Sample records for magnetic materials group

  1. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for magnetic circular dichroism (XMCD) and magnetic scattering experiments. Sunset Yellow 6-ID-B: Resonant and In-Field Scattering Beamline 6-ID-B,C is the primary beamline on...

  2. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01T23:59:59.000Z

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  3. Theoretical Modelling of Magnetic Refrigeration Materials A PhD studentship is available in the Warwick Theory Group on a theoretical/computational PhD project

    E-Print Network [OSTI]

    Low, Robert

    Theoretical Modelling of Magnetic Refrigeration Materials A PhD studentship is available in the Warwick Theory Group on a theoretical/computational PhD project on the modelling of magnetic refrigeration or air, or for very low temperatures, helium. Therefore, magnetic refrigeration is environmentally

  4. Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH

    E-Print Network [OSTI]

    Min, Byung Il

    Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

  5. Superconductivity and Magnetism: Materials Properties

    E-Print Network [OSTI]

    .g. within high-Tc superconductivity, magnetic superconductors, MgB2, CMR materials, nanomagnetism and spin#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 Risø National Laboratory Roskilde, Denmark ISBN 87-550-3244-3 ISSN 0907-0079 #12;Superconductivity

  6. Background Material Important Questions about Magnetism

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

  7. Journal of Magnetism and Magnetic Materials ] (

    E-Print Network [OSTI]

    McHenry, Michael E.

    magnetic properties were measured with a vibrating sample magnetometer. The mass-specific power loss.40.Rs Keywords: Nanocrystalline alloys; Amorphous alloys; Field annealing; Power loss; Soft magnets the hysteretic power loss while maintaining high-temperature operability [4]. Other goals have included studies

  8. Journal of Magnetism and Magnetic Materials ] (

    E-Print Network [OSTI]

    Schumann, Rolf

    width of internal field fluctuations. For the ``normal'' TR of the metallic magnets SmCo5; Sm2Co17 of the parameters for SmCo5 and barium ferrite. Susceptibility measurements with small alternating fields, carried out at different points of the TR curve, as well as repeating TR-experiments at SmCo5 demonstrate

  9. Thermal Casimir Force between Magnetic Materials

    E-Print Network [OSTI]

    G. L. Klimchitskaya; B. Geyer; V. M. Mostepanenko

    2009-11-21T23:59:59.000Z

    We investigate the Casimir pressure between two parallel plates made of magnetic materials at nonzero temperature. It is shown that for real magnetodielectric materials only the magnetic properties of ferromagnets can influence the Casimir pressure. This influence is accomplished through the contribution of the zero-frequency term of the Lifshitz formula. The possibility of the Casimir repulsion through the vacuum gap is analyzed depending on the model used for the description of the dielectric properties of the metal plates.

  10. Journal of Magnetism and Magnetic Materials 252 (2002) 159161 Magnetically induced alignment of FNS

    E-Print Network [OSTI]

    Reznikov, Yuri

    Journal of Magnetism and Magnetic Materials 252 (2002) 159­161 Magnetically induced alignment the observation of magnetically controlled anchoring of ferro-nematic suspensions. We found that application of a weak magnetic field to a cell with the ferro-suspension induces an easy orientation axis with weak

  11. Magnetic spectroscopy and microscopy of functional materials

    SciTech Connect (OSTI)

    Jenkins, C.A.

    2011-01-28T23:59:59.000Z

    Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).

  12. Magnetization and magnetostriction in highly magnetostrictive materials

    SciTech Connect (OSTI)

    Thoelke, J.B.

    1993-05-26T23:59:59.000Z

    The majority of this research has been in developing a model to describe the magnetostrictive properties of Terfenol-D, Tb{sub 1{minus}x}Dy{sub x}Fe{sub y} (x = 0.7-0.75 and y = 1.8--2.0), a rare earth-iron alloy which displays much promise for use in device applications. In the first chapter an introduction is given to the phenomena of magnetization and magnetostriction. The magnetic processes responsible for the observed magnetic properties of materials are explained. An overview is presented of the magnetic properties of rare earths, and more specifically the magnetic properties of Terfenol-D. In the second chapter, experimental results are presented on three composition of Tb{sub 1{minus}x}Dy{sub x}Fe{sub y} with x = 0.7, y= 1.9, 1.95, and x= 0.73, y= 1.95. The data were taken for various levels of prestress to show the effects of composition and microstructure on the magnetic and magnetostrictive properties of Terfenol-D. In the third chapter, a theoretical model is developed based on the rotation of magnetic domains. The model is used to explain the magnetic and magnetostrictive properties of Terfenol-D, including the observed negative strictions and large change in strain. The fourth chapter goes on to examine the magnetic properties of Terfenol-D along different crystallographic orientations. In the fifth chapter initial data are presented on the time dependence of magnetization in nickel.

  13. advanced magnetic materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the selection of materials for nano-photonic devices. Key words: Plasmonic electronic materials Peale, Robert E. 294 Modelling the Induced Magnetic Signature of Naval Vessels...

  14. Ames Laboratory scientists create cheaper magnetic material for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory scientists create cheaper magnetic material for cars, wind turbines Contacts: For release: April 23, 2015 Karl A. Gschneidner, Division of Materials Sciences and...

  15. The Supramolecular NanoMaterials Group From Nano-Particles

    E-Print Network [OSTI]

    The Supramolecular NanoMaterials Group From Nano-Particles to Nano-Polymers Francesco Stellacci Department of Materials Science and Engineering, MIT frstella@mit.edu #12;S u N M a G The Supramolecular NanoMaterials Group Supramolecular Materials Science Monolayer Protected Metal Nanoparticles Functionalized Carbon

  16. Fourth annual progress report on special-purpose materials for magnetically confined fusion reactors

    SciTech Connect (OSTI)

    Not Available

    1982-08-01T23:59:59.000Z

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. The Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits.

  17. Magnetism in Non-Traditional Materials

    SciTech Connect (OSTI)

    Menon, Madhu

    2013-09-17T23:59:59.000Z

    We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host

  18. Magnetic spectroscopy and microscopy of functional materials

    E-Print Network [OSTI]

    Jenkins, C.A.

    2012-01-01T23:59:59.000Z

    transitions for magnetic refrigeration. Appl Phys Lett, 97(these e?ects in magnetic refrigeration and actuation makesheat ?ow with the goal of magnetic refrigeration (adiabatic

  19. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The 14 projects that comprise ARPA-Es REACT Project, short for Rare Earth Alternatives in Critical Technologies, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  20. A study of magnetically annealed ferromagnetic materials

    E-Print Network [OSTI]

    Ramos, Domingo

    1961-01-01T23:59:59.000Z

    OF SCIENCE August 1961 Major Subject: Electrical Engineering A STUDY OF MAGNETICALLY ANNEALED FERROMAGNETIC MATERIALS A Thesis By 0 ca o o W C DOMINGO RAMOS App ved as to style and content by: r Ct- Chairman of Co ittee Head of Department... coeffrcients ranged from 41. 8 to 75. 8 oersted-microseconds. The Br/Bs ratio for the specimens which gave the highest response vol- tages varied from 0. 66 to 0. 88 and the coercive force ranged from 0. 850 to 1. 410 oersteds. The squareness ratio...

  1. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOE Patents [OSTI]

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08T23:59:59.000Z

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  2. Journal of Magnetism and Magnetic Materials 281 (2004) 272275 Effects of high magnetic field annealing on texture and

    E-Print Network [OSTI]

    Garmestani, Hamid

    Journal of Magnetism and Magnetic Materials 281 (2004) 272­275 Effects of high magnetic field annealing on texture and magnetic properties of FePd D.S. Lia, *, H. Garmestania , Shi-shen Yanb , M China c National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive

  3. Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of

    E-Print Network [OSTI]

    Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

  4. Special-purpose materials for magnetically confined fusion reactors. Third annual progress report

    SciTech Connect (OSTI)

    Not Available

    1981-11-01T23:59:59.000Z

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (>10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits.

  5. Magnetic spectroscopy and microscopy of functional materials

    E-Print Network [OSTI]

    Jenkins, C.A.

    2012-01-01T23:59:59.000Z

    in the classical Heusler material Co 2 FeSi (Appendix B).plated self-assembly. Nature Materials, 3:823828, 2004.1 Concepts Functional materials are those with an industrial

  6. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, John A. (Madison, WI); Stewart, Walter F. (Marshall, WI); Henke, Michael D. (Los Alamos, NM); Kalash, Kenneth E. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  7. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03T23:59:59.000Z

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  8. Exploring nanoscale magnetism in advanced materials with polarized X-rays

    E-Print Network [OSTI]

    Fischer, Peter

    2012-01-01T23:59:59.000Z

    Stoehr and H.C. Siegmann, Magnetism, Springer (2006) [93]Exploring nanoscale magnetism in advanced materials withABSTRACT Nanoscale magnetism is of paramount scientific

  9. Evaluation of Magnetic Materials for Very High Frequency Power Applications

    E-Print Network [OSTI]

    Han, Yehui

    This paper investigates the loss characteristics of RF magnetic materials for power conversion applications in the 10 to 100 MHz range. A measurement method is proposed that provides a direct measurement of an inductor ...

  10. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, T.

    1998-06-16T23:59:59.000Z

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  11. Digital lock-in detection of site-specific magnetism in magnetic materials

    DOE Patents [OSTI]

    Haskel, Daniel (Naperville, IL); Lang, Jonathan C. (Naperville, IL); Srajer, George (Oak Park, IL)

    2008-07-22T23:59:59.000Z

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  12. Static magnetic field concentration and enhancement using magnetic materials with positive permeability

    E-Print Network [OSTI]

    Sun, F

    2013-01-01T23:59:59.000Z

    In this paper a novel compressor for static magnetic fields is proposed based on finite embedded transformation optics. When the DC magnetic field passes through the designed device, the magnetic field can be compressed inside the device. After it passes through the device, one can obtain an enhanced static magnetic field behind the output surface of the device (in a free space region). We can also combine our compressor with some other structures to get a higher static magnetic field enhancement in a free space region. In contrast with other devices based on transformation optics for enhancing static magnetic fields, our device is not a closed structure and thus has some special applications (e.g., for controlling magnetic nano-particles for gene and drag delivery). The designed compressor can be constructed by using currently available materials or DC meta-materials with positive permeability. Numerical simulation verifies good performance of our device.

  13. 2006 Nature Publishing Group Graphene-based composite materials

    E-Print Network [OSTI]

    for the preparation of graphene-polymer composites via complete exfoliation of graphite9 and molecular 2006 Nature Publishing Group Graphene-based composite materials Sasha Stankovich1 *, Dmitriy A. Piner1 , SonBinh T. Nguyen2 & Rodney S. Ruoff1 Graphene sheets--one-atom-thick two-dimensional layers

  14. Magnetic Filtration Process, Magnetic Filtering Material, and Method of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6, InaprilU . SMagellanForming Magnetic

  15. Energy and material efficient non-circular bore Bitter magnets

    E-Print Network [OSTI]

    Akhmeteli, A

    2015-01-01T23:59:59.000Z

    There exist a number of experiments/applications where the second dimension of the bore of Bitter magnets is not fully utilized. Using an analytical solution for elliptical bore coils, we show that reducing one of the dimensions of the bore can lead to considerable decrease in consumed power and/or coil material.

  16. Engineered materials for all-optical helicity-dependent magnetic switching

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    Engineered materials for all-optical helicity-dependent magnetic switching S. Mangin1,2 *, M we explore the optical manipulation of the magnetization in engineered magnetic materials. We of engineered magnetic materials and devices. We demonstrate that AO-HDS can be observed not only in selected RE

  17. Magnetic mesoporous materials for removal of environmental wastes

    SciTech Connect (OSTI)

    Kim, Byoung Chan; Lee, Jinwoo; Um, Wooyong; Kim, Jaeyun; Joo, Jin; Lee, Jin Hyung; Kwak, Ja Hun; Kim, Jae Hyun; Lee, Changha; Lee, Hongshin; Addleman, Raymond S.; Hyeon, Taeghwan; Gu, Man Bock; Kim, Jungbae

    2011-09-15T23:59:59.000Z

    We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7 hours. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Tyrosinase aggregates in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, could be used repeatedly for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic, organic and biochemical contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.

  18. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

    2010-03-30T23:59:59.000Z

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  19. Summary of working group g: beam material interaction

    SciTech Connect (OSTI)

    Kiselev, D.; /PSI, Villigen; Mokhov, N.V.; /Fermilab; Schmidt, R.; /CERN

    2010-11-01T23:59:59.000Z

    For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo-mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.

  20. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1986-07-24T23:59:59.000Z

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  1. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1988-10-18T23:59:59.000Z

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  2. The magnetic resonance force microscope: A new microscopic probe of magnetic materials

    SciTech Connect (OSTI)

    Hammel, P.C.; Zhang, Z. [Los Alamos National Lab., NM (United States); Midzor, M.; Roukes, M.L. [California Inst. of Tech., Pasadena, CA (United States); Wigen, P.E. [Ohio State Univ., Columbus, OH (United States); Childress, J.R. [Univ. of Florida, Gainesville, FL (United States)

    1997-08-06T23:59:59.000Z

    The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here the authors focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator.

  3. Control Methodologies for a Heterogeneous Group of Untethered Magnetic Micro-Robots

    E-Print Network [OSTI]

    Sitti, Metin

    investigate Mag-µBots that are geometrically and magnetically designed to respond uniquely to the same input magnetic fields. Designs include: (1) ge- ometrically similar Mag-µBots with different values of magControl Methodologies for a Heterogeneous Group of Untethered Magnetic Micro-Robots Steven Floyd

  4. Use of High Magnetic Field to Control Microstructural Evolution in Metallic and Magnetic Materials

    SciTech Connect (OSTI)

    Ludtka, G.M.; Mackiewicz- Ludtka, G.; Wilgen, J.B.; Kisner, R.A.

    2010-06-27T23:59:59.000Z

    The Amendment 1, referred to as Phase 2, to the original CRADA NFE-06-00414 added tasks 3 through 7 to the original statement of work that had two main tasks that were successfully accomplished in Phase 1 of this project. In this Phase 2 CRADA extension, extensive research and development activities were conducted using high magnetic field processing effects for the purpose of manipulating microstructure in the SAE 5160 steel to refine grain size isothermally and to develop nanocrystalline spacing pearlite during continuous cooling, and to enhance the formability/forgability of the non-ferrous precipitation hardening magnesium alloy AZ90 by applying a high magnetic field during deformation processing to investigate potential magnetoplasticity in this material. Significant experimental issues (especially non-isothermal conditions evolving upon insertion of an isothermal sample in the high magnetic field) were encountered in the isothermal phase transformation reversal experiments (Task 4) that later were determined to be due to various condensed matter physics phenomenon such as the magnetocaloric (MCE) effect that occurs in the vicinity of a materials Curie temperature. Similarly the experimental deformation rig had components for monitoring deformation/strain (Task 3) that were susceptible to the high magnetic field of the ORNL Thermomagnetic Processing facility 9-T superconducting magnet that caused electronic components to fail or record erroneous (very noisy) signals. Limited experiments on developing nanocrystalline spacing pearlite were not sufficient to elucidate the impact of high magnetic field processing on the final pearlite spacing since significant statistical evaluation of many pearlite colonies would need to be done to be conclusive. Since extensive effort was devoted to resolving issues for Tasks 3 and 7, only results for these focused activities are included in this final CRADA report along with those for Task 7 (described in the Objectives Section of this report).

  5. Method and apparatus for separating materials magnetically. [Patent application; iron pyrite from coal

    DOE Patents [OSTI]

    Hise, E.C. Jr.; Holman, A.S.; Friedlaender, F.J.

    1980-11-06T23:59:59.000Z

    Magnetic and nonmagnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  6. Selected materials development for the 100 T magnet: Cu-Nb conductors with

    E-Print Network [OSTI]

    Weston, Ken

    Selected materials development for the 100 T magnet: Cu-Nb conductors with nanocomposite components (PBO) based composite for reinforcement Materials R&D for the 100-Tesla Pulsed Magnet Gregory S for this achievement was the long-term and painstaking research and development of high strength materials

  7. US-EU-Japan Working Group on Critical Materials

    Broader source: Energy.gov (indexed) [DOE]

    for high- efficiency motors" Mamoru Nakamura, Director, Material Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology...

  8. Materials Physics Applications: The National High Magnetic Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulsed Magnetic Field Laboratory of the NHMFL in the form of a 1.4 GVA inertial storage motor-generator for high field pulsed magnets. In addition to the 60 Tesla Long Pulse Magnet...

  9. Giant Magnetic Effects Induced in Hybrid Materials | U.S. DOE...

    Office of Science (SC) Website

    Giant Magnetic Effects Induced in Hybrid Materials Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic...

  10. 1/08 AMJ; Media Transition Group Media Material Location/Circulation Options

    E-Print Network [OSTI]

    Stowell, Michael

    materials, media or otherwise. Choosing a location When you place a new order for media materials, specify1/08 AMJ; Media Transition Group Media Material Location/Circulation Options With the closure of the media library, bibliographers have the following options for where dvd and video media materials can

  11. Group Members Synthesis of Nanostructured Materials Advanced Characterization Techniques

    E-Print Network [OSTI]

    of nanostructured materials. Applications in nanophotonics, nanoelectronics, and energy. Experimental techniques, S. Gradecak,"Graphene cathode-based ZnO nanowire hybrid solar cells", Nano Letters 13, 233-239 (2013 particle composition to control structural and optical properties of GaN nanowires", Nanotechnology 23

  12. Magnetic mesoporous material for the sequestration of algae

    DOE Patents [OSTI]

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09T23:59:59.000Z

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  13. Nuclear Materials Management and Safeguards System Working Group Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 ThisNuclear Materials

  14. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOE Patents [OSTI]

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2005-03-29T23:59:59.000Z

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  15. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOE Patents [OSTI]

    Sanchez, Robert O. (Los Lunas, NM); Gunewardena, Shelton (Walnut, CA); Masi, James V. (Cape Elizabeth, ME)

    2007-11-27T23:59:59.000Z

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  16. Magnetic refrigeration: Materials, design, and applications. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The bibliography contains citations concerning cryogenics using magnetic refrigerants. Refrigerant properties, magnetic materials, and thermal characteristics are discussed. Magnetic refrigerators are used for helium liquefaction, cooling superconductors, and superfluid helium production. Carnot-cycle refrigerators, reciprocating refrigerators, parasitic refrigerators, Ericsson refrigerators, and Stirling cycle refrigerators are among the types of magnetic refrigerators evaluated. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Magnetic refrigeration: Materials, design, and applications. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The bibliography contains citations concerning cryogenics using magnetic refrigerants. Refrigerant properties, magnetic materials, and thermal characteristics are discussed. Magnetic refrigerators are used for helium liquefaction, cooling superconductors, and superfluid helium production. Carnot-cycle refrigerators, reciprocating refrigerators, parasitic refrigerators, Ericsson refrigerators, and Stirling cycle refrigerators are among the types of magnetic refrigerators evaluated. (Contains a minimum of 118 citations and includes a subject term index and title list.)

  18. Biasing and fast degaussing circuit for magnetic materials

    DOE Patents [OSTI]

    Dress, W.B. Jr.; McNeilly, D.R.

    1983-10-04T23:59:59.000Z

    A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a dc current and alternately apply a selectively damped ac current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.

  19. Biasing and fast degaussing circuit for magnetic materials

    DOE Patents [OSTI]

    Dress, Jr., William B. (Lenoir City, TN); McNeilly, David R. (Maryville, TN)

    1984-01-01T23:59:59.000Z

    A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a d.c. current and alternately apply a selectively damped a.c. current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.

  20. Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to todays best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

  1. Chiral dynamics in a magnetic field from the functional renormalization group

    E-Print Network [OSTI]

    Kazuhiko Kamikado; Takuya Kanazawa

    2014-03-13T23:59:59.000Z

    We investigate the quark-meson model in a magnetic field using the exact functional renormalization group equation beyond the local-potential approximation. Our truncation of the effective action involves anisotropic wave function renormalization for mesons, which allows us to investigate how the magnetic field distorts the propagation of neutral mesons. Solving the flow equation numerically, we find that the transverse velocity of mesons decreases with the magnetic field at all temperatures, which is most prominent at zero temperature. The meson screening masses and the pion decay constants are also computed. The constituent quark mass is found to increase with magnetic field at all temperatures, resulting in the crossover temperature that increases monotonically with the magnetic field. This tendency is consistent with most model calculations but not with the lattice simulation performed at the physical point. Our work suggests that the strong anisotropy of meson propagation may not be the fundamental origin of the inverse magnetic catalysis.

  2. US-EU-Japan Working Group on Critical Materials

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel forShale_Gas.pdfUS-EU-Japan Working Group on

  3. SURVEY OF HIGH FIELD SUPERCONDUCTING MATERIAL FOR ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Scanlan, R.

    2010-01-01T23:59:59.000Z

    1. Production status of Superconducto~ s Pabricability NbTivaluation of different superconducto~ materials is to investSupec-conductors , " in Superconductor Materials Science,

  4. Hengdian Group DMEGC Magnetics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy InformationHebeiProgram Jump to:HelpTianguanHeng

  5. A nuclear magnetic resonance study of hydrogen in battery and chemically prepared material

    SciTech Connect (OSTI)

    Hill, R.J.; Jessel, A.M.

    1987-06-01T23:59:59.000Z

    Solid-state magic-angle-spinning nuclear magnetic resonance studies have been undertaken on positive plate material from lead-acid batteries and on samples of both pure ..cap alpha..-PbO/sub 2/ and pure ..beta..-PbO/sub 2/ prepared by nonelectrochemical methods. Battery positive plate samples contain protons in two different surface and near surface configurations. One of these proton species is associated with mobile, isolated, adsorbed hydroxyl groups, and/or water molecules that can be removed by outgassing. The other proton species is not removed by outgassing; it probably corresponds to water molecules and/of closely spaced hydroxyl groups trapped on internal crystal surfaces. The proton species present in fresh (uncycled) positive plate material are not significantly different in either configuration or abundance from those in extensively cycled samples. Thus, it is unlikely that decline in battery capacity with cycling service is associated with a change in the hydrogen content of PbO/sub 2/.

  6. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    SciTech Connect (OSTI)

    Johnson, Francis

    2014-06-30T23:59:59.000Z

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.

  7. Characterizing artificial electromagnetic materials and their hybridization with fundamentally resonant magnetic materials

    E-Print Network [OSTI]

    Gollub, Jonah Nathan

    2008-01-01T23:59:59.000Z

    4 Ferromagnetic Materials in Microstrip Structures . . . 4.1Ferromagnetic Materials . . . . . . . . . . . . . . 4.3 The1: positive material 1 , 1 > 0 . . . . . . . . . . . . . .

  8. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-02-11T23:59:59.000Z

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  9. Thermal Stability of MnBi Magnetic Materials. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because Mn is easy to react with oxygen. MnO formation is irreversible and causes degradation to the magnetic properties. In this paper, we report our effort on developing MnBi...

  10. Configuration-dependent electronic and magnetic properties of graphene monolayers and nanoribbons functionalized with aryl groups

    SciTech Connect (OSTI)

    Tian, Xiaoqing, E-mail: xqtian2008@gmail.com; Gu, Juan [College of Physics and Technology, Shenzhen University, Shenzhen 518060, Guangdong (China)] [College of Physics and Technology, Shenzhen University, Shenzhen 518060, Guangdong (China); Xu, Jian-bin, E-mail: jbxu@ee.cuhk.edu.hk [Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong)] [Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong)

    2014-01-28T23:59:59.000Z

    Graphene monolayers functionalized with aryl groups exhibit configuration-dependent electronic and magnetic properties. The aryl groups were adsorbed in pairs of neighboring atoms in the same sublattice A (different sublattices) of graphene monolayers, denoted as the M{sub 2}{sup AA} (M{sub 2}{sup AB}) configuration. The M{sub 2}{sup AA} configuration behaved as a ferromagnetic semiconductor. The band gaps for the majority and minority bands were 1.1 eV and 1.2 eV, respectively. The M{sub 2}{sup AB} configuration behaved as a nonmagnetic semiconductor with a band gap of 0.8 eV. Each aryl group could induce 1 Bohr magneton (?{sub B}) into the molecule-graphene system. Armchair graphene nanoribbons (GNRs) exhibited the same configuration-dependent magnetic properties as the graphene monolayers. The net spin of the functionalized zigzag GNRs was mainly localized on the edges demonstrating an adsorption site-dependent magnetism. For the zigzag GNRs, both the M{sub 2}{sup AA} and M{sub 2}{sup AB} configurations possibly had a magnetic moment. Each aryl group could induce 1.53.5 ?{sub B} into the molecule-graphene system. There was a metal-to-insulator transition after adsorption of the aryl groups for the zigzag GNRs.

  11. 3.15 Electrical, Optical & Magnetic Materials and Devices, Fall 2003

    E-Print Network [OSTI]

    Ross, Caroline A.

    Explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. Features a device-motivated ...

  12. Development of Apple Workgroup Cluster and Parallel Computing for Phase Field Model of Magnetic Materials

    E-Print Network [OSTI]

    Huang, Yongxin

    2010-01-16T23:59:59.000Z

    using MPI. The results show the cluster system can simultaneously support up to 32 processes for MPI program with high performance of interprocess communication. The parallel computations of phase field model of magnetic materials implemented by a MPI...

  13. ELSEWER Journal of Magnetism and Magnetic Materials 169 (1997) 261-270 Superparamagnetic behavior of Fe,GaAs precipitates in GaAs

    E-Print Network [OSTI]

    Woodall, Jerry M.

    ELSEWER Journal of Magnetism and Magnetic Materials 169 (1997) 261-270 Superparamagnetic behavior; revised 6 December 1996 Abstract We present magnetization measurements on Fe3GaAs clusters distributed-dependent magnetization well above the blocking temperature indicate a particle size distribution in agreement

  14. Magnetic properties of Ni-Fe nanowire arrays: effect of template material and deposition conditions

    SciTech Connect (OSTI)

    Singleton, John [Los Alamos National Laboratory; Aravamudhan, Shyan [U OF SOUTH FL; Goddard, Paul A [U OF OXFORD; Bhansali, Shekhar [U OF SOUTH FL

    2008-01-01T23:59:59.000Z

    The objective of this work is to study the magnetic properties of arrays of Ni-Fe nanowires electrodeposited in different template materials such as porous silicon, polycarbonate and alumina. Magnetic properties were studied as a function of template material, applied magnetic field (parallel and perpendicular) during deposition, wire length, as well as magnetic field orientation during measurement. The results show that application of magnetic field during deposition strongly influences the c-axis preferred orientation growth of Ni-Fe nanowires. The samples with magnetic field perpendicular to template plane during deposition exhibits strong perpendicular anisotropy with greatly enhanced coercivity and squareness ratio, particularly in Ni-Fe nanowires deposited in polycarbonate templates. In case of polycarbonate template, as magnetic field during deposition increases, both coercivity and squareness ratio also increase. The wire length dependence was also measured for polycarbonate templates. As wire length increases, coercivity and squarness ratio decrease, but saturation field increases. Such magnetic behavior (dependence on template material, magnetic field, wire length) can be qualitatively explained by preferential growth phenomena, dipolar interactions among nanowires, and perpendicular shape anisotropy in individual nanowires.

  15. Exploring Ultrahigh Magnetic Field Processing of Materials for Developing Customized Microstructures and Enhanced Performance

    SciTech Connect (OSTI)

    Ludtka, GERALD M.

    2005-03-31T23:59:59.000Z

    Thermodynamic calculations based on Gibbs free energy in the magnetization-magnetic intensity-temperature (M-H-T) magnetic equation of state space demonstrate that significantly different phase equilibria may result for those material systems where the product and parent phases exhibit different magnetization responses. These calculations show that the Gibbs free energy is changed by a factor equal to -MdH, where M and H are the magnetization and applied field strength, respectively. Magnetic field processing is directly applicable to a multitude of alloys and compounds for dramatically influencing phase stability and phase transformations. This ability to selectively control microstructural stability and alter transformation kinetics through appropriate selection of the magnetic field strength promises to provide a very robust mechanism for developing and tailoring enhanced microstructures (and even nanostructures through accelerated kinetics) with superior properties for a broad spectrum of material applications. For this Industrial Materials for the Future (IMF) Advanced Materials for the Future project, ferrous alloys were studied initially since this alloy family exhibits ferromagnetism over part of its temperature range of stability and therefore would demonstrate the maximum impact of this novel processing mechanism. Additionally, with these ferrous alloys, the high-temperature parent phase, austenite, exhibits a significantly different magnetization response from the potential product phases, ferrite plus carbide or martensite; and therefore, the solid-state transformation behavior of these alloys will be dramatically influenced by the presence of ultrahigh magnetic fields. Finally, a thermodynamic calculation capability (within ThermoCalc for example) was developed during this project to enable parametric studies to be performed to predict the magnitude of the influence of magnetic processing variables on the phase stability (phase diagrams) in ferromagnetic materials of relevance to the Industries of the Future (IOF).

  16. An in-situ accelerator-based diagnostic for plasma-material interactions science in magnetic fusion devices

    E-Print Network [OSTI]

    Hartwig, Zachary Seth

    2014-01-01T23:59:59.000Z

    Plasma-material interactions (PMI) in magnetic fusion devices such as fuel retention, material erosion and redeposition, and material mixing present significant scientific and engineering challenges, particularly for the ...

  17. A PHASE CHANGE MICROVALVE USING A MELTABLE MAGNETIC MATERIAL: FERRO-WAX

    E-Print Network [OSTI]

    Oh, Kwang W.

    A PHASE CHANGE MICROVALVE USING A MELTABLE MAGNETIC MATERIAL: FERRO-WAX Kwang W. Oh, Kak Namkoong This paper presents a novel phase change microvalve using a paraffin-based ferrofluid plug (called "Ferro-Wax"). The Ferro-Wax plug is essentially leak-proof because of the phase change nature of the material; once

  18. Abstract --In electromagnetic applications, hysteresis phenomena in magnetic materials are responsible of

    E-Print Network [OSTI]

    Boyer, Edmond

    rotation. Furthermore, based on the balance of chemical equation analogies, this model has the advantage13. M M Abstract -- In electromagnetic applications, hysteresis phenomena in magnetic materials the implementation proceeding used for some hysteresis material models and how they are applied in a sensor study

  19. A magnetic compass sense has been demonstrated in a large and taxonomically diverse group of organisms. In terrestrial

    E-Print Network [OSTI]

    Phillips, John B.

    A magnetic compass sense has been demonstrated in a large and taxonomically diverse group; Marhold et al., 1997). In contrast, magnetic compass orientation has been shown to be sensitive). In each of these organisms, except pigeons, a shift in the direction of magnetic compass orientation

  20. Cheaper magnetic material for cars, wind turbines created | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and instead uses cerium, the most abundant rare earth. The result, an alloy of neodymium, iron and boron co-doped with cerium and cobalt, is a less expensive material...

  1. Journal of Magnetism and Magnetic Materials 288 (2005) 196204 Micromagnetic studies of nickel microbars fabricated by

    E-Print Network [OSTI]

    Pesic, Batric

    2005-01-01T23:59:59.000Z

    Abstract Micromagnetic configurations and macromagnetic properties of electrodeposited nickel microbars: 75.50.Cc; 75.75.+a; 81.15.Pq Keywords: Electrodeposited nickel; Magnetic microbar; Magnetic vortex (VSM) studies of nickel microbars with round corners, produced by nanoimprinting and electrodeposition

  2. Hydrogenated Bilayer Wurtzite SiC Nanofilms: A Two-Dimensional Bipolar Magnetic Semiconductor Material

    E-Print Network [OSTI]

    Yuan, Long; Yang, Jinlong

    2012-01-01T23:59:59.000Z

    Recently, a new kind of spintronics materials, bipolar magnetic semiconductor (BMS), has been proposed. The spin polarization of BMS can be conveniently controlled by a gate voltage, which makes it very attractive in device engineering. Now, the main challenge is finding more BMS materials. In this article, we propose that hydrogenated wurtzite SiC nanofilm is a two-dimensional BMS material. Its BMS character is very robust under the effect of strain, substrate, or even a strong electric field. The proposed two-dimensional BMS material paves the way to use this promising new material in an integrated circuit.

  3. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect (OSTI)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China) [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China)] [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)] [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)] [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15T23:59:59.000Z

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  4. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Ahmad, Aquil [Eaton Corporation

    2010-08-01T23:59:59.000Z

    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  5. Non-Rare Earth magnetic materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEnginesVacantmagnetic materials Non-Rare Earth

  6. Production of Materials with Superior Properties Utilizing High Magnetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 BrProcurementRaw Materials - EnergyField -

  7. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  8. Strategic Research Orientation `NanoMaterials for Energy' 1 Energy projects within MESA+ research groups, February 2013

    E-Print Network [OSTI]

    Twente, Universiteit

    Strategic Research Orientation `NanoMaterials for Energy' 1 Energy projectsMaterials for Energy' Information: www.utwente.nl/mesaplus/nme/ Project title Group Ph water splitting and CO2 reduction OS / PCS Sun-Young Park Jennifer Herek

  9. neutron scattering shows magnetic excitation mechanism at work in new materials.

    E-Print Network [OSTI]

    neutron scattering shows magnetic excitation mechanism at work in new materials. In 2008 dai of orNl and the university of tennes- see led early neutron scattering studies of the pnictides. dai ticks off four main things neutron scattering has revealed about superconducting iron com- pounds

  10. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    SciTech Connect (OSTI)

    Goodson, Boyd M.

    1999-12-01T23:59:59.000Z

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  11. Magnetic resonance studies of cement based materials in inhomogeneous magnetic fields

    SciTech Connect (OSTI)

    Boguszynska, Joanna [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Brown, Marc C.A. [School of Physical Sciences, University of Kent, Canterbury, Kent, CT2 7NR (United Kingdom); McDonald, Peter J. [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom)]. E-mail: p.mcdonald@surrey.ac.uk; Mitchell, Jonathan [School of Electronics and Physical Sciences, University of Surrey, Surrey, GU2 7XH (United Kingdom); Mulheron, Mike [School of Engineering, University of Surrey, Surrey, GU2 7XH (United Kingdom); Tritt-Goc, Jadwiga [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, Poznan (Poland); Verganelakis, Dimitris A. [Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA (United Kingdom)

    2005-10-01T23:59:59.000Z

    Single-sided magnets give hope that Nuclear Magnetic Resonance (NMR) might in future be used for in situ characterisation of hydration and water transport in the surface layers of concrete slabs. Towards that end, a portable NMR-MOUSE (MObile Universal Surface Explorer) has been used to follow the hydration of gypsum based plaster, a Portland cement paste and concrete mortar. The results compare favourably to those obtained using a standard laboratory bench-top spectrometer. Further, stray field imaging (STRAFI) based methods have been used with embedded NMR detector coils to study water transport across a mortar/topping interface. The measured signal amplitudes are found to correlate with varying sample conditions.

  12. Magnetic properties of materials for MR engineering, micro-MR and beyond

    E-Print Network [OSTI]

    Wapler, Matthias C; Dragonu, Iulius; von Elverfeld, Dominik; Zaitsev, Maxim; Wallrabe, Ulrike

    2014-01-01T23:59:59.000Z

    We present the results of a systematic measurement of the magnetic susceptibility of small material samples in a 9.4 T MRI scanner. We measured many of the most widely used materials in MR engineering and MR micro technology, including various polymers, optical and substrate glasses, resins, glues, photoresists, PCB substrates and some fluids. Based on our data, we identify particularly suitable materials with susceptibilities close to water. For polyurethane resins and elastomers, we also show the MR spectra, as they may be a good substitute for silicone elastomers and good casting resins.

  13. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    SciTech Connect (OSTI)

    Wu, Z. X.; Huang, C. J. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR (China); Li, L. F. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China and State Key Laboratory of Technologies in Space Cryogenic Propellants, Technical Institute of Physics and Chemistry, C (China); Li, J. W. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China and University of Chinese Academy of Sciences, Beijing 100049, PR (China); Tan, R.; Tu, Y. P. [North China Electric Power University, Beijing 102206, PR (China)

    2014-01-27T23:59:59.000Z

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 C.

  14. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    SciTech Connect (OSTI)

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05T23:59:59.000Z

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  15. Magnetic measurement to evaluate material properties of ferromagnetic structural steels with planar coils

    SciTech Connect (OSTI)

    Ebine, Noriya; Ara, Katsuyuki

    1999-09-01T23:59:59.000Z

    The mechanical properties of a nuclear reactor pressure vessel (RPV) are degraded by fast neutron irradiation during operation. This is well-known as so-called as radiation embrittlement of RPV and an important problem to be considered in the assessment of residual life of the nuclear reactor. Hence the development of nondestructive means is required to measure directly the degree of material degradation in RPV. Here, nondestructive measurement experiments were carried out with a planar coil to evaluate changes of material properties of ferromagnetic structural steels. Examined steels were of A533B that is a low-alloy steel and of SUS410 that is a martensitic stainless steel. The planar coil has two windings; one is of primary for excitation and the other secondary for induction of output voltage. The coil was placed on a test plate with a magnetic yoke for application of a bias dc magnetic field, and excited with a constant current of 25 Hz. Then the output voltages were measured while slowly changing the bias field by excitation of the magnetic yoke with a triangular-wave form current of 0.005 Hz. Changes of output voltages with different test plates were correlated with their mechanical and magnetic properties. The correlation is so good that this measuring method could be applied to nondestructive evaluation of material degradation in ferromagnetic structural steels.

  16. A Synergy of Novel Experiments, Materials Science, Fundamental Physics, and Superconducting Magnets

    E-Print Network [OSTI]

    Godeke, Arno

    2007-01-01T23:59:59.000Z

    Fundamental Physics Superconducting Magnets Yields: Accuraterecord setting superconducting magnet systems ITER, NMRScience, Fundamental Physics, and Superconducting Magnets

  17. Need for development of higher strength cryogenic structural materials for fusion magnet

    SciTech Connect (OSTI)

    Nishimura, Arata [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-01-27T23:59:59.000Z

    A prototype fusion reactor is targeted as a beyond ITER project which is so called DEMO. Several conceptual designs have been carried out. Recently, in order to recognize practical aspects on maintenance of the prototype reactor, the replacement procedure of in-vessel components was focused and sector process was proposed. The process is that the reactor consists of sectors and all sectors will be drowned and replaced in a short time. The slim coil which generated higher magnetic field is required to realize the sector process. From the point of coil design, the occupancy of the structural material on the cross section of the coil increases with an increase of magnetic field. To realize the slim coil, the cryogenic structural material with higher yield strength and the proper toughness is desired.

  18. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOE Patents [OSTI]

    Jiles, David C. (Ames, IA); Sipahi, Levent B. (Ames, IA)

    1994-05-17T23:59:59.000Z

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  19. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Pecharsky, Alexandra O. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

    2006-10-03T23:59:59.000Z

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  20. Numerical upscaling for the eddy-current model with stochastic magnetic materials

    SciTech Connect (OSTI)

    Eberhard, Jens P. [Computer Simulation Technology, Bad Nauheimer Strasse, 19, D-64289 Darmstadt (Germany)], E-mail: jens.eberhard@cst.com; Popovic, Dan [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: dan.popovic@stud.uni-heidelberg.de; Wittum, Gabriel [Simulation in Technology, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: wittum@uni-hd.de

    2008-04-01T23:59:59.000Z

    This paper deals with the upscaling of the time-harmonic Maxwell equations for heterogeneous media. We analyze the eddy-current approximation of Maxwell's equations to describe the electric field for heterogeneous, isotropic magnetic materials. The magnetic permeability of the materials is assumed to have random heterogeneities described by a Gaussian random field. We apply the so-called Coarse Graining method to develop a numerical upscaling of the eddy-current model. The upscaling uses filtering and averaging procedures in Fourier space which results in a formulation of the eddy-current model on coarser resolution scales where the influence of sub-scale fluctuations is modeled by effective scale- and space-dependent reluctivity tensors. The effective reluctivity tensors can be obtained by solving local partial differential equations which contain a Laplacian as well as a curl-curl operator. We present a computational method how the equation of the combined operators can be discretized and solved numerically using an extended variational formulation compared to standard discretizations. We compare the results of the numerical upscaling of the eddy-current model with theoretical results of Eberhard [J.P. Eberhard, Upscaling for the time-harmonic Maxwell equations with heterogeneous magnetic materials, Physical Review E 72 (3), (2005)] and obtain a very good agreement.

  1. (1) Frank May REU Summary 2012 -http://engineering.umass.edu/reu/2012/reu-students (2) "Hard Magnetic Materials: A Perspecitve" J.M.D. Coey

    E-Print Network [OSTI]

    Mountziaris, T. J.

    (1) Frank May REU Summary 2012 - http://engineering.umass.edu/reu/2012/reu-students (2) "Hard Magnetic Materials: A Perspecitve" J.M.D. Coey (3) "Perspecitve on Permanent Magnetic Materials for Energy of L10 magnetic materials" David E. Laughlin, Kumar Srinivasan, Mihaela Tanase, Lisha Wang (5) "A study

  2. Final Report-MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS

    SciTech Connect (OSTI)

    Sumption, Mike D [OSU; Collings, E W

    2014-09-19T23:59:59.000Z

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the intermediate-temperature superconductor, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of Strands in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, Cables, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  3. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    SciTech Connect (OSTI)

    Carwell, H.

    1997-09-19T23:59:59.000Z

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  4. Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups: Report on the joint meeting, July 9, 1986

    SciTech Connect (OSTI)

    Watson, R.D. (ed.)

    1986-09-01T23:59:59.000Z

    This paper contains a collection of viewgraphs from a joint meeting of the Division of Development and Technology Plasma/Materials Interaction and High Heat Flux Materials and Components Task Groups. A list of contributing topics is: PPPL update, ATF update, Los Alamos RFP program update, status of DIII-D, PMI graphite studies at ORNL, PMI studies for low atomic number materials, high heat flux materials issues, high heat flux testing program, particle confinement in tokamaks, helium self pumping, self-regenerating coatings technical planning activity and international collaboration update. (LSP)

  5. Groups

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagnetics

  6. Magnetic material in mean-field dynamos driven by small scale helical flows

    E-Print Network [OSTI]

    Giesecke, Andre; Gerbeth, Gunter

    2014-01-01T23:59:59.000Z

    We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G.O. Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-K\\'arm\\'an-Sodium (VKS) dynamo. For both examined flow configurations the consideration of magnetic material within...

  7. Metal finishing and vacuum processes groups, Materials Fabrication Division progress report, March-May 1984

    SciTech Connect (OSTI)

    Dini, J.W.; Romo, J.G.; Jones, L.M.

    1984-07-11T23:59:59.000Z

    Progress is reported in fabrication and coating activities being conducted for the weapons program, nuclear test program, nuclear design program, magnetic fusion program, and miscellaneous applications. (DLC)

  8. Rare?Earth?Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn?Bi and M?type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki [University of Alabama] [University of Alabama; Haskew, Timothy [University of Alabama] [University of Alabama; Myryasov, Oleg [University of Alabama] [University of Alabama; Jin, Sungho [University of California San Diego] [University of California San Diego; Berkowitz, Ami [University of California San Diego] [University of California San Diego

    2014-06-05T23:59:59.000Z

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  9. An in situ accelerator-based diagnostic for plasma-material interactions science on magnetic fusion devices

    SciTech Connect (OSTI)

    Hartwig, Zachary S.; Barnard, Harold S.; Lanza, Richard C.; Sorbom, Brandon N.; Stahle, Peter W.; Whyte, Dennis G. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge Massachusetts 02139 (United States)

    2013-12-15T23:59:59.000Z

    This paper presents a novel particle accelerator-based diagnostic that nondestructively measures the evolution of material surface compositions inside magnetic fusion devices. The diagnostic's purpose is to contribute to an integrated understanding of plasma-material interactions in magnetic fusion, which is severely hindered by a dearth of in situ material surface diagnosis. The diagnostic aims to remotely generate isotopic concentration maps on a plasma shot-to-shot timescale that cover a large fraction of the plasma-facing surface inside of a magnetic fusion device without the need for vacuum breaks or physical access to the material surfaces. Our instrument uses a compact (?1 m), high-current (?1 milliamp) radio-frequency quadrupole accelerator to inject 0.9 MeV deuterons into the Alcator C-Mod tokamak at MIT. We control the tokamak magnetic fields in between plasma shots to steer the deuterons to material surfaces where the deuterons cause high-Q nuclear reactions with low-Z isotopes ?5 ?m into the material. The induced neutrons and gamma rays are measured with scintillation detectors; energy spectra analysis provides quantitative reconstruction of surface compositions. An overview of the diagnostic technique, known as accelerator-based in situ materials surveillance (AIMS), and the first AIMS diagnostic on the Alcator C-Mod tokamak is given. Experimental validation is shown to demonstrate that an optimized deuteron beam is injected into the tokamak, that low-Z isotopes such as deuterium and boron can be quantified on the material surfaces, and that magnetic steering provides access to different measurement locations. The first AIMS analysis, which measures the relative change in deuterium at a single surface location at the end of the Alcator C-Mod FY2012 plasma campaign, is also presented.

  10. Development of Apple Workgroup Cluster and Parallel Computing for Phase Field Model of Magnetic Materials

    E-Print Network [OSTI]

    Huang, Yongxin

    2010-01-16T23:59:59.000Z

    Micromagnetic modeling numerically solves magnetization evolution equation to process magnetic domain analysis, which helps to understand the macroscopic magnetic properties of ferromagnets. To apply this method in simulation of magnetostrictive...

  11. NMR and Transport Studies on Group IV Clathrates and Related Intermetallic Materials

    E-Print Network [OSTI]

    Zheng, Xiang

    2012-10-19T23:59:59.000Z

    thermoelectric materials are the intermetallic clathrates. Clathrates are cage-structured materials with guest atoms enclosed. Previous studies have shown lower thermal conductivities compared with many other bulk compounds, and it is believed that guest atom...

  12. Mechanics of Advanced Materials and Structures, 14:227244, 2007 Copyright c Taylor & Francis Group, LLC

    E-Print Network [OSTI]

    Paulino, Glaucio H.

    -measuring devices [8­11]; graded refractive index materials [12]; thermionic converters [13]; den- tal and other

  13. Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P. (Carpenter Technologies, Inc.); Magee, J. (Carpenter Technologies, Inc.)

    2010-09-10T23:59:59.000Z

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  14. Synthesis of bulk FeHfBO soft magnetic materials and its loss characterization at megahertz frequency

    SciTech Connect (OSTI)

    Zhou Yang; Kou Xiaoming; Warsi Muhammad, Asif; Lin Shuo; Harris, Brendan S.; Parsons, Paul E.; Xiao, John Q. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Mu Mingkai; Lee, Fred C. [Center for Power Electronics System, Virginia Polytechnic and State University, Blacksburg, Virginia 24060 (United States); Zhu Hao [Spectrum Magnetics LLC, Wilmington, Delaware 19804 (United States)

    2013-05-07T23:59:59.000Z

    Magnetic core materials with low loss, high saturation magnetization, large permeability, and operating frequency above 1 MHz are in high demands for the next generation of miniaturized power electronics. Amorphous FeHfB ribbons with thickness around 20 {mu}m have been fabricated through melt-spinning. Different heat treatments were performed on the FeHfB ribbons, and the relations among heat treatments, microstructure, and magnetic properties have been explored. Properties such as coercivity (H{sub c}) of 2.0 Oe and saturation magnetic flux density (B{sub S}) of 1.2 T have been achieved in samples with exchange coupling. The losses can be minimized by balancing the hysteretic and eddy current losses and can be further reduced with additional magnetic field annealing. At 5 MHz with peak magnetic flux density of 20 mT, the materials show core losses comparable to the best ferrites, but with higher permeability value of about 200 and superior saturation induction of more than 1 T.

  15. NMR and Transport Studies on Group IV Clathrates and Related Intermetallic Materials

    E-Print Network [OSTI]

    Zheng, Xiang

    2012-10-19T23:59:59.000Z

    challenge. In this work, Nuclear Magnetic Resonance (NMR), heat capacity and transport measurements have been used to study several clathrate systems, especially the well- known type-I Ba8Ga16Sn30, which has been reported to have one of the lowest thermal...

  16. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Kollu, Pratap, E-mail: pk419@cam.ac.uk, E-mail: anirmalagrace@vit.ac.in, E-mail: dhirenb@iitb.ac.in [DST-INSPIRE Faculty, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D., E-mail: pk419@cam.ac.uk, E-mail: anirmalagrace@vit.ac.in, E-mail: dhirenb@iitb.ac.in [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Santosh, Chella; Grace, Andrews Nirmala, E-mail: pk419@cam.ac.uk, E-mail: anirmalagrace@vit.ac.in, E-mail: dhirenb@iitb.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014 (India)

    2014-08-04T23:59:59.000Z

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100?Oe and 200?Oe) are explained on the basis of surface spin disorder.

  17. Maximizing Hysteretic Losses in Magnetic Ferrite Nanoparticles via Model-Driven Synthesis and Materials Optimization

    E-Print Network [OSTI]

    Chen, Ritchie

    This article develops a set of design guidelines for maximizing heat dissipation characteristics of magnetic ferrite MFe[subscript 2]O[subscript 4] (M = Mn, Fe, Co) nanoparticles in alternating magnetic fields. Using ...

  18. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29T23:59:59.000Z

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  19. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09T23:59:59.000Z

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  20. Towards an electro-magnetic field separation of deposited material implemented in an ion beam sputter process

    SciTech Connect (OSTI)

    Malobabic, Sina; Jupe, Marco; Ristau, Detlev [Laser Component Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30149 Hannover (Germany) [Laser Component Department, Laser Zentrum Hannover e.V., Hollerithallee 8, 30149 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universitaet Hannover, Hannover (Germany)

    2013-06-03T23:59:59.000Z

    Nowadays, Ion Beam Sputter (IBS) processes are very well optimized on an empirical basis. To achieve further progresses, a modification of the IBS process by guiding the coating material using an axial magnetic field and an additional electrical field has been studied. The electro-magnetic (EM) field leads to a significant change in plasma properties and deposition rate distributions, whereas an increase in deposition rate along the centerline of the axial EM field around 150% was observed. These fundamental studies on the prototype are the basis for the development of an applicable and workable design of a separation device.

  1. Studies on the preservation of electronic materials commissioned by the Digital Archiving Working Group

    E-Print Network [OSTI]

    Carr, Leslie

    Library. Bennett, J.C. (1997) A framework of data types and formats, and issues affecting the long term and preserving digital collections. British Library Research and Innovation Report 107. London: The British preservation of digital material. British Library Research and Innovation Report 50. London: The British

  2. Electrochemical phenomena provide unique methods for materials synthesis and surface modification. Within this framework, the group

    E-Print Network [OSTI]

    Acton, Scott

    components for information storage, sensors and energy conversion devices. "Further the understanding to tailor to specification materials and components for a variety of devices, focusing on micro of a variety of self-assembled nanostructures, as well as the development and integration of suitable

  3. THE CENTER FOR NANOPHASE MATERIALS SCIENCES USER GROUP MEMBERS August 9, 2010

    E-Print Network [OSTI]

    . Tennessee Brown, Gilbert ORNL Brown, Suree ORNL Browning, Jim ORNL Bruce, Barry U. Tennessee Bucknall, David Georgia Tech Budai, John ORNL Bulut, Lutfiye Brown U. Buncick, Milan Aegis Technologies Group Buongiorno, Florencia ORISE Campbell, Thomas Virginia Tech Campbell, Tom ADA Technologies Inc. Cao, Anmin U. Pittsburgh

  4. LALP-07-094 Winter 2008 Materials Physics and Applications Division Group Profile

    E-Print Network [OSTI]

    the energy of fusion of light nuclei. It was known that deuterons fuse much more easily than protons deuterium fuel and producing a thermonuclear yield of roughly 10 megatons of TNT. Many group members Security Administration/Nevada Site Office. Mike, the first large-scale experiment with thermonuclear

  5. A fuzzy analytic hierarchy process for group decision making: application for embedding information on communicating materials

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    to use intelligent products for ensuring an information continuum all along the product lifecycle, group decision making, Intelligent product; Product Lifecycle Management; Data Dissemination I lifecycle (PLC). However, most of the time, products only provide a network pointer to a linked database (e

  6. Development of Superconducting Materials for Use in Magnet Applications: Nb3Sn Flux Pinning and Bi-2212 Magnetic Texturing

    E-Print Network [OSTI]

    Rahmani, David G.

    2010-07-14T23:59:59.000Z

    as round wires are presented and discussed. Processes were developed to increase flux pinning in Nb3Sn by utilizing powder metallurgy techniques to introduce a heterogeneously homogenous distribution of nanoscale inclusions of candidate materials in Nb rod...

  7. Development of Superconducting Materials for Use in Magnet Applications: Nb3Sn Flux Pinning and Bi-2212 Magnetic Texturing

    E-Print Network [OSTI]

    Rahmani, David G.

    2010-07-14T23:59:59.000Z

    as round wires are presented and discussed. Processes were developed to increase flux pinning in Nb3Sn by utilizing powder metallurgy techniques to introduce a heterogeneously homogenous distribution of nanoscale inclusions of candidate materials in Nb rod...

  8. Journal of Magnetism and Magnetic Materials 256 (2003) 4145 Influence of the initial temperature on the thermal

    E-Print Network [OSTI]

    Schumann, Rolf

    2003-01-01T23:59:59.000Z

    on the thermal remagnetization of SmCo5 sintered magnets L. Jahna , V. Ivanovb , R. Schumannc, *, M. Loewenhaupta-demagnetization at the initial temperature T0 followed by heating. The TR is especially large for well-aligned sintered SmCo5 of the coercivity. We present a systematical study on the influence of the initial temperature T0 on the TR of SmCo5

  9. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOE Patents [OSTI]

    Kochen, Robert L. (Boulder, CO); Navratil, James D. (Simi Valley, CA)

    1997-01-21T23:59:59.000Z

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  10. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOE Patents [OSTI]

    Kochen, R.L.; Navratil, J.D.

    1997-01-21T23:59:59.000Z

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  11. Influence of dipolar collective effects on coercivity and demagnetizing factors in hard magnetic materials

    E-Print Network [OSTI]

    Dobrynin, Alexey

    perpendicular recording media and high- performance sintered magnets, such as NdFeB and SmCo5. In such systems

  12. EM QA Working Group September 2011 Meeting Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune 20, 2013Meeting Materials EM QA

  13. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    SciTech Connect (OSTI)

    Sumption, Mike; Collings, E.

    2014-10-29T23:59:59.000Z

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  14. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

    1998-04-28T23:59:59.000Z

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  15. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28T23:59:59.000Z

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  16. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOE Patents [OSTI]

    Huang, Yuhong (West Hills, CA); Wei, Qiang (West Hills, CA); Zheng, Haixing (Oak Park, CA)

    2002-01-01T23:59:59.000Z

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  17. Incorporation of 4d and 5d Transition Metal Cyanometallates into Magnetic Clusters and Materials.

    E-Print Network [OSTI]

    Hilfiger, Matthew Gary

    2011-08-08T23:59:59.000Z

    scenarios: (a) A ferromagnet where neighboring spins align in a parallel fashion with the magnetic field and retain their directionality even when the field is removed; (b) An antiferromagnet wherein the spins of neighboring centers couple... scheme of Prussian Blue analogs, M' = V,Cr, Fe, Co, M = V, Cr, Mn, Fe, Ni , L = labile ligand or solvent molecule. 6 cancel, and the remaining unpaired spins align with the field as a ferromagnet does (Scheme 2a). Although these magnetic...

  18. Development of accelerator based spatially resolved ion beam analysis techniques for the study of plasma materials interactions in magnetic fusion devices

    E-Print Network [OSTI]

    Barnard, Harold Salvadore

    2014-01-01T23:59:59.000Z

    Plasma-material interactions (PMI) in magnetic fusion devices pose significant scientific and engineering challenges for the development of steady-state fusion power reactors. Understanding PMI is crucial for the develpment ...

  19. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01T23:59:59.000Z

    1.1 Magnetic Semiconductors . . . . . . . . . . . . . . .Semiconductors . . . . . . . . . . . . . . . . . . . 1.3in Semiconductors . . . . . . . . . . . . . . . . . . 1.3.5

  20. Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials

    E-Print Network [OSTI]

    Zocco, Diego Andrs

    2011-01-01T23:59:59.000Z

    3. Magnetism in Metals . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideIII Superconductivity, Magnetism and Charge-Density Waves in

  1. JOURNAL OF MATERIALS SCIENCE 37 (2002) 2441 2446 Influence of L uders bands on magnetic

    E-Print Network [OSTI]

    Clapham, Lynann

    2002-01-01T23:59:59.000Z

    is primarily utilized for the detection of corrosion defects in oil and gas pipelines [6, 7]. As most and gas pipelines during in-service aging act as stress raisers as these pipelines are operated at up. The MFL results indicate that magnetic flux leaks out into the air from regions with L uders bands due

  2. MHD problems in free liquid surfaces as plasma-facing materials in magnetically confined reactors

    E-Print Network [OSTI]

    Harilal, S. S.

    -producing magnetically confined reactors. Solid PFC cannot be reliably used because of the large erosion losses during is in 5 T, the density r is g/cm3 , and the liquid metal is lithium. The velocity V0 and thickness/depth h

  3. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect (OSTI)

    Wilson, K.L. (ed.)

    1985-10-01T23:59:59.000Z

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  4. Device Fabrication and Processing > Thin Film ALD, RF/DC Magnetic Materials and Co-

    E-Print Network [OSTI]

    Das, Suman

    .ien.gatech.edu Materials Processed > Dielectrics: SiO2, Si3N4,SiC, HfO2, ZnO, ZrO2, AlN, TiN, TiO2, Al2O3, additional dielectrics on request > Metals: Al, Cr, Ti, W, Ni, Mo, Pt, Fe, Cu, Ir, Pd, Ag, additional metals by request RIE; HBr-based ICP; Metals Al, Cr, Ti, W, Ag > Wet Etching: SiO2, Si3N4 Metals, Organic materials

  5. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  6. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01T23:59:59.000Z

    magnetic semiconductors: the europium chalcogenides. Phys.Classic examples are europium chalcogenides [3], Gd 3?x ? xmagnetic semiconductor europium chalcogenides, where the

  7. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | NationalMaterials

  8. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01T23:59:59.000Z

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  9. Assessment of martensitic steels as structural materials in magnetic fusion devices

    SciTech Connect (OSTI)

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01T23:59:59.000Z

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600/sup 0/C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity.

  10. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Alexandra O. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

    2003-07-08T23:59:59.000Z

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  11. New Conducting and Electrically Switching Molecular Materials based on Main Group and Transition Metal Ions Bridged by TCNQ Derivatives

    E-Print Network [OSTI]

    Zhang, Zhongyue

    2013-05-24T23:59:59.000Z

    ,7,8,8-tetracyanoquinodimethane) has played a central role in the design of many unprecedented conducting materials including the first purely organic conductor (TTF)(TCNQ) (TTF = tetrathiafulvalene) which is nearly metallic and the electrically bistable switching material Cu...

  12. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    SciTech Connect (OSTI)

    Kong, Zueqian

    2010-03-15T23:59:59.000Z

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  13. In Chemistry of Nanostructured Materials; Yang, P., Ed.; World Scientific Publishing: Hong Kong, 2003. MOLECULAR CLUSTER MAGNETS

    E-Print Network [OSTI]

    -density information storage, quantum computing, and magnetic refrigeration are briefly discussed. 1 Introduction Over magnets include high-density information storage, quantum computing, and magnetic refrigeration. Moreover, 2003. 291 MOLECULAR CLUSTER MAGNETS JEFFREY R. LONG Department of Chemistry, University of California

  14. Journal of Magnetism and MagneticMaterials 148 (1995) 40-41 studies of bct Fe(100)p(1 1)/Pd(100) films

    E-Print Network [OSTI]

    Rau, Carl

    transitions in low dimensions, but also from the recent interest in the devel- opment of novel and sophisticated electronic and magnetic devices of dimensions in the nanometer range which re- quires oscillatory ferromagnetic exchange coupling be- tween magnetic layers separated by nonmagnetic spacer layers

  15. Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials

    E-Print Network [OSTI]

    Zocco, Diego Andrs

    2011-01-01T23:59:59.000Z

    B. Superconductivity . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideSearch for Pressure Induced Superconductivity in Undoped Ce-

  16. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01T23:59:59.000Z

    Magnetization data for a-Mn 0.15 Ge 0.85 ?lms mea- suredSi 1?x and a-Mn x Ge 1?x samples. . . . . . . . . . . . . .both a-Mn x Si 1?x and a-Mn x Ge 1?x as a func- tion of Mn

  17. New Conducting and Electrically Switching Molecular Materials based on Main Group and Transition Metal Ions Bridged by TCNQ Derivatives

    E-Print Network [OSTI]

    Zhang, Zhongyue

    2013-05-24T23:59:59.000Z

    The field of molecular electronics has been under investigation by materials scientists for the last two decades, activity that has increased in recent years as their potential to be components in modern quantum computing ...

  18. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30T23:59:59.000Z

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  19. The Nature of the Distinctive Microscopic Features in R5(SixGe1-x)4 Magnetic Refrigeration Materials

    SciTech Connect (OSTI)

    Ozan Ugurlu

    2006-05-01T23:59:59.000Z

    Magnetic refrigeration is a promising technology that offers a potential for high energy efficiency. The giant magnetocaloric effect of the R{sub 5}(Si{sub x}, Ge{sub 1-x}){sub 4} alloys (where R=rare-earth and O {le} x {le} 1), which was discovered in 1997, make them perfect candidates for magnetic refrigeration applications. In this study the microstructures of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} alloys have been characterized using electron microscopy techniques, with the focus being on distinctive linear features first examined in 1999. These linear features have been observed in R{sub 5}(Si{sub x}, Ge{sub 1-x}){sub 4} alloys prepared from different rare-earths (Gd, Tb, Dy and Er) with different crystal structures (Gd{sub 5}Si{sub 4}-type orthorhombic, monoclinic and Gd{sub 5}Ge{sub 4}-type orthorhombic). Systematic scanning electron microscope studies revealed that these linear features are actually thin-plates, which grow along specific directions in the matrix material. The crystal structure of the thin-plates has been determined as hexagonal with lattice parameters a=b=8.53 {angstrom} and c=6.40 {angstrom} using selected area diffraction (SAD). Energy dispersive spectroscopy analysis, carried out in both scanning and transmission electron microscopes, showed that the features have a composition approximating to R{sub 5}(Si{sub x},Ge{sub 1-x}){sub 3}.phase. Orientation relationship between the matrix and the thin-plates has been calculated as [- 1010](1-211){sub p}//[010](10-2){sub m}. The growth direction of the thin plates are calculated as (22 0 19) and (-22 0 19) by applying the Ag approach of Zhang and Purdy to the SAD patterns of this system. High Resolution TEM images of the Gd{sub 5}Ge{sub 4} were used to study the crystallographic relationship. A terrace-ledge structure was observed at the interface and a 7{sup o} rotation of the reciprocal lattices with respect to each other, consistent with the determined orientation relationship, was noted. Both observations are consistent with the stated hypothesis that the growth direction of the thin-plates is parallel to an invariant line direction. Based on the terrace-ledge structure of the thin-plate interface a displacive-diffusional growth mechanism has been proposed to explain the rapid formation of the R{sub 5}(Si{sub x},Ge{sub 1-x}){sub 3} plates.

  20. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12T23:59:59.000Z

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  1. Mossbauer spectroscopic and x-ray diffraction studies of FeSiO2 nanocomposite soft magnetic materials

    E-Print Network [OSTI]

    Yang, De-Ping

    Mossbauer spectroscopic and x-ray diffraction studies of FeSiO2 nanocomposite soft magnetic. The compositions of the precursor and the successive heat-treated samples have been investigated by 57 Fe Mossbauer a synthesis of Fe/SiO2 nanocomposites and a study of their magnetic and structural properties using Mossbauer

  2. Materials Science and Engineering B 126 (2006) 230235 Alloying, co-doping, and annealing effects on the magnetic and optical

    E-Print Network [OSTI]

    Dietz, Nikolaus

    are formed. Atomic force microscopy revealed MOCVD-like step flow growth patterns and a mean surface consist of semi- conductors doped with rare earth or transition metals to provide magnetic functionality on the magnetic and optical properties of MOCVD-grown Ga1-xMnxN Matthew H. Kanea,b, Martin Strassburga,d, Ali

  3. XSD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials Science Magnetic Materials (MM) Primary Contact: Daniel Haskel Research...

  4. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05T23:59:59.000Z

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  5. Breaking symmetries in ordered materials : spin polarized light transport in magnetized noncentrosymmetric 1D photonic crystals, and photonic gaps and fabrication of quasiperiodic structured materials from interference lithography

    E-Print Network [OSTI]

    Bita, Ion

    2006-01-01T23:59:59.000Z

    Effects of breaking various symmetries on optical properties in ordered materials have been studied. Photonic crystals lacking space-inversion and time-reversal symmetries were shown to display nonreciprocal dispersion ...

  6. Patterned Magnetic Nanostructures and Quantized Magnetic Disks

    E-Print Network [OSTI]

    -increasing demands in data storage and to new applications of magnetic devices in the field of sensors. NewPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra

  7. 2260 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 6, JUNE 2010 Characterization of Oxide Materials for Exchange

    E-Print Network [OSTI]

    Laughlin, David E.

    , and David E. Laughlin1 Department of Materials Science & Engineering, DSSC, Carnegie Mellon University, Pittsburgh, PA 15213 USA Department of Electrical & Computer Engineering, DSSC, Carnegie Mellon University

  8. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, J.M.; Peuron, A.U.

    1980-07-01T23:59:59.000Z

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  9. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, John M. (Del Mar, CA); Peuron, Unto A. (Solana Beach, CA)

    1982-01-01T23:59:59.000Z

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  10. Special Purpose Materials annual progress report, October 1, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    The scope of Special Purpose Materials covers fusion reactor materials problems other than the first-wall and blanket structural materials, which are under the purview of the ADIP, DAFS, and PMI task groups. Components that are considered as special purpose materials include breeding materials, coolants, neutron multipliers, barriers for tritium control, materials for compression and OH coils and waveguides, graphite and SiC, heat-sink materials, ceramics, and materials for high-field (> 10-T) superconducting magnets. It is recognized that there will be numerous materials problems that will arise during the design and construction of large magnetic-fusion energy devices such as the Engineering Test Facility (ETF) and Demonstration Reactor (DEMO). Most of these problems will be specific to a particular design or project and are the responsibility of the project, not the Materials and Radiation Effects Branch. Consequently, the Task Group on Special Purpose Materials has limited its concern to crucial and generic materials problems that must be resolved if magnetic-fusion devices are to succeed. Important areas specifically excluded include low-field (8-T) superconductors, fuels for hybrids, and materials for inertial-confinement devices. These areas may be added in the future when funding permits.

  11. Magnets & Magnet Condensed Matter Science

    E-Print Network [OSTI]

    McQuade, D. Tyler

    18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials Pressure 9 Metal to Insulator Transition on the N=0 Landau Level in Graphene 10 Evidence for Fractional Quantum Hall States in Suspended Bilayer and Trilayer Graphene 11 Fractional Quantum Hall Effect

  12. Magnetic fusion energy plasma interactive and high heat flux components. Volume I. Technical assessment of the critical issues and problem areas in the plasma materials interaction field

    SciTech Connect (OSTI)

    Conn, R.W.; Gauster, W.B.; Heifetz, D.; Marmar, E.; Wilson, K.L. (eds.)

    1984-01-01T23:59:59.000Z

    A technical assessment of the critical issues and problem areas in the field of plasma materials interactions (PMI) in magnetic fusion devices shows these problems to be central for near-term experiments, for intermediate-range reactor devices including D-T burning physics experiments, and for long-term reactor machines. Critical technical issues are ones central to understanding and successful operation of existing and near-term experiments/reactors or devices of great importance for the long run, i.e., ones which will require an extensive, long-term development effort and thus should receive attention now. Four subgroups were formed to assess the critical PMI issues along four major lines: (1) PMI and plasma confinement physics experiments; (2) plasma-edge modelling and theory; (3) surface physics; and (4) materials technology for in-vessel components and the first wall. The report which follows is divided into four major sections, one for each of these topics.

  13. Nuclear magnetic resonance: Its role as a microscopic probe of the electronic and magnetic properties of High-{Tc} superconductors and related materials

    SciTech Connect (OSTI)

    Suh, Byoung Jin

    1995-12-27T23:59:59.000Z

    NMR experiments are reported for Sr{sub 2}CuO{sub 2}Cl{sub 2}, HgBa{sub 2}CuO{sub 4+d}, YNi{sub 2}B{sub 2}C and YBa{sub 2}Cu{sub 3}O{sub 7}. NMR studies typify three different aspects of microscopic properties of HTSC. In non-superconducting antiferromagnetic (AF) prototype Sr{sub 2}CuO{sub 2}Cl{sub 2}, we used NMR to investigate Cu{sup 2+} correlated spin dynamics and AF phase transition in CuO2 layers. In the superconductors, we used NMR both to investigate the electronic properties of the Fermi-liquid in normal and superconducting states and to investigate flux lattice and flux-line dynamics in the superconducting state in presence of magnetic field. A summary of each study is given: {sup 35}Cl NMR was measured in Sr{sub 2}CuO{sub 2}Cl{sub 2} single crystals with T{sub N}=257K. {sub 35}Cl NMR relaxation rates showed crossover of Cu{sup 2+} spin dynamics from Heisenberg to XY-like correlation at 290 K well above T{sub N}. A field-dependent T{sub N} for H{perpendicular}c was observed and explained by a field-induced Ising-like anisotropy in ab plane. {sup 199}Hg NMR was measured in HgBa{sub 2}CuO{sub 4+d}. Properties of the Fermi-liquid are characterized by a single-spin fluid picture and opening of a spin pseudo-gap at q=0 above {Tc}. Below {Tc}, spin component of Knight shift decreases rapidly in agreement with prediction for d-wave pairing scheme. {sup 11}B and {sup 89}Y NMR/magnetization were measured in YNi{sub 2}B{sub 2}C. Temperature dependence of {sup 11}B Knight shift and of the NSLR gave a normal state which agrees with the Korringa relation, indicating that the AF fluctuations on the Ni sublattice are negligible. Opening of the superconducting gap obeys BCS. A NMR approach to investigate vortex thermal motion in HTSC is presented, based on contribution of thermal flux-lines motion to both T{sub 2}{sup {minus}1} and T{sub 1}{sup {minus}1}. Effects are demonstrated in YBa{sub 2}Cu{sub 3}O{sub 7} and HgBa{sub 2}CuO{sub 4+d}.

  14. Magnetically attached sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15T23:59:59.000Z

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  15. Magnetic nanohole superlattices

    DOE Patents [OSTI]

    Liu, Feng

    2013-05-14T23:59:59.000Z

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  16. Ch 20. Magnetism Liu UCD Phy1B 2012 1

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Ch 20. Magnetism Liu UCD Phy1B 2012 1 #12;I. MagnetI. Magnet Poles of a magnet: magnetic effect is strongest When the magnet is freely suspended North pole: pointing to north South pole: pointing to south Poles always come in pairs Liu UCD Phy1B 2012 2 #12;Magnetic MaterialsMagnetic Materials Magnetite Fe3O4

  17. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  18. Active Magnetic Regenerator Experimental Optimization

    E-Print Network [OSTI]

    Victoria, University of

    the potential to create more efficient and compact refrigeration devices is an Active Magnetic Regenerative temperature refrigerators, as well as efficient gas liquefaction plants (AMRLs). Active Magnetic Regenerator Refrigeration exploits the magnetocaloric effect displayed by magnetic materials whereby a reversible

  19. Critical Materials Strategy Summary

    Broader source: Energy.gov (indexed) [DOE]

    in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address...

  20. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus Examine mechanisms responsible for flame stabilization

  1. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  2. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  3. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect (OSTI)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1989-03-01T23:59:59.000Z

    Twenty-three laced permanent magnet quadrupole drift tube magnets have been constructed, tested, and installed in the SuperHILAC heavy ion linear accelerator at LBL, marking the first accelerator use of this new type of quadrupole. The magnets consist of conventional tape-wound quadrupole electromagnets, using iron pole-pieces, with permanent magnet material (samarium cobalt) inserted between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the individual quadrupole magnets in a drift tube linac is never reversed, we can take advantage of this asymmetrical saturation to provide about 20% greater focusing strength than is available with conventional quadrupoles, while replacing the vanadium permendur poletips with iron poletips. Comparisons between these magnets and conventional tape-wound quadrupoles will be presented. 3 refs., 5 figs.

  4. Effects of magnetic flux density and substrate bias voltage on Ni films prepared on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma

    SciTech Connect (OSTI)

    Koda, Tatsunori [Graduate School of Science and Technology, Hiroshima Institute of Technology, 2-1-1, Miyake, Saeki-ku, Hiroshima 7315193 (Japan); Toyota, Hiroshi, E-mail: h.toyota.za@it-hiroshima.ac.jp [Department of Electronics and Computer Engineering, Hiroshima Institute of Technology, 2-1-1, Miyake, Saeki-ku, Hiroshima 7315193 (Japan)

    2014-03-15T23:59:59.000Z

    The authors fabricated Ni films on a flexible substrate material using unbalanced magnetron sputtering assisted by inductively coupled plasma. The effects of magnetic flux density B{sub C} and substrate DC bias voltage V{sub S} on the Ni film structures were investigated. For V{sub S}?=??40?V, the average surface grain size D{sub G} measured by atomic force microscopy for B{sub C}?=?0, 3, and 5?mT was 88.2, 95.4, and 104.4?nm, respectively. In addition, D{sub G} increased with V{sub S}. From x-ray diffraction measurements, the (111) and (200) peaks were clearly visible for the fabricated Ni films. The ratio of the integrated intensities of I(111)/I(200) increased with V{sub S}. For V{sub S}?=??40?V and B{sub C}?=?3?mT, a film resistivity ? of 8.96??10{sup ?6} ? cm was observed, which is close to the Ni bulk value of 6.84??10{sup ?6} ? cm. From these results, the authors determined that the structure of the fabricated Ni films on the flexible substrate material was affected by the values of B{sub C} and V{sub S}.

  5. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 12 N0. 1 2005

    E-Print Network [OSTI]

    Weston, Ken

    , and Geochemistry 14 MAGNET SCIENCE & TECHNOLOGY Engineering Materials, Instrumentation, and Magnet Technology Magnet Science & Technology 42 7 including Engineering Materials, Instrumentation, and Magnet TechnologyNATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 12 N0. 1 2005 OPERATED BY: FLORIDA STATE

  6. Flipping the switch on magnetism in strontium titanate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping the switch on magnetism in strontium titanate Flipping the switch on magnetism in strontium titanate Researchers have found a way to magnetize this material using light,...

  7. Magnetization rotation in a superconductor/ferromagnet bilayer ring structure Diana G. Gheorghe and Rinke J. Wijngaarden

    E-Print Network [OSTI]

    Wijngaarden, Rinke J.

    Magnetization rotation in a superconductor/ferromagnet bilayer ring structure Diana G. Gheorghe and Superconducting Materials Group, Kamerlingh Onnes Laboratory, University Leiden, P.O. Box 9504, 2300 RA Leiden The magnetic-flux distribution in a bilayer ring consisting of superconducting Nb and ferromagnetic amor- phous

  8. Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and

    E-Print Network [OSTI]

    Maroncelli, Mark

    Electric-Field Control of Magnetism Intrinsic magnetoelectric coupling describes the microscopic interaction between magnetic and electric polarization in a single-phase material. The control of the magnetic of the two interactions. Moderate biaxial compression precipitates local magnetic competition

  9. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives Obtain fundamental understanding of combustion

  10. Manganese containing layer for magnetic recording media

    DOE Patents [OSTI]

    Lambeth, David N. (Pittsburgh, PA); Lee, Li-Lien (Santa Clara, CA); Laughlin, David E. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.

  11. Laced permanent magnet quadrupole drift tube magnets

    SciTech Connect (OSTI)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01T23:59:59.000Z

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs.

  12. Magnetism in metal-organic capsules

    E-Print Network [OSTI]

    Atwood, Jerry L.

    2010-01-01T23:59:59.000Z

    Quantum Spin Chains in Magnetism: Molecules to Materials, J.Magnetism in metal-organic capsules Jerry L. Atwood,* a Euan

  13. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  14. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

    1987-01-01T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  15. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L. [comp.

    1993-06-01T23:59:59.000Z

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  16. Review and comparison of magnet designs for magnetic refrigeration

    E-Print Network [OSTI]

    Bjrk, R; Smith, A; Pryds, N

    2014-01-01T23:59:59.000Z

    One of the key issues in magnetic refrigeration is generating the magnetic field that the magnetocaloric material must be subjected to. The magnet constitutes a major part of the expense of a complete magnetic refrigeration system and a large effort should therefore be invested in improving the magnet design. A detailed analysis of the efficiency of different published permanent magnet designs used in magnetic refrigeration applications is presented in this paper. Each design is analyzed based on the generated magnetic flux density, the volume of the region where this flux is generated and the amount of magnet material used. This is done by characterizing each design by a figure of merit magnet design efficiency parameter, $\\Lambda_\\mathrm{cool}$. The designs are then compared and the best design found. Finally recommendations for designing the ideal magnet design are presented based on the analysis of the reviewed designs.

  17. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  18. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14T23:59:59.000Z

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  19. Magnetic Material for PM Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    *In situ surface passivation approach reduced oxygen content by 60% *High level of control for up-scaled batch fluorination process reduced air oxidation rate by 70% over...

  20. Magnetic domain walls driven by interfacial phenomena

    E-Print Network [OSTI]

    Emori, Satoru

    2014-01-01T23:59:59.000Z

    A domain wall in a ferromagnetic material is a boundary between differently magnetized regions, and its motion provides a convenient scheme to control the magnetization state of the material. Domain walls can be confined ...

  1. Conference Proceedings (Refereed Invited Reviews). 1. "Role of Large-Scale Magnetic Fields and Material Flows in the Formation of Solar Filaments

    E-Print Network [OSTI]

    Mackay, Duncan

    Conference Proceedings (Refereed Invited Reviews). 1. "Role of Large-Scale Magnetic Fields Scale Structures and their Role in Solar Activity, ASP Conference Proceedings Series, 346, 177. 2. "The-297. Conference Proceedings (Others). 1. "Basic Magnetic Field Configurations for Filament Channels and Filaments

  2. Measurement of Thermal Diffusivity and Conductivity in Advanced Nanostructured Materials

    E-Print Network [OSTI]

    Teweldebrhan, Desalegne Bekuretsion

    2012-01-01T23:59:59.000Z

    in Magnetic Materials . . . . . . . . . . . . . . . viimportants of understanding materials properties typicallyY.S. Ju, Annual Review of Materials Science, 29, 261 (1999).

  3. New Materials for Spintronics. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: One of the critical materials needs for the development of spin electronics is diluted magnetic semiconductors (DMS) which retain their ferromagnetism at and...

  4. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOE Patents [OSTI]

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19T23:59:59.000Z

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  5. Computational Chemical Materials Engineering

    E-Print Network [OSTI]

    Home Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department through processing for improving their performance for engineering applications Use and develop with usable Chemical Electronic Optical Magnetic Transport, thermal and mechanical properties

  6. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature," said Frank Johnson, a materials scientist and project leader on GE's magnetic refrigeration project. Developed over the past decade, these new magnetocaloric...

  7. Electric-Magnetic Duality and Topological Insulators

    E-Print Network [OSTI]

    Andreas Karch

    2009-10-03T23:59:59.000Z

    We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a non-trivial permittivity, permeability and theta-angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the AdS/CFT correspondence.

  8. Electric-Magnetic Duality and Topological Insulators

    SciTech Connect (OSTI)

    Karch, A. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

    2009-10-23T23:59:59.000Z

    We work out the action of the SL(2,Z) electric-magnetic duality group for an insulator with a nontrivial permittivity, permeability, and theta angle. This theory has recently been proposed to be the correct low-energy effective action for topological insulators. As applications, we give manifestly SL(2,Z) covariant expressions for the Faraday rotation at orthogonal incidence at the interface of two such materials, as well as for the induced magnetic and electric charges, slightly clarifying the meaning of expressions previously derived in the literature. We also use electric-magnetic duality to find a gravitational dual for a strongly coupled version of this theory using the gauge/gravity correspondence.

  9. Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes

    E-Print Network [OSTI]

    Rinehart, Jeffrey Dennis

    2010-01-01T23:59:59.000Z

    J. -P. ; Kahn, M. L. In Magnetism: Molecules to Materials V.R. Simple Models of Magnetism; Oxford University Press:for interpreting uranium magnetism and will be discussed in

  10. Materials Science & Engineering

    E-Print Network [OSTI]

    and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

  11. Performance-oriented packaging testing of PPP-B-601 ERAPS wood box for packing Group II solid hazardous material. Test report for Oct 91

    SciTech Connect (OSTI)

    Wu, E.

    1991-10-01T23:59:59.000Z

    Qualification tests were performed to determine whether the in-service PPP-B-601 ERAPS Wood Box could be utilized to contain properly dunnaged solid type hazardous materials weighing up to a gross weight of 237 kg (523 pounds). The tests were conducted in accordance with Performance Oriented Packaging (POP) requirements specified by the United Nations Recommendations on the Transportation of Dangerous Goods. The box has conformed to the POP performance requirements; i.e., the box successfully retained its contents throughout the stacking, vibration and drop tests.

  12. www.advmat.de www.MaterialsViews.com

    E-Print Network [OSTI]

    McCalley, James D.

    . In this context, functional magnetic materials, such as advanced hard and soft magnets, magnetic refrigerants, Christina H. Chen, S. G. Sankar, and J. Ping Liu Magnetic Materials and Devices for the 21st Century Sciences Delft University of Technology 2629 JB Delft, The Netherlands Dr. C. H. Chen Magnetics Laboratory

  13. UESC Workshop Materials | Department of Energy

    Office of Environmental Management (EM)

    UESC Workshop Materials UESC Workshop Materials Presentation covers the UESC Workshop Materials and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG)...

  14. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    09propulsionmaterials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office:...

  15. Magnetic nanoworms Systematic Surface Engineering of Magnetic Nanoworms

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    Magnetic nanoworms Systematic Surface Engineering of Magnetic Nanoworms for in vivo Tumor Targeting and Engineering Program Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman magnetic materials nanoworms peptides tumor targeting 694 2009 Wiley-VCH Verlag GmbH & Co. KGa

  16. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26T23:59:59.000Z

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  17. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  18. Oldest Known Magnet's Secrets Revealed Under High Pressures ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dichroism technique is readily applied to most magnetic materials without the need for isotope enrichment, and provides a true measure of long-range magnetic order." Other...

  19. Magnetic Nanocomposite Materials for High Temperature Applications Frank Johnson, Amy Hsaio, Colin Ashe, David Laughlin, David Lambeth, Michael E. McHenry

    E-Print Network [OSTI]

    McHenry, Michael E.

    have been investigated for various soft magnetic applications including transformers and inductive requirements and with needs for large inductions at high temperatures. Recent work in characterizing for high temperature power electronics will be reviewed. 1. Introduction 1.1 Key Principles of Soft

  20. Porous Materials Porous Materials

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Porous Materials x Porous Materials · Physical properties * Characteristic impedance p = p 0 e -jk xa- = vej[ ] p x - j ; Zc= p ve = c ka 0k = c 1-j #12;2 Porous Materials · Specific acoustic impedance Porous Materials · Finite thickness ­ blocked p e + -jk (x-d)a p e - jk (x-d)a d x #12

  1. Transient magnetic field and temperature modeling in large magnet applications

    SciTech Connect (OSTI)

    Gurol, H.; Hardy, G.E.; Peck, S.D.; Leung, E. (General Dynamics Corp., San Diego, CA (USA). Space Systems Div.)

    1989-07-01T23:59:59.000Z

    This paper discusses a coupled magnetic/thermal model developed to study heat and magnetic field diffusion in conducting materials subject to time-varying external fields. There are numerous applications, both military and commercial. These include: energy storage devices, pulsed power transformers, and electromagnetic launchers. The time scales of interest may range from a magnetic field pulse of a microsecond in an electromagnetic launcher, to hundreds of seconds in an energy storage magnet. The problem can be dominated by either the magnetic field or heat diffusion, depending on the temperature and the material properties of the conductor. In general, heat diffuses much more rapidly in high electrical conductivity materials of cryogenic temperatures. The magnetic field takes longer to diffuse, since screening currents can be rapidly set up which shield the interior of the material from further magnetic field penetration. Conversely, in high resistivity materials, the magnetic field diffuses much more rapidly. A coupled two-dimensional thermal/magnetic model has been developed. The results of this model, showing the time and spatial variation of the magnetic field and temperature, are discussed for the projectile of an electromagnetic launcher.

  2. Journal of Intelligent Material Systems and Structures

    E-Print Network [OSTI]

    Pan, Ernie

    by a magnetic field or vice versa. These materials are promising for wide engineering applica- tions, like composite can be induced by an applied magnetic potential. It means that a finite magnetoelectric of magnetoelectric coefficients. Pure magnetic and combined magneticmechanical loads are analyzed. The meshless

  3. Magnetic refrigeration for spacecraft systems

    SciTech Connect (OSTI)

    Barclay, J.A.

    1981-01-01T23:59:59.000Z

    Magnetic refrigerators, i.e., those that use the magnetocaloric effect of a magnetic working material in a thermodynamic cycle, offer potentially reliable, and efficient refrigeration over a variety of temperature ranges and cooling powers. A descriptive analysis of magnetic refrigeration systems is performed with particular emphasis on more efficient infrared detector cooling. Three types of magnetic refrigerator designs are introduced to illustrate some of the possibilities.

  4. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  5. Search for New Spintronic Materials

    E-Print Network [OSTI]

    Min, Byung Il

    Groot, PRL (1983) Magnetism Theory Group / POSTECH #12;CMR perovskite LaAMnO3 A=CaPickett+Singh, PRB-induced ferromagnetism Tc = 376K M'[M(CN)6](H2O): Prussian Blue Yokoyama, PRB (1998) J.S. Miller, MRS Bulletin Nov. (2000 Theory Group / POSTECH #12;HM-AFM double perovskites W. E. Pickett, PRB (1998) Magnetism Theory Group

  6. Integrating giant microwave absorption with magnetic refrigeration in one

    E-Print Network [OSTI]

    Wang, Wei Hua

    Integrating giant microwave absorption with magnetic refrigeration in one multifunctional with magnetic refrigeration in one multifunctional material. This integration not only advances our-compression/expansion refrigeration, magnetic refrigeration exhibits the advantages of high energy efficiency and environment

  7. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  8. HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.

    2011-01-01T23:59:59.000Z

    D. C. 'Niobium-Titanium Superconducting Material s ', in S.14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.SUMAG-68 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS* C.

  9. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb{sub 2}MB{sub 2} (M=Fe, Ru, Os) from first principles calculations

    SciTech Connect (OSTI)

    Touzani, Rachid St.; Fokwa, Boniface P.T., E-mail: Boniface.Fokwa@ac.rwth-aachen.de

    2014-03-15T23:59:59.000Z

    The Nb{sub 2}FeB{sub 2} phase (U{sub 3}Si{sub 2}-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb{sub 2}OsB{sub 2} (space group P4/mnc, no. 128, a twofold superstructure of U{sub 3}Si{sub 2}-type) with distorted Nb-layers and Os{sub 2}-dumbbells was recently achieved, Nb{sub 2}RuB{sub 2} is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb{sub 2}FeB{sub 2} and Nb{sub 2}OsB{sub 2}, but also predict Nb{sub 2}RuB{sub 2} to crystalize with the Nb{sub 2}OsB{sub 2} structure type. According to chemical bonding analysis, the homoatomic BB interactions are optimized and very strong, but relatively strong heteroatomic MB, BNb and MNb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb{sub 2}FeB{sub 2}, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them. -- Graphical abstract: Nb{sub 2}FeB{sub 2} (U{sub 3}Si{sub 2} structure type, space group P4/mbm, no. 127) is predicted to order antiferromagnetically, due to the presence of iron chains which show ferromagnetic interactions in the chains and antiferromagnetic interactions between them. Nb{sub 2}RuB{sub 2} is predicted to crystallize with the recently discovered Nb{sub 2}OsB{sub 2} twofold superstructure (space group P4/mnc, no. 128) of U{sub 3}Si{sub 2} structure type. The building of ruthenium dumbbells instead of chains along [001] is found to be responsible for the stabilization of this superstructure. Highlights: Nb{sub 2}FeB{sub 2} is predicted to order antiferromagnetically. Ferromagnetic interactions found in iron chains and antiferromagnetic ones between them. Unknown Nb{sub 2}RuB{sub 2} predicted to crystallize with a twofold U{sub 3}Si{sub 2} superstructure. Puckering of Nb-layer and Ru-dumbbell formation responsible for superstructure occurrence.

  10. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

    1996-01-01T23:59:59.000Z

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  11. Electric Field Control of Ferromagnetism and Magnetic Devices Using Multiferroics

    E-Print Network [OSTI]

    Heron, John Thomas

    2013-01-01T23:59:59.000Z

    deplete holes from a magnetic semiconductor (InMnAs) using aof holes in the magnetic semiconductor while the black arrowto investigate magnetic semiconductors in his group. I had

  12. High magnetic field ohmically decoupled non-contact technology

    DOE Patents [OSTI]

    Wilgen, John (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger (Knoxville, TN) [Knoxville, TN; Ludtka, Gerard (Oak Ridge, TN) [Oak Ridge, TN; Ludtka, Gail (Oak Ridge, TN) [Oak Ridge, TN; Jaramillo, Roger (Knoxville, TN) [Knoxville, TN

    2009-05-19T23:59:59.000Z

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  13. Acta Physicae Superficierum Vol VII 2004 EXPLORING ARTIFICIAL MAGNETISM

    E-Print Network [OSTI]

    Rau, Carl

    Acta Physicae Superficierum · Vol VII · 2004 EXPLORING ARTIFICIAL MAGNETISM FROM THIN FILMS of artificially structured, new magnetic materials play a fundamental role in modern science and technology. From thin films to patterned magnetic nano-structures, these magnetic materials and systems can be utilized

  14. Permanent-magnet multipole with adjustable strength

    DOE Patents [OSTI]

    Halbach, K.

    1982-09-20T23:59:59.000Z

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  15. Permanent magnet multipole with adjustable strength

    DOE Patents [OSTI]

    Halbach, Klaus (Berkeley, CA)

    1985-01-01T23:59:59.000Z

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  16. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1997-08-05T23:59:59.000Z

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  17. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new information storage and sensing devices. There are two basic energies involved in the manipulation and control of the magnetic properties of materials. Exchange controls...

  18. Advanced Materials for Proton Exchange Membranes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Materials for Proton Exchange Membranes Advanced Materials for Proton Exchange Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19,...

  19. Magnetic cooling at Risoe DTU

    E-Print Network [OSTI]

    Nielsen, K K; Jensen, J B; Bahl, C R H; Pryds, N; Smith, A; Nordentoft, A; Hattel, J

    2009-01-01T23:59:59.000Z

    Magnetic refrigeration at room temperature is of great interest due to a long-term goal of making refrigeration more energy-efficient, less noisy and free of any environmentally hostile materials. A refrigerator utilizing an active magnetic regenerator (AMR) is based on the magnetocaloric effect, which manifests itself as a temperature change in magnetic materials when subjected to a varying magnetic field. In this work we present the current state of magnetic refrigeration research at Risoe DTU with emphasis on the numerical modeling of an existing AMR test machine. A 2D numerical heat-transfer and fluid-flow model that represents the experimental setup is presented. Experimental data of both no-heat load and heat load situations are compared to the model. Moreover, results from the numerical modeling of the permanent magnet design used in the system are presented.

  20. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  1. NANOSCALE STRUCTURALAND MAGNETIC CHARACTERIZATION USING

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    of novel nanoscale storage devices and sensors. However, for successful utilization, it is essential]. Such unique properties of magnetic thin films and nanostructures hold great promise for the development to the characterization of nanostructured magnetic materials. 2. ELECTRON MICROSCOPY METHODS In the transmission electron

  2. Magnetic behaviour and magnetocaloric effect of neodymium-based amorphous alloy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    magnetic refrigerant materials. a) Corresponding author ­ gorsse@icmcb-bordeaux.cnrs.fr hal-00267718 magnetization and demagnetization of the magnetic refrigerant. Families of magnetic materials which exhibit properties for a suitable magnetic refrigerants, e.g. a high electric resistivity that decreases eddy current

  3. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metalsdysprosium, neodymium, terbium, europium, and yttriumcould affect clean energy technology deployment in the coming years.1, 2

  4. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22T23:59:59.000Z

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  5. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood (Marlboro, MA); Schwall, Robert E. (Northborough, MA)

    1999-06-22T23:59:59.000Z

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  6. System and method for manipulating domain pinning and reversal in ferromagnetic materials

    DOE Patents [OSTI]

    Silevitch, Daniel M.; Rosenbaum, Thomas F.; Aeppli, Gabriel

    2013-10-15T23:59:59.000Z

    A method for manipulating domain pinning and reversal in a ferromagnetic material comprises applying an external magnetic field to a uniaxial ferromagnetic material comprising a plurality of magnetic domains, where each domain has an easy axis oriented along a predetermined direction. The external magnetic field is applied transverse to the predetermined direction and at a predetermined temperature. The strength of the magnetic field is varied at the predetermined temperature, thereby isothermally regulating pinning of the domains. A magnetic storage device for controlling domain dynamics includes a magnetic hard disk comprising a uniaxial ferromagnetic material, a magnetic recording head including a first magnet, and a second magnet. The ferromagnetic material includes a plurality of magnetic domains each having an easy axis oriented along a predetermined direction. The second magnet is positioned adjacent to the magnetic hard disk and is configured to apply a magnetic field transverse to the predetermined direction.

  7. Magnetic QCA systems G.H. Bernsteina,

    E-Print Network [OSTI]

    Metlushko, Vitali

    Magnetic QCA systems G.H. Bernsteina, *, A. Imrea , V. Metlushkoc , A. Orlova , L. Zhoua , L. Jia in an altogether new paradigm. Magnetic interactions between nanomagnets are sufficiently strong to allow room recent work of the Notre Dame group on magnetically coupled QCA. q 2005 Elsevier Ltd. All rights reserved

  8. Automata groups

    E-Print Network [OSTI]

    Muntyan, Yevgen

    2010-01-16T23:59:59.000Z

    automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...

  9. Magnetic switch for reactor control rod. [LMFBR

    DOE Patents [OSTI]

    Germer, J.H.

    1982-09-30T23:59:59.000Z

    A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  10. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, Martin S. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  11. Bipolar pulse field for magnetic refrigeration

    DOE Patents [OSTI]

    Lubell, M.S.

    1994-10-25T23:59:59.000Z

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  12. SUPERCONDUCTING MAGNET NEEDS FOR THE ILC.

    SciTech Connect (OSTI)

    PARKER,B.; TOMPKINS, J.C.; KASHIKHIN, VI.; PALMER, M.A.; CLARKE, J.A.

    2007-06-25T23:59:59.000Z

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the lLC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  13. Superconducting magnet needs for the ILC

    SciTech Connect (OSTI)

    Tompkins, J.C.; Kashikhin, Vl.; /Fermilab; Parker, B.; /Brookhaven; Palmer, M.A. /; Clarke, J.A.; /Daresbury

    2007-06-01T23:59:59.000Z

    The ILC Reference Design Report was completed early in February 2007. The Magnet Systems Group was formed to translate magnetic field requirements into magnet designs and cost estimates for the Reference Design. As presently configured, the ILC will have more than 13,000 magnetic elements of which more than 2300 will be based on superconducting technology. This paper will describe the major superconducting magnet needs for the ILC as presently determined by the Area Systems Groups, responsible for beam line design, working with the Magnet Systems Group. The superconducting magnet components include Main Linac quadrupoles, Positron Source undulators, Damping Ring wigglers, a complex array of Final Focus superconducting elements in the Beam Delivery System, and large superconducting solenoids in the e{sup +} and e{sup -} Sources, and the Ring to Main Linac lines.

  14. International magnetic pulse compression workshop: (Proceedings)

    SciTech Connect (OSTI)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01T23:59:59.000Z

    A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  15. Notes on Magnetic Circuits ME 104, Prof. B. Paden

    E-Print Network [OSTI]

    Paden, Brad

    permeablility , is wound with N turns of wire. The toroid material may be any "soft" magnetic material that is magnetized when current is in the coil and then looses its magnetization when the current is turned off form: H J = r r (2) where J r is the current density. In integral form we have D DR R H dl J d

  16. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  17. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, R.J.

    1994-06-07T23:59:59.000Z

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  18. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05T23:59:59.000Z

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  19. Covetic Materials

    Energy Savers [EERE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  20. Polyphosphazine-based polymer materials

    DOE Patents [OSTI]

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25T23:59:59.000Z

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  1. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  2. Materials Science Materials science has had a profound influence on the development of our technologically

    E-Print Network [OSTI]

    New Hampshire, University of

    Materials Science Materials science has had a profound influence on the development of our of materials. In addition, the materials engineer seeks to discover methods of fabricating materials specifically on materials science. In this group, research is being conducted on fracture and fatigue

  3. Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field

    E-Print Network [OSTI]

    Qin, Lu-Chang

    Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field ZHEN Liang( )1 of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; 2. Department 27599-3255, USA Received 29 June 2006; accepted 15 January 2007 Abstract: Structural and magnetic

  4. High anisotropy materials for magnetic nanotechnologies

    E-Print Network [OSTI]

    Shipton, Erik G.

    2011-01-01T23:59:59.000Z

    anisotropy in rare earth transition metal alloys originatesfor transition metals than for rare earth. The atomicmetal sublattice and negative exchange between the CoPd and the rare earth

  5. Permanent Magnetic Materials Discovery | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalmsthe PriceOptimizationUSING C RAY'S

  6. Magnetic investigations

    SciTech Connect (OSTI)

    Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)

    1983-12-31T23:59:59.000Z

    Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

  7. Fusion Technology Working Group Presented by

    E-Print Network [OSTI]

    Abdou, Mohamed

    Snowmass Fusion Technology Working Group Summary Presented by M. Abdou, S. Milora Snowmass July 23, 1999 #12;Technology Working Group Subgroup # 1 Subgroup # 2 Solid Walls Ulrickson / Mattas Liquid Walls / Ying Chamber Technology Abdou / Ulrickson Heating/CD/Fueling Swain / Temkin Magnets Schultz / Woolley

  8. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  9. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz- [ORNL; Chourey, Aashish [American Magnetics Inc.

    2010-08-01T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  10. Biomimetic Hydrogel Materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA), Mukkamala, Ravindranath (Houston, TX), Chen, Oing (Albany, CA), Hu, Hopin (Albuquerque, NM), Baude, Dominique (Creteil, FR)

    2003-04-22T23:59:59.000Z

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  11. Biomimetic hydrogel materials

    DOE Patents [OSTI]

    Bertozzi, Carolyn (Albany, CA); Mukkamala, Ravindranath (Houston, TX); Chen, Qing (Albany, CA); Hu, Hopin (Albuquerque, NM); Baude, Dominique (Creteil, FR)

    2000-01-01T23:59:59.000Z

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  12. Magnetic switch for reactor control rod

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1986-01-01T23:59:59.000Z

    A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

  13. Improving magnet designs with high and low field regions

    E-Print Network [OSTI]

    Bjrk, R; Smith, A; Pryds, N

    2014-01-01T23:59:59.000Z

    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays has to deliver high field regions in close proximity to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material used by 42% while increasing the difference in flux density between a high and a low field region by 45%.

  14. Magnetic Properties of Mesoporous and Nano-particulate Metal Oxides

    E-Print Network [OSTI]

    Hill, Adrian H

    2009-01-01T23:59:59.000Z

    The magnetic properties of the first row transition metal oxides are wide and varied and have been studied extensively since the 1930s. Observations that the magnetic properties of these material types change with the ...

  15. Induced magnetism in Cu nanoparticles embedded in Co P. Swaminathan

    E-Print Network [OSTI]

    Weaver, John H.

    the effects of changing the nature of confinement to three dimensions by embedding Cu nanoparticles in a Co.1063/1.2806236 Nonmagnetic spacer layers grown between layers of magnetic materials exhibit an induced magnetic moment.1

  16. Magnetization-induced enhancement of photoluminescence in core-shell CoFe{sub 2}O{sub 4}@YVO{sub 4}:Eu{sup 3+} composite

    SciTech Connect (OSTI)

    Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn, E-mail: wuzheng@zjnu.cn; Zhou, Zhihua; Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: ymjia@zjnu.edu.cn, E-mail: wuzheng@zjnu.cn; Chen, Jianrong [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Zhang, Yihe [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2013-12-07T23:59:59.000Z

    After the core-shell CoFe{sub 2}O{sub 4}@YVO{sub 4}:Eu{sup 3+} composite synthesized through a facile sol-gel method was magnetized under an external magnetic field of 0.25?T for 4?h, an enhancement of ?56% in photoluminescence intensity was observed. The remanent magnetization of the CoFe{sub 2}O{sub 4} core increases the intensity of the excited charge transfer transition of VO{sub 4}{sup 3?} group in YVO{sub 4}:Eu{sup 3+} shell, which may enhance the probability related to the Eu{sup 3+} radiative transition {sup 5}D{sub 0}-{sup 7}F{sub 2}, yielding to a high photoluminescence. The obvious remanent-magnetization-induced enhancement in photoluminescence is helpful in developing excellent magnetic/luminescent material for the practical display devices.

  17. Magnetic Field Safety Magnetic Field Safety

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

  18. Molten-Salt-Based Growth of Group III Nitrides

    DOE Patents [OSTI]

    Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

    2008-10-14T23:59:59.000Z

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  19. Strange Magnetism

    E-Print Network [OSTI]

    Thomas R. Hemmert; Ulf-G. Meissner; Sven Steininger

    1998-11-09T23:59:59.000Z

    We present an analytic and parameter-free expression for the momentum dependence of the strange magnetic form factor of the nucleon and its corresponding radius which has been derived in Heavy Baryon Chiral Perturbation Theory. We also discuss a model-independent relation between the isoscalar magnetic and the strange magnetic form factors of the nucleon based on chiral symmetry and SU(3) only. These limites are used to derive bounds on the strange magnetic moment of the proton from the recent measurement by the SAMPLE collaboration.

  20. Combinatorial sythesis of organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-07-16T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  1. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    1999-01-01T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  2. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    2001-01-01T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  3. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-02-12T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  4. Combinatorial synthesis of novel materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Menlo Park, CA)

    1999-12-21T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Magnetic shielding design analysis

    SciTech Connect (OSTI)

    Kerns, J.A.; LaPaz, A.D.; Fabyan, J.

    1983-12-27T23:59:59.000Z

    Two passive magnetic-shielding-design approaches for static external fields are reviewed. The first approach uses the shielding solutions for spheres and cylinders while the second approach requires solving Maxwell's equations. Experimental data taken at LLNL are compared with the results from these shieldings-design methods, and improvements are recommended for the second method. Design considerations are discussed here along with the importance of material gaps in the shield.

  6. Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x

    SciTech Connect (OSTI)

    Alexander S. Chernyshov

    2006-08-09T23:59:59.000Z

    Magnetic materials exhibiting magnetic phase transitions simultaneously with structural rearrangements of their crystal lattices hold a promise for numerous applications including magnetic refrigeration, magnetomechanical devices and sensors. We undertook a detailed study of a single crystal of dysprosium metal, which is a classical example of a system where magnetic and crystallographic sublattices can be either coupled or decoupled from one another. Magnetocaloric effect, magnetization, ac magnetic susceptibility, and heat capacity of high purity single crystals of dysprosium have been investigated over broad temperature and magnetic field intervals with the magnetic field vector parallel to either the a- or c-axes of the crystal. Notable differences in the behavior of the physical properties when compared to Dy samples studied in the past have been observed between 110 K and 125 K, and between 178 K and {approx}210 K. A plausible mechanism based on the formation of antiferromagnetic clusters in the impure Dy has been suggested in order to explain the reduction of the magnetocaloric effect in the vicinity of the Neel point. Experimental and theoretical investigations of the influence of commensurability effects on the magnetic phase diagram and the value of the magnetocaloric effect have been conducted. The presence of newly found anomalies in the physical properties has been considered as evidence of previously unreported states of Dy. The refined magnetic phase diagram of dysprosium with the magnetic field vector parallel to the a-axis of a crystal has been constructed and discussed. The magnetic and crystallographic properties of Gd{sub 5}Sb{sub x}Ge{sub 4-x} pseudo-binary system were studied by x-ray diffraction (at room temperature), heat capacity, ac-magnetic susceptibility, and magnetization in the temperature interval 5-320 K in magnetic fields up to 100 kOe. The magnetic properties of three composition (x = 0.5, 1,2) were examined in detail. The Gd{sub 5}Sb{sub 2}Ge{sub 2} compound that adopts Tm{sub 5}Sb{sub 2}Si{sub 2}-type of structure (space group is Cmca), shows a second order FM-PM transition at 200 K, whereas Gd{sub 5}Sb{sub x}Ge{sub 4-x} compounds for x = 0.5 and x = 1 (Sm{sub 5}Ge{sub 4}-type of structure, space group is Pnma) exhibit first order phase transformations at 45 K and 37 K, respectively.

  7. Structures and magnetism of cyano-bridged grid-like two-dimensional 4f3d arrays{{

    E-Print Network [OSTI]

    Gao, Song

    ) besides the SmCo5 and Nd2Fe14B permanent magnets, many magnetically ordered molecule-based materials

  8. Magnetic nanoparticles for applications in oscillating magnetic field

    SciTech Connect (OSTI)

    Peeraphatdit, Chorthip

    2010-12-15T23:59:59.000Z

    Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be elucidated. Since thermocatalysis is a long-term goal of this project, we also investigated the effects of the oscillating magnetic field system for the synthesis of 7-hydroxycoumarin-3-carboxylic acid. Application of an oscillating magnetic field in the presence of magnetic particles with high thermal response was found to effectively increase the reaction rate of the uncatalyzed synthesis of the coumarin derivative compared to the room temperature control.

  9. Assessment of Materials for Engaging Students in Statistical Discovery*

    E-Print Network [OSTI]

    Froelich, Amy G.

    of Materials · Course Project ­ Experiment and Regression Analysis ­ Experimental and Control Group Students randomly assigned to project groups. Assessment of Materials · Grading of Exam Questions ­ Rubric ­ Graded of Materials · Other Students Control Group ­ Students in project groups with high math ability students were

  10. Performance Comparison of Nb3Sn Magnets at LBNL

    E-Print Network [OSTI]

    Chiesa, L.

    2011-01-01T23:59:59.000Z

    2LCOI SC-MAG#722 LBNL-49917 Performance Comparison ofNb 3 Sn Magnets at LBNL L. Chiesa, S. Caspi, M . Coccoli,the Superconducting Magnet Group at LBNL has been developing

  11. Magnetic nanotubes

    DOE Patents [OSTI]

    Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

    2010-11-16T23:59:59.000Z

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  12. Influence of magnet size on magnetically engineered field-induced superconductivity W. Gillijns,1,* M. V. Milosevi,2,3 A. V. Silhanek,1 V. V. Moshchalkov,1, and F. M. Peeters3,

    E-Print Network [OSTI]

    Moshchalkov, Victor V.

    Influence of magnet size on magnetically engineered field-induced superconductivity W. Gillijns,1-Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism and Pulsed Fields Group, K of Co/Pt magnetic disks with out-of-plane magnetization for different radii of the magnetic disks

  13. Novel Approach to Linear Accelerator Superconducting Magnet System

    SciTech Connect (OSTI)

    Kashikhin, Vladimir; /Fermilab

    2011-11-28T23:59:59.000Z

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  14. High magnetic field processing of liquid crystalline polymers

    DOE Patents [OSTI]

    Smith, Mark E. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Douglas, Elliot P. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  15. High magnetic field processing of liquid crystalline polymers

    DOE Patents [OSTI]

    Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

    1998-11-24T23:59:59.000Z

    A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

  16. Saturable inductor and transformer structures for magnetic pulse compression

    DOE Patents [OSTI]

    Birx, Daniel L. (Londonderry, NH); Reginato, Louis L. (Orinda, CA)

    1990-01-01T23:59:59.000Z

    Saturable inductor and transformer for magnetic compression of an electronic pulse, using a continuous electrical conductor looped several times around a tightly packed core of saturable inductor material.

  17. active magnetic refrigerator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is active magnetic regenerator (AMR) refrigeration. This technology relies on solid materials exhibiting the magnetocaloric effect, (more) Dikeos, John 2006-01-01 2 Design...

  18. 21 Tesla mass spectrometry magnet arrives at EMSL | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and biological materials are one step closer to using EMSL's new 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. The magnet, a critical piece of...

  19. All material in this document is the intellectual property of Technology and Innovation Management Group at RWTH Aachen University and/or the respective author/owner. Any copying, distribution,

    E-Print Network [OSTI]

    Di Pillo, Gianni

    All material in this document is the intellectual property of Technology and Innovation Management on the Attraction of Innovation Roles in Open Innovation Web-Based Platforms By Cinzia Battistella, Fabio Nonino-Creation: Bridging Mass Customization & Open Innovation November 16-19, 2011 San Francisco Airport Marriott

  20. Summary of a joint US-Japan study of potential approaches to reduce the attractiveness of various nuclear materials for use in a nuclear explosive device by a terrorist group

    SciTech Connect (OSTI)

    Bathke, C.G. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM (United States); Inoue, N.; Kuno, Y.; Mihara, T.; Sagara, H. [Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184 (Japan); Ebbinghaus, B.B. [Lawrence Livermore National Laboratory, P.O. Box L-168, Livermore, CA 94551 (United States); Murphy, J.; Dalton, D. [National Nuclear Security Administration, Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585 (United States); Nagayama, Y. [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan)

    2013-07-01T23:59:59.000Z

    This paper summarizes the results of a joint US-Japan study to establish a mutual understanding, through scientific-based study, of potential approaches to reduce the attractiveness of various nuclear materials for use in a terrorist nuclear explosive device (NED). 4 approaches that can reduce materials attractiveness with a very high degree of effectiveness are: -) diluting HEU with natural or depleted U to an enrichment of less than 10% U-235; -) storing Pu in nuclear fuel that is not man portable and with a dose rate greater or equal to 10 Gy/h at 1 m; -) storing Pu or HEU in heavy items, i.e. not transportable, provided the removal of the Pu or HEU from the item requires a purification/processing capability; and -) converting Pu and HEU to very dilute forms (such as wastes) that, without any security barriers, would require very long acquisition times to acquire a Category I quantity of Pu or of HEU. 2 approaches that can reduce materials attractiveness with a high degree of effectiveness are: -) converting HEU-fueled research reactors into LEU-fueled research reactors or dilute HEU with natural or depleted U to an enrichment of less than 20% U-235; -) converting U/Al reactor fuel into U/Si reactor fuel. Other approaches have been assessed as moderately or totally inefficient to reduce the attractiveness of nuclear materials.

  1. Low dimensional magnetism

    E-Print Network [OSTI]

    Kjall, Jonas Alexander

    2012-01-01T23:59:59.000Z

    Magnetism in Ultracold Gases 4 Magnetic phase diagram of aMagnetism . . . . . . . . . . . .1.3 Magnetism in condensedIntroduction 1 Brief introduction to magnetism 1.1 Classic

  2. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report 2007 Microsystems and Nanotechnology Research Group 1 About

  3. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report 2008 Microsystems and Nanotechnology Research Group 1 About

  4. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  5. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  6. Permanent magnet edge-field quadrupole

    DOE Patents [OSTI]

    Tatchyn, Roman O. (Mountain View, CA)

    1997-01-01T23:59:59.000Z

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  7. A Small Scale Magnetic Particle Relaxometer

    E-Print Network [OSTI]

    El Ghamrawy, Ahmed

    2013-12-09T23:59:59.000Z

    Magnetic Particle Imaging (MPI) is a newly found imaging modality. It utilizes superparamagnetic materials as tracers in the blood stream to obtain very high resolutions. MPI promises to have high sensitivity, high spatial resolution...

  8. HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS

    E-Print Network [OSTI]

    Taylor, C.

    2011-01-01T23:59:59.000Z

    D. C. 'Niobium-Titanium Superconducting Material s ', in S.Nb -Ti and Nb3Sn superconductors. , ,""" s. S. Clamp, Tie14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.

  9. Controlling Magnetism at the Nanoscale

    E-Print Network [OSTI]

    Wong, Jared

    2012-01-01T23:59:59.000Z

    Manipulation of Magnetism - External148 Conclusion A The Magnetism Cheat Sheet A.1 Magnetic157 A.2 Magnetism Unit Conversion

  10. Modelling of bulk superconductor magnetization

    E-Print Network [OSTI]

    Ainslie, M. D.; Fujishiro, H.

    2015-03-30T23:59:59.000Z

    synchronous motor. It may also be possible to use superconducting materials of different Tcs and a dual cooling system to develop an in-situ FC magnetization process for YBCO bulk plates using the superconducting stator coils of an electric machine... . Furthermore, the relative ease of fabrication of MgB2 materials, as well as their long coherence length [10], lower anisotropy and strongly linked supercurrent flow in untextured polycrystalline samples [11,12], has enabled a number of different processing...

  11. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  12. Multiferroicity and spiral magnetism in FeVO{sub 4} with quenched Fe orbital moments

    SciTech Connect (OSTI)

    Daoud-Aladine, A.; Chapon, L. C. [ISIS facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Kundys, B.; Martin, C.; Simon, C. [Laboratoire CRISMAT-UMR, 6508 ENSI CAEN, 6, Marechal Juin, 14050 Caen (France); Radaelli, P. G. [ISIS facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Brown, P. J. [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France)

    2009-12-01T23:59:59.000Z

    FeVO{sub 4} has been studied by heat capacity, magnetic susceptibility, electric polarization and single-crystal neutron-diffraction experiments. The triclinic crystal structure is made of S-shaped clusters of six Fe{sup 3+} ions, linked by VO{sub 4}{sup 3-} groups. Two long-range magnetic ordering transitions occur at T{sub N1}=22 K and T{sub N2}=15 K. Both magnetic structures are incommensurate and below T{sub N2}, FeVO{sub 4} becomes weakly ferroelectric coincidentally with the loss of the collinearity of the magnetic structure in a very similar fashion than in the classical TbMnO{sub 3} multiferroic material. However we argue that the symmetry considerations and the mechanisms invoked to explain these properties in TbMnO{sub 3} do not straightforwardly apply to FeVO{sub 4}. First, the magnetic structures, even the collinear structure, are all acentric so that ferroelectricity in FeVO{sub 4} is not correlated with the fact magnetic ordering is breaking inversion symmetry. Regarding the mechanism, FeVO{sub 4} has quenched orbital moments that questions the exact role of the spin-orbit interactions.

  13. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25T23:59:59.000Z

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  14. Ternary Dy-Er-Al magnetic refrigerants

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A. (Ames, IA); Takeya, Hiroyuki (Ibaraki, JP)

    1995-07-25T23:59:59.000Z

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  15. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  16. IBM Probes Material Capabilities at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and to understand how the ordering and filling of these orbitals change as the material goes through its phase transition," says Parkin. Parkin and his group of researchers...

  17. Reversible hydrogen storage materials

    DOE Patents [OSTI]

    Ritter, James A. (Lexington, SC); Wang, Tao (Columbia, SC); Ebner, Armin D. (Lexington, SC); Holland, Charles E. (Cayce, SC)

    2012-04-10T23:59:59.000Z

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  18. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  19. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  20. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  1. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07T23:59:59.000Z

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  2. Dual Superconductivity in G2 group

    E-Print Network [OSTI]

    G. Cossu; M. D'Elia; A. Di Giacomo; B. Lucini; C. Pica

    2006-09-28T23:59:59.000Z

    We investigate the dual superconductivity mechanism in the exceptional group $G_2$. This is a centerless group (no 't Hooft flux vortices are allowed) and we check for the presence of a magnetic monopole condensate in the confined phase by measuring on the lattice a disorder parameter related to the vacuum expectation value of an operator carrying magnetic charge. The behaviour of the disorder parameter is consistent with the dual superconductor picture. A first step of an analysis on the thermodynamical properties of the theory is conducted by mean of this operator.

  3. Critical Materials:

    Broader source: Energy.gov (indexed) [DOE]

    lighting. 14 (bottom) Criticality ratings of shortlisted raw 76 materials. 15 77 2. Technology Assessment and Potential 78 This section reviews the major trends within...

  4. Organic materials for fusion-reactor applications

    SciTech Connect (OSTI)

    Hurley, G.F.; Coltman, R.R. Jr.

    1983-09-01T23:59:59.000Z

    Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made.

  5. Neutrino magnetic moment in a magnetized plasma

    E-Print Network [OSTI]

    N. V. Mikheev; E. N. Narynskaya

    2010-11-08T23:59:59.000Z

    The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

  6. Neutron Scattering Studies of Nanomagnetism and Artificially Structured Materials

    SciTech Connect (OSTI)

    Fitzsimmons, M.R.; Bader, S.D.; Borchers, J.A.; Felcher, G.P.; Furdyna, J.K.; Hoffmann, A.; Kortright, J.B.; Schuller, Ivan K.; Schulthess, T.C.; Sinha, S.K.; Toney, M.F.; Weller, D.; Wolf, S.

    2003-02-01T23:59:59.000Z

    Nanostructured magnetic materials are intensively studied due to their unusual properties and promise for possible applications. The key issues in these materials relate to the connection between their physical properties (transport, magnetism, mechanical, etc.) and their chemical-physical structure. In principle, a detailed knowledge of the chemical and physical structure allows calculation of their physical properties. Theoretical and computational methods are rapidly evolving so that magnetic properties of nanostructured materials might soon be predicted. Success in this endeavor requires detailed quantitative understanding of the magnetic structure and properties.

  7. Exchange-Spring Magnets: Nanocomposite Exchange-Spring Magnets for Motor and Generator Applications

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: ANL will develop a cost-effective exchange-spring magnet to use in the electric motors of wind generators and EVs that uses no rare earth materials. This ANL exchange-spring magnet combines a hard magnetic outer shell with a soft magnetic inner corecoupling these together increases the performance (energy density and operating temperature). The hard and soft magnet composite particles would be created at the molecular level, followed by consolidation in a magnetic field. This process allows the particles to be oriented to maximize the magnetic properties of low-cost and abundant metals, eliminating the need for expensive imported rare earths. The ultimate goal of this project is to demonstrate this new type of magnet in a prototype electric motor.

  8. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23T23:59:59.000Z

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  9. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  10. Boston University College of Engineering Division of Materials Science & Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Theory of Elasticity MS 784 Topics in Materials Science ENGINEERING MANAGEMENT (4 cr) CourseBoston University College of Engineering Division of Materials Science & Engineering MEng Program and Statistical Materials AND MS 577 Electronic Optical and Magnetic Properties of Materials OR CAS PY 543

  11. Transport and magnetic properties of rtx and related

    E-Print Network [OSTI]

    Goruganti, Venkat

    2009-05-15T23:59:59.000Z

    Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new...

  12. Transport and magnetic properties of rtx and related

    E-Print Network [OSTI]

    Goruganti, Venkat

    2009-05-15T23:59:59.000Z

    Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new...

  13. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  14. Hydrogen Storage Workshop Advanced Concepts Working Group

    E-Print Network [OSTI]

    / Current Status Aerogels are the scaffold; template with organic functional groups; physisorption, acid benign Inexpensive #12;Self-Assembled Nanocomposites R&D Needs 1. Studying silica aerogels 2. Modifying aerogels 3. Theoretical Modeling - various chemical structures / materials 4. Functionalization

  15. Engineering Magnetic nanoparticles are of interest in a variety of

    E-Print Network [OSTI]

    Chemical Engineering Abstract Magnetic nanoparticles are of interest in a variety of applications which take advantage of their manipulation using externally applied magnetic fields. Depending on the material used, these nanoparticles may possess either a freely rotating magnetic dipole or a dipole

  16. MAGNETISM AND ELECTRON TRANSPORT IN MAGNETORESISTIVE LANTHANUM CALCIUM

    E-Print Network [OSTI]

    MAGNETISM AND ELECTRON TRANSPORT IN MAGNETORESISTIVE LANTHANUM CALCIUM MANGANITE A DISSERTATION have been reported that this material is being considered for use as a magnetic field sensor. However, there are many variables such as temperature, magnetic field, chemical composition and processing that greatly

  17. Enhanced magnetocaloric effect in frustrated magnets M. E. Zhitomirsky

    E-Print Network [OSTI]

    Chandra, Premi

    applicability of the magnetic cooling technique for room-temperature refrigeration as well.5­7 Paramagnetic salts, which are standard refrigerant materi- als for the low-temperature magnetic cooling, containEnhanced magnetocaloric effect in frustrated magnets M. E. Zhitomirsky SPSMS, De´partement de

  18. Petroglyphs, Lighting, and Magnetism

    E-Print Network [OSTI]

    Walker, Merle F

    2007-01-01T23:59:59.000Z

    1950 Electricity and Magnetism: Theory and Applications.I Petroglyphs, Lightning, and Magnetism | Walker Figure 8.I Petroglyphs, Lightning, and Magnetism | Walker Figure IL

  19. On the control of solidification using magnetic fields and magnetic field Baskar Ganapathysubramanian and Nicholas Zabaras1

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    On the control of solidification using magnetic fields and magnetic field gradients Baskar and Aerospace Engineering, 188 Frank H.T. Rhodes Hall, Cornell University, Ithaca, NY 14853-3801, USA Abstract solidified material can be suitably affected. Most of the magnetic field approaches to melt flow control rely

  20. Properties of Group Five and Group Seven transactinium elements

    E-Print Network [OSTI]

    Wilk, Philip A.

    2001-01-01T23:59:59.000Z

    of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by

  1. Thompson's renormalization group method applied to QCD at high energy scale

    E-Print Network [OSTI]

    Claudio Nassif; J. A. Helayel-Neto; P. R. Silva

    2007-08-16T23:59:59.000Z

    We use a renormalization group method to treat QCD-vacuum behavior specially closer to the regime of asymptotic freedom. QCD-vacuum behaves effectively like a "paramagnetic system" of a classical theory in the sense that virtual color charges (gluons) emerges in it as a spin effect of a paramagnetic material when a magnetic field aligns their microscopic magnetic dipoles. Due to that strong classical analogy with the paramagnetism of Landau's theory,we will be able to use a certain Landau effective action without temperature and phase transition for just representing QCD-vacuum behavior at higher energies as being magnetization of a paramagnetic material in the presence of a magnetic field $H$. This reasoning will allow us to apply Thompson's approach to such an action in order to extract an "effective susceptibility" ($\\chi>0$) of QCD-vacuum. It depends on logarithmic of energy scale $u$ to investigate hadronic matter. Consequently we are able to get an ``effective magnetic permeability" ($\\mu>1$) of such a "paramagnetic vacuum". Actually,as QCD-vacuum must obey Lorentz invariance,the attainment of $\\mu>1$ must simply require that the "effective electrical permissivity" is $\\epsilon<1$ in such a way that $\\mu\\epsilon=1$ ($c^2=1$). This leads to the anti-screening effect where the asymptotic freedom takes place. We will also be able to extend our investigation to include both the diamagnetic fermionic properties of QED-vacuum (screening) and the paramagnetic bosonic properties of QCD-vacuum (anti-screening) into the same formalism by obtaining a $\\beta$-function at 1 loop,where both the bosonic and fermionic contributions are considered.

  2. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A. (American Magnetics, Inc.)

    2010-05-12T23:59:59.000Z

    As the original magnet designer and manufacturer of ORNLs 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNLs Materials Processing Groups and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  3. Modelling the Induced Magnetic Signature of Naval Vessels

    E-Print Network [OSTI]

    Low, Robert

    vessels stealth is an important design feature. With recent advances in electromagnetic sensor technology with the magnetic signature resulting from the magnetisation of the ferromagnetic material of the ship, under is constructed from non-magnetic materials, but arises from the combined e#11;ect of the individual items

  4. Mixing zones in magnetized differentially rotating stars

    E-Print Network [OSTI]

    V. Urpin

    2005-09-29T23:59:59.000Z

    We study the secular instability of magnetized differentially rotating radiative zones taking account of viscosity and magnetic and thermal diffusivities. The considered instability generalizes the well-known Goldreich-Schubert-Fricke instability for the case of a sufficiently strong magnetic field. In magnetized stars, instability can lead to a formation of non-spherical unstable zones where weak turbulence mixes the material between the surface and interiors. Such unstable zones can manifest themselves by a non-spherical distribution of abundance anormalies on the stellar surface.

  5. Material Symbols

    E-Print Network [OSTI]

    Clark, Andy

    2006-01-01T23:59:59.000Z

    What is the relation between the material, conventional symbol structures that we encounter in the spoken and written word, and human thought? A common assumption, that structures a wide variety of otherwise competing ...

  6. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23T23:59:59.000Z

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  7. High-Energy Composite Permanent Magnets: High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy

    SciTech Connect (OSTI)

    None

    2010-02-15T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: The University of Delaware is developing permanent magnets that contain less rare earth material and produce twice the energy of the strongest rare earth magnets currently available. The University of Delaware is creating these magnets by mixing existing permanent magnet materials with those that are more abundant, like iron. Both materials are first prepared in the form of nanoparticles via techniques ranging from wet chemistry to ball milling. After that, the nanoparticles must be assembled in a 3-D array and consolidated at low temperatures to form a magnet. With small size particles and good contact between these two materials, the best qualities of each allow for the development of exceptionally strong composite magnets.

  8. Flow-controlled magnetic particle manipulation

    DOE Patents [OSTI]

    Grate, Jay W [West Richland, WA; Bruckner-Lea, Cynthia J [Richland, WA; Holman, David A [Las Vegas, NV

    2011-02-22T23:59:59.000Z

    Inventive methods and apparatus are useful for collecting magnetic materials in one or more magnetic fields and resuspending the particles into a dispersion medium, and optionally repeating collection/resuspension one or more times in the same or a different medium, by controlling the direction and rate of fluid flow through a fluid flow path. The methods provide for contacting derivatized particles with test samples and reagents, removal of excess reagent, washing of magnetic material, and resuspension for analysis, among other uses. The methods are applicable to a wide variety of chemical and biological materials that are susceptible to magnetic labeling, including, for example, cells, viruses, oligonucleotides, proteins, hormones, receptor-ligand complexes, environmental contaminants and the like.

  9. Magnetic Catalysis vs Magnetic Inhibition

    E-Print Network [OSTI]

    Kenji Fukushima; Yoshimasa Hidaka

    2012-09-06T23:59:59.000Z

    We discuss the fate of chiral symmetry in an extremely strong magnetic field B. We investigate not only quark fluctuations but also neutral meson effects. The former would enhance the chiral-symmetry breaking at finite B according to the Magnetic Catalysis, while the latter would suppress the chiral condensate once B exceeds the scale of the hadron structure. Using a chiral model we demonstrate how neutral mesons are subject to the dimensional reduction and the low dimensionality favors the chiral-symmetric phase. We point out that this effect, the Magnetic Inhibition, can be a feasible explanation for recent lattice-QCD data indicating the decreasing behavior of the chiral-restoration temperature with increasing B.

  10. Magnetic Stereoscopy

    E-Print Network [OSTI]

    Thomas Wiegelmann; Bernd Inhester

    2006-12-21T23:59:59.000Z

    The space mission STEREO will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently the 3D coronal magnetic field provides a proxy for the stereoscopy which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.

  11. Multi-step process for concentrating magnetic particles in waste sludges

    DOE Patents [OSTI]

    Watson, John L. (Rolla, MO)

    1990-01-01T23:59:59.000Z

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed.

  12. Multi-step process for concentrating magnetic particles in waste sludges

    DOE Patents [OSTI]

    Watson, J.L.

    1990-07-10T23:59:59.000Z

    This invention involves a multi-step, multi-force process for dewatering sludges which have high concentrations of magnetic particles, such as waste sludges generated during steelmaking. This series of processing steps involves (1) mixing a chemical flocculating agent with the sludge; (2) allowing the particles to aggregate under non-turbulent conditions; (3) subjecting the mixture to a magnetic field which will pull the magnetic aggregates in a selected direction, causing them to form a compacted sludge; (4) preferably, decanting the clarified liquid from the compacted sludge; and (5) using filtration to convert the compacted sludge into a cake having a very high solids content. Steps 2 and 3 should be performed simultaneously. This reduces the treatment time and increases the extent of flocculation and the effectiveness of the process. As partially formed aggregates with active flocculating groups are pulled through the mixture by the magnetic field, they will contact other particles and form larger aggregates. This process can increase the solids concentration of steelmaking sludges in an efficient and economic manner, thereby accomplishing either of two goals: (a) it can convert hazardous wastes into economic resources for recycling as furnace feed material, or (b) it can dramatically reduce the volume of waste material which must be disposed. 7 figs.

  13. National Research Centre "Kurchatov Institute" Progress in Magnetic Fusion TechnologyProgress in Magnetic Fusion Technology

    E-Print Network [OSTI]

    :Tokamak Cooling Water System (US) First delivery of Plant Components Test Convoys Test Convoys #12National Research Centre "Kurchatov Institute" Progress in Magnetic Fusion TechnologyProgress, INTEGRATION&POWER PLANT DESIGN FUSION NUCLEAR SCIENCE MATERIAL TECHNOLOGY SYSTEMS SAFETY ECONOMIC

  14. Superconducting Magnet Division

    E-Print Network [OSTI]

    Superconducting Magnet Division DOE NP Program Review - July 06 1 Brookhaven Magnet Division - Nuclear Physics Program Support Activities Superconducting Magnet Program RHIC Operations Support Spin Summary Peter Wanderer, DOE review, July 25, 2006 Acting Head, Superconducting Magnet Division #12

  15. Postdoctoral Researcher, Materials Chemistry (2 year contract)

    E-Print Network [OSTI]

    Humphrys, Mark

    Postdoctoral Researcher, Materials Chemistry (2 year contract) Adaptive Sensors Group Dublin City Foundation Ireland through the CLARITY CSET (www.clarity- centre.org), supplemented by significant project partners. The group's research strategy in materials chemistry research is to closely align activity

  16. WUFIINSTRUCTORS Andr Desjarlais is the Group Leader for the

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    IBP WUFIINSTRUCTORS Andr Desjarlais is the Group Leader for the Building Envelope and Materials Construction Association, Asphalt Roofing Manufacturers Association, and the Building Environment and Thermal Envelope Council. Areas of expertise include building envelope and material energy efficiency, moisture

  17. Image Fusion for MR Bias Stochastic Systems Group

    E-Print Network [OSTI]

    Willsky, Alan S.

    We can target T1 and T2 through appropriate selection of TE and TR. #12;Image Reconstruction The MRImage Fusion for MR Bias Correction Ayres Fan Stochastic Systems Group Joint work with W. Wells, J. Fisher, M. Cetin, S. Haker, A. Willsky, B. Mulkern #12;Magnetic Resonance The magnetic resonance (MR

  18. Coexisting Superconductivity and Magnetism in UCoGe Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Coexisting Superconductivity and Magnetism in UCoGe Gregory S. Boebinger, National High Magnetic focused on the coexistence of superconductivity and ferromagnetism, including UGe2, URhGe, and UCoGe. In these materials, superconductivity develops below the ferromagnetic Curie temperature TC without destroying

  19. Ultrafast thermally induced magnetic switching in synthetic ferrimagnets

    SciTech Connect (OSTI)

    Evans, Richard F. L., E-mail: richard.evans@york.ac.uk; Ostler, Thomas A.; Chantrell, Roy W. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Radu, Ilie [Institut fr Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, Albert-Einstein-Strae 15, 12489 Berlin (Germany); Rasing, Theo [Radboud University, Institute for Molecules and Materials, Heyendaalsewg 135, 6525 AJ Nijmegen (Netherlands)

    2014-02-24T23:59:59.000Z

    Synthetic ferrimagnets are composite magnetic structures formed from two or more anti-ferromagnetically coupled magnetic sublattices with different magnetic moments. Here, we report on atomistic spin simulations of the laser-induced magnetization dynamics on such synthetic ferrimagnets and demonstrate that the application of ultrashort laser pulses leads to sub-picosecond magnetization dynamics and all-optical switching in a similar manner as in ferrimagnetic alloys. Moreover, we present the essential material properties for successful laser-induced switching, demonstrating the feasibility of using a synthetic ferrimagnet as a high density magnetic storage element without the need of a write field.

  20. Electron magneto-hydrodynamic waves bounded by magnetic bubble

    SciTech Connect (OSTI)

    Anitha, V. P.; Sharma, D.; Banerjee, S. P.; Mattoo, S. K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-08-15T23:59:59.000Z

    The propagation of electron magneto-hydrodynamic (EMHD) waves is studied experimentally in a 3-dimensional region of low magnetic field surrounded by stronger magnetic field at its boundaries. We report observations where bounded left hand polarized Helicon like EMHD waves are excited, localized in the region of low magnetic field due to the boundary effects generated by growing strengths of the ambient magnetic field rather than a conducting or dielectric material boundary. An analytical model is developed to include the effects of radially nonuniform magnetic field in the wave propagation. The bounded solutions are compared with the experimentally obtained radial wave magnetic field profiles explaining the observed localized propagation of waves.

  1. Assembly and magnetic properties of nickel nanoparticles on silicon nanowires

    SciTech Connect (OSTI)

    Picraux, Samuel T [Los Alamos National Laboratory; Manandhar, Pradeep [Los Alamos National Laboratory; Nazaretski, E [Los Alamos National Laboratory; Thompson, J [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

  2. PHYSICAL REVIEW B 88, 205203 (2013) Magnetic anisotropy of single Mn acceptors in GaAs in an external magnetic field

    E-Print Network [OSTI]

    Flatte, Michael E.

    2013-01-01T23:59:59.000Z

    .1103/PhysRevB.88.205203 PACS number(s): 75.50.Pp I. INTRODUCTION Magnetic semiconductors have attracted properties in spintronic devices. The most commonly investigated material as a magnetic semiconductor is Ga

  3. Can (electric-magnetic) duality be gauged?

    SciTech Connect (OSTI)

    Bunster, Claudio [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Muehlenberg 1, D-14476 Potsdam (Germany); Henneaux, Marc [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Universite Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Muehlenberg 1, D-14476 Potsdam (Germany)

    2011-02-15T23:59:59.000Z

    There exists a formulation of the Maxwell theory in terms of two vector potentials, one electric and one magnetic. The action is then manifestly invariant under electric-magnetic duality transformations, which are rotations in the two-dimensional internal space of the two potentials, and local. We ask the question: Can duality be gauged? The only known and battle-tested method of accomplishing the gauging is the Noether procedure. In its decanted form, it amounts to turning on the coupling by deforming the Abelian gauge group of the free theory, out of whose curvatures the action is built, into a non-Abelian group which becomes the gauge group of the resulting theory. In this article, we show that the method cannot be successfully implemented for electric-magnetic duality. We thus conclude that, unless a radically new idea is introduced, electric-magnetic duality cannot be gauged. The implication of this result for supergravity is briefly discussed.

  4. Effect of oxygen concentration on the magnetic properties of La2CoMnO6 Center for Materials for Information Technology and Department of Chemistry, University of Alabama,

    E-Print Network [OSTI]

    Pennycook, Steve

    with the static FM Mn4+ OCo2+ interactions. This results in the appearance of a new low temperature FM phase and suppression of the high-temperature FM phase, creating two distinct magnetic phase transitions. 2007 Mn4+ OMn4+ or Co2+ OCo2+ interactions in LCMO with the antisite ions.3 Even in an ordered double

  5. USD Catalysis Group for Alternative Energy

    SciTech Connect (OSTI)

    James D. Hoefelmeyer, Ranjit Koodali, Grigoriy Sereda, Dan Engebretson, Hao Fong, Jan Puszynski, Rajesh Shende, Phil Ahrenkiel

    2012-03-13T23:59:59.000Z

    The South Dakota Catalysis Group (SDCG) is a collaborative project with mission to develop advanced catalysts for energy conversion with two primary goals: (1) develop photocatalytic systems in which polyfunctionalized TiO2 are the basis for hydrogen/oxygen synthesis from water and sunlight (solar fuels group), (2) develop new materials for hydrogen utilization in fuel cells (fuel cell group). In tandem, these technologies complete a closed chemical cycle with zero emissions.

  6. Postdoctoral Research Associate Imaging and Nanoscale Characterization Group

    E-Print Network [OSTI]

    Pennycook, Steve

    Qian Li Postdoctoral Research Associate Imaging and Nanoscale Characterization Group Center-ion battery and fuel cell materials. 2. Surface Charge and Polarization Dynamics of Ferroelectrics The surface

  7. Iron-Nitride-Based Magnets: Synthesis and Phase Stabilization of Body Center Tetragonal (BCT) Metastable Fe-N Anisotropic Nanocomposite Magnet- A Path to Fabricate Rare Earth Free Magnet

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The University of Minnesota will develop an early stage prototype of an iron-nitride permanent magnet material for EVs and renewable power generators. This new material, comprised entirely of low-cost and abundant resources, has the potential to demonstrate the highest energy potential of any magnet to date. This project will provide the basis for an entirely new class of rare-earth-free magnets capable of generating power without costly and scarce rare earth materials. The ultimate goal of this project is to demonstrate a prototype with magnetic properties exceeding state-of-the-art commercial magnets.

  8. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1983-01-01T23:59:59.000Z

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  9. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1982-01-20T23:59:59.000Z

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  10. Wheel-type magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-10-11T23:59:59.000Z

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  11. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17T23:59:59.000Z

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  12. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMARSecurityMaterials Science Materials

  13. GROUP THERAPY Syracuse University

    E-Print Network [OSTI]

    McConnell, Terry

    your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group

  14. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 N0.1 2004

    E-Print Network [OSTI]

    Weston, Ken

    NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 N0.1 2004 OPERATED BY: FLORIDA STATE R E V I E W BIOLOGY BIOCHEMISTRY CHEMISTRY CRYOGENICS ENGINEERING MATERIALS GEOCHEMISTRY INSTRUMENTATION KONDO/HEAVY FERMION SYSTEMS MAGNET TECHNOLOGY MAGNETIC RESONANCE TECHNIQUES MAGNETISMAND MAGNETIC

  15. NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSPECIAL EDITION VOLUME 13 N0. 1 2006

    E-Print Network [OSTI]

    Weston, Ken

    , and Geochemistry 16 MAGNET SCIENCE & TECHNOLOGY Engineering Materials, Instrumentation, and Magnet Technology 20NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSSPECIAL EDITION VOLUME 13 N0. 1 2006 SUPPORTED HIGHLIGHTS FROM Life Sciences Chemistry Magnet Science & Technology Condensed Matter Page 15 #12;NHMFLREPORTS

  16. Magnetization measurements of uranium dioxide single crystals (P08358-E002-PF)

    SciTech Connect (OSTI)

    K. Gofryk; V. Zapf; M. Jaime

    2014-12-01T23:59:59.000Z

    Conclusions Our preliminary magnetic susceptibility measurements of UO2 point to complex nature of the magnetic ordering in this material, consistent with the proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states.

  17. Composite material and method of making

    DOE Patents [OSTI]

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20T23:59:59.000Z

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  18. Magnetic Reconnection

    SciTech Connect (OSTI)

    Masaaki Yamada, Russell Kulsrud and Hantao Ji

    2009-09-17T23:59:59.000Z

    We review the fundamental physics of magnetic reconnection in laboratory and space plasmas, by discussing results from theory, numerical simulations, observations from space satellites, and the recent results from laboratory plasma experiments. After a brief review of the well-known early work, we discuss representative recent experimental and theoretical work and attempt to interpret the essence of significant modern findings. In the area of local reconnection physics, many significant findings have been made with regard to two- uid physics and are related to the cause of fast reconnection. Profiles of the neutral sheet, Hall currents, and the effects of guide field, collisions, and micro-turbulence are discussed to understand the fundamental processes in a local reconnection layer both in space and laboratory plasmas. While the understanding of the global reconnection dynamics is less developed, notable findings have been made on this issue through detailed documentation of magnetic self-organization phenomena in fusion plasmas. Application of magnetic reconnection physics to astrophysical plasmas is also brie y discussed.

  19. Materials compatibility.

    SciTech Connect (OSTI)

    Somerday, Brian P.

    2010-04-01T23:59:59.000Z

    Objectives are to enable development and implementation of codes and standards for H{sub 2} containment components: (1) Evaluate data on mechanical properties of materials in H{sub 2} gas - Technical Reference on Hydrogen Compatibility of Materials; (2) Generate new benchmark data on high-priority materials - Pressure vessel steels, stainless steels; and (3) Establish procedures for reliable materials testing - Sustained-load cracking, fatigue crack propagation. Summary of this presentation are: (1) Completed measurement of cracking thresholds (K{sub TH}) for Ni-Cr-Mo pressure vessel steels in high-pressure H{sub 2} gas - K{sub TH} measurements required in ASME Article KD-10 (2) Crack arrest test methods appear to yield non-conservative results compared to crack initiation test methods - (a) Proposal to insert crack initiation test methods in Article KD-10 will be presented to ASME Project Team on Hydrogen Tanks, and (b) Crack initiation methods require test apparatus designed for dynamic loading of specimens in H{sub 2} gas; and (3) Demonstrated ability to measure fatigue crack growth of pressure vessel steels in high-pressure H{sub 2} gas - (a) Fatigue crack growth data in H{sub 2} required in ASME Article KD-10, and (b) Test apparatus is one of few in U.S. or abroad for measuring fatigue crack growth in >100 MPa H{sub 2} gas.

  20. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Russellville quadrangle, Arkansas

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Russellville quadrangle in north central Arkansas overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Eighty-eight groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  1. Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide

    SciTech Connect (OSTI)

    Bagani, K.; Bhattacharya, A.; Kaur, J.; Rai Chowdhury, A.; Ghosh, B.; Banerjee, S., E-mail: sangam.banerjee@saha.ac.in [Saha Institute of Nuclear Physics, Surface Physics Division, 1/AF Bidhannagar, Kolkata 700064 (India); Sardar, M. [Material Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2014-01-14T23:59:59.000Z

    In this report, we present the temperature dependence of the magnetic coercivity of graphene oxide (GO) and reduced graphene oxide (RGO). We observe an anomalous decrease in coercivity of GO and RGO with decreasing temperature. The observation could be understood by invoking the inherent presence of wrinkles on graphene oxide due to presence of oxygen containing groups. Scanning electron microscopic image reveals high wrinkles in GO than RGO. We observe higher coercivity in RGO than in GO. At room temperature, we observe antiferromagnetic and ferromagnetic behaviours in GO and RGO, respectively. Whereas, at low temperatures (below T?=?6070?K), both materials show paramagnetic behaviour.

  2. Abstract--Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform diagnostic, curative

    E-Print Network [OSTI]

    Mavroidis, Constantinos

    groups have employed magnetized micro/ nanoparticles and have implemented magnetic propulsion techniquesAbstract-- Magnetic Resonance Imaging (MRI) guided nanorobotic systems that could perform on the use of a MRI scanner to induce the required external driving forces to guide magnetic nanocapsules

  3. An optimized magnet for magnetic refrigeration

    E-Print Network [OSTI]

    Bjrk, R; Smith, A; Christensen, D V; Pryds, N

    2014-01-01T23:59:59.000Z

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration.

  4. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from...

  5. Combinatorial synthesis of inorganic or composite materials

    DOE Patents [OSTI]

    Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

    2010-08-03T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Manganese-Aluminum-Based Magnets: Nanocrystalline t-MnAI Permanent Magnets

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Dartmouth is developing specialized alloys with magnetic properties superior to the rare earths used in todays best magnets. EVs and renewable power generators typically use rare earths to turn the axles in their electric motors due to the magnetic strength of these minerals. However, rare earths are difficult and expensive to refine. Dartmouth will swap rare earths for a manganese-aluminum alloy that could demonstrate better performance and cost significantly less. The ultimate goal of this project is to develop an easily scalable process that enables the widespread use of low-cost and abundant materials for the magnets used in EVs and renewable power generators.

  7. Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in todays most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

  8. Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    E-Print Network [OSTI]

    Kirby, GA; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Gentini, L; Lambert, L; Lopes, M; Perez, JC; de Rijk, G; Rijllart, A; Rossi, L; ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Hr, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2015-01-01T23:59:59.000Z

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  9. Accelerator Quality HTS Dipole Magnet Demonstrator designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

    E-Print Network [OSTI]

    Kirby, G; Ballarino, A; Bottura, L; Chouika, N; Clement, S; Datskov, V; Fajardo, L; Fleiter, J; Gauthier, R; Lambert, L; Lopes, M; Perez, J; DeRijk, G; Rijllart, A; Rossi, L; Ten Kate, H; Durante, M; Fazilleau, P; Lorin, C; Haro, E; Stenvall, A; Caspi, S; Marchevsky, M; Goldacker, W; Kario, A

    2014-01-01T23:59:59.000Z

    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 work-package-10 is a collaborative push to take HTS materials into an accelerator quality demonstrator magnet. The demonstrator will produce 5 T standalone and between 17 T and 20 T, when inserted into the 100 mm aperture of Fresca-2 high field out-sert magnet. The HTS magnet will demonstrate the field strength and field quality that can be achieved. An effective quench detection and protection system will have to be developed to operate with the HTS superconducting materials. This paper presents a ReBCO magnet design using multi strand Roebel cable that develops a stand-alone field of 5 T in a 40 mm clear aperture and discusses the challenges associated with good field quality using this type of material. A selection of magnet designs is presented as result of a first phase of development.

  10. U.S. Rare Earth Magnet Patents Table 2-4-2015 page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a temperature equal to or lower than a sintering temperature of the magnet base material, wherein: a) a content of a rare earth in a metallic state in the magnet base...

  11. Magneto-Thermo-Mechanical Coupling, Stability Analysis and Phenomenological Constitutive Modeling of Magnetic Shape Memory Alloys

    E-Print Network [OSTI]

    Haldar, Krishnendu 1978-

    2012-12-06T23:59:59.000Z

    Magnetic shape memory alloys (MSMAs) are a class of active materials that de- form under magnetic and mechanical loading conditions. This work is concerned with the modeling of MSMAs constitutive responses. The hysteretic magneto...

  12. Method for the detection of a magnetic field utilizing a magnetic vortex

    DOE Patents [OSTI]

    Novosad, Valentyn (Chicago, IL); Buchanan, Kristen (Batavia, IL)

    2010-04-13T23:59:59.000Z

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  13. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  14. Selmer groups as flat cohomology groups

    E-Print Network [OSTI]

    ?esnavi?ius, K?stutis

    2014-01-01T23:59:59.000Z

    Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined ...

  15. 1. Tsubono Group 1 1 Tsubono Group

    E-Print Network [OSTI]

    Ejiri, Shinji

    optical fiber Test of the law of gravitation at extremely small distance references [1] Y. Aso, M. Ando1. Tsubono Group 1 1 Tsubono Group Research Subjects: Experimental Relativity, Gravitational Wave Physics, Laser Inter- ferometer Member: Kimio TSUBONO and Masaki ANDO The detection of gravitational waves

  16. Field-structured material media and methods for synthesis thereof

    DOE Patents [OSTI]

    Martin, James E. (Tijeras, NM); Hughes, Robert C. (Albuquerque, NM); Anderson, Robert A. (Albuquerque, NM)

    2001-09-18T23:59:59.000Z

    The present application is directed to a new class of composite materials, called field-structured composite (FSC) materials, which comprise a oriented aggregate structure made of magnetic particles suspended in a nonmagnetic medium, and to a new class of processes for their manufacture. FSC materials have much potential for application, including use in chemical, optical, environmental, and mechanical sensors.

  17. Materials and Molecular Research Division annual report 1983

    SciTech Connect (OSTI)

    Searcy, A.W.; Muller, R.H.; Peterson, C.V.

    1984-07-01T23:59:59.000Z

    Progress is reported in the following fields: materials sciences (metallurgy and ceramics, solid-state physics, materials chemistry), chemical sciences (fundamental interactions, processes and techniques), actinide chemistry, fossil energy, electrochemical energy storage systems, superconducting magnets, semiconductor materials and devices, and work for others. (DLC)

  18. Boston University College of Engineering Division of Materials Science & Engineering

    E-Print Network [OSTI]

    Lin, Xi

    Boston University College of Engineering Division of Materials Science & Engineering MEng Program and Statistical Materials AND MS 577 Electronic Optical and Magnetic Properties of Materials OR CAS PY 543 structured Engineering Management Course (4 cr); 3 other courses (12 credits) can be engineering, science

  19. Tunable dynamic response of magnetic gels: impact of structural properties and magnetic fields

    E-Print Network [OSTI]

    Mitsusuke Tarama; Peet Cremer; Dmitry Y. Borin; Stefan Odenbach; Hartmut Lwen; Andreas M. Menzel

    2014-09-24T23:59:59.000Z

    Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.

  20. Energy Materials & Processes | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials & Processes Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems Energy Materials &...

  1. Journal of Magnetism and Magnetic Materials 260 (2003) 6069 Magnetic properties of praseodymium ions in

    E-Print Network [OSTI]

    Mekki, Abdelkarim

    of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia b Department acquired at different temperatures have been fitted with a Brillouin function by refining the number of Pr3 (for Pr2O3), Na2CO3 (for Na2O) and SiO2. Calculated amounts of these powders were mixed and melted

  2. Superconducting magnetic control system for manipulation of particulate matter and magnetic probes in medical and industrial applications

    DOE Patents [OSTI]

    Cha, Yung Sheng; Hull, John R.; Askew, Thomas R.

    2006-07-11T23:59:59.000Z

    A system and method of controlling movement of magnetic material with at least first and second high temperature superconductors at spaced locations. A plurality of solenoids are associated with the superconductors to induce a persistent currents in preselected high temperature superconductors establishing a plurality of magnetic fields in response to pulsed currents introduced to one or more of the solenoids. Control mechanism in communication with said solenoids and/or said high temperature superconductors are used to demagnetize selected ones of the high temperature superconductors to reduce the magnetic fields substantially to zero. Magnetic material is moved between magnetic fields by establishing the presence thereof and thereafter reducing magnetic fields substantially to zero and establishing magnetic fields in other superconductors arranged in a predetermined configuration.

  3. Superconducting Magnet Division

    E-Print Network [OSTI]

    Gupta, Ramesh

    Superconducting Magnet Division Permanent Magnet Designs with Large Variations in Field Strength the residual field of the magnetized bricks by concentrating flux lines at the iron pole. Low Field Design Medium Field Design Superconducting Magnet Division Dipole and Quadrupole Magnets for RHIC e

  4. Japanese magnetic confinement fusion research

    SciTech Connect (OSTI)

    Davidson, R.C.; Abdou, M.A.; Berry, L.A.; Horton, C.W.; Lyon, J.F.; Rutherford, P.H.

    1990-01-01T23:59:59.000Z

    Six U.S. scientists surveyed and assessed Japanese research and development in magnetic fusion. The technical accomplishments from the early 1980s through June 1989 are reviewed, and the Japanese capabilities and outlook for future contributions are assessed. Detailed evaluations are provided in the areas of basic and applied plasma physics, tokamak confinement, alternate confinement approaches, plasma technology, and fusion nuclear technology and materials.

  5. Preparation and screening of crystalline inorganic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (La Jolla, CA); Xiang, Xiaodong (Danville, CA); Goldwasser, Isy (Palo Alto, CA); Brice{hacek over (n)}o, Gabriel (Baldwin Park, CA); Sun, Xiao-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

    2008-10-28T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Combinatorial screening of inorganic and organometallic materials

    DOE Patents [OSTI]

    Schultz, Peter G. (Oakland, CA); Xiang, Xiaodong (Alameda, CA); Goldwasser, Isy (Alameda, CA)

    2002-01-01T23:59:59.000Z

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  7. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01T23:59:59.000Z

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  8. Safety of magnetic fusion facilities: Requirements

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved.

  9. Synthesis of refractory materials

    DOE Patents [OSTI]

    Holt, J.B.

    1983-08-16T23:59:59.000Z

    Refractory metal nitrides are synthesized during a self-propagating combustion process utilizing a solid source of nitrogen. For this purpose, a metal azide is employed, preferably NaN/sub 3/. The azide is combusted with Mg or Ca, and a metal oxide is selected from Groups III-A, IV-A, III-B, IV-B, or a rare earth metal oxide. The mixture of azide, Ca or Mg and metal oxide is heated to the mixture's ignition temperature. At that temperature the mixture is ignited and undergoes self-sustaining combustion until the starter materials are exhausted, producing the metal nitride.

  10. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01T23:59:59.000Z

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  11. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22T23:59:59.000Z

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  12. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) -PublicationsMaterials Science

  13. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDisposition | National NuclearMaterial Misfits

  14. Functionalized magnetic nanoparticle analyte sensor

    DOE Patents [OSTI]

    Yantasee, Wassana; Warner, Maryin G; Warner, Cynthia L; Addleman, Raymond S; Fryxell, Glen E; Timchalk, Charles; Toloczko, Mychailo B

    2014-03-25T23:59:59.000Z

    A method and system for simply and efficiently determining quantities of a preselected material in a particular solution by the placement of at least one superparamagnetic nanoparticle having a specified functionalized organic material connected thereto into a particular sample solution, wherein preselected analytes attach to the functionalized organic groups, these superparamagnetic nanoparticles are then collected at a collection site and analyzed for the presence of a particular analyte.

  15. Detection of magnetic resonance signals using a magnetoresistive sensor

    DOE Patents [OSTI]

    Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

    2013-10-01T23:59:59.000Z

    A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

  16. Top 10 Things You Didn't Know About Critical Materials | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -- from wind turbines and energy-efficient lighting to electric vehicles and thin-film solar cells -- use materials with magnetic, catalytic and luminescent properties. These...

  17. Page 1Classroom Visit Pre/Post Materials1 C L A S S R O O M V I S I T

    E-Print Network [OSTI]

    Weston, Ken

    have about magnets and magnetism. Once the misconceptions are identified, have students design a way to discover the types of materials that magnets attract. The students can prepare a chart listing the objects magnets and magnetism. There are no right or wrong answers. Keep the chart accessible so that you

  18. Interface Magnetism in Multiferroics

    E-Print Network [OSTI]

    He, Qing

    2011-01-01T23:59:59.000Z

    1.2.1 Magnetism . . . . . . . . . . . . . . . . . . . 1.2.2domain walls . . . . . 3 Magnetism of domain walls in BiFeOof electrical control of magnetism in mixed phase BiFeO 3

  19. Joining of parts via magnetic heating of metal aluminum powders

    DOE Patents [OSTI]

    Baker, Ian

    2013-05-21T23:59:59.000Z

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  20. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15T23:59:59.000Z

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  1. Center for Nanophase Materials Sciences User Group Bylaws and Charter

    E-Print Network [OSTI]

    Pennycook, Steve

    by the Executive Committee, which shall prepare a slate of candidates for the election. The election process appointment within CNMS. In preparing the slate of candidates for the election, the Executive Committee shall reflected in the slate of candidates. To be eligible for election to the Executive Committee, each candidate

  2. EM QA Working Group September 2011 Meeting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EM HighlightsSeptemberQUALITY ASSURANCE WORKING

  3. Magnets for Muon 6D Cooling Channels

    SciTech Connect (OSTI)

    Johnson, Rolland [Muons, Inc.; Flanagan, Gene [Muons, Inc.

    2014-09-10T23:59:59.000Z

    The Helical Cooling Channel (HCC), an innovative technique for six-dimensional (6D) cooling of muon beams using a continuous absorber inside superconducting magnets, has shown considerable promise based on analytic and simulation studies. The implementation of this revolutionary method of muon cooling requires high field superconducting magnets that provide superimposed solenoid, helical dipole, and helical quadrupole fields. Novel magnet design concepts are required to provide HCC magnet systems with the desired fields for 6D muon beam cooling. New designs feature simple coil configurations that produce these complex fields with the required characteristics, where new high field conductor materials are particularly advantageous. The object of the program was to develop designs and construction methods for HCC magnets and design a magnet system for a 6D muon beam cooling channel. If successful the program would develop the magnet technologies needed to create bright muon beams for many applications ranging from scientific accelerators and storage rings to beams to study material properties and new sources of energy. Examples of these applications include energy frontier muon colliders, Higgs and neutrino factories, stopping muon beams for studies of rare fundamental interactions and muon catalyzed fusion, and muon sources for cargo screening for homeland security.

  4. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01T23:59:59.000Z

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  5. Heisenberg groups and noncommutative fluxes

    SciTech Connect (OSTI)

    Freed, Daniel S. [Department of Mathematics, University of Texas at Austin, TX 78712 (United States)]. E-mail: dafr@math.utexas.edu; Moore, Gregory W. [Department of Physics, Rutgers University, Piscataway, NJ 08854-8019 (United States); Segal, Graeme [All Souls College, Oxford (United Kingdom)

    2007-01-15T23:59:59.000Z

    We develop a group-theoretical approach to the formulation of generalized abelian gauge theories, such as those appearing in string theory and M-theory. We explore several applications of this approach. First, we show that there is an uncertainty relation which obstructs simultaneous measurement of electric and magnetic flux when torsion fluxes are included. Next, we show how to define the Hilbert space of a self-dual field. The Hilbert space is Z{sub 2}-graded and we show that, in general, self-dual theories (including the RR fields of string theory) have fermionic sectors. We indicate how rational conformal field theories associated to the two-dimensional Gaussian model generalize to (4k+2)-dimensional conformal field theories. When our ideas are applied to the RR fields of string theory we learn that it is impossible to measure the K-theory class of a RR field. Only the reduction modulo torsion can be measured.

  6. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...

  7. Supporting Information Materials and Methods

    E-Print Network [OSTI]

    Collins, Steven H.

    1 Supporting Information Materials and Methods Description of Energy-Recycling Artificial Foot The energy-recycling artificial foot was comprised of six component groups: the attachment interface, the toe The prosthesis simulator boot weighed 1.30 kg, and the lift shoe weighed 1.42 kg, with each adding approximately

  8. SIDEWALL MATERIALS FOR ALUMINIUM SMELTER

    E-Print Network [OSTI]

    Liley, David

    is needed to protect sidewall material High heat loss Overall Reaction: 2Al2O3 (sol) + 3C(s) = 4Al(l) + 3CO2 (SUT) Prof. Geoff Brooks (SUT) Dr. Xiao Yong Yan (CSIRO) High Temperature Processing Research Group CO2 per tonne Al Australia's Aluminium Industry * Australian Aluminium Council: www

  9. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

  10. SUPERCONDUCTING MAGNETIC ENERGY STORAGE

    E-Print Network [OSTI]

    Hassenzahl, W.

    2011-01-01T23:59:59.000Z

    Design of the BPA Superconducting 30-MJ Energy Storagefor a Utility Scale Superconducting Magnetic Energy Storagefor a Lnrge Scale Superconducting Magnetic Energy Storage

  11. Determining the minimum mass and cost of a magnetic refrigerator

    E-Print Network [OSTI]

    Bjrk, R; Bahl, C R H; Pryds, N

    2014-01-01T23:59:59.000Z

    An expression is determined for the mass of the magnet and magnetocaloric material needed for a magnetic refrigerator and these are determined using numerical modeling for both parallel plate and packed sphere bed regenerators as function of temperature span and cooling power. As magnetocaloric material Gd or a model material with a constant adiabatic temperature change, representing a infinitely linearly graded refrigeration device, is used. For the magnet a maximum figure of merit magnet or a Halbach cylinder is used. For a cost of \\$40 and \\$20 per kg for the magnet and magnetocaloric material, respectively, the cheapest 100 W parallel plate refrigerator with a temperature span of 20 K using Gd and a Halbach magnet has 0.8 kg of magnet, 0.3 kg of Gd and a cost of \\$35. Using the constant material reduces this cost to \\$25. A packed sphere bed refrigerator with the constant material costs \\$7. It is also shown that increasing the operation frequency reduces the cost. Finally, the lowest cost is also found a...

  12. Materials Characterization | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHzMAR Os2010Material Safety Electron

  13. Critical Materials Institute

    SciTech Connect (OSTI)

    Alex King

    2013-01-09T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  14. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05T23:59:59.000Z

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  15. Thermodynamic estimation: Ionic materials

    SciTech Connect (OSTI)

    Glasser, Leslie, E-mail: l.glasser@curtin.edu.au

    2013-10-15T23:59:59.000Z

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (properties) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as double salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of double salts, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: Estimation methods for thermodynamic properties of ionic materials are introduced. Methods are based on summation of single ions, multiple salts, and correlations. Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.

  16. Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  17. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  18. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  19. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  20. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  1. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  2. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  3. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  4. Group History: Condensed Matter and Magnetic Science, MPA-CMMS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel and producing a thermonuclear yield of roughly 10 megatons of TNT. (See Figure 2.) thermonuclear fusion Figure 2. Mike, the first large-scale experiment with thermonuclear...

  5. Spectroscopic Characterization of Actinide Materials

    SciTech Connect (OSTI)

    Buck, Edgar C.; Clark, Dave L.; Caciuffo, Roberto; van der Laan, Gerrit

    2010-11-11T23:59:59.000Z

    Advanced spectroscopic techniques provide new and unique tools for unraveling the nature of the electronic structure of actinide materials. Inelastic neutron scattering experiments that address temporal aspects of lattice and magnetic fluctuations, probe electromagnetic multipole interactions and the coupling between electronic and vibrational degrees of freedom. Nuclear magnetic resonance clearly demonstrates different magnetic ground states at low temperature. Photoemission spectroscopies provide information on the occupied part of the electron density of states and have been used to investigate the momentum-resolved electronic structure and the topology of the Fermi surface in a variety of actinide compounds. Furthermore, x-ray absorption and electron energy-loss spectroscopies have been used to probe the relativistic nature, the occupation number, and the degree of localization of 5f electrons across the actinide series. More recently, element and edge-specific resonant and non-resonant inelastic x-ray scattering experiments have provided the opportunity of measuring elementary electronic excitations with higher resolution than traditional absorption techniques. Here, we will discuss the results obtained by most of these different spectroscopic techniques in studying the electronic and magnetic properties of selected actinide compounds, chosen as typical examples of systems with 5f electrons having an itinerant or a localized character, or lying near the localization-delocalization boundary.

  6. Design of materials Configurations for enhanced phononic and electronic properties

    E-Print Network [OSTI]

    Daraio, Chiara

    2006-01-01T23:59:59.000Z

    composite: (a), (b) micrographs showing top and cross-sectional view of magnetically aligned conductive polymer; (composite: (a), (b) micrographs showing top and cross- sectional view of magnetically aligned conductive polymer; (conductive particles in nonconductive matrix materials such as elastomeric or adhesive polymers. These composites

  7. System Cost Analysis for an Interior Permanent Magnet Motor

    SciTech Connect (OSTI)

    Peter Campbell

    2008-08-01T23:59:59.000Z

    The objective of this program is to provide an assessment of the cost structure for an interior permanent magnet ('IPM') motor which is designed to meet the 2010 FreedomCAR specification. The program is to evaluate the range of viable permanent magnet materials for an IPM motor, including sintered and bonded grades of rare earth magnets. The study considers the benefits of key processing steps, alternative magnet shapes and their assembly methods into the rotor (including magnetization), and any mechanical stress or temperature limits. The motor's costs are estimated for an annual production quantity of 200,000 units, and are broken out into such major components as magnetic raw materials, processing and manufacturing. But this is essentially a feasibility study of the motor's electromagnetic design, and is not intended to include mechanical or thermal studies as would be done to work up a selected design for production.

  8. Effect of hydrostatic pressure upon the magnetic transitions in the Gd5,,SixGe1-x...4 giant magnetocaloric compounds: X-ray magnetic circular dichroism study

    E-Print Network [OSTI]

    Haskel, Daniel

    - tention due to their potential for use in magnetic refrigeration.17 Among these materials, Gd5 SixGe1-x 4 transition,4,6 making them attractive candidates for magnetic refrigeration near room temperatureEffect of hydrostatic pressure upon the magnetic transitions in the Gd5,,SixGe1-x...4 giant

  9. Superconducting materials for large scale applications

    SciTech Connect (OSTI)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06T23:59:59.000Z

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  10. Methods for degrading lignocellulosic materials

    SciTech Connect (OSTI)

    Vlasenko, Elena (Davis, CA); Cherry, Joel (Davis, CA); Xu, Feng (Davis, CA)

    2011-05-17T23:59:59.000Z

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

  11. Methods for degrading lignocellulosic materials

    DOE Patents [OSTI]

    Vlasenko, Elena (Davis, CA); Cherry, Joel (Davis, CA); Xu, Feng (Davis, CA)

    2008-04-08T23:59:59.000Z

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.

  12. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  13. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  14. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL Record of Property Transferred from ______ ___________________________________ 2. DEAN (If Applies) ______ ___________________________________ 5. UNIVERSITY DIRECTOR OF MATERIALS MANAGEMENT ______ ___________________________________ 3. HOSPITAL DIRECTOR (If Applies) ______ IF YOU NEED

  15. Magnetic Geodesic Flows on Coadjoint Orbits Alexey V. Bolsinov , Bozidar Jovanovic

    E-Print Network [OSTI]

    ). 2 Magnetic Coadjoint Orbits Let G be a compact connected Lie group with the Lie algebra g = TeG. Let

  16. LANSCE | Lujan Center | Highlights | Emergent Magnetism at LaAIo3...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superlattices fabricated from groups in Spain and the Netherlands with polarized neutron reflectometry (PNR). PNR is intrinsically sensitive to interfacial magnetization;...

  17. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  18. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19T23:59:59.000Z

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  19. Method to manufacture bit patterned magnetic recording media

    DOE Patents [OSTI]

    Raeymaekers, Bart; Sinha, Dipen N

    2014-05-13T23:59:59.000Z

    A method to increase the storage density on magnetic recording media by physically separating the individual bits from each other with a non-magnetic medium (so-called bit patterned media). This allows the bits to be closely packed together without creating magnetic "cross-talk" between adjacent bits. In one embodiment, ferromagnetic particles are submerged in a resin solution, contained in a reservoir. The bottom of the reservoir is made of piezoelectric material.

  20. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2010-07-13T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  1. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2009-10-27T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  2. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2009-11-10T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of impaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  3. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2010-06-29T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  4. Spin microscope based on optically detected magnetic resonance

    DOE Patents [OSTI]

    Berman, Gennady P. (Los Alamos, NM); Chernobrod, Boris M. (Los Alamos, NM)

    2007-12-11T23:59:59.000Z

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  5. Simulated magnetization reversal in Fe nanopillar S. H. Thompson

    E-Print Network [OSTI]

    Weston, Ken

    Simulated magnetization reversal in Fe nanopillar S. H. Thompson Florida State University and Center for Materials Research and Technology. 1 S. H. Thompson, G. Brown, and P. A. Rikvold, J. Appl

  6. Circular sensor array and nonlinear analysis of homopolar magnetic bearings

    E-Print Network [OSTI]

    Wiesenborn, Robert Kyle

    2007-04-25T23:59:59.000Z

    Magnetic bearings use variable attractive forces generated by electromagnetic control coils to support rotating shafts with low friction and no material wear while providing variable stiffness and damping. Rotor deflections are stabilized...

  7. Optimization of materials for thermomagnetic cooling

    SciTech Connect (OSTI)

    Migliori, A.; Darling, T.W.; Freibert, F.; Trugman, S.A.; Moshopoulou, E.; Sarrao, J.L.

    1997-07-01T23:59:59.000Z

    The authors review thermoelectric transport in a magnetic field. The key physical effect for thermomagnetic cooling is the Ettingshausen effect. They describe the design principles, measurement difficulties and areas where more work can prove fruitful in an exploration of cryogenic refrigeration based on this effect. New principles are discussed to guide the search for new materials and their development.

  8. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    DOE Patents [OSTI]

    Holloway, A.

    1992-01-07T23:59:59.000Z

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10[sup 4]Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures. 6 figs.

  9. Process and apparatus for preparing textured crystalline materials using anisotropy in the paramagnetic susceptibility

    DOE Patents [OSTI]

    Holloway, Aleksey (522 N. 32nd St., Omaha, NE 68131)

    1992-01-07T23:59:59.000Z

    The present invention discloses a process and apparatus for forming textures in materials. The process comprises heating a material having an anisotropy in the paramagnetic or diamagnetic susceptibility within a magnetic field. The material is heated to a temperature approaching its melting point while a magnetic field of at least 10.sup.4 Oe is simultaneously applied. The process and apparatus produce highly textured bulk and elongated materials with high current densities below critical superconducting temperatures.

  10. Magnetorheological materials, method for making, and applications thereof

    DOE Patents [OSTI]

    Shen, Rui; Yang, Hong; Shafrir, Shai N.; Miao, Chunlin; Wang, Mimi; Mici, Joni; Lambropoulos, John C.; Jacobs, Stephen D.

    2014-08-19T23:59:59.000Z

    A magnetorheological material comprises a magnetic particle and a ceramic material, wherein the magnetorheological material is in a dried form and further wherein a portion of the ceramic material is in the form of a nanocrystalline coating over the entire exterior surface of the magnetic particle and another portion of the ceramic material is in the form of a free nanocrystal. A magnetorheological material comprises a magnetic particle having a ceramic material coating over an external surface thereof as a result of a coating process, and a free nanocrystal of the ceramic material in the form of a residual by-product of the coating process. A sol-gel process for making a magnetorheological product comprises providing a sol of a desired ceramic coating material; combining a desired quantity of carbonyl iron (CI) particles with the sol to coat the CI particles with the ceramic coating material; creating a resulting quantity of nanocrystalline ceramic material-coated CI particles and a quantity of free nanocrystals of the ceramic material; and, drying the resulting quantity of coated CI particles and free nanocrystals to a moisture content equal to or less than 2 wt %.

  11. Introduction Magnetic Anisotropy of

    E-Print Network [OSTI]

    Rossak, Wilhelm R.

    not completely understood interesting for dilute magnetic semiconductors (DMSs) transparent ferromagnets

  12. Magnetic Imaging Wolfgang Kuch

    E-Print Network [OSTI]

    Kuch, Wolfgang

    Magnetic Imaging Wolfgang Kuch Freie Universit¨at Berlin, Institut f¨ur Experimentalphysik, Arnimallee 14, 14195 Berlin, Germany kuch@physik.fu-berlin.de Abstract. Imaging of magnetic domains has- ern techniques is used nowadays routinely for magnetic imaging of magnetic ma- terials

  13. Superconducting Magnet Division

    E-Print Network [OSTI]

    McDonald, Kirk

    Superconducting Magnet Division Ramesh Gupta 20T Target Solenoid with HTS Insert Solenoid Capture Laboratory New York, USA http://www.bnl.gov/magnets/staff/gupta #12;Superconducting Magnet Division Ramesh of HTS may significantly reduce the amount of Tungsten shielding · Summary #12;Superconducting Magnet

  14. Materials Science & Tech Division | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production of battery cells, magnetic field processing, specialized rolling technologies, additive manufacturing, etc. Laboratories for comprehensive evaluations of low-level...

  15. Functional Materials for Energy | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at...

  16. GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA BARRETT, CIAN ADAMS, NICOLE BARTON, MICHAEL

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA ANDERSON FITZSIMONS, DENISEBINCHY, SUSAN CARLEY, JESSE CONWAY, AILBHE BROOKE, HENRY CONLAN, DEIRDRE, CAOIMHE HESKIN, CLODAGH MC GOVERN, MARIE-CLAIREMURRAY, AINE GROGAN, CLARE GERARD, ALLISON MC QUAID, RACHEL

  17. Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites

    E-Print Network [OSTI]

    Guo, John Zhanhu

    Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites Jiahua with various materials to form core-shell structures results in the new hybrid materials, which can be used

  18. Manganese-Based Magnets: Manganese-Based Permanent Magnet with 40 MGOe at 200C

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: PNNL is working to reduce the cost of wind turbines and EVs by developing a manganese-based nano-composite magnet that could serve as an inexpensive alternative to rare-earth-based magnets. The manganese composite, made from low-cost and abundant materials, could exceed the performance of todays most powerful commercial magnets at temperature higher than 200C. Members of PNNLs research team will leverage comprehensive computer high-performance supercomputer modeling and materials testing to meet this objective. Manganese-based magnets could withstand higher temperatures than their rare earth predecessors and potentially reduce the need for any expensive, bulky engine cooling systems for the motor and generator. This would further contribute to cost savings for both EVs and wind turbines.

  19. High-Frequency Resistivity of Soft Magnetic Granular Films

    E-Print Network [OSTI]

    permeability was measured and used to predict the power loss expected when granular films are used as high-frequency core materials for film inductors. The power loss is predicted to be lower than that of commercial Ni permeability, power loss, soft magnetic film. I. INTRODUCTION SOFT magnetic granular films are considered ideal

  20. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Fort Smith quadrangle, Oklahoma, and Arkansas. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Fort Smith quadrangle in western Arkansas and eastern Oklahoma overlies thick Paleozoic sediments of the Arkoma Basin. These Paleozoics dominate surface exposure except where covered by Quaternary Alluvial materials. Examination of available literature shows no known uranium deposits (or occurrences) within the quadrangle. Seventy-five groups of uranium samples were defined as anomalies and are discussed briefly. None were considered significant, and most appeared to be of cultural origin. Magnetic data show character that suggest structural and/or lithologic complexity, but imply relatively deep-seated sources.

  1. Chemical and Materials Science (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Home Advanced Photon Source About Us Useful Links Chemical and Materials Science (X-ray Science Division) The CMS group has operational responsibility for...

  2. Materials with supramolecular chirality : liqid crystals and polymers for catalysis

    E-Print Network [OSTI]

    Martin, Karen Villazor

    2005-01-01T23:59:59.000Z

    Mesomorphic organizations provide a powerful and efficient method for the preorganization of molecules to create synthetic materials with controlled supramolecular architectures. Incorporation of polymerizable groups within ...

  3. Method and apparatus for measuring nuclear magnetic properties

    DOE Patents [OSTI]

    Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.

    1987-12-01T23:59:59.000Z

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.

  4. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand (MIT); Persson, Kristin (LBNL)

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  5. Magnetic properties of HITPERM ,,Fe,Co...88Zr7B4Cu1 magnets M. A. Willard,a)

    E-Print Network [OSTI]

    Laughlin, David E.

    power applications requires new bulk soft magnetic materials that 1 are capable of operating at higher magnetization that persists to the phase transformation at 980 C. Alternating current permeability experiments nanocrystalline FeSiBNbCu alloys and nanocrystalline FeMBCu M Zr, Nb, Hf, etc. alloys have been optimized

  6. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    SciTech Connect (OSTI)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com [DREEBIT GmbH, 01109 Dresden (Germany); Zschornack, G.; Kentsch, U.; Ritter, E. [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany)] [Department of Physics, Dresden University of Technology, 01062 Dresden, Germany and Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden (Germany)

    2014-02-15T23:59:59.000Z

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100?C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100?C did not change the magnetic properties of the setup.

  7. Microbial Fuel Cell Using Inexpensive Materials

    E-Print Network [OSTI]

    Microbial Fuel Cell Using Inexpensive Materials Group #4 Peter McAveney Brett Pedersen Jun-Chung Wong #12;Abstract We built and tested a microbial fuel cell using low-cost materials. Our intention- critical applications such as transportation. Microbial fuel cells cannot achieve comparable power

  8. Sudoplatov S. V. ON GENERIC GROUP TRIGONOMETRIES

    E-Print Network [OSTI]

    Sudoplatov, Sergey Vladimirovich

    447. 6. Sudoplatov S. V. On type identifications in trigonometrical theories // Materials of InternatSudoplatov S. V. ON GENERIC GROUP TRIGONOMETRIES The positive solution of known problem projective closure (the construction is defined in [5, theorem 8]); 2) an amalgamation (type identification

  9. Protostellar Accretion Flows Destabilized by Magnetic Flux Redistribution

    E-Print Network [OSTI]

    Krasnopolsky, Ruben; Shang, Hsien; Zhao, Bo

    2012-01-01T23:59:59.000Z

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known "magnetic flux problem" can in principle be resolved through non-ideal MHD effects. Two dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the pres...

  10. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics design uses a novel property of certain materials, called magnetocaloric materials, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  11. Ultrafast x-rays: radiographing magnetism Project overview

    E-Print Network [OSTI]

    Haviland, David

    , head of the ultrafast magnetism group. Stanford PULSE is a worldwide renowned centre for ultrafast1 Ultrafast x-rays: radiographing magnetism Project overview The main purpose of the proposed, it is now possible to achieve x-ray pulses that are a few femtoseconds long and that are focused within

  12. SPPR Group Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    members will execute in August 2011. Facilities Use Charge agreements are drafted: In review stage by customer group; Proposal specifies annual update of charge amount...

  13. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  14. MATERIALS MANAGEMENT MATERIALS MANAGEMENT -INVENTORY CONTROL

    E-Print Network [OSTI]

    Oliver, Douglas L.

    MATERIALS MANAGEMENT MATERIALS MANAGEMENT - INVENTORY CONTROL NOTICE OF DESIGNATED DEPARTMENTAL OF MATERIALS MANAGEMENT ______ FURTHER INSTRUCTIONS 1. Include a copy of any relevant documents. 2. Item MATERIALS COORDINATOR IC-8 Mail, Fax or PDF the entire package to: MC 2010 Fax: 679-4240 REFERENCE # DMC

  15. The National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    of Contents Table of contents cHaPTeR 1 The Year in Review 6 cHaPTeR 3 Magnets & Materials 44 cHaPTeR 4 User The year in Review cHaPTeR 1 The Year in Review by Gregory Boebinger, MagLab Director 2012: Another

  16. Magnetic and magnetocaloric properties of La{sub 0.85}(Na{sub 1?x}K{sub x}){sub 0.15}MnO{sub 3} ceramics produced by reactive spark plasma sintering

    SciTech Connect (OSTI)

    Regaieg, Y., E-mail: yassine.regaieg@yahoo.fr [ITODYS, Universit Paris Diderot, PRES Sorbonne Paris Cit, CNRS-UMR 7086, 75205 Paris (France); LPM, Facult des Sciences de Sfax, Universit de Sfax, 3000 Sfax (Tunisia); Sicard, L.; Ammar-Merah, S. [ITODYS, Universit Paris Diderot, PRES Sorbonne Paris Cit, CNRS-UMR 7086, 75205 Paris (France); Monnier, J. [ICMPE, Universit Paris-Est, CNRS UMR-7182, 94320 Thiais (France); Koubaa, M.; Cheikhrouhou, A. [LPM, Facult des Sciences de Sfax, Universit de Sfax, 3000 Sfax (Tunisia)

    2014-05-07T23:59:59.000Z

    La{sub 0.85}(Na{sub 1?x}K{sub x}){sub 0.15}MnO{sub 3} (0???x???1) ceramics were synthesized from the raw La(OH){sub 3}, NaOH, KOH, and MnO{sub 2} powders using Reactive Spark Plasma Sintering. All the compounds were obtained as pure, dense, and ultrafine grained pellets. The Rietveld refinement of the X-Ray powder diffraction shows that all our synthesized samples are single phase and crystallize in the distorted rhombohedral system with R-3c space group. The thermal variation of their magnetization under a magnetic applied field of 50?mT shows a paramagnetic to ferromagnetic transition at a Curie temperature very close to room temperature. The magnetic entropy change, deduced from magnetization measurements versus magnetic applied field up to 5?T at several temperatures exhibits a maximum |?S{sub M}|{sub max} which slightly increases with increasing K content. The relative cooling power values, inferred from the |?S{sub M}| vs T peak broadening, vary slightly with the potassium content, reaching, values between 316 and 289?Jkg{sup ?1}, in an applied magnetic field of 5?T, when x increases from 0 to 1. Technically, these large values make the prepared materials very promising for domestic magnetic refrigeration.

  17. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect (OSTI)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21T23:59:59.000Z

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)materials that can be used without conventional liquid-helium cooling to 4.2?K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3?T at 20?K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  18. Spent Fuel Working Group Report. Volume 1

    SciTech Connect (OSTI)

    O`Toole, T.

    1993-11-01T23:59:59.000Z

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

  19. Mechanical design and analysis of an eight-pole superconducting vector magnet for soft x-ray magnetic dichroism measurements

    SciTech Connect (OSTI)

    Arbelaez, D.; Black, A.; Prestemon, S.O.; Wang, S.; Chen, J.; Arenholz, E.

    2010-01-13T23:59:59.000Z

    An eight-pole superconducting magnet is being developed for soft x-ray magnetic dichroism (XMD) experiments at the Advanced Light Source, Lawrence Berkley National Laboratory (LBNL). Eight conical Nb{sub 3}Sn coils with Holmium poles are arranged in octahedral symmetry to form four dipole pairs that provide magnetic fields of up to 5 T in any direction relative to the incoming x-ray beam. The dimensions of the magnet yoke as well as pole taper, diameter, and length were optimized for maximum peak field in the magnet center using the software package TOSCA. The structural analysis of the magnet is performed using ANSYS with the coil properties derived using a numerical homogenization scheme. It is found that the use of orthotropic material properties for the coil has an important influence in the design of the magnet.

  20. DREDGED MATERIAL EVALUATION AND

    E-Print Network [OSTI]

    DREDGED MATERIAL EVALUATION AND DISPOSAL PROCEDURES (USERS' MANUAL) Dredged Material Management 2009) Prepared by: Dredged Material Management Office US Army Corps of Engineers Seattle District #12........................................................................................2-1 2.2 The Dredged Material Evaluation Process