  1. Communication Interlaced Fourier transformation of ultrafast 2D NMR data

    E-Print Network [OSTI]

    Frydman, Lucio

    Communication Interlaced Fourier transformation of ultrafast 2D NMR data Mor Mishkovsky, Lucio in ultrafast 2D NMR is discussed and exemplified, based on the interlaced Fourier transformation. This approach in the achievable digital resolution. These expectations were tested by carrying out a series of homo

  2. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  3. Lipid Analysis of Neochloris oleoabundans by Liquid State NMR

    E-Print Network [OSTI]

    for biodiesel production. To demonstrate the viability of this approach, 13 C NMR was used to analyze the lipid relevance to biodiesel production. Biotechnol. Bioeng. 2010;106: 573­583. ß 2010 Wiley Periodicals, Inc. KEYWORDS: NMR; algae; lipid; triglyceride; composition analysis; biodiesel Introduction Biodiesel produced

  4. Multifrequency spin resonance in diamond

    SciTech Connect (OSTI)

    Childress, Lilian; McIntyre, Jean

    2010-09-15

    Magnetic resonance techniques provide a powerful tool for controlling spin systems, with applications ranging from quantum information processing to medical imaging. Nevertheless, the behavior of a spin system under strong excitation remains a rich dynamical problem. In this paper, we examine spin resonance of the nitrogen-vacancy center in diamond under conditions outside the regime where the usual rotating-wave approximation applies, focusing on effects of multifrequency excitation and excitation with orientation parallel to the spin quantization axis. Strong-field phenomena such as multiphoton transitions and coherent destruction of tunneling are observed in the spectra and analyzed via numerical and analytic theory. In addition to illustrating the response of a spin system to strong multifrequency excitation, these observations may inform techniques for manipulating electron-nuclear spin quantum registers.

  5. Ultra-low field NMR for detection and characterization of 235 UF6

    SciTech Connect (OSTI)

    Espy, Michelle A; Magnelind, Per E; Matlashov, Andrei N; Urbaitis, Algis V; Volegov, Petr L

    2009-01-01

    We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

  6. A study of the microstrip ring resonator and its applications 

    E-Print Network [OSTI]

    Martin, Tracy Scott

    1987-01-01

    of the Magnetic-Wall Model F. Simplified Eigenequation G. A Rigorous Solution H. Eigenequation Application for X- Junction I, Discontinuity Parameter Evaluation [11] Circulators 5 12 15 17 19 21 22 25 27 III MODEL OF THE RING RESONATOR AND A GAP... (Continued) CHAPTER F. Effects of the Package Parasitics on the Resonant Frequency G. Experimental Results H. Double Varactor Ring Resonator Page 76 83 88 V PIN DIODES IN A RING RESONATOR AS A SWITCH/FILTER 92 A, PIN Diode Equivalent Circuit B...

  7. Local structures of polar wurtzites Zn1-xMgxO studied by raman and 67Zn/25Mg NMR spectroscopies and by total neutron scattering

    SciTech Connect (OSTI)

    Proffen, Thomas E; Kim, Yiung- Il; Cadars, Sylvian; Shayib, Ramzy; Feigerle, Charles S; Chmelka, Bradley F; Seshadri, Ram

    2008-01-01

    Research in the area of polar semiconductor heterostructures has been growing rapidly, driven in large part by interest in two-dimensional electron gas (2DEG) systems. 2DEGs are known to form at heterojunction interfaces that bear polarization gradients. They can display extremely high electron mobilities, especially at low temperatures, owing to spatial confinement of carrier motions. Recent reports of 2DEG behaviors in Ga{sub 1-x}Al{sub x}N/GaN and Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have great significance for the development of quantum Hall devices and novel high-electron-mobility transistors (HEMTs). 2DEG structures are usually designed by interfacing a polar semiconductor with its less or more polar alloys in an epitaxial manner. Since the quality of the 2DEG depends critically on interface perfection, as well as the polarization gradient at the heterojunction, understanding compositional and structural details of the parent and alloy semiconductors is an important component in 2DEG design and fabrication. Zn{sub 1-x}Mg{sub x}O/ZnO is one of the most promising heterostructure types for studies of 2DEGs, due to the large polarization of ZnO, the relatively small lattice mismatch, and the large conduction band offsets in the Zn{sub 1-x}Mg{sub x}O/ZnO heterointerface. Although 2DEG formation in Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have been researched for some time, a clear understanding of the alloy structure of Zn{sub 1-x}Mg{sub x}O is currently lacking. Here, we conduct a detailed and more precise study of the local structure of Zn{sub 1-x}Mg{sub x}O alloys using Raman and solid-state nuclear magnetic resonance (NMR), in conjunction with neutron diffraction techniques.

  8. Magnetically excited flexural plate wave apparatus

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Smith, James H. (Albuquerque, NM)

    1998-01-01

    A non-piezoelectric flexural plate wave apparatus having meander-line transducers mounted on a non-piezoelectric membrane. A static magnetic field is directed perpendicularly to the conductive legs of the transducers in the plane of the membrane. Single-port, two-port, resonant, non-resonant, eigenmode, and delay-line modes may be employed.

  9. NMR studies of metallic tin confined within porous matrices

    SciTech Connect (OSTI)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  10. Enhancement of Spin-transfer torque switching via resonant tunneling

    SciTech Connect (OSTI)

    Chatterji, Niladri; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2014-12-08

    We propose the use of resonant tunneling as a route to enhance the spin-transfer torque switching characteristics of magnetic tunnel junctions. The proposed device structure is a resonant tunneling magnetic tunnel junction based on a MgO-semiconductor heterostructure sandwiched between a fixed magnet and a free magnet. Using the non-equilibrium Green's function formalism coupled self consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation, we demonstrate enhanced tunnel magneto-resistance characteristics as well as lower switching voltages in comparison with traditional trilayer devices. Two device designs based on MgO based heterostructures are presented, where the physics of resonant tunneling leads to an enhanced spin transfer torque thereby reducing the critical switching voltage by up to 44%. It is envisioned that the proof-of-concept presented here may lead to practical device designs via rigorous materials and interface studies.

  11. Hydrolysis and esterification in organically modified alkoxysilanes: A {sup 29}Si NMR investigation of methyltrimethoxysilane

    SciTech Connect (OSTI)

    Alam, T.M.; Assink, R.A.; Loy, D.A. [Sandia National Lab., Albuquerque, NM (United States)] [Sandia National Lab., Albuquerque, NM (United States)

    1996-09-01

    High-resolution {sup 29}Si NMR was used to investigate the acid-catalyzed hydrolysis and esterification reactions of methyltrimethoxysilane (MTMS) in methanol. The INEPT experiment, adapted for spin systems with multiple heteronuclear coupling constants, was used to assign the closely spaced resonances of the MTMS hydrolysis products. Due to the rapid reaction rates, only the pseudoequilibrium concentration distributions for the resulting hydrolysis products could be determined. Models based on thermodynamically statistical distributions, irreversible hydrolysis reactions, and reversible hydrolysis reactions were nearly equally successful in accounting for the concentration distributions over a wide range of H{sub 2}O/Si ratios (R{sub w}) and temperatures. However, preparation of hydrolyzed MTMS in a nonpseudoequilibrium state unequivocally demonstrated the reversibility of hydrolysis reactions on a short time scale. By measuring the extent of reaction of MTMS systems at high water concentrations, the ratio of the hydrolysis to esterification rate constant was determined to be approximately 100. 36 refs., 7 figs.

  12. An electron spin resonance investigation of irradiated potassium chloride crystals doped with sodium nitroprusside 

    E-Print Network [OSTI]

    Mayers, Richard Ralph

    1968-01-01

    electrons Ferro and. ferrimagnets Imperfections in insulators, which may trap electrons or holes Free rad. icals. 12 Certain paramagnetic solids display electron spin resonance. Among them the strongly paramagnetic salts are likely to have two.... In hyperfine structure the spin and. magnetic moment of the nucleus collaborates with those of the electro~ to produce a ]oint effect. It i" still the electron resonance and must never be confused with the nuclear resonance; but the single resonance peak...

  13. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  14. Dynamic nuclear polarization for NMR : applications and hardware development

    E-Print Network [OSTI]

    Casey, Andrew (Andrew Byron)

    2008-01-01

    solid State NMR (SSNMR) can determine molecular as well as supermolecular structure and dynamics. The low signal intensities make many of these experiments prohibitively long. Dynamic Nuclear Polarization provides a method ...

  15. Gas phase 129Xe NMR imaging and spectroscopy

    E-Print Network [OSTI]

    Kaiser, Lana G.

    2010-01-01

    5 l l Dynamic NMR microscopy of gas phase Poiseuille flowmetal vapors and noble gases can be used to efficientlypolarize the nuclei ofthe noble-gas atoms. As a result, the

  16. Structural studies of amyloid fibrils using solid-state NMR

    E-Print Network [OSTI]

    Caporini, Marc Anthony

    2008-01-01

    he development of solid-state NMR techniques and application to amyloid fibrils are presented. In addition, a new method of selective inversion based on chemical shift anisotropy is presented. An improved method for highly ...

  17. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  18. Ovenized microelectromechanical system (MEMS) resonator

    DOE Patents [OSTI]

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  19. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  20. Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets

    SciTech Connect (OSTI)

    Kennth Marken

    2006-08-11

    The original goal of this Phase II Superconductivity Partnership Initiative project was to build and operate a prototype Magnetic Resonance Imaging (MRI) system using high temperature superconductor (HTS) coils wound from continuously processed dip-coated BSCCO 2212 tape conductor. Using dip-coated tape, the plan was for MRI magnet coils to be wound to fit an established commercial open geometry, 0.2 Tesla permanent magnet system. New electronics and imaging software for a prototype higher field superconducting system would have added significantly to the cost. However, the use of the 0.2 T platform would allow the technical feasibility and the cost issues for HTS systems to be fully established. Also it would establish the energy efficiency and savings of HTS open MRI compared with resistive and permanent magnet systems. The commercial goal was an open geometry HTS MRI running at 0.5 T and 20 K. This low field open magnet was using resistive normal metal conductor and its heat loss was rather high around 15 kolwatts. It was expected that an HTS magnet would dissipate around 1 watt, significantly reduce power consumption. The SPI team assembled to achieve this goal was led by Oxford Instruments, Superconducting Technology (OST), who developed the method of producing commercial dip coated tape. Superconductive Components Inc. (SCI), a leading US supplier of HTS powders, supported the conductor optimization through powder optimization, scaling, and cost reduction. Oxford Magnet Technology (OMT), a joint venture between Oxford Instruments and Siemens and the world’s leading supplier of MRI magnet systems, was involved to design and build the HTS MRI magnet and cryogenics. Siemens Magnetic Resonance Division, a leading developer and supplier of complete MRI imaging systems, was expected to integrate the final system and perform imaging trials. The original MRI demonstration project was ended in July 2004 by mutual consent of Oxford Instruments and Siemens. Between the project start and that date a substantial shift in the MRI marketplace occurred, with rapid growth for systems at higher fields (1.5 T and above) and a consequent decline in the low field market (<1.0 T). While the project aim appeared technically attainable at that time, the conclusion was reached that the system and market economics do not warrant additional investment. The program was redirected to develop BSCCO 2212 multifilament wire development for high field superconducting magnets for NMR and other scientific research upon an agreement between DOE and Oxford Instruments, Superconducting Technology. The work t took place between September, 2004 and the project end in early 2006 was focused on 2212 multifilamentary wire. This report summarizes the technical achievements both in 2212 dip coated for an HTS MRI system and in BSCCO 2212 multifilamentary wire for high field magnets.