National Library of Energy BETA

Sample records for magnetic materials group

  1. Magnetic Materials Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-ID-C: Soft X-ray Magnetic Spectroscopy This beamline operates in the soft x-ray energy spectrum (500 - 2700 eV) using an electromagnetic helical undulator to provide circularly...

  2. Magnetic Materials | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Internal Magnetic Materials The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS). Our research focuses on the...

  3. Magnetic Materials Group - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    davegag@aps.anl.gov Visiting Scientists, Post-Docs, & Students Lawrie Skinner Rick Weber Vladimir Stoica Lawrie Skinner Research Asst. Prof. Stony Brook 432B003 (630)...

  4. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect (OSTI)

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  5. Design Principles for Materials with Magnetic Functionality ...

    Office of Scientific and Technical Information (OSTI)

    Design Principles for Materials with Magnetic Functionality Citation Details In-Document Search Title: Design Principles for Materials with Magnetic Functionality This report ...

  6. Magnetic filtration process, magnetic filtering material, and...

    Office of Scientific and Technical Information (OSTI)

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically ...

  7. Design Principles for Materials with Magnetic Functionality

    SciTech Connect (OSTI)

    Thompson, Joe David

    2015-11-05

    This report describes the processes involved with refining and testing design principles of high density, magnetic materials and while observing their magnetic functionality.

  8. Method and apparatus for separating materials magnetically

    DOE Patents [OSTI]

    Hise, Jr., Eugene C.; Holman, Allen S.

    1982-01-01

    Magnetic and non-magnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  9. Magnetic Filtration Process, Magnetic Filtering Material, and Method of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forming Magnetic Filtering Material - Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Magnetic Filtration Process, Magnetic Filtering Material, and Method of Forming Magnetic Filtering Material Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL researchers developed a new method for filtering materials and managing wastewater. This invention offers an integrated, intensified process

  10. Hengdian Group DMEGC Magnetics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hengdian Group DMEGC Magnetics Co Ltd Jump to: navigation, search Name: Hengdian Group DMEGC Magnetics Co Ltd Place: Dongyang, Zhejiang Province, China Zip: 322118 Product:...

  11. Electronic & Magnetic Materials & Devices Capabilities | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic & Magnetic Materials & Devices Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450...

  12. Exploring nanoscale magnetism in advanced materials with polarized...

    Office of Scientific and Technical Information (OSTI)

    Exploring nanoscale magnetism in advanced materials with polarized X-rays Citation Details In-Document Search Title: Exploring nanoscale magnetism in advanced materials with ...

  13. Probing nanoscale behavior of magnetic materials with soft x...

    Office of Scientific and Technical Information (OSTI)

    Probing nanoscale behavior of magnetic materials with soft x-ray spectromicroscopy Citation Details In-Document Search Title: Probing nanoscale behavior of magnetic materials with soft ...

  14. Magnetic spectroscopy and microscopy of functional materials

    SciTech Connect (OSTI)

    Jenkins, C.A.

    2011-01-28

    Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).

  15. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect (OSTI)

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  16. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect (OSTI)

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  17. Ames Laboratory scientists create cheaper magnetic material for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory scientists create cheaper magnetic material for cars, wind turbines Contacts: For release: April 23, 2015 Karl A. Gschneidner, Division of Materials Sciences and...

  18. Magnetism in Non-Traditional Materials

    SciTech Connect (OSTI)

    Menon, Madhu

    2013-09-17

    We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the

  19. SYNTHESIS AND CHARACTERIZATION OF ADVANCED MAGNETIC MATERIALS

    SciTech Connect (OSTI)

    Monica Sorescu

    2004-09-22

    The work described in this grant report was focused mainly on the properties of novel magnetic intermetallics. In the first project, we synthesized several 2:17 intermetallic compounds, namely Nd{sub 2}Fe{sub 15}Si{sub 2}, Nd{sub 2}Fe{sub 15}Al{sub 2}, Nd{sub 2}Fe{sub 15}SiAl and Nd{sub 2}Fe{sub 15}SiMn, as well as several 1:12 intermetallic compounds, such as NdFe{sub 10}Si{sub 2}, NdFe{sub 10}Al{sub 2}, NdFe{sub 10}SiAl and NdFe{sub 10}MnAl. In the second project, seven compositions of Nd{sub x}Fe{sub 100-x-y}B{sub y} ribbons were prepared by a melt spinning method with Nd and B content increasing from 7.3 and 3.6 to 11 and 6, respectively. The alloys were annealed under optimized conditions to obtain a composite material consisting of the hard magnetic Nd{sub 2}Fe{sub 14}B and soft magnetic {alpha}-Fe phases, typical of a spring magnet structure. In the third project, intermetallic compounds of the type Zr{sub 1}Cr{sub 1}Fe{sub 1}T{sub 0.8} with T = Al, Co and Fe were subjected to hydrogenation. In the fourth project, we performed three crucial experiments. In the first experiment, we subjected a mixture of Fe{sub 3}O{sub 4} and Fe (80-20 wt %) to mechanochemical activation by high-energy ball milling, for time periods ranging from 0.5 to 14 hours. In the second experiment, we ball-milled Fe{sub 3}O{sub 4}:Co{sup 2+} (x = 0.1) for time intervals between 2.5 and 17.5 hours. Finally, we exposed a mixture of Fe{sub 3}O{sub 4} and Co (80-20 wt %) to mechanochemical activation for time periods ranging from 0.5 to 10 hours. In all cases, the structural and magnetic properties of the systems involved were elucidated by X-ray diffraction (XRD), Moessbauer spectroscopy and hysteresis loop measurements. The four projects resulted in four papers, which were published in Intermetallics, IEEE Transactions on Magnetics, Journal of Materials Science Letters and Materials Chemistry and Physics. The contributions reveal for the first time in literature the effect of

  20. REACT: Alternatives to Critical Materials in Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The 14 projects that comprise ARPA-E’s REACT Project, short for “Rare Earth Alternatives in Critical Technologies”, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

  1. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOE Patents [OSTI]

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  2. Magnetic Material for PM Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Magnetic Material for PM Motors Magnetic Material for PM Motors 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. pmp_23_anderson.pdf (2.23 MB) More Documents & Publications Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress Report Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory,

  3. Production of Materials with Superior Properties Utilizing High Magnetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field - Energy Innovation Portal Electricity Transmission Electricity Transmission Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Production of Materials with Superior Properties Utilizing High Magnetic Field Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication UT-B ID 200401490 Magnetic 7 29 12.pdf (291 KB) Technology Marketing SummaryProcessing materials in a magnetic

  4. Modeling Magnetism in Rare-Earth Intermetallic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Modeling Magnetism in Rare-Earth Intermetallic Materials Theoretical modeling has led to a key development in our understanding of the deeply complex magnetic properties in a series of rare-earth intermetallic materials. Rare-earth elements are unique in that their cores hold strongly localized electrons that underpin their novel magnetic properties. When combined with transition metals, rare earths become technologically-useful intermetallic materials. Here gadolinium-an element

  5. Final Report: Stability and Novel Properties of Magnetic Materials...

    Office of Scientific and Technical Information (OSTI)

    Final Report: Stability and Novel Properties of Magnetic Materials and Ferromagnet Insulator Interfaces Citation Details In-Document Search Title: Final Report: Stability and ...

  6. US-EU-Japan Working Group on Critical Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US-EU-Japan Working Group on Critical Materials 4 th Annual Meeting Iowa State University Hosted by The Critical Materials Institute The Ames Laboratory September 8, 2014 AGENDA 8:30 Registration 9:00 Welcome Alex King, Director, Critical Materials Institute Opening Remarks 9:10 Akito Tani, Deputy Director-General, Manufacturing Industries Bureau, MET 9:20 Gwenole Cozigou, Director, DG Enterprise and Industry 9:30 Mark Johnson, Director, Advanced Manufacturing Office, DOE Session 1: Anticipating

  7. Electronic & Magnetic Materials & Devices | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser spectroscopy, molecular beam epitaxy, and novel approaches for hybrid, organic and nanoparticle materials synthesis. Research activities include: Low-dimensional materials...

  8. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  9. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOE Patents [OSTI]

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  10. Experimental Characterization of Magnetic Materials for the Magnetic Shielding of Cryomodules in Particle Accelerators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sah, Sanjay; Myneni, Ganapati; Atulasimha, Jayasimha

    2016-02-01

    The magnetic properties of two important passive magnetic shielding materials (A4K and Amumetal) for accelerator applications, subjected to various processing and heat treatment conditions are studied comprehensively over a wide range of temperatures: from cryogenic to room temperature. We analyze the effect of processing on the extent of degradation of the magnetic properties of both materials and investigate the possibility of restoring these properties by reannealing.

  11. Experimental characterization of magnetic materials for the magnetic shielding of cryomodules in particle accelerators

    SciTech Connect (OSTI)

    Sah, Sanjay; Myneni, Ganapati; Atulasimha, Jayasimha

    2015-10-26

    The magnetic properties of two important passive magnetic shielding materials (A4K and Amumetal) for accelerator applications, subjected to various processing and heat treatment conditions are studied comprehensively over a wide range of temperatures: from cryogenic to room temperature. Furthermore, we analyze the effect of processing on the extent of degradation of the magnetic properties of both materials and investigate the possibility of restoring these properties by re-annealing.

  12. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect (OSTI)

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  13. Modeling Magnetism in Rare-Earth Intermetallic Materials | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Magnetism in Rare-Earth Intermetallic Materials Theoretical modeling has led to a ... Rare-earth elements are unique in that their cores hold strongly localized electrons that ...

  14. Digital lock-in detection of site-specific magnetism in magnetic materials

    DOE Patents [OSTI]

    Haskel, Daniel; Lang, Jonathan C.; Srajer, George

    2008-07-22

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  15. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  16. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  17. Non-Rare Earth magnetic materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation pm035_mcguire_2011_o.pdf (397.61 KB) More Documents & Publications Non-Rare Earth magnetic materials (Agreement ID:19201) Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office Merit Review 2014: Applied ICME for New Propulsion Materials (Agreement ID:26391) Project ID:18865

  18. Extraordinary Responsive Rare Earth Magnetic Materials | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Extraordinary Responsive Rare Earth Magnetic Materials Research Personnel Updates Publications https://www.ameslab.gov/dmse/highlight/real-estate-atoms-it-all-about-location-location-location Read More Rare Earth Alloys - Why Purity Matters Read More A Mystery at Cryogenic Temperatures Read More Previous Pause Next Synthesis Responsive systems, where a small change of an extrinsic thermodynamic variable, such as temperature, pressure, or magnetic field, triggers an intrinsic phase

  19. Rare-earth-free magnet made from cheap materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rare-earth-free magnet Rare-earth-free magnet made from cheap materials Researchers create a powerful permanent magnet out of iron and nitrogen as part of a program to cut the need for rare-earth metals May 17, 2016 Mars (a) 2 × 1016/cm2 fluence, embedded dots can be observed (rich N region), with a diameter of 20 nm, separated by 140 to 200 nm; (b) 8 × 1016/cm2 fluence, besides embedded dots, obvious cracks appeared; (c) 1 × 1017/cm2 fluence, an obvious microstructure is generated, with

  20. Classification of poison inhalation hazard materials into severity groups

    SciTech Connect (OSTI)

    Griego, N.R.; Weiner, R.F.

    1996-02-01

    Approximately 1.5 billion tons of hazardous materials (hazmat) are transported in the US annually, and most reach their destinations safely. However, there are infrequent transportation accidents in which hazmat is released from its packaging. These accidental releases can potentially affect the health of the exposed population and damage the surrounding environment. Although these events are rare, they cause genuine public concern. Therefore, the US Department of Transportation Research & Special Programs Administration (DOT- RSPA) has sponsored a project to evaluate the protection provided by the current bulk (defined as larger than 118 gallons) packagings used to transport materials that have been classified as Poison Inhalation Hazards (PIH) and recommend performance standards for these PIH packagings. This project was limited to evaluating bulk packagings larger than 2000 gallons. This project involved classifying the PIH into severity categories so that only one set of packaging performance criteria would be needed for each severity category rather than a separate set of performance criteria for each individual PIH. By grouping the PIH into Hazard Zones, Packaging Groups and performance standards for these Hazard Zones can be defined. Each Hazard Zone can correspond to a Packaging Group or, as in 49CFR173 for non-bulk packagings, one Packaging Group may cover more than one Hazard Zone. If the packaging groups are chosen to correspond to the classification categories presented in this report, then the maximum allowable leak rates used to define these categories could be used as the maximum allowable leak rates for the performance oriented packaging standards. The results discussed in this report are intended to provide quantitative guidance for the appropriate authorities to use in making these decisions.

  1. Electronic & magnetic materials and devices at the CNM | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Electronic & magnetic materials and devices at the CNM Graphene Micrograph 1 of 24 Graphene Micrograph Ultra-high vacuum scanning tunneling microscopy image of a point defect in graphene that has been epitaxially grown on 6H-SiC(0001) (Nathan Guisinger, EMMD Group) at Argonne's Center for Nanoscale Materials. Image: Photo courtesy of Argonne National Laboratory Graphene Micrograph 1 of 24 Graphene Micrograph Ultra-high vacuum scanning tunneling microscopy image of a point

  2. Young scientist discovers magnetic material unnecessary to create spin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    current | Argonne National Laboratory Young scientist discovers magnetic material unnecessary to create spin current By Carla Reiter * July 23, 2015 Tweet EmailPrint It doesn't happen often that a young scientist makes a significant and unexpected discovery, but postdoctoral researcher Stephen Wu of the U.S. Department of Energy's Argonne National Laboratory just did exactly that. What he found-that you don't need a magnetic material to create spin current from insulators-has important

  3. Applied magnetism: A supply-driven materials challenge

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rios, Orlando; McCall, Scott K.

    2016-05-27

    Permanent magnets are important in many green energy technologies including wind turbine generators and hybrid-electric vehicle motors. For these applications, volume and weight are important factors driving the overall design, and therefore a high energy density, or energy product, is an important figure of merit. This quantity defines the magnetic energy contained in a given volume of material, and so higher energy density magnets enable smaller, lighter applications. Currently, the most powerful magnets suitable for commercial purposes contain rare earth elements (REE), usually neodymium and dysprosium in the neodymium-iron-boride class of magnets. However, for select applications, often requiring high temperatures,more » samarium cobalt is the alloy of choice. These magnets have energy densities several times greater than their nearest non-REE-based competitor, which for some applications is the defining factor in creating a viable device. The global supply of these REE is overwhelmingly produced in China, which in 2015 mined more than ten times as much as the next largest producer (Australia). Such market domination effectively creates a single source of supply, leaving industries which rely on REE consumption susceptible to price shocks and supply disruptions of these critical materials. Furthermore, this supply sensitivity may act as a drag on the adaptation rate of green energy technologies, particularly for large-scale users.« less

  4. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.

    2010-03-30

    An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

  5. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, William J.; Geballe, Theodore H.; Maple, M. Brian

    1988-01-01

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures.

  6. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    SciTech Connect (OSTI)

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    2015-09-14

    impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated

  7. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, Richard D.

    1988-01-01

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadropole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin.

  8. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1986-07-24

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  9. Apparatus for magnetic separation of paramagnetic and diamagnetic material

    DOE Patents [OSTI]

    Doctor, R.D.

    1988-10-18

    The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

  10. US-EU-Japan Working Group on Critical Materials

    Office of Environmental Management (EM)

    Materials Institute - Colorado School of Mines 12:20 Buffet Lunch 12:30 Canadian Rare Earth Elements - feeding the global supply chain Janice Zinck, Manager, Natural Resources ...

  11. EM QA Working Group September 2011 Meeting Materials | Department...

    Energy Savers [EERE]

    Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)...

  12. Magnetic preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Capone, D.W.; Dunlap, B.D.; Veal, B.W.

    1990-07-17

    A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.

  13. Magnetic preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.

    1990-01-01

    A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state.

  14. EM QA Working Group September 2011 Meeting Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area and QA Resources Focus Area of the EM QA Corporate ... Practices Working Group and Quality Assurance ... of AL6XN Piping * Analysis: - The following causes ...

  15. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    SciTech Connect (OSTI)

    Sumption, Mike D.; Collings, Edward W.

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  16. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOE Patents [OSTI]

    Viswanathan, Tito

    2015-10-27

    A method of separating a liquid hydrocarbon material from a body of water, includes: (a) mixing magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the magnetic carbon-metal nanocomposites each to be adhered by the liquid hydrocarbon material to form a mixture; (b) applying a magnetic force to the mixture to attract the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material; and (c) removing the body of water from the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material while maintaining the applied magnetic force. The magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material, for a period of time effective to allow the carbon-metal nanocomposites to be formed.

  17. Method and apparatus for separating materials magnetically. [Patent application; iron pyrite from coal

    DOE Patents [OSTI]

    Hise, E.C. Jr.; Holman, A.S.; Friedlaender, F.J.

    1980-11-06

    Magnetic and nonmagnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

  18. Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material...

    Office of Scientific and Technical Information (OSTI)

    by NMR Citation Details In-Document Search Title: Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material CeRhIn5 at High Magnetic Fields Studied by NMR Authors: ...

  19. Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material...

    Office of Scientific and Technical Information (OSTI)

    by NMR Citation Details In-Document Search Title: Novel Magnetic States in the Heavy-Fermion Quantum-Critical Material CeRhIn5 at High Magnetic Fields Studied by NMR You ...

  20. Magnetic mesoporous material for the sequestration of algae

    DOE Patents [OSTI]

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  1. Biasing and fast degaussing circuit for magnetic materials

    DOE Patents [OSTI]

    Dress, Jr., William B.; McNeilly, David R.

    1984-01-01

    A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a d.c. current and alternately apply a selectively damped a.c. current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.

  2. Biasing and fast degaussing circuit for magnetic materials

    DOE Patents [OSTI]

    Dress, W.B. Jr.; McNeilly, D.R.

    1983-10-04

    A dual-function circuit is provided which may be used to both magnetically bias and alternately, quickly degauss a magnetic device. The circuit may be magnetically coupled or directly connected electrically to a magnetic device, such as a magnetostrictive transducer, to magnetically bias the device by applying a dc current and alternately apply a selectively damped ac current to the device to degauss the device. The circuit is of particular value in many systems which use magnetostrictive transducers for ultrasonic transmission in different propagation modes over very short time periods.

  3. Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to today’s best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

  4. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOE Patents [OSTI]

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2007-11-27

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  5. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOE Patents [OSTI]

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2005-03-29

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  6. Effect of Composition and Heat Treatment on MnBi Magnetic Materials

    SciTech Connect (OSTI)

    Cui, Jun; Choi, Jung-Pyung; Polikarpov, Evgueni; Bowden, Mark E.; Xie, Wei; Li, Guosheng; Nie, Zimin; Zarkevich, Nikolai; Kramer, Matthew J.; Johnson, Duane D.

    2014-08-17

    The metallic compound MnBi is a promising rare-earth-free permanent magnet material. Compare to other rare-earth-free candidates, MnBi stands out for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. Several groups have demonstrated that the Hci of MnBi compound in thin film or in powder form can exceed 12 kOe and 26 kOe at 300 K and 523 K, respectively. Such steep increase in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. The reaction between Mn and Bi is peritectic, so Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, the composition of the Mn-Bi alloy with the largest amount of the desired LTP (low temperature phase) MnBi and highest saturation magnetization will be over-stoichiometric and rich in Mn. The amount of additional Mn required to compensate the Mn precipitation depends on solidification rate: the faster the quench speed, the less Mn precipitates. Here we report a systematic study of the effect of composition and heat treatments on the phase contents and magnetic properties of Mn-Bi alloys. In this study, Mn-Bi alloys with 14 compositions were prepared using conventional metallurgical methods such as arc melting and vacuum heat treatment, and the obtained alloys were analyzed for compositions, crystal structures, phase content, and magnetic properties. The results show that the composition with 55 at.% Mn exhibits the highest LTP MnBi content and the highest magnetization. The sample with this composition shows >90 wt.% LTP MnBi content. Its measured saturation magnetization is 68 emu/g with 2.3 T applied field at 300 K; its coercivity is 13 kOe and its energy product is 12 MGOe at 300 K. A bulk magnet fabricated using this powder exhibits an energy product of 8.2 MGOe.

  7. Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon SessionA7HonoNIMS.pdf More Documents & Publications Spomenka Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe Tom Lograsso, Ames Laboratory (Iowa State ...

  8. Final Scientific/Technical Report for DOE/EERE project Advanced Magnetic Refrigerant Materials

    SciTech Connect (OSTI)

    Johnson, Francis

    2014-06-30

    A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magnetic refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy

  9. Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation

    SciTech Connect (OSTI)

    Lewis, LH; Jimenez-Villacorta, F

    2012-07-18

    Permanent magnet development has historically been driven by the need to supply larger magnetic energy in ever smaller volumes for incorporation in an enormous variety of applications that include consumer products, transportation components, military hardware, and clean energy technologies such as wind turbine generators and hybrid vehicle regenerative motors. Since the 1960s, the so-called rare-earth "supermagnets," composed of iron, cobalt, and rare-earth elements such as Nd, Pr, and Sm, have accounted for the majority of global sales of high-energy-product permanent magnets for advanced applications. In rare-earth magnets, the transition-metal components provide high magnetization, and the rare-earth components contribute a very large magnetocrystalline anisotropy that donates high resistance to demagnetization. However, at the end of 2009, geopolitical influences created a worldwide strategic shortage of rare-earth elements that may be addressed, among other actions, through the development of rare-earth-free magnetic materials harnessing sources of magnetic anisotropy other than that provided by the rare-earth components. Materials engineering at the micron scale, nanoscale, and Angstrom scales, accompanied by improvements in the understanding and characterization of nanoscale magnetic phenomena, is anticipated to result in new types of permanent magnetic materials with superior performance. DOI: 10.1007/s11661-012-1278-2 (C) The Minerals, Metals & Materials Society and ASM International 2012

  10. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOE Patents [OSTI]

    Bell, Zane W.; Huei-Ho, Chuen; Brown, Gilbert M.; Hurlbut, Charles

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  11. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    DOE Patents [OSTI]

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  12. Tuning magnetic splitting of zigzag graphene nanoribbons by edge functionalization with hydroxyl groups

    SciTech Connect (OSTI)

    Zhang, Huizhen; Yang, Haifang; Li, Lin; Fu, Huixia; Ma, Wei; Niu, Chunyao; Sun, Jiatao; Meng, Sheng; Gu, Changzhi

    2015-03-21

    The electronic properties and relative stability of zigzag graphene nanoribbons are studied by varying the percentage of hydroxyl radicals for edge saturation using first principle calculations. The passivated structures of zigzag graphene nanoribbon have spin-polarized ground state with antiferromagnetic exchange coupling across the edge and ferromagnetic coupling along the edges. When the edges are specially passivated by hydroxyl, the potentials of spin exchange interaction across the two edges shift accordingly, resulting into a spin-semiconductor. Varying the concentration of hydroxyl groups can alter the maximum magnetization splitting. When the percentage of asymmetrically adsorbed hydroxyl reaches 50%, the magnetization splitting can reach a value as high as 275 meV due to the asymmetrical potential across the nanoribbon edges. These results would favor spintronic device applications based on zigzag graphene nanoribbons.

  13. First principles DFT study of ferromagnetism in SnO{sub 2} induced by doped group 1A and 2A non-magnetic elements X (X=Li, Na, K, Be, Mg, Ca)

    SciTech Connect (OSTI)

    Chakraborty, Brahmananda Ramaniah, Lavanya M.

    2014-04-24

    Transition metal - free - ferromagnetism in diluted magnetic semiconductors (DMS) is of much current interest in the search for more efficient DMS materials for spintronic applications. Here, we report the results of our first principles density functional theory (DFT) study on impurity - induced ferromagnetism in non-magnetic SnO{sub 2} by a non-magnetic impurity. The impurities considered are sp-type of group 1A and 2A elements X (X = Li, Na, K, Be, Mg, Ca). Even a single atom of the group 1A elements makes the system magnetic, whereas for the group 2A elements Ca and Mg, a higher doping is required to induce ferromagnetism. For all the elements studied, the magnetic moment appears to increase with the doping concentration, at least at certain impurity separations, which is a positive indicator for practical applications.

  14. Bibliography of the technical literature of the Materials Joining Group, 1951--1991

    SciTech Connect (OSTI)

    David, S.A.; Goodwin, G.M.; Gardner, K.

    1991-12-01

    This document contains a listing of the written scientific information originating in the Materials Joining (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1991. This registry of documents is as much as possible, in the order of issue date.

  15. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, William J.; Geballe, Theodore H.; Maple, M. Brian

    1990-01-01

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

  16. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, W.J.; Geballe, T.H.; Maple, M.B.

    1990-03-13

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

  17. Ion energy-angle distribution functions at the plasma-material interface in oblique magnetic fields

    SciTech Connect (OSTI)

    Khaziev, Rinat; Curreli, Davide

    2015-04-15

    The ion energy-angle distribution (IEAD) at the wall of a magnetized plasma is of fundamental importance for the determination of the material processes occurring at the plasma-material interface, comprising secondary emissions and material sputtering. Here, we present a numerical characterization of the IEAD at the wall of a weakly collisional magnetized plasma with the magnetic field inclined at an arbitrary angle with respect to the wall. The analysis has been done using two different techniques: (1) a fluid-Monte Carlo method, and (2) particle-in-cell simulations, the former offering a fast but approximate method for the determination of the IEADs, the latter giving a computationally intensive but self-consistent treatment of the plasma behavior from the quasi-neutral region to the material boundary. The two models predict similar IEADs, whose similarities and differences are discussed. Data are presented for magnetic fields inclined at angles from normal to grazing incidence (0°–85°). We show the scaling factors of the average and peak ion energy and trends of the pitch angle at the wall as a function of the magnetic angle, for use in the correlation of fluid plasma models to material models.

  18. Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components

    SciTech Connect (OSTI)

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Wilgen, John B; Kisner, Roger A; Ahmad, Aquil

    2010-08-01

    In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

  19. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin; West, David L; Abdelaziz, Omar; Evans III, Boyd Mccutchen

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  20. Thermal effects on transducer material for heat assisted magnetic recording application

    SciTech Connect (OSTI)

    Ji, Rong Xu, Baoxi; Cen, Zhanhong; Ying, Ji Feng; Toh, Yeow Teck

    2015-05-07

    Heat Assisted Magnetic Recording (HAMR) is a promising technology for next generation hard disk drives with significantly increased data recording capacities. In HAMR, an optical near-field transducer (NFT) is used to concentrate laser energy on a magnetic recording medium to fulfill the heat assist function. The key components of a NFT are transducer material, cladding material, and adhesion material between the cladding and the transducer materials. Since transducer materials and cladding materials have been widely reported, this paper focuses on the adhesion materials between the Au transducer and the Al{sub 2}O{sub 3} cladding material. A comparative study for two kinds of adhesion material, Ta and Cr, has been conducted. We found that Ta provides better thermal stability to the whole transducer than Cr. This is because after thermal annealing, chromium forms oxide material at interfaces and chromium atoms diffuse remarkably into the Au layer and react with Au to form Au alloy. This study also provides insights on the selection of adhesion material for HAMR transducer.

  1. Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials

    DOE Patents [OSTI]

    Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

    2013-03-05

    Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

  2. Smart Materials Behavior in Phosphates: Role of Hydroxyl Groups and Relevance to Antiwear Films

    SciTech Connect (OSTI)

    Shakhvorostov, D.; Müser, M; Song, Y; Norton, P

    2009-01-01

    The elastic properties of materials under high pressure are relevant to the understanding and performance of many systems of current interest, for example, in geology and tribology. Of particular interest is the origin of the dramatic increase in modulus with increasing pressure, a response which is also called 'smart materials behavior.' In this context, simple phosphate-containing materials have been studied experimentally and theoretically, and the origins of this behavior have been associated with factors such as coordination of the cations and changes in the degree of polymerization and hydrogenation of the phosphate units. In the present paper we extend the former analysis on simple metal phosphate model compounds to so-called thermal films, an intermediate stage in the formation of effective antiwear films. The material was produced by heating a commercial zinc dialkyldithiophosphate (ZDDP), a common antiwear additive in lubricating oils, in poly-?-olefin base oil solutions to 150 degrees C, a process known to produce the thermal films. Its structure and equation of state were studied by means of x-ray diffraction and IR synchrotron radiation techniques during compression up to 25 GPa in a diamond anvil cell as well as during the subsequent decompression. As is the case for the simple metal phosphates, we find that the thermal films are relatively soft at low pressures but stiffen rapidly and ultimately amorphize irreversibly at high pressure. However, in addition to phase transformations involving cation sites occurring in the metal phosphates studied previously, thermal films undergo displacive transitions associated with instabilities of the hydroxyl groups. These results may imply that ZDDP ligands and those of the transformed materials not only affect ZDDP decomposition rate in engines but also the mechanical properties of the resulting antiwear films.

  3. Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abellán, Gonzalo; Jordá, Jose Luis; Atienzar, Pedro; Varela, María; Jaafar, Miriam; Gómez-Herrero, Julio; Zamora, Félix; Ribera, Antonio; García, Hermenegildo; Coronado, Eugenio

    2014-12-04

    In this study, a hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl–LDH ferromagnetic layers intercalated with thermoresponsive 4-(4 anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In situ variable temperature XRD of these thin hybrids shows thatmore » the reversible change into the two tautomers is reflected in a shift of the position of the diffraction peaks at high temperatures towards lower interlayer spacing for the hydrazone form, as well as a broadening of the peaks reflecting lower crystallinity and ordering due to non-uniform spacing between the layers. These structural variations between room temperature (basal spacing (BS) = 25.91 Å) and 100 °C (BS = 25.05 Å) are also reflected in the magnetic properties of the layered double hydroxide (LDH) due to the variation of the magnetic coupling between the layers. Finally and in conclusion, our study constitutes one of the few examples showing fully reversible thermo-responsive breathing in a 2D hybrid material. In addition, the magnetic response of the hybrid can be modulated due to the thermotropism of the organic component that, by influencing the distance and in-plane correlation of the inorganic LDH, modulates the magnetism of the CoAl–LDH sheets in a certain range.« less

  4. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOE Patents [OSTI]

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  5. Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Pecharsky, Alexandra O.; Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    2006-10-03

    An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

  6. Metal finishing and vacuum processes groups, Materials Fabrication Division progress report, March-May 1984

    SciTech Connect (OSTI)

    Dini, J.W.; Romo, J.G.; Jones, L.M.

    1984-07-11

    Progress is reported in fabrication and coating activities being conducted for the weapons program, nuclear test program, nuclear design program, magnetic fusion program, and miscellaneous applications. (DLC)

  7. Cryogenic Considerations for Superconducting Magnet Design for the Material Plasma Exposure eXperiment

    SciTech Connect (OSTI)

    Duckworth, Robert C; Demko, Dr. Jonathan A; Lumsdaine, Arnold; Caughman, John B; Goulding, Richard Howell; McGinnis, William Dean; Bjorholm, Thomas P; Rapp, Juergen

    2015-01-01

    In order to determine long term performance of plasma facing components such as diverters and first walls for fusion devices, next generation plasma generators are needed. A Material Plasma Exposure eXperiment (MPEX) has been proposed to address this need through the generation of plasmas in front of the target with electron temperatures of 1-15 eV and electron densities of 1020 to 1021 m-3. Heat fluxes on target diverters could reach 20 MW/m2. In order generate this plasma, a unique radio frequency helicon source and heating of electrons and ions through Electron Bernstein Wave (EBW) and Ion Cyclotron Resonance Heating (ICRH) has been proposed. MPEX requires a series of magnets with non-uniform central fields up to 2 T over a 5m length in the heating and transport region and 1 T uniform central field over a 1-m length on a diameter of 1.3 m. Given the field requirements, superconducting magnets are under consideration for MPEX. In order to determine the best construction method for the magnets, the cryogenic refrigeration has been analyzed with respect to cooldown and operational performance criteria for open-cycle and closed-cycle systems, capital and operating costs of these system, and maturity of supporting technology such as cryocoolers. These systems will be compared within the context of commercially available magnet constructions to determine the most economical method for MPEX operation. The current state of the MPEX magnet design including details on possible superconducting magnet configurations will be presented.

  8. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 21, Materials and processes selection. Volume 2

    SciTech Connect (OSTI)

    Smith, B.R.

    1995-08-15

    This document identifies the candidate materials and manufacturing processes selected for development of the TPX Toroidal Field (TF) Magnet. Supporting rationale and selection criteria are provided for justification and the materials properties database report is included for completeness. Specific properties for each material selection are included in this document.

  9. W.E. Henry Symposium compendium: The importance of magnetism in physics and material science

    SciTech Connect (OSTI)

    Carwell, H.

    1997-09-19

    This compendium contains papers presented at the W. E. Henry Symposium, The Importance of Magnetism in Physics and Material Science. The one-day symposium was conducted to recognize the achievements of Dr. Warren Elliot Henry as educator, scientist, and inventor in a career spanning almost 70 years. Dr. Henry, who is 88 years old, attended the symposium. Nobel Laureate, Dr. Glenn Seaborg, a friend and colleague for over 40 years, attended the event and shared his personal reminiscences. Dr. Seaborg is Associate Director-At-Large at the Lawrence Berkeley National Laboratory. The Compendium begins with three papers which demonstrate the ongoing importance of magnetism in physics and material science. Other contributions cover the highlights of Dr. Henry`s career as a researcher, educator, and inventor. Colleagues and former students share insights on the impact of Dr. Henry`s research in the field of magnetism, low temperature physics, and solid state physics; his influence on students as an educator; and his character, intellect and ingenuity, and passion for learning and teaching. They share a glimpse of the environment and times that molded him as a man, and the circumstances under which he made his great achievements despite the many challenges he faced.

  10. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951 through June 1987

    SciTech Connect (OSTI)

    David, S.A.; Goodwin, G.M.; Gardner, K.

    1987-08-01

    This document contains a listing of the written scientific information originating in the Materials Joining Group (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1987. It is a registry of about 400 documents as nearly as possible in the order in which they were issued.

  11. Effect of composition and heat treatment on MnBi magnetic materials

    SciTech Connect (OSTI)

    Cui, Jun [Pacific Northwest National Laboratory; Choi, Jung-Pyung [Pacific Northwest National Laboratory; Polikarpov, Evgueni [Pacific Northwest National Laboratory; Bowden, Mark E [Pacific Northwest National Laboratory; Xie, Wei [Pacific Northwest National Laboratory; Li, Guosheng [Pacific Northwest National Laboratory; Nie, Zimin [Pacific Northwest National Laboratory; Zarkevich, Nikolai [Ames Laboratory; Kramer, Matthew J [Ames Laboratory; Johnson, Duane [Ames Laboratory

    2014-10-01

    The metallic compound MnBi is a promising rare-earth-free permanent magnet material, unique among all candidates for its high intrinsic coercivity (Hci) and its large positive temperature coefficient. The Hci of MnBi in thin-film or powder form can exceed 12 and 26 kOe at 300 and 523 K, respectively. Such a steep rise in Hci with increasing temperature is unique to MnBi. Consequently, MnBi is a highly sought-after hard phase for exchange coupling nanocomposite magnets. However, the reaction between Mn and Bi is peritectic, and hence Mn tends to precipitate out of the MnBi liquid during the solidification process. As result, when the alloy is prepared using conventional induction or arc-melting casting methods, additional Mn is required to compensate the precipitation of Mn. In addition to composition, post-casting annealing plays an important role in obtaining a high content of MnBi low-temperature phase (LTP) because the annealing encourages the Mn precipitates and the unreacted Bi to react, forming the desired LTP phase. Here we report a systematic study of the effect of composition and heat treatments on the phase content and magnetic properties of MnBi alloys. In this study, 14 compositions were prepared using conventional metallurgical methods, and the compositions, crystal structures, phase content and magnetic properties of the resulting alloys were analyzed. The results show that the composition with 55 at.% Mn exhibits both the highest LTP content (93 wt.%) and magnetization (74 emu g?1 with 9 T applied field at 300 K).

  12. Magnetic Materials at finite Temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    SciTech Connect (OSTI)

    Eisenbach, Markus; Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles derived simulations.

  13. Magnetic-field effects in transitions of X Li molecules (X: even isotopes of group II atoms)

    SciTech Connect (OSTI)

    Gopakumar, Geetha; Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2011-10-15

    We analyze the Zeeman shift in the (v,N)=(0,0){yields}(1,0) transition frequency of X Li molecules (X: even isotopes of group II atoms), which is of interest in metrology. The Zeeman shift in the transition frequency between stretching states is found to be less than 1 mHz with a magnetic field of 1 G. X {sup 6}Li molecules are more advantageous than X {sup 7}Li molecules for measuring the transition frequency without the Zeeman shift because of the smaller g factor of the Li nuclear spin.

  14. Critical and strategic materials proceedings of the laboratory study group meeting

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given.

  15. Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial

  16. Rare-Earth-Free Permanent Magnets for Electrical Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    Hong, Yang-Ki; Haskew, Timothy; Myryasov, Oleg; Jin, Sungho; Berkowitz, Ami

    2014-06-05

    The research we conducted focuses on the rare-earth (RE)-free permanent magnet by modeling, simulating, and synthesizing exchange coupled two-phase (hard/soft) RE-free core-shell nano-structured magnet. The RE-free magnets are made of magnetically hard core materials (high anisotropy materials including Mn-Bi-X and M-type hexaferrite) coated by soft shell materials (high magnetization materials including Fe-Co or Co). Therefore, our research helps understand the exchange coupling conditions of the core/shell magnets, interface exchange behavior between core and shell materials, formation mechanism of core/shell structures, stability conditions of core and shell materials, etc.

  17. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    SciTech Connect (OSTI)

    Nguyen, Anh Tuan; Nguyen, Van Thanh; Nguyen, Huy Sinh; Pham, Thi Tuan Anh; Do, Viet Thang; Dam, Hieu Chi

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  18. Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas

    SciTech Connect (OSTI)

    Li, Hu; Muraki, Yu; Karahashi, Kazuhiro; Hamaguchi, Satoshi

    2015-07-15

    Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +} or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.

  19. Condensed Matter and Magnet Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMMS Condensed Matter and Magnet Science The group has a distinguished history of applying cutting-edge condensed matter physics research and high magnetic field science to mission-relevant materials challenges as well as fundamental investigations of emergent physical phenomena. Contact Us Group Leader Michael Hundley Email Deputy Group Leader Chuck Mielke Email NHMFL-PFF Director Chuck Mielke Email Deputy NHMFL-PFF Director Ross McDonald Email Group Office (505) 667-4838 NHMFL Office (505)

  20. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    SciTech Connect (OSTI)

    Jiang, J.; Cameron, R. H.; Schüssler, M.

    2014-08-10

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input based upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.

  1. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Kollu, Pratap E-mail: anirmalagrace@vit.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.; Mallick, Sudhanshu; Bahadur, D. E-mail: anirmalagrace@vit.ac.in; Santosh, Chella; Grace, Andrews Nirmala E-mail: anirmalagrace@vit.ac.in

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fields (100?Oe and 200?Oe) are explained on the basis of surface spin disorder.

  2. Magnetic Systems Mimic Granular Materials | U.S. DOE Office of...

    Office of Science (SC) Website

    ... magnetic x-ray photon correlation spectroscopy" that uses coherent x-ray beams (similar to laser light) whose energy is tuned to resonantly interact with atomic magnetic moments. ...

  3. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, William J.; Maple, M. Brian; Geballe, Theodore H.

    1988-01-01

    Shock wave formation of superconductive ceramic oxide electric and magnetic circuit elements with improved microstructures and mechanical properties.

  4. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, W.J.; Maple, M.B.; Geballe, T.H.

    1987-10-23

    Shock wave formation of superconductive ceramic oxide electric and magnetic circuit elements with improved microstructures and mechanical properties. 10 figs.

  5. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  6. Thermal and high magnetic field treatment of materials and associated apparatus

    DOE Patents [OSTI]

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  7. Bibliography of the technical literature of the Materials Joining Group, Metals and Ceramics Division, 1951--June 1989

    SciTech Connect (OSTI)

    David, S.A.; Goodwin, G.M.; Gardner, K.

    1989-10-01

    This document contains a listing of the written scientific information originating in the Materials Joining (formerly the Welding and Brazing Group), Metals and Ceramics Division, Oak Ridge National Laboratory during 1951 through June 1989. This registry of documents is as much as possible, in the order of issue date. A complete cross-referenced listing of the technical literature of the Metals and Ceramics Division is also available.

  8. Induced magnetic anisotropy in Si-free nanocrystalline soft magnetic materials: A transmission x-ray diffraction study

    SciTech Connect (OSTI)

    Parsons, R. Suzuki, K.; Yanai, T.; Kishimoto, H.; Kato, A.; Ohnuma, M.

    2015-05-07

    In order to better understand the origin of field-induced anisotropy (K{sub u}) in Si-free nanocrystalline soft magnetic alloys, the lattice spacing of the bcc-Fe phase in nanocrystalline Fe{sub 94?x}Nb{sub 6}B{sub x} (x?=?10, 12, 14) alloys annealed under an applied magnetic field has been investigated by X-ray diffraction in transmission geometry (t-XRD) with the diffraction vector parallel and perpendicular to the field direction. The saturation magnetostriction (?{sub s}) of nanocrystalline Fe{sub 94?x}Nb{sub 6}B{sub x} was found to increase linearly with the volume fraction of the residual amorphous phase and is well described by taking into account the volume-weighted average of two local ?{sub s} values for the bcc-Fe nanocrystallites (?5??2?ppm) and the residual amorphous matrix (+8??2?ppm). The lattice distortion required to produce the measured K{sub u} values (?100?J/m{sup 3}) was estimated via the inverse magnetostrictive effect using the measured ?{sub s} values and was compared to the lattice spacing estimations made by t-XRD. The lattice strain required to produce K{sub u} under the magnetoelastic model was not observed by the t-XRD experiments and so the findings of this study suggest that the origin of magnetic field induced K{sub u} cannot be explained through the magnetoelastic effect.

  9. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOE Patents [OSTI]

    Kochen, Robert L. (Boulder, CO); Navratil, James D. (Simi Valley, CA)

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  10. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOE Patents [OSTI]

    Kochen, R.L.; Navratil, J.D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  11. U.S. Rare Earth Magnet Patents Table | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Rare Earth Magnet Patents Table Neodymium-iron-boron magnet created with one-step refining process developed at The Ames Laboratory. CMI reviewed the U.S. patent database to better understand what is known about rare earth magnets and to identify potential areas to explore. Based on this, CMI created a table of more than 460 recent U.S. patents that address rare earth magnet compositions and processes. The table is available as a searchable pdf document (updated August 29, 2016).

  12. MAGNETS

    DOE Patents [OSTI]

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  13. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    SciTech Connect (OSTI)

    Sumption, Mike; Collings, E.

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  14. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  15. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOE Patents [OSTI]

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  16. Method for preparing high cure temperature rare earth iron compound magnetic material

    DOE Patents [OSTI]

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  17. Magnetic Force Microscopy Study of Zr2Co11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; Sellmyer, David J.

    2015-01-01

    Tmore » he addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. he effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. he coercivity of the samples increases with the increase in Mo content (x≤1.5). he maximum energy product(BH)maxincreases with increasingxfrom 0.5 MGOe forx=0to a maximum value of 4.2 MGOe forx=1.5. he smallest domain size with a relatively short magnetic correlation length of 128 nm and largest root-mean-square phase shiftΦrmsvalue of 0.66° are observed for thex=1.5. he optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  18. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  19. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Understanding and manipulating the most fundamental properties of materials can lead to major breakthroughs in solar power, reactor fuels, optical computing, telecommunications. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Yu Seung Kim (left) and Kwan-Soo Lee (right) New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge

  20. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  1. Effect of substitutional defects on Kambersky damping in L1{sub 0} magnetic materials

    SciTech Connect (OSTI)

    Qu, T.; Victora, R. H.

    2015-02-16

    Kambersky damping, representing the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction, is calculated for L1{sub 0} FePt, FePd, CoPt, and CoPd alloys versus chemical degree of order. When more substitutional defects exist in the alloys, damping is predicted to increase due to the increase of the spin-flip channels allowed by the broken symmetry. It is demonstrated that this corresponds to an enhanced density of states (DOS) at the Fermi level, owing to the rounding of the DOS with loss of long-range order. Both the damping and the DOS of the Co-based alloy are found to be less affected by the disorder. Pd-based alloys are predicted to have lower damping than Pt-based alloys, making them more suitable for high density spintronic applications.

  2. Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects

    SciTech Connect (OSTI)

    Pecover, J. D.; Chittenden, J. P.

    2015-10-15

    A critical limitation of magnetically imploded systems such as magnetized liner inertial fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is the magneto-Rayleigh-Taylor (MRT) instability which primarily disrupts the outer surface of the liner. MagLIF-relevant experiments have showed large amplitude multi-mode MRT instability growth growing from surface roughness [McBride et al., Phys. Rev. Lett. 109, 135004 (2012)], which is only reproduced by 3D simulations using our MHD code Gorgon when an artificially azimuthally correlated initialisation is added. We have shown that the missing azimuthal correlation could be provided by a combination of the electro-thermal instability (ETI) and an “electro-choric” instability (ECI); describing, respectively, the tendency of current to correlate azimuthally early in time due to temperature dependent Ohmic heating; and an amplification of the ETI driven by density dependent resistivity around vapourisation. We developed and implemented a material strength model in Gorgon to improve simulation of the solid phase of liner implosions which, when applied to simulations exhibiting the ETI and ECI, gave a significant increase in wavelength and amplitude. Full circumference simulations of the MRT instability provided a significant improvement on previous randomly initialised results and approached agreement with experiment.

  3. Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys

    DOE Patents [OSTI]

    Gschneidner, Jr., Karl A.; Pecharsky, Alexandra O.; Pecharsky, Vitalij K.

    2003-07-08

    Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

  4. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    SciTech Connect (OSTI)

    Kong, Zueqian

    2010-03-15

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  5. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  6. Functional Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functional Materials Researchers in NETL's Functional Materials Development competency work to discover and develop advanced functional materials and component processing technologies to meet technology performance requirements and enable scale-up for proof-of-concept studies. Research includes separations materials and electrochemical and magnetic materials, specifically: Separations Materials Synthesis, purification, and basic characterization of organic substances, including polymers and

  7. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, John A.; Stone, Roger R.; Fabyan, Joseph

    1987-01-01

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  8. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1987-10-06

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient magnetic field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines. 3 figs.

  9. Magnetic Refrigeration | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Johnson, a materials scientist and project leader on GE's magnetic refrigeration project. ... materials would further improve the competitiveness of magnetic refrigeration technology. ...

  10. WNA Working Group Position Statement on Removal from Regulatory Control of Material Containing Radioactivity - Exemption and Clearance

    SciTech Connect (OSTI)

    Saint-Pierre, S.; Coates, R.

    2006-07-01

    The removal from regulatory control of materials containing trace levels of radioactivity, often referred to as 'exemption' or 'clearance', is of considerable importance to the nuclear industry and is subject to ongoing international debate. Its significance is indeed increasing as some sites move towards decommissioning, with much material being capable of recovery, recycling and re-use or simple disposal while maintaining the highest levels of public safety. This Statement outlines the key issues under consideration within the regulatory framework. Moreover, it identifies those aspects necessary for the successful application of a practical system of control. In this regard, the recent IAEA safety guide called Application of the Concept of Exclusion, Exemption and Clearance (RS-G-1.7) is paving the way towards implementing greater international convergence and consistency. (authors)

  11. LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials

    SciTech Connect (OSTI)

    Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

    2010-09-05

    The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

  12. Magnetic shielding

    DOE Patents [OSTI]

    Kerns, J.A.; Stone, R.R.; Fabyan, J.

    1985-02-12

    A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

  13. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to

  14. The Nature of the Distinctive Microscopic Features in R5(SixGe1-x)4 Magnetic Refrigeration Materials

    SciTech Connect (OSTI)

    Ozan Ugurlu

    2006-05-01

    Magnetic refrigeration is a promising technology that offers a potential for high energy efficiency. The giant magnetocaloric effect of the R{sub 5}(Si{sub x}, Ge{sub 1-x}){sub 4} alloys (where R=rare-earth and O {le} x {le} 1), which was discovered in 1997, make them perfect candidates for magnetic refrigeration applications. In this study the microstructures of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} alloys have been characterized using electron microscopy techniques, with the focus being on distinctive linear features first examined in 1999. These linear features have been observed in R{sub 5}(Si{sub x}, Ge{sub 1-x}){sub 4} alloys prepared from different rare-earths (Gd, Tb, Dy and Er) with different crystal structures (Gd{sub 5}Si{sub 4}-type orthorhombic, monoclinic and Gd{sub 5}Ge{sub 4}-type orthorhombic). Systematic scanning electron microscope studies revealed that these linear features are actually thin-plates, which grow along specific directions in the matrix material. The crystal structure of the thin-plates has been determined as hexagonal with lattice parameters a=b=8.53 {angstrom} and c=6.40 {angstrom} using selected area diffraction (SAD). Energy dispersive spectroscopy analysis, carried out in both scanning and transmission electron microscopes, showed that the features have a composition approximating to R{sub 5}(Si{sub x},Ge{sub 1-x}){sub 3}.phase. Orientation relationship between the matrix and the thin-plates has been calculated as [- 1010](1-211){sub p}//[010](10-2){sub m}. The growth direction of the thin plates are calculated as (22 0 19) and (-22 0 19) by applying the Ag approach of Zhang and Purdy to the SAD patterns of this system. High Resolution TEM images of the Gd{sub 5}Ge{sub 4} were used to study the crystallographic relationship. A terrace-ledge structure was observed at the interface and a 7{sup o} rotation of the reciprocal lattices with respect to each other, consistent with the determined orientation relationship, was noted

  15. Magnetic Materials (MM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Calendars Community Scientific Access Site Access Training Science & Education Science & Research Highlights Conferences Seminars Publications Annual Reports APS Upgrade...

  16. Experimental Investigation of Magnetic, Superconducting, and other Phase Transitions in novel F-Electron Materials at Ultra-high Pressures - Final Progress Report

    SciTech Connect (OSTI)

    Maple, Brian; Jeffires, Jason

    2006-07-28

    This grant, entitled “Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures,” spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facility—capable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressure—for the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementation of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).

  17. Structural and magnetic stability of Fe{sub 2}NiSi

    SciTech Connect (OSTI)

    Gupta, Dinesh C. Bhat, Idris Hamid Chauhan, Mamta

    2014-04-24

    Full-potential ab-initio calculations in the stable F-43m phase have been performed to investigate the structural and magnetic properties of Fe{sub 2}NiSi inverse Heusler alloys. The spin magnetic moment distributions show that present material is ferromagnetic in stable F-43m phase. Further, spin resolved electronic structure calculations show that the discrepancy in magnetic moments of Fe-I and Fe-II depend upon the hybridization of Fe with the main group element. It is found that the main group electron concentration is predominantly responsible in establishing the magnetic properties, formation of magnetic moments and the magnetic order for present alloy.

  18. Exploration of Artificial Frustrated Magnets

    SciTech Connect (OSTI)

    Samarth, Nitin; Schiffer, Peter

    2015-02-17

    This program encompasses experimental and theoretical studies of arrays of nanometer-scale magnets known as “artificial frustrated magnets”. These magnets are small and closely spaced, so that their behavior as a collective group is complex and reveals insights into how such collections of interacting objects behave as a group. In particular, the placement of the magnets is such that the interactions between them are “frustrated”, in that they compete with each other. These systems are analogs to a class of magnetic materials in which the lattice geometry frustrates interactions between individual atomic moments, and in which a wide range of novel physical phenomena have been recently observed. The advantage to studying the arrays is that they are both designable and resolvable: i.e., the experiments can control all aspects of the array geometry, and can also observe how individual elements of the arrays behave. This research program demonstrated a number of phenomena including the role of multiple collective interactions, the feasibility of using systems with their magnetism aligned perpendicular to the plane of the array, the importance of disorder in the arrays, and the possibility of using high temperatures to adjust the magnet orientations. All of these phenomena, and others explored in this program, add to the body of knowledge around collective magnetic behavior and magnetism in general. Aside from building scientific knowledge in an important technological area, with relevance to computing and memory, the program also gave critical support to the education of students working on the experiments.

  19. Magnetic coherence in cuprate superconductors (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; HIGH-TC SUPERCONDUCTORS; LANTHANUM OXIDES; STRONTIUM OXIDES; COPPER OXIDES; COHERENCE LENGTH; NEUTRON DIFFRACTION; MAGNETIZATION; MAGNETIC ...

  20. magnets | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    magnets NNSA-lab-created new magnets will power renewable technology The Ion Beam Materials Laboratory at NNSA's Los Alamos National Laboratory (LANL) works to characterize and ...

  1. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, John M.; Peuron, Unto A.

    1982-01-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors (30a, 30b, etc.) formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma (12) and a toroidal field coil (18). A mechanism (60) for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  2. Thermomagnetic burn control for magnetic fusion reactor

    DOE Patents [OSTI]

    Rawls, J.M.; Peuron, A.U.

    1980-07-01

    Apparatus is provided for controlling the plasma energy production rate of a magnetic-confinement fusion reactor, by controlling the magnetic field ripple. The apparatus includes a group of shield sectors formed of ferromagnetic material which has a temperature-dependent saturation magnetization, with each shield lying between the plasma and a toroidal field coil. A mechanism for controlling the temperature of the magnetic shields, as by controlling the flow of cooling water therethrough, thereby controls the saturation magnetization of the shields and therefore the amount of ripple in the magnetic field that confines the plasma, to thereby control the amount of heat loss from the plasma. This heat loss in turn determines the plasma state and thus the rate of energy production.

  3. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  4. Iron dominated magnets

    SciTech Connect (OSTI)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  5. Magnetic nanohole superlattices

    DOE Patents [OSTI]

    Liu, Feng

    2013-05-14

    A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

  6. Magnetically attached sputter targets

    DOE Patents [OSTI]

    Makowiecki, D.M.; McKernan, M.A.

    1994-02-15

    An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

  7. Mesoporous Co{sub 3}O{sub 4} nanostructured material synthesized by one-step soft-templating: A magnetic study

    SciTech Connect (OSTI)

    Poyraz, Altug S.; Kuo, Chung-Hao; Li, Nan; Hines, William A. Perry, David M.; Suib, Steven L.

    2014-03-21

    A combined magnetization and zero-field {sup 59}Co spin-echo nuclear magnetic resonance (NMR) study has been carried out on one member of a recently developed class of highly ordered mesoporous nanostructured materials, mesoporous Co{sub 3}O{sub 4} (designated UCT-8, University of Connecticut, mesoporous materials). The material was synthesized using one-step soft-templating by an inverse micelles packing approach. Characterization of UCT-8 by powder x-ray diffraction and electron microscopy reveals that the mesostructure consists of random close-packed Co{sub 3}O{sub 4} nanoparticles ??12?nm in diameter. The N{sub 2} sorption isotherm for UCT-8, which is type IV with a type H1 hysteresis loop, yields a 134 m{sup 2}/g BET surface area and a 7.7?nm BJH desorption pore diameter. The effect of heat treatment on the structure is discussed. The antiferromagnetic Co{sub 3}O{sub 4} nanoparticles have a Nel temperature T{sub N}?=?27?K, somewhat lower than the bulk. A fit to the Curie-Weiss law over the temperature range 75?K???T???300?K yields an effective magnetic moment of ?{sub eff}?=?4.36??{sub B} for the Co{sup 2+} ions, indicative of some orbital contribution, and a Curie-Weiss temperature ??=??93.5?K, consistent with antiferromagnetic ordering. The inter-sublattice and intra-sublattice exchange constants for the Co{sup 2+} ions are J{sub 1}/k{sub B}?=?(?)4.75?K and J{sub 2}/k{sub B}?=?(?)0.87?K, respectively, both corresponding to antiferromagnetic coupling. The presence of uncompensated surface spins is observed below T{sub N} with shifts in the hysteresis loops, i.e., an exchange-bias effect. The {sup 59}Co NMR spectrum for UCT-8, which is attributed to Co{sup 2+} ions at the tetrahedral A sites, is asymmetrically broadened with a peak at ?55?MHz (T?=?4.2?K). Since there is cubic symmetry at the A-sites, the broadening is indicative of a magnetic field distribution due to the uncompensated surface spins. The spectrum is consistent with antiferromagnetically

  8. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    SciTech Connect (OSTI)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  9. Experimental Investigation of Magnetic Superconducting, and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures Using Designer Diamond Anvils

    SciTech Connect (OSTI)

    Maple, M. Brian

    2005-09-13

    Pressure is a powerful control parameter, owing to its ability to affect crystal and electronic structure without introducing defects, for the investigation of condensed matter systems. Some f-electron, heavy-fermion materials display interesting and novel behavior when exposed to pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require extreme conditions such as ultrahigh pressures, high magnetic fields, and ultralow temperatures to sufficiently explore the important properties. To that end, we have been funded to develop an ultrahigh pressure facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena under extreme conditions. Our goals for the second year of this grant were as follows: (a) perform electrical resistivity measurements on novel samples at a myriad of pressures using conventional piston-cylinder techniques, Bridgman anvil techniques, and diamond anvil cell technology; (b) install, commission, and operate an Oxford Kelvinox MX-100 dilution refrigerator for access to ultralow temperatures and high magnetic fields. (c) continue the development of diamond anvil cell (DAC) technology. During the past year, we have successfully installed the Oxford Kelvinox MX-100 dilution refrigerator and verified its operability down to 12 mK. We have begun an experimental program to systematically investigate the f-electron compound URu2Si2 under pressure and in the presence of magnetic fields. We have also continued our collaborative work with Sam Weir at Lawrence Livermore National Laboratory (LLNL) on Au4V and implemented a new corollary study on Au1-xVx using ultrahigh pressures. We have continued developing our DAC facility by designing and constructing an apparatus for in situ pressure measurement as well as designing high pressure cells. This report serves to highlight the progress we have made

  10. Comparison of the order of magnetic phase transitions in several magnetocaloric materials using the rescaled universal curve, Banerjee and mean field theory criteria

    SciTech Connect (OSTI)

    Burrola-Gándara, L. A. Santillan-Rodriguez, C. R.; Rivera-Gomez, F. J.; Saenz-Hernandez, R. J.; Botello-Zubiate, M. E.; Matutes-Aquino, J. A.

    2015-05-07

    Magnetocaloric materials with second order phase transition near the Curie temperature can be described by critical phenomena theory. In this theory, scaling, universality, and renormalization are key concepts from which several phase transition order criteria are derived. In this work, the rescaled universal curve, Banerjee and mean field theory criteria were used to make a comparison for several magnetocaloric materials including pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, MnFeP{sub 0.46}As{sub 0.54}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3}. Pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3} present a collapse of the rescaled magnetic entropy change curves into a universal curve, which indicates a second order phase transition; applying Banerjee criterion to H/σ vs σ{sup 2} Arrot plots and the mean field theory relation |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3} for the same materials also determines a second order phase transition. However, in the MnFeP{sub 0.46}As{sub 0.54} sample, the Banerjee criterion applied to the H/σ vs σ{sup 2} Arrot plot indicates a first order magnetic phase transition, while the mean field theory prediction for a second order phase transition, |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3}, describes a second order behavior. Also, a mixture of first and second order behavior was indicated by the rescaled universal curve criterion. The diverse results obtained for each criterion in MnFeP{sub 0.46}As{sub 0.54} are apparently related to the magnetoelastic effect and to the simultaneous presence of weak and strong magnetism in Fe (3f) and Mn (3g) alternate atomic layers, respectively. The simultaneous application of the universal curve, the Banerjee and the mean field theory criteria has allowed a better understanding about the nature of the order of the phase transitions in different magnetocaloric materials.

  11. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost

  12. Origin of the positive spin-12 photoluminescence-detected magnetic resonance in π-conjugated materials and devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ying; Cai, Min; Hellerich, Emily; Shinar, Ruth; Shinar, Joseph

    2015-09-02

    The spin-1/2 single-modulation (SM) and double-modulation (DM) photoluminescence (PL) detected magnetic resonance (PLDMR) in poly(2-methoxy-5-(2'-ethyl)–hexoxy-1,4- phenylene vinylene) (MEH-PPV) films and poly(3-hexylthiophene) (P3HT) films is described, analyzed, and discussed. In particular, the models based on spin-dependent recombination of charge pairs (SDR) and triplet-polaron quenching (TPQ) are evaluated. By analyzing the dependence of the resonance amplitude on the microwave chopping (modulation) frequency using rate equations, it is demonstrated that the TPQ model can well explain the observed resonance behavior, while SDR model cannot reproduce the results of the observed DM-PLDMR. As a result, the observed spin-1/2 PLDMR is assigned to TPQ rathermore » than SDR, even though the latter may also be present.« less

  13. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  14. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  15. International magnetic pulse compression

    SciTech Connect (OSTI)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12--14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card -- its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  16. TEC Working Group Topic Groups Manual Review

    Broader source: Energy.gov [DOE]

    This group is responsible for the update of DOE Manual 460.2-1, Radioactive Material Transportation Practices Manual.  This manual was issued on September 23, 2002, and establishes a set of...

  17. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  18. Manganese containing layer for magnetic recording media

    DOE Patents [OSTI]

    Lambeth, David N.; Lee, Li-Lien; Laughlin, David E.

    1999-01-01

    The present invention provides for a magnetic recording media incorporating Mn-containing layers between a substrate and a magnetic layer to provide media having increased coercivity and lower noise. The Mn-containing layer can be incorporated in a rotating, translating or stationary recording media to operate in conjunction with magnetic transducing heads for recording and reading of magnetic data, as well as other applications. The magnetic recording medium of the invention preferably includes a Co or Co alloy film magnetic layer, and Mn-containing layer, preferably comprised of VMn, TiMn, MnZn, CrMnMo, CrMnW, CrMnV, and CrMnTi, and most preferably a CrMn alloy, disposed between the substrate and the magnetic layer to promote an epitaxial crystalline structure in the magnetic layer. The medium can further include seed layers, preferably polycrystalline MgO for longitudinal media, underlayers, and intermediate layers. Underlayers and intermediate layers are comprised of materials having either an A2 structure or a B2-ordered crystalline structure disposed between the seed layer and the magnetic layer. Materials having an A2 structure are preferably Cr or Cr alloys, such as CrV, CrMo, CrW and CrTi. Materials having a B2-ordered structure having a lattice constant that is substantially comparable to that of Cr, such as those preferably selected from the group consisting of NiAl, AILCo, FeAl, FeTi, CoFe, CoTi, CoHf, CoZr, NiTi, CuBe, CuZn, A-LMn, AlRe, AgMg, and Al.sub.2 FeMn.sub.2, and is most preferably FeAl or NiAl.

  19. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  20. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  1. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  2. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  3. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  4. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  5. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  6. James Pastore > Graduate Student - Abruña Group > Researchers, Postdocs &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graduates > The Energy Materials Center at Cornell James Pastore Graduate Student - Abruña Group jpp236@cornell.edu James' primary area of interest is the use of inorganic conversion materials as electrodes in lithium ion batteries. More specifically, he is studying the conversion mechanisms of these materials in order to better understand their behavior under operating conditions. To observe these mechanisms, a combination of in situ solid state nuclear magnetic resonance (NMR) and in

  7. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired...

  8. National High Magnetic Field Laboratory moves closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers to carefully tune material parameters while perfectly reproducing the non-invasive magnetic field. Such high magnetic fields confine electrons to nanometer scale...

  9. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader (Acting) Kimberly Obrey Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  10. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  11. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  12. Critical Materials:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  13. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  14. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  15. Conventional magnetic superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wolowiec, C. T.; White, B. D.; Maple, M. B.

    2015-07-01

    We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less

  16. American Society of Mechanical Engineers/Savannah River National Laboratory (ASME/SRNL) Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASME/SRNL Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop and the DOE Hydrogen Pipeline Working Group Workshop Sponsored by SRNL, ASME, and DOE Center for Hydrogen Research, Aiken, SC Garden Conference Center September 23-26, 2007 1 AGENDA Sunday, September 23, 2007 6:00 - 7:30 pm Registration 6:15 - 7:30 pm Opening Reception Sponsored by ASME Monday, September 24, 2007 Joint Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop 8:00

  17. Stimuli responsive magnetic nanogels for biomedical application

    SciTech Connect (OSTI)

    Craciunescu, I.; Petran, A.; Turcu, R.; Daia, C.; Marinica, O.; Vekas, L.

    2013-11-13

    We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated with pNIPA, pAAc and the Fe{sub 3}O{sub 4} magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application.

  18. Microsoft Word - TRILATERAL CRITICAL MATERIALS WORKSHOP Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... magnetic mechanisms (for nanocomposites, non-rare-earth materials, and neodymium-iron-boron magnets). * Techniques to enhance the stability and texture of nanocomposite structures ...

  19. MAGNETIC RECORDING HEAD

    DOE Patents [OSTI]

    Merrill, L.C.

    1958-06-17

    An electromagetic recording head is described for simultaneous recording of a plurality of signals within a small space on a magnetically semsitized medium. Basically the head structure comprises a non-magnetic centerpiece provided with only first and second groups of spaced cut-out slots respectively on opposite sides of the centerpiece. The two groups of slots are in parallel alignment and the slots of one group are staggered with respect to the slots of the other group so that one slot is not directly opposite another slot. Each slot has a magnet pole piece disposed therein and cooperating with a second pole and coil to provide a magnetic flux gap at the upper end of the slot. As a tape is drawn over the upper end of the centerpiece the individual magnetic circuits are disposed along its width to provide means for simultaneously recording information on separate portions, tracks. of the tape.

  20. TEC Working Group Topic Groups | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Groups TEC Working Group Topic Groups TEC Topic Groups were formed in 1991 following an evaluation of the TEC program. Interested members, DOE and other federal agency staff meet to examine specific issues related to radioactive materials transportation. TEC Topic Groups enable a small number of participants to focus intensively on key issues at a level of detail that is unattainable during the TEC semiannual meetings due to time and group size constraints. Topic Groups meet individually

  1. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  2. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOE Patents [OSTI]

    Doughty, Frank C. (Plano, TX); Spencer, John E. (Plano, TX)

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  3. Enhanced magnetocaloric effect material

    DOE Patents [OSTI]

    Lewis, Laura J. H.

    2006-07-18

    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  4. Chemical synthesis, characterizations and magnetic properties...

    Office of Scientific and Technical Information (OSTI)

    PHYSICAL AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ALLOYS; BCC LATTICES; COERCIVE FORCE; CRYSTALS; LATTICE PARAMETERS; MAGNETIC...

  5. Galaxy groups

    SciTech Connect (OSTI)

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ?} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of ?{sub matter}?0.15 in a flat topology, with a 68% probability of being less than 0.44.

  6. TEC Working Group Topic Groups Archives Training - Medical Training |

    Office of Environmental Management (EM)

    Department of Energy Training - Medical Training TEC Working Group Topic Groups Archives Training - Medical Training The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident. The Topic Group first met in 1996 to assist DOE in developing an approach to address radiological emergency response training needs and to avoid redundancy of existing training materials. The

  7. XSD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging (IMG) Primary Contact: Francesco De Carlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences The IMG group designs, supports, and operates...

  8. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  9. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  10. Magnetic switches and circuits

    SciTech Connect (OSTI)

    Nunnally, W.C.

    1982-05-01

    This report outlines the use of saturable inductors as switches in lumped-element, magnetic-pulse compression circuits is discussed and the characteristic use of each is defined. In addition, the geometric constraints and magnetic pulse compression circuits used in short-pulse, low-inductance systems are considered. The scaling of presaturation leakage currents, magnetic energy losses, and switching times with geometrical and material parameters are developed to aid in evaluating magnetic pulse compression systems in a particular application. Finally, a scheme for increasing the couping coefficient in saturable stripline transformers is proposed to enable their use in the short-pulse, high-voltage regime.

  11. materials science | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    materials science NNSA-lab-created new magnets will power renewable technology The Ion Beam Materials Laboratory at NNSA's Los Alamos National Laboratory (LANL) works to ...

  12. Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic

    Office of Scientific and Technical Information (OSTI)

    quantum critical fluctuations (Journal Article) | SciTech Connect Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations Citation Details In-Document Search Title: Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations We report Knight shift experiments on the superconducting heavy electron material CeCoIn{sub 5} that allow one to track with some precision the behavior of the heavy electron

  13. Cosmic magnetism

    SciTech Connect (OSTI)

    Seymour, P.

    1986-01-01

    This book deals with the cosmic magnetism in a non-mathematical way. It uses Faraday's very powerful and highly pictorial concept of lines of magnetic force and their associated physical properties to explain the structure and behavior of magnetic fields in extraterrestrial objects. Contents include: forces of nature; magnetic field of earth; solar and interplanetary magnetic fields; magnetic fields in the solar system; stars and pulsars; and magnetic fields of the milky way and other galaxies.

  14. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, and Keri Troutman. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and publicity, and

  15. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, and Keri Troutman. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and publicity, and

  16. Regenerator for Magnetic Refrigerants - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search Regenerator for Magnetic Refrigerants Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryIowa State University and Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators. Magnetic refrigeration is

  17. Critical Materials Institute |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    The Ames Laboratory | U.S. Department of Energy Search form Search Search Home Home CMI Materials Research Inventions Projects Researchers Webinars News Resources Success Stories US RE Magnet Patents Table Webinars Education Resources for K-12 Outreach in 2016 Courses Exhibit Webinars Working with CMI Affiliates Associates Team ORNL, Oddello sign CRADA for work on pulling magnets from used hard disk drives signing ceremony for CMI and Oddello to work together to recover rare earth magnets from

  18. Skeleton Technologies Group | Open Energy Information

    Open Energy Info (EERE)

    Group Place: Sweden Product: Manufacturers of supercapacitors and other composite materials. References: Skeleton Technologies Group1 This article is a stub. You can help...

  19. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Disorder-Induced Microscopic Magnetic Memory Print Wednesday, 26 October 2005 00:00 The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over

  20. Recycling Magnets from the Factory Floor | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing waste and creates useful magnets out of it. Ames Laboratory...

  1. Carbon Joins the Magnetic Club

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Release 29 May 2007 Carbon Joins the Magnetic Club summary written by Brad Plummer, SLAC Communication Office The exclusive club of magnetic elements officially has a new member-carbon. Using a proton beam and advanced x-ray techniques, SLAC researchers in collaboration with colleagues from LBNL and the University of Leipzig in Germany have finally put to rest doubts about carbon's ability to be made magnetic. "In the past, some groups thought they had discovered magnetic

  2. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  3. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helms Group Home Research Members Publications Collaborations Connect Physical Organic Materials Chemistry Our research is devoted to understanding transport phenomena in mesostructured systems assembled from organic, organometallic, polymeric and nanocrystalline components. Enhanced capabilities relevant to energy, health, water, and food quality are enabled by our unique approaches to the modular design of their architectures and interfaces.

  4. Household magnets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Household magnets Chances are very good that you have experimented with magnets. People have been fascinated with magnetism for thousands of years. As familiar to us as they may be, magnets still have some surprises for us. Here is a small collection of some of our favorite magnet experiments. What happens when we break a magnet in half? Radio Shack sells cheap ceramic magnets in several shapes. Get a ring shaped magnet and break it with pliers or a tap with a hammer. Try to put it back

  5. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  6. MAGNETIC DENSITOMETER

    DOE Patents [OSTI]

    McCann, J.A.; Jones, R.H.

    1961-08-15

    A magnetic densitometer for locating defects and metallic inclusions in materials is described. The apparatus consists of two primary coils connected in series opposition and adapted te be placed in inductive relation to the material under test, a source of constant frequency alternating current coupled across the primary coil combination, a pick-up coil disposed in symmetrical inductive relationship with said primary coils, a phase-shifter coupled to the output of the energizing source. The output of the phase-shifter is coupled in series with the pick-up coil. An amplifier is provided selective to the third harmonic of the energizing source frequency. The series combination of the pick-up coil and the phase-shifter output are connected across the input of the amplifier, and an amplitude comparitor is coupled to the output of the amplifier and the energizing source for comparing the instantaneous amplitude of the amplifier output and the instantaneous output of the energizing source and producing an output proportional to the difference in amplitude. A recorder is coupled to the output of the amplitude comparison means to give an indication of the amplitude difference, thereby providing a permanent presentation of the character of the changes in characteristics exhibited by the material under test. (AEC)

  7. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  8. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  9. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2009propulsionmaterials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle ...

  10. TEC Working Group Topic Groups Archives Communications | Department of

    Office of Environmental Management (EM)

    Energy Communications TEC Working Group Topic Groups Archives Communications The Communications Topic Group was convened in April 1998 to improve internal and external strategic level communications regarding DOE shipments of radioactive and other hazardous materials. Major issues under consideration by this Topic Group include: - Examination of DOE external and internal communications processes; - Roles and responsibilities when communicating with a diverse range of stakeholders; and -

  11. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, David C. (Ames, IA)

    1991-04-16

    A multiparameter magnetic inspection system for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material.

  12. Multiparameter magnetic inspection system with magnetic field control and plural magnetic transducers

    DOE Patents [OSTI]

    Jiles, D.C.

    1991-04-16

    A multiparameter magnetic inspection system is disclosed for providing an efficient and economical way to derive a plurality of independent measurements regarding magnetic properties of the magnetic material under investigation. The plurality of transducers for a plurality of different types of measurements operatively connected to the specimen. The transducers are in turn connected to analytical circuits for converting transducer signals to meaningful measurement signals of the magnetic properties of the specimen. The measurement signals are processed and can be simultaneously communicated to a control component. The measurement signals can also be selectively plotted against one another. The control component operates the functioning of the analytical circuits and operates and controls components to impose magnetic fields of desired characteristics upon the specimen. The system therefore allows contemporaneous or simultaneous derivation of the plurality of different independent magnetic properties of the material which can then be processed to derive characteristics of the material. 1 figure.

  13. Permanent-magnet multipole with adjustable strength

    DOE Patents [OSTI]

    Halbach, K.

    1982-09-20

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  14. Permanent magnet multipole with adjustable strength

    DOE Patents [OSTI]

    Halbach, Klaus

    1985-01-01

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  15. Direct Imaging of Asymmetric Magnetization Reversal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material like iron is itself a tiny magnet represented by a magnetic moment. If the atomic moments are pointing in random directions, they cancel each other out. So, to bring...

  16. Reversing the Circulation of Magnetic Vortices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    very stable and form readily in soft magnetic materials of the sort useful for magnetic random-access memory (MRAM) devices. Interestingly, the formation of such vortices was at...

  17. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the

  18. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Groups Research Group Homepages: Nuclear Theory Group Dr. Sherry Yennello's Research Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Group...

  19. Comparison of ferrite materials for pulse applications

    SciTech Connect (OSTI)

    Dinkel, J.A.; Jensen, C.C.

    1993-06-01

    Materials are the limiting factor in many pulse power projects. The magnetic materials available from several manufacturers were experimentally compared for their usefulness in high speed magnetic field applications. This particular application is a high speed kicker magnet for manipulation of a charged particle beam.

  20. SSRL Imaging Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Beam line 14-3 is a bending magnet side station dedicated to X-ray imaging and micro X-ray absorption spectroscopy of biological, biomedical, materials, and geological samples. BL ...

  1. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  2. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  3. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  4. Disorder-Induced Microscopic Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disorder-Induced Microscopic Magnetic Memory Print The magnetic-recording industry deliberately introduces carefully controlled disorder into its materials to obtain the desired magnetic properties. But as the density of magnetic disks climbs, the size of the magnetic domains responsible for storage must decrease, posing new challenges. Beautiful theories based on random microscopic disorder have been developed over the past ten years. To directly compare these theories with precise experiments,

  5. High magnetic field ohmically decoupled non-contact technology

    DOE Patents [OSTI]

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  6. Heolo Group | Open Energy Information

    Open Energy Info (EERE)

    Product: Yunnan province based thermostable LiMn2O4 cathode material producer for Lithium secondary batteries. References: Heolo Group1 This article is a stub. You can help...

  7. High Risk Material Studies

    Broader source: Energy.gov [DOE]

    Spent Fuel Working Group Report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities.

  8. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1997-08-05

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  9. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  10. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  11. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1996-10-08

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  12. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science

  13. Physical Behavior of Materials | U.S. DOE Office of Science ...

    Office of Science (SC) Website

    optical, electrochemical, and thermal performance) and the microstructure and ... materials for low magnetic loss power generation, magnetocaloric materials for ...

  14. Dynamic Control of Spin Sates in Interacting Magnetic Elements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Dynamic Control of Spin Sates in Interacting Magnetic Elements DOE Grant Recipients Argonne National...

  15. Predicting Magnetic Behavior in Copper Oxide Superconductors...

    Office of Science (SC) Website

    Predicting Magnetic Behavior in Copper Oxide Superconductors New theoretical techniques ... Accurate theoretical calculations could open the door for discovery of new materials in ...

  16. Magnetic Resonance Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

  17. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  18. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  19. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  20. weapons material | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    material

  1. Method and apparatus for detecting flaws in conductive material

    DOE Patents [OSTI]

    Hockey, R.L.; Riechers, D.M.

    1998-07-07

    The present invention uses a magnet in relative motion to a conductive material, and a coil that is stationary with respect to the magnet to measure perturbation or variation in the magnetic field in the presence of an inclusion. The magnet and coil sensor may be on the same side of the conductive material. 18 figs.

  2. Method and apparatus for detecting flaws in conductive material

    DOE Patents [OSTI]

    Hockey, Ronald L.; Riechers, Douglas M.

    1998-01-01

    The present invention uses a magnet in relative motion to a conductive material, and a coil that is stationary with respect to the magnet to measure perturbation or variation in the magnetic field in the presence of an inclusion. The magnet and coil sensor may be on the same side of the conductive material.

  3. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, Don G.; Birx, Dan; Cook, Edward G.

    1993-01-01

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 Kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 Kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  4. Magnetic compression laser driving circuit

    DOE Patents [OSTI]

    Ball, D.G.; Birx, D.; Cook, E.G.

    1993-01-05

    A magnetic compression laser driving circuit is disclosed. The magnetic compression laser driving circuit compresses voltage pulses in the range of 1.5 microseconds at 20 kilovolts of amplitude to pulses in the range of 40 nanoseconds and 60 kilovolts of amplitude. The magnetic compression laser driving circuit includes a multi-stage magnetic switch where the last stage includes a switch having at least two turns which has larger saturated inductance with less core material so that the efficiency of the circuit and hence the laser is increased.

  5. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  6. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  7. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  8. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  9. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided

  10. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided