A Pionic Hadron Explains the Muon Magnetic Moment Anomaly
Rainer W. Schiel; John P. Ralston
2007-10-01T23:59:59.000Z
A significant discrepancy exists between experiment and calculations of the muon's magnetic moment. We find that standard formulas for the hadronic vacuum polarization term have overlooked pionic states known to exist. Coulomb binding alone guarantees $\\pi^+ \\pi^-$ states that quantum mechanically mix with the $\\rho$ meson. A simple 2-state mixing model explains the magnetic moment discrepancy for a mixing angle of order $\\alpha \\sim 10^{-2}$. The relevant physical state is predicted to give a tiny observable bump in the ratio R(s) of $e^+ e^-$ annihilation at a low energy not previously searched. The burden of proof is reversed for claims that conventional physics cannot explain the muon's anomalous moment.
Neutrino magnetic moment in a magnetized plasma
N. V. Mikheev; E. N. Narynskaya
2010-11-08T23:59:59.000Z
The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.
Magnetic moment versus tensor charge
M. Mekhfi
2005-05-10T23:59:59.000Z
We express the baryon magnetic moments in terms of the baryon tensor charges, considering the quarks as relativistic interacting objects. Once tensor charges get measured accurately, the formula for the baryon magnetic moment will serve to extract precise information on the quark anomalous magnetic moment, the quark effective mass and the ratio of the quark constituent mass to the quark effective mass. The analogous formula for the baryon electric dipole moment is of no great use as it gets eventually sizable contributions from various CP- violating sources not necessary associated to the quark electric dipole moment.
$?^{-}$, $?^{* -}$, $?^{* -}$ and $?^{-}$ decuplet baryon magnetic moments
Milton Dean Slaughter
2011-04-04T23:59:59.000Z
The properties of the ground state $U$-Spin $={3/2}$ baryon decuplet magnetic moments $\\Delta^{-}$, $\\Xi^{* -}$, $\\Sigma^{* -}$ and $\\Omega^{-}$ and their ground state spin 1/2 cousins $p$, $n$, $\\Lambda$, $\\Sigma^{+}$, $\\Sigma^{0}$, $\\Sigma^{-}$, $\\Xi^{+}$, and $\\Xi^{-}$ have been studied for many years with a modicum of success. The magnetic moments of many are yet to be determined. Of the decuplet baryons, only the magnetic moment of the $\\Omega^{-}$ has been accurately determined. We calculate the magnetic moments of the \\emph{physical} decuplet $U$-Spin $={3/2}$ quartet members without ascribing any specific form to their quark structure or intra-quark interactions.
Bonanos, Peter (East Brunswick, NJ)
1983-01-01T23:59:59.000Z
A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
Electric Dipole Moment of Magnetic Monopole
Makoto Kobayashi
2007-03-07T23:59:59.000Z
The electric dipole moment of magnetic monopoles with spin is studied in the N=2 supersymmetric gauge theory. The dipole moments of the electric charge distributions, as well as the dipole moments due to the magnetic currents, are calculated. The contribution of charge distribution of the fermion to the gyroelectric ratio is expressed by using zeta(3).
Magnetic anomalies northeast of Shatsky Plateau
Risch, David Lawrence
1982-01-01T23:59:59.000Z
MAGNETIC ANOMALIES NORTHEAST OF SHATSKY PLATEAU A Thesis by DAVID LAWRENCE RISCH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1982 Major Subject...: Oceanography MAGNETIC ANOMALIES NORTHEAST OF SHATSKY PLATEAU A Thesis by DAVID LAWRENCE RISCH Approved as to style and content by: C rman Committee Member Member Head of Department May 198Z ABSTRACT Magnetic Anomalies Northeast of Shatsky Plateau...
Inversion of marine magnetic anomalies by deconvolution
Harry, Dennis Lee
1983-01-01T23:59:59.000Z
-Chairmen of Advisory Committee: Dr. Richard L. Carlson Dr. Phillip D. Rabinowitz Marine magnetic anomalies can be expressed as a convolution between the equivalent magnetic line source in the oceanic crust and a transfer function. The transfer function contains..., with the resulting anomaly still exhibiting sharp reversals. This is compatible with the results of magnetic studies of ophiolites and dredged oceanic rocks, which indicate that a smoothly varying source is more probable than a block model for the generation...
Testing neutrino magnetic moments with AGNs
Kari Enqvist; Petteri Keränen; Jukka Maalampi
1998-06-17T23:59:59.000Z
We propose to test the magnetic transition moments of Majorana neutrinos by comparing the fluxes of different flavours of neutrinos coming from active galactic nuclei (AGN). We show that, with reasonable assumptions about the magnetic field of the AGN, it is possible to obtain limits on $\
Nonstandard neutrino interactions and transition magnetic moments
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Healey, Kristopher J.; Petrov, Alexey A.; Zhuridov, Dmitry
2013-06-01T23:59:59.000Z
We constrain generic nonstandard neutrino interactions with existing experimental data on neutrino transition magnetic moments and derive strong bounds on tensorial couplings of neutrinos to charged fermions. We also discuss how some of these tensorial couplings can be constrained by other experiments, e.g., on neutrino-electron and neutrino-nucleus scattering.
Noncommutative magnetic moment of charged particles
Adorno, T. C.; Gitman, D. M. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Shabad, A. E. [P.N. Lebedev Physics Institute, Moscow (Russian Federation); Vassilevich, D. V. [CMCC - Universidade Federal do ABC, Santo Andre, S.P. (Brazil); Department of Physics, St. Petersburg State University (Russian Federation)
2011-10-15T23:59:59.000Z
It has been argued that in noncommutative field theories, the sizes of physical objects cannot be taken smaller than an ''elementary length'' related to noncommutativity parameters. By gauge covariantly extending field equations of noncommutative U(1){sub *} theory to cover the presence of external sources, we find electric and magnetic fields produced by an extended static charge. We find that such a charge, apart from being an ordinary electric monopole, is also a magnetic dipole. By writing off the existing experimental clearance in the value of the lepton magnetic moments for the present effect, we get the bound on noncommutativity at the level of 10{sup 4} TeV.
Instantaneous Power Radiated from Magnetic Dipole Moments
Peter D. Morley; Douglas J. Buettner
2014-07-04T23:59:59.000Z
We compute the power radiated per unit solid angle of a moving magnetic dipole moment, and its instantaneous radiated power, both non-relativistically and relativistically. This is then applied to various interesting situations: solar neutrons, electron synchrotrons and cosmological Dirac neutrinos. Concerning the latter, we show that hypothesized early-universe Big Bang conditions allow for neutrino radiation cooling and provide an energy loss-mechanism for subsequent neutrino condensation.
Porsev, S G; Flambaum, V V
2010-01-01T23:59:59.000Z
We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM (d_N) with the hyperfine interaction, the "magnetic moment effect". We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 * 10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.
S. G. Porsev; J. S. M. Ginges; V. V. Flambaum
2011-03-02T23:59:59.000Z
We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM (d_N) with the hyperfine interaction, the "magnetic moment effect". We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg, we have placed the following constraints on the nuclear EDMs, |d_N(129Xe)|< 1.1 * 10^{-21} |e|cm and |d_N(199Hg)|< 2.8 * 10^{-24} |e|cm.
Fully Quantum Measurement of the Electron Magnetic Moment
Gabrielse, Gerald
Refrigerator and Magnet . . . . . . . . . . . . . . . . 22 2.1.3 Vacuum EnclosureFully Quantum Measurement of the Electron Magnetic Moment A thesis presented by Brian Carl Odom Measurement of the Electron Magnetic Moment Abstract This thesis reports a preliminary result for the first
The contribution of strange quarks to the proton magnetic moment
G. Dillon; G. Morpurgo
2006-02-20T23:59:59.000Z
This paper deals with how to extract the s-s(bar) contribution to the proton magnetic moment from the experiments
Neutrino self-energy operator and neutrino magnetic moment
Dobrynina, A. A., E-mail: elenan@uniyar.ac.ru; Mikheev, N. V.; Narynskaya, E. N. [Yaroslavl State University (Russian Federation)] [Yaroslavl State University (Russian Federation)
2013-11-15T23:59:59.000Z
A simple method for calculating the magnetic moment of a massive neutrino on the basis of its self-energy operator is presented. An expression for the magnetic moment of a massive neutrino in an external electromagnetic field is obtained in the R{sub {xi}} gauge for the case of an arbitrary ratio of the lepton and W-boson masses.
Axial anomaly of QED in a strong magnetic field and noncommutative anomaly
Sadooghi, N. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics (IPM), School of Physics, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Jafari Salim, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of)
2006-10-15T23:59:59.000Z
The Adler-Bell-Jackiw (ABJ) anomaly of a 3+1 dimensional QED is calculated in the presence of a strong magnetic field. It is shown that in the regime with the lowest Landau level (LLL) dominance a dimensional reduction from D=4 to D=2 dimensions occurs in the longitudinal sector of the low energy effective field theory. In the chiral limit, the resulting anomaly is therefore comparable with the axial anomaly of a two-dimensional massless Schwinger model. It is further shown that the U{sub A}(1) anomaly of QED in a strong magnetic field is closely related to the nonplanar axial anomaly of a conventional noncommutative U(1) gauge theory.
Baryon magnetic moments in the background field method
Lee, F X; Zhou, L; Wilcox, W
2005-01-01T23:59:59.000Z
We present a calculation of the magnetic moments for the baryon octet and decuplet using the background-field method and standard Wilson gauge and fermion actions in the quenched approximation of lattice QCD. Progressively smaller static magnetic fields are introduced on a $24^4$ lattice at beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the background field.
Baryon magnetic moments in the external field method
Lee, F X; Zhou, L; Wilcox, W
2005-01-01T23:59:59.000Z
We present a calculation of the magnetic moments of the baryon octet and decuplet using the external field method and standard Wilson gauge and fermion actions in the quenched approximation. Progressively smaller static magnetic fields are introduced on a $24^4$ latticeat beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the external field.
Magnetic Moments of Light Nuclei from Lattice Quantum Chromodynamics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Beane, S. R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H W.; Orginos, K; Parreno, A; Savage, M J.; Tiburzi, B C.
2014-12-01T23:59:59.000Z
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m_pi ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In particular, we find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutronmore »captures its dominant structure. Similarly a shell-model-like moment is found for the triton, mu_^3H ~ mu_p. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less
Magnetic Moments of Light Nuclei from Lattice Quantum Chromodynamics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Beane, S. R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H W.; Orginos, K.; Parreno, A; Savage, M J.; Tiburzi, B C.
2014-12-01T23:59:59.000Z
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m_pi ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In particular, we find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, mu_^3H ~ mu_p. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.
Magnetic Moments of Light Nuclei from Lattice Quantum Chromodynamics
Beane, S.?R.
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton, and [superscript 3]He, along with those of the neutron and proton. These calculations, performed ...
Magnetic Moment Enhancement for Mn7 Cluster on Graphene
Liu, Xiaojie [Ames Laboratory; Wang, Cai-Zhuang [Ames Laboratory; Lin, Hai-Qing [Beijing Computational Science Research Center; Ho, Kai-Ming [Ames Laboratory
2014-08-21T23:59:59.000Z
Mn7 cluster on graphene with different structural motifs and magnetic orders are investigated systematically by first-principles calculations. The calculations show that Mn7 on graphene prefers a two-layer motif and exhibits a ferrimagnetic coupling. The magnetic moment of the Mn7 cluster increases from 5.0 ?B at its free-standing state to about 6.0 ?B upon adsorption on graphene. Mn7 cluster also induces about 0.3 ?B of magnetic moment in the graphene layer, leading to an overall enhancement of 1.3 ?B magnetic moment for Mn7 on graphene. Detail electron transfer and bonding analysis have been carried out to investigate the origin of the magnetic enhancement.
Magnetic susceptibility, magnetization, magnetic moment and characterization of Carancas meteorite
Rosales, Domingo
2015-01-01T23:59:59.000Z
On September, 15th, 2007, in the community of Carancas (Puno, Peru) a stony meteorite formed a crater explosive type with a mean diameter of 13.5 m. some samples meteorite fragments were collected. The petrologic analysis performed corresponds to a meteorite ordinary chondrite H 4-5. In this paper we have analyzed the magnetic properties of a meteorite fragment with a proton magnetometer. Also in order to have a complete characterization of the Carancas meteorite and its crater, from several papers, articles and reports, we have made a compilation of the most important characteristics and properties of this meteorite.
Magnetic moments of octet baryons at finite density and temperature
C. Y. Ryu; C. H. Hyun; M. -K. Cheoun
2010-08-12T23:59:59.000Z
We investigate the change of magnetic moments of octet baryons in nuclear matter at a finite density and temperature. Quark-meson coupling models are employed in describing properties of octet baryons and their interactions. Magnetic moments of octet baryons are found to increase non-negligibly as density and temperature increase, and we find that temperature dependence can be strongly correlated with the quark-hadron phase transition. Model dependence is also examined by comparing the results from the quark-meson coupling (QMC) model to those by the modified QMC (MQMC) model where the bag constant is assumed to depend on density. Both models predict sizable dependence on density and temperature, but the MQMC model shows a more drastic change of magnetic moments. Feasible changes of the nucleon mass by strong magnetic fields are also reported in the given models.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
Córsico, Alejandro H; Bertolami, Marcelo M Miller; Kepler, S O; García-Berro, Enrique
2014-01-01T23:59:59.000Z
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. By comparing the theoretical rate of change of period expected for this star with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment. Our upper limit for the neutrino magnetic dipole moment is somewhat less restrictive than, but still compat...
Anomalous Magnetic and Electric Dipole Moments of the Tau
Lucas Taylor
1998-10-23T23:59:59.000Z
This paper reviews the theoretical predictions for and the experimental measurements of the anomalous magnetic and electric dipole moments of the tau lepton. In particular, recent analyses of the $\\eettg$ process from the L3 and OPAL collaborations are described. The most precise results, from L3, for the anomalous magnetic and electric dipole moments respectively are: $\\atau = 0.004 \\pm 0.027 \\pm 0.023$ and $\\dtau = (0.0 \\pm 1.5 \\pm 1.3)\\times 10^{-16}{e{\\cdot}\\mathrm{cm}}$.
Magnetic moments of T=3/2 mirror pairs
Perez, S. M. [Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa); iThemba LABS, P. O. Box 722, Somerset West 7129 (South Africa); Richter, W. A. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Brown, B. A. [Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Horoi, M. [Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859 (United States)
2010-12-15T23:59:59.000Z
We predict values of the magnetic moments of T=3/2 proton-rich fp-shell nuclei in the mass range A=43-53, by using known values for their neutron-rich mirrors together with shell-model estimates for small quantities. We extend the analysis to those T=3/2 sd-shell mirror pairs for which both the T{sub z}=-3/2 and T{sub z}=+3/2 magnetic moments have been measured. We find that these obey the same linear relation as previously deduced for T=1/2 mirror pairs.
Inversion of marine magnetic anomalies by deconvolution
Harry, Dennis Lee
1983-01-01T23:59:59.000Z
( ? ), which equals -ln( ? ). rl' r4' r3r2 rlr4 r2'r3' r4rl ' 12r3 This results in an asymmetric anomaly. Larger blocks will cause a larger logarithmic term, and hence, a greater degree of asymmetry. In the Vine-Mathews model, ridges with a high spreading... that are not easily anticipated from the Vine&fathews model. These effects are examined below. Consider a symmetrically spreading ridge. The central block will be symmetric about the ridge axis, causing the logarithmic term in equation 7 (p. 12) to vanish...
Homomorphic deconvolution of marine magnetic anomalies
Jones, Leo David
1976-01-01T23:59:59.000Z
HOMOMORPIIIC DECONVOLUT ION OF MAR INE MAGNETIC ANOMAL I ES A Thesis by LEO DAVID JONES Submitted to the Graduate Colleoe of Texas Ahhi Unis ars i ty in partial fulfillment of the requirement for tne degree MASTEP, OF SCIENCE December 1975... Major Subject: Geophysics HOMOMORPHIC DECONVOLUT ION OF MARINE MAGNETIC ACNOMALIES A Thesis by LEO DAVID JONES Approved es to sty1e and content by: r"hi ~f C itt: Ch h~7 December 1976 ABSTRACT Homomorpi;ic Deconvolution of Marine Magnetic...
Müller, Dietmar
grid for the World Digital Magnetic Anomaly Map. The resolution has been improved from 3 arc min to 2EMAG2: A 2arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, I-19020 Fezzano, Italy [1] A global Earth Magnetic Anomaly Grid (EMAG2) has been compiled from
Rock magnetic investigation of possible sources of the Bangui magnetic anomaly1 , M., Quesnel2*
Boyer, Edmond
Rock magnetic investigation of possible sources of the Bangui magnetic anomaly1 2 Ouabego1,2 , M slices of such28 metamorphic rocks, or by an iron-rich mafic source, or by a combination of these two29 source using constraints19 from satellite and ground magnetic field measurements, as well as from surface
Overton, Jr., William C. (Los Alamos, NM); Steyert, Jr., William A. (Los Alamos, NM)
1984-01-01T23:59:59.000Z
A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.
A. V. Borisov; P. E. Sizin
2014-06-12T23:59:59.000Z
We calculate the neutrino luminosity of a degenerate electron gas in a strong magnetic field via plasmon decay to a neutrino pair due to neutrino electromagnetic moments and obtain the relative upper bounds on the effective neutrino magnetic moment.
Neutrino Magnetic Moment, CP Violation and Flavor Oscillations in Matter
Y. Pehlivan; A. B. Balantekin; Toshitaka Kajino
2014-06-19T23:59:59.000Z
We consider collective oscillations of neutrinos, which are emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. We investigate the symmetries of the problem in the full three flavor mixing scheme and in the exact many-body formulation by including the effects of CP violation and neutrino magnetic moment. We show that, similar to the two flavor scheme, several dynamical symmetries exist for three flavors in the single-angle approximation if the net electron background in the environment and the effects of the neutrino magnetic moment are negligible. Moreover, we show that these dynamical symmetries are present even when the CP symmetry is violated in neutrino oscillations. We explicitly write down the constants of motion through which these dynamical symmetries manifest themselves in terms of the generators of the SU(3) flavor transformations. We also show that the effects due to the CP-violating Dirac phase factor out of the many-body evolution operator and evolve independently of nonlinear flavor transformations if neutrino electromagnetic interactions are ignored. In the presence of a strong magnetic field, CP-violating effects can still be considered independently provided that an effective definition for neutrino magnetic moment is used.
Neutrino Magnetic Moment, CP Violation and Flavor Oscillations in Matter
Pehlivan, Y; Kajino, Toshitaka
2014-01-01T23:59:59.000Z
We consider collective oscillations of neutrinos, which are emergent nonlinear flavor evolution phenomena instigated by neutrino-neutrino interactions in astrophysical environments with sufficiently high neutrino densities. We investigate the symmetries of the problem in the full three flavor mixing scheme and in the exact many-body formulation by including the effects of CP violation and neutrino magnetic moment. We show that, similar to the two flavor scheme, several dynamical symmetries exist for three flavors in the single-angle approximation if the net electron background in the environment and the effects of the neutrino magnetic moment are negligible. Moreover, we show that these dynamical symmetries are present even when the CP symmetry is violated in neutrino oscillations. We explicitly write down the constants of motion through which these dynamical symmetries manifest themselves in terms of the generators of the SU(3) flavor transformations. We also show that the effects due to the CP-violating Dir...
Limits on the neutrino magnetic moment from the MUNU experiment
Daraktchieva, Z; Link, O; Amsler, Claude; Avenier, M; Broggini, C; Busto, J; Cerna, C; Gervasio, G; Jeanneret, J B; Jonkmans, G; Koang, D H; Lebrun, D; Ould-Saada, F; Puglierin, G; Stutz, A; Tadsen, A; Vuilleumier, J L
2003-01-01T23:59:59.000Z
The MUNU experiment was carried out at the Bugey nuclear power reactor. The aim was the study of electron antineutrino-electron elastic scattering at low energy. The recoil electrons were recorded in a gas time projection chamber, immersed in a tank filled with liquid scintillator serving as veto detector, suppressing in particular Compton electrons. The measured electron recoil spectrum is presented. Upper limits on the neutrino magnetic moment were derived and are discussed.
Magnetic response enhancement via electrically induced magnetic moments
B. Jungnitsch; J. Evers
2008-04-22T23:59:59.000Z
The realization of negative refraction in atomic gases requires a strong magnetic response of the atoms. Current proposals for such systems achieve an enhancement of the magnetic response by a suitable laser field configuration, but still rely on high gas densities. Thus further progress is desirable, and this requires an understanding of the precise mechanism for the enhancement. Therefore, here we study the magnetic and electric response to a probe field interacting with three-level atoms in ladder configuration. In our first model, the three transitions are driven by a control field and the electric and magnetic component of the probe field, giving rise to a closed interaction loop. In a reference model, the coherent driving is replaced by an incoherent pump field. A time-dependent analysis of the closed-loop system enables us to identify the different contributions to the medium response. A comparison with the reference system then allows one to identify the physical mechanism that leads to the enhancement. It is found that the enhancement occurs at so-called multiphoton resonance by a scattering of the coupling field and the electric probe field mode into the magnetic probe field mode. Based on these results, conditions for the enhancement are discussed.
Magnetic moments of the ground-state $\\mathbf{J^P=(3/2)}^{+}$ baryon decuplet
Milton Dean Slaughter
2011-07-18T23:59:59.000Z
The magnetic moment - a function of the electric charge form factor $F_{1}(q^{2})$ and the magnetic dipole form factor $F_{2}(q^{2})$ at zero four-momentum transfer $q^{2}$-of the ground-state $J^{P}=(3/2)^{+}$ baryon decuplet magnetic moments have been studied for many years with limited success. At present, only the magnetic moment of the $\\Omega^{-}$ has been accurately determined. We calculate nonperturbatively the magnetic moments of the \\emph{physical baryon decuplet $J^{P}=(3/2)^{+}$} members and in particular, we obtain $\\mu_{\\Delta^{++}}= (+3.67 \\pm 0.07) \\mu_{N}$, $\\mu_{\\Delta^{+}}= (+1.83 \\pm 0.04) \\mu_{N}$, $\\mu_{\\Delta^{0}}= (0) \\mu_{N}$, and the magnetic moments of their $U$-Spin partners in terms of $\\Omega^{-}$ magnetic moment data.
Fluid and Particle simulations of the Interaction of the Solar Wind with Magnetic Anomalies
Harnett , Erika
Fluid and Particle simulations of the Interaction of the Solar Wind with Magnetic Anomalies Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, to whom the author has granted "the simulations of the Interaction of the Solar Wind with Magnetic Anomalies on the Surface of the Moon and Mars
Deep-tow study of magnetic anomalies in the Pacific Jurassic Quiet Zone
Tominaga, Masako
2006-10-30T23:59:59.000Z
The Jurassic Quiet Zone (JQZ) is a region of low amplitude, difficult-to-correlate magnetic anomalies located over Jurassic oceanic crust. We collected 1200 km of new deep-tow magnetic anomaly profiles over the Pacific JQZ that complement 2 deep...
The effect of sterile states on the magnetic moments of neutrinos
Balantekin, A. B.; Vassh, N. [Physics Department, University of Wisconsin, Madison WI 53706 (United States)
2014-06-24T23:59:59.000Z
We briefly review recent work exploring the effect of light sterile neutrino states on the neutrino magnetic moment as explored by the reactor and solar neutrino experiments.
Bound on the tau neutrino magnetic moment from the Super-Kamiokande data
S. N. Gninenko
1999-02-18T23:59:59.000Z
It is shown that recent results from the Super-Kamiokande detector constrain the tau neutrino diagonal magnetic moment to $\\mu_{\
Updated Estimate of the Muon Magnetic Moment Using Revised Results from e+e- Annihilation
Davier, M; Höcker, A; Zhang, Z; Davier, Michel
2003-01-01T23:59:59.000Z
A new evaluation of the hadronic vacuum polarization contribution to the muon magnetic moment is presented. We take into account the reanalysis of the low-energy e+e- annihilation cross section into hadrons by the CMD-2 Collaboration. The agreement between e+e- and tau spectral functions in the pi pi channel is found to be much improved. Nevertheless, significant discrepancies remain in the center-of-mass energy range between 0.85 and 1.0 GeV, so that we refrain from averaging the two data sets. The values found for the lowest-order hadronic vacuum polarization contributions are a_mu[had,LO] = (696.3 +- 6.2[exp] +- 3.6[rad])e-10 (e+e- -based) and a_mu[had,LO] = (711.0 +- 5.0[exp] +- 0.8[rad] +- 2.8[SU2])e-10 (tau-based), where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The corresponding Standard Model predictions for the muon magnetic anomaly read a_mu = (11,659,180.9 +- 7.2[had] +- 3.5[LBL] +- 0.4[QED+EW])e-10 (e+...
Giant Magnetic Moments and Magnetic Bistability of Stoichiomatric MnO Clusters
Nayak, S.K.; Jena, P. [Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000 (United States)] [Physics Department, Virginia Commonwealth University, Richmond, Virginia 23284-2000 (United States)
1998-10-01T23:59:59.000Z
{ital Abthinspthinspinitio} calculations based on density functional theory and generalized gradient approximation reveal many unusual features of stoichiometric (MnO){sub x} (x{le}9) clusters that contrast with their bulk behavior. The clusters are ferromagnetic and carry atomiclike magnetic moments ranging from 4{mu}{sub B} to 5{mu}{sub B} per MnO unit, and the moments are localized at the Mn sites. The (MnO){sub 8} cluster, in particular, exhibits nearly degenerate ferromagnetic and atypical antiferromagnetic solutions with the ferromagnetic structure carrying a moment of 40{mu}{sub B} . The structures of (MnO){sub x} clusters are also unique with cubic and hexagonal forms competing for stability. (MnO){sub 2} and (MnO){sub 3} are unusually stable and form the foundation for further growth. {copyright} {ital 1998} {ital The American Physical Society}
Overton, W.C. Jr.; Steyert, W.A. Jr.
1981-05-22T23:59:59.000Z
A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.
Energy Dependence of Solar Neutrino Suppression and Bounds on the Neutrino Magnetic Moment
Joao Pulido; Ana M. Mourao
1998-03-02T23:59:59.000Z
An analysis of neutrino electron scattering as applied to the SuperKamiokande solar neutrino experiment with the data from the Homestake experiment leads to an upper bound on the neutrino magnetic moment in the range $\\mu_{\
Characterization and removal of errors due to local magnetic anomalies in directional drilling of Geophysics, Colorado School of Mines Summary Directional drilling has evolved over the last few decades utilizes a technique known as magnetic Measurement While Drilling (MWD). Vector measurements of geomagnetic
Moriarty, Thomas D.
1988-01-01T23:59:59.000Z
in partial fidfillment of thc requirements for the degree of XIAS IER OF SOIL'NGF. December l988 iviajor Subject: Geophysics ES'I'llvlATION Ol' THV. DIIIECTION OF' RElvIANENT MACNETIZATION: AN INVERSE METHOD DSINC 'THE PIIASV. SPECTRIIM OV A MAGNETIC... ot Department) December 1988 ABSTRACT Estimation of Direction of Remanent Magnetization: An Inverse Method Using th~ Phase Spectrum ot a. Magnetic Anomaly. (December 1988) Thomas Daniel Moriarty, B. S. , Rensselaer Polytechnic Institute Co...
W. J. Huo
2003-01-27T23:59:59.000Z
By using the anomalous magnetic and electric dipole moments of the $\\tau$ lepton in an effective lagrangian approach to the new physics, we investigate the lepton flavor violation (LFV) decays, $l\\to l'\\gamma$, and $\\mu,\\tau$ anomalous magnetic and electric dipole moments in a lepton mass matrices ansatz which induced by SUSY GUT. We put very stringent constraints LFV decays and $\\tau$ anomalous magnetic and electric dipole moments.
atlantic magnetic anomaly: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
related to seafloor spreading in the South Atlantic Ocean Michael E. Purucker Raytheon the treatment of satellite magnetic data, these signals are obscured in the South...
Moment-free toroidal magnet background of the invention
Not Available
1981-03-02T23:59:59.000Z
A toroidal magnet is described for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
Effect of steriles states on lepton magnetic moments and neutrinoless double beta decay
Abada, A; Teixeira, A M
2014-01-01T23:59:59.000Z
We address the impact of sterile fermion states on the anomalous magnetic moment of charged leptons, as well as their contribution to neutrinoless double beta decays. We illustrate our results in a minimal, effective extension of the Standard Model by one sterile fermion state, and in a well-motivated framework of neutrino mass generation, embedding the Inverse Seesaw into the Standard Model. The simple "3+1" effective case succeeds in alleviating the tension related to the muon anomalous magnetic moment, albeit only at the 3$\\sigma$ level, and for light sterile states (corresponding to a }cosmologically disfavoured regime). Interestingly, our analysis shows that a future $0 \
Octet baryon magnetic moments in the chiral quark model with configuration mixing
Linde, J.; Ohlsson, T.; Snellman, H. [Theoretical Physics, Department of Physics, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)] [Theoretical Physics, Department of Physics, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)
1998-01-01T23:59:59.000Z
The Coleman{endash}Glashow sum-rule for magnetic moments is always fulfilled in the chiral quark model, independently of SU(3) symmetry breaking. This is due to the structure of the wave functions, coming from the non-relativistic quark model. Experimentally, the Coleman{endash}Glashow sum-rule is violated by about ten standard deviations. To overcome this problem, two models of wave functions with configuration mixing are studied. One of these models violates the Coleman{endash}Glashow sum-rule to the right degree and also reproduces the octet baryon magnetic moments rather accurately. {copyright} {ital 1997} {ital The American Physical Society}
Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil
Watts, A. B. "Tony"
Gravity and magnetic anomalies and the deep structure of the Parnaiba cratonic basin, Brazil A. B profile across the Parnaiba cratonic basin in NorthEast Brazil. The purpose of this project is to acquire margin of Parnaíba Basin, Brazil. Geophysics 64: 337-356. Ussami N, Cogo de Sa N, Molina EC. 1993
Neutrinoless double beta decay mediated by the neutrino magnetic moment
Gó?d?, Marek
2014-01-01T23:59:59.000Z
We present a new channel of the neutrinoless double beta decay. In this scenario neutrinos not only oscillate inside the nucleus but also interact with an external non-uniform magnetic field. We assume that the field rotates about the direction of motion of the neutrino and show, that for a certain speed of rotation the half-life of the $0\
Neutrinoless double beta decay mediated by the neutrino magnetic moment
Marek Gó?d?; Wies?aw A. Kami?ski
2014-11-07T23:59:59.000Z
We present a new channel of the neutrinoless double beta decay. In this scenario neutrinos not only oscillate inside the nucleus but also interact with an external non-uniform magnetic field. We assume that the field rotates about the direction of motion of the neutrino and show, that for a certain speed of rotation the half-life of the $0\
Magnetic moments of vector, axial, and tensor mesons in lattice QCD
Lee, F X; Wilcox, W
2008-01-01T23:59:59.000Z
We present a calculation of magnetic moments for selected spin-1 mesons using the techniques of lattice QCD. This is carried out by introducing progressively small static magnetic field on the lattice and measuring the linear response of a hadron's mass shift. The calculations are done on $24^4$ quenched lattices using standard Wilson actions, with $\\beta$=6.0 and pion mass down to 500 MeV. The results are compared to those from the form factor method where available.
Quark Contributions to Baryon Magnetic Moments in Full, Quenched and Partially Quenched QCD
Derek B. Leinweber
2004-06-02T23:59:59.000Z
The chiral nonanalytic behaviour of quark-flavor contributions to the magnetic moments of octet baryons are determined in full, quenched and partially-quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially-quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Sigma^+ provides the best opportunity to display the artifacts of the quenched approximation.
High-precision evaluation of the magnetic moment of the helion
Neronov, Yu. I., E-mail: yineronov@mail.ru; Seregin, N. N. [Mendeleev All-Russia Research Institute of Metrology (Russian Federation)
2012-11-15T23:59:59.000Z
NMR spectra of samples containing a mixture of hydrogen deuteride HD with pressure of about 80 atm and helium-3 with partial pressure of about 1 atm are analyzed. The ratio of the resonance frequencies of the nuclei, F({sup 3}He)/F(H{sub 2}), is determined to be 0.761786594(2), which is equal to the magnetic moment of the helion (bound in a helium atom) in the units of the magnetic moment of a proton (bound in molecular hydrogen). The uncertainty of two digits in the last place corresponds to a relative error of {delta}[F({sup 3}He)/F(H{sub 2})] = 2.6 Multiplication-Sign 10{sup -9}. The use of the known calculated data on the shielding of nuclei in the helium-3 atom ({sigma}({sup 3}He) = 59924(2) Multiplication-Sign 10{sup -9}) and on the shielding of protons in hydrogen ({sigma}(H{sub 2}) = 26288(2) Multiplication-Sign 10{sup -9}) yields a value of {mu}({sup 3}He)/{mu}{sub p} = -0.761812217(3) for the free magnetic moment of the helion in the units of the proton magnetic moment.
Charged spinning fluids with magnetic dipole moment in the Einstein-Cartan theory
Amorim, R.
1985-06-15T23:59:59.000Z
A classical perfect charged spinning fluid with magnetic dipole moment in the Einstein-Cartan theory is described by using an Eulerian Lagrangian formalism. The field equations and equations of motion so obtained generalize those proposed by Ray and Smalley. We also clarify some open questions which appear in the works of Ray and Smalley and of de Ritis et al.
Maurice Benayoun; Johan Bijnens; Tom Blum; Irinel Caprini; Gilberto Colangelo; Henryk Czy?; Achim Denig; Cesareo A. Dominguez; Simon Eidelman; Christian S. Fischer; Paolo Gauzzi; Yuping Guo; Andreas Hafner; Masashi Hayakawa; Gregorio Herdoiza; Martin Hoferichter; Guangshun Huang; Karl Jansen; Fred Jegerlehner; Benedikt Kloss; Bastian Kubis; Zhiqing Liu; William Marciano; Pere Masjuan; Harvey B. Meyer; Tsutomu Mibe; Andreas Nyffeler; Vladimir Pascalutsa; Vladyslav Pauk; Michael R. Pennington; Santiago Peris; Christoph F. Redmer; Pablo Sanchez-Puertas; Boris Shwartz; Evgeny Solodov; Dominik Stoeckinger; Thomas Teubner; Marc Unverzagt; Marc Vanderhaeghen; Magnus Wolke
2014-07-21T23:59:59.000Z
We present the mini-proceedings of the workshops Hadronic contributions to the muon anomalous magnetic moment: strategies for improvements of the accuracy of the theoretical prediction and $(g-2)_{\\mu}$: Quo vadis?, both held in Mainz from April 1$^{\\rm rst}$ to 5$^{\\rm th}$ and from April 7$^{\\rm th}$ to 10$^{\\rm th}$, 2014, respectively.
Leading-order hadronic contributions to the electron and tau anomalous magnetic moments
Florian Burger; Grit Hotzel; Karl Jansen; Marcus Petschlies
2015-01-21T23:59:59.000Z
The leading hadronic contributions to the anomalous magnetic moments of the electron and the $\\tau$-lepton are determined by a four-flavour lattice QCD computation with twisted mass fermions. The continuum limit is taken and systematic uncertainties are quantified. Full agreement with results obtained by phenomenological analyses is found.
Probe of New Physics using Precision Measurement of the Electron Magnetic Moment
Amin Aboubrahim; Tarek Ibrahim; Pran Nath
2014-05-06T23:59:59.000Z
The anomalous magnetic moment of the electron is determined experimentally with an accuracy of $2.8\\times 10^{-13}$ and the uncertainty may decrease by an order of magnitude in the future. While the current data is in excellent agreement with the standard model, the possible future improvement in the error in $\\Delta a_e= a_e^{\\text{exp}}- a_e^{\\text{theory}}$ has recently drawn interest in the electron anomalous magnetic moment as a possible probe of new physics beyond the standard model. In this work we give an analysis of such physics in an extension of the minimal supersymmetric standard model with a vector multiplet. In the extended model the electroweak contribution to the anomalous magnetic moment of the electron include loop diagrams involving in addition to the exchange of W and Z, the exchange of charginos, sneutrinos and mirror sneutrinos, and the exchange of neutralinos, sleptons and mirror sleptons. The analysis shows that a contribution to the electron magnetic moment much larger than expected by $m_e^2/m_\\mu^2$ scaling of the deviation of the muon anomalous magnetic moment over the standard model prediction, i.e., $\\Delta a_\\mu = 3 \\times 10^{-9}$ as given by the Brookhaven experiment, can be gotten within the MSSM extension. Effects of CP violating phases in the extended MSSM model on the corrections to the supersymmetric electroweak contributions to $a_e$ are also investigated. The analysis points to the possibility of detection of new physics effects with modest improvement on the error in $\\Delta a_e= a_e^{\\text{exp}} - a_e^{\\text{theory}}$.
Hyperfine structure and hyperfine anomaly in Pb
J. R. Persson
2014-07-11T23:59:59.000Z
The hyperfine structure in the 6p2-configuration in lead has been analysed and the results is compared with calculations. The hyperfine anomaly and improved values of the nuclear magnetic moment for four lead isotopes is obtained, using the results from the analysis. The results open up for new measurements of the hyperfine structure in unstable lead isotopes, in order to extract information of the hyperfine anomaly and distribution of magnetisation in the nucleus.
Carey, R.M.; Lynch, K.R.; Miller, J.P.; Roberts, B.L.; Morse, W.M.; Semertzides, Y.K.; Druzhinin, V.P.; Khazin, B.I.; Koop, I.A.; Logashenko, I.; Redin, S.I.; /Boston U. /Brookhaven /Novosibirsk, IYF /Cornell U., CIHEP /Fermilab /Frascati /Illinois U., Urbana /James Madison U. /Groningen, KVI /KEK, Tsukuba /Kentucky U.
2009-02-01T23:59:59.000Z
We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} on the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned with the new Mu2e experimental requirements. The (g-2) experiment itself is based on the solid foundation of E821 at BNL, with modest improvements related to systematic error control. We outline the motivation, conceptual plans, and details of the tasks, anticipated budget, and timeline in this proposal.
Regular and chaotic dynamics of a chain of magnetic dipoles with moments of inertia
Shutyi, A. M. [Ulyanovsk State University (Russian Federation)], E-mail: shuty@mail.ru
2009-05-15T23:59:59.000Z
The nonlinear dynamic modes of a chain of coupled spherical bodies having dipole magnetic moments that are excited by a homogeneous ac magnetic field are studied using numerical analysis. Bifurcation diagrams are constructed and used to find conditions for the presence of several types of regular, chaotic, and quasi-periodic oscillations. The effect of the coupling of dipoles on the excited dynamics of the system is revealed. The specific features of the Poincare time sections are considered for the cases of synchronous chaos with antiphase synchronization and asynchronous chaos. The spectrum of Lyapunov exponents is calculated for the dynamic modes of an individual dipole.
Strange and charm quark contributions to the anomalous magnetic moment of the muon
Bipasha Chakraborty; C. T. H. Davies; G. C. Donald; R. J. Dowdall; J. Koponen; G. P. Lepage; T. Teubner
2014-06-02T23:59:59.000Z
We describe a new technique to determine the contribution to the anomalous magnetic moment of the muon coming from the hadronic vacuum polarization using lattice QCD. Our method reconstructs the Adler function, using Pad\\'{e} approximants, from its derivatives at $q^2=0$ obtained simply and accurately from time-moments of the vector current-current correlator at zero spatial momentum. We test the method using strange quark correlators on large-volume gluon field configurations that include the effect of up and down (at physical masses), strange and charm quarks in the sea at multiple values of the lattice spacing and multiple volumes and show that 1% accuracy is achievable. For the charm quark contributions we use our previously determined moments with up, down and strange quarks in the sea on very fine lattices. We find the (connected) contribution to the anomalous moment from the strange quark vacuum polarization to be $a_\\mu^s = 53.41(59) \\times 10^{-10}$, and from charm to be $a_\\mu^c = 14.42(39)\\times 10^{-10}$. These are in good agreement with flavour-separated results from non-lattice methods, given caveats about the comparison. The extension of our method to the light quark contribution and to that from the quark-line disconnected diagram is straightforward.
Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jamer, M. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Sterbinsky, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Photon Sciences Directorate; Assaf, B. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Arena, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Photon Sciences Directorate; Heiman, D. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics
2014-12-07T23:59:59.000Z
Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)
Neutrino magnetic moment effects in electron-capture measurements at GSI
Avraham Gal
2010-06-02T23:59:59.000Z
I conjecture that the time modulated decay rates reported in single ion measurements of two body electron capture decay of hydrogen like heavy ions at GSI may be related to neutrino spin precession in the static magnetic field of the storage ring. These `GSI Oscillations' arise from interference between amplitudes of decay within and without the magnetic field, a scenario that requires a Dirac neutrino magnetic moment six times lower than the Borexino solar neutrino upper limit of 0.54 x 10E(-10) Bohr magneton. I also show in a way not discussed before that the time modulation associated with interference between massive neutrino amplitudes, if such interference could arise, is of a period at least four orders of magnitude shorter than reported and must average to zero given the time resolution of the GSI measurements.
Multiferroicity and spiral magnetism in FeVO{sub 4} with quenched Fe orbital moments
Daoud-Aladine, A.; Chapon, L. C. [ISIS facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Kundys, B.; Martin, C.; Simon, C. [Laboratoire CRISMAT-UMR, 6508 ENSI CAEN, 6, Marechal Juin, 14050 Caen (France); Radaelli, P. G. [ISIS facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Brown, P. J. [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France)
2009-12-01T23:59:59.000Z
FeVO{sub 4} has been studied by heat capacity, magnetic susceptibility, electric polarization and single-crystal neutron-diffraction experiments. The triclinic crystal structure is made of S-shaped clusters of six Fe{sup 3+} ions, linked by VO{sub 4}{sup 3-} groups. Two long-range magnetic ordering transitions occur at T{sub N1}=22 K and T{sub N2}=15 K. Both magnetic structures are incommensurate and below T{sub N2}, FeVO{sub 4} becomes weakly ferroelectric coincidentally with the loss of the collinearity of the magnetic structure in a very similar fashion than in the classical TbMnO{sub 3} multiferroic material. However we argue that the symmetry considerations and the mechanisms invoked to explain these properties in TbMnO{sub 3} do not straightforwardly apply to FeVO{sub 4}. First, the magnetic structures, even the collinear structure, are all acentric so that ferroelectricity in FeVO{sub 4} is not correlated with the fact magnetic ordering is breaking inversion symmetry. Regarding the mechanism, FeVO{sub 4} has quenched orbital moments that questions the exact role of the spin-orbit interactions.
Limits on the neutrino magnetic dipole moment from the luminosity function of hot white dwarfs
Marcelo Miguel Miller Bertolami
2014-07-05T23:59:59.000Z
Recent determinations of the white dwarf luminosity function (WDLF) from very large surveys have extended our knowledge of the WDLF to very high luminosities. This, together with the availability of new full evolutionary white dwarf models that are reliable at high luminosities, have opened the possibility of testing particle emission in the core of very hot white dwarfs, where neutrino processes are dominant. We use the available WDLFs from the Sloan Digital Sky Survey and the SuperCOSMOS Sky Survey to constrain the value of the neutrino magnetic dipole moment ($\\mu_\
Determination of the magnetic dipole moment of the rho meson using 4 pion electroproduction data
D. García Gudiño; G. Toledo Sánchez
2015-02-20T23:59:59.000Z
We determine the magnetic dipole moment of the rho meson using preliminary data from the BaBar Collaboration for the $e^+ e^- \\to \\pi^+ \\pi^- 2 \\pi^0$ process, in the center of mass energy range from 0.9 to 2.2 GeV. We describe the $\\gamma^* \\to 4\\pi$ vertex using a vector meson dominance model, including the intermediate resonance contributions relevant at these energies. We find that $\\mu_\\rho = 2.1 \\pm 0.5$ in $e/2 m_\\rho$ units.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Blum, Thomas [Univ. of Connecticut, Storrs, CT (United States); Brookhaven National Lab., Upton, NY (United States); Chowdhury, Saumitra [Univ. of Connecticut, Storrs, CT (United States); Hayakawa, Masashi [Nagoya Univ. (Japan); Nishina Center, RIKEN, Wako, Saitama (Japan); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-01-01T23:59:59.000Z
The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
Hyperfine field of einsteinium in iron and nuclear magnetic moment of {sup 254}Es
Severijns, N.; Kraev, I. S.; Phalet, T.; Tandecki, M.; Traykov, E.; Gorp, S. Van; Wauters, F. [Instituut voor Kern-en Stralingsfysica, K. U. Leuven, B-3001 Leuven (Belgium); Belyaev, A. A.; Lukhanin, A. A.; Noga, V. I. [Kharkov Institute of Physics and Technology, 61108 Kharkov (Ukraine); Erzinkyan, A. L.; Parfenova, V. P. [Institute of Nuclear Physics, Moscow State University, RU-119992 Moscow (Russian Federation); Eversheim, P.-D.; Herzog, P.; Tramm, C. [Helmholtz-Institut fuer Strahlen-und Kernphysik, Universitaet Bonn, D-53115 Bonn (Germany); Filimonov, V. T.; Toporov, Yu. G.; Zotov, E. [Research Institute for Atomic Reactors, RU-433510 Dimitrovgrad-10 (Russian Federation); Golovko, V. V. [Department of Physics, Queen's University, Stirling Hall, Kingston, Ontario, K7L3N6 (Canada); Gurevich, G. M. [Institute for Nuclear Research, Russian Academy of Sciences, RU-119312 Moscow (Russian Federation)] (and others)
2009-06-15T23:59:59.000Z
The angular distributions of {gamma} rays and {alpha} particles from oriented {sup 250}Bk, {sup 253,254}Es, and {sup 255}Fm nuclei were investigated to extract hyperfine interaction information for these actinide impurities in an iron host lattice. The hyperfine field of einsteinium in iron was found to be |B{sub hf}(EsFe{sub lowbar|})=396(32) T. With this value the magnetic moment of {sup 254}Es was then determined as |{mu}|=4.35(41) {mu}{sub N}.
NMR spectroscopy of hydrogen deuteride and magnetic moments of deuteron and triton
Neronov, Y I; Neronov, Yurii I.; Karshenboim, Savely G.
2003-01-01T23:59:59.000Z
Magnetic moments of free and bound deuteron and triton are considered and new results for their magnetic moments (in units of that of the proton) and their g factors are presented. We report on a measurement with medium-pressure hydrogen deuteride (HD) at 10 atm, which is to be compared with the previous measurement done at 100 atm. We confirm that the high pressure used in former experiments caused no systematic effects at a level of 10 ppb. We also reexamined a theoretical uncertainty related to screening effects in HD and HT molecules and found that previously it was underestimated. The medium-pressure result obtained for the free deuteron mu_d/mu_p=0.307 012 206 5(28) with a fractional uncertainty of 9.1 * 10^-9 is free of systematic effects related to former high-pressure experiments. The reevaluated result for triton is mu_t/mu_p=1.066 639 908(10) with a fractional uncertainty of 9.3 * 10^-9.
Zatsiupa, A.A., E-mail: zatsiupa@mail.ru [Belarussian State Technological University, 220030 Minsk (Belarus); Bashkirov, L.A. [Belarussian State Technological University, 220030 Minsk (Belarus); Troyanchuk, I.O. [Scientific and Practical Materials Research Centre of the NAS of Belarus, 220072 Minsk (Belarus); Petrov, G.S. [Belarussian State Technological University, 220030 Minsk (Belarus); Galyas, A.I.; Lobanovsky, L.S.; Truhanov, S.V. [Scientific and Practical Materials Research Centre of the NAS of Belarus, 220072 Minsk (Belarus)
2014-04-01T23:59:59.000Z
Magnetic susceptibility for ferrite Bi{sub 25}FeO{sub 39} is measured at 5–950 K in the magnetic field of 0.86 T. It is shown that Bi{sub 25}FeO{sub 39} is paramagnetic in the temperature range 5?950 K. The saturation magnetization is equal to 5.04?{sub B} per formula unit at 5 K in a magnetic field of 10 T. It is found that at 5?300 K the effective magnetic moment of Fe{sup 3+} ions in Bi{sub 25}FeO{sub 39} is equal to 5.82?{sub B}. - Graphical abstract: The dependence of the magnetization (n, ?{sub B}) on the magnetic field for one formula unit of Bi{sub 25}FeO{sub 39} at 5 K. - Highlights: • Magnetic susceptibility for Bi{sub 25}FeO{sub 39} is measured at 5–950 K in the magnetic field of 0.86 T. • It is shown that Bi{sub 25}FeO{sub 39} is paramagnetic in the temperature range 5?950 K. • The saturation magnetization is equal to 5.04?{sub B} per formula unit at 5 K in a magnetic field of 10 T.
Magnetization anomaly of Nb3Al strands and instability of Nb3Al Rutherford cables
Yamada, Ryuji; /Fermilab; Kikuchi, Akihiro; /Tsukuba Magnet Lab; Wake, Masayoshi; /KEK, Tsukuba
2006-08-01T23:59:59.000Z
Using a Cu stabilized Nb{sub 3}Al strand with Nb matrix, a 30 meter long Nb{sub 3}Al Rutherford cable was made by a collaboration of Fermilab and NIMS. Recently the strand and cable were tested. In both cases instability was observed at around 1.5 Tesla. The magnetization of this Nb{sub 3}Al strand was measured first using a balanced coil magnetometer at 4.2 K. Strands showed an anomalously large magnetization behavior around at 1.6 T, which is much higher than the usual B{sub c2} {approx} 0.5 Tesla (4.2 K) of Nb matrix. This result is compared with the magnetization data of short strand samples using a SQUID magnetometer, in which a flux-jump signal was observed at 0.5 Tesla, but not at higher field. As a possible explanation for this magnetization anomaly, the interfilament coupling through the thin Nb films in the strands is suggested. The instability problem observed in low field tests of the Nb{sub 3}Al Rutherford cables is attributed to this effect.
Covariant Spectator Theory of np scattering: Deuteron magnetic moment and form factors
Franz Gross
2014-04-06T23:59:59.000Z
The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents which are automatically generated by the nuclear force model used in these fits. After normalizing the wave functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components, gives 0.863(2), while model WJC-2 with very small P-state components gives 0.864(2) These are about 1\\% larger than the measured value of the moment, 0.857 n.m., giving a new prediction for the size of the $\\rho\\pi\\gamma$ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear dynamics. The physical significance of these results is discussed, and general formulae for the deuteron form factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are given.
Covariant Spectator Theory of np scattering: Deuteron magnetic moment and form factors
Gross, Franz L. [JLAB
2014-06-01T23:59:59.000Z
The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents which are automatically generated by the nuclear force model used in these fits. After normalizing the wave functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components, gives 0.863(2), while model WJC-2 with very small $P$-state components gives 0.864(2) These are about 1\\% larger than the measured value of the moment, 0.857 n.m., giving a new prediction for the size of the $\\rho\\pi\\gamma$ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear dynamics. The physical significance of these results is discussed, and general formulae for the deuteron form factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are given.
Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Burger, Florian [Humboldt U. Berlin; Feng, Xu [KEK; Hotzel, Grit [Humboldt U. Berlin; Jansen, Karl [DESY, Cyprus; Petschlies, Marcus [The Cyprus Institute; Renner, Dru B. [JLAB
2014-02-01T23:59:59.000Z
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?hvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a ?hvp. Our final result involving an estimate of the systematic uncertainty a ?hvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.
J. Q. Zhang; X. C. Song; W. J. Huo; T. F. Feng
2002-06-17T23:59:59.000Z
In an effective lagrangian approach [EM97] to new physics, the authors in ref. [HL99] pushed tau anomalous magnetic and electric dipole moments (AMDM and EDM) down to $10^{-11}$ and $10^{-25} e cm$ by using a Fritzsch-Xing lepton mass matrix ansatz. In this note, we find that, in this approach, there exists the connection between $\\tau$ AMDM and EDM and the lepton flavor mixing matrix. By using the current neutrino oscillation experimental results, we investigate the parameter space of lepton mixing angles to $\\tau$ AMDM and EDM. We can obtain the same or smaller bounds of $\\delta a_\\tau$ and $d_\\tau$ acquired in ref. [HL99] and constrain $\\theta_l$ (the mixing angle obtained by long-baseline neutrino oscillation experiments) from $\\tau$ AMDM and EDM.
Ito, Keita; Sanai, Tatsunori; Yasutomi, Yoko; Toko, Kaoru; Honda, Syuta; Suemasu, Takashi [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan)] [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Zhu, Siyuan; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)] [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan)] [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Takeda, Yukiharu; Saitoh, Yuji [Condensed Matter Science Division, Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan)] [Condensed Matter Science Division, Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Sayo-cho, Hyogo 679-5148 (Japan); Imai, Yoji [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan) [Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)
2013-12-02T23:59:59.000Z
We evaluated electronic structures and magnetic moments in Co{sub 3}FeN epitaxial films on SrTiO{sub 3}(001). The experimentally obtained hard x-ray photoemission spectra of the Co{sub 3}FeN film have a good agreement with those calculated. Site averaged spin magnetic moments deduced by x-ray magnetic circular dichroism were 1.52 ?{sub B} per Co atom and 2.08 ?{sub B} per Fe atom at 100 K. They are close to those of Co{sub 4}N and Fe{sub 4}N, respectively, implying that the Co and Fe atoms randomly occupy the corner and face-centered sites in the Co{sub 3}FeN unit cell.
Brodsky, Stanley J.; /SLAC; Gardner, Susan; /Kentucky U.; Hwang, Dae Sung; /Sejong U.
2006-01-11T23:59:59.000Z
We consider the electric dipole form factor, F{sub 3}(q{sup 2}), as well as the Dirac and Pauli form factors, F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}), of the nucleon in the light-front formalism. We derive an exact formula for F{sub 3}(q{sup 2}) to complement those known for F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F{sub 2}(q{sup 2}) and F{sub 3}(q{sup 2}), Fock-state by Fock-state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, {kappa}{sup n} {approx} -{kappa}{sup p}.
Brodsky, Stanley J. [Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309 (United States); Gardner, Susan [Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055 (United States); Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)
2006-02-01T23:59:59.000Z
We consider the electric dipole form factor, F{sub 3}(q{sup 2}), as well as the Dirac and Pauli form factors, F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}), of the nucleon in the light-front formalism. We derive an exact formula for F{sub 3}(q{sup 2}) to complement those known for F{sub 1}(q{sup 2}) and F{sub 2}(q{sup 2}). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F{sub 2}(q{sup 2}) and F{sub 3}(q{sup 2}), Fock state by Fock state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, {kappa}{sup n}{approx}-{kappa}{sup p}.
S. J. Brodsky; S. Gardner; D. S. Hwang
2006-02-27T23:59:59.000Z
We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock state by Fock state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo the isospin structure of the anomalous magnetic moments, kappa^n ~ - kappa^p.
Axion Induced Oscillating Electric Dipole Moments
Hill, Christopher T
2015-01-01T23:59:59.000Z
The axion electromagnetic anomaly induces an oscillating electric dipole for any static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, two orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.
G. Dillon; G. Morpurgo
2007-03-15T23:59:59.000Z
Using the general QCD parametrization (GP) we display the magnetic moments of the octet baryons including all flavor breaking terms to any order. The hierarchy of the GP parameters allows to estimate a parameter $g_{0}$ related to the quark loops contribution of the proton magnetic moment; its order of magnitude is predicted to be inside a comparatively small interval including the value given recently by Leinweber et al. by a lattice QCD calculation
Atomic moments in Mn_{2}CoAl thin films analyzed by X-ray magnetic circular dichroism
Jamer, M. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Sterbinsky, G. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Photon Sciences Directorate; Assaf, B. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Arena, D. [Brookhaven National Laboratory (BNL), Upton, NY (United States). Photon Sciences Directorate; Heiman, D. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics
2014-12-07T23:59:59.000Z
Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn_{2}CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)
The anomalous lepton magnetic moment, LFV decays and the fourth generation
W. J. Huo; T. F. Feng
2003-01-20T23:59:59.000Z
We investigate the lepton flavor violation (LFV) decays, $\\tau\\to l\\gamma$ ($l=\\mu, e$) and $\\mu\\to e\\gamma$, and the newly observed muon $g-2$ anomaly in the framwork of a squential fourth generation model with a heavy fourth neutrino, $\
Tinnel, E.P.; Hinze, W.J.
1981-09-01T23:59:59.000Z
Total intensity magnetic anomaly data acquired as a supplement to radiometric data in the DOE National Uranium Resource Evaluation (NURE) Program are useful in preparing regional profile and contour maps. Survey-contractor-supplied magnetic anomaly data are subjected to a multiprocess, computer-based procedure which prepares these data for presentation. This procedure is used to produce the following machine plotted maps of National Topographic Map Series quadrangle units at a 1:250,000 scale: (1) profile map of contractor-supplied magnetic anomaly data, (2) profile map of high-cut filtered data with contour levels of each profile marked and annotated on the associated flight track, (3) profile map of critical-point data with contour levels indicated, and (4) contour map of filtered and selected data. These quadrangle maps are supplemented with a range of statistical measures of the data which are useful in quality evaluation.
Brodsky, S J; Hwang, D S
2006-01-01T23:59:59.000Z
We consider the electric dipole form factor, F_3(q^2), as well as the Dirac and Pauli form factors, F_1(q^2) and F_2(q^2), of the nucleon in the light-front formalism. We derive an exact formula for F_3(q^2) to complement those known for F_1(q^2) and F_2(q^2). We derive the light-front representation of the discrete symmetry transformations and show that time-reversal- and parity-odd effects are captured by phases in the light-front wave functions. We thus determine that the contributions to F_2(q^2) and F_3(q^2), Fock-state by Fock-state, are related, independent of the fundamental mechanism through which CP violation is generated. Our relation is not specific to the nucleon, but, rather, is true of spin-1/2 systems in general, be they lepton or baryon. The empirical values of the anomalous magnetic moments, in concert with empirical bounds on the associated electric dipole moments, can better constrain theories of CP violation. In particular, we find that the neutron and proton electric dipole moments echo ...
H. T. Wong; TEXONO Collaboration
2006-11-14T23:59:59.000Z
A search of neutrino magnetic moments was carried out at the Kuo-Sheng Nuclear Power Station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1 $\\cpd$ near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron anti-neutrino flux of $\\rm{6.4 \\times 10^{12} cm^{-2} s^{-1}}$, the limit on the neutrino magnetic moments of $\\rm{\\munuebar < 7.4 \\times 10^{-11} \\mub}$ at 90% confidence level was derived. Indirect bounds on the $\
E-Print Network 3.0 - antineutrino magnetic moment Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Fission and Nuclear Technologies ; Physics 6 IS THE NON OBSERVATION OF NEUTRINOLESS DOUBLE BETA DECAY A QUESTION OF SENSITIVITY? Summary: and null values (such as Q, magnetic...
CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee; Speidel, K H; Fraile-Prieto, L M; Balabanski, D L; Behrens, T; Georgiev, G; Gerber, J P; Gernhäuser, R; Kröll, T; Krücken, R; Leske, J; Lo Bianco, G; Lutter, R; Maier-Komor, P; Modamio, V; Schielke, S; Walker, J
2006-01-01T23:59:59.000Z
Magnetic moments of Coulomb excited $2^{+}_{1}$ states for radioactive beams of $^{132,134,136}$Te and $^{138}$Xe isotopes at REX-ISOLDE
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vilmercati, Paolo; Fedorov, Alexei; Bondino, Federica; Offi, Francesco; Panaccione, Giancarlo; Lacovig, Paolo; Simonelli, Laura; McGuire, Michael A.; Sefat, Athena S. M.; Mandrus, David; Sales, Brian C.; Egami, Takeshi; Ku, Wei; Mannella, Norman
2012-06-01T23:59:59.000Z
A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO??xFx (x = 0, 0.11) and Sr(Fe??xCox)2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10?¹? s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3?B in CeFeAsO and 2.1?B in SrFe?As?. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9?B in CeFeAsO?.??F?.?? and 1.3?B in Sr(Fe?.?Co?.?)?As?. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vilmercati, Paolo; Fedorov, Alexei; Bondino, Federica; Offi, Francesco; Panaccione, Giancarlo; Lacovig, Paolo; Simonelli, Laura; McGuire, Michael A.; Sefat, Athena S. M.; Mandrus, David; et al
2012-06-01T23:59:59.000Z
A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO??xFx (x = 0, 0.11) and Sr(Fe??xCox)2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10?¹? s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3?B in CeFeAsO and 2.1?Bmore »in SrFe?As?. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9?B in CeFeAsO?.??F?.?? and 1.3?B in Sr(Fe?.?Co?.?)?As?. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity.« less
Axion Induced Oscillating Electric Dipole Moments
Christopher T. Hill
2015-04-10T23:59:59.000Z
The axion electromagnetic anomaly induces an oscillating electric dipole for {\\em any} static magnetic dipole. Static electric dipoles do not produce oscillating magnetic moments. This is a low energy theorem which is a consequence of the space-time dependent cosmic background field of the axion in the limit that it is only locally time dependent $(\\overrightarrow{\\beta}=0)$. The electron will acquire an oscillating electric dipole of frequency $m_a$ and strength $\\sim 10^{-32}$ e-cm, three orders of magnitude above the nucleon, and within four orders of magnitude of the present standard model DC limit. This may suggest sensitive new experimental venues for the axion dark matter search.
Bakke, K., E-mail: kbakke@fisica.ufpb.br
2014-02-15T23:59:59.000Z
We discuss the arising of bound states solutions of the Schrödinger equation due to the presence of a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field. Furthermore, we study the influence of the Coulomb-type potential on the harmonic oscillator by showing a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system, whose meaning is that not all values of the angular frequency are allowed. -- Highlights: • Interaction between a moving electric quadrupole moment and a magnetic field. • Arising of bound states solutions due to the presence of a Coulomb-type potential. • Influence of the Coulomb-type potential on the harmonic oscillator. • Dependence of the angular frequency on the quantum numbers of the system.
Voicu Dolocan
2014-04-06T23:59:59.000Z
In this paper we have performed the calculus of the energy states of hydrogen atom by using the Schroedinger equation with a Coulomb potential which is modified by the interaction between the magnetic moments of the proton and the electron, respectively. The important result is that the Lamb shift appears as a natural result of the solution of Schroedinger equation. The obtained results are in a good agreement with experimental data.
Singh, Alok K; Natarajan, Vasant
2015-01-01T23:59:59.000Z
We measure hyperfine structure in the metastable ${^3P}_2$ state of $^{173}$Yb and extract the nuclear magnetic octupole moment. We populate the state using dipole-allowed transitions through the ${^3P}_1$ and ${^3S}_1$ states. We measure frequencies of hyperfine transitions of the ${^3P}_2 \\rightarrow {^3S}_1$ line at 770 nm using a Rb-stabilized ring cavity resonator with a precision of 200 kHz. Second-order corrections due to perturbations from the nearby ${^3P}_1$ and ${^1P}_1$ states are below 30 kHz. We obtain the hyperfine coefficients as: $A=-742.11(2)$ MHz, $B=1339.2(2)$ MHz, which represent two orders-of-magnitude improvement in precision, and $C=0.54(2)$ MHz. From atomic structure calculations, we obtain the nuclear moments: quadrupole $Q=2.46(12)$ b and octupole $\\Omega=-34.4(21)$ b\\,$\\times \\mu_N$.
Ruggero Maria Santilli
1997-04-09T23:59:59.000Z
We present a new realization of relativistic hadronic me- chanics and its underlying iso-Poincar'e symmetry specifically constructed for nuclear physics which: 1) permits the representation of nucleons as ex- tended, nonspherical and deformable charge distributions with alterable mag- netic moments yet conventional angular momentum and spin; 2) results to be a nonunitary ``completion'' of relativistic quantum mechanics much along the EPR argument; yet 3) is axiom-preserving, thus preserves conventional quantum laws and the axioms of the special relativity. We show that the proposed new formalism permits the apparently first exact representation of the total magnetic moments of new-body nuclei under conventional physical laws. We then point out that, if experimentally confirmed the alterability of the intrinsic characteristics of nucleons would imply new forms of recycling nuclear waste by the nuclear power plants in their own site, thus avoiding its transportation and storage in a (yet unidentified) dumping area. A number of possible, additional basic advances are also indicated, such as: new un- derstanding of nuclear forces with nowel nonlinear, nonlocal and nonunitary terms due to mutual penetrations of the hyperdense nucleons; consequential new models of nuclear structures; new magnetic confinement of the controlled fusion taking into account the possible alterability of the intrinsic magnetic moments of nucleons at the initiation of the fusion process; new sources of en- ergy based on subnuclear processes; and other possible advances. The paper ends with the proposal of three experiments, all essential for the continuation of scientific studies and all of basic character, relatively moderate cost and full feasibility in any nuclear physical laboratory.
Magnetic order and lattice anomalies in the J{sub 1}-J{sub 2} model system VOMoO{sub 4}
Bombardi, A. [Diamond Light Source Ltd., Rutherford Appleton Laboratory, Chilton-Didcot, OX11 0QX, Oxfordshire (United Kingdom); Chapon, L.C. [ISIS, CCLRC Rutherford Appleton Laboratory, Chilton-Didcot, OX11 0QX, Oxfordshire (United Kingdom); Margiolaki, I.; Mazzoli, C. [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex 9 (France); Gonthier, S.; Duc, F. [Centre d'Elaboration des Materiaux et d'Etudes Structurales, CNRS, 31055 Toulouse Cedex (France); Radaelli, P.G. [ISIS, CCLRC Rutherford Appleton Laboratory, Chilton-Didcot, OX11 0QX, Oxfordshire (United Kingdom); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)
2005-06-01T23:59:59.000Z
High-resolution x-ray and neutron powder-diffraction measurements were performed on polycrystalline VOMoO{sub 4}. Below {approx_equal}40 K the system orders in a simple Neel antiferromagnetic state (propagation vector k-vector=0), indicating a dominant role of the nearest-neighbor interactions. The order is three dimensional but the reduced saturated magnetic moment m of 0.41 (1) {mu}{sub B}/V{sup 4+} at 2 K indicates strongly two-dimensional character and enhanced quantum fluctuations. On cooling, there is no evidence of a reduction of the crystal symmetry. However, neutron diffraction indicates an anomalous evolution of the lattice parameters, which can be related to the onset of magnetic correlations.
Araki, Takeshi; Konishi, Yasufumi; Ota, Toshihiko; Sato, Joe; Shimomura, Takashi
2014-01-01T23:59:59.000Z
The energy spectrum of cosmic neutrinos, which was recently reported by the IceCube collaboration, shows a gap between 400 TeV and 1 PeV. An unknown neutrino interaction mediated by a field with a mass of the MeV scale is one of the possible solutions to this gap. We examine if the leptonic gauge interaction L_{\\mu} - L_{\\tau} can simultaneously explain the two phenomena in the lepton sector: the gap in the cosmic neutrino spectrum and the unsettled disagreement in muon anomalous magnetic moment. We illustrate that there remains the regions in the model parameter space, which account for both the problems. Our results also provide a hint for the distance to the source of the high-energy cosmic neutrinos.
Vilmercati, Paolo; Fedorov, Alexei; Bondino, Federica; Offi, Francesco; Panaccione, Giancarlo; Lacovig, Paolo; Simonelli, Laura; McGuire, Michael A.; Sefat, Athena S. M.; Mandrus, David; Sales, Brian C.; Egami, Takeshi; Ku, Wei; Mannella, Norman
2012-06-01T23:59:59.000Z
A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO??_{x}F_{x} (x = 0, 0.11) and Sr(Fe??_{x}Co_{x})2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10?¹? s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3?_{B} in CeFeAsO and 2.1?B in SrFe?As?. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9?_{B} in CeFeAsO?.??F?.?? and 1.3?_{B} in Sr(Fe?.?Co?.?)?As?. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity.
Vilmercati, P. [University of Tennessee, Knoxville (UTK); Fedorov, A. V. [Lawrence Berkeley National Laboratory (LBNL); Bondino, F. [CNR-INFM, Trieste, Italy; Offi, F. [University of Rome; Panaccione, G. [TASC National Laboratory, Trieste, Italy; Lacovig, Paolo [Sincrotrone Trieste S.C.p.A.,Trieste, Italy; Simonelli, Laura [European Synchrotron Radiation Facility (ESRF); McGuire, Michael A [ORNL; Safa-Sefat, Athena [ORNL; Mandrus, D. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Egami, T [University of Tennessee, Knoxville (UTK); Ku, Wei [Brookhaven National Laboratory (BNL); Mannella, Norman [University of Tennessee, Knoxville (UTK)
2012-01-01T23:59:59.000Z
A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO{sub 1-x}F{sub x} (x = 0, 0.11) and Sr(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10{sup -15} s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3 {micro}{sub B} in CeFeAsO and 2.1 {micro}{sub B} in SrFe{sub 2}As{sub 2}. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9 {micro}{sub B} in CeFeAsO{sub 0.89}F{sub 0.11} and 1.3 {micro}{sub B} in Sr(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity.
Dokholyan, Nikolay V.
is an impor- tant magnetic element in molecular magnets and in ferro- magnetic semiconductors,912 which
Baryshevsky, V G
2015-01-01T23:59:59.000Z
We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.
Chiral anomalies and differential geometry
Zumino, B.
1983-10-01T23:59:59.000Z
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)
1983-12-31T23:59:59.000Z
Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.
Kristan Jensen
2014-12-24T23:59:59.000Z
We initiate a systematic study of `t Hooft anomalies in Galilean field theories, focusing on two questions therein. In the first, we consider the non-relativistic theories obtained from a discrete light-cone quantization (DLCQ) of a relativistic theory with flavor or gravitational anomalies. We find that these anomalies survive the DLCQ, becoming mixed flavor/boost or gravitational/boost anomalies. We also classify the pure Weyl anomalies of Schr\\"odinger theories, which are Galilean conformal field theories (CFTs) with $z=2$. There are no pure Weyl anomalies in even spacetime dimension, and the lowest-derivative anomalies in odd dimension are in one-to-one correspondence with those of a relativistic CFT in one dimension higher. These results classify many of the anomalies that arise in the field theories dual to string theory on Schr\\"odinger spacetimes.
M-anomaly Analyses and its implications for the architecture of the upper oceanic crust
Tominaga, Masako
2010-07-14T23:59:59.000Z
My dissertation research consists of two themes: (a) the analysis of Middle Jurassic - Early Cretaceous marine magnetic anomalies (M-anomalies) in order to construct a comprehensive geomagnetic polarity timescale and (b) the investigation...
Magnetic Phase Transitions in NdCoAsO
McGuire, Michael A [ORNL; Gout, Delphine J [ORNL; Garlea, Vasile O [ORNL; Sefat, A. S. [Oak Ridge National Laboratory (ORNL); Sales, Brian C [ORNL; Mandrus, David [ORNL
2010-01-01T23:59:59.000Z
NdCoAsO undergoes three magnetic phase transitions below room temperature. Here we report the results of our experimental investigation of this compound, including determination of the crystal and magnetic structures using powder neutron diffraction, as well as measurements of electrical resistivity, thermal conductivity, Seebeck coefficient, magnetization, and heat capacity. These results show that upon cooling a ferromagnetic state emerges near 69 K with a small saturation moment of -0.2{micro}{sub B}, likely on Co atoms. At 14 K the material enters an antiferromagnetic state with propagation vector (0 0 1/2) and small ordered moments (-0.4{micro}{sub B}) on Co and Nd. Near 3.5 K a third transition is observed, and corresponds to the antiferromagnetic ordering of larger moments on Nd, with the same propagation vector. The ordered moment on Nd reaches 1.39(5){micro}{sub B} at 300 mK. Anomalies in the magnetization, electrical resistivity, and heat capacity are observed at all three magnetic phase transitions.
Zuo, Fulin
careful transport and magnetic measurements on single crystals of deuterated - ET 2Cu N CN 2 Br cooling through 80 K will freeze the high temperature magnetic phase to low temperatures and the presence ordering of the chains. In this paper, we report careful transport and magnetic measurements on several
anomaly guandong nuclear: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
anomaly guandong nuclear First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Axial anomaly and magnetism of...
Table of hyperfine anomaly in atomic systems
Persson, J.R., E-mail: jonas.persson@ntnu.no
2013-01-15T23:59:59.000Z
This table is a compilation of experimental values of magnetic hyperfine anomaly in atomic and ionic systems. The last extensive compilation was published in 1984 by Büttgenbach [S. Büttgenbach, Hyperfine Int. 20 (1984) 1] and the aim here is to make an up to date compilation. The literature search covers the period up to January 2011.
Adroja, D. T.; Hillier, A. D.; Kockelmann, W. A.; Anand, V. K.; Stewart, J. R.; Taylor, J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX (United Kingdom); Deen, P. P. [Institute Laue-Langevin, BP 156, 6 Rue Jules Horowitz, 38042 Grenoble Cedex (France); Strydom, A. M. [Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Muro, Y.; Kajino, J.; Takabatake, T. [Department of Quantum Matter, ADSM, and IAMR, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)
2010-09-01T23:59:59.000Z
We have carried out neutron diffraction, muon spin relaxation ({mu}SR), and inelastic neutron scattering (INS) investigations on a polycrystalline sample of CeOs{sub 2}Al{sub 10} to investigate the nature of the phase transition observed near 29 K in the resistivity and heat capacity. Our {mu}SR data clearly reveal coherent frequency oscillations below 28 K, indicating the presence of an internal field at the muon site, which confirms the long-range magnetic ordering of the Ce moment below 28 K. Upon cooling the sample below 15 K, unusual behavior of the temperature-dependent {mu}SR frequencies may indicate either a change in the muon site, consistent with the observation of superstructure reflections in electron diffraction, or a change in the ordered magnetic structure. Neutron diffraction data do not reveal any clear sign of either magnetic Bragg peaks or superlattice reflections. Furthermore, INS measurements clearly reveal the presence of a sharp inelastic excitation near 11 meV between 5 and 26 K, due to opening of a gap in the spin-excitation spectrum, which transforms into a broad response at and above 30 K. The magnitude of the spin gap (11 meV) as derived from the INS peak position agrees very well with the gap value as estimated from the bulk properties.
Isotopic Anomalies in CP Stars: Helium, Mercury, Platinum, and Calcium
C. R. Cowley; S. Hubrig; F. Castelli
2007-11-15T23:59:59.000Z
We review the classical observational results for isotopic abundance variations for several elements in CP stars. We concentrate on the "newest" anomaly, in calcium. The cosmically very rare isotope, Ca-48 can rival and even dominate the more common, alpha nuclide, Ca-40. Relevant examples are found in the hot, non-magnetic HgMn stars, and the field horizontal-branch star, Feige 86. The calcium anomaly is also present in cool, magnetic stars, including the notorious HD 101065, Przybylski's star.
T. P. Sotiriou; T. A. Apostolatos
2004-10-25T23:59:59.000Z
The geometry around a rotating massive body, which carries charge and electrical currents, could be described by its multipole moments (mass moments, mass-current moments, electric moments, and magnetic moments). When a small body is orbiting this massive body, it will move on geodesics, at least for a time interval that is short with respect to the characteristic time of the binary due to gravitational radiation. By monitoring the waves emitted by the small body we are actually tracing the geometry of the central object, and hence, in principle, we can infer all its multipole moments. This paper is a generalization of previous similar results by Ryan. The fact that the electromagnetic moments of spacetime can be measured demonstrates that one can obtain information about the electromagnetic field purely from gravitational wave analysis. Additionally, these measurements could be used as a test of the no-hair theorem for black holes.
Octahedral distortion induced magnetic anomalies in LaMn{sub 0.5}Co{sub 0.5}O{sub 3} single crystals
Manna, Kaustuv, E-mail: kaustuvmanna@gmail.com; Elizabeth, Suja; Anil Kumar, P. S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Bhadram, Venkata Srinu; Narayana, Chandrabhas [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)
2014-07-28T23:59:59.000Z
Single crystals of LaMn{sub 0.5}Co{sub 0.5}O{sub 3} belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)–oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn{sub 0.5}Co{sub 0.5}O{sub 3} crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal.
Lesseux, G. G., E-mail: lesseux@ifi.unicamp.br; Urbano, R. R. [Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-859 Campinas, São Paulo (Brazil); Iwamoto, W. [Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-859 Campinas, São Paulo (Brazil); Instituto de Física, UFU, 38400-902 Uberlândia, Minas Gerais (Brazil); García-Flores, A. F. [Centro de Ciências Naturais e Humanas, UFABC, 09210-971 Santo André, São Paulo (Brazil); Rettori, C. [Instituto de Física “Gleb Wataghin,” UNICAMP, 13083-859 Campinas, São Paulo (Brazil); Centro de Ciências Naturais e Humanas, UFABC, 09210-971 Santo André, São Paulo (Brazil)
2014-05-07T23:59:59.000Z
The Electron Spin Resonance (ESR) of diluted Er{sup 3+} magnetic ions in Au nanoparticles (NPs) is reported. The NPs were synthesized by reducing chloro triphenyl-phosphine gold(I) and erbium(III) trifluoroacetate. The Er{sup 3+} g-value along with the observed hyperfine splitting indicate that the Er{sup 3+} impurities are in a local cubic symmetry. Furthermore, the Er{sup 3+} ESR spectra show that the exchange interaction between the 4f and the conduction electrons (ce) is absent or negligible in Au{sub 1–x}Er{sub x} NPs, in contrast to the ESR results in bulk Au{sub 1–x}Er{sub x}. Therefore, the nature of this interaction needs to be reexamined at the nano scale range.
Astrometric solar system anomalies
Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LABORATORY
2009-01-01T23:59:59.000Z
There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.
Utpal Sarkar
2006-06-19T23:59:59.000Z
A simple algorithm to calculate the group theory factor entering in anomalies at four and six dimensions for SU(N) and SO(N) groups in terms of the Casimir invariants of their subgroups is presented. Explicit examples of some of the lower dimensional representations of $SU(n), n \\leq 5$ and SO(10) groups are presented, which could be used for model building in four and six dimensions.
Pinpointing the Magnetic Moments of Nuclear Matter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Detmold said. "There is another step we would like to do if we have enough computing power to do it, and in a few years time there will be: to redo this calculation with the...
Pinpointing the Magnetic Moments of Nuclear Matter
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our sciencePhysics532
System for closure of a physical anomaly
Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S
2014-11-11T23:59:59.000Z
Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.
Momentive Performance Materials Distillation Intercharger
Boucher, N.; Baisley, T.; Beers, C.; Cameron, R.; Holman, K.; Kotkoskie, T.; Norris, K.
2013-01-01T23:59:59.000Z
Care? Energy Efficiency Program Momentive Performance Materials Distillation Interchanger ESL-IE-13-05-20 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 Copyright 2013 Momentive Performance... Materials Inc. All rights reserved. CONFIDENTIAL IETC Energy Efficiency Award Winner Distillation Interchanger ? Waterford, NY Agenda ? Momentive Overview ? Waterford, NY Site Overview ? Project Overview ? Project Timeline ? NYSERDA ? Project Team...
Thomas R. Hemmert; Ulf-G. Meissner; Sven Steininger
1998-11-09T23:59:59.000Z
We present an analytic and parameter-free expression for the momentum dependence of the strange magnetic form factor of the nucleon and its corresponding radius which has been derived in Heavy Baryon Chiral Perturbation Theory. We also discuss a model-independent relation between the isoscalar magnetic and the strange magnetic form factors of the nucleon based on chiral symmetry and SU(3) only. These limites are used to derive bounds on the strange magnetic moment of the proton from the recent measurement by the SAMPLE collaboration.
Takeshi Fukuyama; Alexander J. Silenko
2013-11-09T23:59:59.000Z
General classical equation of spin motion is explicitly derived for a particle with magnetic and electric dipole moments in electromagnetic fields. Equation describing the spin motion relatively the momentum direction in storage rings is also obtained.
Paudyal, Durga, E-mail: durga@ameslab.gov [The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011-3020 (United States); Pecharsky, V. K.; Gschneidner, K. A. [The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, Iowa 50011-3020 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011-2300 (United States)
2014-05-07T23:59:59.000Z
We report electronic structure, magnetic properties, and magnetostructural transformations of selected rare earth dialuminides calculated by using local spin density approximation (LSDA), including the Hubbard U parameter (LSDA?+?U) approach. Total energy calculations show that CeAl{sub 2} and EuAl{sub 2} adopt antiferromagnetic (AFM) ground states, while dialuminides formed by other magnetic lanthanides have ferromagnetic (FM) ground states. The comparison of theoretical and experimental magnetic moments of CeAl{sub 2} indicates that the 4f orbital moment of Ce in CeAl{sub 2} is quenched. Theoretical calculations confirm that Eu in EuAl{sub 2} and Yb in YbAl{sub 2} are divalent. PrAl{sub 2} exhibits a tetragonal distortion near FM transition. HoAl{sub 2} shows a first order magnetostructural transition while DyAl{sub 2} shows a second order transformation below magnetic transition. The dialuminides formed by Nd, Tb, and Er are simple ferromagnets without additional anomalies in the FM state.
Graph anomalies in cyber communications
Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory
2011-01-11T23:59:59.000Z
Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.
Contamination of Dark Matter Experiments from Atmospheric Magnetic Dipoles
A. Bueno; M. Masip; P. Sánchez-Lucas; N. Setzer
2013-10-14T23:59:59.000Z
Dark matter collisions with heavy nuclei (Xe, Ge, Si, Na) may produce recoils observable at direct-search experiments. Given that some of these experiments are yielding conflicting information, however, it is worth asking if physics other than dark matter may produce similar nuclear recoils. We examine under what conditions an atmospherically-produced neutral particle with a relatively large magnetic dipole moment could fake a dark matter signal. We argue that a very definite flux could explain the signals seen at DAMA/LIBRA, CDMS/Si and CoGeNT consistently with the bounds from XENON100 and CDMS/Ge. To explore the plausibility of this scenario, we discuss a concrete model with 10-50 MeV sterile neutrinos that was recently proposed to explain the LSND and MiniBooNE anomalies.
Radiation reaction for multipole moments
P. O. Kazinski
2006-04-27T23:59:59.000Z
We propose a Poincare-invariant description for the effective dynamics of systems of charged particles by means of intrinsic multipole moments. To achieve this goal we study the effective dynamics of such systems within two frameworks -- the particle itself and hydrodynamical one. We give a relativistic-invariant definition for the intrinsic multipole moments both pointlike and extended relativistic objects. Within the hydrodynamical framework we suggest a covariant action functional for a perfect fluid with pressure. In the case of a relativistic charged dust we prove the equivalence of the particle approach to the hydrodynamical one to the problem of radiation reaction for multipoles. As the particular example of a general procedure we obtain the effective model for a neutral system of charged particles with dipole moment.
Characterizing flow fluctuations with moments
Rajeev S. Bhalerao; Jean-Yves Ollitrault; Subrata Pal
2015-01-22T23:59:59.000Z
We present a complete set of multiparticle correlation observables for ultrarelativistic heavy-ion collisions. These include moments of the distribution of the anisotropic flow in a single harmonic, and also mixed moments, which contain the information on correlations between event planes of different harmonics. We explain how all these moments can be measured using just two symmetric subevents separated by a rapidity gap. This presents a multi-pronged probe of the physics of flow fluctuations. For instance, it allows to test the hypothesis that event-plane correlations are generated by non-linear hydrodynamic response. We illustrate the method with simulations of events in A MultiPhase Transport (AMPT) model.
Thompson, Corey [Florida State University, Tallahassee] [Florida State University, Tallahassee; Greedan, John [McMaster University] [McMaster University; Garlea, Vasile O [ORNL] [ORNL; Flacau, Roxana [National Research Council of Canada] [National Research Council of Canada; Tan, Malinda [California State University, Long Beach (CSULB)] [California State University, Long Beach (CSULB); Derakhshan, Shahab [California State University, Long Beach (CSULB)] [California State University, Long Beach (CSULB)
2014-01-01T23:59:59.000Z
The novel iron-based compound, BaYFeO4, crystallizes in the Pnma space group with two distinct Fe3+ sites, that are alternately corner-shared [FeO5]7 square pyramids and [FeO6]9 octahedra, forming into [Fe4O18]24 rings, which propagate as columns along the b-axis. A recent report shows two discernible antiferromagnetic (AFM) transitions at 36 and 48 K in the susceptibility, yet heat capacity measurements reveal no magnetic phase transitions at these temperatures. An upturn in the magnetic susceptibility measurements up to 400 K suggests the presence of shortrange magnetic behavior at higher temperatures. In this Article, variable-temperature neutron powder diffraction and hightemperature magnetic susceptibility measurements were performed to clarify the magnetic behavior. Neutron powder diffraction confirmed that the two magnetic transitions observed at 36 and 48 K are due to long-range magnetic order. Below 48 K, the magnetic structure was determined as a spin-density wave (SDW) with a propagation vector, k = (0, 0, 1/3), and the moments along the b-axis, whereas the structure becomes an incommensurate cycloid [k = (0, 0, 0.35)] below 36 K with the moments within the bc-plane. However, for both cases the ordered moments on Fe3+ are only of the order 3.0 B, smaller than the expected values near 4.5 B, indicating that significant components of the Fe moments remain paramagnetic to the lowest temperature studied, 6 K. Moreover, new high-temperature magnetic susceptibility measurements revealed a peak maximum at 550 K indicative of short-range spin correlations. It is postulated that most of the magnetic entropy is thus removed at high temperatures which could explain the absence of heat capacity anomalies at the long-range ordering temperatures. Published spin dimer calculations, which appear to suggest a k = (0, 0, 0) magnetic structure, and allow for neither low dimensionality nor geometric frustration, are inadequate to explain the observed complex magnetic structure.
Muonic Hydrogen and the Third Zemach Moment
J. L. Friar; I. Sick
2005-08-12T23:59:59.000Z
We determine the third Zemach moment of hydrogen (_(2)) using only the world data on elastic electron-proton scattering. This moment dominates the O (Z alpha)^5 hadronic correction to the Lamb shift in muonic atoms. The resulting moment, _(2) = 2.71(13) fm^3, is somewhat larger than previously inferred values based on models. The contribution of that moment to the muonic hydrogen 2S level is -0.0247(12) meV.
Kravtsov, V.E., E-mail: kravtsov@ictp.it [Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, 34100 Trieste (Italy); Landau Institute for Theoretical Physics, 2 Kosygina st., 117940 Moscow (Russian Federation); Yudson, V.I., E-mail: yudson@isan.troitsk.ru [Institute for Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow reg. (Russian Federation)
2011-07-15T23:59:59.000Z
Highlights: > Statistics of normalized eigenfunctions in one-dimensional Anderson localization at E = 0 is studied. > Moments of inverse participation ratio are calculated. > Equation for generating function is derived at E = 0. > An exact solution for generating function at E = 0 is obtained. > Relation of the generating function to the phase distribution function is established. - Abstract: The one-dimensional (1d) Anderson model (AM), i.e. a tight-binding chain with random uncorrelated on-site energies, has statistical anomalies at any rational point f=(2a)/({lambda}{sub E}) , where a is the lattice constant and {lambda}{sub E} is the de Broglie wavelength. We develop a regular approach to anomalous statistics of normalized eigenfunctions {psi}(r) at such commensurability points. The approach is based on an exact integral transfer-matrix equation for a generating function {Phi}{sub r}(u, {phi}) (u and {phi} have a meaning of the squared amplitude and phase of eigenfunctions, r is the position of the observation point). This generating function can be used to compute local statistics of eigenfunctions of 1d AM at any disorder and to address the problem of higher-order anomalies at f=p/q with q > 2. The descender of the generating function P{sub r}({phi}){identical_to}{Phi}{sub r}(u=0,{phi}) is shown to be the distribution function of phase which determines the Lyapunov exponent and the local density of states. In the leading order in the small disorder we derived a second-order partial differential equation for the r-independent ('zero-mode') component {Phi}(u, {phi}) at the E = 0 (f=1/2 ) anomaly. This equation is nonseparable in variables u and {phi}. Yet, we show that due to a hidden symmetry, it is integrable and we construct an exact solution for {Phi}(u, {phi}) explicitly in quadratures. Using this solution we computed moments I{sub m} = N< vertical bar {psi} vertical bar {sup 2m}> (m {>=} 1) for a chain of the length N {yields} {infinity} and found an essential difference between their m-behavior in the center-of-band anomaly and for energies outside this anomaly. Outside the anomaly the 'extrinsic' localization length defined from the Lyapunov exponent coincides with that defined from the inverse participation ratio ('intrinsic' localization length). This is not the case at the E = 0 anomaly where the extrinsic localization length is smaller than the intrinsic one. At E = 0 one also observes an anomalous enhancement of large moments compatible with existence of yet another, much smaller characteristic length scale.
Explicit multipole moments of stationary axisymmetric spacetimes
Thomas Backdahl; Magnus Herberthson
2005-06-23T23:59:59.000Z
In this article we study multipole moments of axisymmetric stationary asymptotically flat spacetimes. We show how the tensorial recursion of Geroch and Hansen can be reduced to a recursion of scalar functions. We also demonstrate how a careful choice of conformal factor collects all moments into one complex valued function on R, where the moments appear as the derivatives at 0. As an application, we calculate the moments of the Kerr solution. We also discuss the freedom in choosing the potential for the moments.
Testing Hyperspectral Data for Geobatanical Anomaly Mapping,...
Data for Geobatanical Anomaly Mapping, Dixie Valley, Nevada, Geothermal Area Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Testing Hyperspectral Data...
Ground-State Electromagnetic Moments of Calcium Isotopes
Ruiz, R F Garcia; Blaum, K; Frommgen, N; Hammen, M; Holt, J D; Kowalska, M; Kreim, K; Menendez, J; Neugart, R; Neyens, G; Nortershauser, W; Nowacki, F; Papuga, J; Poves, A; Schwenk, A; Simonis, J; Yordanov, D T
2015-01-01T23:59:59.000Z
High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the $^{43-51}$Ca isotopes. The ground state magnetic moments of $^{49,51}$Ca and quadrupole moments of $^{47,49,51}$Ca were measured for the first time, and the $^{51}$Ca ground state spin $I=3/2$ was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the $^{40}$Ca core in their ground state.
Ground-State Electromagnetic Moments of Calcium Isotopes
R. F. Garcia Ruiz; M. L. Bissell; K. Blaum; N. Frommgen; M. Hammen; J. D. Holt; M. Kowalska; K. Kreim; J. Menendez; R. Neugart; G. Neyens; W. Nortershauser; F. Nowacki; J. Papuga; A. Poves; A. Schwenk; J. Simonis; D. T. Yordanov
2015-04-17T23:59:59.000Z
High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the $^{43-51}$Ca isotopes. The ground state magnetic moments of $^{49,51}$Ca and quadrupole moments of $^{47,49,51}$Ca were measured for the first time, and the $^{51}$Ca ground state spin $I=3/2$ was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the $^{40}$Ca core in their ground state.
GFMC calculations of electromagnetic moments and M1 transitions in A {<=} 9 nuclei
Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Pieper, Steven C. [Argonne National Laboratory; Schiavilla, Rocco [JLAB, Old Dominion U.; Wiringa, Robert Bruce [Physics Division, Argonne National Laboratory, Argonne, Illinois
2013-08-01T23:59:59.000Z
We present recent Green?s function Monte Carlo calculations of magnetic moments and M1 transitions in A{<=}#20;9 nuclei, which include corrections arising from two-body meson-exchange electromagnetic currents. Two-body effects provide significant corrections to the calculated observables, bringing them in excellent agreement with the experimental data. In particular, we find that two body corrections are especially large in the A = 9, T = 3/2 systems, in which they account for up to ~#24; 20% (~#24; 40%) of the total predicted value for the {sup 9}Li ({sup 9}C) magnetic moment.
Reports on investigations of uranium anomalies. National Uranium Resource Evaluation
Goodknight, C.S.; Burger, J.A. (comps.) [comps.
1982-10-01T23:59:59.000Z
During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.
Anomalies of Nuclear Criticality, Revision 6
Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.
2010-02-19T23:59:59.000Z
This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.
Gravitational Anomalies in Noncommutative Field Theory
Sendic Estrada-Jimenez; Hugo Garcia-Compean; Carlos Soto-Campos
2004-04-14T23:59:59.000Z
Gravitational axial and chiral anomalies in a noncommutative space are examined through the explicit perturbative computation of one-loop diagrams in various dimensions. The analysis depend on how gravity is coupled to noncommutative matter fields. Delbourgo-Salam computation of the gravitational axial anomaly contribution to the pion decay into two photons, is studied in detail in this context. In the process we show that the two-dimensional chiral pure gravitational anomaly does not receive noncommutative corrections. Pure gravitational chiral anomaly in 4k+2 dimensions with matter fields being chiral fermions of spin-1/2 and spin-3/2, is discussed and a noncommutative correction is found in both cases. Mixed anomalies are finally considered in both cases.
Axisymmetric stationary solutions with arbitrary multipole moments
Thomas Bäckdahl
2006-12-07T23:59:59.000Z
In this paper, the problem of finding an axisymmetric stationary spacetime from a specified set of multipole moments, is studied. The condition on the multipole moments, for existence of a solution, is formulated as a convergence condition on a power series formed from the multipole moments. The methods in this paper can also be used to give approximate solutions to any order as well as estimates on each term of the resulting power series.
Moment problems and boundaries of number triangles
Gnedin, Alexander
2008-01-01T23:59:59.000Z
The boundary problem for graphs like Pascal's but with general multiplicities of edges is related to a `backward' problem of moments of the Hausdorff type.
Urban Atmospheres captures a unique, synergistic moment
Paulos, Eric
Urban Atmospheres captures a unique, synergistic moment expanding urban populations, rapid EDITORS Eric Paulos Intel Research eric@paulos.net Tom Jenkins Royal College of Art thomas
Electric dipole moments, from e to tau
A. G. Grozin; I. B. Khriplovich; A. S. Rudenko
2008-12-12T23:59:59.000Z
We derive an upper limit on the electric dipole moment (EDM) of the tau-lepton, which follows from the precision measurements of the electron EDM.
Electric dipole moments, from e to tau
Grozin, A G; Rudenko, A S
2008-01-01T23:59:59.000Z
We derive an upper limit on the electric dipole moment (EDM) of the tau-lepton, which follows from the precision measurements of the electron EDM.
Electric dipole moments, from e to {tau}
Grozin, A. G., E-mail: A.G.Grozin@inp.nsk.su; Khriplovich, I. B., E-mail: khriplovich@inp.nsk.su; Rudenko, A. S., E-mail: saber_@inbox.r [Budker Institute of Nuclear Physics (Russian Federation)
2009-07-15T23:59:59.000Z
We derive an upper limit on the electric dipole moment (EDM) of the {tau}-lepton, which follows from the precision measurements of the electron EDM.
Thin magnetic crystals are path to ferromagnetic graphene | ornl...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Thin magnetic crystals are path to ferromagnetic graphene January 23, 2015 The crystal structure of CrI3 includes hexagonal nets formed by Cr atoms (blue) with magnetic moments...
Induced magnetism in Cu nanoparticles embedded in Co P. Swaminathan
Weaver, John H.
the effects of changing the nature of confinement to three dimensions by embedding Cu nanoparticles in a Co.1063/1.2806236 Nonmagnetic spacer layers grown between layers of magnetic materials exhibit an induced magnetic moment.1
Ionospheric electron content within the equatorial F2 layer anomaly belt
Rastogi, R.G.; Klobuchar, J.A.
1990-11-01T23:59:59.000Z
This Reprint describes some new results on the day-to-day behavior of the equatorial anomaly in the columnar electron content. The measurements were made from a unique network of stations covering dip latitudes from 0 to 25 N during the period in 1975-1976 near sunspot minimum when the ATS 6 satellite was visible from India. The latitudinal distribution of the total electron content on a particular day was found to depend only on the strength of the electrojet current, as determined by the difference of the horizontal magnetic field at stations on the magnetic equator and another outside the equatorial electrojet, rather than on the horizontal magnetic field measured only at the equatorial station. During magnetically disturbed periods the presence or absence of the anomaly was also found to depend only upon the strength of the electrojet current. The varying electrojet current, that is, the equatorial electric field, is very effective in moving the ionization to the anomaly latitudes of 15-20, but the columnar electron content over the magnetic equator remains relatively constant.
Ionospheric electron content within the equatorial F sub 2 layer anomaly belt
Rastogi, R.G. (Indian Inst. of Geomagnetism, Bombay (India)); Klobuchar, J.A. (Air Force Geophysics Lab., Hanscom Air Force Base, MA (United States))
1990-11-01T23:59:59.000Z
This paper describes some new results on the day-to-day behavior of the location of the equatorial anomaly in the columnar electron content. The measurements were made from a unique network of stations covering dip latitudes from 0{degree}N to 25{degree}N during the period in 1975-1976 near sunspot minimum when the ATS 67 satellite was visible from India. The latitudinal distribution of the total electron content on a particular day was found to depend only on the strength of the electrojet current, as determined by the difference of the horizontal magnetic field at stations on the magnetic equator and another outside the equatorial electrojet, rather than on the horizontal magnetic field measured only at the equatorial station. During magnetically disturbed periods the presence or absence of the anomaly was also found to depend only upon the strength of the electrojet current. The varying electrojet current, that is, the equatorial electric field, is very effective in moving the ionization to the anomaly latitudes of 15{degree}-20{degree}, but the columnar electron content over the magnetic equator remains relatively constant.
Source integrals of asymptotic multipole moments
Norman Gürlebeck
2013-02-28T23:59:59.000Z
We derive source integrals for multipole moments that describe the behaviour of static and axially symmetric spacetimes close to spatial infinity. We assume isolated non-singular sources but will not restrict the matter content otherwise. Some future applications of these source integrals of the asymptotic multipole moments are outlined as well.
Mixed Control Moment Gyro and Momentum Wheel Attitude Control C. Eugene Skelton II
Hall, Christopher D.
, or non-moving devices like magnetic torquers. A momentum wheel is a high inertia flywheel mounted which makes them non-ideal for rapid slewing. A control moment gyro has a flywheel mounted on a motor that spins at a constant relative speed. The flywheel and motor are mounted to a gimbal motor that can rotate
Reanalysis of the Reactor Neutrino Anomaly
Hayes, A C; Garvey, G T; Jonkmans, Guy
2013-01-01T23:59:59.000Z
We reanalyze the reactor neutrino anomaly, wherein it is suggested that only about 94% of the emitted antineutrino flux was detected in short baseline experiments. We find that the form of the corrections that lead to the anomaly are very uncertain for the 30% of the flux that is determined by forbidden beta-decay transitions. This uncertainty was estimated in four ways and is larger than the size of the anomaly, and is unlikely to be reduced without accurate direct measurements of the antineutrino flux. Neutrino physics conclusions based on the original anomaly need to be revisited, as do oscillation analyses that assumed that the antineutrino flux is known to better than ~5%.
Viscosity anomaly in core-softened liquids
Yu. D. Fomin; V. N. Ryzhov
2013-03-18T23:59:59.000Z
The present article presents a molecular dynamics study of several anomalies of core-softened systems. It is well known that many core-softened liquids demonstrate diffusion anomaly. Usual intuition relates the diffusion coefficient to shear viscosity via Stockes-Einstein relation. However, it can break down at low temperature. In this respect it is important to see if viscosity also demonstrates anomalous behavior.
i\\ai"GIIS... Apollo 15 Anomalies Investigation PAGE
Rathbun, Julie A.
' ·~ i\\ai"GIIS... Apollo 15 Anomalies Investigation PAGE 1 OF /~-........Divl·lan DATE 10/11/71 The purpose of this ATM is to review and status the BxA effort with respect to the Apollo 15 Anomalies t '-· :·~· . . !· ·'··..'· ~· : #12;Apollo 15 Anomalies Investigation TABLE OF CONTENTS Anomalies 1. UHT/Subpackage #2 Interface 2
URCA: Pulling out Anomalies by their Root Causes Fernando Silveira
shows that URCA can accurately diagnose a large range of anomaly types, including network scans, DDoS a manual task, in most cases. We introduce Unsupervised Root Cause Analysis (URCA) which isolates anomalous types of anomalies happen in their networks. We study URCA using anomalies found by the ASTUTE anomaly
LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental Run Schedules Check-In
Building envelope thermal anomaly analysis
Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.
1987-12-01T23:59:59.000Z
A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.
CFD Combustion Modeling with Conditional Moment Closure using...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is...
QED vacuum fluctuations and induced electric dipole moment of the neutron
Dominguez, C. A. [Centre for Theoretical Physics and Astrophysics, University of Cape Town, Rondebosch 7700 (South Africa); Department of Physics, Stellenbosch University, Stellenbosch 7600 (South Africa); Falomir, H. [Instituto de Fisica La Plata-Consejo Nacional de Ciencia y Tecnica, Universidad Nacional de La Plata (Argentina); Ipinza, M.; Loewe, M. [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Kohler, S. [Department of Physics, Stellenbosch University, Stellenbosch 7600 (South Africa); Rojas, J. C. [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile)
2009-08-01T23:59:59.000Z
Quantum fluctuations in the QED vacuum generate nonlinear effects, such as peculiar induced electromagnetic fields. In particular, we show here that an electrically neutral particle, possessing a magnetic dipole moment, develops an induced electric dipole-type moment with unusual angular dependence, when immersed in a quasistatic, constant external electric field. The calculation of this effect is done in the framework of the Euler-Heisenberg effective QED Lagrangian, corresponding to the weak field asymptotic expansion of the effective action to one-loop order. It is argued that the neutron might be a good candidate to probe this signal of nonlinearity in QED.
Theoretical investigation of the magnetic structure in YBa_2Cu_3O_6
Ekkehard Krüger
2006-08-07T23:59:59.000Z
As experimentally well established, YBa_2Cu_3O_6 is an antiferromagnet with the magnetic moments lying on the Cu sites. Starting from this experimental result and the assumption, that nearest-neighbor Cu atoms within a layer have exactly antiparallel magnetic moments, the orientation of the magnetic moments has been determined within a nonadiabatic extension of the Heisenberg model of magnetism, called nonadiabatic Heisenberg model. Within this group-theoretical model there exist four stable magnetic structures in YBa_2Cu_3O_6, two of them are obviously identical with the high- and low-temperature structure established experimentally. However, not all the magnetic moments which appear to be antiparallel in neutron-scattering experiments are exactly antiparallel within this group-theoretical model. Furthermore, within this model the magnetic moments are not exactly perpendicular to the orthorhombic c axis.
Radioactive anomaly discrimination from spectral ratios
Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements
2013-08-20T23:59:59.000Z
A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.
Experimental Validation of Control Designs for Low-Loss Active Magnetic Bearings
Tsiotras, Panagiotis
magnetic bearing FWB flywheel battery CMG control moment gyroscope ESCMG energy storage control moment in flywheel batteries (FWBs) and advanced control moment gyroscopes (CMGs).6 In a FWB, kinetic energy is stored in the rotating flywheel and converted back and forth to electrical energy using a motor
Implementation of the Generalized Complementary Flux Constraint for Low-Loss Active Magnetic
Tsiotras, Panagiotis
magnetic bearing FWB flywheel battery CMG control moment gyroscope ESCMG energy storage control moment. The primary interest of the aerospace community in AMBs is their application in flywheel batteries (FWBs) and advanced control moment gyroscopes (CMGs).6 In a FWB, kinetic energy is stored in the rotating flywheel
Moment Methods for Exotic Volatility Derivatives
Albanese, Claudio
2007-01-01T23:59:59.000Z
The latest generation of volatility derivatives goes beyond variance and volatility swaps and probes our ability to price realized variance and sojourn times along bridges for the underlying stock price process. In this paper, we give an operator algebraic treatment of this problem based on Dyson expansions and moment methods and discuss applications to exotic volatility derivatives. The methods are quite flexible and allow for a specification of the underlying process which is semi-parametric or even non-parametric, including state-dependent local volatility, jumps, stochastic volatility and regime switching. We find that volatility derivatives are particularly well suited to be treated with moment methods, whereby one extrapolates the distribution of the relevant path functionals on the basis of a few moments. We consider a number of exotics such as variance knockouts, conditional corridor variance swaps, gamma swaps and variance swaptions and give valuation formulas in detail.
Hood, R.Q.
1994-04-01T23:59:59.000Z
Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.
Neutral pion lifetime measurements and the QCD chiral anomaly
Bernstein, Aron M.
A fundamental property of QCD is the presence of the chiral anomaly, which is the dominant component of the ?[superscript 0]??? decay rate. Based on this anomaly and its small (?4.5%) chiral correction, a prediction of the ...
A "Poisoning" Attack Against Online Anomaly Detection
Freytag, Johann-Christoph
A "Poisoning" Attack Against Online Anomaly Detection Marius Kloft Department of Computer Science it is robust against targeted "poisoning" attacks. The latter have been first investigated by Nelson et al. [1 of all data points observed so far. The key idea of a poisoning attack is to insert specially crafted
Gravitational Anomalies in the Solar System?
Lorenzo Iorio
2015-03-16T23:59:59.000Z
Mindful of the anomalous perihelion precession of Mercury discovered by U. Le Verrier in the second half of the nineteenth century and its successful explanation by A. Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known bodies have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the Universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: a) Possible anomalous advances of planetary perihelia; b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab); c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon; d) The so-called Faint Young Sun Paradox; e) The secular decrease of the mass parameter of the Sun; f) The Flyby Anomaly; g) The Pioneer Anomaly; and h) The anomalous secular increase of the astronomical unit
ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors
Rubinstein, Benjamin
ANTIDOTE: Understanding and Defending against Poisoning of Anomaly Detectors Benjamin I. P poisoning techniques and develop a defense, in the context of a particular anomaly detector--namely the PCA-subspace method for detecting anomalies in backbone networks. For three poisoning schemes, we show how at- tackers
On the statistical modeling of persistence in total ozone anomalies
Wirosoetisno, Djoko
On the statistical modeling of persistence in total ozone anomalies 1234567 89A64BC7DEF72B4 F9BC4B725CE9393BE647 #12;On the statistical modeling of persistence in total ozone anomalies D. I ozone anomalies on monthly to interannual timescales. Such a model is usually characterized by the Hurst
Harmonic superspace formalism and the consistent chiral anomaly
Li, W.
1986-08-01T23:59:59.000Z
The harmonic superspace formalism has been used to construct the consistent chiral anomaly in N = 1, d = 6 supersymmetric Yang-Mills thoery. The expressions of the gauge anomaly ..delta../sub s//sup phi/ and of the supersymmetric anomaly ..delta../sub SUSY//sup phi/ are given together with the consistent condition. 7 refs.
Moment LMI approach to LTV impulsive control
Paris-Sud XI, Université de
to linear time varying (LTV) minimal norm impulsive optimal control was developed, as an alternative results by Neustadt [17] on the formulation of optimal control problems for linear time varying (LTV) systems as a problem of moments, where the decision variables (from which an optimal control law can
Moment LMI approach to LTV impulsive control
Henrion, Didier
of optimal control problems for linear time varying (LTV) systems as a problem of moments, where the decision to linear time varying (LTV) minimal norm impulsive optimal control was developed, as an alternative optimal control, where size grows quickly as a function of the relaxation order. Jointly with the use
SEM modeling with singular moment matrices
GÃ¼ting, Ralf Hartmut
. The gaussian likelihood function does not contain determi- nants of sample moment matrices and is thus well defined for only one statistical unit. The SEM is applied to the dynamic state space model and compared open for idiographic analysis and estimation of panel data with correlated units. Key Words: Structural
Inversion of Moment Tensors in Anisotropic Media
Cerveny, Vlastislav
-Bohemia, Long Valley volcanic areas! Volumetric components are often interpreted as tensile faulting media may comprise apparent (non-real) volumetric components. Anisotropy effects wave amplitudes and anisotropy in the source area, formulas Outline #12;Theory Seismic Moment Tensor n s A isotropic materials
Optimal data fitting: a moment approach
2007-01-06T23:59:59.000Z
Data fitting problems have long been very useful in many different application areas. A well-known .... natural to ask how good this moment relaxation could be as compared to the original problem and ... In this section, let us assume that fixed.
Moment equations for electrons in semiconductors: comparison of spherical harmonics and full moments
Struchtrup, Henning
by Liotta and Majorana [7] and Struchtrup [8] and we compare their results for simple homogeneous processes, all moment equations are coupled through explicit matrices of mean collision frequencies. Due
An Anzatz about Gravity, Cosmology, and the Pioneer Anomaly
Murad, Paul [Morningstar Applied Physics Inc., LLC, Vienna, VA 22182 (Austria)
2010-01-28T23:59:59.000Z
The Pulsar 1913+16 binary system may represent a 'young' binary system where previously it is claimed that the dynamics are due to either a third body or a gravitational vortex. Usually a binary system's trajectory could reside in a single ellipse or circular orbit; the double ellipse implies that the 1913+16 system may be starting to degenerate into a single elliptical trajectory. This could be validated only after a considerably long time period. In a majority of binary star systems, the weights of both stars are claimed by analysis to be the same. It may be feasible that the trajectory of the primary spinning star could demonstrate repulsive gravitational effects where the neutron star's high spin rate induces a repulsive gravitational source term that compensates for inertia. If true, then it provides evidence that angular momentum may be translated into linear momentum as a repulsive source that has propulsion implications. This also suggests mass differences may dictate the neutron star's spin rate as an artifact of a natural gravitational process. Moreover, the reduced matter required by the 'dark' mass hypothesis may not exist but these effects could be due to repulsive gravity residing in rotating celestial bodies.The Pioneer anomaly observed on five different deep-space spacecraft, is the appearance of a constant gravitational force directed toward the sun. Pioneer spacecraft data reveals that a vortex-like magnetic field exists emanating from the sun. The spiral arms of the Sun's magnetic vortex field may be causal to this constant acceleration. This may profoundly provide a possible experimental verification on a cosmic scale of Gertsenshtein's principle relating gravity to electromagnetism. Furthermore, the anomalous acceleration may disappear once the spacecraft passes out into a magnetic spiral furrow, which is something that needs to be observed in the future. Other effects offer an explanation from space-time geometry to the Yarkovsky thermal effects are discussed.
Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics
Seager, Sara
Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments-factor in atomic spectroscopy and is given by g = (µ/µN )/I, (2) and µN is the nuclear magneton, e /2mp
Anomaly Detection in Streaming Sensor Data
Pawling, Alec; Candia, Julián; Schoenharl, Tim; Madey, Greg
2008-01-01T23:59:59.000Z
In this chapter we consider a cell phone network as a set of automatically deployed sensors that records movement and interaction patterns of the population. We discuss methods for detecting anomalies in the streaming data produced by the cell phone network. We motivate this discussion by describing the Wireless Phone Based Emergency Response (WIPER) system, a proof-of-concept decision support system for emergency response managers. We also discuss some of the scientific work enabled by this type of sensor data and the related privacy issues. We describe scientific studies that use the cell phone data set and steps we have taken to ensure the security of the data. We describe the overall decision support system and discuss three methods of anomaly detection that we have applied to the data.
Reactor Antineutrino Anomaly with known ?_{13}
C. Zhang; X. Qian; P. Vogel
2013-04-18T23:59:59.000Z
We revisit the reactor antineutrino anomaly using the recent reactor flux independent determination of sizable theta?13 by considering the full set of the absolute reactor electron antineutrino flux measurements. When normalized to the predicted flux of Mueller et al. [1], the new world average, after including results from Palo Verde, Chooz, and Double Chooz, is 0.959 +- 0.009 (experiment uncertainty) +- 0.027 (flux systematics). Including the data with kilometer baseline, the new world average is only about 1.4 sigma lower than the unity, weakening the significance of the reactor antineutrino anomaly. The upcoming results from Daya Bay, RENO, and the Double Chooz will provide further information about this issue.
Chiral anomaly, bosonization, and fractional charge
Mignaco, J.A.; Monteiro, M.A.R.
1985-06-15T23:59:59.000Z
We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ..nu.. = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators.
Trace anomaly of the conformal gauge field
Sladkowski, J
1993-01-01T23:59:59.000Z
The proposed by Bastianelli and van Nieuwenhuizen new method of calculations of trace anomalies is applied in the conformal gauge field case. The result is then reproduced by the heat equation method. An error in previous calculation is corrected. It is pointed out that the introducing gauge symmetries into a given system by a field-enlarging transformation can result in unexpected quantum effects even for trivial configurations.
Resurgent Transseries and the Holomorphic Anomaly
Ricardo Couso-Santamaría; Jose D. Edelstein; Ricardo Schiappa; Marcel Vonk
2015-01-14T23:59:59.000Z
The gauge theoretic large N expansion yields an asymptotic series which requires a nonperturbative completion in order to be well defined. Recently, within the context of random matrix models, it was shown how to build resurgent transseries solutions encoding the full nonperturbative information beyond the 't Hooft genus expansion. On the other hand, via large N duality, random matrix models may be holographically described by B-model closed topological strings in local Calabi-Yau geometries. This raises the question of constructing the corresponding holographically dual resurgent transseries, tantamount to nonperturbative topological string theory. This paper addresses this point by showing how to construct resurgent transseries solutions to the holomorphic anomaly equations. These solutions are built upon (generalized) multi-instanton sectors, where the instanton actions are holomorphic. The asymptotic expansions around the multi-instanton sectors have both holomorphic and anti-holomorphic dependence, may allow for resonance, and their structure is completely fixed by the holomorphic anomaly equations in terms of specific polynomials multiplied by exponential factors and up to the holomorphic ambiguities -- which generalizes the known perturbative structure to the full transseries. In particular, the anti-holomorphic dependence has a somewhat universal character. Furthermore, in the nonperturbative sectors, holomorphic ambiguities may be fixed at conifold points. This construction shows the nonperturbative integrability of the holomorphic anomaly equations, and sets the ground to start addressing large-order analysis and resurgent nonperturbative completions within closed topological string theory.
Secretary Chu and the 'Sputnik Moment' | Department of Energy
Broader source: Energy.gov (indexed) [DOE]
'Sputnik Moment' Addthis Description U.S. Secretary of Energy Steven Chu speaks about China and the Sputnik Moment in US energy Policy at the National Press Club. Remarks...
Gunfire characterization and simulation using temporal moments
Smallwood, D.O.
1994-08-01T23:59:59.000Z
The concept of band-limited temporal moments is briefly reviewed. An input-output relationship for the band-limited product model is derived. The band-limited product model is then used to characterize and simulate a gunfire record in the following manner. An ensemble of 50 gunfire rounds are averaged to determine the mean response. The mean is subtracted from the original record and the remaining signal is characterized using a smoothed mean square response of the signal filtered into contiguous bandwidths. This operation preserves the lower bandlimited temporal moments of the original data. This smoothed mean square response was used as the deterministic window for the product model. The power spectrum of the response with the mean removed is used to estimate the spectrum for the random part a product model. An additional step varied the repetition rate in a random manner of the simulated gunfire rounds to match the original record in a statistical sense.
Harmonic moment dynamics in Laplacian growth Alexander Leshchiner,1
Texas at Austin. University of
Harmonic moment dynamics in Laplacian growth Alexander Leshchiner,1 Matthew Thrasher,1 Mark B received 12 November 2009; published 12 January 2010 Harmonic moments are integrals of integer powers of z horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena
Baryon onset in a magnetic field
Alexander Haber; Florian Preis; Andreas Schmitt
2014-12-19T23:59:59.000Z
The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models - including magnetic catalysis, but omitting the anomalous magnetic moment - that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.
Phenomenological explanation of elastic anomalies in superlattices
Grimsditch, M.; Fullerton, E.E. [Argonne National Lab., IL (United States); Schuller, I.K. [California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics
1993-06-01T23:59:59.000Z
The experimental fact that measured elastic and structural properties of superlattices are strongly correlated can be understood on the basis of a simple model based on the packing of hard spheres. The model is consistent with features of many models that have been proposed to explain the supermodulus effect; but contrary to previous explanations, it allows predictions for a given pair of constitutents to be made. For an arbitrary pair of elements, it predicts the existence or non-existence of an elastic anomaly, and a rough estimate of its magnitude.
Tosun, Ozgur [Ankara Ataturk Education and Research Hospital, Department of Radiology (Turkey)], E-mail: ztosun@yahoo.com; Sanlidilek, Umman [Ankara University School of Medicine, Department of Radiology (Turkey); Cetin, Huseyin [Ankara Ataturk Education and Research Hospital, Department of Radiology (Turkey); Ozdemir, Ozcan [Ankara Akay Hospital, Department of Cardiology (Turkey); Kurt, Aydin; Sakarya, Mehmet Emin; Tas, Ismet [Ankara Ataturk Education and Research Hospital, Department of Radiology (Turkey)
2007-09-15T23:59:59.000Z
Magnetic resonance angiography and digital substraction angiography (DSA) findings in a case with a rare congenital thoracoabdominal aortic hypoplasia and common celiamesenteric trunk variation with occlusion of infrarenal abdominal aorta are described here. To our knowledge, this aortic anomaly has not been previously described in the English literature. DSA is the optimum imaging modality for determination of aortic hypoplasia, associated vascular malformations, collateral vessels, and direction of flow within vessels.
Hypothesis of a Mundane Solution to the Pioneer Anomaly
Steven M Taylor
2006-03-09T23:59:59.000Z
Incorporating the relativistic all-angle Doppler shift equation in the interpretation of astronomical Doppler shift may help explain the Pioneer anomaly and other phenomena.
aggressive vascular anomalies: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
symmetry and chiral fermions leads to subtle issues. Depending on the specific group and field content, anomalies are found: obstructions to the quantization of chiral gauge...
Nonconvex programming techniques based on functional moments
Martin, Jacques
1976-01-01T23:59:59.000Z
) August 1976 ABSTRACT Nonconvex Programming Techniques Based on Functional Moments. (August 1976) / / / Jacques Hartin, Ingenieur Civil des Telecommunications Chairman of Advisory Committee: Dr. H. 0. Hartley In order to evaluate the maximum f+ of a... = ? Atctg ~ 'j V. q V ~ = -tg P V. J We define in the same way (2. 4) V. -1 tg J 'V . J (2. 2) becomes ig . 1$ 1V. X. V 1V, X, V. A J J j J J J 2 Let e . = -1; e = 1, j = 1, 2, . . . , n oj A. = ? Z e j j j e v. is v. x. j' j'' e ! k=0 2...
High-precision description and new properties of a spin-1 particle in a magnetic field
Alexander J. Silenko
2014-06-09T23:59:59.000Z
The exact Foldy-Wouthuysen Hamiltonian is derived for a pointlike spin-1 particle with a normal magnetic moment in a nonuniform magnetic field. For a uniform magnetic field, it is exactly separated into terms linear and quadratic in spin. New unexpected properties of a particle with an anomalous magnetic moment are found. Spin projections of a particle moving in a uniform magnetic field are not integer and the tensor polarization is asymmetric in the plane orthogonal to the field. Previously described spin-tensor effects caused by the tensor magnetic polarizability exist not only for nuclei but also for pointlike particles.
ASTER Thermal Anomalies in western Colorado
Zehner, Richard E.
2013-01-01T23:59:59.000Z
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: ASTER Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from ASTER satellite imagery. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. Areas that had temperature greater than 2?, and areas with temperature equal to 1? to 2?, were considered ASTER modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4547052.446651 m Left: 158917.090117 m Right: 4101162.228281 m Bottom: 4101162.228281 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file
Moment Closure Approximations in a Genetic Negative Feedback Circuit
Mohammad Soltani; Cesar Vargas; Niraj Kumar; Rahul Kulkarni; Abhyudai Singh
2014-05-15T23:59:59.000Z
Auto-regulation, a process wherein a protein negatively regulates its own production, is a common motif in gene expression networks. Negative feedback in gene expression plays a critical role in buffering intracellular fluctuations in protein concentrations around optimal value. Due to the nonlinearities present in these feedbacks, moment dynamics are typically not closed, in the sense that the time derivative of the lower-order statistical moments of the protein copy number depends on high-order moments. Moment equations are closed by expressing higher-order moments as nonlinear functions of lower-order moments, a technique commonly referred to as moment closure. Here, we compare the performance of different moment closure techniques. Our results show that the commonly used closure method, which assumes a priori that the protein population counts are normally distributed, performs poorly. In contrast, conditional derivative matching, a novel closure scheme proposed here provides a good approximation to the exact moments across different parameter regimes. In summary our study provides a new moment closure method for studying stochastic dynamics of genetic negative feedback circuits, and can be extended to probe noise in more complex gene networks.
Freshwater Availability Anomalies and Outbreak of Internal War
Columbia University
Freshwater Availability Anomalies and Outbreak of Internal War: Results from a Global Spatial Time Organizers: Centre for the Study of Civil War, International Peace Research Institute, Oslo (PRIO) & Centre Freshwater Availability Anomalies and Outbreak of Internal War: Results from a Global Spatial Time Series
TEMPORAL PATTERN DISCOVERY FOR ANOMALY DETECTION IN A SMART HOME
Cook, Diane J.
TEMPORAL PATTERN DISCOVERY FOR ANOMALY DETECTION IN A SMART HOME Vikramaditya Jakkula , Diane J, cook}@eecs.wsu.edu Keywords: Knowledge discovery, smart homes, anomaly detection, temporal relations and relations on smart home datasets [10]. This paper describes a method of discovering temporal relations
Platinum dendritic nanoparticles with magnetic behavior
Li, Wenxian, E-mail: wl240@uowmail.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Solar Energy Technologies, School of Computing, Engineering, and Mathematics, University of Western Sydney, Penrith NSW 2751 (Australia); Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Tian, Dongliang [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and the Environment, Beihang University, Beijing 100191 (China)
2014-07-21T23:59:59.000Z
Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ?4?nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.
Geometric dynamics of Vlasov kinetic theory and its moments
Tronci, Cesare
2008-01-01T23:59:59.000Z
The Vlasov equation of kinetic theory is introduced and the Hamiltonian structure of its moments is presented. Then we focus on the geodesic evolution of the Vlasov moments. As a first step, these moment equations generalize the Camassa-Holm equation to its multi-component version. Subsequently, adding electrostatic forces to the geodesic moment equations relates them to the Benney equations and to the equations for beam dynamics in particle accelerators. Next, we develop a kinetic theory for self assembly in nano-particles. Darcy's law is introduced as a general principle for aggregation dynamics in friction dominated systems (at different scales). Then, a kinetic equation is introduced for the dissipative motion of isotropic nano-particles. The zeroth-moment dynamics of this equation recovers the classical Darcy's law at the macroscopic level. A kinetic-theory description for oriented nano-particles is also presented. At the macroscopic level, the zeroth moments of this kinetic equation recover the magnetiz...
Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly
A. C. Hayes; J. L. Friar; G. T. Garvey; G. Jungman; Guy Jonkmans
2014-04-05T23:59:59.000Z
We examine uncertainties in the analysis of the reactor neutrino anomaly, wherein it is suggested that only about 94% of the emitted antineutrino flux was detected in short baseline experiments. We find that the form of the corrections that lead to the anomaly are very uncertain for the 30% of the flux that arises from forbidden decays. This uncertainty was estimated in four ways, is as large as the size of the anomaly, and is unlikely to be reduced without accurate direct measurements of the antineutrino flux. Given the present lack of detailed knowledge of the structure of the forbidden transitions, it is not possible to convert the measured aggregate fission beta spectra to antineutrino spectra to the accuracy needed to infer an anomaly. Neutrino physics conclusions based on the original anomaly need to be revisited, as do oscillation analyses that assumed that the antineutrino flux is known to better than approximately 4%.
Emergent gravity and chiral anomaly in Dirac semimetals in the presence of dislocations
Zubkov, M A
2015-01-01T23:59:59.000Z
We consider the recently discovered Dirac semimetals with two Dirac points $\\pm{\\bf K}$. In the presence of elastic deformations each fermion propagates in a curved space, whose metric is defined by the expansion of the effective Hamiltonian near the Dirac point. Besides, there is the emergent electromagnetic field that is defined by the shift of the Dirac point. We consider the case, when the deformations are caused by the dislocations. The dislocation carries singular torsion and the quantized flux of emergent magnetic field. Both torsion singularity and emergent magnetic flux may be observed in the scattering of quasiparticles on the dislocation due to Stodolsky and Aharonov - Bohm effects. We discuss quantum anomalies in the quasiparticle currents in the presence of emergent gauge and gravitational fields and the external electromagnetic field. In particular, it is demonstrated, that in the presence of external electric field the quasiparticles/holes are pumped from vacuum along the dislocation. The appea...
Multipole moments in scalar-tensor theory of gravity
George Pappas; Thomas P. Sotiriou
2015-01-30T23:59:59.000Z
Stationary, asymptotically flat spacetimes in general relativity can be characterized by their multipole moments. The moments have proved to be very useful tools for extracting information about the spacetime from various observables and, more recently, for establishing universalities in the structure of neutron stars. As a first step toward extending these methods beyond general relativity, we develop the formalism that allows one to define and calculate the multipole moments in scalar-tensor theories of gravity.
Electric Dipole Moments: A Global Analysis
Timothy Chupp; Michael Ramsey-Musolf
2014-07-03T23:59:59.000Z
We perform a global analysis of searches for the permanent electric dipole moments (EDMs) of the neutron, neutral atoms, and molecules in terms of six leptonic, semileptonic, and nonleptonic interactions involving photons, electrons, pions, and nucleons. Translating the results into fundamental CP-violating effective interactions through dimension six involving Standard Model particles, we obtain rough lower bounds on the scale of beyond the Standard Model CP-violating interactions ranging from 1.5 TeV for the electron EDM to 1300 TeV for the nuclear spin-independent electron-quark interaction. We show that future measurements involving systems or combinations of systems with complementary sensitivities to the low-energy parameters may extend the mass reach by an order of magnitude or more.
Scientists capture 'redox moments' in living cells | EMSL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
moments' in living cells Better understanding of hardy bacteria enhances tool for biofuel creation Scientists have charted a significant signaling network in a tiny organism...
Stuchbery, Andrew E. [Department of Nuclear Physics, The Australian National University, Canberra, ACT 0200 (Australia)
2014-08-14T23:59:59.000Z
Experimental methods to measure the magnetic moments of short-lived excited states in beams of rare isotopes are outlined. The emphasis is on the so-called High-Velocity Transient-Field (HVTF) and the Recoil in Vacuum (RIV) methods, and the role of ?-ray detector arrays with ancillary detectors. Insights into the structure of neutron-rich nuclei through such measurements on radioactive beams are discussed. Opportunities for the future development of these techniques, for applications to both stable and radioactive beams, are explored.
Local spin torque induced by electron electric dipole moment in the YbF molecule
Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo [Department of Micro Engineering, Kyoto University, Kyoto 615-8540 (Japan)
2014-10-06T23:59:59.000Z
In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.
Banerjee, Saikat; Furtado, Jonathan; Bagchi, Biman, E-mail: bbagchi@sscu.iisc.ernet.in [SSCU, Indian Institute of Science, Bangalore 560012 (India)] [SSCU, Indian Institute of Science, Bangalore 560012 (India)
2014-05-21T23:59:59.000Z
Water–tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x{sub TBA} ? 0.03–0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x{sub TBA} ? 0.05. We note that “islands” of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x{sub TBA} ? 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level.
Utrecht, Universiteit
2001-01-01T23:59:59.000Z
Physics of the Earth and Planetary Interiors 126 (2001) 93108 Rock-magnetic properties of TRM produced large areas of thermally altered sedimentary rocks with large magnetic moments. The natural remanent magnetization (NRM) and thermoremanent magnetization (TRM) intensities and low
Ultrafast thermally induced magnetic switching in synthetic ferrimagnets
Evans, Richard F. L., E-mail: richard.evans@york.ac.uk; Ostler, Thomas A.; Chantrell, Roy W. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Radu, Ilie [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Rasing, Theo [Radboud University, Institute for Molecules and Materials, Heyendaalsewg 135, 6525 AJ Nijmegen (Netherlands)
2014-02-24T23:59:59.000Z
Synthetic ferrimagnets are composite magnetic structures formed from two or more anti-ferromagnetically coupled magnetic sublattices with different magnetic moments. Here, we report on atomistic spin simulations of the laser-induced magnetization dynamics on such synthetic ferrimagnets and demonstrate that the application of ultrashort laser pulses leads to sub-picosecond magnetization dynamics and all-optical switching in a similar manner as in ferrimagnetic alloys. Moreover, we present the essential material properties for successful laser-induced switching, demonstrating the feasibility of using a synthetic ferrimagnet as a high density magnetic storage element without the need of a write field.
Kristoffersen, Yngve
. Petrol. Society. 5 Cande, S. and Kristoffersen, Y., 1977: Late Cretaceous magnetic anomalies in the North Borderlands. Can. Soc. Petrol. Geol., Memoir 7, 197-229. 17. Kristoffersen, Y., Husebye, E.S., Bungum, H
On an additional realization of supersymmetry in orthopositronium lifetime anomalies
B. M. Levin; V. I. Sokolov
2007-03-16T23:59:59.000Z
Expansion of Standard Model for the quantitative description of the orthopositronium lifetime anomalies (from QED to supersymmetric QED) allows to formulate experimental tests of supervision of additional realization of the supersymmetry in final state of the positron beta-decay of the nuclei such as Na-22, Ga-68. The expermentum crucis program is based on supervision of the orthopositronium "isotope anomaly", on the quantitative description of the "lifetime anomaly", and will allow to resolve the alternative as results of the last Michigan work (2003).
Lyapunov exponents at anomalies of SL(2,R)-actions
Hermann Schulz-Baldes
2006-07-12T23:59:59.000Z
Anomalies are known to appear in the perturbation theory for the one-dimensional Anderson model. A systematic approach to anomalies at critical points of products of random matrices is developed, classifying and analysing their possible types. The associated invariant measure is calculated formally. For an anomaly of so-called second degree, it is given by the groundstate of a certain Fokker-Planck equation on the unit circle. The Lyapunov exponent is calculated to lowest order in perturbation theory with rigorous control of the error terms.
Explicit Expressions for Moments of Log Normal Order Statistics
Sidorov, Nikita
Explicit Expressions for Moments of Log Normal Order Statistics Saralees Nadarajah First version: 31 December 2006 Research Report No. 23, 2006, Probability and Statistics Group School of Mathematics, The University of Manchester #12;Explicit Expressions for Moments of Log Normal Order Statistics by Saralees
A multivariate quadrature based moment method for supersonic combustion modeling
Raman, Venkat
A multivariate quadrature based moment method for supersonic combustion modeling Pratik Donde) of thermochemical variables can be used for accurately computing the combustion source term. Quadrature based- ture method of moments (DQMOM) is well suited for multivariate problems like combustion. Numerical
Estimation of scalar moments from explosion-generated surface waves
Stevens, J.L.
1985-04-01T23:59:59.000Z
Rayleigh waves from underground nuclear explosions are used to estimate scaler moments for 40 Nevada Test Site (NTS) explosions and 18 explosions at the Soviet East Kazakh test site. The Rayleigh wave spectrum is written as a product of functions that depend on the elastic structure of the travel path, the elastic structure of the source region and the Q structure of the path. Results are used to examine the worldwide variability of each factor and the resulting variability of surface wave amplitudes. The path elastic structure and Q structure are found by inversion of Rayleigh wave phase and group velocities and spectral amplitudes. The Green's function derived from this structure is used to estimate the moments of explosions observed along the same path. This procedure produces more consistent amplitude estimates than conventional magnitude measurements. Network scatter in log moment is typically 0.1. In contrast with time-domain amplitudes, the elastic structure of the travel path causes little variability in spectral amplitudes. When the mantle Q is constrained to a value of approximately 100 at depths greater than 120 km, the inversion for Q and moment produces moments that remain constant with distance. Based on the best models available, surface waves from NTS explosions should be larger than surface waves from East Kazakh explosions with the same moment. Estimated scaler moments for the largest East Kazakh explosions since 1976 are smaller than the estimated moments for the largest NTS explosions for the same time period.
Improving Moments-based Visual Servoing with Tunable Visual Features
Boyer, Edmond
that are subjects of active research. The first is the design of visual features most pertinent to the robotic task and y rotational motions. With the proposed method, it is possible to design moment invariants to demonstrate the validity of the proposed ideas. Results from each case are then used to design a moment
Possible Constraints on Neutron Electric Dipole Moment from Pulsar Radiation
C. Sivaram
2010-02-12T23:59:59.000Z
Even if only a small fraction of neutron dipole moments are aligned in a neutron star, observed pulsar radiation loses provide a stringent limit on the neutron electric dipole moment of <10-29 ecm, more stringent than best current experimental limits.
Remotely Sensed Thermal Anomalies in western Colorado
Hussein, Khalid
2012-02-01T23:59:59.000Z
Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Landsat Thermal Anomalies Western Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as areas of anomalous surface temperature from Landsat satellite imagery in Western Colorado. Data was obtained for two different dates. The digital numbers of each Landsat scene were converted to radiance and the temperature was calculated in degrees Kelvin and then converted to degrees Celsius for each land cover type using the emissivity of that cover type. And this process was repeated for each of the land cover types (open water, barren, deciduous forest and evergreen forest, mixed forest, shrub/scrub, grassland/herbaceous, pasture hay, and cultivated crops). The temperature of each pixel within each scene was calculated using the thermal band. In order to calculate the temperature an average emissivity value was used for each land cover type within each scene. The NLCD 2001 land cover classification raster data of the zones that cover Colorado were downloaded from USGS site and used to identify the land cover types within each scene. Areas that had temperature residual greater than 2?, and areas with temperature equal to 1? to 2?, were considered Landsat modeled very warm and warm surface exposures (thermal anomalies), respectively Spatial Domain: Extent: Top: 4546381.234113 m Left: 140556.857021 m Right: 573390.000000 m Bottom: 4094583.641581 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file
Appraising nuclear octupole moment contributions to the hyperfine structures in $^{211}$Fr
Sahoo, B K
2015-01-01T23:59:59.000Z
Hyperfine structures of $^{211}$Fr due to the interactions of magnetic dipole ($\\mu$), electric quadrupole ($Q$) and magnetic octupole ($\\Omega$) moments with the electrons are investigated using the relativistic coupled-cluster (RCC) theory with an approximation of singles, doubles and important valence triples excitations in the perturbative approach. Validity of our calculations are substantiated by comparing the results with their available experimental values. Its $Q$ value has also been elevated by combining the measured hyperfine structure constant of the $7p \\ ^2P_{3/2}$ state with our improved calculation. Considering the preliminary value of $\\Omega$ from the nuclear shell-model, its contributions to the hyperfine structures up to the $7d \\ ^2D_{5/2}$ low-lying states in $^{211}$Fr are estimated. Energy splittings of the hyperfine transitions in many states have been assessed to find out suitability to carry out their precise measurements so that $\\Omega$ of $^{211}$Fr can be inferred from them unam...
Existence and unicity of co-moments in multisymplectic geometry
Leonid Ryvkin; Tilmann Wurzbacher
2014-11-09T23:59:59.000Z
Given a multisymplectic manifold $(M,\\omega)$ and a Lie algebra $\\frak{g}$ acting on it by infinitesimal symmetries, Fregier-Rogers-Zambon define a homotopy (co-)moment as an $L_{\\infty}$-algebra-homomorphism from $\\frak{g}$ to the observable algebra $L(M,\\omega)$ associated to $(M,\\omega)$, in analogy with and generalizing the notion of a co-moment map in symplectic geometry. We give a cohomological characterization of existence and unicity for homotopy co-moment maps and show its utility in multisymplectic geometry by applying it to special cases as exact multisymplectic manifolds and simple Lie groups and by deriving from it existence results concerning partial co-moment maps, as e.g. covariant multimomentum maps and multi-moment maps.
Solar Eclipse Anomalies and Wave Refraction
Alasdair Macleod
2006-10-23T23:59:59.000Z
There is some inconclusive evidence that measurement devices sensitive to local gravitation exhibit anomalous behaviour during solar eclipses. We investigate if these findings can be incorporated into the standard general relativistic model of gravitation. The General Theory of Relativity (GTR) describes gravitation as the response of an object to local spacetime curvature. Gravitational waves travelling at the speed of light are then a necessary mechanism to maintain the required consistency between local curvature and distant gravitating mass. Gravitational waves will certainly be subject to refraction by bodies such as the moon and we explore if such an effect can result in an error in the apparent position of the sources and thereby give rise to the characteristic pattern of response associated with the eclipse anomaly. It is found there are phenomenological similarities, but only if gravitational waves are considered not merely to respond to spacetime curvature but are also significantly affected by the presence of mass, perhaps in a manner analogous to electromagnetic waves propagating through matter.
Gravitational Anomalies in the Solar System?
Iorio, Lorenzo
2014-01-01T23:59:59.000Z
Mindful of the anomalous perihelion precession of Mercury discovered by U. Le Verrier in the second half of the nineteenth century and its successful explanation by A. Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known bodies have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the Universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gra...
Nucleon tensor charges and electric dipole moments
Mario Pitschmann; Chien-Yeah Seng; Craig D. Roberts; Sebastian M. Schmidt
2014-12-22T23:59:59.000Z
A symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector contact interaction is used to compute dressed-quark-core contributions to the nucleon $\\sigma$-term and tensor charges. The latter enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron and proton EDMs. The presence of strong scalar and axial-vector diquark correlations within ground-state baryons is a prediction of this approach. These correlations are active participants in all scattering events and thereby modify the contribution of the singly-represented valence-quark relative to that of the doubly-represented quark. Regarding the proton $\\sigma$-term and that part of the proton mass which owes to explicit chiral symmetry breaking, with a realistic $d$-$u$ mass splitting the singly-represented $d$-quark contributes 37% more than the doubly-represented $u$-quark; and in connection with the proton's tensor charges, $\\delta_T u$, $\\delta_T d$, the ratio $\\delta_T d/\\delta_T u$ is 18% larger than anticipated from simple quark models. Of particular note, the size of $\\delta_T u$ is a sensitive measure of the strength of dynamical chiral symmetry breaking; and $\\delta_T d$ measures the amount of axial-vector diquark correlation within the proton, vanishing if such correlations are absent.
Confronting Higgcision with Electric Dipole Moments
Kingman Cheung; Jae Sik Lee; Eibun Senaha; Po-Yan Tseng
2014-06-24T23:59:59.000Z
Current data on the signal strengths and angular spectrum of the 125.5 GeV Higgs boson still allow a CP-mixed state, namely, the pseudoscalar coupling to the top quark can be as sizable as the scalar coupling: $C_u^S \\approx C_u^P =1/2$. CP violation can then arise and manifest in sizable electric dipole moments (EDMs). In the framework of two-Higgs-doublet models, we not only update the Higgs precision (Higgcision) study on the couplings with the most updated Higgs signal strength data, but also compute all the Higgs-mediated contributions from the 125.5 GeV Higgs boson to the EDMs, and confront the allowed parameter space against the existing constraints from the EDM measurements of Thallium, neutron, Mercury, and Thorium monoxide. We found that the combined EDM constraints restrict the pseudoscalar coupling to be less than about $10^{-2}$, unless there are contributions from other Higgs bosons, supersymmetric particles, or other exotic particles that delicately cancel the current Higgs-mediated contributions.
Whole Building Energy Performance Anomaly Detections at TU/e
Hensen, J. L. M.; Bynum, J. D.
2013-01-01T23:59:59.000Z
of Technology (TU/e) is seeking to realize this potential in Europe and specifically in The Netherlands. Past research utilized a whole building level anomaly detection and diagnostics tool to demonstrate the effectiveness and potential of the concept when...
anomaly intrusion detection: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Creation via Clustering Anomalies Gilbert R. Hendry and Shanchieh J. Yang apparent by the latency from day zero of an attack to the creation of an appropriate signature. This work...
IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD...
REMOTE SENSING AND FIELD DATA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL...
anomalies congenitales des: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
regularization and is found to vanish. Hung cheng; S. P. Li 1996-03-06 188 Hawking Radiation of Black Rings from Anomalies General Relativity & Quantum Cosmology (arXiv)...
A Shallow Attenuating Anomaly Inside The Ring Fracture Of The...
surface layer. To fit the data we had to assign an unrealistically low value to seismic Q in the deeper attenuating anomaly. We attribute this to the inability of the...
anomaly mediated susy: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
mixed modulus-anomaly mediated soft terms realize the little hierarchy between the Higgs boson masses mH and the sparticle masses mSUSY. It is noted that for some type of...
atmospheric neutrino anomaly: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of pure G. L. Fogli; E. Lisi; D. Montanino; G. Scioscia 1996-07-05 2 Bounds on Dark Matter from the Atmospheric Neutrino Anomaly'' HEP - Phenomenology (arXiv) Summary: Bounds...
Seiberg-Witten maps and commutator anomalies in noncommutative electrodynamics
Banerjee, Rabin; Kumar, Kuldeep [S.N. Bose National Centre for Basic Sciences, JD Block, Sector 3, Salt Lake, Kolkata 700098 (India)
2005-10-15T23:59:59.000Z
We exploit the Seiberg-Witten maps for fields and currents in a U(1) gauge theory relating the noncommutative and commutative (usual) descriptions to obtain the O({theta}) structure of the commutator anomalies in noncommutative electrodynamics. These commutators involve the (covariant) current-current algebra and the (covariant) current-field algebra. We also establish the compatibility of the anomalous commutators with the noncommutative covariant anomaly through the use of certain consistency conditions derived here.
Parity-odd anomalies and correlation functions on conical defects
Cvitan, Maro; Pallua, Silvio; Smoli?, Ivica; Štemberga, Tamara
2015-01-01T23:59:59.000Z
We analyse parity-odd ("P-type") surface anomalies ("Graham-Witten anomalies") of energy-momentum correlators in conformal field theories defined in d-dimensional spacetime supplemented with a conical defect, with an emphases on d=4 and d=3 cases. In d=4 we show that the trace anomaly will receive such surface contribution if the bulk trace anomaly contains P-type anomaly given by Pontryagin (pseudo)tensor, and as a consequence 2-point correlation function of energy-momentum tensor in flat spacetime will be nonvanishing as it receives corresponding surface contributions. In the process, we construct the most general P-type surface trace anomaly on singular 2-dimensional surface in 4-dimensional spacetime by performing consistency analysis. We show that there are two independent terms, one is the outer curvature (pseudo)scalar and the other is quadratic in the traceless part of the second fundamental tensor. For the special case of conical singularity we calculate the coefficient of the first term. Though we w...
A New Methodology for Early Anomaly Detection of BWR Instabilities
Ivanov, K. N.
2005-11-27T23:59:59.000Z
The objective of the performed research is to develop an early anomaly detection methodology so as to enhance safety, availability, and operational flexibility of Boiling Water Reactor (BWR) nuclear power plants. The technical approach relies on suppression of potential power oscillations in BWRs by detecting small anomalies at an early stage and taking appropriate prognostic actions based on an anticipated operation schedule. The research utilizes a model of coupled (two-phase) thermal-hydraulic and neutron flux dynamics, which is used as a generator of time series data for anomaly detection at an early stage. The model captures critical nonlinear features of coupled thermal-hydraulic and nuclear reactor dynamics and (slow time-scale) evolution of the anomalies as non-stationary parameters. The time series data derived from this nonlinear non-stationary model serves as the source of information for generating the symbolic dynamics for characterization of model parameter changes that quantitatively represent small anomalies. The major focus of the presented research activity was on developing and qualifying algorithms of pattern recognition for power instability based on anomaly detection from time series data, which later can be used to formulate real-time decision and control algorithms for suppression of power oscillations for a variety of anticipated operating conditions. The research being performed in the framework of this project is essential to make significant improvement in the capability of thermal instability analyses for enhancing safety, availability, and operational flexibility of currently operating and next generation BWRs.
Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets
Soni, Himadri R., E-mail: himadri.soni@gmail.com; Jha, Prafulla K., E-mail: himadri.soni@gmail.com [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364001 (India)
2014-04-24T23:59:59.000Z
Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)
2010-07-13T23:59:59.000Z
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)
2009-10-27T23:59:59.000Z
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)
2009-11-10T23:59:59.000Z
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)
2010-06-29T23:59:59.000Z
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Spin microscope based on optically detected magnetic resonance
Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)
2007-12-11T23:59:59.000Z
The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.
Bhurtel, Dilli RAJ; Losa, Ignatius
2010-05-05T23:59:59.000Z
Abstract Introduction We report for the first time a unique case of VACTERL (vertebral anomalies, anal atresia or imperforate anus, cardiac anomalies, tracheoesophageal fistula, renal and limb defect) spectrum associated with portal hypertension...
Simulating net particle production and chiral magnetic current in a CP-odd domain
Kenji Fukushima
2015-01-29T23:59:59.000Z
We elucidate the numerical formulation to simulate net production of particles and anomalous currents with CP-breaking background fields which cause an imbalance between particles and anti-particles. For a concrete demonstration we numerically impose pulsed electric and magnetic fields to observe that the dynamical chiral magnetic current follows together with the net particle production. The produced particle density is quantitatively consistent with the axial anomaly, while the chiral magnetic current shows a delay before the onset, which leads to a suppression effect, and then approaches what is expected from the axial anomaly.
Moment-linear stochastic systems and their applications
Roy, Sandip, 1978-
2003-01-01T23:59:59.000Z
Our work is motivated by the need for tractable stochastic models for complex network and system dynamics. With this motivation in mind, we develop a class of discrete-time Markov models, called moment-linear stochastic ...
U.S. Music Studies in a Moment of Danger
Tucker, Sherrie
2011-09-01T23:59:59.000Z
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. U.S. Music Studies in a "Moment of Danger" Tucker, Sherrie Journal of the American Musicological Society; Fall 2011; 64, 3; ProQuest Research...
Moments and Lyapunov exponents for the parabolic Anderson model
Borodin, Alexei
We study the parabolic Anderson model in (1+1) dimensions with nearest neighbor jumps and space–time white noise (discrete space/continuous time). We prove a contour integral formula for the second moment and compute the ...
Chiral Magnetic Effect in QED induced by longitudinal photons
J. L. Acosta Avalo; H. Perez Rojas
2015-02-26T23:59:59.000Z
We demonstrate the existence of the chiral magnetic effect in an electron-positron magnetized gas. A pseudo-vector(conserved)Ohm current is induced by the electric field related to the longitudinal QED mode propagating parallel to the external magnetic field $\\textbf{B}$ and separating opposite charges of the same heliticity. From a relation between axial and electromagnetic currents we obtain a non-conserved current leading to an expression close to the usual axial anomaly. The effect is interesting in connection to the QCD chiral magnetic case reported in current literature.
Multipole moments for black objects in five dimensions
Kentaro Tanabe; Seiju Ohashi; Tetsuya Shiromizu
2010-11-19T23:59:59.000Z
In higher dimensions than four, conventional uniqueness theorem in asymptotically flat space-times does not hold, i.e., black objects can not be classified only by the mass, angular momentum and charge. In this paper, we define multipole moments for black objects and show that Myers-Perry black hole and black ring can be distinguished by quadrupole moments. This consideration gives us a new insight for the uniqueness theorem for black objects in higher dimensions.
Constructing numbers through moments in time: Kant's philosophy of mathematics
Wilson, Paul Anthony
2004-11-15T23:59:59.000Z
CONSTRUCTING NUMBERS THROUGH MOMENTS IN TIME: KANT?S PHILOSOPHY OF MATHEMATICS A Thesis by PAUL ANTHONY WILSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF ARTS August 2003 Major Subject: Philosophy CONSTRUCTING NUMBERS THROUGH MOMENTS IN TIME: KANT?S PHILOSOPHY OF MATHEMATICS A Thesis by PAUL ANTHONY WILSON...
Emergent gravity and chiral anomaly in Dirac semimetals in the presence of dislocations
M. A. Zubkov
2015-01-27T23:59:59.000Z
We consider the recently discovered Dirac semimetals with two Dirac points $\\pm{\\bf K}$. In the presence of elastic deformations each fermion propagates in a curved space, whose metric is defined by the expansion of the effective Hamiltonian near the Dirac point. Besides, there is the emergent electromagnetic field that is defined by the shift of the Dirac point. We consider the case, when the deformations are caused by the dislocations. The dislocation carries singular torsion and the quantized flux of emergent magnetic field. Both torsion singularity and emergent magnetic flux may be observed in the scattering of quasiparticles on the dislocation due to Stodolsky and Aharonov - Bohm effects. We discuss quantum anomalies in the quasiparticle currents in the presence of emergent gauge and gravitational fields and the external electromagnetic field. In particular, it is demonstrated, that in the presence of external electric field the quasiparticles/holes are pumped from vacuum along the dislocation. The appeared chiral imbalance along the dislocation drives the analogue of chiral magnetic effect, that is the appearance of electric current along the dislocation.
Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies
Bonora, L. [International School for Advanced Studies (SISSA/ISAS) Via Beirut 2-4, 34014 Trieste (Italy) and INFN, Sezione di Trieste (Italy); Cvitan, M. [International School for Advanced Studies (SISSA/ISAS) Via Beirut 2-4, 34014 Trieste (Italy) and INFN, Sezione di Trieste (Italy); Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb (Croatia); Pallua, S.; Smolic, I. [Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb (Croatia)
2009-10-15T23:59:59.000Z
We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawking radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.
Correlation of cerium anomalies with indicators of paleoenvironment
MacLeod, K.G. [Smithsonian Institution, Washington, DC (United States). Dept. of Paleobiology; Irving, A.J. [Univ. of Washington, Seattle, WA (United States). Dept. of Geological Sciences
1996-09-01T23:59:59.000Z
Among 21 whole-rock samples of the Upper Cretaceous Niobrara Formation from Colorado, the abundance of cerium relative to other rate earth elements (Ce anomaly), the weight percent organic carbon (%C{sub org}), and the intensity of bioturbation all covary. This covariation is provocative because %C{sub org} and intensity of bioturbation track changes in the concentration of oxygen in the local water column at the time of deposition (Savrda and Bottjer 1989). Ce anomalies in apatite-rich fractions of the Maastrichtian Zumaya-Algorta Formation from France and Spain and the Miocene Monterey Formation from California show changes that also may coincide with changes in ancient oxygen levels. Results for the Niobrara samples are the closest correspondence demonstrated between paleo-redox conditions and Ce anomalies, but the authors cannot yet determine whether the correspondence reflects a cause-and-effect relationship. Variation in Ce anomalies is influenced by a number of factors, including terrigenous input, depositional environment, and diagenetic conditions. Potential interplay of these factors prevents a unique interpretation of the whole-rock data; dissecting whole-rock Ce anomalies through analysis of isolated sedimentary components, though, is a promising avenue of research.
Kohn, Gabriel (Omer, IL); Hicho, George (Derwood, MD); Swartzendruber, Lydon (New Carrollton, MD)
1997-01-01T23:59:59.000Z
A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment.
Kohn, G.; Hicho, G.; Swartzendruber, L.
1997-04-08T23:59:59.000Z
A steel hardness measurement system and method of using same are provided for measuring at least one mechanical or magnetic characteristic of a ferromagnetic sample as a function of at least one magnetic characteristic of the sample. A magnetic field generator subjects the sample to a variable external magnetic field. The magnetic field intensity of the magnetic field generated by the magnetic field generating means is measured and a signal sensor is provided for measuring Barkhausen signals from the sample when the sample is subjected to the external magnetic field. A signal processing unit calculates a jump sum rate first moment as a function of the Barkhausen signals measured by the signal sensor and the magnetic field intensity, and for determining the at least one mechanical or magnetic characteristic as a function of the jump sum rate first moment. 7 figs.
Avraham Gal
2014-06-11T23:59:59.000Z
A recently proposed solution of the `GSI anomaly' by spin precession of the decaying heavy ions in the magnetic field that controls their circular motion at the GSI storage ring [G. Lambiase, G. Papini, G. Scarpetta, PLB 718 (2013) 998, Ann. Phys. 332 (2013) 143] is dubious: the uncertainty in the computed electron-capture decay-rate modulation frequency is at least of order 10E(7) Hz, by far exceeding the 1 Hz modulation frequency reported in the GSI experiment.
Werner Bernreuther; Zong-Guo Si
2015-03-16T23:59:59.000Z
A number of top-spin observables are computed within the Standard Model (SM), at next-to-leading order in the strong and weak gauge couplings for hadronic top-quark anti-quark (ttbar) production and decay at the LHC for center-of-mass energies 7 and 8 TeV. For dileptonic final states we consider the azimuthal angle correlation, the helicity correlation, and the opening angle distribution; for lepton plus jets final states we determine distributions and asymmetries that trace a longitudinal and transverse polarization, respectively, of the t and t-bar samples. In addition, we investigate the effects of a non-zero chromo-magnetic and chromo-electric dipole moment of the top quark on these and other top-spin observables and associated asymmetries. These observables allow to disentangle the contributions from the real and imaginary parts of these moments.
Geomagnetic equatorial anomaly in zonal plasma flow
Aggson, T.L.; Herrero, F.A.; Mayr, H.G.; Brace, L.H. (NASA Goddard Space Flight Center, Greenbelt, MD (United States)); Maynard, N.C. (Air Force Geophysics, Hanscom AFB, MA (United States)); Liebrecht, M.C. (Science Applications Research, Inc., Lanham, MD (United States))
1987-01-01T23:59:59.000Z
The authors report here on the observation of a geomagnetic signature in the zonal eastward plasma flow, which is a striking feature of the equatorial ionosphere in the evening quadrant. These observations were derived from (E {times} B)/B{sup 2} measurements made with the cylindrical double floating probe experiment carried on the Dynamics Explorer 2 (DE 2) satellite. The signature consists of a crest-trough-crest effect in the latitude dependence of the eastward plasma flow with the crests at {plus minus}8{degree} dip latitude and the trough nearly centered at the dip equator at all geographic longitudes. This phenomenon can be readioly interpreted in terms of the altitude dependence of the F region dynamo electric field, and it is related to dip equator signatures in the plasma density and the magnetic declinatoin which have been reported earlier.
Maps for currents and anomalies in noncommutative gauge theories
Banerjee, Rabin; Kumar, Kuldeep [S.N. Bose National Centre for Basic Sciences, JD Block, Sector 3, Salt Lake, Kolkata 700098 (India)
2005-02-15T23:59:59.000Z
We derive maps relating currents and their divergences in non-Abelian U(N) noncommutative gauge theory with the corresponding expressions in the ordinary (commutative) description. For the U(1) theory, in the slowly-varying-field approximation, these maps are also seen to connect the star-gauge-covariant anomaly in the noncommutative theory with the standard Adler-Bell-Jackiw anomaly in the commutative version. For arbitrary fields, derivative corrections to the maps are explicitly computed up to O({theta}{sup 2})
Axion emission from a magnetized neutron gas
Skobelev, V. V., E-mail: v.skobelev@inbox.ru [Moscow State Industrial University (Russian Federation)
2011-01-15T23:59:59.000Z
By using the polarization density matrix for a neutron in a magnetic field, the axion luminosity of magnetic neutron stars that is associated with the flip of the anomalous magnetic moment of degenerate nonrelativistic neutrons is calculated. It is shown that, at values of the magnetic-field induction in the region B Greater-Than-Or-Equivalent-To 10{sup 18} G, this mechanism of axion emission is dominant in 'young' neutron stars of temperature about a few tens of MeV units. At B {approx} 10{sup 17} G, it is one of the basic mechanisms. The Fermi energy of a degenerate neutron gas in a magnetic field is found, and it is shown that there is no such mechanism of axion emission in the degenerate case.
Magnetic Monopoles in Spin Ice
Claudio Castelnovo; Roderich Moessner; Shivaji L. Sondhi
2007-10-31T23:59:59.000Z
Electrically charged particles, such as the electron, are ubiquitous. By contrast, no elementary particles with a net magnetic charge have ever been observed, despite intensive and prolonged searches. We pursue an alternative strategy, namely that of realising them not as elementary but rather as emergent particles, i.e., as manifestations of the correlations present in a strongly interacting many-body system. The most prominent examples of emergent quasiparticles are the ones with fractional electric charge e/3 in quantum Hall physics. Here we show that magnetic monopoles do emerge in a class of exotic magnets known collectively as spin ice: the dipole moment of the underlying electronic degrees of freedom fractionalises into monopoles. This enables us to account for a mysterious phase transition observed experimentally in spin ice in a magnetic field, which is a liquid-gas transition of the magnetic monopoles. These monopoles can also be detected by other means, e.g., in an experiment modelled after the celebrated Stanford magnetic monopole search.
Research Chlorination Disinfection By-Products and Risk of Congenital Anomalies
In Engl; Mark J. Nieuwenhuijsen; Mireille B. Toledano; James Bennett; Nicky Best; Peter Hambly; Cornelis De Hoogh; Diana Wellesley; Patricia A. Boyd; Lenore Abramsky; Nirupa Dattani; John Fawell; David Briggs; Lars Jarup; Paul Elliott
BACKGROUND: Increased risk of various congenital anomalies has been reported to be associated with trihalomethane (THM) exposure in the water supply. OBJECTIVES: We conducted a registry-based study to determine the relationship between THM concentrations and the risk of congenital anomalies in England and Wales. METHODS: We obtained congenital anomaly data from the National Congenital Anomalies System, regional registries, and the national terminations registry; THM data were obtained from water companies. Total THM (congenital anomalies. Analyses using fixed- and random-effects models were performed for broadly defined groups of anomalies (cleft palate/lip, abdominal wall, major cardiac, neural tube, urinary and respiratory defects), a more restricted set of anomalies with better ascertainment, and for isolated and multiple anomalies. Data were adjusted for sex, maternal age, and socioeconomic status. RESULTS: We found no statistically significant trends across exposure categories for either the
Combining Routing and Traffic Data for Detection of IP Forwarding Anomalies
Roughan, Matthew
Monitoring, C.4 Reliability, availability, and serviceability. General Terms: Algorithms, Management, Reliability. Keywords: Network anomaly detection, routing, BGP, traffic, SNMP. ABSTRACT IP forwarding anomalies, triggered by equipment failures, imple- mentation bugs, or configuration errors, can
Diagenetic and Detrial Origin of Moretane Anomalies through the Permian-Triassic Boundary
French, Katherine L.
Many biogeochemical anomalies coincide with the Late Permian Extinction (LPE; 252.28 Ma). Several mechanisms have been proposed to explain the moretane/hopane anomaly that has been identified in samples from Meishan GSSP ...
Stealthy Poisoning Attacks on PCA-based Anomaly Detectors
Tygar, Doug
Stealthy Poisoning Attacks on PCA-based Anomaly Detectors Benjamin I. P. Rubinstein1 Blaine Nelson1 detection, we present and evaluate short-term and long-term data poison- ing schemes that trade-off between poisoning duration and the volume of traffic injected for poisoning. Stealthy Boil- ing Frog attacks
Proceedings of the Axial Offset Anomaly (AOA) Science Workshop
None
2003-06-01T23:59:59.000Z
This report presents proceedings of the Axial Offset Anomaly (AOA) Science Workshop, held February 10-11 in Palo Alto, California. Twenty-two papers were presented on various aspects of AOA by utilities, EPRI Robust Fuel Program contractors, staff from EPRI and universities, international researchers, and equipment vendors.
Freshwater Availability Anomalies and Outbreak of Internal War
Columbia University
Freshwater Availability Anomalies and Outbreak of Internal War: Results from a Global Spatial Time, Asker, near Oslo, 2123 June 2005 Organizers: Centre for the Study of Civil War, International Peace War: Results from a Global Spatial Time Series Analysis1 Abstract We investigated the relationship
Anomaly of Tensionless String in Light-cone Gauge
Kenta Murase
2015-03-04T23:59:59.000Z
The classical tensionless string theory has the spacetime conformal symmetry. We expect and require that the quantum tensionless string theory has it too. In the BRST quantization method, the theory has no spacetime conformal anomaly in two dimensions. On the other hand, in the light-cone gauge quantization without the mode expansion, the theory in $D>3$ has the spacetime conformal anomaly in the traceless part of $[\\mathcal{J}^{-I}, \\mathcal{K}^{J}]$ in some operator order. In this paper, we consider a tensionless closed bosonic string in the light-cone gauge and investigate the spacetime conformal anomaly in the theory with the mode expansion. The appearance of the spacetime conformal anomaly in the light-cone gauge is different between the case of $D>3$ and the case of $D=3$ and depends on the choice of the operator order. Therefore we must consider dangerous commutators in the spacetime conformal symmetry of $D>3$ and $D=3$ in each operator order separately. Specifically we calculate dangerous commutators, $[\\mathcal{J}^{-I},\\mathcal{K}^{K}]$ in $D>3$ and $\\tilde{\\mathcal{K}}^{-}\\equiv -i[\\mathcal{J}^{-}, \\tilde{\\mathcal{K}}^{-}]$ and $[\\mathcal{J}^{-}, \\tilde{\\mathcal{K}}^{-}]$ in $D=3$, in two types of the operator order.
Anomaly of Tensionless String in Light-cone Gauge
Murase, Kenta
2015-01-01T23:59:59.000Z
The classical tensionless string theory has the spacetime conformal symmetry. We expect and require that the quantum tensionless string theory has it too. In the BRST quantization method, the theory has no spacetime conformal anomaly in two dimensions. On the other hand, in the light-cone gauge quantization without the mode expansion, the theory in $D>3$ has the spacetime conformal anomaly in the traceless part of $[\\mathcal{J}^{-I}, \\mathcal{K}^{J}]$ in some operator order. In this paper, we consider a tensionless closed bosonic string in the light-cone gauge and investigate the spacetime conformal anomaly in the theory with the mode expansion. The appearance of the spacetime conformal anomaly in the light-cone gauge is different between the case of $D>3$ and the case of $D=3$ and depends on the choice of the operator order. Therefore we must consider dangerous commutators in the spacetime conformal symmetry of $D>3$ and $D=3$ in each operator order separately. Specifically we calculate dangerous commutators...
anomalies nuclear structure: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
anomalies nuclear structure First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 First high-resolution...
Electric Power System Anomaly Detection Using Neural Networks
Tronci, Enrico
Electric Power System Anomaly Detection Using Neural Networks Marco Martinelli1 , Enrico Tronci1. The aim of this work is to propose an approach to monitor and protect Electric Power System by learning of an Electric Power System. In this paper, a neural network based approach for novelty detection is presented
A RE-INTRODUCTION TO ANOMALIES OF CRITICALITY
PUIGH RJ
2009-09-09T23:59:59.000Z
In 1974, a small innocuous document was submitted to the American Nuclear Society's Criticality Safety Division for publication that would have lasting impacts on this nuclear field The author was Duane Clayton, manager of the Battelle Pacific Northwest National Laboratory's Critical Mass Lab, the world's preeminent reactor critical experimenter with plutonium solutions. The document was entitled, 'Anomalies of Criticality'. 'Anomalies...' was a compilation of more than thirty separate and distinct examples of departures from what might be commonly expected in the field of nuclear criticality. Mr. Clayton's publication was the derivative of more than ten thousand experiments and countless analytical studies conducted world-wide on every conceivable reactor system imaginable: from fissile bearing solutions to solids, blocks to arrays of fuel rods, low-enriched uranium oxide systems to pure plutonium and highly enriched uranium systems. After publication, the document was commonly used within the nuclear fuel cycle and reactor community to train potential criticality/reactor analysts, experimenters and fuel handlers on important things for consideration when designing systems with critically 'safe' parameters in mind The purpose of this paper is to re-introduce 'Anomalies of Criticality' to the current Criticality Safety community and to add new 'anomalies' to the existing compendium. By so doing, it is the authors' hope that a new generation of nuclear workers and criticality engineers will benefit from its content and might continue to build upon this work in support of the nuclear renaissance that is about to occur.
Light Sterile Neutrinos and Short Baseline Neutrino Oscillation Anomalies
JiJi Fan; Paul Langacker
2012-01-31T23:59:59.000Z
We study two possible explanations for short baseline neutrino oscillation anomalies, such as the LSND and MiniBooNE anti-neutrino data, and for the reactor anomaly. The first scenario is the mini-seesaw mechanism with two eV-scale sterile neutrinos. We present both analytic formulas and numerical results showing that this scenario could account for the short baseline and reactor anomalies and is consistent with the observed masses and mixings of the three active neutrinos. We also show that this scenario could arise naturally from an effective theory containing a TeV-scale VEV, which could be related to other TeV-scale physics. The minimal version of the mini-seesaw relates the active-sterile mixings to five real parameters and favors an inverted hierarchy. It has the interesting property that the effective Majorana mass for neutrinoless double beta decay vanishes, while the effective masses relevant to tritium beta decay and to cosmology are respectively around 0.2 and 2.4 eV. The second scenario contains only one eV-scale sterile neutrino but with an effective non-unitary mixing matrix between the light sterile and active neutrinos. We find that though this may explain the anomalies, if the non-unitarity originates from a heavy sterile neutrino with a large (fine-tuned) mixing angle, this scenario is highly constrained by cosmological and laboratory observations.
Anomaly-free representations of the holonomy-flux algebra
SangChul Yoon
2008-09-07T23:59:59.000Z
We work on the uniqueness, gr-qc/0504147, of representations of the holonomy-flux algebra in loop quantum gravity. We argue that for analytic diffeomorphisms, the flux operators can be only constants as functions on the configuration space in representations with no anomaly, which are zero in the standard representation.
Diffusivity anomaly in modified Stillinger-Weber liquids
Sengupta, Shiladitya [TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500089 (India)] [TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500089 (India); Vasisht, Vishwas V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore 560064 (India)] [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore 560064 (India); Sastry, Srikanth [TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500089 (India) [TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500089 (India); Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore 560064 (India)
2014-01-28T23:59:59.000Z
By modifying the tetrahedrality (the strength of the three body interactions) in the well-known Stillinger-Weber model for silicon, we study the diffusivity of a series of model liquids as a function of tetrahedrality and temperature at fixed pressure. Previous work has shown that at constant temperature, the diffusivity exhibits a maximum as a function of tetrahedrality, which we refer to as the diffusivity anomaly, in analogy with the well-known anomaly in water upon variation of pressure at constant temperature. We explore to what extent the structural and thermodynamic changes accompanying changes in the interaction potential can help rationalize the diffusivity anomaly, by employing the Rosenfeld relation between diffusivity and the excess entropy (over the ideal gas reference value), and the pair correlation entropy, which provides an approximation to the excess entropy in terms of the pair correlation function. We find that in the modified Stillinger-Weber liquids, the Rosenfeld relation works well above the melting temperatures but exhibits deviations below, with the deviations becoming smaller for smaller tetrahedrality. Further we find that both the excess entropy and the pair correlation entropy at constant temperature go through maxima as a function of the tetrahedrality, thus demonstrating the close relationship between structural, thermodynamic, and dynamical anomalies in the modified Stillinger-Weber liquids.
Anomaly Extraction in Backbone Networks using Association Rules
Paris-Sud XI, Université de
, USA. Copyright 2009 ACM 978-1-60558-770-7/09/11 ...$10.00. Event (scan, DDoS,...) Anomaly Detection techniques effectively isolate event flows in all analyzed cases and that on average trigger be- tween 2 studied since they pose a number of interesting research problems, involving statistics, modeling
Phase equilibria of polydisperse hydrocarbons: moment free energy method analysis
Alessandro Speranza; Francesca Di Patti; Alessandro Terenzi
2010-12-14T23:59:59.000Z
We analyze the phase equilibria of systems of polydisperse hydrocarbons by means of the recently introduced moment method. Hydrocarbons are modelled with the Soave-Redlick-Kwong and Peng-Robinson equations of states. Numerical results show no particular qualitative difference between the two equations of states. Furthermore, in general the moment method proves to be an excellent method for solving phase equilibria of polydisperse systems, showing excellent agreement with previous results and allowing a great improvement in generality of the numerical scheme and speed of computation.
Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars
Zhong, Shijie
in influencing long-wave- length gravity anomalies produced by a plume [Zhong, 2002]. Phillips et al. [2001
Magnetization switching of rare earth orthochromite CeCrO{sub 3}
Cao, Yiming; Cao, Shixun, E-mail: sxcao@shu.edu.cn; Ren, Wei; Feng, Zhenjie; Yuan, Shujuan; Kang, Baojuan; Zhang, Jincang [Department of Physics, Shanghai University, Shanghai 200444 (China); Lu, Bo [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China)
2014-06-09T23:59:59.000Z
We report the synthesis of single phase rare earth orthochromite CeCrO{sub 3} and its magnetic properties. A canted antiferromagnetic transition with thermal hysteresis at T?=?260?K is observed, and a magnetic compensation (zero magnetization) near 133?K is attributed to the antiparallel coupling between Ce{sup 3+} and Cr{sup 3+} moments. At low temperature, field induced magnetization reversal starting from 43?K for H?=?1.2 kOe reveals the spin flip driven by Zeeman energy between the net moments and the applied field. These findings may find potential uses in magnetic switching devices such as nonvolatile magnetic memory which facilitates two distinct states of magnetization.
Profile-based adaptive anomaly detection for network security.
Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann
2005-11-01T23:59:59.000Z
As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress, rather than after the fact). We also build a prototype anomaly detection tool that demonstrates how the techniques might be integrated into an operational intrusion detection framework.
Anomaly detection in thermal pulse combustors using symbolic time series analysis
Ray, Asok
339 Anomaly detection in thermal pulse combustors using symbolic time series analysis S Gupta1 for anomaly detection in thermal pulse combustors. The anomaly detection method has been tested on the time pulse combustor. Results are presented to exemplify early detection of combustion instability due
Microscopic model for the magnetic subsystem in HoNi2B2C
Kalatsky, VA; Pokrovsky, Valery L.
1998-01-01T23:59:59.000Z
We demonstrate that the system of localized magnetic moments in HoNi2B2C can be described by the four-positional clock model. This model, at a proper choice of the coupling constants, yields several metamagnetic phases in magnetic field at zero...
Microscopic model for the magnetic subsystem in HoNi2B2C
Kalatsky, VA; Pokrovsky, Valery L.
1998-01-01T23:59:59.000Z
We demonstrate that the system of localized magnetic moments in HoNi2B2C can be described by the four-positional clock model. This model, at a proper choice of the coupling constants, yields several metamagnetic phases in magnetic field at zero...
Nature Macmillan Publishers Ltd 1998 generate a magnetic flux amounting to half
Paetzel, Mark
of the superconductor and so in the number of magnetic vortices threaded through the superconducting disc. Here, the PME. The magnetic moment of such a superconducting loop should indeedactlikeaparamagnet,asitalignspar- allel superconductors such as niobium. Again, to test ideas about how this could happen in mesoscopic grains, we need
Electric dipole moments of nanosolvated acid molecules in water clusters
Guggemos, Nicholas; Kresin, Vitaly V
2015-01-01T23:59:59.000Z
The electric dipole moments of $(H_{2}O)_{n}DCl$ ($n=3-9$) clusters have been measured by the beam deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at $n\\approx5-6$. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters, and generally to the essential role played by motional effects in determining the response of fluxional nanoscale sy...
THIS YEAR MARKS A PIVOTAL moment in international efforts to
THIS YEAR MARKS A PIVOTAL moment in international efforts to fight extreme poverty. Following to address extreme poverty in its many dimensions income poverty, hunger, disease, lack of adequate shelter improved and millions could be saved every year, but only if the world takes bold steps in 2005
Cost Moment Control and Verification Theorem for Nonlinear Stochastic Systems
Won, Chang-Hee
of the performance measure for a linear and nonlinear system in an optimal manner. In order to shape the distribution control is linear-quadratic-Gaussian (LQG) control which optimizes the first moment of the performance in [7] for the linear system. More recently, the n-th cost cumulant control procedure for a quasi-linear
Efficient Calculation of Statistical Moments for Structural Health Monitoring
Sweetman, Bert
Efficient Calculation of Statistical Moments for Structural Health Monitoring Myoungkeun Choi sen- sor packages have shown considerable promise in providing low-cost Structural Health Monitoring@tamu.edu, Telephone:(409) 740-4834, Fax:(409) 741-7153 1 Journal of Structural Health Monitoring, January 1, 2010, Vol
On the multipole moments of a rigidly rotating fluid body
Robert Filter; Andreas Kleinwächter
2009-02-11T23:59:59.000Z
Based on numerical simulations and analytical calculations we formulate a new conjecture concerning the multipole moments of a rigidly rotating fluid body in equilibrium. The conjecture implies that the exterior region of such a fluid is not described by the Kerr metric.
Moment free energies for polydisperse systems Peter Sollich \\Lambda
Sollich, Peter
Moment free energies for polydisperse systems Peter Sollich \\Lambda Department of Mathematics, King(oe). The free energy depends on all details of ae(oe), making the analysis of phase equilibria in such systems intractable. However, in many (especially meanfield) models the excess free energy only depends on a finite
Radiation transport modeling using extended quadrature method of moments
Vikas, V., E-mail: vvikas@iastate.edu [Department of Aerospace Engineering, 2271 Howe Hall, Iowa State University, Ames, IA 50011 (United States); Hauck, C.D., E-mail: hauckc@ornl.gov [Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, Z.J., E-mail: zjw@ku.edu [Department of Aerospace Engineering, 2120 Learned Hall, University of Kansas, Lawrence, KS 66045 (United States); Fox, R.O., E-mail: rofox@iastate.edu [Department of Chemical and Biological Engineering, 2114 Sweeney Hall, Iowa State University, Ames, IA 50011 (United States)
2013-08-01T23:59:59.000Z
The radiative transfer equation describes the propagation of radiation through a material medium. While it provides a highly accurate description of the radiation field, the large phase space on which the equation is defined makes it numerically challenging. As a consequence, significant effort has gone into the development of accurate approximation methods. Recently, an extended quadrature method of moments (EQMOM) has been developed to solve univariate population balance equations, which also have a large phase space and thus face similar computational challenges. The distinct advantage of the EQMOM approach over other moment methods is that it generates moment equations that are consistent with a positive phase space density and has a moment inversion algorithm that is fast and efficient. The goal of the current paper is to present the EQMOM method in the context of radiation transport, to discuss advantages and disadvantages, and to demonstrate its performance on a set of standard one-dimensional benchmark problems that encompass optically thin, thick, and transition regimes. Special attention is given in the implementation to the issue of realizability—that is, consistency with a positive phase space density. Numerical results in one dimension are promising and lay the foundation for extending the same framework to multiple dimensions.
Hadronic mass moments in inclusive semileptonic B meson decays
Ammar, Raymond G.; Bean, Alice; Besson, David Zeke; Zhao, X.
2001-12-01T23:59:59.000Z
We have measured the first and second moments of the hadronic mass-squared distribution in B --> X(c)l nu, for P-lepton > 1.5 GeV/c. We find (M-x(2) - (M) over bar (2)(D)) = 0.251 +/- 0.066 GeV2, ((M-X(2) - (M-X(2))(2)) = ...
Influence of surface segregation on magnetic properties of FePt nanoparticles
Lv, Hongyan [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States) [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Lei, Yinkai; Datta, Aditi; Wang, Guofeng [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)] [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)
2013-09-23T23:59:59.000Z
Surface segregation leads to chemical disordering in magnetic alloy nanostructures and thus could have profound impact upon the magnetic properties of these nanostructures. In this study, we used the first-principles density functional theory calculation method to determine how Pt surface segregation (exchanging interior Pt with surface Fe atoms) would affect the magnetic properties of L1{sub 0} ordered FePt nanoparticles. For both cuboid and cuboctahedral FePt nanoparticles, we predicted that the Pt surface segregation process could cause a decrease in total magnetic moments, a change in (easy and/or hard) magnetization axes, and a reduction in magnetic anisotropy.
Kraus, Jr., Robert H. (Los Alamos, NM); Zhou, Feng (Los Alamos, NM); Nolan, John P (Santa Fe, NM)
2007-06-19T23:59:59.000Z
The present invention is directed to processes of separating, analyzing and/or collecting selected species within a target sample by use of magnetic microspheres including magnetic particles, the magnetic microspheres adapted for attachment to a receptor agent that can subsequently bind to selected species within the target sample. The magnetic microspheres can be sorted into a number of distinct populations, each population with a specific range of magnetic moments and different receptor agents can be attached to each distinct population of magnetic microsphere.
Identifying Isotropic Events Using a Regional Moment Tensor Inversion
Ford, S R; Dreger, D S; Walter, W R
2008-11-04T23:59:59.000Z
We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.
Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic
of the wire. In the following, such a circuit will be referred to as an LC circuit. The oscillating current in the LC circuit leads to a magnetic moment perpendicular to the plane shown in Fig- ure 1A. It is known (Fig. 2). Thus, alternative designs with short resonance wavelengths and fewer intricate fine details
Title nd authors) Theory of Random Anisotropic Magnetic Alloys
that is of interest is their significance for the understanding of the rare earth metals. A number of experiments by Millhouse and Koehler , Nd-Pr by Lebech et al. , while a number of dilutions of rare earth metals 6 ) with Y rare earth metals in which the crystal field quenching of the magnetic moments to a good approximation
Disentangling the Mn moments on different sublattices in the half-metallic ferrimagnet Mn3?xCoxGa
Klaer, P.; Jenkins, C.A.; Alijani, V.; Winterlik, J.; Balke, B.; Felser, C.; Elmers, H.J.
2011-05-03T23:59:59.000Z
Ferrimagnetic Mn{sub 3-x}Co{sub x}Ga compounds have been investigated by magnetic circular dichroism in x-ray absorption (XMCD). Compounds with x > 0.5 crystallize in the CuHg{sub 2}Ti structure. A tetragonal distortion of the cubic structure occurs for x {le} 0.5. For the cubic phase, magnetometry reveals a linearly increasing magnetization of 2x Bohr magnetons per formula unit obeying the generalized Slater-Pauling rule. XMCD confirms the ferrimagnetic character with Mn atoms occupying two different sublattices with antiparallel spin orientation and different degrees of spin localization and identifies the region 0.6 < x {le} 0.8 as most promising for a high spin polarization at the Fermi level. Individual Mn moments on inequivalent sites are compared to theoretical predictions.
H. Yan; B. Plaster
2011-04-07T23:59:59.000Z
Geometric-phase-induced false electric dipole moment (EDM) signals, resulting from interference between magnetic field gradients and particle motion in electric fields, have been studied extensively in the literature, especially for neutron EDM experiments utilizing stored ultracold neutrons and co-magnetometer atoms. Previous studies have considered particle motion in the transverse plane perpendicular to the direction of the applied electric and magnetic fields. We show, via Monte Carlo studies, that motion along the field direction can impact the magnitude of this false EDM signal if the wall surfaces are rough such that the wall collisions can be modeled as diffuse, with the results dependent on the size of the storage cell's dimension along the field direction.
Finding structural anomalies in graphs by means of quantum walks
Feldman, Edgar [Department of Mathematics, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016 (United States); Hillery, Mark; Zheng, Hongjun [Department of Physics, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10021 (United States); Lee, Hai-Woong [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Reitzner, Daniel; Buzek, Vladimir [Research Center for Quantum Information, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)
2010-10-15T23:59:59.000Z
We explore the possibility of using quantum walks on graphs to find structural anomalies, such as extra edges or loops, on a graph. We focus our attention on star graphs, whose edges are like spokes coming out of a central hub. If there are N spokes, we show that a quantum walk can find an extra edge connecting two of the spokes or a spoke with a loop on it in O({radical}(N)) steps. We initially find that if all except one of the spokes have loops, the walk will not find the spoke without a loop, but this can be fixed if we choose the phase with which the particle is reflected from the vertex without the loop. Consequently, quantum walks can, under some circumstances, be used to find structural anomalies in graphs.
The flyby anomaly: A case for strong gravitomagnetism ?
Acedo, L
2015-01-01T23:59:59.000Z
In the last two decades an anomalous variation in the asymptotic velocity of spacecraft performing a flyby manoeuvre around Earth has been discovered through careful Doppler tracking and orbital analysis. No viable hypothesis for a conventional explanation of this effect has been proposed and its origin remains unexplained. In this paper we discuss a strong transversal component of the gravitomagnetic field as a possible source of the flyby anomaly. We show that the perturbations induced by such a field could fit the anomalies both in sign and order of magnitude. But, although the secular contributions to the Gravity Probe B experimental results and the Lense-Thirring effect in geodynamics satellites can be made null, the detailed orbital evolution is easily in conflict with such an enhanced gravitomagnetic effect.
The flyby anomaly: A case for strong gravitomagnetism ?
L. Acedo
2015-05-26T23:59:59.000Z
In the last two decades an anomalous variation in the asymptotic velocity of spacecraft performing a flyby manoeuvre around Earth has been discovered through careful Doppler tracking and orbital analysis. No viable hypothesis for a conventional explanation of this effect has been proposed and its origin remains unexplained. In this paper we discuss a strong transversal component of the gravitomagnetic field as a possible source of the flyby anomaly. We show that the perturbations induced by such a field could fit the anomalies both in sign and order of magnitude. But, although the secular contributions to the Gravity Probe B experimental results and the Lense-Thirring effect in geodynamics satellites can be made null, the detailed orbital evolution is easily in conflict with such an enhanced gravitomagnetic effect.
Conjecture on the physical implications of the scale anomaly
Hill, Christopher T.; /Fermilab
2005-10-01T23:59:59.000Z
Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.
Bulk viscosity and the conformal anomaly in the pion gas
D. Fernandez-Fraile; A. Gomez Nicola
2009-02-27T23:59:59.000Z
We calculate the bulk viscosity of the massive pion gas within Unitarized Chiral Perturbation Theory. We obtain a low temperature peak arising from explicit conformal breaking due to the pion mass and another peak near the critical temperature, dominated by the conformal anomaly through gluon condensate terms. The correlation between bulk viscosity and conformal breaking supports a recent QCD proposal. We discuss the role of resonances, heavier states and large-$N_c$ counting.
Structure order, local potentials, and physical anomalies of water ice
Chang Q Sun
2014-07-11T23:59:59.000Z
Hydrogen-bond forms a pair of asymmetric, coupled, H-bridged oscillators with ultra-short-range interactions and memory. hydrogen bond cooperative relaxation and the associated binding electron entrapment and nonbonding electron polarization discriminate water and ice from other usual materials in the physical anomalies. As a strongly correlated fluctuating system, water prefers the statistically mean of tetrahedrally-coordinated structure with a supersolid skin that is elastic, polarized, ice like, hydrophobic, with 3/4 density.
Revealing the Degree of Magnetic Frustration by Non-Magnetic Impurities
Not Available
2011-08-12T23:59:59.000Z
Imaging the magnetic fields around a non-magnetic impurity can provide a clear benchmark for quantifying the degree of magnetic frustration. Focusing on the strongly frustrated J{sub 1}-J{sub 2} model and the spatially anisotropic J{sub 1a}-J{sub 1b}-J{sub 2} model, very distinct low energy behaviors reflect different levels of magnetic frustration. In the J{sub 1}-J{sub 2} model, bound magnons appear trapped near the impurity in the ground state and strongly reduce the ordered moments for sites proximal to the impurity. In contrast, local moments in the J{sub 1a}-J{sub 1b}-J{sub 2} model are enhanced on the impurity neighboring sites. These theoretical predictions can be probed by experiments such as nuclear magnetic resonance and scanning tunneling microscopy, and the results can elucidate the role of frustration in antiferromagnets and help narrow the possible models to understand magnetism in the iron pnictdies.
Anomaly Detection in Multiple Scale for Insider Threat Analysis
Kim, Yoohwan [ORNL] [ORNL; Sheldon, Frederick T [ORNL] [ORNL; Hively, Lee M [ORNL] [ORNL
2012-01-01T23:59:59.000Z
We propose a method to quantify malicious insider activity with statistical and graph-based analysis aided with semantic scoring rules. Different types of personal activities or interactions are monitored to form a set of directed weighted graphs. The semantic scoring rules assign higher scores for the events more significant and suspicious. Then we build personal activity profiles in the form of score tables. Profiles are created in multiple scales where the low level profiles are aggregated toward more stable higherlevel profiles within the subject or object hierarchy. Further, the profiles are created in different time scales such as day, week, or month. During operation, the insider s current activity profile is compared to the historical profiles to produce an anomaly score. For each subject with a high anomaly score, a subgraph of connected subjects is extracted to look for any related score movement. Finally the subjects are ranked by their anomaly scores to help the analysts focus on high-scored subjects. The threat-ranking component supports the interaction between the User Dashboard and the Insider Threat Knowledge Base portal. The portal includes a repository for historical results, i.e., adjudicated cases containing all of the information first presented to the user and including any additional insights to help the analysts. In this paper we show the framework of the proposed system and the operational algorithms.
Uniaxial in-plane magnetization of iron nanolayers grown within an amorphous matrix
Ghafari, M., E-mail: mohammad.ghafari@kit.edu; Hahn, H. [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattheis, R. [Leibniz Institute for Photonic Technology IPHT, Jena (Germany); McCord, J. [Institute for Materials Science, Kiel University Kiel, Kaiserstraße 2, 24143 Kiel (Germany); Brand, R. A. [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Macedo, W. A. A. [Laboratório de Física Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), 31270-901 Belo Horizonte, MG (Brazil)
2014-08-18T23:59:59.000Z
Conversion electron Mössbauer spectroscopy is used to determine the magnetic ground state at zero magnetic field of four-monolayer thick amorphous iron layers as part of a CoFeB-Fe multilayer stack. By comparing the intensities of the magnetic hyperfine field, an easy in-plane axis of the amorphous embedded Fe layer is verified, which is collinear to the uniaxial anisotropy axis of the neighboring amorphous CoFeB. Despite the soft magnetic character of the Fe layers, external fields up to 4?T perpendicular to the film plane are insufficient to completely align the embedded Fe moments parallel to the magnetic field due to a local disorder of the magnetic moments of the Fe atoms.
Hel-Or, Yacov
] utilized sparse representations to analyze stochastic processes over graphs for anomaly detection in SmartGrids
Long, Xiao
2012-10-19T23:59:59.000Z
performance of moment frames. Without such a model, the aforementioned problem can never be resolved. This dissertation develops an innovative way of predicting cyclic rupture in steel moment frames by employing artificial neural networks. First, finite...
Propagating Waves Recorded in the Steel, Moment-Frame Factor Building During Earthquakes
Kohler, Monica; Heaton, Thomas H.; Samuel C. Bradford
2007-01-01T23:59:59.000Z
studies of damage to tall steel moment-frame buildings inan instrumented 15-story steel- frame building, EarthquakePropagating Waves in the Steel, Moment-Frame Factor Building
A direct displacement-based design of low-rise seismic resistant steel moment frames
Harris, John L.
2006-01-01T23:59:59.000Z
determine first level plastic hinge demands (i.e. , firstdesigned for the plastic moment demands while maintainingM EQ , b o = Moment demand on beam at plastic hinge = ? db M
Predicted giant magnetic moment on non-{n0m} surfaces of d-wave superconductors
Hu, Chia-Ren; Yan, XZ.
1999-01-01T23:59:59.000Z
supported the con- clusion that the ZBCP?s observed in them are due to such PRB 600163-1829/99/60~18!/12573~4!/$15.00 0m? surfaces of d-wave superconductors n Hu , College Station, Texas 77843-4242 g Yan , College Station, Texas 77843-4242 , P. O...!. We also assume that the carriers are electrons with charge 2e ,0 and a gyromagnetic ratio g52ge/2mec with g52. Later we will comment on the effects of replacing these as- sumptions by more realistic ones, such as a three- dimensional band...
(, e) SCATTERING AND SEARCH FOR NEUTRINO MAGNETIC MOMENT L.A. Popeko
Titov, Anatoly
ends lithium drift detectors. We use sufficiently low price industry produced high resistive silicon small silicon lithium drift detectors. To supply a large detector volume we produce coaxial two open parts of a detector are: a diffusion lithium layer 0.3 mm thick, situated on a crystal surface
The leading disconnected contribution to the anomalous magnetic moment of the muon
Anthony Francis; Vera Gülpers; Benjamin Jäger; Harvey Meyer; Georg von Hippel; Hartmut Wittig
2014-11-27T23:59:59.000Z
The hadronic vacuum polarization can be determined from the vector correlator in a mixed time-momentum representation. We explicitly calculate the disconnected contribution to the vector correlator, both in the $N_f = 2$ theory and with an additional quenched strange quark, using non-perturbatively $O(a)$-improved Wilson fermions. All-to-all propagators are computed using stochastic sources and a generalized hopping parameter expansion. Combining the result with the dominant connected contribution, we are able to estimate an upper bound for the systematic error that arises from neglecting the disconnected contribution in the determination of $(g-2)_\\mu$.
Study of the anomalous magnetic moment of the muon computed from the Adler function
Michele Della Morte; Anthony Francis; Gregorio Herdoiza; Hanno Horch; Benjamin Jäger; Andreas Jüttner; Harvey Meyer; Hartmut Wittig
2014-11-05T23:59:59.000Z
We compute the Adler function on the lattice from vacuum polarization data with twisted boundary conditions using numerical derivatives. The study is based on CLS ensembles with two flavours of $O(a)$ improved Wilson fermions. We extrapolate the lattice data for the Adler function to the continuum limit and to the physical pion mass and analyze its dependence on the momentum transfer. We discuss the application of this method to the extraction of the $u,d$ contribution to $a_\\mu^{\\mathrm{HLO}}$.
Electromagnetic multipole moments of elementary spin-1/2, 1, and 3/2 particles
E. G. Delgado-Acosta; M. Kirchbach; M. Napsuciale; S. Rodríguez
2012-07-03T23:59:59.000Z
We study multipole decompositions of the electromagnetic currents of spin-1/2, 1, and 3/2 particles described in terms of Lagrangians designed to reproduce representation specific wave equations which are second order in the momenta and which emerge within the recently elaborated Poincar\\'e covariant projector method. We calculate the electric multipoles of the above spins for the spinor, the four-vector, and the four-vector--spinor representations, attend to the most general non-Lagrangian spin-3/2 currents which are allowed by Lorentz invariance to be of third order in the momenta and construct the linear current equivalent of identical multipole moments of one of them. We conclude that such non-Lagrangian currents are not necessarily more general than the two-term currents emerging within the covariant projector method. We compare our results with those of the conventional Proca-, and Rarita-Schwinger frameworks. Finally, we test the representation dependence of the multipoles by placing spin-1 and spin-3/2 in the respective (1,0)$\\oplus$(0,1), and (3/2,0)$\\oplus$(0,3/2) single-spin representations. We observe representation independence of the charge monopoles and the magnetic dipoles, in contrast to the higher multipoles, which turn out to be representation dependent. In particular, we find the bi-vector $(1,0)\\oplus (0,1)$ to be characterized by an electric quadrupole moment of opposite sign to the one found in $(1/2,1/2)$, and consequently, to the $W$ boson. Our finding points toward the possibility that the $\\rho$ meson could transform as part of an antisymmetric tensor with an $a_{1}$ meson-like state as its representation companion.
Magnetic Field Safety Magnetic Field Safety
McQuade, D. Tyler
Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic
Identifying isotropic events using a regional moment tensor inversion
Ford, S R; Dreger, D S; Walter, W R
2008-07-16T23:59:59.000Z
The deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, are calculated using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with a low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (<5 sec) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), but the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data has a good SNR. The sensitivity investigation is extended via the introduction of the network sensitivity solution, which takes into account the unique station distribution, frequency band, and SNR of a given test scenario. An example of this analysis is presented for the North Korea test, which shows that in order to constrain the explosive component one needs a certain station configuration. In the future we will analyze the bias in the source-type parameters due to error in the Green's function by incorporating a suite of suitable velocity models in the inversion.
Controlling interactions between highly-magnetic atoms with Feshbach resonances
Svetlana Kotochigova
2014-10-14T23:59:59.000Z
This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic $^7$S$_3$ chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on Dysprosium and Erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.
D. B. Papadopoulos
2003-12-23T23:59:59.000Z
The equations which determine the response of a spinning charged particle moving in a uniform magnetic field to an incident gravitational wave are derived in the linearized approximation to general relativity. We verify that 1) the components of the 4-momentum, 4-velocity and the components of the spinning tensor, both electric and magnetic moments, exhibit resonances and 2) the co-existence of the uniform magnetic field and the GW are responsible for the resonances appearing in our equations. In the absence of the GW, the magnetic field and the components of the spin tensor decouple and the magnetic resonances disappear.
NEUTRON-POOR NICKEL ISOTOPE ANOMALIES IN METEORITES
Steele, Robert C. J.; Coath, Christopher D.; Regelous, Marcel; Elliott, Tim [Bristol Isotope Group, School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ (United Kingdom); Russell, Sara, E-mail: r.steele@uclmail.net [Meteoritics and Cosmic mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom)
2012-10-10T23:59:59.000Z
We present new, mass-independent, Ni isotope data for a range of bulk chondritic meteorites. The data are reported as {epsilon}{sup 60}Ni{sub 58/61}, {epsilon}{sup 62}Ni{sub 58/61}, and {epsilon}{sup 64}Ni{sub 58/61}, or the parts per ten thousand deviations from a terrestrial reference, the NIST SRM 986 standard, of the {sup 58}Ni/{sup 61}Ni internally normalized {sup 60}Ni/{sup 61}Ni, {sup 62}Ni/{sup 61}Ni, and {sup 64}Ni/{sup 61}Ni ratios. The chondrites show a range of 0.15, 0.29, and 0.84 in {epsilon}{sup 60}Ni{sub 58/61}, {epsilon}{sup 62}Ni{sub 58/61}, and {epsilon}{sup 64}Ni{sub 58/61} relative to a typical sample precision of 0.03, 0.05, and 0.08 (2 s.e.), respectively. The carbonaceous chondrites show the largest positive anomalies, enstatite chondrites have approximately terrestrial ratios, though only EH match Earth's composition within uncertainty, and ordinary chondrites show negative anomalies. The meteorite data show a strong positive correlation between {epsilon}{sup 62}Ni{sub 58/61} and {epsilon}{sup 64}Ni{sub 58/61}, an extrapolation of which is within the error of the average of previous measurements of calcium-, aluminium-rich inclusions. Moreover, the slope of this bulk meteorite array is 3.003 {+-} 0.166 which is within the error of that expected for an anomaly solely on {sup 58}Ni. We also determined to high precision ({approx}10 ppm per AMU) the mass-dependent fractionation of two meteorite samples which span the range of {epsilon}{sup 62}Ni{sub 58/61} and {epsilon}{sup 64}Ni{sub 58/61}. These analyses show that 'absolute' ratios of {sup 58}Ni/{sup 61}Ni vary between these two samples whereas those of {sup 62}Ni/{sup 61}Ni and {sup 64}Ni/{sup 61}Ni do not. Thus, Ni isotopic differences seem most likely explained by variability in the neutron-poor {sup 58}Ni, and not correlated anomalies in the neutron-rich isotopes, {sup 62}Ni and {sup 64}Ni. This contrasts with previous inferences from mass-independent measurements of Ni and other transition elements which invoked variable contributions of a neutron-rich component. We have examined different nucleosynthetic environments to determine the possible source of the anomalous material responsible for the isotopic variations observed in Ni and other transition elements within bulk samples. We find that the Ni isotopic variability of the solar system cannot be explained by mixing with a component of bulk stellar ejecta from either SN II, Wolf-Rayet or, an asymptotic giant branch source and is unlikely to result from bulk mixing of material from an SN Ia. However, variable admixture of material from the Si/S zone of an SN II can create all the characteristics of Ni isotope variations in solar system materials. Moreover, these characteristics can also be provided by an SN II with a range of masses from 15 to 40 M{sub Sun }, showing that input from SN II is a robust source for Ni isotope variations in the solar system. Correlations of Ni isotope anomalies with O, Cr, and Ti isotope ratios and Pb/Yb in bulk meteorites suggest that the heterogeneous distribution of isotopic anomalies in the early solar system likely resulted from nebular sorting of chemically or physically different materials bearing different amounts of isotopes synthesized proximally to the collapse of the protosolar nebula.
Low-temperature magnetization of (Ga,Mn) As semiconductors
Jungwirth, T.; Masek, J.; Wang, KY; Edmonds, KW; Sawicki, M.; Polini, M.; Sinova, Jairo; MacDonald, AH; Campion, RP; Zhao, LX; Farley, NRS; Johal, TK; van der Laan, G.; Foxon, CT; Gallagher, BL.
2006-01-01T23:59:59.000Z
temperature magnetometry and XMCD experiments. A series of #1;Ga,Mn#2;As films with Mn content varying between 1.7?6.7 % in the SQUID experiments and between 2.2 and 8.4 % in the XMCD experiments were grown by low-temperature molecular beam epitaxy #1;MBE.... Magnetometry The magnetic moment of the samples is measured in a SQUID magnetometer, at 5 K and under a 0.3 T external magnetic field. The external field is necessary to overcome in-plane anisotropy fields, so that the magnetization is aligned...
Kerns, J.A.; Stone, R.R.; Fabyan, J.
1985-02-12T23:59:59.000Z
A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.
Casimir interaction from magnetically coupled eddy currents
Francesco Intravaia; Carsten Henkel
2009-09-06T23:59:59.000Z
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasi-static magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
Casimir Interaction from Magnetically Coupled Eddy Currents
Intravaia, Francesco; Henkel, Carsten [Institut fuer Physik und Astronomie, Universitaet Potsdam, 14476 Potsdam (Germany)
2009-09-25T23:59:59.000Z
We study the quantum and thermal fluctuations of eddy (Foucault) currents in thick metallic plates. A Casimir interaction between two plates arises from the coupling via quasistatic magnetic fields. As a function of distance, the relevant eddy current modes cross over from a quantum to a thermal regime. These modes alone reproduce previously discussed thermal anomalies of the electromagnetic Casimir interaction between good conductors. In particular, they provide a physical picture for the Casimir entropy whose nonzero value at zero temperature arises from a correlated, glassy state.
Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)
2010-11-16T23:59:59.000Z
A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.
Magnetic properties of Ga doped cobalt ferrite: Compton scattering study
Sharma, Arvind, E-mail: arvind.phd.swm@gmail.com; Mund, H. S.; Ahuja, B. L. [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur-313001 (India); Sahariya, Jagrati [Department of Physics, Manipal University, Jaipur-303007 (India); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)
2014-04-24T23:59:59.000Z
We present the spin momentum density of Ga doped CoFe{sub 2}O{sub 4} at 100 K using magnetic Compton scattering. The measurement has been performed using circularly polarized synchrotron radiations of 182.65 keV at SPring8, Japan. The experimental profile is decomposed into its constituent profile to determine the spin moment at individual sites. Co atom has the maximum contribution (about 58%) in the total spin moment of the doped CoFe{sub 2}O{sub 4}.
Muon g-2 Anomaly and Dark Leptonic Gauge Boson
Lee, Hye-Sung [W& M
2014-11-01T23:59:59.000Z
One of the major motivations to search for a dark gauge boson of MeV-GeV scale is the long-standing muon g-2 anomaly. Because of active searches such as fixed target experiments and rare meson decays, the muon g-2 favored parameter region has been rapidly reduced. With the most recent data, it is practically excluded now in the popular dark photon model. We overview the issue and investigate a potentially alternative model based on the gauged lepton number or U(1)_L, which is under different experimental constraints.
Three-dimensional geologic structures from inversion of gravity anomalies
Hinson, Charles Alvin
1976-01-01T23:59:59.000Z
. Parameters used were: Zo=7 km, R=l gm/cm , fr=0. 09 km-', fz=0. 125 km iterations=6 and final rms difference was 7. 6 10-4 km. . 42 12 Inversion Model 1. Parameters used were p = 0. 1 gm/cms, zo = 5. 4 km, f& = 0. 045 and fz = 0. 095. Contours... are in kilometers relative to sea level 56 13 Inversion Model 2. Parameters used were p = 0. 1 gm/cm zo = 5. 4 km, fq = 0. 001 and fz = 0. 002. Contours are in kilometers relative to sea level 58 14 Gravity difference between the anomaly produced by Inversion...
Ward identities and chiral anomalies for coupled fermionic chains
Costa, L. C. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André (Brazil)] [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André (Brazil); Ferraz, A. [Department of Theoretical and Experimental Physics, International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59012-970 Natal (Brazil)] [Department of Theoretical and Experimental Physics, International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59012-970 Natal (Brazil); Mastropietro, Vieri [Dipartimento di Matematica F. Enriques, Universitá di Milano, Via C. Saldini 50, 20133 Milano (Italy)] [Dipartimento di Matematica F. Enriques, Universitá di Milano, Via C. Saldini 50, 20133 Milano (Italy)
2013-12-15T23:59:59.000Z
Coupled fermionic chains are usually described by an effective model written in terms of bonding and anti-bonding fermionic fields with linear dispersion in the vicinities of the respective Fermi points. We derive for the first time exact Ward Identities (WI) for this model, proving the existence of chiral anomalies which verify the Adler-Bardeen non-renormalization property. Such WI are expected to play a crucial role in the understanding of the thermodynamic properties of the system. Our results are non-perturbative and are obtained analyzing Grassmann functional integrals by means of constructive quantum field theory methods.
On the vacuum fluctuations, Pioneer Anomaly and Modified Newtonian Dynamics
Dragan Slavkov Hajdukovic
2011-02-08T23:59:59.000Z
We argue that the so-called "Pioneer Anomaly" is related to the quantum vacuum fluctuations. Our approach is based on the hypothesis of the gravitational repulsion between matter and antimatter, what allows considering, the virtual particle-antiparticle pairs in the physical vacuum, as gravitational dipoles. Our simplified calculations indicate that the anomalous deceleration of the Pioneer spacecrafts could be a consequence of the vacuum polarization in the gravitational field of the Sun. At the large distances, the vacuum polarization by baryonic matter could mimic dark matter what opens possibility that dark matter do not exist, as advocated by the Modified Newtonian Dynamics (MOND).
An investigation of the subsurface Bouguer anomaly in the vicinity of shallow salt domes
Barnes, William Charles
1977-01-01T23:59:59.000Z
'itted to the anomaly data in vertical profiles. Analysis of the anomalous vertical gravity gradients indicates that such gradients are too minute for purposes of salt dome exploration. However, calculations of the Bouguer anomaly reveal data which would be easily... detected in the field and amenable to geological interpretation. The empirical curves are fourd to be useful in estimating the Bouguer anomaly for salt domes not explicitly represented by the models. ACKNONLEDGEMENTS The author wishes to express his...
Cuchet, Léa; Rodmacq, Bernard; Auffret, Stéphane; Sousa, Ricardo C.; Dieny, Bernard [SPINTEC, UMR 8191, CEA-INAC/CNRS/UJF-Grenoble 1/Grenoble-INP, 38054 Grenoble Cedex (France)
2014-08-04T23:59:59.000Z
The influence of the bottom and top magnetic electrodes thicknesses on both perpendicular anisotropy and transport properties is studied in (Co/Pt)/Ta/CoFeB/MgO/FeCoB/Ta magnetic tunnel junctions. By carefully investigating the relative magnetic moment of the two electrodes as a function of their thicknesses, we identify and quantify the presence of magnetically dead layers, likely localized at the interfaces with Ta, that is, 0.33?nm for the bottom electrode and 0.60?nm for the top one. Critical thicknesses (spin-reorientation transitions) are determined as 1.60 and 1.65?nm for bottom and top electrodes, respectively. The tunnel magnetoresistance ratio reaches its maximum value, as soon as both effective (corrected from dead layer) electrode thicknesses exceed 0.6?nm.
Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations
Zhao, Xin; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming
2015-01-01T23:59:59.000Z
The structures and magnetic properties of the Co-Zr-B alloys near the Co5Zr composition were studied using adaptive genetic algorithm and first-principles calculations to guide further experimental effort on optimizing their magnetic performances. Through extensive structural searches, we constructed the contour maps of the energetics and magnetic moments of the Co-Zr-B magnet alloys as a function of composition. We found that the Co-Zr-B system exhibits the same structural motif as the "Co11Zr2" polymorphs, which plays a key role in achieving high coercivity. Boron atoms can either substitute selective cobalt atoms or occupy the interstitial sites. First-principles calculation shows that the magnetocrystalline anisotropy energies can be significantly improved through proper boron doping.
Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection
J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg
2006-09-30T23:59:59.000Z
Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces low-frequency eddy currents in ferromagnetic pipes and tubes. Since this is a new inspection method, both theory and experiment were used to determine fundamental capabilities and limitations. Fundamental finite element modeling analysis and experimental investigations performed during this development have led to the derivation of a first order analytical equation for designing rotating magnetizers to induce current and positioning sensors to record signals from anomalies. Experimental results confirm the analytical equation and the finite element calculations provide a firm basis for the design of RPMI systems. Experimental results have shown that metal loss anomalies and wall thickness variations can be detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. The design exploits the phenomenon that circumferential currents are easily detectable at distances well away from the magnets. Current changes at anomalies were detectable with commercial low cost Hall Effect sensors. Commercial analog to digital converters can be used to measure the sensor output and data analysis can be performed in real time using PC computer systems. The technology was successfully demonstrated during two blind benchmark tests where numerous metal loss defects were detected. For this inspection technology, the detection threshold is a function of wall thickness and corrosion depth. For thinner materials, the detection threshold was experimentally shown to be comparable to magnetic flux leakage. For wall thicknesses greater than three tenths of an inch, the detection threshold increases with wall thickness. The potential for metal loss anomaly sizing was demonstrated in the second benchmarking study, again with accuracy comparable to existing magnetic flux leakage technologies. The rotating permanent magnet system has the potential for inspecting unpiggable pipelines since the magnetizer configurations can be sufficiently small with respect to the bore of the pipe to pass obstructions that limit the application of many i
E-Print Network 3.0 - anomalies mimicking physical Sample Search...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
() Physical Oceanography Laboratory, Ocean... related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low... -pass mean Southern...
E-Print Network 3.0 - anomaly grass valley Sample Search Results
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
to work in partnership with the geothermal... Calvin, Mark Coolbaugh, and Chris Kratt Remote Sensing for Mapping Mineralogy and Thermal Anomalies Hymap Source: Faulds, James E....
anomalies sub-surface structure: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
analysis. The results open up for new measurements of the hyperfine structure in unstable lead isotopes, in order to extract information of the hyperfine anomaly and distribution...
anomaly-based intrusion detection: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Topic Index 1 Applying Kernel Methods to Anomaly Based Intrusion Detection Systems Computer Technologies and Information Sciences Websites Summary: . There are two types of...
Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries
Khan, Suffian N. [Ames Laboratory; Alam, Aftab [Ames Laboratory; Johnson, Duane D. [Ames Laboratory
2013-11-27T23:59:59.000Z
In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22–210 m Jm?2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries—making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed “ordered” moments from longer spatial and/or time averaging and should be considered directly.
Magnets & Magnet Condensed Matter Science
McQuade, D. Tyler
18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials Pressure 9 Metal to Insulator Transition on the N=0 Landau Level in Graphene 10 Evidence for Fractional Quantum Hall States in Suspended Bilayer and Trilayer Graphene 11 Fractional Quantum Hall Effect
Colossal anisotropy of the magnetic properties of doped lithium nitrodometalates
Antropov, Vladimir P [Ames Laboratory; Antonov, Victor N [Ames Laboratory
2014-09-01T23:59:59.000Z
We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li2(Li1?xMx)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropy of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L2,3 spectra in LiFeN are also predicted.
Magnetic Fields in Quantum Degenerate Systems and in Vacuum
H. Perez Rojas; E. Rodriguez Querts
2006-12-28T23:59:59.000Z
We consider self-magnetization of charged and neutral vector bosons bearing a magnetic moment in a gas and in vacuum. For charged vector bosons (W bosons) a divergence of the magnetization in both the medium and the electroweak vacuum occurs for the critical field B=B_{wc}=m_{w}^{2}/e. For B>B_{wc} the system is unstable. This behavior suggests the occurrence of a phase transition at B=B_{c}, where the field is self-consistently maintained. This mechanism actually prevents $B$ from reaching the critical value B_{c}. For virtual neutral vector bosons bearing an anomalous magnetic moment, the ground state has a similar behavior for B=B_{nbc}=m_{nb}^{2}/q . The magnetization in the medium is associated to a Bose-Einstein condensate and we conjecture a similar condensate occurs also in the case of vacuum. The model is applied to virtual electron-positron pairs bosonization in a magnetic field B \\sim B_{pc}\\lesssim 2m_{e}^{2}/e, where m_e is the electron mass. This would lead also to vacuum self-magnetization in QED, where in both cases the symmetry breaking is due to a condensate of quasi-massless particles.
T violation in radiative $\\beta$ decay and electric dipole moments
Dekens, W G
2015-01-01T23:59:59.000Z
In radiative $\\beta$ decay, $T$ violation can be studied through a spin-independent $T$-odd correlation. We consider contributions to this correlation by beyond the standard model (BSM) sources of $T$-violation, arising above the electroweak scale. At the same time such sources, parametrized by dimension-6 operators, can induce electric dipole moments (EDMs). As a consequence, the manifestations of the $T$-odd BSM physics in radiative $\\beta$ decay and EDMs are not independent. Here we exploit this connection to show that current EDM bounds already strongly constrain the spin-independent $T$-odd correlation in radiative $\\beta$ decay.
Gauge field, strings, solitons, anomalies and the speed of life
Antti J. Niemi
2014-07-05T23:59:59.000Z
It's been said that "mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better". Here we aim for something even better. We try to combine mathematical physics and biology into a picoscope of life. For this we merge techniques which have been introduced and developed in modern mathematical physics, largely by Ludvig Faddeev to describe objects such as solitons and Higgs and to explain phenomena such as anomalies in gauge fields. We propose a synthesis that can help to resolve the protein folding problem, one of the most important conundrums in all of science. We apply the concept of gauge invariance to scrutinize the extrinsic geometry of strings in three dimensional space. We evoke general principles of symmetry in combination with Wilsonian universality and derive an essentially unique Landau-Ginzburg energy that describes the dynamics of a generic string-like configuration in the far infrared. We observe that the energy supports topological solitons, that pertain to an anomaly in the manner how a string is framed around its inflection points. We explain how the solitons operate as modular building blocks from which folded proteins are composed. We describe crystallographic protein structures by multi-solitons with experimental precision, and investigate the non-equilibrium dynamics of proteins under varying temperature. We simulate the folding process of a protein at in vivo speed and with close to pico-scale accuracy using a standard laptop computer: With pico-biology as mathematical physics' next pursuit, things can only get better.
Primordial quantum nonequilibrium and large-scale cosmic anomalies
Samuel Colin; Antony Valentini
2014-07-31T23:59:59.000Z
We study incomplete relaxation to quantum equilibrium at long wavelengths, during a pre-inflationary phase, as a possible explanation for the reported large-scale anomalies in the cosmic microwave background (CMB). Our scenario makes use of the de Broglie-Bohm pilot-wave formulation of quantum theory, in which the Born probability rule has a dynamical origin. The large-scale power deficit could arise from incomplete relaxation for the amplitudes of the primordial perturbations. We show, by numerical simulations for a spectator scalar field, that if the pre-inflationary era is radiation dominated then the deficit in the emerging power spectrum will have a characteristic shape (an inverse-tangent dependence on wavenumber k, with oscillations). It is found that our scenario is able to produce a power deficit in the observed region and of the observed (approximate) magnitude for an appropriate choice of cosmological parameters. We also discuss the large-scale anisotropy, which could arise from incomplete relaxation for the phases of the primordial perturbations. We present numerical simulations for phase relaxation, and we show how to define characteristic scales for amplitude and phase nonequilibrium. The extent to which the data might support our scenario is left as a question for future work. Our results suggest that we have a potentially viable model that might explain two apparently independent cosmic anomalies by means of a single mechanism.
New look at the QCD ground state in a magnetic field
Efrain J. Ferrer; Vivian de la Incera; Israel Portillo; Matthew Quiroz
2014-06-13T23:59:59.000Z
We explore chiral symmetry breaking in a magnetic field within a Nambu-Jona-Lasinio model of interacting massless quarks including tensor channels. We show that the new interaction channels open up via Fierz identities due to the explicit breaking of the rotational symmetry by the magnetic field. We demonstrate that the magnetic catalysis of chiral symmetry breaking leads to the generation of two independent condensates, the conventional chiral condensate and a spin-one condensate. While the chiral condensate generates a dynamical fermion mass, the new condensate gives rise to a dynamical anomalous magnetic moment for the fermions. As a consequence, the spectrum of the excitations in all Landau levels, except the lowest one, exhibits Zeeman splitting. Since the pair, formed by a quark and an antiquark with opposite spins, possesses a resultant magnetic moment, an external magnetic field can align it giving rise to a net magnetic moment for the ground state. This is the physical interpretation of the spin-one condensate. Our results show that the magnetically catalyzed ground state in QCD is actually richer than previously thought. The two condensates contribute to the effective mass of the LLL quasiparticles in such a way that the critical temperature for chiral symmetry restoration becomes enhanced.
Kjall, Jonas Alexander
2012-01-01T23:59:59.000Z
Magnetism in Ultracold Gases 4 Magnetic phase diagram of aMagnetism . . . . . . . . . . . .1.3 Magnetism in condensedIntroduction 1 Brief introduction to magnetism 1.1 Classic
Controlling Magnetism at the Nanoscale
Wong, Jared
2012-01-01T23:59:59.000Z
Manipulation of Magnetism - External148 Conclusion A The Magnetism Cheat Sheet A.1 Magnetic157 A.2 Magnetism Unit Conversion
Recent Results in Neutrino Physics
K. V. L. Sarma
1994-11-07T23:59:59.000Z
This is a survey of the current experimental information on some of the interesting issues in neutrino physics: neutrino species, neutrino masses, neutrino magnetic moments, solar neutrinos, and the atmospheric neutrino anomaly.
Alternating magnetic anisotropy of Li 2 ( Li 1 - x T x ) N ( T = Mn , Fe , Co , and Ni )
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.
2015-05-01T23:59:59.000Z
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li?(Li1-xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. The calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.
Alternating magnetic anisotropy of Li 2 ( Li 1 - x T x ) N ( T = Mn , Fe , Co , and Ni )
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.
2015-05-01T23:59:59.000Z
Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li?(Li1-xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more »The calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less
Seasonal persistence of northern low-and middle-latitude anomalies of ozone and
Wirosoetisno, Djoko
Seasonal persistence of northern low- and middle-latitude anomalies of ozone and other trace gases #12;Seasonal persistence of northern low- and middle-latitude anomalies of ozone and other trace gases 10 July 2008; accepted 23 July 2008; published 11 November 2008. [1] Analysis of observed ozone
A global picture of the seasonal persistence of stratospheric ozone anomalies
Wirosoetisno, Djoko
A global picture of the seasonal persistence of stratospheric ozone anomalies 1234567 89A64BC7DEF72 ozone anomalies S. Tegtmeier,1,2 V. E. Fioletov,1 and T. G. Shepherd3 Received 13 August 2009; revised in vertical profiles of stratospheric ozone, in both equatorial and extratropical regions, have been shown
Mojzsis, Stephen J.
Rayleigh-Taylor instability, lithospheric dynamics, surface topography at convergent mountain belts; accepted 25 April 2013; published 24 May 2013. [1] Surface topography and associated gravity anomalies of surface topography, with negative (positive) free-air anomalies over regions of descent (ascent
A Simple Atmospheric Model of the Local and Teleconnection Responses to Tropical Heating Anomalies
Wang, Chunzai
the local and remote stationary responses of the atmosphere to tropical heating anomalies is describedA Simple Atmospheric Model of the Local and Teleconnection Responses to Tropical Heating Anomalies and forced with a localized heating for illustration. In the tropics, the baroclinic responses are familiar
Wang, Chunzai
The Intra-Americas Sea springtime surface temperature anomaly dipole as fingerprint of remote anomaly dipole we find that the dipole forms mostly in response to changes in the air-sea heat fluxes. The changes in shortwave radiation also contribute to the dipole of net air-sea heat flux. The changes
Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2
Scafetta, Nicola
Solar Flare Intermittency and the Earth's Temperature Anomalies Nicola Scafetta1,2 and Bruce J; published 17 June 2003) We argue that Earth's short-term temperature anomalies and the solar flare data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean
Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies
Moore, John
Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies A. Rinke,1,2 K depend on regional and decadal variations in the coupled atmosphere-ocean-sea ice system. Citation: Rinke to investigate feedbacks between September sea ice anomalies in the Arctic and atmospheric conditions in autumn
Meridional movement of wind anomalies during ENSO events and their role in event termination
Santoso, Agus
Meridional movement of wind anomalies during ENSO events and their role in event termination Shayne), Meridional movement of wind anomalies during ENSO events and their role in event termination, Geophys. Res, setting up conditions favorable for the termination of ENSO warm events. The basic principles of the RDO
The Extreme Cold Anomaly over Southeast Asia in February 2008: Roles of ISO and ENSO*
Li, Tim
The Extreme Cold Anomaly over Southeast Asia in February 2008: Roles of ISO and ENSO* CHI 2008. The cause of the ECA, in particular the role of the intraseasonal oscillation (ISO) and El Nin for a month or so. The onset of the northerly anomaly is concurrent with a phase change of an ISO over Sumatra
Theoretical calculations of magnetic order and anisotropy energies in molecular magnets
Pederson, M. R. [Center for Computational Materials Science - 6392, Naval Research Laboratory, Washington, D.C. 20375-5000 (United States)] [Center for Computational Materials Science - 6392, Naval Research Laboratory, Washington, D.C. 20375-5000 (United States); Porezag, D. V. [Center for Computational Materials Science - 6392, Naval Research Laboratory, Washington, D.C. 20375-5000 (United States)] [Center for Computational Materials Science - 6392, Naval Research Laboratory, Washington, D.C. 20375-5000 (United States); Kortus, J. [Center for Computational Materials Science - 6392, Naval Research Laboratory, Washington, D.C. 20375-5000 (United States)] [Center for Computational Materials Science - 6392, Naval Research Laboratory, Washington, D.C. 20375-5000 (United States); Khanna, S. N. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284-2000 (United States)
2000-05-01T23:59:59.000Z
We present theoretical electronic structure calculations on the nature of electronic states and the magnetic coupling in the Mn{sub 12}O{sub 12} free cluster and the Mn{sub 12}O{sub 12}(RCOO){sub 16}(H{sub 2}O){sub 4} molecular magnetic crystal. The calculations have been performed with the all-electron full-potential NRLMOL code. We find that the free Mn{sub 12}O{sub 12} cluster relaxes to an antiferromagnetic cluster with no net moment. However, when coordinated by sixteen HCOO ligands and four H{sub 2}O groups, as it is in the molecular crystal, we find that the ferrimagnetic ordering and geometrical and magnetic structure observed in the experiments is restored. Local Mn moments for the free and ligandated molecular magnets are presented and compared to experiment. We identify the occupied and unoccupied electronic states that are most responsible for the formation of the large anisotropy barrier and use a recently developed full-space and full-potential method for calculating the spin-orbit coupling interaction and anisotropy energies. Our calculated second-order anisotropy energy is in excellent agreement with experiment. (c) 2000 American Institute of Physics.
Superconnections, Anomalies and Non-BPS Brane Charges
Richard J. Szabo
2001-10-09T23:59:59.000Z
The properties of brane-antibrane systems and systems of unstable D-branes in Type II superstring theory are investigated using the formalism of superconnections. The low-energy open string dynamics is shown to be probed by generalized Dirac operators. The corresponding index theorems are used to compute the chiral gauge anomalies in these systems, and hence their gravitational and Ramond-Ramond couplings. A spectral action for the generalized Dirac operators is also computed and shown to exhibit precisely the expected processes of tachyon condensation on the brane worldvolumes. The Chern-Simons couplings are thereby shown to be naturally related to Fredholm modules and bivariant K-theory, confirming the expectations that D-brane charge is properly classified by K-homology.
Superconnections, Anomalies and Non-BPS Brane Charges
Szabó, R J
2001-01-01T23:59:59.000Z
The properties of brane-antibrane systems and systems of unstable D-branes in Type II superstring theory are investigated using the formalism of superconnections. The low-energy open string dynamics is shown to be probed by generalized Dirac operators. The corresponding index theorems are used to compute the chiral gauge anomalies in these systems, and hence their gravitational and Ramond-Ramond couplings. A spectral action for the generalized Dirac operators is also computed and shown to exhibit precisely the expected processes of tachyon condensation on the brane worldvolumes. The Chern-Simons couplings are thereby shown to be naturally related to Fredholm modules and bivariant K-theory, confirming the expectations that D-brane charge is properly classified by K-homology.
Determinant and Weyl anomaly of Dirac operator: a holographic derivation
Rodrigo Aros; Danilo E Diaz
2011-11-18T23:59:59.000Z
We present a holographic formula relating functional determinants: the fermion determinant in the one-loop effective action of bulk spinors in an asymptotically locally AdS background, and the determinant of the two-point function of the dual operator at the conformal boundary. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk partition function to a subleading large-N contribution in the boundary partition function. We use this holographic picture to address questions in spectral theory and conformal geometry. As an instance, we compute the type-A Weyl anomaly and the determinant of the iterated Dirac operator on round spheres, express the latter in terms of Barnes' multiple gamma function and gain insight into a conjecture by B\\"ar and Schopka.
Gauge field, strings, solitons, anomalies and the speed of life
Niemi, Antti J
2014-01-01T23:59:59.000Z
It's been said that "mathematics is biology's next microscope, only better; biology is mathematics' next physics, only better". Here we aim for something even better. We try to combine mathematical physics and biology into a picoscope of life. For this we merge techniques which have been introduced and developed in modern mathematical physics, largely by Ludvig Faddeev to describe objects such as solitons and Higgs and to explain phenomena such as anomalies in gauge fields. We propose a synthesis that can help to resolve the protein folding problem, one of the most important conundrums in all of science. We apply the concept of gauge invariance to scrutinize the extrinsic geometry of strings in three dimensional space. We evoke general principles of symmetry in combination with Wilsonian universality and derive an essentially unique Landau-Ginzburg energy that describes the dynamics of a generic string-like configuration in the far infrared. We observe that the energy supports topological solitons, that perta...
Isovector EMC effect explains the NuTeV anomaly
I. C. Cloët; W. Bentz; A. W. Thomas
2009-01-22T23:59:59.000Z
A neutron or proton excess in nuclei leads to an isovector-vector mean-field which, through its coupling to the quarks in a bound nucleon, implies a shift in the quark distributions with respect to the Bjorken scaling variable. We show that this result leads to an additional correction to the NuTeV measurement of sin^2(Theta_W). The sign of this correction is largely model independent and acts to reduce their result. Explicit calculation within a covariant and confining Nambu--Jona-Lasinio model predicts that this vector field correction accounts for approximately two-thirds of the NuTeV anomaly. We are therefore led to offer a new interpretation of the NuTeV measurement, namely, that it is further evidence for the medium modification of the bound nucleon wavefunction.
Isovector EMC Effect and the NuTeV Anomaly
Cloeet, I. C. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Bentz, W. [Department of Physics, School of Science, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); Thomas, A. W. [Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA and College of William and Mary, Williamsburg, Virginia 23187 (United States)
2009-06-26T23:59:59.000Z
A neutron or proton excess in nuclei leads to an isovector-vector mean field which, through its coupling to the quarks in a bound nucleon, implies a shift in the quark distributions with respect to the Bjorken scaling variable. We show that this result leads to an additional correction to the NuTeV measurement of sin{sup 2}theta{sub W}. The sign of this correction is largely model independent and acts to reduce their result. Explicit calculation in nuclear matter within a covariant and confining Nambu-Jona-Lasinio model predicts that this vector field correction may account for a substantial fraction of the NuTeV anomaly. We are therefore led to offer a new interpretation of the NuTeV measurement, namely, that it provides further evidence for the medium modification of the bound nucleon wave function.
Reexamination of an anomaly in near-threshold pair production
De Braeckeleer, L.; Adelberger, E.G.; Garcia, A. (Physics Department FM-15, University of Washington, Seattle, Washington 98195 (United States))
1992-11-01T23:59:59.000Z
We investigated a reported anomaly in near-threshold pair production, using radioactive sources to measure the {gamma}+Ge{r arrow}{ital e}{sup +}+{ital e}{sup {minus}}+Ge cross-section at {ital E}{sub {gamma}}=1063, 1086, 1112, 1173, 1213, 1299, 1332, and 1408 keV. Although the data agree with the theory (numerical calculations based on an exact partial-wave formulation for a screened central potential) at the higher energies, the data lie above the theory at 1063, 1082, and 1112 keV. The discrepancy is reduced by including the final-state Coulomb interaction between the {ital e}{sup +} and {ital e}{sup {minus}}.
Electron Electric Dipole Moment from CP Violation in the Charged Higgs Sector
David Bowser-Chao; Darwin Chang; Wai-Yee Keung
1997-12-02T23:59:59.000Z
The leading contributions to the electron (or muon) electric dipole moment due to CP violation in the charged Higgs sector are at the two-loop level. A careful analysis of the model-independent contribution is provided. We also consider specific scenarios to demonstrate how charged Higgs sector CP violation can naturally give rise to large electric dipole moments. Numerical results show that the electron electric dipole moment in such models can lie at the experimentally accessible level.
Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium
H. S. Nataraj; B. K. Sahoo; B. P. Das; D. Mukherjee
2008-04-07T23:59:59.000Z
The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we have computed the EDM enhancement factors of the ground states of Rb and Cs due to both the electron EDM and the S-PS EDM using the relativistic coupled-cluster (RCC) theory. The importance of obtaining the precise enhancement factors and the experimental results in deducing a reliable limit on the electron EDM is emphasized.
Covariant Spectator Theory of np scattering: Deuteron Quadrupole Moment
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gross, Franz
2015-01-01T23:59:59.000Z
The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from chiral effect field theory predictions to order next-to-next-to-next-to-leading order.
Covariant Spectator Theory of np scattering: Deuteron Quadrupole Moment
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Gross, Franz
2015-01-01T23:59:59.000Z
The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore »chiral effect field theory predictions to order next-to-next-to-next-to-leading order.« less
Petroglyphs, Lighting, and Magnetism
Walker, Merle F
2007-01-01T23:59:59.000Z
1950 Electricity and Magnetism: Theory and Applications.I Petroglyphs, Lightning, and Magnetism | Walker Figure 8.I Petroglyphs, Lightning, and Magnetism | Walker Figure IL
New High Field Magnet for Neutron Scattering at Hahn-Meitner Institute
M Steiner; D A Tennant; P Smeibidl
Abstract. The Berlin Neutron Scattering Center BENSC at the Hahn-Meitner-Institute (HMI) is a user facility for the study of structure and dynamics of condensed matter with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. Magnetic interactions and magnetic phenomena depend on thermodynamic parameters like magnetic field, temperature and pressure. At HMI special efforts are being made to offer outstanding sample environments such as very low temperatures or high magnetic fields or combination of both. For the future a dedicated instrument for neutron scattering at extreme fields is under construction, the Extreme Environment Diffractometer ExED. For this instrument the existing superconducting magnets as well as a future hybrid system can be used. The highest fields, above 30 T will be produced by the planned series-connected hybrid magnet system, designed and constructed in collaboration with the National High Magnetic Field Laboratory, Tallahassee, FL. 1.
Ground State of Magnetic Dipoles on a Two-Dimensional Lattice: Structural Phases in Complex Plasmas
Feldmann, J. D.; Kalman, G. J. [Department of Physics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts, 02467 (United States); Hartmann, P. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rosenberg, M. [Department of Electrical and Computer Engineering, University of California-San Diego, La Jolla, California, 92093 (United States)
2008-02-29T23:59:59.000Z
We study analytically and by molecular dynamics simulations the ground state configuration of a system of magnetic dipoles fixed on a two-dimensional lattice. We find different phases, in close agreement with previous results. Building on this result and on the minimum energy requirement we determine the equilibrium lattice configuration, the magnetic order (ferromagnetic versus antiferromagnetic), and the magnetic polarization direction of a system of charged mesoscopic particles with magnetic dipole moments, in the domain where the strong electrostatic coupling leads to a crystalline ground state. Orders of magnitudes of the parameters of the system relevant to possible future dusty plasma experiments are discussed.
What Global Warming Looks Like The July 2010 global map of surface temperature anomalies (Figure 1 anomalies an example of what we can expect global warming to look like? Maps of temperature anomalies, such as Figure 1, are useful for helping people understand the role of global warming in extreme events
Magnetic structures and interplay between rare-earth Ce and Fe magnetism in single-crystal CeFeAsO
Zhang, Qiang [Ames Laboratory; Tian, Wei [Ames Laboratory; Li, Haifeng [Ames Laboratory; Kim, Jong-Woo [Argonne Naitonal Laboratory; Yan, Jiaqiang [Ames Laboratory; McCallum, Robert William [Ames Laboratory; Lograsso, Thomas A. [Ames Laboratory; Zarestky, Jerel L. [Ames Laboratory; Budko, Sergey L. [Ames Laboratory; McQueeney, Robert J. [Ames Laboratory; Vaknin, David [Ames Laboratory
2013-11-27T23:59:59.000Z
Neutron and synchrotron resonant x-ray magnetic scattering (RXMS) complemented by heat capacity and resistivity measurements reveal the evolution of the magnetic structures of Fe and Ce sublattices in a CeFeAsO single crystal. The RXMS of magnetic reflections at the Ce LII edge shows a magnetic transition that is specific to the Ce antiferromagnetic long-range ordering at TCe? 4 K with short-range Ce ordering above TCe, whereas neutron diffraction measurements of a few magnetic reflections indicate a transition at T?? 12 K with an unusual order parameter. Detailed order-parameter measurements on several magnetic reflections by neutrons show a weak anomaly at 4 K that we associate with the Ce ordering. The successive transitions at TCe and T? can also be clearly identified by two anomalies in heat capacity and resistivity measurements. The higher transition temperature at T?? 12 K is mainly ascribed to Fe spin reorientation transition, below which Fe spins rotate uniformly and gradually in the ab plane. The Fe spin reorientation transition and short-range Ce ordering above TCe reflect the strong Fe-Ce couplings prior to long-range ordering of the Ce. The evolution of the intricate magnetic structures in CeFeAsO going through T? and TCe is proposed.
Paris-Sud XI, UniversitÃ© de
of depleted uranium produced from nuclear waste were it not for its high pyrophoricity caused by the hydrogen: matar@icmcb-bordeaux.cnrs.fr Keywords: Intermetallic. Uranium. Magnetism. Bonding. Interstitial content-of-plane uranium fz 3 -3zr 2 orbitals leading to developing a magnetic moment on uranium in a predicted
Influence of interface on structure and magnetic properties of Fe{sub 50}B{sub 50} nanoglass
Stoesser, A.; Kilmametov, A. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Ghafari, M., E-mail: mohammad.ghafari@kit.edu, E-mail: skamali@ucdavis.edu; Gleiter, H. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Sakurai, Y.; Itou, M.; Kohara, S. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hahn, H. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094 (China); Joint Research Laboratory Nanomaterials, TU Darmstadt, Darmstadt (Germany); Kamali, S., E-mail: mohammad.ghafari@kit.edu, E-mail: skamali@ucdavis.edu [Department of Chemistry, University of California Davis, Davis, California 95616 (United States)
2014-10-07T23:59:59.000Z
In contrast to rapidly quenched metallic glasses, nanoglasses consist of two components, namely amorphous nanograins and interfacial regions with distinctively different properties. Various physical methods have been employed to obtain information on the atomistic and magnetic properties of such materials. For the case of a Fe{sub 50}B{sub 50} nanoglass, using high-energy X-ray diffraction, it was found that the short-range order of the nanograins is similar to that of a crystalline FeB alloy. Magnetic Compton scattering shows that the total magnetic moment is the sum of the magnetic moment of the nanograins and the weak magnetic moment of the interfacial regions (?{sub Interface}?=?+0.08??{sub B}). The measured moment of boron agrees (?{sub Boron}?=??0.08??{sub B}) with linear Muffin-Tin calculations. From the results of Mössbauer and magnetic Compton scattering, it can be concluded that the boron atoms segregate in the interfacial regions, resulting in a reduced boron concentration in the nanograins.
Magnetic Catalysis vs Magnetic Inhibition
Kenji Fukushima; Yoshimasa Hidaka
2012-09-06T23:59:59.000Z
We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former would enhance the chiral-symmetry breaking at finite B according to the Magnetic Catalysis, while the latter would suppress the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the Magnetic Inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.
Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature
Zhai Junyi; Xing Zengping; Dong Shuxiang; Li Jiefang; Viehland, D. [Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)
2006-02-06T23:59:59.000Z
The measurement of low-frequency (10{sup -2}-10{sup 3} Hz) minute magnetic field variations (10{sup -12} Tesla) at room temperature in a passive mode of operation would be critically enabling for deployable neurological signal interfacing and magnetic anomaly detection applications. However, there is presently no magnetic field sensor capable of meeting all of these requirements. Here, we present new bimorph and push-pull magneto-electric laminate composites, which incorporate a charge compensation mechanism (or bridge) that dramatically enhances noise rejection, enabling achievement of such requirements.
Simulating net particle production and chiral magnetic current in a CP-odd domain
Fukushima, Kenji
2015-01-01T23:59:59.000Z
We elucidate the numerical formulation to simulate net production of particles and anomalous currents with CP-breaking background fields which cause an imbalance of particles over anti-particles. For a concrete demonstration we numerically impose pulsed electric and magnetic fields to observe that the dynamical chiral magnetic current follows together with the net particle production. The produced particle density is quantitatively consistent with the axial anomaly, while the chiral magnetic current is suppressed by a delay before the the onset of the current generation.
Thomas Wiegelmann; Bernd Inhester
2006-12-21T23:59:59.000Z
The space mission STEREO will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently the 3D coronal magnetic field provides a proxy for the stereoscopy which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.
Superconducting Magnet Division
Superconducting Magnet Division DOE NP Program Review - July 06 1 Brookhaven Magnet Division - Nuclear Physics Program Support Activities Superconducting Magnet Program RHIC Operations Support Spin Summary Peter Wanderer, DOE review, July 25, 2006 Acting Head, Superconducting Magnet Division #12
Borisov, A. V.; Kerimov, B. K.; Sizin, P. E., E-mail: borisov@phys.msu.ru [Moscow State University (Russian Federation)
2012-11-15T23:59:59.000Z
Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.
Magnetic properties of Ni40+xMn39-xSn21 (x=0, 2, 4, 6 and 8 at.%) Heusler alloys
Lazpita, P. [BCMaterials & UPV/EHU; Barandiaran, J. M. [BCMaterials & UPV/EHU; Chernenko, V. A. [BCMaterials & UPV/EHU; Garcia, B. Valle [UPV/EHU, EUITI Bilbao; Tajada, E. Diaz [Minera, Metalurgia y Ciencia de los Materiales, Spain; Lograsso, T. [Ames Laboratory; Schlagel, D. L. [Ames Laboratory
2014-01-27T23:59:59.000Z
The low electron concentration region (e/a < 7.75) of the magnetic phase diagram of the off-stoichiometric Ni–Mn–Sn Heusler alloys was investigated in detail by DSC and magnetization measurements of the Ni40+xMn39?xSn21(x = 0, 2, 4, 6 and 8 at.%) alloys. The alloys show a stable austenitic phase without any martensitic transformation down to 5 K even after heat treatment. The Curie temperature exhibits a broad maximum over a large composition range. The evolution of the magnetic moment with the electron concentration fits the data of previous studies and confirms the peak-like dependence in the extended range of e/a values predicted by ab initio calculations. The explored part of the moment versus e/a curve can be explained in terms of a localized magnetic moment model and full atomic order in the alloys.
Simulated Performance of Steel Moment-Resisting Frame Buildings in the ,**-Tokachi-oki Earthquake
Greer, Julia R.
Simulated Performance of Steel Moment-Resisting Frame Buildings in the ,**- Tokachi-oki Earthquake of Technology Abstract We simulate the response of 0- and ,*-story steel moment-resisting frame buildings (US, our simulations indicate that flexible buildings would have been strongly excited by this earthquake
Relating the Newman-Penrose constants to the Geroch-Hansen multipole moments
Thomas Bäckdahl
2009-08-25T23:59:59.000Z
In this paper, we express the Newman--Penrose constants in terms of the Geroch--Hansen multipole moments for stationary spacetimes. These expressions are translation-invariant combinations of the multipole moments up to quadrupole order, which do not normally vanish.
Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling
Shaw, Bruce E.
. Shaw LamontDoherty Earth Observatory, Columbia University, New York, USA The radiated energy coming271 Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling Bruce E of elucidat- ing their radiated energy-moment scaling. We find, contrary to expectations, that apparent stress
SEISMIC PERFORMANCE EVALUATION FOR STEEL MOMENT FRAMES By Seung-Yul Yun1
Sweetman, Bert
SEISMIC PERFORMANCE EVALUATION FOR STEEL MOMENT FRAMES By Seung-Yul Yun1 , Ronald O. Hamburger2 , C than existing buildings designed and built with older technologies. Key words: seismic behavior; seismic performance evaluation; performance-based design; earthquake engineering; steel moment frame
Measurement of the Proton's Neutral Weak Magnetic Form Factor
B. Mueller; D. H. Beck; E. J. Beise; E. Candell; L. Cardman; R. Carr; R. C. DiBari; G. Dodson; K. Dow; F. Duncan; M. Farkhondeh; B. W. Filippone; T. Forest; H. Gao; W. Korsch; S. Kowalski; A. Lung; R. D. McKeown; R. Mohring; J. Napolitano; D. Nilsson; M. Pitt; N. Simicevic; B. Terburg; S. P. Wells
1997-02-26T23:59:59.000Z
We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M^Z= 0.34 \\pm 0.09 \\pm 0.04 \\pm 0.05$ n.m. at $Q^2=0.1$ (GeV/c)${}^2$.
RECENT MAGNETIC STRUCTURE STUDIES BY NEUTRON DIFFRACTION(1) By C. G. SHULL,
Boyer, Edmond
classification by neutron scattering include the determination of the magnitude and quality of an atom of this moment as represented in the form factor for neutron scattering. Within the second classification169 RECENT MAGNETIC STRUCTURE STUDIES BY NEUTRON DIFFRACTION(1) By C. G. SHULL, Massachusetts
Support for the thermal origin of the Pioneer anomaly
Slava G. Turyshev; Viktor T. Toth; Gary Kinsella; Siu-Chun Lee; Shing M. Lok; Jordan Ellis
2012-04-11T23:59:59.000Z
We investigate the possibility that the anomalous acceleration of the Pioneer 10 and 11 spacecraft is due to the recoil force associated with an anisotropic emission of thermal radiation off the vehicles. To this end, relying on the project and spacecraft design documentation, we constructed a comprehensive finite-element thermal model of the two spacecraft. Then, we numerically solve thermal conduction and radiation equations using the actual flight telemetry as boundary conditions. We use the results of this model to evaluate the effect of the thermal recoil force on the Pioneer 10 spacecraft at various heliocentric distances. We found that the magnitude, temporal behavior, and direction of the resulting thermal acceleration are all similar to the properties of the observed anomaly. As a novel element of our investigation, we develop a parameterized model for the thermal recoil force and estimate the coefficients of this model independently from navigational Doppler data. We find no statistically significant difference between the two estimates and conclude that once the thermal recoil force is properly accounted for, no anomalous acceleration remains.
SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) 2013
Gordon Rueff; Lyle Roybal; Denis Vollmer
2013-01-01T23:59:59.000Z
There is a significant need to protect the nation’s energy infrastructures from malicious actors using cyber methods. Supervisory, Control, and Data Acquisition (SCADA) systems may be vulnerable due to the insufficient security implemented during the design and deployment of these control systems. This is particularly true in older legacy SCADA systems that are still commonly in use. The purpose of INL’s research on the SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) project was to determine if and how data compression techniques could be used to identify and protect SCADA systems from cyber attacks. Initially, the concept was centered on how to train a compression algorithm to recognize normal control system traffic versus hostile network traffic. Because large portions of the TCP/IP message traffic (called packets) are repetitive, the concept of using compression techniques to differentiate “non-normal” traffic was proposed. In this manner, malicious SCADA traffic could be identified at the packet level prior to completing its payload. Previous research has shown that SCADA network traffic has traits desirable for compression analysis. This work investigated three different approaches to identify malicious SCADA network traffic using compression techniques. The preliminary analyses and results presented herein are clearly able to differentiate normal from malicious network traffic at the packet level at a very high confidence level for the conditions tested. Additionally, the master dictionary approach used in this research appears to initially provide a meaningful way to categorize and compare packets within a communication channel.
The crystal and magnetic structure of the magnetocaloric compound FeMnP{sub 0.5}Si{sub 0.5}
Hoeglin, Viktor, E-mail: viktor.hoglin@mkem.uu.se [Department of Materials Chemistry, Uppsala University, Box 538, 75121 Uppsala (Sweden); Hudl, Matthias [Department of Engineering Sciences, Uppsala University, Box 534, 75121 Uppsala (Sweden); Sahlberg, Martin [Department of Materials Chemistry, Uppsala University, Box 538, 75121 Uppsala (Sweden); Nordblad, Per [Department of Engineering Sciences, Uppsala University, Box 534, 75121 Uppsala (Sweden); Beran, Premysl [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Andersson, Yvonne [Department of Materials Chemistry, Uppsala University, Box 538, 75121 Uppsala (Sweden)
2011-09-15T23:59:59.000Z
The crystal and magnetic structure of the magnetocaloric compound FeMnP{sub 0.5}Si{sub 0.5} has been studied by means of neutron and X-ray powder diffraction. Single phase samples of nominal composition FeMnP{sub 0.5}Si{sub 0.5} have been prepared by the drop synthesis method. The compound crystallizes in the Fe{sub 2}P-type structure (P6-bar 2m) with the magnetic moments aligned along the a-axis. It is found that the Fe atoms are mainly situated in the tetrahedral 3g site while the Mn atoms prefer the pyramidal 3f position. The material is ferromagnetic (T{sub C}=382 K) and at 296 K the total magnetic moment is 4.4{mu}{sub B}/f.u. It is shown that the magnetic moment in the 3f site is larger (2.5{mu}{sub B}) than in the 3g site (1.9{mu}{sub B}). - Graphical abstract: The magnetic structure of FeMnP{sub 0.5}Si{sub 0.5} at 296 K. Revealed from refinements of neutron powder diffraction data. Highlights: > Single phase samples of the compound FeMnP{sub 0.5}Si{sub 0.5} has been synthesized by the drop synthesis method. > The crystal and magnetic structure was revealed from neutron powder diffraction data. > The material was found to crystallize in the Fe{sub 2}P-structure (P6-bar 2m). > The magnetic moments are coordinated along the a-axis with a total moment of 4.4{mu}{sub B}. > The large magnetic moments make FeMnP{sub 0.5}Si{sub 0.5} useful in magnetocaloric applications.
Phase diagram and magnetic structure investigation of the fcc antiferromagnet HoB{sub 12}
Kohout, A.; Meissner, M.; Siemensmeyer, K. [Hahn Meitner Institut, Glienicker Str. 100, D-14109 Berlin (Germany); Batko, I.; Matas, S. [Hahn Meitner Institut, Glienicker Str. 100, D-14109 Berlin (Germany); Centre of Low Temperature Physics, Institute of Experimental Physics, Slovak Academy of Sciences, SK-04353 Kosice (Slovakia); Czopnik, A. [Institute of Low Temperature and Structure Research, PAS, PL-50950 Wroclaw (Poland); Flachbart, K. [Centre of Low Temperature Physics, Institute of Experimental Physics, Slovak Academy of Sciences, SK-04353 Kosice (Slovakia); Paderno, Y.; Shitsevalova, N. [Institute for Problems of Material Science, NASU, UA-252680 Kiev (Ukraine)
2004-12-01T23:59:59.000Z
We have investigated the magnetic structure of the fcc antiferromagnet HoB{sub 12} by magnetization and specific heat measurements on small single crystals prepared from natural elements and by neutron diffraction on isotopically enriched powder samples. Magnetization measurements up to 9 T show up to three magnetic phases in the B vs T phase diagram, depending on the orientation of the applied field. The specific heat in zero field exhibits a very steep increase at T{sub N}=7.4 K, but its maximum is reached only at a lower temperature. In applied magnetic field up to 8 T additional {lambda}-like anomalies are observed which confirm the phase boundaries from the magnetization measurements. Powder neutron diffraction in zero magnetic field reveals an antiferromagnetic structure below T{sub N}. The basic reflections can be indexed with (1/2{+-}{delta} 1/2{+-}{delta} 1/2{+-}{delta}), where {delta}=0.035, pointing to an incommensurate magnetic structure. In a field below 2 T (in the lowest-field magnetic phase) the principal reflections remain; in a higher magnetic field they become suppressed. Moreover, the magnetic background strongly decreases with applied field. The analysis of results shows that an amplitude-modulated, incommensurate structure likely represents the magnetic order of HoB{sub 12}. The very complex phase diagram of this compound can arise from the interplay between the RKKY and dipole-dipole interaction and/or from frustration effects in the fcc-symmetry lattice.
Dynamical evolution of the chiral magnetic effect: applications to the quark-gluon plasma
Cristina Manuel; Juan M. Torres-Rincon
2015-01-29T23:59:59.000Z
We study the dynamical evolution of the so-called chiral magnetic effect in an electromagnetic conductor. To this end, we consider the coupled set of corresponding Maxwell and chiral anomaly equations, and we prove that these can be derived from chiral kinetic theory. After integrating the chiral anomaly equation over space in a closed volume, it leads to a quantum conservation law of the total helicity of the system. A change in the magnetic helicity density comes together with a modification of the chiral fermion density. We study in Fourier space the coupled set of anomalous equations and we obtain the dynamical evolution of the magnetic fields, magnetic helicity density, and chiral fermion imbalance. Depending on the initial conditions we observe how the helicity might be transferred from the fermions to the magnetic fields, or vice versa, and find that the rate of this transfer also depends on the scale of wavelengths of the gauge fields in consideration. We then focus our attention on the quark-gluon plasma phase, and analyze the dynamical evolution of the chiral magnetic effect in a very simple toy model. We conclude that an existing chiral fermion imbalance in peripheral heavy ion collisions would affect the magnetic field dynamics, and consequently, the charge dependent correlations measured in these experiments.
A New Morphological Anomaly Detection Algorithm for Hyperspectral Images and its GPU Implementation
Plaza, Antonio J.
and Communications University of Extremadura, Avda. de la Universidad s/n 10071 CÂ´aceres, Spain ABSTRACT Anomaly (WTC) in New York, five days after the terrorist attacks that collapsed the two main towers in the WTC
GLONASS Signal-in-Space Anomalies Liang Heng, Grace Xingxin Gao, Todd Walter, and Per Enge,
Gao, Grace Xingxin
GLONASS Signal-in-Space Anomalies Since 2009 Liang Heng, Grace Xingxin Gao, Todd Walter, and Per Enge, Stanford University BIOGRAPHY Liang Heng is a Ph.D. candidate under the guidance of Pro- fessor
anomaly-free supersymmetric u1-prime: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
gauging of an R-symmetry in local and global susy. We then construct the first anomaly-free models. We break the R-symmetry and susy at the Planck scale and discuss the...
Z' Bosons, the NuTeV Anomaly, and the Higgs Boson Mass
Chanowitz, Michael S
2009-01-01T23:59:59.000Z
NuTeV Anomaly, and the Higgs Boson Mass Michael S. Chanowitzpredicted value of the Higgs boson mass, from ? 60 to ? 120from an increase in the Higgs boson mass. There is a vast
Self-energy anomaly of an electric pointlike dipole in three-dimensional static spacetimes
Valeri P. Frolov; Andrey A. Shoom; Andrei Zelnikov
2013-03-07T23:59:59.000Z
We calculate the self-energy anomaly of a pointlike electric dipole located in a static $(2+1)$-dimensional curved spacetime. The energy functional for this problem is invariant under an infinite-dimensional (gauge) group of transformations parameterized by one scalar function of two variables. We demonstrate that the problem of the calculation of the self-energy anomaly for a pointlike dipole can be reduced to the calculation of quantum fluctuations of an effective two-dimensional Euclidean quantum field theory. We reduced the problem in question to the calculation of the conformal anomaly of an effective scalar field in two dimensions and obtained an explicit expression for the self-energy anomaly of an electric dipole in an asymptotically flat, regular $(2+1)$-dimensional spacetime which may have electrically neutral black-hole-like metrics with regular Killing horizon.
Real-time analysis of aggregate network traffic for anomaly detection
Kim, Seong Soo
2005-08-29T23:59:59.000Z
The frequent and large-scale network attacks have led to an increased need for developing techniques for analyzing network traffic. If efficient analysis tools were available, it could become possible to detect the attacks, anomalies...
Masaaki Yamada, Russell Kulsrud and Hantao Ji
2009-09-17T23:59:59.000Z
We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.
Patterned Magnetic Nanostructures and Quantized Magnetic Disks
-increasing demands in data storage and to new applications of magnetic devices in the field of sensors. NewPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra
Inversion of Sequence of Diffusion and Density Anomalies in Core-Softened Systems
Yu. D. Fomin; E. N. Tsiok; V. N. Ryzhov
2011-09-08T23:59:59.000Z
In this paper we present a simulation study of water-like anomalies in core-softened system introduced in our previous publications. We investigate the anomalous regions for a system with the same functional form of the potential but with different parameters and show that the order of the region of anomalous diffusion and the region of density anomaly is inverted with increasing the width of the repulsive shoulder.
An optimized magnet for magnetic refrigeration
Bjørk, R; Smith, A; Christensen, D V; Pryds, N
2014-01-01T23:59:59.000Z
A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration.
Addressing the Challenges of Anomaly Detection for Cyber Physical Energy Grid Systems
Ferragut, Erik M [ORNL; Laska, Jason A [ORNL; Melin, Alexander M [ORNL; Czejdo, Bogdan [ORNL
2013-01-01T23:59:59.000Z
The consolidation of cyber communications networks and physical control systems within the energy smart grid introduces a number of new risks. Unfortunately, these risks are largely unknown and poorly understood, yet include very high impact losses from attack and component failures. One important aspect of risk management is the detection of anomalies and changes. However, anomaly detection within cyber security remains a difficult, open problem, with special challenges in dealing with false alert rates and heterogeneous data. Furthermore, the integration of cyber and physical dynamics is often intractable. And, because of their broad scope, energy grid cyber-physical systems must be analyzed at multiple scales, from individual components, up to network level dynamics. We describe an improved approach to anomaly detection that combines three important aspects. First, system dynamics are modeled using a reduced order model for greater computational tractability. Second, a probabilistic and principled approach to anomaly detection is adopted that allows for regulation of false alerts and comparison of anomalies across heterogeneous data sources. Third, a hierarchy of aggregations are constructed to support interactive and automated analyses of anomalies at multiple scales.
Peskin, Victor; Boduszynski, Mieczyslaw P.
2003-01-01T23:59:59.000Z
visits atrocity sights in Croatia,” Deutsche Presse-Agentur,of California, Berkeley Croatia’s Moments of Truth: Thesocrates.berkeley.edu/~bsp/ Croatia’s Moments of Truth: The
McGraw R.
2012-03-01T23:59:59.000Z
Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.
Ramp-rate sensitivity of SSC dipole magnet prototypes
Devred, A.; Ogitsu, T.
1994-07-01T23:59:59.000Z
One of the major achievements of the magnet R&D program for the Superconducting Super Collider (SSC) is the fabrication and test of a series of 20 5-cm aperture, 15-m long dipole magnet prototypes. The ramp rate sensitivity of these magnets appears to fall in at least two categories that can be correlated to the manufacturer and production batch of the strands used for the inner-coil cables. The first category, referred to as type-A, is characterized by a strong quench current degradation at high ramp rates, usually accompanied by large distortions of the multipole fields and large energy losses. The second category, referred to as type-B, is characterized by a sudden drop of quench current at low ramp rates, followed by a much milder degradation at larger rates. The multipole fields of the type-B magnets show little ramp-rate sensitivity, and the energy losses are smaller than for the type-A magnets. The behavior of the Type-A magnets can be explained in terms of inter-strand eddy currents arising from low and non-uniform resistances at the crossovers between the strands of the two-layer Rutherford-type cable. Anomalies in the transport-current repartition among the cable strands are suggested as a possible cause for the type-B behavior. The origins of these anomalies have not yet been clearly identified. The SSC project was canceled by decision of the United States Congress on October 21, 1994.
Theoretical Prediction and Impact of Fundamental Electric Dipole Moments
Sebastian A. R. Ellis; Gordon L. Kane
2014-05-29T23:59:59.000Z
The predicted Standard Model (SM) electric dipole moments (EDMs) of electrons and quarks are tiny, providing an important window to observe new physics. Theories beyond the SM typically allow relatively large EDMs. The EDMs depend on the relative phases of terms in the effective Lagrangian of the extended theory, which are generally unknown. Underlying theories, such as string/M-theories compactified to four dimensions, could predict the phases and thus EDMs in the resulting supersymmetric (SUSY) theory. Earlier one of us, with collaborators, made such a prediction and found, unexpectedly, that the phases were predicted to be zero at tree level in the theory at the unification or string scale $\\sim\\mathcal{O}(10^{16}$ GeV). Electroweak (EW) scale EDMs still arise via running from the high scale, and depend only on the SM Yukawa couplings that also give the CKM phase. Here we extend the earlier work by studying the dependence of the low scale EDMs on the constrained but not fully known fundamental Yukawa couplings. The dominant contribution is from two loop diagrams and is not sensitive to the choice of Yukawa texture. The electron EDM should not be found to be larger than about $ 5\\times 10^{-30} e$ cm, and the neutron EDM should not be larger than about $5\\times 10^{-29}e$ cm. These values are quite a bit smaller than the reported predictions from Split SUSY and typical effective theories, but much larger than the Standard Model prediction. Also, since models with random phases typically give much larger EDMs, it is a significant testable prediction of compactified M-theory that the EDMs should not be above these upper limits. The actual EDMs can be below the limits, so once they are measured they could provide new insight into the fundamental Yukawa couplings of leptons and quarks. We comment also on the role of strong CP violation. EDMs probe fundamental physics near the Planck scale.
Central-moment description of polarization for quantum states of light
G. Björk; J. Söderholm; Y. -S. Kim; Y. -S. Ra; H. -T. Lim; C. Kothe; Y. -H. Kim; L. L. Sánchez-Soto; A. B. Klimov
2012-01-19T23:59:59.000Z
We present a moment expansion method for the systematic characterization of the polarization properties of quantum states of light. Specifically, we link the method to the measurements of the Stokes operator in different directions on the Poincar\\'{e} sphere, and provide a method of polarization tomography without resorting to full state tomography. We apply these ideas to the experimental first- and second-order polarization characterization of some two-photon quantum states. In addition, we show that there are classes of states whose polarization characteristics are dominated not by their first-order moments (i.e., the Stokes vector) but by higher-order polarization moments.
Multipole moments and trap states in forward scattering of resonance light Bogdan L momenta F 1,2 and study the role of the induced higher-order multipole moments in the forward-scattering signal. It is shown how the multipole moments affect these signals and why not all possible multipoles
Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS{sub 2}
Lin, Xianqing [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023 (China); Ni, Jun, E-mail: junni@mail.tsinghua.edu.cn [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)
2014-07-28T23:59:59.000Z
First-principles calculations have been performed to investigate the electronic and magnetic properties of monolayer MoS{sub 2} substitutionally doped with Mn, Fe, and Co in possible charge states (q). We find that the Mn, Fe, and Co dopants substituting for a Mo atom in monolayer MoS{sub 2} (Mn@Mo, Fe@Mo, and Co@Mo) are all magnetic in their neutral and charge states except in the highest positive charge states. Mn@Mo, Fe@Mo, and Co@Mo have the same highest negative charge states of q=?2 for chemical potential of electron just below the conduction band minimum, which corresponds to the electron doping. In the q=?2 state, Mn@Mo has a much larger magnetic moment than its neutral state with the antiferromagnetic coupling between the Mn dopant and its neighboring S atoms maintained, while Fe@Mo and Co@Mo have equal or smaller magnetic moments than their neutral states. The possible charge states of Mn@Mo, Fe@Mo, and Co@Mo and the variation of the magnetic moments for different dopants and charge states are due to the change of the occupation and energy of the anti-bonding defect levels in the band gap. The rich magnetic properties of the neutral and charge states suggest possible realization of the substitutionally Mn-, Fe-, and Co-doped monolayer MoS{sub 2} as dilute magnetic semiconductors.
Superconducting Magnet Division
Gupta, Ramesh
Superconducting Magnet Division Permanent Magnet Designs with Large Variations in Field Strength the residual field of the magnetized bricks by concentrating flux lines at the iron pole. Low Field Design Medium Field Design Superconducting Magnet Division Dipole and Quadrupole Magnets for RHIC e
Satti, John A. (Naperville, IL)
1980-01-01T23:59:59.000Z
A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.
Measuring the LISA test mass magnetic proprieties with a torsion pendulum
M. Hueller; M. Armano; L. Carbone; A. Cavalleri; R. Dolesi; C. D. Hoyle; S. Vitale; W. J. Weber
2005-05-02T23:59:59.000Z
Achieving the low frequency LISA sensitivity requires that the test masses acting as the interferometer end mirrors are free-falling with an unprecedented small degree of deviation. Magnetic disturbances, originating in the interaction of the test mass with the environmental magnetic field, can significantly deteriorate the LISA performance and can be parameterized through the test mass remnant dipole moment $\\vec{m}_r$ and the magnetic susceptibility $\\chi$. While the LISA test flight precursor LTP will investigate these effects during the preliminary phases of the mission, the very stringent requirements on the test mass magnetic cleanliness make ground-based characterization of its magnetic proprieties paramount. We propose a torsion pendulum technique to accurately measure on ground the magnetic proprieties of the LISA/LTP test masses.
Enhanced Magnetism of Fe3O4 Nanoparticles with Ga Doping
Pool, V. L.; Klem, M. T.; Chorney, C. L.; Arenholz, E.; Idzerda, Y.U.
2010-10-22T23:59:59.000Z
Magnetic (Ga{sub x}Fe{sub 1-x}){sub 3}O{sub 4} nanoparticles with 5%-33% gallium doping (x = 0.05-0.33) were measured using x-ray absorption spectroscopy and x-ray magnetic circular dichroism to determine that the Ga dopant is substituting for Fe{sub 3+} as Ga{sub 3+} in the tetrahedral A-site of the spinel structure, resulting in an overall increase in the total moment of the material. Frequency-dependent alternating-current magnetic susceptibility measurements showed these particles to be weakly interacting with a reduction of the cubic anisotropy energy term with Ga concentration. The element-specific dichroism spectra show that the average Fe moment is observed to increase with Ga concentration, a result consistent with the replacement of A-site Fe by Ga.
A High-Order Finite-Volume Algorithm for Fokker-Planck Collisions in Magnetized Plasmas
Xiong, Z; Cohen, R H; Rognlien, T D; Xu, X Q
2007-04-18T23:59:59.000Z
A high-order finite volume algorithm is developed for the Fokker-Planck Operator (FPO) describing Coulomb collisions in strongly magnetized plasmas. The algorithm is based on a general fourth-order reconstruction scheme for an unstructured grid in the velocity space spanned by parallel velocity and magnetic moment. The method provides density conservation and high-order-accurate evaluation of the FPO independent of the choice of the velocity coordinates. As an example, a linearized FPO in constant-of-motion coordinates, i.e. the total energy and the magnetic moment, is developed using the present algorithm combined with a cut-cell merging procedure. Numerical tests include the Spitzer thermalization problem and the return to isotropy for distributions initialized with velocity space loss cones. Utilization of the method for a nonlinear FPO is straightforward but requires evaluation of the Rosenbluth potentials.
The Antarctic climate anomaly and galactic cosmic rays
Svensmark, H
2006-01-01T23:59:59.000Z
It has been proposed that galactic cosmic rays may influence the Earth's climate by affecting cloud formation. If changes in cloudiness play a part in climate change, their effect changes sign in Antarctica. Satellite data from the Earth Radiation Budget Experiment (ERBE) are here used to calculate the changes in surface temperatures at all latitudes, due to small percentage changes in cloudiness. The results match the observed contrasts in temperature changes, globally and in Antarctica. Evidently clouds do not just respond passively to climate changes but take an active part in the forcing, in accordance with changes in the solar magnetic field that vary the cosmic-ray flux.
Chakrabarti, Sudipto; Pal, Amlan J., E-mail: sspajp@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2014-01-06T23:59:59.000Z
We form a monolayer of magnetic organic molecules and immobilize their moments pointing either upwards or downwards with respect to the substrate through an electrostatic-binding process. Such a monolayer is probed with a scanning tunneling microscope tip, which is also magnetized with the magnetization vector pointing towards (or away from) apex of the tip. From spin-polarized tunneling current, we show that the current was higher when magnetization vectors of the tip and molecules were parallel as compared to that when they were anti-parallel. We show that for tunneling of spin-polarized electrons, aligned organic molecular magnets can act as a valve.
Pinning induced by inter-domain wall interactions in planar magnetic nanowires
Hayward, T.J.; Bryan, M.T.; Fry, P.W.; Fundi, P.M.; Gibbs, M.R.J.; Allwood, D.A.; Im, M.-Y.; Fischer, P.
2009-10-30T23:59:59.000Z
We have investigated pinning potentials created by inter-domain wall magnetostatic interactions in planar magnetic nanowires. We show that these potentials can take the form of an energy barrier or an energy well depending on the walls' relative monopole moments, and that the applied magnetic fields required to overcome these potentials are significant. Both transverse and vortex wall pairs are investigated and it is found that transverse walls interact more strongly due to dipolar coupling between their magnetization structures. Simple analytical models which allow the effects of inter-domain wall interactions to be estimated are also presented.
Recursive computation of moments of 2D objects represented by elliptic Fourier descriptors
Ã?nel, Mustafa
l e i n f o Article history: Received 23 March 2009 Received in revised form 12 November 2009, in the design of aircrafts, ships, and automobiles the moments of inertia are employed to determine the dynamics
Semiclassical shell-structure moment of inertia within the phase-space approach
D. V. Gorpinchenko; A. G. Magner; J. Bartel; J. P. Blocki
2014-11-23T23:59:59.000Z
The moment of inertia for nuclear collective rotations was derived within the semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows to express quite accurately the shell components of the moment of inertia in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, in good agreement with the quantum calculations.
Upper limits on electric dipole moments of tau-lepton, heavy quarks, and W-boson
A. G. Grozin; I. B. Khriplovich; A. S. Rudenko
2009-03-04T23:59:59.000Z
We discuss upper limits on the electric dipole moments (EDM) of the tau-lepton, heavy quarks, and W-boson, which follow from the precision measurements of the electron and neutron EDM.
Upper limits on electric dipole moments of tau-lepton, heavy quarks, and W-boson
Grozin, A G; Rudenko, A S
2009-01-01T23:59:59.000Z
We discuss upper limits on the electric dipole moments (EDM) of the tau-lepton, heavy quarks, and W-boson, which follow from the precision measurements of the electron and neutron EDM.
Comparison of spherical harmonics and moment equations for electrons in semiconductors
Struchtrup, Henning
systems which have been presented and analyzed recently by Liotta and Majorana [5] and Struchtrup [6][4]. As will be seen, all moment equations are coupled through explicit matrices of mean colli- sion frequencies. Due
Use of a moments method for the analysis of flux distributions in subcritical assemblies
Cheng, Hsiang-Shou
1968-01-01T23:59:59.000Z
A moments method has been developed for the analysis of flux distributions in subcritical neutron-multiplying assemblies. The method determines values of the asymptotic axial and radial buckling, and of the extrapolated ...
Nanostructured magnetic materials
Chan, Keith T.
2011-01-01T23:59:59.000Z
Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface
Interface Magnetism in Multiferroics
He, Qing
2011-01-01T23:59:59.000Z
1.2.1 Magnetism . . . . . . . . . . . . . . . . . . . 1.2.2domain walls . . . . . 3 Magnetism of domain walls in BiFeOof electrical control of magnetism in mixed phase BiFeO 3
Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries
Khan, S. N. [Ames Laboratory] [Ames Laboratory; Alam, A. [Ames Laboratory] [Ames Laboratory; Johnson, Duane D. [University of Illinois, Urbana-Champaign] [University of Illinois, Urbana-Champaign
2013-01-01T23:59:59.000Z
In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity.We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22 210 m Jm 2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower
Casadei, Cecilia
2012-05-09T23:59:59.000Z
The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.
Magnetism in Non-Traditional Materials
Menon, Madhu
2013-09-17T23:59:59.000Z
We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host
Quark-hadron duality and truncated moments of nucleon structure functions
Psaker, A. [Jefferson Laboratory, Newport News, Virginia 23606 (United States); Hampton University, Hampton, Virginia 23668 (United States); American University of Nigeria, Yola (Nigeria); Melnitchouk, W. [Jefferson Laboratory, Newport News, Virginia 23606 (United States); Christy, M. E. [Hampton University, Hampton, Virginia 23668 (United States); Keppel, C. [Jefferson Laboratory, Newport News, Virginia 23606 (United States); Hampton University, Hampton, Virginia 23668 (United States)
2008-08-15T23:59:59.000Z
We employ a novel new approach to study local quark-hadron duality using 'truncated' moments, or integrals of structure functions over restricted regions of x, to determine the degree to which individual resonance regions are dominated by leading twist. Because truncated moments obey the same Q{sup 2} evolution equations as the leading twist parton distributions, this approach makes possible for the first time a description of resonance region data and the phenomenon of quark-hadron duality directly from QCD.
Magnetism in undoped ZnS studied from density functional theory
Xiao, Wen-Zhi, E-mail: xiaowenzhi@hnu.edu.cn, E-mail: llwang@hun.edu.cn; Rong, Qing-Yan; Xiao, Gang [Department of Physics and Mathematics, Hunan Institute of Engineering, Xiangtan 411104 (China); Wang, Ling-ling, E-mail: xiaowenzhi@hnu.edu.cn, E-mail: llwang@hun.edu.cn [School of Physics and Microelectronics and Key Lab for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha 410082 (China); Meng, Bo [College of Physics and Electronic Engineering, Caili University, Kaili 556011 (China)
2014-06-07T23:59:59.000Z
The magnetic property induced by the native defects in ZnS bulk, thin film, and quantum dots are investigated comprehensively based on density functional theory within the generalized gradient approximation + Hubbard U (GGA?+?U) approach. We find the origin of magnetism is closely related to the introduction of hole into ZnS systems. The relative localization of S-3p orbitals is another key to resulting in unpaired p-electron, due to Hund's rule. For almost all the ZnS systems under study, the magnetic moment arises from the S-dangling bonds generated by Zn vacancies. The charge-neutral Zn vacancy, Zn vacancy in 1? charge sate, and S vacancy in the 1+ charge sate produce a local magnetic moment of 2.0, 1.0, and 1.0??{sub B}, respectively. The Zn vacancy in the neutral and 1? charge sates are the important cause for the ferromagnetism in ZnS bulk, with a Curie temperature (T{sub C}) above room temperature. For ZnS thin film with clean (111) surfaces, the spins on each surface are ferromagnetically coupled but antiferromagnetically coupled between two surfaces, which is attributable to the internal electric field between the two polar (111) surfaces of the thin film. Only surface Zn vacancies can yield local magnetic moment for ZnS thin film and quantum dot, which is ascribed to the surface effect. Interactions between magnetic moments on S-3p states induced by hole-doping are responsible for the ferromagnetism observed experimentally in various ZnS samples.
Tomassetti, N
2015-01-01T23:59:59.000Z
Recent data on Galactic cosmic-ray (CR) leptons and hadrons gave rise to two exciting problems: on the lepton side, the origin of the rise of the CR positron fraction e+/(e- + e+) at ~10 - 300 GeV of energy; on the hadron side, the nature of the spectral hardening observed in CR protons and nuclei at ~TeV energies. The lepton anomaly indicates the existence of a nearby e+/- source. It has been proposed that high-energy positrons can be produced inside nearby supernova remnants (SNRs) via interactions of CR hadrons with the ambient medium. A distinctive prediction of this mechanism is a high-energy rise of the boron-to-carbon ratio, which has not been observed. It also requires old SNRs at work (with ineffective magnetic field amplification and slow shock speed), that cannot account for the CR hadronic spectra observed up to the knee energies (~5 PeV). We propose a new picture where, in addition to such a nearby CR accelerator, the high-energy spectrum of CR hadrons is provided by the large-scale population of...
Laced permanent magnet quadrupole drift tube magnets
Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.
1989-03-01T23:59:59.000Z
Twenty-three laced permanent magnet quadrupole drift tube magnets have been constructed, tested, and installed in the SuperHILAC heavy ion linear accelerator at LBL, marking the first accelerator use of this new type of quadrupole. The magnets consist of conventional tape-wound quadrupole electromagnets, using iron pole-pieces, with permanent magnet material (samarium cobalt) inserted between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the individual quadrupole magnets in a drift tube linac is never reversed, we can take advantage of this asymmetrical saturation to provide about 20% greater focusing strength than is available with conventional quadrupoles, while replacing the vanadium permendur poletips with iron poletips. Comparisons between these magnets and conventional tape-wound quadrupoles will be presented. 3 refs., 5 figs.
Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge
Ondrej Linda; Todd Vollmer; Milos Manic
2012-08-01T23:59:59.000Z
The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, this paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.
Lessons Learned from the Pioneers 10/11 for a Mission to Test the Pioneer Anomaly
Slava G. Turyshev; Michael Martin Nieto; John D. Anderson
2004-09-30T23:59:59.000Z
Analysis of the radio-metric tracking data from the Pioneer 10/11 spacecraft at distances between 20--70 astronomical units (AU) from the Sun has consistently indicated the presence of an anomalous, small, constant Doppler frequency drift. The drift is a blue-shift, uniformly changing with rate a_t = (2.92 +/- 0.44) x 10^(-18) s/s^2. It can also be interpreted as a constant acceleration of a_P = (8.74 +/- 1.33) x 10^(-8) cm/s^2 directed towards the Sun. Although it is suspected that there is a systematic origin to the effect, none has been found. As a result, the nature of this anomaly has become of growing interest. Here we discuss the details of our recent investigation focusing on the effects both external to and internal to the spacecraft, as well as those due to modeling and computational techniques. We review some of the mechanisms proposed to explain the anomaly and show their inability to account for the observed behavior of the anomaly. We also present lessons learned from this investigation for a potential deep-space experiment that will reveal the origin of the discovered anomaly and also will characterize its properties with an accuracy of at least two orders of magnitude below the anomaly's size. A number of critical requirements and design considerations for such a mission are outlined and addressed.
Damiano Anselmi
2015-01-28T23:59:59.000Z
We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost number satisfy a variant of the Kluberg-Stern--Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization. If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale $\\Lambda$ associated with them is kept fixed, the theory is super-renormalizable and has the property that, once the gauge anomalies are cancelled at one loop, they manifestly vanish from two loops onwards by simple power counting. When the $\\Lambda$ divergences are subtracted away and $\\Lambda$ is sent to infinity, the anomaly cancellation survives in a manifest form within the truncation and in a nonmanifest form outside. The standard model coupled to quantum gravity satisfies all the assumptions, so it is free of gauge anomalies to all orders.
SUPERCONDUCTING MAGNETIC ENERGY STORAGE
Hassenzahl, W.
2011-01-01T23:59:59.000Z
Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances
SUPERCONDUCTING MAGNETIC ENERGY STORAGE
Hassenzahl, W.
2011-01-01T23:59:59.000Z
Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage
The mass and radii of strongly magnetized neutron stars
Farbod Kamiab; Avery E. Broderick; Niayesh Afshordi
2015-03-12T23:59:59.000Z
It has been clear for some time now that super-critical surface magnetic fields, exceeding 4 x 10^13 G, exist on a subset of neutron stars. These magnetars may harbor interior fields many orders of magnitude larger, potentially reaching equipartition values. However, the impact of these strong fields on stellar structure has been largely ignored, potentially complicating attempts to infer the high density nuclear equation of state. Here we assess the effect of these strong magnetic fields on the mass-radius relationship of neutron stars. We employ an effective field theory model for the nuclear equation of state that includes the impact of hyperons, anomalous magnetic moments, and the physics of the crust. We consider two magnetic field geometries, bounding the likely magnitude of the impact of magnetic fields: a statistically isotropic, tangled field and a force-free configuration. In both cases even equipartition fields have at most a 30% impact on the maximum mass. However, the direction of the effect of the magnetic field depends on the geometry employed - force-free fields leading to reductions in the maximum neutron star mass and radius while tangled fields increase both - challenging the common intuition in the literature on the impact of magnetic fields.
Cryogenic techniques for large superconducting magnets in space
Green, M.A.
1988-12-01T23:59:59.000Z
A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points. Both of these methods will extend the ASTROMAG cryogenic operating life from 2 years to almost 4 years. 14 refs., 8 figs., 4 tabs.
Y. V. Stadnik; V. V. Flambaum
2015-02-24T23:59:59.000Z
We show that the interaction of an axion field, or in general a pseudoscalar field, with the axial-vector current generated by an electron through a derivative-type coupling can give rise to a time-dependent mixing of opposite-parity states in atomic and molecular systems. Likewise, the analogous interaction of an axion field with the axial-vector current generated by a nucleon can give rise to time-dependent mixing of opposite-parity states in nuclear systems. This mixing can induce oscillating electric dipole moments, oscillating parity non-conservation effects and oscillating anapole moments in such systems. By adjusting the energy separation between the opposite-parity states of interest to match the axion mass energy, axion-induced experimental observables can be enhanced by many orders of magnitude. Oscillating atomic electric dipole moments can also be generated by axions through hadronic mechanisms, namely the P,T-violating nucleon-nucleon interaction and through the axion-induced electric dipole moments of valence nucleons, which comprise the nuclei. The axion field is modified by the Earth's gravitational field. The interaction of the spin of either an electron or nucleon with this modified axion field leads to axion-induced observable effects. These effects, which are of the form $\\mathbf{g} \\cdot \\mathbf{\\sigma}$, differ from the axion-wind effect, which has the form $\\mathbf{p}_{\\textrm{a}} \\cdot \\mathbf{\\sigma}$.
Proposal for a 30-T Pulsed Magnet Suitable for Neutron Scattering Experiments
Robinson Eyssa Schneider-Muntau; R. A. Robinson (a; Y. M. Eyssa (b; H. J. Schneider-muntau (b; H. J. Boenig (a
this paper, we describe a conceptual design for a 30-T pulsed magnet that could be used in conjunction with neutron-scattering apparatus, along with the scientific opportunities that such a magnet might open up. Neutron diffraction has long been the technique of choice for determining the arrangements (magnetic structures) of magnetic moments in solids, the spatial extent of the magnetic electrons around their parent ions (form factors) and the full moment-density distribution function in real space. The proposed 30-T magnet would enable one to study such spatial aspects of many field-induced phase transitions for the first time, whether they are driven by competing exchange interactions, single-ion anisotropy, or a more radical change, say from an itinerant to a localised state. Inelastic Neutron Scattering, on the other hand, is the best general-purpose tool for the study of magnetic excitations like spin waves, crystal-field levels and spin fluctuations. These excitations manifest themselves in the imaginary part of the generalised magnetic susceptibility c"(Q,w), which is measured directly in a neutron scattering experiment. A field of 30T acting on a moment of 1 B corresponds to an energy of 1.7 meV, and we should be able to generate splittings or close gaps of this order. The present generation of spectrometers at spallation neutron sources have both sufficient resolution (as good as 10 eV) and sufficient dynamic range (up to 2 eV) to cover the effects that might be induced by such a field.
Nematic order of model goethite nanorods in a magnetic field
H. H. Wensink; G. J. Vroege
2005-01-18T23:59:59.000Z
We explore the nematic order of model goethite nanorods in an external magnetic field within Onsager-Parsons density functional theory. The goethite rods are represented by monodisperse, charged spherocylinders with a permanent magnetic moment along the rod main axis, forcing the particles to align parallel to the magnetic field at low field strength. The intrinsic diamagnetic susceptibility anisometry of the rods is negative which leads to a preferred perpendicular orientation at higher field strength. It is shown that these counteracting effects may give rise to intricate phase behavior, including a pronounced stability of biaxial nematic order and the presence of reentrant phase transitions and demixing phenomena. The effect of the applied field on the nematic-to-smectic transition will also be addressed.
XAFS study of local disorder in the a-GdxSi1x amorphous magnetic semiconductor D. Haskel,1
Haskel, Daniel
transport properties in the presence of disorder. It has been shown recently1 that a-GdxSi1 x exhibits Gd moments lead to a spin glass freezing at low temperatures ( 10 K) and suppression, as Gd clustering would strongly in- fluence our understanding of both transport and magnetization
Searches for solar-influenced radioactive decay anomalies using Spacecraft RTGs
Krause, D E; Fischbach, E; Buncher, J B; Ging, A; Jenkins, J H; Longuski, J M; Strange, N; Sturrock, P A
2012-01-01T23:59:59.000Z
Experiments showing a seasonal variation of the nuclear decay rates of a number of different nuclei, and decay anomalies apparently related to solar flares and solar rotation, have suggested that the Sun may somehow be influencing nuclear decay processes. Recently, Cooper searched for such an effect in $^{238}$Pu nuclei contained in the radioisotope thermoelectric generators (RTGs) on board the Cassini spacecraft. In this paper we modify and extend Cooper's analysis to obtain constraints on anomalous decays of $^{238}$Pu over a wider range of models, but these limits cannot be applied to other nuclei if the anomaly is composition-dependent. We also show that it may require very high sensitivity for terrestrial experiments to discriminate among some models if such a decay anomaly exists, motivating the consideration of future spacecraft experiments which would require less precision.
Searches for solar-influenced radioactive decay anomalies using Spacecraft RTGs
D. E. Krause; B. A. Rogers; E. Fischbach; J. B Buncher; A. Ging; J. H. Jenkins; J. M. Longuski; N. Strange; P. A. Sturrock
2012-05-31T23:59:59.000Z
Experiments showing a seasonal variation of the nuclear decay rates of a number of different nuclei, and decay anomalies apparently related to solar flares and solar rotation, have suggested that the Sun may somehow be influencing nuclear decay processes. Recently, Cooper searched for such an effect in $^{238}$Pu nuclei contained in the radioisotope thermoelectric generators (RTGs) on board the Cassini spacecraft. In this paper we modify and extend Cooper's analysis to obtain constraints on anomalous decays of $^{238}$Pu over a wider range of models, but these limits cannot be applied to other nuclei if the anomaly is composition-dependent. We also show that it may require very high sensitivity for terrestrial experiments to discriminate among some models if such a decay anomaly exists, motivating the consideration of future spacecraft experiments which would require less precision.
Fejos, G
2015-01-01T23:59:59.000Z
Temperature dependence of the $U_A(1)$ anomaly is investigated by taking into account mesonic fluctuations in the $U(3)\\times U(3)$ linear sigma model. A field dependent anomaly coefficient function of the effective potential is calculated within the finite temperature functional renormalization group approach. The applied approximation scheme is a generalization of the chiral invariant expansion technique developed in [G. Fej\\H{o}s, Phys. Rev. D 90, 096011 (2014)]. We provide an analytic expression and also numerical evidence that depending on the relationship between the two quartic couplings, mesonic fluctuations can either strengthen of weaken the anomaly as a function of the temperature. Role of the six-point invariant of the $U(3)\\times U(3)$ group, and therefore the stability of the chiral expansion is also discussed in detail.
G. Fejos
2015-06-29T23:59:59.000Z
Temperature dependence of the $U_A(1)$ anomaly is investigated by taking into account mesonic fluctuations in the $U(3)\\times U(3)$ linear sigma model. A field dependent anomaly coefficient function of the effective potential is calculated within the finite temperature functional renormalization group approach. The applied approximation scheme is a generalization of the chiral invariant expansion technique developed in [G. Fejos, Phys. Rev. D 90, 096011 (2014)]. We provide an analytic expression and also numerical evidence that depending on the relationship between the two quartic couplings, mesonic fluctuations can either strengthen of weaken the anomaly as a function of the temperature. Role of the six-point invariant of the $U(3)\\times U(3)$ group, and therefore the stability of the chiral expansion is also discussed in detail.
Network Anomaly Detection: Flow-based or Packet-based Approach?
Nguyen, Huy
2010-01-01T23:59:59.000Z
One of the most critical tasks for network administrator is to ensure system uptime and availability. For the network security, anomaly detection systems, along with firewalls and intrusion prevention systems are the must-have tools. So far in the field of network anomaly detection, people are working on two different approaches. One is flow-based; usually rely on network elements to make so-called flow information available for analysis. The second approach is packet-based; which directly analyzes the data packet information for the detection of anomalies. This paper describes the main differences between the two approaches through an in-depth analysis. We try to answer the question of when and why an approach is better than the other. The answer is critical for network administrators to make their choices in deploying a defending system, securing the network and ensuring business continuity.
Quality Control of Temperature and Salinity from CTD based on Anomaly Detection
Castelão, Guilherme P
2015-01-01T23:59:59.000Z
The CTD is a set of sensors used by oceanographers to measure fundamental hydrographic properties of the oceans. It is characterized by a high precision product, only achieved if a quality control procedure identifies and removes the bad samples. Such procedure has been traditionally done by a sequence of independent tests that minimize false negatives. It is here proposed a novel approach to identify the bad samples as anomalies in respect to the typical behavior of good data. Several tests are combined into a single multidimensional evaluation to provide a more flexible classification criterion. The traditional approach is reproduced with an error of 0.04%, otherwise, the Anomaly Detection technique surpasses the reference if calibrated by visual inspection. CoTeDe is a Python package developed to apply the traditional and the Anomaly Detection quality control of temperature and salinity data from CTD, and can be extended to XBT, ARGO and other sensors.
Silica-Like Sequence of Anomalies in Core-Softened Systems
Yu. D. Fomin; E. N. Tsiok; V. N. Ryzhov
2013-01-17T23:59:59.000Z
In this paper we present a simulation study of density, structural and diffusion anomalies in core-softened system introduced in our previous publications. It is well-known, that with appropriate parametrization, core-softened systems are remarkable model liquids that exhibit anomalous properties observed in tetrahedral liquids such as silica and water. It is widely believed that core-softened potentials demonstrate the water-like sequence of anomalies. We show that with increasing the depth of the attractive part of the potential the order of the region of anomalous diffusion and the regions of density and structural anomalies is inverted and have the silica-like sequence. We also show that the slope of the Widom line is negative like in water.
The Higgs boson mass and SUSY spectra in 10D SYM theory with magnetized extra dimensions
Hiroyuki Abe; Junichiro Kawamura; Keigo Sumita
2014-05-27T23:59:59.000Z
We study the Higgs boson mass and the spectrum of supersymmetric (SUSY) particles in the well-motivated particle physics model derived from a ten-dimensional supersymmetric Yang-Mills theory compactified on three factorizable tori with magnetic fluxes. This model was proposed in a previous work, where the flavor structures of the standard model including the realistic Yukawa hierarchies are obtained from non-hierarchical input parameters on the magnetized background. Assuming moduli- and anomaly-mediated contributions dominate the soft SUSY breaking terms, we study the precise SUSY spectra and analyze the Higgs boson mass in this mode, which are compared with the latest experimental data.
Laced permanent magnet quadrupole drift tube magnets
Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.
1988-10-01T23:59:59.000Z
A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs.
Path-Integral Derivation of the Non-relativistic Scale Anomaly
Chris L. Lin; Carlos. R. Ordonez
2015-04-21T23:59:59.000Z
In this paper we calculate the scale anomaly for a quantum field theoretic 2D-nonrelativistic Bose gas with contact interactions using Fujikawa's method, both in vacuum and in many-body systems. The use of path integrals for these problems is novel and motivated by a recently developed path-integral framework for addressing questions about scaling in these systems. A natural class of regulators is found that produces the correct value of the anomaly traditionally calculated via other methods, e.g., diagrammatically via the beta function.
Shedding light on the $b\\to s$ anomalies with a dark sector
Sierra, D Aristizabal; Vicente, Avelino
2015-01-01T23:59:59.000Z
The LHCb collaboration has recently reported on some anomalies in $b\\to s$ transitions. In addition to discrepancies with the Standard Model (SM) predictions in some angular observables and branching ratios, an intriguing hint for lepton universality violation was found. Here we propose a simple model that extends the SM with a dark sector charged under an additional $U(1)$ gauge symmetry. The spontaneous breaking of this symmetry gives rise to a massive $Z^\\prime$ boson, which communicates the SM particles with a valid dark matter candidate, while solving the $b\\to s$ anomalies with contributions to the relevant observables.
Introduction Magnetic Anisotropy of
Rossak, Wilhelm R.
not completely understood interesting for dilute magnetic semiconductors (DMSs) transparent ferromagnets
Magnetic Imaging Wolfgang Kuch
Kuch, Wolfgang
Magnetic Imaging Wolfgang Kuch Freie UniversitÂ¨at Berlin, Institut fÂ¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials
Superconducting Magnet Division
McDonald, Kirk
Superconducting Magnet Division Ramesh Gupta 20T Target Solenoid with HTS Insert Solenoid Capture Laboratory New York, USA http://www.bnl.gov/magnets/staff/gupta #12;Superconducting Magnet Division Ramesh of HTS may significantly reduce the amount of Tungsten shielding Â· Summary #12;Superconducting Magnet
Dynamical evolution of the chiral magnetic effect: applications to the quark-gluon plasma
Manuel, Cristina
2015-01-01T23:59:59.000Z
We study the dynamical evolution of the so-called chiral magnetic effect in an electromagnetic conductor. To this end, we consider the coupled set of corresponding Maxwell and chiral anomaly equations, and we prove that these can be derived from chiral kinetic theory. After integrating the chiral anomaly equation over space in a closed volume, it leads to a quantum conservation law of the total helicity of the system. A change in the magnetic helicity density comes together with a modification of the chiral fermion density. We study in Fourier space the coupled set of anomalous equations and we obtain the dynamical evolution of the magnetic fields, magnetic helicity density, and chiral fermion imbalance. Depending on the initial conditions we observe how the helicity might be transferred from the fermions to the magnetic fields, or vice versa, and find that the rate of this transfer also depends on the scale of wavelengths of the gauge fields in consideration. We then focus our attention on the quark-gluon pl...
Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field
Sza?owski, Karol, E-mail: kszalowski@uni.lodz.pl, E-mail: kszalowski@wp.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of ?ód?, ul. Pomorska 149/153, 90-236 ?ód? (Poland)
2013-12-28T23:59:59.000Z
The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic ordering can be forced by the field. The critical field is found to decrease with increasing size of the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic properties is studied. The effect of off-diagonal disorder is found to be more important than that of diagonal disorder, leading to significantly widened distribution of critical fields for disordered population of nanoflakes.
Alexander, Becky
Correction to ``Stratospheric CO2 isotopic anomalies and SF6 and CFC tracer concentrations anomalies and SF6 and CFC tracer concentrations in the Arctic polar vortex'' [Alexander et al., 2001 of the approx- imate mean SF6 ages versus Á17 O (diamonds) and d18 O (circles). References Alexander, B., M. K
Zuber, Maria
An indigenous origin for the South Pole Aitken basin thorium anomaly Ian Garrick-Bethell and Maria high abundance of thorium as determined by Apollo and Lunar Prospector gamma-ray spectroscopy that the anomaly is the result of convergence of thorium-enriched ejecta from the Imbrium impact. Examination
Ji, Chuanyi
useful information to the network administrator. Using some basic knowledge of the network layout as well Networks Marina Thottan and Chuanyi Ji Abstract--Network anomaly detection is a vibrant research area that this signal processing technique is effective at detecting several network anomalies. Case studies from real
Massachusetts at Amherst, University of
the network administrator a multi dimensional view of the network traffic. Our method can detect anomalies classes that increase the relative entropy thus providing the network administrator information related1 Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation Yu Gu, Andrew Mc
Magnetism in Lithium–Oxygen Discharge Product
Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil
2013-05-13T23:59:59.000Z
Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.
M. De Rydt; G. Neyens; K. Asahi; D. L. Balabanski; J. M. Daugas; M. Depuydt; L. Gaudefroy; S. Grevy; Y. Hasama; Y. Ichikawa; P. Morel; T. Nagatomo; T. Otsuka; L. Perrot; K. Shimada; C. Stodel; J. C. Thomas; H. Ueno; Y. Utsuno; W. Vanderheijden; . Vermeulen; P. Vingerhoets; A. Yoshimi
2009-06-23T23:59:59.000Z
he electric quadrupole coupling constant of the 31Al ground state is measured to be nu_Q = |eQV_{zz}/h| = 2196(21)kHz using two different beta-NMR (Nuclear Magnetic Resonance) techniques. For the first time, a direct comparison is made between the continuous rf technique and the adiabatic fast passage method. The obtained coupling constants of both methods are in excellent agreement with each other and a precise value for the quadrupole moment of 31Al has been deduced: |Q(31Al)| = 134.0(16) mb. Comparison of this value with large-scale shell-model calculations in the sd and sdpf valence spaces suggests that the 31Al ground state is dominated by normal sd-shell configurations with a possible small contribution of intruder states. The obtained value for |Q(31Al)| and a compilation of measured quadrupole moments of odd-Z even-N isotopes in comparison with shell-model calculations shows that the proton effective charge e_p=1.1 e provides a much better description of the nuclear properties in the sd-shell than the adopted value e_p=1.3 e.
Computation of Temperature-Dependent Legendre Moments of a Double-Differential Elastic Cross Section
Arbanas, Goran [ORNL; Dunn, Michael E [ORNL; Larson, Nancy M [ORNL; Leal, Luiz C [ORNL; Williams, Mark L [ORNL; Becker, B. [Rensselaer Polytechnic Institute (RPI); Dagan, R [Institut fur Neutronenphysik und Reaktortechnik
2011-01-01T23:59:59.000Z
A general expression for temperature-dependent Legendre moments of a double-differential elastic scattering cross section was derived by Ouisloumen and Sanchez [Nucl. Sci. Eng. 107, 189-200 (1991)]. Attempts to compute this expression are hindered by the three-fold nested integral, limiting their practical application to just the zeroth Legendre moment of an isotropic scattering. It is shown that the two innermost integrals could be evaluated analytically to all orders of Legendre moments, and for anisotropic scattering, by a recursive application of the integration by parts method. For this method to work, the anisotropic angular distribution in the center of mass is expressed as an expansion in Legendre polynomials. The first several Legendre moments of elastic scattering of neutrons on U-238 are computed at T=1000 K at incoming energy 6.5 eV for isotropic scattering in the center of mass frame. Legendre moments of the anisotropic angular distribution given via Blatt-Biedenharn coefficients are computed at ~1 keV. The results are in agreement with those computed by the Monte Carlo method.
Non-stationary measurements of Chiral Magnetic Effect
Shevchenko, V.I., E-mail: vladimir.i.shevchenko@gmail.com
2013-12-15T23:59:59.000Z
We discuss the Chiral Magnetic Effect from the quantum theory of measurements point of view for non-stationary measurements. The effect of anisotropy for fluctuations of electric currents in a magnetic field is addressed. It is shown that anisotropy caused by nonzero axial chemical potential is indistinguishable in this framework from anisotropy caused by finite measurement time or finite lifetime of the magnetic field, and in all cases it is related to abelian triangle anomaly. Possible P-odd effects in central heavy-ion collisions (where the Chiral Magnetic Effect is absent) are discussed in this context. This paper is dedicated to the memory of Professor Mikhail Polikarpov (1952–2013). -- Highlights: •Asymmetry in the response function for vector currents of massless fermions in the magnetic field is computed. •Asymmetry caused by axial chemical potential is practically indistinguishable from the one caused by non-stationarity. •The CME current is non-dissipative in the stationary case and dissipative in the non-stationary case. •Importance of studies of P-odd signatures in central collisions is emphasized.
Harrison, R. G., E-mail: rgh@doe.carleton.ca [Department of Electronics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada)
2014-01-21T23:59:59.000Z
A positive-feedback mean-field modification of the classical Brillouin magnetization theory provides an explanation of the apparent persistence of the spontaneous magnetization beyond the conventional Curie temperature—the little understood “tail” phenomenon that occurs in many ferromagnetic materials. The classical theory is unable to resolve this apparent anomaly. The modified theory incorporates the temperature-dependent quantum-scale hysteretic and mesoscopic domain-scale anhysteretic magnetization processes and includes the effects of demagnetizing and exchange fields. It is found that the thermal behavior of the reversible and irreversible segments of the hysteresis loops, as predicted by the theory, is a key to the presence or absence of the “tails.” The theory, which permits arbitrary values of the quantum spin number J, generally provides a quantitative agreement with the thermal variations of both the spontaneous magnetization and the shape of the hysteresis loop.
Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets
None
2010-10-01T23:59:59.000Z
Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.
Evans, Jason
, Climate Change Research Centre, Level 4 Mathews Building, University of New South Wales, Sydney NSW 2052: A Study over Australia* MARK DECKER, ANDY J. PITMAN, AND JASON EVANS Climate Change Research CentreApplying Scaled Vegetation Greenness Metrics to Constrain Simulated Transpiration Anomalies
The anomaly-free quantization of two-dimensional relativistic string. I
S. N. Vergeles
1998-12-21T23:59:59.000Z
An anomaly-free quantum theory of a relativistic string is constructed in two-dimensional space-time. The states of the string are found to be similar to the states of a massless chiral quantum particle. This result is obtained by generalizing the concept of an ``operator'' in quantum field theory.
Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications
Slatton, Clint
Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications Alexander Singh industrial applications such as the smart grid and oil and gas are continuously monitored. The massive to positively impact the bottom line. In the oil and gas industry, modern oil rigs are outfitted with thousands
A Serenitatis origin for the Imbrian grooves and South Pole-Aitken thorium anomaly
Zuber, Maria
1 A Serenitatis origin for the Imbrian grooves and South Pole-Aitken thorium anomaly Mark A) basin contains a high abundance of thorium and a unique Imbrian aged geomorphologic unit that consists are almost antipodal to the Imbrium basin, where high-thorium ejecta and seismic energy are expected to have
AESRC 2012, Kingston March 23-25th THE "SURFACE" EXPRESSION: WHAT DO GEOCHEMICAL ANOMALIES IN
IN SURFACE MEDIA AND SHALLOW SANDSTONES OVERLYING THE PHOENIX URANIUM DEPOSIT, ATHABASCA BASIN, SASKATCHEWAN to examine whether surficial geochemical anomalies exist for such a deeply buried uranium deposit. For our expression in surface media provides excellent exploration tools for deeply seated unconformity
In pursuit of anomalies -Analyzing the poleward transport of Atlantic Water with surface drifters
LaCasce, Joseph H.
drifters released at or passing through the Svinøy section, off the west coast of Norway. For comparison km and mix vigorously with interior waters in the Norwegian and Lofoten Basins. Thus an anomaly, comprising the Norwegian, Iceland and Greenland Seas (Figure 1a) is the transition zone for the warm, saline
In pursuit of anomalies--Analyzing the poleward transport of Atlantic Water with surface drifters
LaCasce, Joseph H.
. The drifters were released at or passed through the Svinøy section, off the west coast of Norway large distances, mixing with water in the Norwegian and Lofoten Basins. Thus an anomaly entering, comprising the Norwegian, Iceland and Greenland Seas (Fig. 1A) is the transition zone for the warm, saline
HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System
Chen, Yan [Northwesten University] [Northwesten University
2013-12-05T23:59:59.000Z
Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm is significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.
ON THE SOLAR RADIATION BUDGET AND THE CLOUD ABSORPTION ANOMALY DEBATE
Li, Zhanqing
ON THE SOLAR RADIATION BUDGET AND THE CLOUD ABSORPTION ANOMALY DEBATE ZHANQING LI Department-of-the-art radiative transfer models. 1. Introduction Solar radiation is the ultimate source of energy for the planet of solar radiation, which is unfortunately still fraught with large uncertainties (Wild et al. 1995; Li et
Solar turbulence in earth's global and regional temperature anomalies Nicola Scafetta,1,2
Scafetta, Nicola
Solar turbulence in earth's global and regional temperature anomalies Nicola Scafetta,1,2 Paolo a study of the influence of solar activity on the earth's temperature. In particular, we focus on the repercussion of the fluctuations of the solar irradiance on the temperature of the Northern and Southern
INFLUENCE DES DIMENSIONS DE GRAINS SUR L'ANOMALIE DE LA RSISTIVIT DU NICKEL
Boyer, Edmond
L-223 INFLUENCE DES DIMENSIONS DE GRAINS SUR L'ANOMALIE DE LA RÉSISTIVITÉ DU NICKEL AUTOUR DU POINT. 2014 Les mesures de résistivité effectuées sur du nickel formé de cristaux très petits (15 Å, 25 Å) ont grain-sized nickel (15 Å, 25 Å). The critical exponent 03BD and the constant 03BE0 are computed. Results
Anomaly Detection in a Mobile Communication Alec Pawling, Nitesh V. Chawla, and Greg Madey
Chawla, Nitesh V.
]. The Wireless Phone Emergency Response (WIPER) system, an emergency response manage- ment tool currently under anomalies occur, WIPER uses a suite of simulations to predict how the situation will unfold. This paper focuses on the problem of identify- ing anomalous events in streaming cell phone data as part of the WIPER
Anomaly detection in monitoring sensor data for preventive maintenance Julien Rabatel a,b,
Paris-Sud XI, UniversitÃ© de
Anomaly detection in monitoring sensor data for preventive maintenance Julien Rabatel a,b, , Sandra Preventive maintenance a b s t r a c t Today, many industrial companies must face problems raised to make predictive maintenance to prevent a serious breakdown. In addition, the corrective maintenance
Harada–Tsutsui gauge recovery procedure: From Abelian gauge anomalies to the Stueckelberg mechanism
Lima, Gabriel Di Lemos Santiago, E-mail: gabriellemos3@hotmail.com
2014-02-15T23:59:59.000Z
Revisiting a path-integral procedure developed by Harada and Tsutsui for recovering gauge invariance from anomalous effective actions, it is shown that there are two ways to achieve gauge symmetry: one already presented by the authors, which is shown to preserve the anomaly in the sense of standard current conservation law, and another one which is anomaly-free, preserving current conservation. It is also shown that the application of the Harada–Tsutsui technique to other models which are not anomalous but do not exhibit gauge invariance allows the identification of the gauge invariant formulation of the Proca model, also done by the referred authors, with the Stueckelberg model, leading to the interpretation of the gauge invariant map as a generalization of the Stueckelberg mechanism. -- Highlights: • A gauge restoration technique from Abelian anomalous models is discussed. • It is shown that there is another way that leads to gauge symmetry restoration from such technique. • It is shown that the first gauge restoration preserves the anomaly, while the proposed second one is free from anomalies. • It is shown that the proposed gauge symmetry restoration can be identified with the Stueckelberg mechanism.
ANOMALIES MAGNETIQUES ET DATATION DES FONDS OCEANIQUES : QUARANTE ANS APRES VINE ET MATTHEWS
Déverchère, Jacques
have not allowed this technique to provide a complete age map of the World's ocean. To be practicable spreading rates, the magmatic oceanic crust is indeed a good recorder of the complex geomagnetic field. Moreover, information on the detailed shape of each anomaly allows better identifications. How well
Resolving Spacecraft Earth-Flyby Anomalies with Measured Light Speed Anisotropy
Reginald T. Cahill
2008-04-30T23:59:59.000Z
Doppler shift observations of spacecraft, such as Galileo, NEAR, Cassini, Rosetta and MESSENGER in earth flybys, have all revealed unexplained speed `anomalies' - that the doppler-shift determined speeds are inconsistent with expected speeds. Here it is shown that these speed anomalies are not real and are actually the result of using an incorrect relationship between the observed doppler shift and the speed of the spacecraft - a relationship based on the assumption that the speed of light is isotropic in all frames, i.e. invariant. Taking account of the repeatedly measured light-speed anisotropy the anomalies are resolved. The Pioneer 10/11 anomalies are discussed, but not resolved. The spacecraft observations demonstrate again that the speed of light is not invariant, and is isotropic only with respect to a dynamical 3-space. The existing doppler shift data also offers a resource to characterise a new form of gravitational waves, the dynamical 3-space turbulence, that has also been detected by other techniques.
On the Persistence of Cold-Season SST Anomalies Associated with the Annular Modes
England, Matthew
. In the North Atlantic, however, the simple climate model overestimates the persistence of the coldOn the Persistence of Cold-Season SST Anomalies Associated with the Annular Modes LAURA M. CIASTO Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia MICHAEL