Powered by Deep Web Technologies
Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials in Japan SessionA7HonoNIMS.pdf More Documents & Publications Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research:...

2

Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Extreme magnetic fields (>2 tesla), especially when combined with temperature, are being shown to revolutionize materials processing and...

3

Magnetic Materials Staff  

Science Conference Proceedings (OSTI)

... Materials Science and Engineering Division Staff Directory; MML Organization. Contact. Magnetic Materials Group Robert Shull, Group Leader. ...

2012-10-09T23:59:59.000Z

4

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

5

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4 Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

6

Permanent Magnet Materials  

Science Conference Proceedings (OSTI)

Table 4   Applications of permanent magnet materials...material Primary reason for selection Alternative material Condition or reason favoring selection of alternative material Aircraft magnetos, military or civilian SmCo Maximum energy per unit volume Cast Alnico 5 Availability or cost restraint Alternators SmCo Compactness and reliability Ferrite...

7

Center for Theoretical and Computational Materials Science ...  

Science Conference Proceedings (OSTI)

NIST/MML Center for Theoretical and Computational Materials Science. Mission. ... Center for Theoretical and Computational Materials Science ...

2013-09-04T23:59:59.000Z

8

Electronic, Magnetic & Photonic Materials Division  

Science Conference Proceedings (OSTI)

... Committee Energy Conversion and Storage Committee Magnetic Materials Committee Nanomaterials Committee Thin Films and Interfaces Committee.

9

Material Shielding of Power Frequency Magnetic Fields: Research and Testing Results from the EPRI Power Delivery Center -- Lenox  

Science Conference Proceedings (OSTI)

Magnetic fields from power lines and other electrical facilities can interfere with sensitive electronic equipment such as computers, electron microscopes, medical diagnostic and monitoring equipment, and air traffic control displays. Shields can be designed to reduce the magnetic field strength in the areas of interest, but attention must be given to certain aspects of shield design. This report deals with three aspects of practical shield construction: flat sheet dimensions, joining sheets, and thin co...

1998-06-29T23:59:59.000Z

10

Materials Sustainability: Digital Resource Center - Center for ...  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... Focus on life cycle analyses for buildings, agriculture, transportation, renewable energy, and packaging. Source: Center for Sustainable...

11

Magnetic Materials Group Homepage  

Science Conference Proceedings (OSTI)

... and simulation to become the driving force in ... develop a real-time magnetic domain imaging ... data-storage and permanent magnets with increased ...

2012-12-03T23:59:59.000Z

12

Magnetic Materials for Green Innovation  

Science Conference Proceedings (OSTI)

... Magnetic Materials for Use in Energy-efficient Distribution Transformers ... Novel Morphology of Highly Efficient Two-phase Ferrite Cores for Power Systems

13

Requirements of Magnetic Materials for Current Technological ...  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... Magnetic Materials for Energy Applications: Requirements of Magnetic ... Hard magnetic materials play a significant role in many green...

14

Nanostructrured Magnetic Materials  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... The demand for OFF-ON becomes increasingly important as ... The residual magnetic flux density and maximum energy product of the...

15

Magnetic Materials and Properties  

Science Conference Proceedings (OSTI)

Aug 5, 2013 ... Following vacuum distillation of the Mg-RE alloy, 98% pure RE metals can be recovered, which are then used to synthesize permanent magnet...

16

NIST Creates Center for Advanced Materials Research  

Science Conference Proceedings (OSTI)

Jun 25, 2013 ... The planned center, which NIST expects to fund at approximately $25 million ... and data and informatics tools related to advanced materials.

17

Argonne National Laboratory Center for Nanoscale Materials  

NLE Websites -- All DOE Office Websites

Laboratory Center for Nanoscale Materials Laboratory Center for Nanoscale Materials An Office of Science User Facility U.S. Department of Energy Search CNM ... Search CNM Home About CNM Research Facilities People For Users Publications News & Highlights Events Jobs CNM Users Organization Contact Us Other DOE Nanoscale Science Research Centers Casimir force reduction Casimir Force Reduction through Nanostructuring By nanostructuring one of two interacting metal surfaces at scales below the plasma wavelength, a new regime in the Casimir force was observed by researchers in the Center for Nanoscale Materials Nanofabrication & Devices Group working with collaborators at NIST, other national laboratories, and universities. Replacing a flat surface with a deep metallic lamellar grating with <100 nm features strongly suppresses the Casimir force and,

18

Electronic, Magnetic & Photonic Materials Division Council - TMS  

Science Conference Proceedings (OSTI)

Welcome to the Electronic, Magnetic, and Photonic Materials Division (EMPMD) which is composed of fourteen technical and administrative committees. TMS...

19

Magnetic refrigeration apparatus with belt of ferro or paramagnetic material  

DOE Patents (OSTI)

A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

1986-04-03T23:59:59.000Z

20

Fabrication of Nanocrystalline Magnetic Materials for use in Energy ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications IV ... magnetic softness, resulting in limited saturation magnetization, Bs. Chemical optimization, thus,...

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nanostructured Materials for Magnetic Refrigeration  

Science Conference Proceedings (OSTI)

... of Nd-Fe-B Magnets to the Megawatt Scale Generator for the Wind Turbine ... Low Loss, High Power Density Magnetics in Inductor/Transformer Cores for Army ...

22

Fe and Mn based materials for magnetic refrigeration  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications IV ... NANO- CRYSTALLINE SOFT MAGNETIC ALLOYS CONTRIBUTABLE TO ENERGY- SAVING.

23

Magnetic Materials for Energy Applications IV  

Science Conference Proceedings (OSTI)

Energy efficient cooling based on the magnetocaloric effect is an exciting possibility which is rapidly becoming ... Magnetic Materials for Green Innovation.

24

Hazardous materials (HAZMAT) Spill Center strategic plan  

SciTech Connect

This strategic Plan was developed in keeping with the Department of Energy`s mission for partnership with its customers to contribute to our Nation`s welfare by providing the technical information and the scientific and educational foundation for the technology, policy and institutional leadership necessary to achieve efficiency in energy use, diversity in energy sources, a more productive and competitive economy, improved environmental quality, and a secure national defense. The Plan provides the concepts for realigning the Departments`s Hazardous Materials Spill Center (HSC) in achieving its vision of becoming the global leader in meeting the diverse HAZMAT needs in the areas of testing, training, and technology. Each of these areas encompass many facets and a multitude of functional and operational requirements at the Federal, state, tribal, and local government levels, as well as those of foreign governments and the private sector. The evolution of the limited dimensional Liquefied Gaseous Fuels Spill Test Facility into a multifaceted HAZMAT Spill Center will require us to totally redefine our way of thinking as related to our business approach, both within and outside of the Department. We need to establish and maintain a viable and vibrant outreach program through all aspects of the public (via government agencies) and private sectors, to include foreign partnerships. The HAZMAT Spill Center goals and objectives provide the direction for meeting our vision. This direction takes into consideration the trends and happenings identified in the {open_quotes}Strategic Outlook{close_quotes}, which includes valuable input from our stakeholders and our present and future customers. It is our worldwide customers that provide the essence of the strategic outlook for the HAZMAT Spill Center.

1996-01-01T23:59:59.000Z

25

The DOE Center of Excellence for the Synthesis and Processing of Advanced Materials: Research briefs  

Science Conference Proceedings (OSTI)

This publication is designed to inform present and potential customers and partners of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials about significant advances resulting from Center-coordinated research. The format is an easy-to-read, not highly technical, concise presentation of the accomplishments. Selected accomplishments from each of the Center`s seven initial focused projects are presented. The seven projects are: (1) conventional and superplastic forming; (2) materials joining; (3) nanoscale materials for energy applications; (4) microstructural engineering with polymers; (5) tailored microstructures in hard magnets; (6) processing for surface hardness; and (7) mechanically reliable surface oxides for high-temperature corrosion resistance.

NONE

1996-01-01T23:59:59.000Z

26

Magnetic Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Thursday 8:30 AM March 7, 2013. Room: 205. Location: Henry B. Gonzalez Convention Center Session Chair: Su-Huai Wei, NREL; Lin-Wang Wang, LBNL...

27

Safety at the Center for Nanoscale Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

case of emergency or if you need help or assistance case of emergency or if you need help or assistance dial Argonne's Protective Force: 911 (from Argonne phones) or (630) 252-1911 (from cell phones) Safety at Work As a staff member or user at the Center for Nanoscale Materials (CNM), you need to be aware of safety regulations at Argonne National Laboratory. You are also required to have taken any safety, orientation, and training classes or courses specified by your User Work Authorization(s) and/or work planning and control documents prior to beginning your work. For safety and security reasons, it is necessary to know of all facility users present in the CNM (Buildings 440 and 441). Users are required to sign in and out in the visitors logbook located in Room A119. Some detailed emergency information is provided on the Argonne National

28

Materials Physics Applications: The National High Magnetic Field Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search National High Magnetic Field Laboratory, NHMFL Home About Us Organization DIVISION Materials Physics and Applications Division GROUPS Superconductivity Technology Center Condensed Matter and Magnet Science Center for Integrated Nanotechnologies Sensors & Electrochemical Devices Materials Chemistry CONTACTS Group Leader Mike Hundley Director, NHMFL-PFF/Deputy Group Leader Chuck Mielke Head of Users Program Operations Jon Betts Professional Staff Assistant Julie T. Gallegos TA-03 Group Office TA-03, Building 0034, Room 101 Office Administrator Juanita Armijo TA-35 Group Office TA-35, Building 0127, Room C117 Office Administrator Angeline Willow 505-667-5032 National High Magnetic Field Laboratory, Pulsed Field Facility The Pulsed Field Facility at Los Alamos National Laboratory in Los Alamos, New Mexico, is one of three campuses of the National High Magnetic Field Laboratory (NHMFL), the other two being at Florida State University, Tallahassee (continuous fields, magnetic resonance, and general headquarters) and the University of Florida ,Gainesville(ultra-low temperatures at high magnetic fields). The NHMFL is sponsored primarily by the National Science Foundation, Division of Materials Research, with additional support from the State of Florida and the US Department of Energy.

29

Materials Sustainability: Digital Resource Center - Titanium: The ...  

Science Conference Proceedings (OSTI)

Jul 9, 2008 ... Navigation: Select, Sandbox, Open Discussion Regarding Materials Sustainability, ==== Materials Sustainability ==== Recycling - General...

30

The Search for Enhanced Magnetic Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title, The ... Advances in Rare-earth Free Permanent Magnets Anisotropic Curie...

31

Materials Sustainability: Digital Resource Center -- Recycling ...  

Science Conference Proceedings (OSTI)

Materials Recycling Research and Process Development Many reports by Argonne National Laboratory on recycling materials especially from vehicles.

32

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

molecules (including monomers), and molecules that can be used as molecular building blocks for nanomaterials. I also utilize the 500 MHz nuclear magnetic resonance (NMR)...

33

Crystallographic Boundary in a Magnetic Shape Memory Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Science Highlights Science Briefs Crystallographic Boundary in a Magnetic Shape Memory Material Crystallographic Boundary in a Magnetic Shape Memory Material Print...

34

Analysis of Soft Magnetic Materials for Energy Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Analysis of Soft Magnetic Materials for Energy Applications ... Abstract Scope, The world-wide market for magnetic materials is anticipated to...

35

Theory, Design and Development of Artificial Magnetic Materials.  

E-Print Network (OSTI)

??Artificial Magnetic Materials (AMMs) are a subgroup of metamaterials which are engineered to provide desirable magnetic properties not seen in natural materials. These artificial structures (more)

Yousefi, Leila

2009-01-01T23:59:59.000Z

36

Center for Nanophase Materials Sciences (CNMS) - Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

POLICIES User Access Policy - Version 1.1 General Policies and Procedures for User Access to the DOE Nanoscale Science Research Centers Peer Review and Advisory Bodies Evaluation...

37

Feed Materials Production Center Waste Management Plan  

SciTech Connect

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-12-31T23:59:59.000Z

38

NEBRASKA CENTER FOR MATERIALS AND NANOSCIENCE  

E-Print Network (OSTI)

Materials for nuclear energy system, fission reactors, nuclear fuels, energy policy, sustainability and gene therapy. Xudong Wang Assistant Professor, Materials Science & Engineering Nanomaterials growth; nanomaterials for energy storage; nanoelectronics; nano-biomaterials. Jay Samuel Senior Lecturer in Materials

Farritor, Shane

39

Materials for Nuclear Power: Digital Resource Center - TMS  

Science Conference Proceedings (OSTI)

Spacer 62115 users are registered to the Materials for Nuclear Power: Digital Resource Center forum. Spacer There are currently 0 users logged in. Spacer...

40

Materials Sustainability: Digital Resource Center - Recycling ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This presentation was part of a symposium on Materials and Critical Societal Issues held during the Materials Science and Technology 2004...

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Materials Sustainability: Digital Resource Center -- Educational ...  

Science Conference Proceedings (OSTI)

Select, Sandbox, Open Discussion Regarding Materials Sustainability ... Ecology, Sustainability: Economics, Lifecycle Analysis, Green House Gases, and...

42

Materials Sustainability: Digital Resource Center -- Industrial Ecology  

Science Conference Proceedings (OSTI)

Select, Sandbox, Open Discussion Regarding Materials Sustainability ... Ecology, Sustainability: Economics, Lifecycle Analysis, Green House Gases, and...

43

Magnetic spectroscopy and microscopy of functional materials  

SciTech Connect

Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).

Jenkins, C.A.

2011-01-28T23:59:59.000Z

44

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

G. Alvarez, J. Moreno, T. A. Maier, and M. S. Jarrell, "Magnetic Instabilities and Phase Diagram of the Double-Exchange Model in Infinite Dimensions," New J. Phys. 8, 116...

45

Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS  

SciTech Connect

This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

Charles M. Falco

2012-09-13T23:59:59.000Z

46

Materials Sustainability: Digital Resource Center - Recycler's World  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... Recycler's World promotes the trade of scrap materials. Users can post a listing for the type of scrap material they wish to buy or sell. Source:...

47

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

PRESENTATONS: Reawakening of United States Nuclear Energy: Materials Challenges for a New Generation of Power Plants Presentations by Harold...

48

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Nuclear Power Background, Trends in Nuclear Power, The Nuclear Fuel Cycle...

49

Materials Synthesis and Characterization | Center for Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis and Characterization Facility Materials Synthesis and Characterization Facility materials synthesis The Materials Synthesis and Characterization Facility includes laboratories for producing nanostructured materials and characterizing their basic structural, chemical and optical properties. The facility staff has significant experience in solution-phase chemistry of nanocrystal/nanowire materials, synthesis of polymer materials by a range of controlled polymerization techniques; inorganic synthesis by chemical vapor deposition, physical vapor deposition, and atomic layer deposition. The staff includes experts in techniques of nanoscale fabrication by self-assembly. The facility also supports infrastructure and expertise in solution-based processing of organic thin films, including tools for spin-casting, thermal processing, and UV/ozone treatment.

50

Teacher Resource Center: Samplers of Educational Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Samplers of Educational Materials Samplers of Educational Materials TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Teachers have developed classroom materials as part of a number of Fermilab education programs. The materials enable students to discover relationships for themselves through activity-based investigation. The primary purpose of these materials is to provide an experience of science to broaden and enrich attitudes and develop an appreciation for and understanding of

51

Education: Digital Resource Center -- Materials Outreach - TMS  

Science Conference Proceedings (OSTI)

New Messages, Rating, The Cyber-rific Periodic Table of the Elements A kid- friendly Periodic Table featuring "Molecule Man" courtesy of Bayer MaterialScience.

52

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Agency regulating commercial nuclear power plants and other uses of nuclear materials, 0, 720, Lynne Robinson, 6/25/2007 9:29 AM by Lynne Robinson.

53

Materials Sustainability: Digital Resource Center -- Recycling ... - TMS  

Science Conference Proceedings (OSTI)

Sustainability and Nickel Wepage that describes the sustainability challenges for nickel and nickel-containing materials. 0, 557, Diana Grady, 7/2/2008 9:23 AM

54

Energy Frontier Research Centers Announced - Materials ...  

Science Conference Proceedings (OSTI)

May 6, 2009... from solar energy and electricity storage, to materials sciences, biofuels, advanced nuclear systems, and carbon capture and sequestration.

55

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

May 25, 2007 ... The United States Nuclear Power Industry is reawakening. ... for a New Generation of Power Plants", Materials Technology@TMS, May 2007.

56

Teacher Resource Center: Fermilab Science Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Science Materials Fermilab Science Materials TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Select from several categories of items available from the Fermilab Education Office. Teachers created these classroom materials as part of Fermilab educational programs. The following materials may be ordered either through the Education Office or through the Fermilab Friends for Science Education Online Store. ** Use the online order form (pdf).** You can fill it out online, save it, print it and send it by US mail.

57

Materials Sustainability: Digital Resource Center Text Topic  

Science Conference Proceedings (OSTI)

Date Posted: 7/1/2008 12:54 PM Posted By: Diana Grady. This presentation was part of a symposium on Materials and Critical Societal Issues held during the...

58

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-Intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H....

59

Scintillation Materials Research Center University of Tennessee  

E-Print Network (OSTI)

Conference (NSS-MIC) in Knoxville, TN, the NNSA NA-22 Office of Nonproliferation and Verification Research Materials" the NNSA NA-22 Office of Nonproliferation and Verification Research and Development, University and priorities. 2. NNSA: The SMRC staff participated in the NNSA NA-22 Office of Nonproliferation

Tennessee, University of

60

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

9 PUBLICATIONS 9 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Alonzo, J.; Mays, J. W.; Kilbey II, S. M., "Forces of Interaction Between Surfaces Bearing Looped Polymer Brushes in Good Solvent," Soft Matter 5 (9), 1897-1904 (2009). Arenholz, E.; van der Laan, G.; Yang, F.; Kemik, N.; Biegalski, M. D.; Christen, H. M.; Takamura, Y, "Magnetic Structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3," Appl. Phys. Lett. 94 (7), 072503 (2009). Bai, X.; Sandukas, S.; Appleford, M. R.; Ong, J. L.; Rabiei, A., "Deposition and Investigation of Functionality Graded Calcium Phosphase Coatings in Titanium," Acta Biomater. 5, 3563-3572 (2009).

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Summer Newsletter 2010 What's New @ CNMS The Guest House is open! The ORNL Guest House, operated by the Paragon Hotel Company, opened Monday, August 15. The Guest House is located at 8640 Nano Center Drive, part of the Chestnut Ridge facility complex. Reservations may be made at reservations@ornlguesthouse.com. The ORNL Guest House is a smoke-free, drug-free, and alcohol-free facility. The Guest House is a 3 floor, 47 room, 71 bed inn (23 rooms with King beds and 24 rooms with 2 ex-long double beds). All rooms have a mini fridge and microwave. Room rates will be $90 per night, plus all applicable taxes, which is the current GSA per diem rate for the Oak Ridge area. The Guest House is available to researchers and other individuals having business with DOE or

62

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Summer Newsletter 2010 What's New @ CNMS Small Angle X-ray Scattering (SAXS) Small Angle X-ray Scattering (SAXS) is an analytical method to determine the structure of particle systems in terms of averaged particle sizes or shapes. The materials can be solid or liquid and they can contain solid, liquid or gaseous domains of the same or another material. The method is accurate, non-destructive and often requires only a minimum of sample preparation. The concentration ranges between 0.1 wt.% and 99.9 wt.%. The particle or structure sizes that can be resolved range from 1 to 50 nm in a typical set-up but can be extended to larger angles than between the typical 0.1° and 10° of SAXS, through simultaneous collection of Wide-Angle X-Ray Scattering (WAXS) data. The CNMS has recently added an

63

Center for Nanophase Materials Sciences (CNMS) - Macromolecular  

NLE Websites -- All DOE Office Websites (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (POLYMERS) Polymer Synthesis The Macromolecular Nanomaterials laboratories include a wide range of polymer synthesis capabilities, with extensive fume hoods (including walk-in hoods for large scale apparatus) and glove boxes for handling sensitive materials. Polymerization Techniques Ionic Polymerizations: World-class expertise in the preparation of well-defined, narrow molecular distribution polymers and copolymers including complex polymer architectures (i.e. block, star, comb, graft and hyperbranched polymers) by anionic and cationic polymerizations. Controlled Radical Polymerization: Extensive expertise in free radical and controlled radical (ATRP, NMP, RAFT) polymerizations. Ring Opening Polymerization: Expertise in the controlled

64

Magnetic Materials for Broadband Transmission Line  

E-Print Network (OSTI)

The authors series of articles on broadband transmission line transformers (TLTs) concludes with these notes on magnetic materials and the properties that are important for best performance Ferrite and iron powder magnetic materials were developed to support a wide range of components, including inductors, EMI suppressors, conventional transformers and transmission line transformers (TLTs). This article deals with transmission line transformers, presenting the observations and conclusions of the author, reached after extensive experimental research into the behavior and performance of these devices in broadband applications. Figure 1 The three transformers used in comparing the performance of the autotransformer and the transmission line transformer. At the top left is an autotransformer; at the top right is the transmission line transformer, while at the bottom is a transmission line transformer without a ferrite core. All transformers had a total of 10 turns.

Jerry Sevick

2005-01-01T23:59:59.000Z

65

Nanoscience Images from the Center for Nanophase Materials Sciences (CNMS)  

DOE Data Explorer (OSTI)

DOE's Nanoscale Science Research Centers to support the synthesis, processing, fabrication, and analysis of materials at the nanoscale are also National User Facilities. The Center for Nanophase Materials Science is currently one of five ceterns for interdisciplinary research at the nanoscale. These centers are laboratories for nanofabrication, may have one-of-a-kind signature instruments, including nanopatterning tools and research-grade probe microscopes. The images produced by nanoscience research and the technologies involved are beautiful and unique. This website makes available a very small collection but very high quality, public domain images

66

Hazardous Materials Management and Emergency Response training Center needs assessment  

SciTech Connect

For the Hanford Site to provide high-quality training using simulated job-site situations to prepare the 4,000 Site workers and 500 emergency responders for known and unknown hazards a Hazardous Materials Management and Emergency Response Training Center is needed. The center will focus on providing classroom lecture as well as hands-on, realistic training. The establishment of the center will create a partnership among the US Department of Energy; its contractors; labor; local, state, and tribal governments; and Xavier and Tulane Universities of Louisiana. This report presents the background, history, need, benefits, and associated costs of the proposed center.

McGinnis, K.A. [Westinghouse Hanford Co., Richland, WA (United States); Bolton, P.A. [Pacific Northwest Lab., Richland, WA (United States); Robinson, R.K. [RKR, Inc. (United States)

1993-09-01T23:59:59.000Z

67

Center for Intelligent Fuel Cell Materials Design  

DOE Green Energy (OSTI)

The goal of this work was to develop a composite proton exchange membrane utilizing 1) readily available, low cost materials 2) readily modified and 3) easily processed to meet the chemical, mechanical and electrical requirements of high temperature PEM fuel cells. One of the primary goals was to produce a conducting polymer that met the criteria for strength, binding capability for additives, chemical stability, dimensional stability and good conductivity. In addition compatible, specialty nanoparticles were synthesized to provide water management and enhanced conductivity. The combination of these components in a multilayered, composite PEM has demonstrated improved conductivity at high temperatures and low humidity over commercially available polymers. The research reported in this final document has greatly increased the knowledge base related to post sulfonation of chemically and mechanically stable engineered polymers (Radel). Both electrical and strength factors for the degree of post sulfonation far exceed previous data, indicating the potential use of these materials in suitable proton exchange membrane architectures for the development of fuel cells. In addition compatible, hydrophilic, conductive nano-structures have been synthesized and incorporated into unique proton exchange membrane architectures. The use of post sulfonation for the engineered polymer and nano-particle provide cost effective techniques to produce the required components of a proton exchange membrane. The development of a multilayer proton exchange membrane as described in our work has produced a highly stable membrane at 170C with conductivities exceeding commercially available proton exchange membranes at high temperatures and low humidity. The components and architecture of the proton exchange membrane discussed will provide low cost components for the portable market and potentially the transportation market. The development of unique components and membrane architecture provides a key element for the United States: 1) to transition the country from a fossil fuel based energy economy to a renewable energy based economy, and 2) to reduce our dependence on foreign oil. Developments of this program will serve as an important step toward continuing PEMFC technology and ultimately the broad-based commercial availability of this technology and its benefits.

Santurri, P.R., (Chemsultants International); Hartmann-Thompson, C.; Keinath, S.E. (Michigan Molecular Inst.)

2008-08-26T23:59:59.000Z

68

Quadrupole Magnetic Center Definition Using the Hall Probe Measurement Technique  

NLE Websites -- All DOE Office Websites (Extended Search)

Quadrupole Magnetic Center Definition Quadrupole Magnetic Center Definition Using the Hall Probe Measurement Technique Isaac Vasserman Experimental Facility Division, Advanced Photon Source, Argonne National Laboratory 1. Introduction The linac coherent light source [LCLS] project [1] requires 5 µm straightness of the particle beam trajectory to achieve the desired goal of x-ray multiplication. The main source of beam trajectory distortion is misalignment of quadrupoles. The LCLS project will use a beam-based alignment technique to align the quadrupoles to the needed accuracy. An initial accuracy of the quadrupole alignment not worse than 50 µm is required [2]. A different technique could be used for this purpose. It would be though quite desirable to avoid using an additional magnetic measurement technique and to use

69

Industrial Needs and Applications for Soft Magnetic Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Industrial Needs and Applications for Soft Magnetic Materials. Author(s) ... Bonded Magnetocaloric Powders for the Refrigeration Application.

70

Industrial Requirements and Applications of Hard Magnetic Materials  

Science Conference Proceedings (OSTI)

Presentation Title, Industrial Requirements and Applications of Hard Magnetic Materials ... Bonded Magnetocaloric Powders for the Refrigeration Application.

71

The Requirements of Soft Magnetic Materials for Industrial ...  

Science Conference Proceedings (OSTI)

Advanced electric machines and drives, often with permanent magnet architectures, are being developed to ... Materials for Motors of Hybrid Automobiles.

72

Production of Materials with Superior Properties Utilizing High Magnetic Field  

Processing materials in a magnetic field is an innovative and revolutionary means to change materials and structural properties by tailoring the ...

73

2004 research briefs :Materials and Process Sciences Center.  

Science Conference Proceedings (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

74

Magnetism in Non-Traditional Materials  

SciTech Connect

We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host

Menon, Madhu

2013-09-17T23:59:59.000Z

75

Materials - Coatings & Lubricants - Illinois Center for Advanced Tribology  

NLE Websites -- All DOE Office Websites (Extended Search)

Illinois Center for Advanced Tribology Illinois Center for Advanced Tribology ICAT brochure cover TRI - BOL*O*GY (N) -- the science and technology of friction, wear, and lubrication of interacting surfaces in relative motion. The Illinois Center for Advanced Tribology (ICAT) is a virtual center that brings together the skills and talents of multiple investigators and unique facilities from Argonne National Laboratory and three partnering universities to resolve critical friction, wear, and lubrication issues in biomedical implants, alternative energy technologies, and extreme environments. The Center's tribology experts work closely with industry, and with state and federal agencies through jointly funded research projects, to perform leading-edge research on the impact of materials, coatings, and fluids on

76

REACT: Alternatives to Critical Materials in Magnets  

Science Conference Proceedings (OSTI)

REACT Project: The 14 projects that comprise ARPA-Es REACT Project, short for Rare Earth Alternatives in Critical Technologies, are developing cost-effective alternatives to rare earths, the naturally occurring minerals with unique magnetic properties that are used in electric vehicle (EV) motors and wind generators. The REACT projects will identify low-cost and abundant replacement materials for rare earths while encouraging existing technologies to use them more efficiently. These alternatives would facilitate the widespread use of EVs and wind power, drastically reducing the amount of greenhouse gases released into the atmosphere.

None

2012-01-01T23:59:59.000Z

77

Edison Material Technology Center EMTEC | Open Energy Information  

Open Energy Info (EERE)

Edison Material Technology Center EMTEC Edison Material Technology Center EMTEC Jump to: navigation, search Name Edison Material Technology Center (EMTEC) Place Dayton, Ohio Zip 45420 Product String representation "A not-for-profi ... oratory (AFRL)." is too long. Coordinates 44.87672°, -107.262744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.87672,"lon":-107.262744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

79

LANSCE | Lujan Center | Thrust Area | Local Structure, Magnetism, and  

NLE Websites -- All DOE Office Websites (Extended Search)

User Instruments User Instruments Reflectometers Asterix SPEAR Powder Diffractometers HIPD HIPPO NPDF Engineering Diffraction SMARTS Chemical Spectroscopy FDS Small Angle Scattering LQD Protein Crystallography PCS Inelastic Neutron Spectrometer Pharos Single Crystal Diffractometer SCD Contacts Lujan Center Leader Mark Bourke 505.667.6069 Deputy Leader (Interim) Anna Llobet 505.665.1367 Experimental Area Manager) Charles Kelsey 505.665.5579 Experiment Coordinator Leilani Conradson 505.665.9505 User Office Administrator Lisa Padilla 505.667.5649 Administrative Assistant Melissa Martinez 505.665.0391 Thrust Area Local Structure, Magnetism, and Nanomaterials The Lujan Neutron Scattering Center encompasses a set of powder diffractometers, instrument scientist specialists, and sample environments (pressure, temperature, and magnetic field) equipped to address challenges

80

Apparatus for magnetic separation of paramagnetic and diamagnetic material  

DOE Patents (OSTI)

The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic-particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

Doctor, R.D.

1986-07-24T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Apparatus for magnetic separation of paramagnetic and diamagnetic material  

DOE Patents (OSTI)

The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadropole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin.

Doctor, Richard D. (Glen Ellyn, IL)

1988-01-01T23:59:59.000Z

82

Apparatus for magnetic separation of paramagnetic and diamagnetic material  

DOE Patents (OSTI)

The present invention relates to methods and apparatus for segregating paramagnetic from diamagnetic particles in particulate material and, in particular, to the open gradient magnetic separation of ash producing components and pyritic sulfur from coal. The apparatus includes a vertical cylinder and a rotatable vertical screw positioned within the cylinder, the screw having a helical blade angled downwardly and outwardly from the axis. Rotation of the vertical screw causes denser particles, which in the case of coal include pyritic sulfur and ash, which are paramagnetic, to migrate to the outside of the screw, and less dense particles, such as the low sulfur organic portion of the coal, which are diamagnetic, to migrate towards the center of the screw. A vibration mechanism attached to the screw causes the screw to vibrate during rotation, agitating and thereby accommodating further segregation of the particles. An open gradient magnetic field is applied circumferentially along the entire length of the screw by a superconducting quadrupole magnet. The open gradient magnetic field further segregates the paramagnetic particles from the diamagnetic particles. The paramagnetic particles may then be directed from the cylinder into a first storage bin, and the diamagnetic particles, which are suitable for relatively clean combustion, may be directed into a second storage bin. 5 figs.

Doctor, R.D.

1988-10-18T23:59:59.000Z

83

Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material  

SciTech Connect

The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

2013-10-08T23:59:59.000Z

84

Annual Report Center for Nanophysics and Advanced Materials  

E-Print Network (OSTI)

in uncovering the unique electronic properties of graphene, which is a remarkable new material consisting. "Flexible Electronics, NanoCenter Industrial Workshop (Samsung)," August, 2007. "Graphene is all surface Function, Screening, and Plasmons in Two-Dimensional Graphene, E.H. Hwang and S. Das Sarma, Phys. Rev. B 75

Lathrop, Daniel P.

85

Executive Summaries Hydrogen Storage Materials Centers of Excellence  

E-Print Network (OSTI)

of Energy April 2012 #12;2 #12;3 Primary Authors: Chemical Hydrogen Storage (CHSCoE): Kevin Ott, Los of the three Materials Centers of Excellence and the Department of Energy Hydrogen Storage Team in the Office hydrogen storage technologies that offer high specific energy and energy density at acceptable costs

86

Materials characterization center workshop on corrosion of engineered barriers  

DOE Green Energy (OSTI)

A workshop on corrosion test procedures for materials to be used as barriers in nuclear waste repositories was conducted August 19 and 20, 1980, at the Battelle Seattle Research Center. The purpose of the meeting was to obtain guidance for the Materials Characterization Center in preparing test procedures to be approved by the Materials Review Board. The workshop identified test procedures that address failure modes of uniform corrosion, pitting and crevice corrosion, stress corrosion, and hydrogen effects that can cause delayed failures. The principal areas that will require further consideration beyond current engineering practices involve the analyses of pitting, crevice corrosion, and stress corrosion, especially with respect to quantitative predictions of the lifetime of barriers. Special techniques involving accelerated corrosion testing for uniform attack will require development.

Merz, M.D.; Zima, G.E.; Jones, R.H.; Westerman, R.E.

1981-03-01T23:59:59.000Z

87

Soft Magnetic Materials Fabricated by Rapid Quenching Technique ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications. Presentation Title ... Current Status of Permanent Magnet Research and Market in China ... First to Second Order Magnetocaloric Transition: on Correct Analysis of Experimental Data.

88

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

Todd R. Allen

2011-12-01T23:59:59.000Z

89

1. electronic,magnetic & photonic materials division bylaws  

Science Conference Proceedings (OSTI)

ELECTRONIC, MAGNETIC & PHOTONIC MATERIALS DIVISION. BYLAWS. Revisions 3/12/12. ARTICLE I. Name and Objective. Section 1. The name of the...

90

Overcoming a Magnetic Sticking Point - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Aug 25, 2009... magnetic effects into a new functional form that could be useful for integration with unconventional materials, according to the researchers.

91

Adjustable Permanent Quadrupoles Using Rotating Magnet Material Rods for the Next Linear Collider  

Science Conference Proceedings (OSTI)

The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 132 Tesla, with a maximum gradient of 135 Tesla per meter, an adjustment range of +0-20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micrometer during the 20% adjustment. In an effort to reduce estimated costs and increase reliability, several designs using hybrid permanent magnets have been developed. All magnets have iron poles and use either Samarium Cobalt or Neodymium Iron to provide the magnetic fields. Two prototypes use rotating rods containing permanent magnetic material to vary the gradient. Gradient changes of 20% and center shifts of less than 20 microns have been measured. These data are compared to an equivalent electromagnet prototype.

James T Volk et al.

2001-09-24T23:59:59.000Z

92

Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels  

SciTech Connect

The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the centers investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The centers research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

Todd R. Allen, Director

2011-04-01T23:59:59.000Z

93

Introduction To Magnetic Materials, Second Edition - TMS  

Science Conference Proceedings (OSTI)

Oct 1, 2009... amorphous alloys or metallic glasses used in cores of transformers, generators , motors, inductors, microwave components) and magnetically...

94

Role of Magnetic Fields and Texturing to Improved Magnetic Materials  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Experiments to observe the structural and magnetic phase transformations were performed at the Spallation Neutron Source (SNS) at Oak...

95

Magnetic Materials for Energy Applications -III  

Science Conference Proceedings (OSTI)

TMS: Energy Committee TMS: Energy Conversion and Storage Committee ... Optimization of the Mechanical Alloying Process of Soft Magnetic Fe-Based...

96

Soft Magnetic Materials in Energy Applications  

Science Conference Proceedings (OSTI)

Current Status of Permanent Magnet Research and Market in China ... First to Second Order Magnetocaloric Transition: on Correct Analysis of Experimental...

97

H. Rare Earth, Electronic, and Magnetic Materials  

Science Conference Proceedings (OSTI)

... Nd-Fe-B Permanent Magnets Unique Exchange Bias Induced by Antiferromagnetic Cr-oxide ZnO-graphene Hybrid Quantum Dots Light Emitting Diode...

98

Power Magnetic Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and ... away from low frequency transformers to modular power electronic systems...

99

Magnetic Materials for High Frequency Power Electronics  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Advanced Materials for Power Electronics, Power Conditioning, and Power ... in power conditioning, conversion, and generation applications.

100

General Abstracts: Electronic, Magnetic, and Photonic Materials ...  

Science Conference Proceedings (OSTI)

May 1, 2007... of Nanocrystalline Structure in Metals by Severe Plastic Deformation ... electronic packaging and inter-connection materials, nanomaterials,...

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Scientific Image Gallery from the Applied Superconductivity Center at the National High Magnetic Field Laboratory  

DOE Data Explorer (OSTI)

The Applied Superconductivity Center (ASC) is nested with the National High Magnetic Field Laboratory. Originally located at the University of Wisconsin, ASC transferred to NHMFL or Magnet Lab in 2003. ASC investigates both low and high-temperature materials. Focus areas include grain boundaries; coated conductors, BSCCO, and a new superconductor known as MgB2. The ASC Image Gallery provides graphs with text descriptions and single images with captions. The single images are organized into collections under scientific titles, such as MgB2 mentioned above. Click on the Videos link to see two 3D videos and be sure to check out the link to image collections at other organizations performing superconductivity research.

102

Critical Magnetic Field Determination of Superconducting Materials  

Science Conference Proceedings (OSTI)

Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

Canabal, A.; Tajima, T.; /Los Alamos; Dolgashev, V.A.; Tantawi, S.G.; /SLAC; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

2011-11-04T23:59:59.000Z

103

Argonne CNM: Electronic and Magnetic Materials and Devices Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic & Magnetic Materials & Devices Electronic & Magnetic Materials & Devices Group Leader: Saw-Wai Hla The objective of the Electronic and Magnetic Materials and Devices (EMMD) group at the CNM is to discover, understand, and utilize new electron and spin-based materials and phenomena in constrained geometries. Potential benefits include reduced power dissipation, new medical imaging methods and therapies, improved efficiency of data storage by spin current and electrical field-assisted writing, and enhanced energy conversion in photovoltaic devices. Research Activities Understanding complex magnetic order and coupling phenomena: Magnetic nanostructures are prone to complex magnetic ordering phenomena that do not occur in the bulk and that will have strong impact on the further development of functional magnetic nanostructures. Basic science on the influence of demagnetizing effects, geometrical frustration, next-nearest neighbor exchange interactions, unusual anisotropy values, and the spin-orbit interaction at reduced dimensionality are performed with a special focus on temperature-dependent magnetic order-disorder transitions.

104

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Transient-Mediated fate determination in a transcriptional circuit of HIV Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a novel technique of discovering the details of these interactions through the measurement of the structure of stochastic fluctuations that occur in neighboring nanoscale system components that can be directly imaged. In this work [Nature Genetics, 40(4), 466-470 (2008)], in collaboration with a

105

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Understanding Metal-Directed Growth of Single-Crystal M-TCNQF4 Organic Nanowires K. Xiao, M. Yoon, A. J. Rondinone, E. A. Payzant, and D. B. Geohegan Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement Combined experimental and theoretical studies revealed the nucleation and growth mechanisms of M-TCNQF4 crystalline organic nanowires grown on different metals by vapor-solid chemical reaction (VSCR). Real-time x-ray diffraction was used to measure the growth kinetics of the nanowires, and a modified Avrami model of the data showed that growth proceeds via a 1D ion diffusion-controlled reaction at their tips. First principles atomistic calculations were used to understand how charge transfer interactions govern the reactivity of different metals in the growth process through the

106

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to create novel synthetic polymers, which are environmentally responsive to various stimuli, such as temperature or pH, in a controlled manner. Understanding the nanoscale conformational changes and phase behavior upon exposure of these polymers to external stimuli is

107

Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

CNMS USER RESEARCH CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature. E.g., homeostasis - regulation of a cell's internal environment to maintain stability and function at the mesoscale (i.e., cell) in the face of an unpredictable environment - is maintained even though there is considerable noise at the nanoscale (protein, RNA, molecular motor). A recent ACS Nano

108

Solidification Processing of Materials in Magnetic Fields  

Science Conference Proceedings (OSTI)

7. S. Asai, Metallurgical Aspects of Electromagnetic Processing of Materials in Liquid Metal Magnetohydrodynamics, ed. J. Lielpeteris and R. Moreau (Boston,...

109

Electromagnetic valve for controlling the flow of molten, magnetic material  

DOE Patents (OSTI)

An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

Richter, Tomas (State College, PA)

1998-01-01T23:59:59.000Z

110

Electromagnetic valve for controlling the flow of molten, magnetic material  

DOE Patents (OSTI)

An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

Richter, T.

1998-06-16T23:59:59.000Z

111

Digital lock-in detection of site-specific magnetism in magnetic materials  

SciTech Connect

The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

Haskel, Daniel (Naperville, IL); Lang, Jonathan C. (Naperville, IL); Srajer, George (Oak Park, IL)

2008-07-22T23:59:59.000Z

112

End station for nanoscale magnetic materials study: Combination of scanning tunneling microscopy and soft X-ray magnetic circular dichroism spectroscopy  

SciTech Connect

We have constructed an end station for nanoscale magnetic materials study at the soft X-ray beamline HiSOR BL-14 at Hiroshima Synchrotron Radiation Center. An ultrahigh-vacuum scanning tunneling microscope (STM) was installed for an in situ characterization of nanoscale magnetic materials in combination with soft X-ray magnetic circular dichroism (XMCD) spectroscopy experiment. The STM was connected to the XMCD experimental station via damper bellows to isolate it from environmental vibrations, thus achieving efficient spatial resolution for observing Si(111) surface at atomic resolution. We performed an in situ experiment with STM and XMCD spectroscopy on Co nanoclusters on an Au(111) surface and explored its practical application to investigate magnetic properties for well-characterized nanoscale magnetic materials.

Ueno, Tetsuro; Sawada, Masahiro; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Kishimizu, Yusuke; Kimura, Akio [Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)

2012-12-15T23:59:59.000Z

113

DistributionCategory: Magnetic Fusion Reactor Materials  

E-Print Network (OSTI)

that its use would not infringe privately owned rights. Reference herein to any specific commercial product. Several analyses of this vapor shielding effect have been performed [l-71.Some previouswork focused on one function q (Z,t) is calculated, in the condensed target material, with detailed models that include

Harilal, S. S.

114

Crystallographic Boundary in a Magnetic Shape Memory Material  

NLE Websites -- All DOE Office Websites (Extended Search)

Crystallographic Boundary in a Crystallographic Boundary in a Magnetic Shape Memory Material Crystallographic Boundary in a Magnetic Shape Memory Material Print Wednesday, 18 April 2012 11:37 A research team has shown the existence of a special structural boundary in an intermetallic compound by combining the unique measurement facilities at the ALS, the single-crystal production capabilities of Tohoku University (Japan), and the materials science expertise of Johannes-Gutenberg-University (Germany). Conventional shape memory materials, such as the commercially available Nitinol (an alloy of nickel and titanium used in microsensing, actuation, and medical devices), undergo a phase transformation with cooling or heating when large areas of a sample distort along a single axis, and where the atomic-unit cell "stretching" from a cube to a rectangular prism occurs. In contrast, magnetic shape memory (MSM) materials are much more rare but have an advantage: The axis of magnetic anisotropy is coupled to the direction of stretching, so a perfect MSM crystal can be made to flex and bend reversibly by applying an external magnetic field.

115

Materials characterization center workshop on compositional and microstructural analysis of nuclear waste materials. Summary report  

SciTech Connect

The purpose of the Workshop on Compositional and Microstructural Analysis of Nuclear Waste Materials, conducted November 11 and 12, 1980, was to critically examine and evaluate the various methods currently used to study non-radioactive, simulated, nuclear waste-form performance. Workshop participants recognized that most of the Materials Characterization Center (MCC) test data for inclusion in the Nuclear Waste Materials Handbook will result from application of appropriate analytical procedures to waste-package materials or to the products of performance tests. Therefore, the analytical methods must be reliable and of known accuracy and precision, and results must be directly comparable with those from other laboratories and from other nuclear waste materials. The 41 participants representing 18 laboratories in the United States and Canada were organized into three working groups: Analysis of Liquids and Solutions, Quantitative Analysis of Solids, and Phase and Microstructure Analysis. Each group identified the analytical methods favored by their respective laboratories, discussed areas needing attention, listed standards and reference materials currently used, and recommended means of verifying interlaboratory comparability of data. The major conclusions from this workshop are presented.

Daniel, J.L.; Strachan, D.M.; Shade, J.W.; Thomas, M.T.

1981-06-01T23:59:59.000Z

116

Environmental Survey preliminary report, Feed Materials Production Center, Fernald, Ohio  

Science Conference Proceedings (OSTI)

This report presents the preliminary findings from the first phase of the environmental survey of the United States Department of Energy (DOE) Feed Materials Production Center (FMPC), conducted June 16 through 27, 1986. The survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with the FMPC. The survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the survey involves the review of existing site environmental data, observations of the operations carried on at FMPC, and interviews with site personnel. The survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its onsite activities. The Sampling and Analysis Plan will be executed by a DOE national laboratory or a support contractor. When completed, the results will be incorporated into the FMPC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the FMPC survey. 41 refs., 20 figs., 25 tabs.

Not Available

1987-03-01T23:59:59.000Z

117

Reference material RM 7811-7 for identification cards with high coercivity high density magnetic stripes  

E-Print Network (OSTI)

Reference material RM 7811-7 for identification cards with high coercivity high density magnetic stripes

Albrecht, M

2003-01-01T23:59:59.000Z

118

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

May 15, 2007 ... Sponsored by the U.S. Nuclear Regulatory Commission, the Center for Nuclear Waste Regulatory Analyses has as its overall mission to...

119

Materials for Nuclear Power: Digital Resource Center Text Topic  

Science Conference Proceedings (OSTI)

Print this topic. Topic Title WEB RESOURCE: Nuclear Energy and Global Security Technologies Center. Date Posted: 5/15/2007 2:43 PM Posted By: Lynne...

120

Center for Nanophase Materials Sciences (CNMS) - Proposal Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Warwick Professor Rodney Andrews Director, Center for Applied Energy Research University of Kentucky Professor Perla B. Balbuena Department of Chemical Engineering...

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

May 15, 2007 ... Access to forms and file codes is also provided. Citation: "Online Documents." Nuclear Energy and Global Security Technologies Center 2007.

122

Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence  

Fuel Cell Technologies Publication and Product Library (EERE)

Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. T

123

Sandia National Labs: Materials Science and Engineering Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

and predictability. Materials Aging and Reliability: We develop the understanding of chemical and physical mechanisms that cause materials properties to change. The primary...

124

Sandia National Labs: Materials Science and Engineering Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

and materials interfaces used in the nonnuclear portion of weapons, Sandia has used a risk-management approach to identify those materials and interfaces that must be...

125

Materials Sustainability: Digital Resource Center - The Role of ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This presentation was part of a symposium on Materials and Critical Societal Issues held during the Materials Science and Technology 2004...

126

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

narrow gap materials including some superconductors, heavy-Fermion compounds, and many thermoelectric materials. Our results demonstrate the importance of including these...

127

Iver Anderson, Division of Materials Sciences and Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kobe, Jozef Stefan Institut, Rare Earth Magnets in Europe Kazuhiro Hono, Magnetic Materials Center Managing Director, NIMS, Research Trends on Rare Earth Materials in Japan...

128

Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype  

SciTech Connect

The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting technique is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.

Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin; Jensen, David R.; Rogers, Ron; Sheppard, John C.; Lorant, Steve St; Weber, Thomas B.; Weisend, John, II; /SLAC; Brueck, Heinrich; /DESY; Toral, Fernando; /Madrid, CIEMAT

2011-02-07T23:59:59.000Z

129

Magnetic mesoporous materials for removal of environmental wastes  

Science Conference Proceedings (OSTI)

We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7 hours. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Tyrosinase aggregates in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, could be used repeatedly for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic, organic and biochemical contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.

Kim, Byoung Chan; Lee, Jinwoo; Um, Wooyong; Kim, Jaeyun; Joo, Jin; Lee, Jin Hyung; Kwak, Ja Hun; Kim, Jae Hyun; Lee, Changha; Lee, Hongshin; Addleman, Raymond S.; Hyeon, Taeghwan; Gu, Man Bock; Kim, Jungbae

2011-09-15T23:59:59.000Z

130

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

of Electron Tunneling into Ferroelectric Surfaces Peter Maksymovych1, Stephen Jesse1, Pu Yu2, Ramamoorthy Ramesh2, Arthur P. Baddorf,1 and Sergei V. Kalinin1 1 The Center for...

131

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Expression Optimization and Synthetic Gene Networks in Cell-free Systems David K. Karig,1 Sukanya Iyer,2,3 Michael L. Simpson,1,4,5 Mitchel J. Doktycz,1,2 1-Center for Nanophase...

132

Materials for Nuclear Power: Digital Resource Center -- Articles and ...  

Science Conference Proceedings (OSTI)

... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science, Nuclear Engineering ... BOOK: Safety Related Issues of Spent Nuclear Fuel Storage ... A compilation of reports prepared by the Center for Nuclear Waste Regulatory...

133

Center for Nanoscale Materials User Access Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials User Access Program Overview Materials User Access Program Overview CNM User Access Program Overview 1. Objective ............................................................................................................................................... 1 2. Submission Guidelines .......................................................................................................................... 1 2.1 Proposal Content ............................................................................................................................ 1 3. Proposal Review Process ....................................................................................................................... 2 3.1 Proposal Evaluation Board .............................................................................................................. 2

134

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... and fission products relevant for radioactive waste disposal projects.

135

Materials for Nuclear Power: Digital Resource Center Text Topic  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... Print this topic. Topic Title WEB RESOURCE: Office of Fusion Energy Sciences, Materials Science Program...

136

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Jun 25, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... The Information Bridge contains documents and citations in physics,...

137

Advanced Materials Center of Excellence Webinar, July 15 ...  

Science Conference Proceedings (OSTI)

... measurement science with emerging and innovative ... Goals of Advanced Materials CoE ... the development of integrated computational, modeling and ...

2013-07-16T23:59:59.000Z

138

Sandia National Labs: Materials Science and Engineering Center...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Processing Corrosion Materials Reliability Analysis Polymer Performance and Aging Polymer Synthesis, Processing and Characterization Process Diagnostics and Control...

139

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

Although the majority of the material handling activities at nuclear power plant sites are similar to the material handling activities in many other industries, there are several differences unique to the nuclear power industry. This guide to material handling equipment and its safe and effective operation at nuclear plants covers basic common practices while taking into account those unique differences. Recent industry experiences provide context for the guidance in the report.

2007-11-30T23:59:59.000Z

140

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

BackgroundDuring 2005 and 2006, there were nine Institute of Nuclear Power Operations (INPO) operating events (OEs) from material handling incidents. A fatality occurred at Browns Ferry on Oct. 1, 2005, when a small article radiation monitor overturned while being moved on a material handling cart (INPO OE21844).More than 50 serious OEs concerning material handling activities have occurred in the past 10 years. The majority of these incidents involved the ...

2012-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Center for Nanophase Materials Sciences (CNMS) - >ES&H  

NLE Websites -- All DOE Office Websites (Extended Search)

default.aspx CNMS adheres to the DOE Policy on Nanoscale Materials, DOE Order 456.1 THE SAFE HANDLING OF UNBOUND ENGINEERED NANOPARTICLES, and ORNL requirements....

142

Materials for Nuclear Power: Digital Resource Center ... - TMS  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power, 0, 2175, Maureen Byko, 3/15/2009 8:21 PM ... A comprehensive introductory educational site about all forms of nuclear power, 0...

143

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

Jun 25, 2007 ... The NRC regulates commercial nuclear power plants and other uses of nuclear materials, such as in nuclear medicine, through licensing,...

144

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... This web site, from the American Institute of Physics, documents the...

145

Materials for Nuclear Power: Digital Resource Center - ARTICLE ...  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... This article reviews how Albert Einstein revolutionized physics by...

146

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... NATO Science Series II:Mathematics, Physics and Chemistry, Vol.

147

Materials for Nuclear Power: Digital Resource Center Text Topic - TMS  

Science Conference Proceedings (OSTI)

Mar 28, 2007 ... Scientists and engineers concerned with the environmental ... of Materials in Nuclear Power SystemsWater Reactors (Warrendale, PA: TMS,...

148

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... A collection of thermodynamic databases. This site is not focused entirely on nuclear materials, but information can be "mined" from the "Data...

149

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 16, 2007 ... This web site offers a number of supplemental materials related to the study and practice of nuclear chemistry. It includes audio and video files,...

150

Materials for Nuclear Power: Digital Resource Center - ARTICLES ...  

Science Conference Proceedings (OSTI)

Sep 12, 2007 ... Use the link provided below to access the following articles featured in the April 2007 issue of JOM: "Materials for Advanced Nuclear Systems,"...

151

Materials for Nuclear Power: Digital Resource Center - ARTICLES ...  

Science Conference Proceedings (OSTI)

Jun 25, 2007 ... The following articles published in the January 2005 issue of JOM. offer extensive coverage of materials testing in progress to determine the...

152

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... PDFs of lecture notes and readings for this undergraduate course covering materials issues in nuclear power systems. Topics include:...

153

Materials for Nuclear Power: Digital Resource Center - WEB ... - TMS  

Science Conference Proceedings (OSTI)

May 7, 2007 ... This link leads to the database overview page of the Thermo-Calc Software web site. A listing of databases for nuclear materials can be...

154

Materials for Nuclear Power: Digital Resource Center ... - TMS  

Science Conference Proceedings (OSTI)

Materials for Nuclear Power, 0, 2161, Maureen Byko, 3/15/2009 8:21 PM ... A comprehensive introductory educational site about all forms of nuclear power, 0...

155

Materials for Nuclear Power: Digital Resource Center - ARTICLES ...  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... The January 2008 JOM offers the following articles covering disposition of nuclear waste: Material Corrosion Issues for Nuclear Waste...

156

Materials for Nuclear Power: Digital Resource Center - SELECTED ...  

Science Conference Proceedings (OSTI)

Jul 6, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Instructions for Accessing Reports: Because of security features in...

157

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Jun 22, 2007 ... This volume will be published in the summer of 2007. The entire volume or individual papers can be purchased from the Materials Research...

158

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Jun 22, 2007 ... Citation: Scientific Basis for Nuclear Waste Management XXVI. Vol. 757. Eds., R. Finch, D. Bullen. Warrendale, PA: Materials Research Society,...

159

Materials for Nuclear Power: Digital Resource Center - ARTICLE ...  

Science Conference Proceedings (OSTI)

Nov 25, 2007 ... The paper starts with a review of our present capability to predict the materials degradation modes encountered in the current BWR and PWR...

160

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

May 10, 2007 ... This general overview of nuclear materials research at MIT briefly describes the department's work in "Irradiation-induced Degradation of...

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Jun 22, 2007 ... Citation: Scientific Basis for Nuclear Waste Management XXIX. Vol. 932. Ed., P. Van Iseghem. Warrendale, PA: Materials Research Society,...

162

Materials for Nuclear Power: Digital Resource Center - ARTICLES ...  

Science Conference Proceedings (OSTI)

Jul 25, 2007 ... A compilation of citations for recent JOM, Metallurgical and Materials Transactions A, Environmental Degradation Proceedings and TMS Letters...

163

Materials for Nuclear Power: Digital Resource Center - WEBCAST ...  

Science Conference Proceedings (OSTI)

A tutorial on the effects of radiation on strucutral materials for nuclear energy applications. Created On: 5/25/2007 7:35 AM, Topic View: Linear, Threading...

164

Materials for Nuclear Power: Digital Resource Center ... - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCE: Nuclear Materials, Science and Technology Group Research group of Oak Ridge National Laboratory, 0, 708, Lynne Robinson, 2/19/2007...

165

Materials for Nuclear Power: Digital Resource Center - WEBCAST ...  

Science Conference Proceedings (OSTI)

May 25, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

166

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

167

Materials for Nuclear Power: Digital Resource Center - JOM Article ...  

Science Conference Proceedings (OSTI)

Mar 15, 2009 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

168

Materials for Nuclear Power: Digital Resource Center - BOOK ...  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

169

Materials for Nuclear Power: Digital Resource Center - What long ...  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science...

170

Materials for Nuclear Power: Digital Resource Center Text Topic - TMS  

Science Conference Proceedings (OSTI)

Aug 28, 2007 ... CITATION: Expert Panel Report on Proactive Materials Degradation Assessment (NUREG/CR-6923), Division of Fuel, Engineering, and...

171

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents (OSTI)

An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.

Kraus, Robert H. (Los Alamos, NM); Matlashov, Andrei N. (Los Alamos, NM); Espy, Michelle A. (Los Alamos, NM); Volegov, Petr L. (Los Alamos, NM)

2010-03-30T23:59:59.000Z

172

Power Switches Utilizing Superconducting Material for Accelerator Magnets  

E-Print Network (OSTI)

Power switches that utilize superconducting material find application in superconducting systems. They can be used for the protection of magnets as a replacement for warm DC breakers, as well as for the replacement of cold diodes. This paper presents a comparison of switches made of various superconducting materials having transport currents of up to 600 A and switching times of the order of milliseconds. The switches operate in the temperature range 4.2-77 K and utilize stainless steel clad YBCO tape and MgB2 tape with a nickel, copper, and iron matrix. Results from simulations and tests are reported.

March, S A; Yang, Y; 10.1109/TASC.2009.2017890

2009-01-01T23:59:59.000Z

173

Center for Nanophase Materials Sciences (CNMS) - CNMS Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-intercalated Graphite Compound Wujun Fu,a Jim Kiggans,b Steven H. Overbury,a,c Viviane...

174

Materials for Nuclear Power: Digital Resource Center - WEB ...  

Science Conference Proceedings (OSTI)

May 7, 2007 ... Select, Sandbox, Open Discussion Regarding Materials for Nuclear Power ... Trends in Nuclear Power, The Nuclear Fuel Cycle, Nuclear Science, Nuclear ... This 'thermodynamic database for advanced nuclear fuels' was...

175

Nuclear Maintenance Applications Center: Foreign Material Exclusion Guidelines  

Science Conference Proceedings (OSTI)

Foreign material exclusion (FME) is vital to the safe and reliable operation of nuclear power plants. The entry of foreign material (FM) into primary or secondary plant systems, equipment, and components can cause equipment degradation or inoperability, lost generation, fuel cladding damage, high radiation, and contamination levels that could spread throughout plant systems; it can also increase operations and maintenance (O&M) costs and adversely impact nuclear safety. The FME program is a plantwide ini...

2008-07-01T23:59:59.000Z

176

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Shock waves directed on thin layers of materials is used to form superconducting and permanent magnetic materials with improved microstructures. 9 figs.

Nellis, W.J.; Maple, M.B.; Geballe, T.H.

1986-12-04T23:59:59.000Z

177

Design and Analyisi of a Self-centered Cold Mass Support for the MICE Coupling Magnet  

SciTech Connect

The Muon Ionization Cooling Experiment (MICE) consists of eighteen superconducting solenoid coils in seven modules, which are magnetically hooked together since there is no iron to shield the coils and the return flux. The RF coupling coil (RFCC) module consists of a superconducting coupling solenoid mounted around four conventional conducting 201.25 MHz closed RF cavities. The coupling coil will produce up to a 2.2 T magnetic field on the centerline to keep the beam within the RF cavities. The peak magnetic force on the coupling magnet from other magnets in MICE is up to 500 kN in longitudinal direction, which will be transferred to the base of the RF coupling coil (RFCC) module through a cold mass support system. A self-centered double-band cold mass support system with intermediate thermal interruption is applied to the coupling magnet, and the design is introduced in detail in this paper. The thermal and structural analysis on the cold mass support assembly has been carried out using ANSYS. The present design of the cold mass support can satisfy with the stringent requirements for the magnet center and axis azimuthal angle at 4.2 K and fully charged.

Wang, Li; Pan, Heng; Wu, Hong; Li, S. Y.; Guo, Xing Long; Zheng, Shi Xian; Green, Michael A.

2011-05-04T23:59:59.000Z

178

Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurements of  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

179

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanoscale Measurements of Glass Transition Temperature and Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman Chemical Co.), and S.V. Kalinin Achievement We report a novel method for local measurements of glass transition temperatures and the temperature dependence of elastic and loss moduli of polymeric materials. The combination of Anasys Instruments' heated tip technology, ORNL-developed band excitation scanning probe microscopy, and a "freeze-in" thermal profile technique allows quantitative thermomechanical measurements at high spatial resolution on the order of ~100 nm. Here, we developed an experimental approach for local thermomechanical probing that reproducibly tracks changes in the mechanical properties of

180

Sandia National Labs: Materials Science and Engineering Center: Research &  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments Accomplishments Patents PATENTS Method for Making Surfactant-Templated Thin Films, Jeff Brinker, Hongyou Fan, Patent #RE41612, issued 8/13/10 Dendritic Metal Nanostructures, John Shelnutt, Yujiang Song, Patent #7,785,391, issued 8/13/10 Metal Nanoparticles as a Conductive Catalyst, Eric Coker, Patent #7,767,610, issued 8/13/10 Water-Soluable Titanium Alkoxide Material, Timothy Boyle, Patent # 7,741,486 B1, issued 6/22/10 Microfabricated Triggered Vacuum Switch, Alex W. Roesler, Joshua M. Schare,Kyle Bunch, Patent #7,714,240, issued 5/11/10 Method of Photocatalytic Nanotagging, John Shelnutt, Craig Medforth, Yujiang Song, Patent #7,704,489, issued 4/27/10 Correlation Spectrometer, Michael Sinclair, Kent Pfeifer, Jeb Flemming, Gary D Jones, Chris Tigges, Patent #7,697,134, issued 4/13/10

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Center for Nanophase Materials Sciences (CNMS) - Functional Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) NANOMATERIALS SYNTHESIS AND FUNCTIONAL ASSEMBLY (OPTOELECTRONICS) Synthesis of SWNT's, NT Arrays, NW's, NP's or thin films by CVD, Laser Vaporization, and PLD with in situ diagnostics ns-Laser Vaporization Synthesis of SWNTs, NWs, NPs SWNTs and nanowires are produced by pulsed Nd:YAG laser-irradiation (30 Hz, Q-switched or free-running) of composite pellets in a 2" tube furnace with variable pressure control. Excimer laser ablation of materials into variable pressure background gases is used for nanoparticle generation in proximity of ns-laser diagnostics. High-power ms-laser vaporization bulk production of nanomaterials SWNTs (primarily), SWNH (single-wall carbon nanohorns), nanoparticles and nanowires are produced by robotically-scanned 600W Nd:YAG laser-irradiation

182

Center for Nanophase Materials Sciences (CNMS) - Active CNMS User Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTIVE USER PROJECTS ACTIVE USER PROJECTS Proposal Cycle 2013B: expire July 31, 2014 Proposal Cycle 2013A: expire January 31, 2014 Proposal Cycle 2012B (extended): expire July 31, 2014 Proposal Cycle 2012A: (extended): expire January 31, 2014 Proposal Cycle 2013B: expire January 31, 2014 X-ray diffraction and scattering techniques for the study of interfacial phenomena in energy storage materials Gabriel Veith, ORNL [CNMS2013-201] Atomic scale study of the reduction of metal oxides Guangwen Zhou, State University of New York at Binghamton [CNMS2013-210] Local Switching Studies in PbZr0.2Ti0.8O3 (001), (101), and (111) Films Lane Martin, University of Illinois, Urbana-Champaign [CNMS2013-211] Direct Observation of Domain Structure and Switching Process in Strained

183

Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991  

Science Conference Proceedings (OSTI)

This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

Parkin, D.M.; Boring, A.M. [comps.

1991-10-01T23:59:59.000Z

184

Magnetometry of random AC magnetic fields using a single Nitrogen-Vacancy center  

E-Print Network (OSTI)

We report on the use of a single NV center to probe fluctuating AC magnetic fields. Using engineered currents to induce random changes in the field amplitude and phase, we show that stochastic fluctuations reduce the NV center sensitivity and, in general, make the NV response field-dependent. We also introduce two modalities to determine the field spectral composition, unknown a priori in a practical application. One strategy capitalizes on the generation of AC-field-induced coherence 'revivals', while the other approach uses the time-tagged fluorescence intensity record from successive NV observations to reconstruct the AC field spectral density. These studies are relevant for magnetic sensing in scenarios where the field of interest has a non-trivial, stochastic behavior, such as sensing unpolarized nuclear spin ensembles at low static magnetic fields.

Abdelghani Laraoui; Jonathan S. Hodges; Carlos A. Meriles

2010-09-02T23:59:59.000Z

185

Magnetometry of random AC magnetic fields using a single Nitrogen-Vacancy center  

E-Print Network (OSTI)

We report on the use of a single NV center to probe fluctuating AC magnetic fields. Using engineered currents to induce random changes in the field amplitude and phase, we show that stochastic fluctuations reduce the NV center sensitivity and, in general, make the NV response field-dependent. We also introduce two modalities to determine the field spectral composition, unknown a priori in a practical application. One strategy capitalizes on the generation of AC-field-induced coherence 'revivals', while the other approach uses the time-tagged fluorescence intensity record from successive NV observations to reconstruct the AC field spectral density. These studies are relevant for magnetic sensing in scenarios where the field of interest has a non-trivial, stochastic behavior, such as sensing unpolarized nuclear spin ensembles at low static magnetic fields.

Laraoui, Abdelghani; Meriles, Carlos A

2010-01-01T23:59:59.000Z

186

Christen leads ORNL's Center for Nanophase Materials Sciences | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 SHARE Media Contact: Bill Cabage Oak Ridge National Laboratory Communications (865) 574-4399 Christen leads ORNL's Center for Nanophase Materials Sciences Hans Christen Hans Christen (hi-res image) OAK RIDGE, Jan. 9, 2014 -- Hans M. Christen of the Department of Energy's Oak Ridge National Laboratory has been named director of ORNL's Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers. Christen joined ORNL in 2000 and led the Thin Films and Nanostructures group from 2006 to 2013. In 2013, he became associate director within the Materials Science and Technology Division and has managed the DOE Materials Sciences & Engineering Program since 2011. His research has focused on the effects of epitaxial strain, spatial

187

Method and apparatus for separating materials magnetically. [Patent application; iron pyrite from coal  

DOE Patents (OSTI)

Magnetic and nonmagnetic materials are separated by passing stream thereof past coaxial current-carrying coils which produce a magnetic field wherein intensity varies sharply with distance radially of the axis of the coils.

Hise, E.C. Jr.; Holman, A.S.; Friedlaender, F.J.

1980-11-06T23:59:59.000Z

188

Argonne CNM: Electronic & Magnetic Materials & Devices Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic & Magnetic Materials & Devices Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450 Custom) Physical vapor deposition (Lesker CMS 18 and PVD 250) Spin coating (Laurell WS-400) Characterization Variable-temperature (VT) scanning tunneling microscope with atomic force microscopy capabilities (Omicron VT-AFM/STM), operates in an ultrahigh vacuum (UHV) environment with a base pressure of < 1E-10 mbar and 55-400 K. Atomic resolution is routinely obtained at room temperature and below. The AFM capabilities support a range of scanning modes. The analysis chamber also houses a LEED/Auger with an attached preparation chamber for sample cleaning and deposition (sputter cleaning, direct current heating, e-beam heating stage, metal deposition, etc.)

189

Materials Dow Select Decisions Made Within DOEs Chemical Hydrogen Storage Center of Excellence  

NLE Websites -- All DOE Office Websites (Extended Search)

Down Select Report of Chemical Hydrogen Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report Submitted by: The Chemical Hydrogen Storage Center of Excellence Coordinating Council Authors: Kevin C. Ott, Los Alamos National Laboratory Sue Linehan, Rohm and Haas Company Frank Lipiecki, Rohm and Haas Company Christopher L. Aardahl, Pacific Northwest National Laboratory May 2008 Acknowledgements The authors of this report wish to thank all of the partners of the Chemical Hydrogen Storage Center of Excellence. Without their dedication, technical contributions and teamwork, and the hard work of the students and postdocs involved in this work, this Center would not have been

190

First-order Transition Magnetocaloric Materials in Rotary Magnetic ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Astronautics has designed, constructed, and tested several ... requires accurate modeling of the magnetic refrigerator, accurate layering of a...

191

Center for Coal-Derived Low Energy Materials for Sustainable Construction  

SciTech Connect

The overarching goal of this project was to create a sustained center to support the continued development of new products and industries that manufacture construction materials from coal combustion by-products or CCBs (e.g., cements, grouts, wallboard, masonry block, fillers, roofing materials, etc). Specific objectives includes the development of a research kiln and associated system and the formulation and production of high performance low-energy, low-CO2 emitting calcium sulfoaluminate (CAS) cement that utilize coal combustion byproducts as raw materials.

Jewell, Robert; Robl, Tom; Rathbone, Robert

2012-06-30T23:59:59.000Z

192

Enhancing Magnetic Properties of Molecular Magnetic Materials: The Role of Single-Ion Anisotropy  

E-Print Network (OSTI)

Considerable efforts are being devoted to designing enhanced molecular magnetic materials, in particular single molecule magnets (SMMs) that can meet the requirements for future technologies such as quantum computing and spintronics. A current trend in the field is enhancing the global anisotropy in metal complexes using single-ion anisotropy. The work in this dissertation is devoted to the synthesis and characterization of new building blocks of the highly anisotropic early transition metal ion V(III) with the aim of incorporating them into heterometallic molecular materials. The results underscore the importance of tuning the local coordination environments of metal ions in order to ensure enhanced single ion anisotropy. A family of mononuclear axially distorted vanadium (III) compounds, A[L_(3)VX_(3)] (3-9) (X = F, Cl or Br, A^(+) = Et_(4)N^(+), nBu_(4)N^(+) or PPN^(+) , L_(3) = Tp or Tp* (Tp = tris(-1-pyrazolyl)borohydride), Tp* = tris(3,5-dimethyl-1-pyrazolyl)borohydride)), and [Tp*V(DMF)_(3)](PF_(6))_(2) were studied. Replacement of the Tp ligand in 3 with the stronger ?-donor Tp* results in a near doubling of the magnitude of the axial zero-field splitting parameter D_(z) (D_(z) = -16.0 cm^(-1) in 3, and -30.0 cm^(-1) in 4) as determined by magnetic measurements. Such findings support the idea that controlling the axial crystal field distortion is an excellent way to enhance single-ion anisotropy. High Field-High Frequency EPR measurements on 4 revealed an even higher D value, -40.0 cm^(-1). Interestingly, compound 4 exhibits evidence for an out-of-phase ac signal under dc field. In another effort, a new series of vanadium cyanide building blocks, PPN[V(acac)_(2)(CN)_(2)]?PPNCl (13) (acac = acetylacetonate), A[V(L)(CN)_(2)] (A^(+) = Et_(4)N^(+), L = N,N'-Ethylenebis(salicylimine) (14), A = PPN^(+), L = N,N'-Ethylenebis(salicylimine) (15), L = N,N'-Phenylenebis(salicylimine) (16), and L = N,N'-Ethylenebis(2-methoxysalicylimine) (17)) were synthesized. Magnetic studies revealed moderate Dz values (-10.0, 5.89, 3.7, 4.05 and 4.36 cm^(-1) for 13-17 respectively). The first family of cyanide-bridged lanthanide containing molecules with a trigonal bipyramidal (TBP) geometry, (Et_(4)N)_(2)[(Re(triphos)(CN)_(3))_(2)(Ln(NO_(3))_(3))_(3)]-?4CH_(3)CN (19-27 with Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Ho) were prepared using the [(triphos)Re(CN)_(3)]^(-) building block, results that add valuable information to our database of compounds with a TBP geometry. Magnetic studies revealed diverse magnetic responses including slow relaxation of the magnetization at zero field for 25 and 26 , an indication of SMM behavior.

Saber, Mohamed Rashad Mohamed

2013-08-01T23:59:59.000Z

193

High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials  

DOE Patents (OSTI)

An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

Sanchez, Robert O. (Los Lunas, NM); Gunewardena, Shelton (Walnut, CA); Masi, James V. (Cape Elizabeth, ME)

2007-11-27T23:59:59.000Z

194

Iron-Nickel-Based SuperMagnets: Multiscale Development of L10 Materials for Rare Earth-Free Permanent Magnets  

Science Conference Proceedings (OSTI)

REACT Project: Northeastern University will develop bulk quantities of rare-earth-free permanent magnets with an iron-nickel crystal structure for use in the electric motors of renewable power generators and EVs. These materials could offer magnetic properties that are equivalent to todays best commercial magnets, but with a significant cost reduction and diminished environmental impact. This iron-nickel crystal structure, which is only found naturally in meteorites and developed over billions of years in space, will be artificially synthesized by the Northeastern University team. Its material structure will be replicated with the assistance of alloying elements introduced to help it achieve superior magnetic properties. The ultimate goal of this project is to demonstrate bulk magnetic properties that can be fabricated at the industrial scale.

None

2012-01-01T23:59:59.000Z

195

The Transformational Potential of Magnetic Materials: ARPA-E ...  

Science Conference Proceedings (OSTI)

The ARPA-E ADEPT program is focused on improvements in electrical energy efficiency ... Current Status of Permanent Magnet Research and Market in China.

196

Advanced Magnetic Materials for Next Generation Data Storage ...  

Science Conference Proceedings (OSTI)

All Solid State 2-Dimensional Li Battery Alloy Design and ... Rare-Earth Magnets Challenge to Development of Diamond Power Devices for Saving Energy.

197

Functional design criteria for the Hazardous Materials Management and Emergency Response (HAMMER) Training Center. Revision 1  

SciTech Connect

Within the United States, there are few hands-on training centers capable of providing integrated technical training within a practical application environment. Currently, there are no training facilities that offer both radioactive and chemical hazardous response training. There are no hands-on training centers that provide training for both hazardous material operations and emergency response that also operate as a partnership between organized labor, state agencies, tribes, and local emergency responders within the US Department of Energy (DOE) complex. Available facilities appear grossly inadequate for training the thousands of people at Hanford, and throughout the Pacific Northwest, who are required to qualify under nationally-mandated requirements. It is estimated that 4,000 workers at the Hanford Site alone need hands-on training. Throughout the Pacific Northwest, the potential target audience would be over 30,000 public sector emergency response personnel, as well as another 10,000 clean-up workers represented by organized labor. The HAMMER Training Center will be an interagency-sponsored training center. It will be designed, built, and operated to ensure that clean-up workers, fire fighters, and public sector management and emergency response personnel are trained to handle accidental spills of hazardous materials. Training will cover wastes at clean-up sites, and in jurisdictions along the transportation corridors, to effectively protect human life, property, and the environment.

Sato, P.K.

1995-03-10T23:59:59.000Z

198

Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100  

SciTech Connect

The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

Borgeson, M.E.

1994-11-09T23:59:59.000Z

199

A New Class of Magnetic Materials with Novel Structural Order | U.S. DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Class of Magnetic Materials with Novel Structural Order A New Class of Magnetic Materials with Novel Structural Order Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » June 2013 A New Class of Magnetic Materials with Novel Structural Order The discovery of the first binary magnetic quasicrystals will enable the unraveling of the fundamental relationship between the structure and magnetism in aperiodic materials. Print Text Size: A A A Subscribe FeedbackShare Page

200

Processing to Control Morphology and Texture in Magnetic Materials  

Science Conference Proceedings (OSTI)

... in Nanocrystalline Soft Magnetic Alloys Effect of Particle Size on the Coercivity of R-Fe-B (R=Nd, Pr) Powders Prepared by Surfactant-Assisted Ball Milling.

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Final Technical Summary: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials  

DOE Green Energy (OSTI)

The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

Michael Mullins, Tony Rogers, Julia King, Jason Keith, Bahne Cornilsen, Jeffrey Allen, Ryan Gilbert, Joseph Holles.

2010-09-28T23:59:59.000Z

202

The improved technique of electric and magnetic parameters measurements of powdered materials  

Science Conference Proceedings (OSTI)

This paper presents the measurement technique that allows to determine the relative permittivity and permeability of powdered materials. Measurements are realized in a coaxial transmission line which guarantees the broad band frequency characterization. ... Keywords: Absorbing materials, Magnetic materials, Microwave measurements, Permittivity and permeability measurements, Powdered ferrite measurements, Scattering parameters

Roman Kubacki; Leszek Nowosielski; Rafa? Przesmycki

2011-11-01T23:59:59.000Z

203

Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics and  

NLE Websites -- All DOE Office Websites (Extended Search)

feature banner feature banner banner Condensed Matter and Magnet Science The Condensed Matter and Magnet Science Group (MPA-CMMS) is comprised of research scientists, technicians, postdocs, and students specializing in experimental physics research, with a strong emphasis on fundamental condensed matter physics with complimentary thrusts in correlated electron materials, high magnetic-field science and technology, thermal physics, and actinide chemistry. MPA-CMMS hosts the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL-PFF) located at TA-35 while new material synthesis, low temperature expertise, and various low-energy spectroscopies are located at TA-3. Our actinide chemistry activities occur at RC-1 (TA-48). The NHMFL-PFF is a national user facility for high magnetic field science sponsored primarily by the National Science Foundation's Division of Materials Research, with branches at Florida State University, the University of Florida, and Los Alamos National Laboratory. (Check out NHMFL Web site for more details.)

204

Iron-Nitride-Based Magnets: Synthesis and Phase Stabilization of Body Center Tetragonal (BCT) Metastable Fe-N Anisotropic Nanocomposite Magnet- A Path to Fabricate Rare Earth Free Magnet  

SciTech Connect

REACT Project: The University of Minnesota will develop an early stage prototype of an iron-nitride permanent magnet material for EVs and renewable power generators. This new material, comprised entirely of low-cost and abundant resources, has the potential to demonstrate the highest energy potential of any magnet to date. This project will provide the basis for an entirely new class of rare-earth-free magnets capable of generating power without costly and scarce rare earth materials. The ultimate goal of this project is to demonstrate a prototype with magnetic properties exceeding state-of-the-art commercial magnets.

None

2012-01-01T23:59:59.000Z

205

GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications  

SciTech Connect

This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

None

2011-07-31T23:59:59.000Z

206

Magnetic Materials for Energy Applications IV: High Performance ...  

Science Conference Proceedings (OSTI)

... Materials for Power Electronics, Power Conditioning and Power Conversion II) ... for real-life modeling of various devices, such as transformers and motors.

207

Soft Magnetic Materials for High Power and High Frequency Power ...  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and ... are in high demand for the next generation of miniaturized power electronics.

208

Application of Metal Injection Molding to Soft Magnetic Materials  

Science Conference Proceedings (OSTI)

Advances in Current Activated Tip-Based Sintering (CATS) Advances in Synthesis and Densification of Heterogeneous Materials Application of Metal Injection...

209

High Entropy Alloys a New Class of Structural Materials: Magnetism ...  

Science Conference Proceedings (OSTI)

Perspectives on Phonons and Electron-Phonon Scattering in High-Temperature Superconductors Prediction and Design of Materials from Crystal Structures to...

210

EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION RECIPIENT:Advanced Magnet Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFENFRGY OFENFRGY EERE PROJECT MANAGEMENT CENTER NFPA DETERMINATION RECIPIENT:Advanced Magnet Lab Page 1 of2 STATE: FL PROJECT TITLE: A Lightweight. Direct Drive, Fully Superconducting Generator for Large Wind Turbines Funding Opportunity Announcement Number Pnx:uumeDtlnstrument Number NEPA Control Number CIO Number DE-FOA-0000439 DE-EEOOO5140 GF()"()()()5140-001 EE5140 Based on my review of.he information concerning tbe proposed action, as NEPA Compliance Officer (authorized under- DOE Order 4SI.IA), I have made tbe following determination: ex, EA, [IS APPENDIX AND NUMBER: Description: A9 Information gathering (including , but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply and

211

ASSESSING THE FEASIBILITY OF COSMIC-RAY ACCELERATION BY MAGNETIC TURBULENCE AT THE GALACTIC CENTER  

SciTech Connect

The presence of relativistic particles at the center of our Galaxy is evidenced by the diffuse TeV emission detected from the inner {approx}2 Degree-Sign of the Galaxy. Although it is not yet entirely clear whether the origin of the TeV photons is due to hadronic or leptonic interactions, the tight correlation of the intensity distribution with the distribution of molecular gas along the Galactic ridge strongly points to a pionic-decay process involving relativistic protons. In previous work, we concluded that point-source candidates, such as the supermassive black hole Sagittarius A* (identified with the High-Energy Stereoscopic System (HESS) source J1745-290) or the pulsar wind nebulae dispersed along the Galactic plane, could not account for the observed diffuse TeV emission from this region. Motivated by this result, we consider here the feasibility that the cosmic rays populating the Galactic center region are accelerated in situ by magnetic turbulence. Our results indicate that even in a highly conductive environment, this mechanism is efficient enough to energize protons within the intercloud medium to the {approx}>TeV energies required to produce the HESS emission.

Fatuzzo, M. [Physics Deparment, Xavier University, Cincinnati, OH 45207 (United States); Melia, F., E-mail: fatuzzo@xavier.edu, E-mail: fmelia@email.arizona.edu [Department of Physics, Applied Math Program, and Steward Observatory, University of Arizona, AZ 85721 (United States)

2012-05-01T23:59:59.000Z

212

Materials Down-selection Decisions Made within the DOE Metal Hydride Center of Excellence (MHCoE) - September-October 2007  

Fuel Cell Technologies Publication and Product Library (EERE)

Reports on which hydrogen storage materials offer potential for further research as decided by DOE's Metal Hydride Center of Excellence.

213

LANL: Superconductivity Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Sitemap | Lab Home | Phone Sitemap | Lab Home | Phone ABOUT LANL ContactsPhonebookPolicy CenterOrganizationMapsJobs Emergency NEWS LIBRARY JOBS Search Materials Physics & Applications: STC STC Home OUR FOCUS HTS Physics HTS Materials Development HTS Materials Processing Power Applications Electronic Materials FUTURE APPLICATIONS Biomedical Developments Magnetic Levitation Train MHD Ship CONTACTS Center Leader Ken Marken Program Administrator Brenda Espinoza Center Office Location: TA-03, Bdg. 0032, Rm. 141 Exploring technology at STC Superconductivity Technology Center (STC) The Superconductivity Technology Center (STC) coordinates a multidisciplinary program for research, development, and technology transfer in the area of high-temperature superconductivity. Our focus is on effective collaborations with American industry, universities, and other national laboratories to develop electric power and electronic device applications of high-temperature superconductors (HTS).

214

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

Nellis, W.J.; Geballe, T.H.; Maple, M.B.

1990-03-13T23:59:59.000Z

215

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

Nellis, William J. (Berkeley, CA); Geballe, Theodore H. (Woodside, CA); Maple, M. Brian (Del Mar, CA)

1990-01-01T23:59:59.000Z

216

Hydrogenated Bilayer Wurtzite SiC Nanofilms: A Two-Dimensional Bipolar Magnetic Semiconductor Material  

E-Print Network (OSTI)

Recently, a new kind of spintronics materials, bipolar magnetic semiconductor (BMS), has been proposed. The spin polarization of BMS can be conveniently controlled by a gate voltage, which makes it very attractive in device engineering. Now, the main challenge is finding more BMS materials. In this article, we propose that hydrogenated wurtzite SiC nanofilm is a two-dimensional BMS material. Its BMS character is very robust under the effect of strain, substrate, or even a strong electric field. The proposed two-dimensional BMS material paves the way to use this promising new material in an integrated circuit.

Yuan, Long; Yang, Jinlong

2012-01-01T23:59:59.000Z

217

The mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Invention is related to the manufacture of high-quality mechanically aligned superconducting materials using oriented platelet-shaped powder particles, fibers, crystals, and other oriented forms of the recently discovered high-{Tc} class of superconducting ceramics, as well as other superconducting materials. It is also related to the use of these oriented materials in the manufacture of high quality permanent magnetic materials. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized. 11 figs.

Nellis, W.J.; Maple, M.B.

1990-01-24T23:59:59.000Z

218

Materials characterization center workshop on the irradiation effects in nuclear waste forms  

SciTech Connect

The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, /sup 244/Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined.

Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

1981-01-01T23:59:59.000Z

219

THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION  

SciTech Connect

An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

Shassere, Benjamin [ORNL; West, David L [ORNL; Abdelaziz, Omar [ORNL; Evans III, Boyd Mccutchen [ORNL

2012-01-01T23:59:59.000Z

220

What Can we Learn About Battery Materials from Their Magnetic Properties  

SciTech Connect

Electrode materials for Li-ion batteries should combine electronic and ionic conductivity, structural integrity, and safe operation over thousands of lithium insertion and removal cycles. The quest for higher energy density calls for better understanding of the redox processes, charge and mass transfer occurring upon battery operation. A number of techniques have been used to characterize long-range and local structure, electronic and ionic transport in bulk of active materials and at interfaces, with an ongoing move toward in situ techniques determining the changes as they happen. This paper reviews several representative examples of using magnetic properties toward understanding of Li-ion battery materials with a notion to highlight the intimate connection between the magnetism, electronic and atomic structure of solids, and to demonstrate how this connection has been used to reveal the fine electronic and atomic details related to the electrochemical performance of the battery materials.

N Chernova; G Nolis; F Omenya; H Zhou; Z Li; M Whittingham

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Materials Characterization Center. Second workshop on irradiation effects in nuclear waste forms. Summary report  

SciTech Connect

The purpose of this second workshop on irradiations effects was to continue the discussions initiated at the first workshop and to obtain guidance for the Materials Characterization Center in developing test methods. The following major conclusions were reached: Ion or neutron irradiations are not substitutes for the actinide-doping technique, as described by the MCC-6 Method for Preparation and Characterization of Actinide-Doped Waste Forms, in the final evaluation of any waste form with respect to the radiation effects from actinide decay. Ion or neutron irradiations may be useful for screening tests or more fundamental studies. The use of these simulation techniques as screening tests for actinide decay requires that a correlation between ion or neutron irradiations and actinide decay be established. Such a correlation has not yet been established and experimental programs in this area are highly recommended. There is a need for more fundamental studies on dose-rate effects, temperature dependence, and the nature and importance of alpha-particle effects relative to the recoil nucleus in actinide decay. There are insufficient data presently available to evaluate the potential for damage from ionizing radiation in nuclear waste forms. No additional test methods were recommended for using ion or neutron irradiations to simulate actinide decay or for testing ionization damage in nuclear waste forms. It was recognized that additional test methods may be required and developed as more data become available. An American Society for Testing and Materials (ASTM) Task Group on the Simulation of Radiation Effects in Nuclear Waste Forms (E 10.08.03) was organized to act as a continuing vehicle for discussions and development of procedures, particularly with regard to ion irradiations.

Weber, W.J.; Turcotte, R.P.

1982-01-01T23:59:59.000Z

222

Ultra-low field nuclear magnetic resonance and magnetic resonance imaging to discriminate and identify materials  

DOE Patents (OSTI)

Method comprising obtaining an NMR measurement from a sample wherein an ultra-low field NMR system probes the sample and produces the NMR measurement and wherein a sampling temperature, prepolarizing field, and measurement field are known; detecting the NMR measurement by means of inductive coils; analyzing the NMR measurement to obtain at least one measurement feature wherein the measurement feature comprises T1, T2, T1.rho., or the frequency dependence thereof; and, searching for the at least one measurement feature within a database comprising NMR reference data for at least one material to determine if the sample comprises a material of interest.

Matlashov, Andrei Nikolaevich; Urbaitis, Algis V.; Savukov, Igor Mykhaylovich; Espy, Michelle A.; Volegov, Petr Lvovich; Kraus, Jr., Robert Henry

2013-03-05T23:59:59.000Z

223

Incorporation of 4d and 5d Transition Metal Cyanometallates into Magnetic Clusters and Materials.  

E-Print Network (OSTI)

The work presented herein describes efforts to synthesize and characterize new types of cyanide-bridged molecular materials encompassing both discrete clusters and extended solids. This investigation focused on the incorporation of anisotropic 4d and 5d transition metal ion building blocks into such materials. In this vein, systematic studies on the magnetic properties of families of these cyano-bridges species were conducted and these new materials represent a new addition to the field of cyanide chemistry incorporating for the first time the hexacyanometallates of [Ru(CN)6]3- and [Os(CN)6]3- into discrete molecules and extended networks. These compounds will serve as models for new theoretical studies in understanding the role of magnetic exchange interactions, both isotropic and anisotropic, in the study of nanomagnetic materials. Results were obtained from using the well known octacyanometallates of MoV and WV as building blocks for the synthesis and the magnetic investigation of both trigonal bipyramidal and pentadecanuclear clusters including the discovery of a new SMM. By expanding the research to previously unused hexacyanometallates, the synthesis and characterization of the first known examples of clusters based on hexacyanoosmate(III) and hexacyanoruthenate(III) building blocks and their use in preparing new theoretical models of magnetic species. A novel pair of clusters is further detailed in the study of the trigonal bipyramidal clusters of [Fe(tmphen)2]3[Os(CN)6]2 and [Fe(tmphen)2]3[Ru(CN)6]2 and an in depth study of the CTIST behavior of these clusters using Mossbauer spectroscopy, variable temperature crystallography, epr, and variable temperature IR measurements. Finally, this work discusses new magnetic Prussian Blue analogs prepared from the hexacyanoosmate(III) and hexacyanoruthenate(III) anions with a comparison to the trigonal bipyramidal clusters presented based on these hexacyanoosmate(III) and hexacyanoruthenate(III) building blocks.

Hilfiger, Matthew Gary

2010-05-01T23:59:59.000Z

224

Feed Materials Production Center waste management plan (Revision to NLCO-1100, R. 6)  

Science Conference Proceedings (OSTI)

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-10-15T23:59:59.000Z

225

Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Go/No-Go Decisions Made Within Materials Go/No-Go Decisions Made Within the Department of Energy Metal Hydride Center of Excellence (MHCoE) In fulfillment of the end of Fiscal Year 2007 Project Milestone on Materials Down-selection Lennie Klebanoff, Director Sandia National Laboratories Livermore, CA 94551 September/October 2007 1 Acknowledgements The author wishes to acknowledge the contributions of all Principal Investigators within the Metal Hydride Center of Excellence (MHCoE) to the work summarized herein. Their names and affiliations are listed below. Especially significant contributions to this document were made by Dr. Ewa Ronnebro (SNL), Dr. John Vajo (HRL), Prof. Zak Fang (U. Utah), Dr. Robert Bowman Jr. (JPL), Prof. David Sholl (CMU) and Prof. Craig Jensen (U. Hawaii). The author thanks Dr.

226

Materials Education Community  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

227

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

228

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

229

System and method for non-destructive evaluation of surface characteristics of a magnetic material  

DOE Patents (OSTI)

A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

Jiles, David C. (Ames, IA); Sipahi, Levent B. (Ames, IA)

1994-05-17T23:59:59.000Z

230

Method of making active magnetic refrigerant materials based on Gd-Si-Ge alloys  

DOE Patents (OSTI)

An alloy made of heat treated material represented by Gd.sub.5(Si.sub.xGe.sub.1-x).sub.4 where 0.47.ltoreq.x.ltoreq.0.56 that exhibits a magnetic entropy change (-.DELTA.S.sub.m) of at least 16 J/kg K, a magnetostriction of at least 2000 parts per million, and a magnetoresistance of at least 5 percent at a temperature of about 300K and below, and method of heat treating the material between 800 to 1600 degrees C. for a time to this end.

Pecharsky, Alexandra O. (Ames, IA); Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

2006-10-03T23:59:59.000Z

231

PCCM's partnership with Liberty Science Center (LSC) has grown to improve awareness of materials science engineering among new audiences. In collaboration  

E-Print Network (OSTI)

and Liberty Science Center Expand Partnership (DMR0819860) D. Steinberg, C. Arnold, M. McAlpine, R. RegisterPCCM's partnership with Liberty Science Center (LSC) has grown to improve awareness of materials science engineering among new audiences. In collaboration with Liberty Science Center, PCCM members

Petta, Jason

232

Expansion of the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT EXPANSION OF THE VOLPENTEST HAZARDOUS MATERIALS MANAGEMENT AND EMERGENCY RESPONSE TRAINING AND EDUCATION CENTER HANFORD SITE, RICHLAND, WASHINGTON U.S. DEPARTMENT OF ENERGY November 2002 1 November 2002 U.S. Department of Energy Finding of No Significant Impact This page intentionally left blank. 2 November 2002 U.S. Department of Energy Finding of No Significant Impact AGENCY: U.S. Department of Energy ACTION: Finding of No Significant Impact SUMMARY: The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1412, for expanding training and equipment testing facilities at the Volpentest Hazardous Materials Management and Emergency Response Training and Education Center (HAMMER) on the

233

LANSCE | Lujan Center | Highlights | Emergent Magnetism at LaAIo3/SRTiO3  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergent magnetism at LaAlO3/SrTiO3 interfaces: Fact or Fiction? Emergent magnetism at LaAlO3/SrTiO3 interfaces: Fact or Fiction? image Examined LaAlO3/SrTiO3 superlattices fabricated from groups in Spain and the Netherlands with polarized neutron reflectometry (PNR). PNR is intrinsically sensitive to interfacial magnetization; bulk magnetometry is not. Difference between the spin up and down neutron reflectivities normalized by their sum (spin asymmetry) is shown in the figure (symbols). Anticipated spin asymmetry for magnetization (> 10G) assumed to be due to LaAlO3/SrTiO3 interfaces inferred from bulk magnetometry is not consistent with the neutron data. The neutron experiment establishes an upper limit to interfacial magnetization of 1-2 G. M. R. Fitzsimmons,1 N. Hengartner,1 S. Singh,1 M. Zhernenkov,1 J. Santamaria,2 A. Brinkman,3 M. Huijben,3 H. Molegraff,3 and Ivan K.

234

U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center  

E-Print Network (OSTI)

contaminated materials, their sources, and potential solutions fall within the purview of a particular ETV). Most LD technologies were developed to detect releases of petroleum and to detect the presence of water in petroleum. Since petroleum and ethanol have different chemical and physical properties, the current LD

235

Visualizations and Simulations from the Center for Simulation of Dynamic Response of Materials (ASC/ASAP)  

DOE Data Explorer (OSTI)

The ASC/ASAP Gallery provides access to visualizations in the areas of materials, fluids, solids, and those related to the VTF. A section of tools and resources is available, as well as the full text of a long list of graphics-rich publications (see http://csdrm.caltech.edu/publications/index.html)

236

INTEGRATED PROCESS DESIGN REPORT ON FEED MATERIALS PRODUCTION CENTER, FERNALD, OHIO REFINERY AND GREEN SALT PLANT  

SciTech Connect

A coordinated record of the design of a FMPC processing plant for the production of pure massive U from U-contrining raw materials is presented. A thorough understanding of FMPC operations may be obtained through the medium of over-all flow diagrams and associated rate criteria.(auth)

1952-10-20T23:59:59.000Z

237

Nuclear Maintenance Applications Center: Foreign Material Exclusion Site Coordinator TrainingStudent Handbook  

Science Conference Proceedings (OSTI)

The main purpose of this report is to provide newly appointed foreign material exclusion (FME) coordinators with vital FME program information so they can quickly perform their responsibilities at a high level to ensure that site FME practices do not adversely affect equipment and plant performance. FME coordinators who wish or need to improve station FME program performance would also benefit by attending this training. This report provides a comprehensive overview of technical considerations required t...

2010-12-17T23:59:59.000Z

238

Magnetic Resonance Facility (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

Not Available

2012-03-01T23:59:59.000Z

239

Magnetic Systems Mimic Granular Materials | U.S. DOE Office of...  

Office of Science (SC) Website

behavior of magnetic domain fluctuations near phase transitions will enable the control of the noise levels and help to improve the performance of future magnetic...

240

Nuclear Magnetic Resonance Laboratory  

Science Conference Proceedings (OSTI)

Nuclear Magnetic Resonance Laboratory. ... A 600 MHz Nuclear Magnetic Resonance Spectrometer. Analytical Data Compilation Reference Materials. ...

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets  

SciTech Connect

Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P. (Carpenter Technologies, Inc.); Magee, J. (Carpenter Technologies, Inc.)

2010-09-10T23:59:59.000Z

242

Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

SciTech Connect

'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

Burns, Peter (Director, Materials Science of Actinides); MSA Staff

2011-05-01T23:59:59.000Z

243

Materials Characterization | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Nuclear Forensics Scanning Probes Related Research Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science &...

244

Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum  

DOE Green Energy (OSTI)

'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

2011-05-01T23:59:59.000Z

245

Synthesis of bulk FeHfBO soft magnetic materials and its loss characterization at megahertz frequency  

SciTech Connect

Magnetic core materials with low loss, high saturation magnetization, large permeability, and operating frequency above 1 MHz are in high demands for the next generation of miniaturized power electronics. Amorphous FeHfB ribbons with thickness around 20 {mu}m have been fabricated through melt-spinning. Different heat treatments were performed on the FeHfB ribbons, and the relations among heat treatments, microstructure, and magnetic properties have been explored. Properties such as coercivity (H{sub c}) of 2.0 Oe and saturation magnetic flux density (B{sub S}) of 1.2 T have been achieved in samples with exchange coupling. The losses can be minimized by balancing the hysteretic and eddy current losses and can be further reduced with additional magnetic field annealing. At 5 MHz with peak magnetic flux density of 20 mT, the materials show core losses comparable to the best ferrites, but with higher permeability value of about 200 and superior saturation induction of more than 1 T.

Zhou Yang; Kou Xiaoming; Warsi Muhammad, Asif; Lin Shuo; Harris, Brendan S.; Parsons, Paul E.; Xiao, John Q. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Mu Mingkai; Lee, Fred C. [Center for Power Electronics System, Virginia Polytechnic and State University, Blacksburg, Virginia 24060 (United States); Zhu Hao [Spectrum Magnetics LLC, Wilmington, Delaware 19804 (United States)

2013-05-07T23:59:59.000Z

246

Dynamic high pressure process for fabricating superconducting and permanent magnetic materials  

DOE Patents (OSTI)

Shock wave formation of superconductive ceramic oxide electric and magnetic circuit elements with improved microstructures and mechanical properties. 10 figs.

Nellis, W.J.; Maple, M.B.; Geballe, T.H.

1987-10-23T23:59:59.000Z

247

Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

DOE Green Energy (OSTI)

'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

2011-05-01T23:59:59.000Z

248

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

Science Conference Proceedings (OSTI)

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

249

TIME-RESOLVED ANALYSES OF MICROSTRUCTURE IN ADVANCED MATERIALS UNDER MAGNETIC FIELDS AT ELEVATED TEMPERATURES USING NEUTRONS  

Science Conference Proceedings (OSTI)

Fundamental science breakthroughs are being facilitated by high magnetic field studies in a broad spectrum of research disciplines. Furthermore, processing of materials under high magnetic fields is a novel technique with very high science and technological potential. However, currently the capability does not exist to do in-situ time-resolved quantitative analyses at high magnetic field strengths and elevated temperatures. Therefore, most measurements are performed ex situ and do not capture the microstructural evolution of the samples during high field exposure. To address this deficiency, we are developing high field magnet processing and analyses systems at the High Flux Isotope Reactor and the Spallation Neutron Source at the Oak Ridge National Laboratory which will link the analytical capabilities inherent in neutron science to the needs of magnetic processing research. Our goal is to apply advanced neutron scattering techniques to explore time-resolved characterizations of magnetically driven alloy phase transformations under transient conditions. This paper will provide an overview of the current status of this research endeavor with preliminary results obtained on ferrous alloys.

Ludtka, Gerard Michael [ORNL; Klose, Frank Richard [ORNL; Kisner, Roger A [ORNL; Fernandez-Baca, Jaime A [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Jaramillo, Roger A [ORNL; Santodonato, Louis J [ORNL; Wang, Xun-Li [ORNL; Hubbard, Camden R [ORNL; Tang, Fei [ORNL

2007-01-01T23:59:59.000Z

250

Final Technical Report on DE-SC00002460 [Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V  

DOE Green Energy (OSTI)

Bimetallic or trimetallic materials with structural metal centers based on Mn, Fe or V were investigated under this project. These metal centers are the focus of this research as they have high earth abundance and have each shown success as cathode materials in lithium batteries. Silver ion, Ag{sup +}, was initially selected as the displacement material as reduction of this center should result in increased conductivity as Ag{sup 0} metal particles are formed in-situ upon electrochemical reduction. The in-situ formation of metal nanoparticles upon electrochemical reduction has been previously noted, and more recently, we have investigated the resulting increase in conductivity. Layered materials as well as materials with tunnel or channel type structures were selected. Layered materials are of interest as they can provide 2-dimensional ion mobility. Tunnel or channel structures are also of interest as they provide a rigid framework that should remain stable over many discharge/charge cycles. We describe some examples of materials we have synthesized that demonstrate promising electrochemistry.

Takeuchi, Esther Sans [Stony Brook University; Takeuchi, Kenneth James [Stony Brook University; Marschilok, Amy Catherine [Stony Brook University

2013-07-26T23:59:59.000Z

251

Removal of radioactive materials and heavy metals from water using magnetic resin  

DOE Patents (OSTI)

Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

Kochen, Robert L. (Boulder, CO); Navratil, James D. (Simi Valley, CA)

1997-01-21T23:59:59.000Z

252

The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

Science Conference Proceedings (OSTI)

'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

2011-05-01T23:59:59.000Z

253

X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials  

DOE Green Energy (OSTI)

The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 {Angstrom}. The Fe-Fe distance was determined to be 3.4 {Angstrom}. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

DeWitt, J.G.

1992-12-01T23:59:59.000Z

254

X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials  

DOE Green Energy (OSTI)

The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 [Angstrom]. The Fe-Fe distance was determined to be 3.4 [Angstrom]. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

DeWitt, J.G.

1992-12-01T23:59:59.000Z

255

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and Magnetic Studies, Colorado School of Mines  

E-Print Network (OSTI)

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics

256

An Act Concerning the Recycling of Organic Materials by Certain Food Wholesalers, Manufacturers, Supermarkets, and Conference Centers (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

This Act requires all commercial food wholesalers and distributors, industrial food manufacturers, and resource and conservation centers that generate at least 104 tons of organic waste each year...

257

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents (OSTI)

Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

1998-04-28T23:59:59.000Z

258

Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process  

DOE Patents (OSTI)

Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

Gschneidner, K.A. Jr.; Pecharsky, V.K.

1998-04-28T23:59:59.000Z

259

The Development of Material and Fabrication Technologies for ITER Magnet Supports  

Science Conference Proceedings (OSTI)

Technical Paper / First Joint ITER-IAEA Technical Meeting on Analysis of ITER Materials and Technologies

P. Y. Li; C. J. Pan; B. L. Hou; S. L. Han; Z. C. Sun; F. Savary; Y. K. Fu; R. Gallix; N. Mitchell

260

Los Alamos Lab: Materials Physics & Applications Division  

NLE Websites -- All DOE Office Websites (Extended Search)

ADEPS Materials Physics and Applications, MPA ADEPS Materials Physics and Applications, MPA About Us Organization Jobs Materials Physics & Applications Home Center for Integrated Nanotechnologies Superconductivity Technology Center Condensed Matter and Magnet Science Sensors & Electrochemical Devices Materials Chemistry CONTACTS Division Leader Antoinette Taylor Deputy Division Leader David Watkins Point of Contact Susan Duran 505-665-1131 Materials Physics and Applications Division serves as the Laboratory's focal point for fundamental materials physics and materials chemistry, provides world-class user facilities, unique experimental capabilities, and the scientific talent and infrastructure to facilitate understanding and control of materials properties, and develops and apply materials-based solutions

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Variation of the magnetic susceptibility of artificial graphite with exposure in the materials testing reactor  

SciTech Connect

The magnetic susceptibility of artificial graphite was determined as a function of exposure in the MTR. Specimens were studied with exposures ranging from 0.07 to 82 {times} 10{sup18} nvt. Fluxes were determined by means of x-ray measurements and resistivity measurements. The dependence of the magnetic susceptibility on exposure in the MTR and also in a Hanford reactor are graphed, and an equivalence factor is calculated.

McCelland, J.D.

1955-02-23T23:59:59.000Z

262

Magnetic Imaging  

Science Conference Proceedings (OSTI)

... data-storage and permanent magnets with increased energy products, in ... Optimization of future materials, including improved yields, requires an ...

2012-10-02T23:59:59.000Z

263

Energy Frontier Research Centers | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis from Atoms to Systems Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Center for Defect Physics in Structural Materials Fluid Interface Reactions, Structure and Transport Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Energy Frontier Research Centers SHARE Energy Frontier Research Centers Advanced Materials research at ORNL is home to two Department of Energy-Office of Basic Energy Sciences' Energy Frontier Research Centers, the Fluid Interface Reaction, Structure, and Transport Center (FIRST), which focuses on understanding interfacial processes critical to electrical energy storage and catalysis, and the Center for Defect Physics, (CDP)

264

Executive Summaries for the Hydrogen Storage Materials Center of Excellence - Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE  

NLE Websites -- All DOE Office Websites (Extended Search)

Executive Summaries Executive Summaries for the Hydrogen Storage Materials Centers of Excellence Chemical Hydrogen Storage CoE, Hydrogen Sorption CoE, and Metal Hydride CoE Period of Performance: 2005-2010 Fuel Cell Technologies Program Office of Energy Efficiency and Renewable Energy U. S. Department of Energy April 2012 2 3 Primary Authors: Chemical Hydrogen Storage (CHSCoE): Kevin Ott, Los Alamos National Laboratory Hydrogen Sorption (HSCoE): Lin Simpson, National Renewable Energy Laboratory Metal Hydride (MHCoE): Lennie Klebanoff, Sandia National Laboratory Contributors include members of the three Materials Centers of Excellence and the Department of Energy Hydrogen Storage Team in the Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Program.

265

Center for Materials at Irradiation and Mechanical Extremes at LANL (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

Science Conference Proceedings (OSTI)

'Center for Materials at Irradiation and Mechanical Extremes (CMIME) at LANL' was submitted by CMIME to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMIME, an EFRC directed by Michael Nastasi at Los Alamos National Laboratory is a partnership of scientists from four institutions: LANL (lead), Carnegia Mellon University, the University of Illinois at Urbana Champaign, and the Massachusetts Institute of Technology. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

Michael Nastasi (Director, Center for Materials at Irradiation and Mechanical Extremes); CMIME Staff

2011-05-01T23:59:59.000Z

266

This is a joint session with Magnetic Materials for Energy Applications  

Science Conference Proceedings (OSTI)

Advanced Materials for Power Electronics, Power Conditioning, and Power ... for Use in Energy-efficient Distribution Transformers: presented by Naoki Ito1; Eric...

267

Magnetization Characterization Laboratory  

Science Conference Proceedings (OSTI)

... use of magnetic materials for motors, generators, transformers ... all depend on the specific magnetic characteristics of ... For example, a magnet used in ...

2012-10-23T23:59:59.000Z

268

Learning About Magnets!  

NLE Websites -- All DOE Office Websites (Extended Search)

the the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a force that can "attract" or "repel" other magnets and magnetic materials, like iron or nickel. What is a Magnet? This bar magnet is a permanent magnet. Permanent magnets can be found in the Earth as rocks and metals. Magnets have

269

Novel Materials and Phenomenon  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Magnetic Materials for Energy Applications -III: Novel Materials and ... In traditional Permanent Magnet Machines, such as motors and...

270

magnets  

NLE Websites -- All DOE Office Websites (Extended Search)

I I Painless Physics Articles BEAM COOLING August 2, 1996 By Leila Belkora, Office of Public Affairs ACCELERATION August 16, 1996 By Dave Finley, Accelerator Division Head RF August 30, 1996 By Pat Colestock, Accelerator Division FIXED TARGET PHYSICS September 20, 1996 By Peter H. Garbincius, Physics Section FIXED TARGET PHYSICS PART DEUX October 16, 1996 By Peter H. Garbincius, Physics Section and Leila Belkora, Office of Public Affaris CROSS SECTION November 1, 1996 By Doreen Wackeroth, Theoretical Physics Edited by Leila Belkora, Office of Public Affaris MAGNETS PART I November 15, 1996 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs MAGNETS PART II January 10, 1997 By Hank Glass, Technical Support Section Edited by Donald Sena, Office of Public Affairs

271

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

272

History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies  

SciTech Connect

Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

2012-03-01T23:59:59.000Z

273

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

274

Vortex Dynamics in NanoScale Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Into the Vortex: Dynamics in Nanoscale Materials Into the Vortex: Dynamics in Nanoscale Materials Micron and nanosized magnets are of great interest for their potential applications in new electronic devices, such as magnetic random access memories. As the size of magnets is reduced to a 1-micron scale and below, the boundaries (surfaces, perimeters, etc) of the objects begin to profoundly influence both the static and dynamic behavior of the materials. Researchers from Argonne's Materials Science Division (MSD), Center for Nanoscale Materials (CNM), and Advanced Photon Source (APS) have recently examined the dynamics of 3- to 7-micron-diameter NiFe alloy disks with a combination of theoretical calculations and a new time-resolved magnetic imaging technique using synchrotron-based x-ray photoemission electron

275

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

Science Conference Proceedings (OSTI)

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

276

Anisotropic Curie Temperature Materials  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title, Anisotropic Curie Temperature Materials. Author(s), Harsh Deep Chopra, Jason...

277

Bioinspired Materials Engineering  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2014 ... structured functional materials with improved and designed (piezo )electrical, magnetic, optical,...

278

Laboratory study of magnetic properties of hysteresis rods for attitude control systems of minisatellites  

Science Conference Proceedings (OSTI)

Results of the experimental determination of the parameters of hysteresis rods made of soft magnetic materials used in passive attitude control systems to damp the perturbed motion of satellites relative to their center of mass are described. Based on ...

D. S. Ivanov; M. Yu. Ovchinnikov; V. I. Pen'Kov

2013-01-01T23:59:59.000Z

279

Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance  

Science Conference Proceedings (OSTI)

Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

Kong, Zueqian

2010-03-15T23:59:59.000Z

280

LANL Virtual Center for Chemical Hydrogen Storage: Chemical Hydrogen Storage Using Ultra-high Surface Area Main Group Materials  

SciTech Connect

The focus of the project was to design and synthesize light element compounds and nanomaterials that will reversibly store molecular hydrogen for hydrogen storage materials. The primary targets investigated during the last year were amine and hydrogen terminated silicon (Si) nanoparticles, Si alloyed with lighter elements (carbon (C) and boron (B)) and boron nanoparticles. The large surface area of nanoparticles should facilitate a favorable weight to volume ratio, while the low molecular weight elements such as B, nitrogen (N), and Si exist in a variety of inexpensive and readily available precursors. Furthermore, small NPs of Si are nontoxic and non-corrosive. Insights gained from these studies will be applied toward the design and synthesis of hydrogen storage materials that meet the DOE 2010 hydrogen storage targets: cost, hydrogen capacity and reversibility. Two primary routes were explored for the production of nanoparticles smaller than 10 nm in diameter. The first was the reduction of the elemental halides to achieve nanomaterials with chloride surface termination that could subsequently be replaced with amine or hydrogen. The second was the reaction of alkali metal Si or Si alloys with ammonium halides to produce hydrogen capped nanomaterials. These materials were characterized via X-ray powder diffraction, TEM, FTIR, TG/DSC, and NMR spectroscopy.

Susan M. Kauzlarich; Phillip P. Power; Doinita Neiner; Alex Pickering; Eric Rivard; Bobby Ellis, T. M.; Atkins, A. Merrill; R. Wolf; Julia Wang

2010-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Center for Intermodal Transportation Safety  

E-Print Network (OSTI)

Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

Fernandez, Eduardo

282

Rapid gravity and gravity gradiometry terrain correction via adaptive quadtree mesh discretization Kristofer Davis, M. Andy Kass, and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School  

E-Print Network (OSTI)

Rapid gravity and gravity gradiometry terrain correction via adaptive quadtree mesh discretization Kristofer Davis, M. Andy Kass, and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado School of Mines SUMMARY We present a method for modeling the terrain response in gravity and gravity

283

Magnetocaloric Materials  

Science Conference Proceedings (OSTI)

Magnetic Materials for Energy Applications IV: Magnetocaloric Materials ... due to cost-effectiveness as well as superior magneto-thermal characteristics. ... metals and p-block elements can be explored in a time- and energy-saving manner.

284

Interplay of superconductivity, magnetism, and density waves in rare-earth tritellurides and iron-based superconducting materials  

E-Print Network (OSTI)

B. Superconductivity . . . . . . . . . . . . . . . . .IV Superconductivity and Magnetism in Iron-PnictideSearch for Pressure Induced Superconductivity in Undoped Ce-

Zocco, Diego Andrs

2011-01-01T23:59:59.000Z

285

: BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Activity Center 5 Material List & Possible Sources for Purchasing Materials For Demo and Carbon dioxide experiment - Carbon cycle cards 1st option: Candle Tongs Hammer Matches...

286

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Electron Microscopy Center for X-ray Optics Joint Center for Artificial Photosynthesis, North Research Highlights Research & Facilities Core Programs Materials...

287

Grid-Related Materials Development Across the NETL-RUA: A Proposed Integrated Materials Development Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Materials Development Across the NETL-RUA: Related Materials Development Across the NETL-RUA: A Proposed Integrated Materials Development Initiative Office of Research & Development Activities Relevant Centers and Expertise Within the Regional University Alliance Needs for Advanced Materials in Grid Applications Forward Looking Vision: Integrated Development Initiative Active / Passive Components in Power Electronics Sensors for Power Flow Control and Condition Monitoring Grid-Scale Energy Storage Enduring Expertise in Electrochemical Materials Emerging Expertise in Magnetic and Optical Materials EPRI Report 1016921 EPRI Report 1020619 Energy Storage Energy Storage Grid of The Future 1) High Renewable Penetration 2) Active Power Flow Control 3) High Electric Vehicle Deployment 4)

288

Materials Sustainability: Digital Resource Center - Materials ...  

Science Conference Proceedings (OSTI)

Jun 21, 2010 ... A 5-year multi-million dollar cooperative research program with the Vehicle Recycling Partnership and the American Plastics Council to...

289

Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials  

Science Conference Proceedings (OSTI)

Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

Cai, Min

2011-11-30T23:59:59.000Z

290

The Nature of the Distinctive Microscopic Features in R5(SixGe1-x)4 Magnetic Refrigeration Materials  

Science Conference Proceedings (OSTI)

Magnetic refrigeration is a promising technology that offers a potential for high energy efficiency. The giant magnetocaloric effect of the R{sub 5}(Si{sub x}, Ge{sub 1-x}){sub 4} alloys (where R=rare-earth and O {le} x {le} 1), which was discovered in 1997, make them perfect candidates for magnetic refrigeration applications. In this study the microstructures of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} alloys have been characterized using electron microscopy techniques, with the focus being on distinctive linear features first examined in 1999. These linear features have been observed in R{sub 5}(Si{sub x}, Ge{sub 1-x}){sub 4} alloys prepared from different rare-earths (Gd, Tb, Dy and Er) with different crystal structures (Gd{sub 5}Si{sub 4}-type orthorhombic, monoclinic and Gd{sub 5}Ge{sub 4}-type orthorhombic). Systematic scanning electron microscope studies revealed that these linear features are actually thin-plates, which grow along specific directions in the matrix material. The crystal structure of the thin-plates has been determined as hexagonal with lattice parameters a=b=8.53 {angstrom} and c=6.40 {angstrom} using selected area diffraction (SAD). Energy dispersive spectroscopy analysis, carried out in both scanning and transmission electron microscopes, showed that the features have a composition approximating to R{sub 5}(Si{sub x},Ge{sub 1-x}){sub 3}.phase. Orientation relationship between the matrix and the thin-plates has been calculated as [- 1010](1-211){sub p}//[010](10-2){sub m}. The growth direction of the thin plates are calculated as (22 0 19) and (-22 0 19) by applying the Ag approach of Zhang and Purdy to the SAD patterns of this system. High Resolution TEM images of the Gd{sub 5}Ge{sub 4} were used to study the crystallographic relationship. A terrace-ledge structure was observed at the interface and a 7{sup o} rotation of the reciprocal lattices with respect to each other, consistent with the determined orientation relationship, was noted. Both observations are consistent with the stated hypothesis that the growth direction of the thin-plates is parallel to an invariant line direction. Based on the terrace-ledge structure of the thin-plate interface a displacive-diffusional growth mechanism has been proposed to explain the rapid formation of the R{sub 5}(Si{sub x},Ge{sub 1-x}){sub 3} plates.

Ozan Ugurlu

2006-05-01T23:59:59.000Z

291

Electronic and Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009... by using a planetary ball mill, isostatic cold pressing (148 MPa) and .... power generation schemes such as wind, hydro and tidal power.

292

Magnetic Materials Committee  

Science Conference Proceedings (OSTI)

The rare earth metals are fundamental to renewable energy technologies; with applications in electric vehicles, energy efficient batteries and the solar panel...

293

Electronic and Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Experimental results obtained using optical interference measurements are ... of electromagnetic interference and reduction of radar signatures.

294

Soft Magnetic Materials  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Recent activity to improve the sustainability of our energy use has resulted in increased awareness of the impact of energy efficiency on the...

295

Electronic and Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 19, 2010 ... It is found that PZT in acetic acid with 2.0 vol% water(? = 50.2 mV) and CFO in acetylacetone-ethanol (1:1 volume ratio, ? = 36.3 mV) were the...

296

Magnetic Materials (MM)  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science Division XSD Groups Industry Argonne Home ...

297

Electronics and Magnetic Materials.  

Science Conference Proceedings (OSTI)

Energy Landscape in Frustrated Systems: Cation Hopping and Relaxation in Pyrochlores ... Lead-free Piezoelectric Films for Transducer Applications.

298

Regenerator for Magnetic Refrigerants  

Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators.

299

Magnetic Properties through Quantum, Statistics, and Modeling  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Magnetic Materials: Structure, Thermodynamics, and Properties. Presentation...

300

Sandia National Labs: Materials Science & Engineering, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

MATERIALS SCIENCE & ENGINEERING HOME OrganizationMission Capabilities Awards & Accomplishments Patents MATERIALS SCIENCE AND ENGINEERING CENTER Techniques 1 2 3 4 5 6 7 These are...

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Materials Sustainability: Digital Resource Center  

Science Conference Proceedings (OSTI)

The most users ever online was 152 on 3/25/2013 at 2:29 PM. Spacer There are currently 2 guests browsing this forum, which makes a total of 2 users using this...

302

Center for Nanophase Materials Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

these facilities. The Nanomaterials Theory Institute provides collaborative workspaces, visualization equipment, and high-speed connections to the ultrascale computing facilities...

303

Center for Nanoscale Materials Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

- STM, AFM, ultrafast microscopy " Nathan Guisinger, nguisinger@anl.gov" - STM, AFM, graphene" Saw Wai Hla (Group Leader), shla@anl.gov - LT-STM, SP-STM, AFM" Xiao-Min Lin,...

304

Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)  

DOE Green Energy (OSTI)

'Autonomic Materials for Smarter, Safer, Longer-Lasting Batteries' was submitted by the Center for Electrical Energy Storage (CEES) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEES, an EFRC directed by Michael Thackery at Argonne National Laboratory is a partnership of scientists from three institutions: ANL (lead), Northwestern University, and the University of Illinois at Urbana-Champaign. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Electrical Energy Storage is 'to acquire a fundamental understanding of interfacial phenomena controlling electrochemical processes that will enable dramatic improvements in the properties and performance of energy storage devices, notable Li ion batteries.' Research topics are: electrical energy storage, batteries, battery electrodes, electrolytes, adaptive materials, interfacial characterization, matter by design; novel materials synthesis, charge transport, and defect tolerant materials.

Thackeray, Michael (Director, Center for Electrical Energy Storage); CEES Staff

2011-05-01T23:59:59.000Z

305

Oncology Center  

SciTech Connect

Efforts by the Hollings Cancer Center to earn a designation as a National Cancer Center are outlined.

Kraft, Andrew S.

2009-09-21T23:59:59.000Z

306

Tulane/Xavier Center for Bioenvironmental Research; project: hazardous materials in aquatic environments; subproject: biomarkers and risk assessment in Bayou Trepagnier, LA  

Science Conference Proceedings (OSTI)

Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established in 1989 as the umbrella organization to coordinate environmental research at both universities. CBR projects funded by the DOE under the Hazardous Materials in Aquatic Environments grant are defining the following: (1) the complex interactions that occur during the transport of contaminants through wetlands environments, (2) the actual and potential impact of contaminants on ecological systems and health, (3) the mechanisms and new technologies through which these impacts might be remediated, and (4) new programs aimed at educating and training environmental workers of the future. The subproject described in this report, `Biomarkers and Risk Assessment in Bayou Trepagnier, LN`, is particularly relevant to the US Department of Energy`s Environmental Restoration and Waste Management program aimed at solving problems related to hazard monitoring and clean-up prioritization at sites with aquatic pollution problems in the DOE complex.

Ide, C.

1996-12-31T23:59:59.000Z

307

Learning About Magnets!  

NLE Websites -- All DOE Office Websites (Extended Search)

the National High Magnetic Field Laboratory Learning About Name A magnet is a material or object that creates a magnetic fi eld. This fi eld is invisible, but it creates a force...

308

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced...

309

Breaking symmetries in ordered materials : spin polarized light transport in magnetized noncentrosymmetric 1D photonic crystals, and photonic gaps and fabrication of quasiperiodic structured materials from interference lithography  

E-Print Network (OSTI)

Effects of breaking various symmetries on optical properties in ordered materials have been studied. Photonic crystals lacking space-inversion and time-reversal symmetries were shown to display nonreciprocal dispersion ...

Bita, Ion

2006-01-01T23:59:59.000Z

310

Tunable Magnetic Regenerator/Refrigerant  

Magnetic regenerators utilize the magnetocaloric effect--the ability of a magnetic field to reduce the magnetic part of a solid materials entropy, generating heat, and then removing the magnetic field, permitting the reduction of temperature with the ...

311

Teacher Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Teacher Resource Center: Putting It All Together Teacher Resource Center: Putting It All Together TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides a preview collection of K-12 instructional materials. TRC services include professional development workshops, consultation assistance, bibliographies and reference assistance. Educators have access to curriculum materials, books, multimedia, educational supply catalogs, periodicals and newsletters. The collection

312

About - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Administrative & Policy Manual. Scroll up. Scroll down. Technical Divisions Home TMS Committees Home Electronic, Magnetic & Photonic Materials...

313

Whirlpools on the Nanoscale Could Multiply Magnetic Memory  

NLE Websites -- All DOE Office Websites (Extended Search)

Whirlpools on the Nanoscale Could Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced Light Source may lead to four-bit magnetic cells housed on nanoscale metal disks, instead of the two-bit magnetic domains of standard magnetic memories. In magnetic vortices, parallel electron spins point either clockwise or counterclockwise, while in their crowded centers the spins point either down or up. "From the scientist's point of view, magnetism is about controlling electron spin," says Peter Fischer of the Materials Sciences Division, who leads the work at beamline 6.1.2. Four orientations could provide multibits in a new kind of memory. The next step is to control the states independently and simultaneously.

314

Lujan Center User Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

materials. It was funded by DOE and constructed at the Lujan Center, coming on line in the summer of 2001. SMARTS provides an exciting range of capabilities for studying...

315

Content Value Center  

Science Conference Proceedings (OSTI)

Identifies and prioritizes emergent themes impacting AOCS members and other professionals involved with fats, oils and other bio-based sources. Content Value Center Governing Board annual aocs AOCS Governing Board fats history information materials oils

316

BP8.00119 Solar Coronal Heating and Magnetic Energy Build-Up in a Tectonics Model1 , M. GILSON, C.S. NG, A. BHATTACHARJEE, Center for Integrated Computation and Analysis of Reconnection and Turbulence and Center for Magnetic Self-  

E-Print Network (OSTI)

BP8.00119 Solar Coronal Heating and Magnetic Energy Build-Up in a Tectonics Model1 , M. GILSON, C have shown that the solar surface is covered with a so-called "magnetic carpet," in which small, if the magnetic footpoints are subject to random photospheric motion. We have also found that magnetic energy can

Ng, Chung-Sang

317

Mechanical design and analysis of an eight-pole superconducting vector magnet for soft x-ray magnetic dichroism measurements  

Science Conference Proceedings (OSTI)

An eight-pole superconducting magnet is being developed for soft x-ray magnetic dichroism (XMD) experiments at the Advanced Light Source, Lawrence Berkley National Laboratory (LBNL). Eight conical Nb{sub 3}Sn coils with Holmium poles are arranged in octahedral symmetry to form four dipole pairs that provide magnetic fields of up to 5 T in any direction relative to the incoming x-ray beam. The dimensions of the magnet yoke as well as pole taper, diameter, and length were optimized for maximum peak field in the magnet center using the software package TOSCA. The structural analysis of the magnet is performed using ANSYS with the coil properties derived using a numerical homogenization scheme. It is found that the use of orthotropic material properties for the coil has an important influence in the design of the magnet.

Arbelaez, D.; Black, A.; Prestemon, S.O.; Wang, S.; Chen, J.; Arenholz, E.

2010-01-13T23:59:59.000Z

318

Experiment #7: Magnetic Deflection of Beta Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

of magnetism. Materials Geiger counter Wooden block (to hold the source) Aluminum shield with hole (for Geiger counter) Two cow magnets Magnet holders Sr-90 (beta source)...

319

PHASE RETRIEVAL, SYMMETRIZATION RULE AND TRANSPORT OF INTENSITY EQUATION IN APPLICATION TO INDUCTION MAPPING OF MAGNETIC MATERIALS.  

SciTech Connect

Recent progress in the field of noninterferometric phase retrieval brings the ordinary Fresnel microscopy to a new quantitative level, suitable for recovering both the amplitude and phase of the object, based on image intensity measurements of the object. We show that this is sufficient for in-plane component mapping of magnetic induction for small magnetic elements with known geometry ranging from micro- to few nanometers size. In present paper we re-examine some conservation principles used for the transport-of-intensity (TIE) equation derived by Teaque for application to phase retrieval in light and X-ray optics. In particular, we prove that the intensity conservation law should be replaced in general case with the energy-flow conservation law. This law describes the amplitude-phase balance of the partially coherent beam on its propagation along the optical path, valid both for light and electron optics. This substitution has at least two important fundamental consequences.

VOLKOV,V.V.; ZHU,Y.

2002-08-04T23:59:59.000Z

320

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Selected Publications Our People Contacts by Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment ShaRE User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Correlated Electron Materials Group In The News PSD Directorate › MST Division › Correlated Electron Materials Group CdSiP2Tin Flux The ultimate aim of our research is to attain a better understanding of complex materials, particularly those that are important to clean energy technologies. For example, we are currently investigating the relationship between magnetism and superconductivity, new mechanisms for enhancing

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Information Center  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Information Center DOE Information Center The U.S. Department of Energy (DOE) Information Center provides citizens a consolidated facility to obtain information and records related to the DOE's various programs in Oak Ridge and abroad. Employees at the DOE Information Center are available to assist with your requests and searches from 8:00 a.m. to 5:00 p.m. (EST), Monday through Friday, except for federal holidays. Requests Documents can be requested in person or by telephone, email, or fax. Reproduction Please allow DOE Information Center staff adequate time to reproduce documents. Some material requires special handling, security reviews, etc. Delivery Unless special arrangements have been made with DOE Information Center staff, documents should be picked up during normal business hours.

322

Permanent Magnets for Energy Applications  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... Magnetic Materials for Energy Applications II: Permanent Magnets for ... to 500% in the last 12 months, the most unstable being the price of Dy.

323

Magnetism Highlights| Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetism Magnetism SHARE Magnetism Highlights 1-5 of 5 Results ARCS maps collaborative magnetic spin behavior in iron telluride December 01, 2011 - Researchers have long thought that magnetism and superconductivity are mutually exclusive. The former typically involves localized atomic electrons. The latter requires freely propagating, itinerant electrons. Unexpected Magnetic Excitations in Doped Insulator Surprise Researchers October 01, 2011 - When doping a disordered magnetic insulator material with atoms of a nonmagnetic material, the conventional wisdom is that the magnetic interactions between the magnetic ions in the material will be weakened. Neutron Analysis Reveals Unique Atomic-Scale Behavior of "Cobalt Blue" September 01, 2011 - Neutron scattering studies of "cobalt blue," a

324

Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

325

Magnetically attached sputter targets  

DOE Patents (OSTI)

An improved method and assembly for attaching sputtering targets to cathode assemblies of sputtering systems which includes a magnetically permeable material is described. The magnetically permeable material is imbedded in a target base that is brazed, welded, or soldered to the sputter target, or is mechanically retained in the target material. Target attachment to the cathode is achieved by virtue of the permanent magnets and/or the pole pieces in the cathode assembly that create magnetic flux lines adjacent to the backing plate, which strongly attract the magnetically permeable material in the target assembly. 11 figures.

Makowiecki, D.M.; McKernan, M.A.

1994-02-15T23:59:59.000Z

326

Magnetic nanohole superlattices  

DOE Patents (OSTI)

A magnetic material is disclosed including a two-dimensional array of carbon atoms and a two-dimensional array of nanoholes patterned in the two-dimensional array of carbon atoms. The magnetic material has long-range magnetic ordering at a temperature below a critical temperature Tc.

Liu, Feng

2013-05-14T23:59:59.000Z

327

Value Centers  

Science Conference Proceedings (OSTI)

Value centers identify the over-reaching themes, initiatives, and opportunities in alignment with the strategic goals of AOCS. Value Centers AOCS History and Governance about us aocs committees contact us division council fats governing board hist

328

Condensed Matter and Materials Physics | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Condensed Matter and Materials Physics Condensed Matter and Materials Physics Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Condensed Matter and Materials Physics Print Text Size: A A A RSS Feeds FeedbackShare Page Research is supported to understand, design, and control materials properties and function. These goals are accomplished through studies of the relationship of materials structures to their electrical, optical, magnetic, surface reactivity, and mechanical properties and of the way in

329

Magnetic Switching under Pressure | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Revealing the Secrets of Chemical Bath Deposition Revealing the Secrets of Chemical Bath Deposition DNA Repair Protein Caught in the Act of Molecular Theft Velcro for Nanoparticles A Molecular Fossil Ultrafast Imaging of Electron Waves in Graphene Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Magnetic Switching under Pressure DECEMBER 2, 2010 Bookmark and Share A schematic representation of the pressure-induced magnetic switching effect. The colored images highlight the direction of the magnetic orbital (grey plane) for the copper centers (green balls: copper, blue: nitrogen, red: oxygen/water, yellow: fluoride). A material's properties are a critical factor in the way that material

330

Predictive Capability for Strongly Correlated Systems: Mott Transition in MnO, Multielectron Magnetic Moments, and Dynamics Effects in Correlated Materials  

SciTech Connect

There are classes of materials that are important to DOE and to the science and technology community, generically referred to as strongly correlated electron systems (SCES), which have proven very difficult to understand and to simulate in a material-specific manner. These range from actinides, which are central to the DOE mission, to transition metal oxides, which include the most promising components of new spin electronics applications as well as the high temperature superconductors, to intermetallic compounds whose heavy fermion characteristics and quantum critical behavior has given rise to some of the most active areas in condensed matter theory. The objective of the CMSN cooperative research team was to focus on the application of these new methodologies to the specific issue of Mott transitions, multi-electron magnetic moments, and dynamical properties correlated materials. Working towards this goal, the W&M team extended its first-principles phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to accurately calculate structural phase transitions and excited states.

Krakauer, Henry; Zhang, Shiwei

2013-02-21T23:59:59.000Z

331

Enhancing the Material Control & Accounting Measurement System at the State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky  

Science Conference Proceedings (OSTI)

Nuclear material control and accounting (NMCA) system is improving under cooperation with USA national laboratories. Standard reference materials (RMs) and measurement techniques certified at IPPE level are required for: instrument calibration, verification measurements of parameters of items and materials, measurement error estimation, and quality control measurements. We present the main results for development of nuclear RMs for two uranium strata and the results for certification of three measurement techniques (MT) for U-235 mass fraction in uranium and U-235 mass in items. We present the results for developing measurement techniques for Pu-239 in PuO{sub 2}.

Scherer, Carolynn P. [Los Alamos National Laboratory; Bezhunov, Gennady M. [IPPE; Bogdanov, Sergey A. [IPPE; Gorbachev, Vyacheslav M. [IPPE; Ryazanov, Boris G. [IPPE; Talanov, Vladimir V. [IPPE

2012-07-11T23:59:59.000Z

332

Functional Materials for Energy | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Fuel Cells Thermoelectrics Separations Materials Catalysis Sensor Materials Polymers and Composites Carbon Fiber Related Research Chemistry and Physics at Interfaces Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Functional Materials for Energy SHARE Functional Materials for Energy The concept of functional materials for energy occupies a very prominent position in ORNL's research and more broadly the scientific research sponsored by DOE's Basic Energy Sciences. These materials facilitate the capture and transformation of energy, the storage of energy or the efficient release and utilization of stored energy. A different kind of

333

A HUMAN RELIABILITY-CENTERED APPROACH TO THE DEVELOPMENT OF JOB AIDS FOR REVIEWERS OF MEDICAL DEVICES THAT USE RADIOLOGICAL BYPRODUCT MATERIALS.  

SciTech Connect

The U.S. Nuclear Regulatory Commission (NRC) is engaged in an initiative to risk-inform the regulation of byproduct materials. Operating experience indicates that human actions play a dominant role in most of the activities involving byproduct materials, which are radioactive materials other than those used in nuclear power plants or in weapons production, primarily for medical or industrial purposes. The overall risk of these activities is strongly influenced by human performance. Hence, an improved understanding of human error, its causes and contexts, and human reliability analysis (HRA) is important in risk-informing the regulation of these activities. The development of the human performance job aids was undertaken by stages, with frequent interaction with the prospective users. First, potentially risk significant human actions were identified based on reviews of available risk studies for byproduct material applications and of descriptions of events for byproduct materials applications that involved potentially significant human actions. Applications from the medical and the industrial domains were sampled. Next, the specific needs of the expected users of the human performance-related capabilities were determined. To do this, NRC headquarters and region staff were interviewed to identify the types of activities (e.g., license reviews, inspections, event assessments) that need HRA support and the form in which such support might best be offered. Because the range of byproduct uses regulated by NRC is so broad, it was decided that initial development of knowledge and tools would be undertaken in the context of a specific use of byproduct material, which was selected in consultation with NRC staff. Based on needs of NRC staff and the human performance related characteristics of the context chosen, knowledge resources were then compiled to support consideration of human performance issues related to the regulation of byproduct materials. Finally, with information sources and an application context identified, a set of strawman job aids was developed, which was then presented to prospective users for critique and comment. Work is currently under way to develop training materials and refine the job aids in preparation for a pilot evaluation.

COOPER, S.E.; BROWN, W.S.; WREATHALL, J.

2005-02-02T23:59:59.000Z

334

Magnetic Filtration Process, Magnetic Filtering Material, and ...  

them unattractive to coal-methane operations. Desalination, ion exchange, and osmosis techniques incur increased energy costs due to high temperature and high

335

Magnetic Filtration Process, Magnetic Filtering Material, and ...  

Description Produced water or wastewater from coal-methane facilities and other industries contains a complex mixture of contaminants, such as ...

336

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 17, 2009 ... Electronic, Magnetic & Photonic Materials .... will support the development of low- cost batteries for electric and plug-in hybrid electric vehicles.

337

LANSCE | Lujan Center | Highlights | Local iron displacements and  

NLE Websites -- All DOE Office Websites (Extended Search)

Local iron displacements and magnetoelastic coupling in a spin-ladder Local iron displacements and magnetoelastic coupling in a spin-ladder compound Hypothesis: Is magnetoelastic coupling in [FeX4]-based materials, an important ingredient in the emergence of superconductivity? Lujan Center: Combined Total Scattering and magnetic structure determination (HIPD-NPDF) The study of local, average and magnetic structure shows the existenceof highly correlated local iron (Fe) displacements in the spin-ladder iron chalcogenide BaFe2Se3. Built of ferromagnetic [Fe4] plaquettes, the magnetic ground state correlates with local displacements of the Fe atoms. Knowledge of these local displacements is essential for properly understanding the electronic structure of these systems. As with the copper oxide superconductors two decades ago, these

338

Standard Reference Materials  

Science Conference Proceedings (OSTI)

... The Minerals, Metals and Material Society - TMS 2010 February 14-18, 2010 Booth #609 Washington State Convention Center Seattle, WA. ...

2011-03-02T23:59:59.000Z

339

Optimization of the Mechanical Alloying Process of Soft Magnetic Fe ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title ... Advances in Rare-earth Free Permanent Magnets Anisotropic Curie...

340

Modeling of Magnetic and Structural Phase Transformations in Co ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III. Presentation Title, Modeling ... Advances in Rare-earth Free Permanent Magnets Anisotropic Curie

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

BWRVIP-54: Post-NMCA Materials and Fuel Surveillance Program at Duane Arnold Energy Center First Surveillance Report for 1996-1997  

Science Conference Proceedings (OSTI)

NobleMetalChemicalAddition(NMCA)treatment increases the effectiveness of hydrogeninjection, and can increase the lifetime of the reactor internals and allow reduction of radiation exposure to plant personnel. A cooperative effort to demonstrate NMCA was undertaken by General Electric, IES Utilities and the BWR Vessel and Internals Project (BWRVIP) and EPRI. This report describes the results of the first year of the materials and fuel surveillance program following NMCA treatment at the Duane Arnold Energ...

1998-12-16T23:59:59.000Z

342

The Galactic Center Magnetosphere  

E-Print Network (OSTI)

The magnetic field within a few hundred parsecs of the center of the Galaxy is an essential component of any description of that region. The field has several pronounced observational manifestations: 1) morphological structures such as nonthermal radio filaments (NTFs) -- magnetic flux tubes illuminated by synchrotron emission from relativistic electrons -- and a remarkable, large-scale, helically wound structure, 2) relatively strong polarization of thermal dust emission from molecular clouds, presumably resulting from magnetic alignment of the rotating dust grains, and 3) synchrotron emission from cosmic rays. Because most of the NTFs are roughly perpendicular to the Galactic plane, the implied large-scale geometry of the magnetic field is dipolar. Estimates of the mean field strength vary from tens of microgauss to ~ a milligauss. The merits and weaknesses of the various estimations are discussed here. If the field strength is comparable to a milligauss, then the magnetic field is able to exert a strong influence on the dynamics of molecular clouds, on the collimation of a Galactic wind, and on the lifetimes and bulk motions of relativistic particles. Related to the question of field strength is the question of whether the field is pervasive throughout the central zone of the Galaxy, or whether its manifestations are predominantly localized phenomena. Current evidence favors the pervasive model.

Mark Morris

2007-01-02T23:59:59.000Z

343

Physical, Chemical, & Nano Sciences Center 1100 Joel Boyer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences Center 1100 Joel Boyer Dept. 10611 Small Science Cluster Business Office J. Charles Barbour Director Center 1100 Dan Barton Dept. 1123 Semiconductor Material & Device...

344

Help Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Laboratory Advanced Simulation and Computing Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24 hours a day, 7 days a week Operations (to report a system or network problem: (505) 667-2919 Lawrence Livermore National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-4:45 p.m. Pacific time High Performance Hotline (technical consulting) Telephone: (925) 422-4532

345

Preparation of anisotropic Nd(Fe,Mo){sub 12}N{sub 1.0} magnetic materials by strip casting technique and direct nitrogenation for the strips  

SciTech Connect

The Nd(Fe,Mo){sub 12}-type alloys are prepared by strip casting technique, and direct nitrogenation of the strips without precrushing is executed in this paper. It is found that 6 h annealing treatment at 1050 deg. C for the strips is enough to obtain the single-phase Nd(Fe,Mo){sub 12} compounds. The strips can be directly nitrogenated at 620 deg. C to obtain interstitial Nd(Fe,Mo){sub 12}N{sub 1.0} materials, and a spontaneous pulverization phenomenon in the strips induced by nitrogenation is found. The results indicate that the nitrogenation process of the strips can be used to prepare Nd(Fe,Mo){sub 12}N{sub 1.0} interstitial nitrides and pulverize the casted strips into fine particles simultaneously. Base on this, we propose a new technical route of preparing Nd(Fe,Mo){sub 12}N{sub X} magnetic powders without precrushing and obtain anisotropic NdFe{sub 10.5}Mo{sub 1.5}N{sub 1.0} powders with a remanence of B{sub r} = 1.08 T, a coercivity of {sub i}H{sub c} = 400 kA/m, and a maximum energy product of (BH){sub max} = 144 kJ/m{sup 3}.

Han Jingzhi; Liu Shunquan; Xing Meiying; Lin Zhong; Kong Xiangpeng; Wang Changsheng; Du Honglin; Yang Yingchang [School of Physics, Peking University, Beijing 100871 (China); Yang Jinbo [School of Physics, Peking University, Beijing 100871 (China); State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

2011-04-01T23:59:59.000Z

346

Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)  

Science Conference Proceedings (OSTI)

In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and fire safety. A related issue is the degree to which new standards are adopted and enforced. In the U.S., standards are developed using a consensus process, and local government agencies are free to implement these standards or to ignore them. For example, some U.S. states are still using 2003 versions of the building efficiency standards. There is also a great variation in the degree to which the locally adopted standards are enforced in different U.S. cities and states. With a more central process in China, these issues are different, but possible impacts of variable enforcement efficacy may also exist. Therefore, current building codes in China will be compared to the current state of building fire-safety and energy-efficiency codes in the U.S. and areas for possible improvements in both countries will be explored. In particular, the focus of the applications in China will be on green buildings. The terminology of 'green buildings' has different meanings to different audiences. The U.S. research is interested in both new, green buildings, and on retrofitting existing inefficient buildings. An initial effort will be made to clarify the scope of the pertinent wall insulation systems for these applications.

Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

2012-08-01T23:59:59.000Z

347

BEPC-II Magnet Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

BEPC-II Magnet Project BEPC-II Magnet Project Project Overview The BEPC-II magnets are Interaction Region magnets to be used as part of an upgrade to the Beijing Electron Positron Collider. Two magnets will be produced, both of which will be inserted within the solenoidal detector at one of the collision points. Since the best use of the quadrupole focusing in this case requires placing the magnet as close to the collision point as possible, these magnets will be used within the magnetic field of the detector. This constrains the materials that can be used for construction to only non-magnetic materials. It also places severe demands on the structure of the magnet and it's holding supports due to the reaction forces between the solenoid and the magnet. To create the coil pattern for the final magnet, the coils will be

348

ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

PETROLEUM MAGNETICS INTERNATIONAL PETROLEUM MAGNETICS INTERNATIONAL NOVEMBER 28, 1996 FC9520 / 95PT8 ROCKY MOUNTAIN OILFIELD TESTING CENTER PROJECT TEST RESULTS PETROLEUM MAGNETIC INTERNATIONAL DOWNHOLE MAGNETS FOR SCALE CONTROL Prepared for: Industry Publication Prepared by: MICHAEL R. TYLER RMOTC Field Engineer November 28, 1995 650100/9520:jb ABSTRACT November 28, 1995 The Rocky Mountain Oilfield Testing Center (RMOTC) conducted a field test on the Petroleum Magnetics International (PMI) downhole magnet, at the Naval Petroleum Reserve No. 3 (NPR- 3) located 35 miles north of Casper in Natrona County, Wyoming. PMI of Odessa, Texas, states that the magnets are designed to reduce scale and paraffin buildup on the rods, tubing

349

shared session with Advanced Materials for Power Electronics ...  

Science Conference Proceedings (OSTI)

Analysis of Soft Magnetic Materials for Energy Applications: Samuel Kernion1; ... The world-wide market for magnetic materials is anticipated to grow to US$33...

350

Argonne CNM News: Bifunctional Plasmonic/Magnetic Nanoparticles  

NLE Websites -- All DOE Office Websites (Extended Search)

Bifunctional Plasmonic/Magnetic Nanoparticles Bifunctional Plasmonic/Magnetic Nanoparticles Mark Holt (Argonne Center for Nanoscale Materials) examines a sample in the Hard X-Ray Nanoprobe Evolutional pathway from iron particle seeds with thin layers of amorphous iron oxide coating to hybrid nanoparticles composed of solid Ag nanodomains and hollow Fe3O4 nanoshells. Transmission electron microscopy (TEM) images (false colorized) and corresponding schematic illustration (silver: yellow, iron oxide: blue, iron core: black) of the hybrid particles at different stages along the reaction are highlighted on the edge. The TEM image at the center highlights Ag-Fe3O4 hybrid nanoparticles in which Ag and Fe3O4 are false colorized in orange yellow and blue, respectively. TEM analysis was done at Argonne's Electron Microscopy Center

351

Spherical Torus Center Stack Design  

SciTech Connect

The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device.

C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

2002-01-18T23:59:59.000Z

352

Condensed Matter Physics & Materials Science Department  

NLE Websites -- All DOE Office Websites (Extended Search)

is focused on the Magneto Optical Imaging of magnetic field distribution in superconductors and magnetic materials. How to Contact Us Our Research Characterization...

353

Material Testing of Coated Alloys in a Syngas Combustion Environment Year 6 - Activity 1.13 - Development of a National Center for Hydrogen Technology  

Science Conference Proceedings (OSTI)

Modifications were made to the inlet of the existing Energy & Environmental Research Center (EERC) thermal oxidizer to accommodate side-by-side coupon holders for exposure testing. Two 5-day tests with over 200 hours of total exposure time were completed. The first week of testing was conducted in enriched air-blown mode, with coupon temperatures ranging from 128 to 272F. Carbonyl sampling was conducted, but it was discovered after the fact that the methodology used was producing very low recoveries of iron and nickel carbonyl. Therefore, the data generated during this week of testing were not considered accurate. The second week of testing was conducted in oxygen-blown mode, with coupon temperatures ranging from 220 to 265F. Two improved methods were used to measure carbonyl concentration during this week of testing. These methods produced results closer to equilibrium calculations. Since both weeks of testing mostly produced a product gas with approximately 15%18% carbon monoxide, it was felt that actual carbonyl concentrations for Week 1 should be very similar to those measured during Week 2. The revised carbonyl sampling methodology used during the second week of testing greatly improved the recovery of iron and nickel carbonyl in the sample. Even though the sampling results obtained from the first week were inaccurate, the results from the second week can be used as an estimate for the periods during which the gasifier was operating under similar conditions and producing similar product gas compositions. Specifically, Test Periods 2 and 3 from the first week were similar to the conditions run during the second week. For a product gas containing roughly 15%18% CO and a coupon temperature of approximately 220270F, the nickel carbonyl concentration should be about 0.050.1 ppm and the iron carbonyl concentration should be about 0.10.4 ppm. After each week of testing the coupons were recovered from the coupon holder, weighed, and shipped back to Siemens for analysis.

Swanson, Michael

2011-09-01T23:59:59.000Z

354

Alternative Fuels Data Center: Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Prices Find ethanol fuel prices and trends. Ethanol is a renewable fuel made from corn and other plant materials. The use of ethanol is widespread-almost all gasoline in the U.S. contains

355

Formation of deformation textures in face-centered-cubic materials studied by in-situ high-energy x-ray diffraction and self-consistent model.  

Science Conference Proceedings (OSTI)

The evolution of deformation textures in copper and a brass that are representative of fcc metals with different stacking fault energies (SFEs) during cold rolling is predicted using a self-consistent (SC) model. The material parameters used for describing the micromechanical behavior of each metal are determined from the high-energy X-ray (HEXRD) diffraction data. At small reductions, a reliable prediction of the evolution of the grain orientation distribution that is represented as the continuous increase of the copper and brass components is achieved for both metals when compared with the experimental textures. With increasing deformation, the model could characterize the textures of copper, i.e., the strengthening of the copper component, when dislocation slip is still the dominant mechanism. For a brass at moderate and large reductions, a reliable prediction of its unique feature of texture evolution, i.e., the weakening of the copper component and the strengthening of the brass component, could only be achieved when proper boundary conditions together with some specified slip/twin systems are considered in the continuum micromechanics mainly containing twinning and shear banding. The present investigation suggests that for fcc metals with a low SFE, the mechanism of shear banding is the dominant contribution to the texture development at large deformations.

Jia, N.; Nie, Z. H.; Ren, Y.; Peng, R. L.; Wang, Y. D.; Zhao, X.; X-Ray Science Division; Northeastern Univ.; Linkoping Univ.; Beijing Inst. of Tech.

2010-05-01T23:59:59.000Z

356

Magnetic Materials for Energy Applications  

Science Conference Proceedings (OSTI)

Paul R. Ohodnicki, National Energy Technology Laboratory ... the largest electricity consumption in the domestic market is related to refrigeration and ... First to Second Order Magnetocaloric Transition: on Correct Analysis of Experimental Data.

357

Advanced Magnetic and Quantum Materials  

Science Conference Proceedings (OSTI)

... electron spectroscopy (CMA), Low temperature Omicron STM/AFM, LEED, RHEED, 3 sputter, e-beam, and effusion sources, ion mill, plasma source ...

2011-12-15T23:59:59.000Z

358

Rare Earth and Magnetic Materials  

Science Conference Proceedings (OSTI)

Magnetoresistance Effect Using Co Based Full Heusler Electrodes: Nobuki ... Here we report giant TMR observation at room temperature (RT) for the MTJ using...

359

Metallurgical Synthesis of Extraterrestrial Permanent Magnet ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications IV ... Fe-rich FeSiBPCu Nano-crystalline Soft Magnetic Alloys Contributable To Energy-saving.

360

Irreversible magnetic switch  

DOE Patents (OSTI)

This invention is comprised of an irreversible magnetic switch containing a ferromagnetic amorphous metal having a predetermined crystallization temperature in its inductor magnetic path. With the incorporation of such material, the magnetic properties after cooling from a high temperature excursion above its crystallization temperature are only a fraction of the original value. The difference is used to provide a safety feature in the magnetic switch.

Karnowsky, M.M.; Yost, F.G.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

HPC Code Center Request Form | Computatioinal Scince Center, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

HPC Code Center Request Form HPC Code Center Request Form All fields are required unless marked as optional. Full Name Institution/Company Email Address Telephone Number Department * Basic Energy Sciences Directorate (DC) Bioscience Department (BO) Business Development & Analysis Office (BU) Business Operations (DI) CEGPA Directorate (DK) Center for Functional Nanomaterials (NC) Chemistry Department (CO) Collider Accelerator Department (AD) Community, Education, Government and Public Affairs (PA) Computational Science Center (CC) Condensed Matter Physics and Materials Science Department (PM) Counterintelligence (CI) Department of Energy (AE) Deputy Director for Operations Directorate (DE) Director's Office Directorate (DO) Diversity Office (DV) Energy & Utilities Division (EU) Environment, Safety and Health

362

Center Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources for Planning Center Activities Resources for Planning Center Activities       QuarkNet at Work - Resources Home QuarkNet is a teacher professional development effort funded by the National Science Foundation and the US Department of Energy. Teachers work on particle physics experiments during a summer and join a cadre of scientists and teachers working to introduce some aspects of their research into their classrooms. This allows tomorrow's particle physicists to peek over the shoulder of today's experimenters. These resources are available for lead teachers and mentors at Quartnet Centers as they design activities for associate teacher workshops and follow-on activities. Important Findings from Previous Years Mentor Tips Associate Teacher Institute Toolkit

363

Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets  

SciTech Connect

Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

None

2010-10-01T23:59:59.000Z

364

HEADQUARTERS & CONVENTION CENTER FLOORPLANS  

Science Conference Proceedings (OSTI)

Cyber Caf. Moscone West Convention. Center. Lobby. General Poster Session. Moscone West Convention. Center. Exhibit Hall. Employment Referral. Center.

365

NCEM National Center for Electron Microscopy: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory, Center for Materials Research Brookhaven National Laboratory, Electron Microscopy Program Sites of Interest to the Microscopy Community The Microscopy...

366

SOUTHVIEWDR Center for Applied  

E-Print Network (OSTI)

/Geology Chemistry Biological Sciences Geology Lab Bookstore Reed Milledge Payne Memorial Hall SANFORD DR Center CAES Activity Center Visitors Center (Four Towers) Greenhouses Center for Applied Isotope Study

Hall, Daniel

367

Clean Energy Solutions Center | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Solutions Center Clean Energy Solutions Center Jump to: navigation, search Logo: Clean Energy Solutions Center Name Clean Energy Solutions Center Agency/Company /Organization Clean Energy Ministerial Sector Energy Focus Area Non-renewable Energy, Energy Efficiency, Transportation Topics Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Market analysis Resource Type Case studies/examples, Guide/manual, Lessons learned/best practices, Publications, Training materials, Webinar Website http://cleanenergysolutions.or Program Start 2011 References Clean Energy Solutions Center Website[1] Clean Energy Solutions Center Screenshot The Clean Energy Solutions Center helps governments turn clean energy visions into reality. We share policy best practices, data, and analysis

368

Magnetic refrigeration apparatus with heat pipes  

DOE Patents (OSTI)

A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

Barclay, J.A.; Prenger, F.C. Jr.

1985-10-25T23:59:59.000Z

369

Magnetic refrigeration apparatus with heat pipes  

DOE Patents (OSTI)

A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

1987-01-01T23:59:59.000Z

370

Magnet pole tips  

DOE Patents (OSTI)

An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

Thorn, Craig E. (Wading River, NY); Chasman, Chellis (Setauket, NY); Baltz, Anthony J. (Coram, NY)

1984-04-24T23:59:59.000Z

371

Magnet pole tips  

DOE Patents (OSTI)

An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

Thorn, C.E.; Chasman, C.; Baltz, A.J.

1981-11-19T23:59:59.000Z

372

COMPUTATIONAL SCIENCE CENTER  

SciTech Connect

The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

DAVENPORT,J.

2004-11-01T23:59:59.000Z

373

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites

Laboratory Laboratory Electron Microscopy Center Argonne Home > EMC > EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

374

2000 TMS Annual Meeting Exhibitor: ALBANY RESEARCH CENTER  

Science Conference Proceedings (OSTI)

The Albany Research Center is a U.S. government materials research and ... provide solutions to service-life problems through new materials technology, and ...

375

Center for Nanophase Materials Sciences (CNMS)  

NLE Websites -- All DOE Office Websites

Science User Facilities Science User Facilities Search Go Home About Advisory Committee CNMS Fact Sheet CNMS Organizational Chart Research Themes Publications Journal Cover Gallery Research Highlights Related ORNL User Facilities User Program Becoming A User Acknowledgement Guidelines CNMS Capabilities Active Projects User Group Data Management Policy Working at CNMS Jobs ES&H Obtaining Entry Hours of Operation Local Information News & Events News Events CNMS User Newsletters People Contact Us Visit us on Wikipedia. Visit us on FaceBook. Visit us on YouTube. Upcoming Events and Latest News Call For Proposals - Next cycle is Spring 2014 Neutrons and Nano Workshops and User Meetings - TALKS Postdoctoral Opportunities CNMS Discovery Seminars Opening the Eye-Popping Possibilities of the Smallest Scales

376

Working at Argonne's Center for Nanoscale Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Working at CNM Working at CNM For information on visiting Argonne National Laboratory, collaborating with us, or becoming an independent outside user of our facilities, please contact the CNM User Office. Hours of Operation The CNM, which is mandated to offer user access only 40 hours per week, provides users with routine access to facilities and instrumentation, as well as technical assistance when needed, between the hours of 7:00 a.m. and 7:00 p.m., Monday-Friday, except for Laboratory holidays and maintenance shutdowns. These hours are also in place for the availability of staff in the Theory and Modeling and X-Ray Microscopy Groups. The supercomputing facility (Carbon) and the hard X-ray nanoprobe facility at Sector 26 of the APS are available 24 hours, 7 days a week, except for maintenance shutdowns.

377

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

2 PUBLICATIONS 2 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Alvarez, G., "Implementation of the SU(2) Hamiltonian Symmetry for the DMRG Algorithm," Comput. Phys. Commun. 183 (10), 2226-2232 (2012). Alves, F.; Grbovic, D.; Kearney, B.; Karunasiri, G., "Microelectromechanical Systems Bimaterial Terahertz Sensor with Integrated Metamaterial Absorber," Opt. Lett. 37 (11), 1886-1888 (2012). Alves, F.; Karamitros, A.; Grbovic, D.; Kearney, B.; Karunasiri, G., "Highly Absorbing Nano-Scale Metal Films for Terahertz Applications," Opt. Eng. 51 (6), 063801 (2012). Alves, F.; Kearney, B.; Grbovic, D.; Karunasiri, G., "Narrowband Terahertz

378

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

5 PUBLICATIONS 5 PUBLICATIONS Links to individual papers are provided when available online. These links will take you to other web sites and will open in a new window. Subscription may be required to access online publications. Carbon J. Bernholc, W. Lu, S. M. Nakhmanson, V. Meunier, and M. Buongiorno Nardelli, "Multiscale Simulations of Quantum Structures," p. 18 in Proceedings of DoD 2005 Users Group Conference, IEEE Computer Society (2005). J.-G. Che and H. P. Cheng, "First-Principles Investigation of a Monolayer of C60 on h-BN/Ni(111)," Phys. Rev. B: Condens. Matter 72, 115436 (2005). K. A. S. Fernando, Y. Lin, B. Zhou, R. Joseph, L. F. Allard, and Y.-P. Sun, "Poly(ethylene-co-vinyl alcohol)-Functionalized Single-Walled Carbon Nanotubes and Related Nanocomposites," J. Nanosci. Nanotech. 5 (7), 1050 (2005).

379

Advanced Materials Center of Excellence Frequently Asked ...  

Science Conference Proceedings (OSTI)

... behalf of the Department of Energy or another ... year period, pending satisfactory annual progress and ... in accordance with the review and selection ...

2013-08-08T23:59:59.000Z

380

Advanced Materials Centers of Excellence Amended FFO  

Science Conference Proceedings (OSTI)

... aimed at addressing challenges in clean energy, national security ... from the proposal prior to the merit review. ... two (2) copies), on an annual basis for ...

2013-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Center for Nanophase Materials Sciences - Newsletter January...  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee, discuss results from our last User Survey, and congratulate the three R&D 100 winners associated with the CNMS We encourage feedback and suggestions for the...

382

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Allison, M. L. Simpson, M. J. Doktycz, Surface Patterning of Silica Nanostructures using Bio-Inspired Templates and Directed Synthesis, Langmuir 20(20), 8431 (2004). B. L....

383

Materials Sustainability: Digital Resource Center - Product Recycling  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This excerpt from the 2003 Fujitsu Group Sustainability Report provides an overview of the Fujitsu recycling system and describes their...

384

Materials Sustainability: Digital Resource Center -- Recycling ...  

Science Conference Proceedings (OSTI)

Use this area to submit digital resources and/or make comments on the resources posted by others. DO NOT use this area of the site to initiate discussion ...

385

Center for Theoretical and Computational Materials Science  

Science Conference Proceedings (OSTI)

... an advanced code repository/wiki for collaboration and modern computational lab-notebook blogging tools (supported by the National Science ...

2012-10-02T23:59:59.000Z

386

Materials Sustainability: Digital Resource Center - Novelis ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... From this page, one can link to pages on a) environment, health, safety and quality, b) recycling, c) sustainability in action and d) community.

387

Center for Nanophase Materials Sciences - Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

induced force on the droplet sufficient to detach it from the junction orifice. Fig. 1 Series of bright field images spaced at 82 msec intervals of the formation and detachment of...

388

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution," Nano Lett. 10 (9), 3420-3425 (2010). Balke, N.; Jesse, S.; Kim, Y.; Adamczyk, L.; Ivanov, I....

389

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Alves, F.; Kamistros, A.; Grbovic, D.; Kearney, B.; Karunasiri, G, "Highly Absorbing Nano-Scale Metal Films for Terahertz," Proc. SPIE 8119, 81190OK (2011). Alvizo-Paez, E. R.;...

390

Materials Sustainability: Digital Resource Center - Radioactivity in ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This video introduces terms and concepts associated with radioactivity and shows how to identify radioactive substances that might enter a...

391

Materials Sustainability: Digital Resource Center - Global Recycling ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... Global Recycling Network is an electronic information exchange that specializes in the trade of recyclables reclaimed in Municipal Solid Waste...

392

Materials Sustainability: Digital Resource Center - Great Problems ...  

Science Conference Proceedings (OSTI)

Sep 8, 2008 ... Taught by Diran Apelian and Svetlana Nikitina, this course aims to establish a context of the human dimensions that the class of 2012 will...

393

Materials Sustainability: Digital Resource Center -- Sustainability ...  

Science Conference Proceedings (OSTI)

FORUMS > SUSTAINABILITY: ECONOMICS, LIFECYCLE ANALYSIS, GREEN HOUSE GASES, AND CLIMATE CHANGE, Replies, Views, Originator, Last Post ...

394

Materials Sustainability: Digital Resource Center - Proceedings of ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... Comprehensive papers from the second international Pollution Prevention in the Aluminum Industry Workshop 1998. Proceedings include...

395

Materials Sustainability: Digital Resource Center - Indigo Development  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... Indigo's mission is creating systems solutions to major challenges of sustainable development. Working with a holistic definition of industrial...

396

Materials Sustainability: Digital Resource Center - Aluminum ... - TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... ENERGY AND SUSTAINABILITY are critical factors for economic development, and this comprehensive reference provides a detailed overview...

397

Materials Sustainability: Digital Resource Center - Steel Recycling ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... The Steel Recycling Institute is an industry association that promotes the recycling of steel products. The association website includes pages on...

398

Materials Sustainability: Digital Resource Center - Flow Studies ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This 2004 circular presents the results of flow studies for recycling of 26 metal commodities, including chromium, magnesium, niobium,...

399

Materials Sustainability: Digital Resource Center - REWAS'04 ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... This three volume set with 2954 pages contains the papers presented at REWAS '04, the Global Symposium on Recycling, Waste Treatment...

400

Materials Sustainability: Digital Resource Center - Improving ... - TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This slide presentation describes how reductions in the mass of different types of vehicles impacted energy usage and greenhouse gas...

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Materials Sustainability: Digital Resource Center - Greenhouse Gas ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... This U. S. EPA webpage gives an overview of greenhouse gases and a description of greenhouse gas inventories. It provides emission trends...

402

Materials Sustainability: Digital Resource Center Text Topic  

Science Conference Proceedings (OSTI)

Date Posted: 6/26/2008 9:01 AM Posted By: Diana Grady. This article describes metal production from primary and secondary resources, recovering metals from ...

403

Materials Sustainability: Digital Resource Center - Industrial Ecology ...  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... Industrial Ecology offers an introduction to the topic commences with an exploration of the prerequisites for achieving sustainable development,...

404

Materials Sustainability: Digital Resource Center - Industrial Ecology ...  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... ROI is a not-for-profit entity dedicated to promoting industrial ecology, particularly in developing countries. This website contains a collection of...

405

Materials Sustainability: Digital Resource Center - Strategic ... - TMS  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This report presents findings of the Office of Technology Assessment. At the time of publishing of this report, the US imported more than $1...

406

Materials Sustainability: Digital Resource Center - Industrial Ecology ...  

Science Conference Proceedings (OSTI)

Jun 18, 2010 ... The University of California - Irvine offers programs on recycling electronic waste. http://greenmat.soceco.uci.edu/ The Program in Industrial...

407

Materials Sustainability: Digital Resource Center - Climate VISION ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... The primary goal of the Climate VISION partnership is to identify and pursue cost effective options to improve the energy or GHG intensity of...

408

Materials Sustainability: Digital Resource Center - Recycling Metals ...  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... This article describes metal production from primary and secondary resources, recovering metals from waste streams and environmental...

409

Materials Sustainability: Digital Resource Center -- Recycling - Steel  

Science Conference Proceedings (OSTI)

Use this area to submit digital resources and/or make comments on the resources posted by others. DO NOT use this area of the site to initiate discussion ...

410

Materials Sustainability: Digital Resource Center - Srap Steel ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... The European Recycler's Exchange (EUX) is a member based world wide information exchange designed for companies and individuals who...

411

Materials Sustainability: Digital Resource Center - Greenhouse Gas ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... This European Environment Agency webpage includes links to a downloadable report entitled Greenhouse Gas Emission Trends and...

412

Materials Sustainability: Digital Resource Center - Steel Recycling ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... This video was created by the Steel Manufacturers Association to educate the public on the importance of recycling steel. Shredded cars...

413

Materials Sustainability: Digital Resource Center - A Replacement ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This presentation from the 2003 EPA Conference describes the prior art for magnesium protection and presents the MagShield system with...

414

Materials Sustainability: Digital Resource Center - Recycling and ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... These proceedings include papers based on presentations prepared for the symposium "Recycling and Waste Processing" at the TMS 2007...

415

Materials Sustainability: Digital Resource Center - Guidelines for ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... Newly revised and expanded in 2009. Helps aluminum recyclers and scrap suppliers prevent accidents and injuries due to moisture or...

416

Materials Sustainability: Digital Resource Center - Scrap ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... The specifications included in this circular are guidelines to assist members in buying and selling of Nonferrous Scrap, Ferrous Scrap, Glass...

417

Materials Sustainability: Digital Resource Center - Aluminum ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This volume contains 28 papers relating to "Energy & the Environment in the 1990s." Emphasis is on dross processing, new combustion and...

418

Materials Sustainability: Digital Resource Center - Question ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... Under the TSCA IUR, companies must submit to EPA a completed Form U for each chemical substance manufactured or imported.

419

Materials Sustainability: Digital Resource Center - Recycling ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This 1997 report provides some basic information on recycling of Al, Be, Ca, Cr, Co, Cu, Ga, Au, In, Fe, steel, Pb, Mg, Mn, Hg, Mo, Ni, Pt-group...

420

Materials Sustainability: Digital Resource Center - Recycling - Metals  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... This 1997 report provides some basic information on recycling of Al, Be, Ca, Cr, Co, Cu, Ga, Au, In, Fe, steel, Pb, Mg, Mn, Hg, Mo, Ni, Pt-group...

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Materials Sustainability: Digital Resource Center - Structural Steel ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... This report is a series fo reprints covering steel's sustainability and how structural steel contributes towards obtaining a LEED rating.

422

Materials Sustainability: Digital Resource Center - Superalloy ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... About 55 million pounds of clean and contaminated superalloy scrap were processed in 1986; about 92 pct (50 million pounds) went to...

423

Materials Sustainability: Digital Resource Center - The Physical ...  

Science Conference Proceedings (OSTI)

Jun 25, 2008 ... Deals with the physical processes used for separation of secondary metals from waste sources. The volume aims to bring together technical...

424

Materials Sustainability: Digital Resource Center - Corus Corporate ...  

Science Conference Proceedings (OSTI)

Jul 3, 2008 ... Posts: 163. Joined: 11/14/2007. This corporate report from Corus describes what sustainable development means for construction, automotive,...

425

Materials Sustainability: Digital Resource Center - Aluminum: The ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... A complete review of today's successful automotive aluminum recycling infrastructure. Shows a car's journey through the entire recycling...

426

Materials Sustainability: Digital Resource Center - Guides for ...  

Science Conference Proceedings (OSTI)

Jul 9, 2008 ... Diana Grady Posts: 163. Joined: 11/14/2007. Educational Resource Edited: 7/9/ 2008 at 10:15 AM by Diana Grady. Comment on Posting...

427

Materials Sustainability: Digital Resource Center - Monico Alloys  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... Monico Alloys specializes in collecting and preparing superalloys for recycling. They offer a wide variety of commercially pure specialty metals,...

428

Materials Sustainability: Digital Resource Center - Aluminum ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This volume is the 6th edition of Dr. Dietrich Altenpohl's book, originally titled Aluminum From Within (and still carrying that subtitle.) It is the...

429

Materials Sustainability: Digital Resource Center - Metals Handbook ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... The latest edition of this handbook contains new pages on recycling and life- cycle anaylsis. Processing of superalloy scrap is discussed.

430

Materials Sustainability: Digital Resource Center - Characterization ...  

Science Conference Proceedings (OSTI)

Jul 1, 2008 ... This study of magnesium cover gas technologies and emissions to air is a product of the Australian / U.S. Climate Action Partnership. One of...

431

Materials Sustainability: Digital Resource Center - Industrial Symbiosis  

Science Conference Proceedings (OSTI)

Jul 2, 2008... the enzyme producer Novozymes A/S, the oil refinery Statoil A/S, Bioteknisk Jordrens Soilrem A/S as well as the waste company Noveren I/S...

432

Center for Nanophase Materials Sciences (CNMS) - Nanofabrication...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy electron source, is used for scanning electron microscopy, focused ion beam milling, and electron beam induced deposition (EBID) and etching processes. An additional...

433

CNMS | Center for Nanophase Materials Sciences | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to...

434

Materials for Nuclear Power: Digital Resource Center ...  

Science Conference Proceedings (OSTI)

Mar 5, 2008 ... An overview presentation covering drivers for the Nuclear Renaissance and the path forward for nucleaer power in the United States.

435

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

X. J. Zhang, "Near-Field Scanning Optical Microscopy with Monolithic Silicon Light Emitting Diode on Probe Tip," Appl. Phys. Lett. 92, 131106, (2008). Hoshino, K., L. Rozanski,...

436

Center for Nanophase Materials Sciences - Newsletter January...  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Massachusetts. Prof. Dadmun joined the National Institute of Standards and Technology as a National Research Council Postdoctoral Associate. Dr. Dadmun's current...

437

Center for Nanophase Materials Sciences (CNMS) - Nanomaterials...  

NLE Websites -- All DOE Office Websites (Extended Search)

NANOMATERIALS THEORY INSTITUTE (NTI): THEORY, MODELING & SIMULATION CAPABILITIES NTI Computational Cluster The NTI maintains a 12 teraflop Beowulf cluster in support of the...

438

Center for Nanophase Materials Sciences (CNMS) - Nanomaterials...  

NLE Websites -- All DOE Office Websites (Extended Search)

NANOMATERIALS THEORY INSTITUTE (NTI): Computational Nanoscience End-station (CNE) In analogy to experimental end-stations at large experimental facilities, the Computational...

439

Center for Nanophase Materials Sciences (CNMS) - Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Zhan Lin, Zengcai Liu, Wujun Fu, Nancy J. Dudney, and Chengdu Liang Chemie-International Edition DOI: 10.1002anie.201300680 July, 2013 PDF - PPT Sulfur-Rich...

440

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthesis, patterning, characterization, and device applications," Angewandte Chemie-International Edition 46, 2650-2654 (2007). Xu, Y., H. Marbach, R. Imbihl, I. G....

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Center for Nanophase Materials Sciences (CNMS) - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

T.; Endo, M.; Terrones, M.; Achete, C. A., "Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages," Part. Part. Syst. Char.30 (1), 76-82...

442

Center for Nanoscale Materials: Revolutionary Breakthroughs in...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the CNM user community to advance their own research programs Key Capabilities &23; High- and low-voltage electron beam lithography (JEOL 9300 FS and Raith 150) &23; Optical...

443

Center for Nanophase Materials Sciences (CNMS) - Microsocpy,...  

NLE Websites -- All DOE Office Websites (Extended Search)

with an annual STEM detector for site-specific FIB-milling, a Kleindiek nano-manipulator, and EDS. More info ... Helium-ion Microscopy and Ion Milling Zeiss Orion NanoFab...

444

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The mission of the Electron Microscopy Center (EMC) is to: Conduct materials research using advanced microstructural characterization methods; Maintain unique resources and facilities for scientific research for the both the Argonne National Laboratory and national scientific community. Develop and expand the frontiers of microanalysis by fostering the evolution of synergistic state-of-the-art resources in instrumentation, techniques and scientific expertise; The staff members of the EMC carry out their own research as well as participate in collaborative programs with other scientists at Argonne National Laboratory as well as researchers, educators and students worldwide. The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff perform collaborative research with members of other Divisions at Argonne National Laboratory and with collaborators from universities and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

445

Accelerating Insertion of Materials at GE Aviation  

Science Conference Proceedings (OSTI)

Advancing ICME Capability through Industry/University Relationships ... First Principles Modeling of Shape Memory Alloy Magnetic Refrigeration Materials.

446

3D Materials Science 2014: Meeting Registration  

Science Conference Proceedings (OSTI)

Administrative & Policy Manual. Scroll up. Scroll down. Technical Divisions Home TMS Committees Home Electronic, Magnetic & Photonic Materials...

447

Martin-101013 - Argonne National Laboratories, Materials Sicence...  

NLE Websites -- All DOE Office Websites (Extended Search)

Martin-101013 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Ivar Martin Materials Science Division, ANL TITLE: Complex states in metallic magnets DATE: Thursday, Oct. 10, 2013 TIME: 11:00...

448

Characterization of Minerals, Metals and Materials 2014  

Science Conference Proceedings (OSTI)

Jul 15, 2013... carbon, electronic, magnetic and optical materials, energy materials, ... Comparison between Bio-composite Based on Green HDPE/ Brazil...

449

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

An Office of Science User Facility An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

450

LANSCE | Lujan Center | Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights New Evidence to Aid Search for Charge 'Stripes' in Superconductors Findings identify signature that will help scientists investigate and understand materials that carry current with no resistance "The scientists ground up crystals of the test material into a fine powder and placed samples of it in line with a beam of neutrons at the Los Alamos Neutron Scattering Center at Los Alamos National Laboratory. Similar to the way light reflecting off an object enters your eyes to create an image, the neutron beams diffracted by the crystals' atoms yield information about the positions of the atoms. The scientists used that information to infer the material's electronic structure, and repeated the experiment at gradually warmer temperatures."

451

Electric Motors and Critical Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Suggestions (Have an idea of how to get there) * Integration of motor, power converter, and speed reducer * Soft magnetic core material with high saturation...

452

Designing Permanent Magnet Machines for Ferrofluid Immersion  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications -III ... associated costs, and reliability, with thermal and dynamic effects requiring adequate clearance.

453

High Performance Magnets for Energy Efficient Devices  

Science Conference Proceedings (OSTI)

Bonded Magnetocaloric Powders for the Refrigeration Application Coercivity ... Industrial Needs and Applications for Soft Magnetic Materials Industrial...

454

Rare Earth-free Permanent Magnets I  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Sponsored by: TMS Electronic, Magnetic, and Photonic Materials Division, TMS: Energy Committee, TMS: Energy Conversion and Storage...

455

Magnetism Governs Properties of Iron-Based ...  

Science Conference Proceedings (OSTI)

... a group of materials that conduct electricity without resistance at ... theoretical evidence demonstrating how magnetism controls basic aspects of iron ...

2011-04-06T23:59:59.000Z

456

Processing of Soft Magnetic Alloys in High Magnetic Field  

Science Conference Proceedings (OSTI)

... Magnetic Materials for Use in Energy-efficient Distribution Transformers ... Novel Morphology of Highly Efficient Two-phase Ferrite Cores for Power Systems

457

Gluon propagators and center vortices in gluon plasma  

E-Print Network (OSTI)

We study electric and magnetic components of the gluon propagators in quark-gluon plasma in terms of center vortices by using a quenched simulation of SU(2) lattice theory. In the Landau gauge, the magnetic components of the propagators are strongly affected in the infrared region by removal of the center vortices, while the electric components are almost unchanged by this procedure. In the Coulomb gauge, the time-time correlators, including an instantaneous interaction, also have an essential contribution from the center vortices. As a result, one finds that magnetic degrees of freedom in the infrared region couple strongly to the center vortices in the deconfinement phase.

M. N. Chernodub; Y. Nakagawa; A. Nakamura; T. Saito; V. I. Zakharov

2011-05-25T23:59:59.000Z

458

SMD Distinguished Materials JOM Best Paper Award  

Science Conference Proceedings (OSTI)

TMS ENERGY INITIATIVES KNOWLEDGE RESOURCE CENTER ... Honors and Awards Recipients of the SMD Distinguished Materials JOM Best Paper Award...

459

The undersigned support THE ORLANDO MATERIALS ...  

Science Conference Proceedings (OSTI)

May 14, 2012 ... Technical Advisory Board. Research and Innovation Center. Ford Motor Company. Robert Schafrik. General Manager. Materials & Process.

460

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Division Personnel - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

materials, nanocrystalline diamond, catalysis reaction mechanisms in zeolites, clusters, molten salt materials.

    • <center>...

      462

      The Materials Project: Combining Quantum Chemistry Calculations...  

      NLE Websites -- All DOE Office Websites (Extended Search)

      The Materials Project: Combining Quantum Chemistry Calculations with Supercomputing Centers for New Materials Discovery Speaker(s): Anubhav Jain Date: December 18, 2012 - 12:00pm...

      463

      Materials for Nuclear Power: Digital Resource Center -- Materials ...  

      Science Conference Proceedings (OSTI)

      May 7, 2007 ... Use this area to submit digital resources and/or make comments on the resources posted by others. DO NOT use this area of the site to initiate...

      464

      Materials for Nuclear Power: Digital Resource Center -- Materials ...  

      Science Conference Proceedings (OSTI)

      WEB RESOURCE: Nuclear Data Services Atomic, molecular and other technical data from the International Atomic Energy Agency, 0, 759, Todd Osman...

      465

      Materials Science & Tech Division | Advanced Materials | ORNL  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

      466

      Center Research  

      NLE Websites -- All DOE Office Websites (Extended Search)

      5 5 Center Research ... Supports Electric Utility Restructuring Winds of change in the U.S. power sector: factors listed in the left column have created a gap between the prices utilities must charge to recover their embedded costs and the lower rates they would have to charge in a competitive environment. Possible responses to these pressures are listed to the right. The electricity industry in the U.S. is being dramatically restructured by state regulatory commissions and the Federal Energy Regulatory Commission. Efforts are underway to create a wholesale market for electricity, with wholesale prices to distributing utility companies no longer being regulated. Discussions in several states and at the FERC are aimed at revising the regulation of the structure, operation, and pricing of the

      467

      KILLGORE CENTER  

      NLE Websites -- All DOE Office Websites (Extended Search)

      LEASE AGREEMENT NO. DE-AC04-89-AL42 1 10 LEASE AGREEMENT NO. DE-AC04-89-AL42 1 10 KILLGORE CENTER AMENDMENT NO. 6 Lease Agreement No. DE-AC04-89-AL-42110, between the U.S. Department of Energy and Texas Tech University, dated October 1, 1989, as amended (amendments one, two, three, four, and five), is hereby further amended as follows: Article I1 of the base lease entitled, "TERM AND RENT," paragraph A., is hereby deleted and revised to read: A. The term of this Lease is extended for five years beginning October 1, 2009, and ending September 30, 2014. The annual rental for this term shall be as indicated in the following rate schedule determined as follows: 1. Approximately 6,680 square feet of office space. $ 58,280.00 2. Approximately 380 square feet of space in the foyer. $ 3,314.00

      468

      Thermodynamic Database for Nuclear Materials  

      Science Conference Proceedings (OSTI)

      Feb 8, 2007 ... This resource features an interactive index to thermodynamic properties included on the International Nuclear Safety Center Material Properties...

      469

      Advanced materials research areas | ORNL  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Materials Theory and Simulation Energy Frontier Research Centers Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and...

      470

      Materials Technology @ TMS Home Page  

      Science Conference Proceedings (OSTI)

      Welcome to the TMS Digital Resource Center, an archive of electronic, contributed resources on a variety of materials science and engineering topics.

      471

      Information Center | Department of Energy  

      Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

      Center Center Information Center Congressional Testimony Testimony to Congress by various members of OE. Recovery Act Learn more about OE's role in the American Recovery and Reinvestment Act. Educational Resources Educational material on the generation, transmission, and usage of electricity as well as how the electric grid works and how it needs to be modernized. Reporting Reporting to OE including Electric Disturbance Incidents and Transmission Project Reporting (FPA 216(h) as well as Emergency Situation Reports related to natural and man-made disasters and links to the Energy Assurance Daily. Library Repository of reports and documents; fact sheets; presentations and other documentation from peer review events; and Federal Register notices. Meetings & Events

      472

      ARM - External Data Center  

      NLE Websites -- All DOE Office Websites (Extended Search)

      govExternal Data Center External Data Center Order Data Description of External Data Streams Data Viewers and Plots (selected data sets) XDC Documentation External Data Center The...

      473

      CEBAF Center - Cavity Display  

      NLE Websites -- All DOE Office Websites (Extended Search)

      CEBAF Center - Cavity Display Building Exterior 1st Floor Cafeteria Cavity Display CEBAF Center Auditorium Eating Area UserInternational Liaison Office 2nd Floor Computer Center...

      474

      Orbit-averaged guiding-center Fokker-Planck operator  

      Science Conference Proceedings (OSTI)

      A general orbit-averaged guiding-center Fokker-Planck operator suitable for the numerical analysis of transport processes in axisymmetric magnetized plasmas is presented. The orbit-averaged guiding-center operator describes transport processes in a three-dimensional guiding-center invariant space: the orbit-averaged magnetic-flux invariant {psi}, the minimum-B pitch-angle coordinate {xi}{sub 0}, and the momentum magnitude p.

      Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Decker, J.; Peysson, Y.; Duthoit, F.-X. [CEA, IRFM, Saint-Paul-lez-Durance F-13108 (France)

      2009-10-15T23:59:59.000Z

      475

      Materials/Condensed Matter  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Materials/Condensed Matter Print Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating properties (structural, physical, chemical, electrical, magnetic, optical, etc.). Increasingly, the frontiers of materials research include materials that are "strongly correlated," characterized by strong coupling between a material's electrons with other electrons, magnetism, or the material lattice itself. This coupling often results in novel behavior, such as superconductivity, that may lead to technologically important applications.

      476

      Chemistry and Physics of Materials Committee - Committee Home ...  

      Science Conference Proceedings (OSTI)

      The Chemistry and Physics of Materials Committee is part of the Electronic, Magnetic, and Photonic Materials Division; Structural Materials Division. Our Mission:...

      477

      Magnetic Exchange Coupling and Single-Molecule Magnetism in Uranium Complexes  

      E-Print Network (OSTI)

      method for interpreting uranium magnetism and will becontaining lower-valent uranium centers can be seen to1995. Chapter 4: Tetranuclear Uranium Clusters via Reductive

      Rinehart, Jeffrey Dennis

      2010-01-01T23:59:59.000Z

      478

      Guiding Center Equations for Ideal Magnetohydrodynamic Modes  

      SciTech Connect

      Guiding center simulations are routinely used for the discovery of mode-particle resonances in tokamaks, for both resistive and ideal instabilities and to find modifications of particle distributions caused by a given spectrum of modes, including large scale avalanches during events with a number of large amplitude modes. One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through ?~B = ? X (? X B) however perturbs the magnetic topology, introducing extraneous magnetic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian displacement of the field due to the perturbation and conserves magnetic topology as it should. In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories the guiding center equations should include a correct Lagrangian treatment. Guiding center equations for an ideal displacement ? are derived which perserve the magnetic topology and are used to examine mode particle resonances in toroidal confinement devices. These simulations are compared to others which are identical in all respects except that they use the linear representation for the field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding center equations does not result in extraneous mode particle resonances.

      Roscoe B. White

      2013-02-21T23:59:59.000Z

      479

      COMPUTATIONAL SCIENCE CENTER  

      SciTech Connect

      The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

      DAVENPORT, J.

      2005-11-01T23:59:59.000Z

      480

      The Materials Project: Combining Density Functional Theory Calculation...  

      NLE Websites -- All DOE Office Websites (Extended Search)

      The Materials Project The Materials Project: Combining Density Functional Theory Calculations with Supercomputing Centers for New Materials Discovery May 2, 2013 jain2 Anubhav Jain...

      Note: This page contains sample records for the topic "magnetic materials center" from the National Library of EnergyBeta (NLEBeta).
      While these samples are representative of the content of NLEBeta,
      they are not comprehensive nor are they the most current set.
      We encourage you to perform a real-time search of NLEBeta
      to obtain the most current and comprehensive results.


      481

      Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry  

      SciTech Connect

      Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

      Campbell, J.A.; Linehan, J.C.; Robins, W.H. [Battelle Pacific Northwest Lab., Richland, WA (United States)

      1992-07-01T23:59:59.000Z

      482

      Low-temperature magnetic refrigerator  

      SciTech Connect

      The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

      Barclay, John A. (Los Alamos, NM)

      1985-01-01T23:59:59.000Z

      483

      Low-temperature magnetic refrigerator  

      DOE Patents (OSTI)

      The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

      Barclay, J.A.

      1983-05-26T23:59:59.000Z

      484

      LANSCE | Lujan Center | Instruments | ASTERIX  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Asterix Asterix Surfaces and Interfaces Asterix is a reflectometer/diffractometer/grazing-incidence-SANS/SESAME-enabled-SANS spectrometer that is primarily used for experiments or neutron scattering techniques requiring polarized neutron beams. These experiments involve studies of magnetic materials and to a smaller (though growing) extent non-magnetic systems-the latter taking advantage of the Spin Echo Scattering Angle Measurement (SESAME) technique. Examples of programs using Asterix include: polarized neutron reflectometry of magnetic materials (in low and 11 T-strong fields), long-wavelength/large-d-spacing diffraction (d-spacing > 2 Å) and measurements of pair correlation lengths up to 2 µm in soft matter. Asterix views an intense polychromatic neutron beam through a 36-cm2

      485

      Fast superconducting magnetic field switch  

      DOE Patents (OSTI)

      The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

      Goren, Y.; Mahale, N.K.

      1995-12-31T23:59:59.000Z

      486

      Materials Science Division - Argonne National Laboratories, Materials  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

      487

      Cool Magnetic Molecules  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

      488

      Cool Magnetic Molecules  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

      489

      Cool Magnetic Molecules  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

      490

      Cool Magnetic Molecules  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

      491

      Cool Magnetic Molecules  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

      492

      Unlocking the 'True' Structure of Complex Materials using Total ...  

      Science Conference Proceedings (OSTI)

      ... Magnetic Composite Materials X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source...

      493

      SM Home - Argonne National Laboratories, Materials Sicence Division  

      NLE Websites -- All DOE Office Websites (Extended Search)

      Home Superconductivity and Magnetism This program undertakes experimental and theoretical investigations of novel superconducting and magnetic materials that are important for...

      494

      Novel Material May Demonstrate Long-Sought 'Liquid' ...  

      Science Conference Proceedings (OSTI)

      ... time the material looks like a magnetic liquid, but ... can be thought of as a tiny bar magnet. ... pattern of spins generally uses less energy, says Broholm ...

      2013-01-03T23:59:59.000Z

      495

      X-Ray Scattering Group, Condensed Matter Physics & Materials...  

      NLE Websites -- All DOE Office Websites (Extended Search)

      highlights Quantum Persistence of Magnetic Excitations in Overdoped High Temperature Superconductors Novel Magnetic Dispersions by Mixing Ir and Cu Materials Today Popular...

      496

      USC Nano Center Poster Session  

      E-Print Network (OSTI)

      USC Nano Center Poster Session 19 April 2002 Nano-scale VLSI Design: A Significant Paradigm Shift The recent progression of events in nano-technology, from nanotubes to nano- transistors, begs a basic will the changes in underlying device materials theory of nano-scale electronics affect ways in which we currently

      Davis, James P.

      497

      Critical Materials Strategy Summary  

      Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

      diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

      498

      Critical Materials Strategy Summary  

      Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

      diplomacy. As the nation's leading funder of research on the physical sciences, DOE's capabilities with respect to materials research are substantial. Topics identified for priority research attention include rare earth substitutes in magnets, batteries, photovoltaic films and phosphors; environmentally sound mining and materials processing; and recycling. The eight programs and policies address risks, con- straints and opportunities across the supply chain,

      499

      Tailoring of Magnetic Properties and GMI Effect in Thin Amorphous ...  

      Science Conference Proceedings (OSTI)

      Fabrication of Nanocrystalline Magnetic Materials for Use in Energy-efficient Distribution Transformers Fabrication of ?-Fe16N2 Bulk Magnets by...

      500

      Soft magnetic rapidly solidified bilayer ribbons for energy applications  

      Science Conference Proceedings (OSTI)

      Fe-rich FeSiBPCu Nano-crystalline Soft Magnetic Alloys Contributable To Energy -saving Fe and Mn Based Materials for Magnetic Refrigeration First-order...